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Abstract
We consider the problem of counting lattice points contained in domains inRd defined
by products of linear forms. For d ≥ 9 we show that the normalized discrepancies in
these counting problems satisfy non-degenerate Central Limit Theorems with respect
to the unique SLd(R)-invariant probabilitymeasure on the space of unimodular lattices
inRd .We also studymore refined versions pertaining to “spiraling of approximations”.
Our techniques are dynamical in nature and exploit effective exponential mixing of
all orders for actions of diagonalizable subgroups on spaces of unimodular lattices.

Keywords Counting problems · Central limit theorems · Exponential mixing of all
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1 Introduction

Let � be a lattice in R
d , and let (�T ) be an increasing family of Borel subsets of

R
d with finite volumes tending to infinity as T → ∞. A fundamental problem in the

Geometry of Numbers is to estimate the number of points in � which are contained
in �T . Under mild regularity conditions, one can usually show that

|� ∩ �T | = Vol(�T )

Vol(Rd/�)
+ o
(
Vol(�T )

)
as T → ∞.

B Michael Björklund
micbjo@chalmers.se

Alexander Gorodnik
alexander.gorodnik@math.uzh.ch

1 Department of Mathematical Sciences, Chalmers University of Technology and the University of
Gothenburg, Gothenburg, Sweden

2 Institute für Mathematik, University of Zürich, Zürich, Switzerland

http://crossmark.crossref.org/dialog/?doi=10.1007/s00029-022-00815-w&domain=pdf


12 Page 2 of 44 M. Björklund, A. Gorodnik

In this paper we study the corresponding discrepancy function defined by

DT (�) := |� ∩ �T | − Vol(�T )

Vol(Rd/�)
. (1.1)

When the domain �T is a T -dilation of a region � ⊂ R
d with piecewise smooth

boundary, one can easily prove that

DT (�) = O�

(
Vol(�T )1−1/d

)
, (1.2)

(see the book [21] formany results of this form), and this estimate is the best possible in
this generality. However, the estimate has been improved for certain particular classes
of domains. Awell-studied setting is when the domain� has non-vanishing curvature.
In this case, Hlawka [16] has shown that

DT (�) = O�

(
Vol(�T )1−2/(d+1)

)
(1.3)

These bounds have been subsequently improved by a number of people (see, for
instance, [17] for a survey).

In this paper we shall be interested in asymptotic behaviour (T → ∞) of the
discrepancy function DT (�) for "generic" lattices �. The following two questions
naturally arise in this setting:

(i) what is the asymptotic "generic" growth of DT (�)?
(ii) do suitably normalized discrepancy functions converge in distribution?

ConcerningQuestion (i): it turns out that the estimate (1.2) can be improved for generic
lattices. The first striking result in this direction was established by W. Schmidt [25].
He proved that for a every increasing family of Borel sets �T as above and almost
every lattice �,

DT (�) = O�,ε

(
Vol(�T )1/2+ε

)
for all ε > 0.

However, the exact asymptotic behavior of DT (�) for generic lattices is still quite
mysterious, and it turns out that the answer depends very sensitively on the shape of
the domains. For instance, Hardy, Littlewood [16] and Khinchin [20] discovered that
when �T is a T -dilation of a generic compact polygon in R

2, then

DT (Z2) = Oε

((
logVol(�T )

)1+ε
)

for all ε > 0.

This exhibits a striking difference with the estimate (1.3) for strictly convex domains.
Skriganov [28] established a far-reaching generalization of this estimate. He showed
that when �T is a dilation by a factor T of a compact polyhedron in R

d , then for
almost every unimodular lattice �,

DT (�) = O�,ε

((
logVol(�T )

)d−1+ε
)

for all ε > 0.
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It is not known whether the above bound is optimal. Another well-studied example is
the case when the domains�T are the Euclidean balls inRd . In this case, it was shown
by Kelmer [18] that for any exponentially growing sequence Ti → ∞ and almost all
lattices �,

DTi (�) = O�,ε

(
Vol(�Ti )

1−(d+1)/(2d)+ε
)

for all ε > 0.

Concerning Question(ii) above: several results have been proved for certain partic-
ular families of lattices. For instance, it was discovered by Beck that the distributions
of suitably normalized discrepancy functions are asymptotically Gaussian. We refer
to a survey [2] and a monograph [3] for a comprehensive exposition of these results.
Beck considered the domains

�T := {(x, y) ∈ R
2 : x2 − 2y2 ∈ (a, b), 0 < x < T , y > 0

}

and translated lattices �ω := Z
2 + (ω, 0) with 0 < ω < 1 and showed that there

exists an explicit σ > 0 such that

Leb
({

ω ∈ (0, 1) : Vol(�T )−1/2DT (�ω) < ξ
}) −→ 1

σ
√
2π

∫ ξ

−∞
e−t2/2σ2

dt as T → ∞. (1.4)

While this approach seems to work for domains defined by more general indefinite
integral binary quadratic forms, it was not clear whether this result could hold in higher
dimensions since its proofwas based on properties of continued fraction expansions for
quadratic irrationals. Furthermore, Beck points out that there are essential difficulties
in extending his work to higher dimensions related to the long-standing Littlewood
Conjecture.

Levin [22] investigated the discrepancy function of the family of lattices of the
form

�a := diag(a1, . . . , ad)
−1O, a = (a1, . . . , ad) ∈ (0, 1)d ,

whereO is a fixed lattice inRd arising from an order in a totally real number field. He
showed that for the boxes �N := [−N1, N1]× · · ·× [−Nd , Nd ], suitably normalized
discrepancy functionsDN (�a) are asymptotically Gaussian as N1 · · · Nd → ∞, with
a ∈ (0, 1)d considered random. Since the results [2, 3, 22] treat only very particular
lattices arising from orders in number fields, one may wonder whether this behavior
occurs for truly generic lattices. We will address this question in the present paper.

One should also mention the ground-breaking works of Dolgopyat, Fayad [8, 10]
(see also the survey [9]), generalizing Kersten [19], about the discrepancy of distribu-
tion for toral translations. Using our terminology, these results can be interpreted in
terms of discrepancy functions for the family of lattices given by

�u := {(x1 + u1y, . . . , xd−1 + ud−1y, y) : (x1, . . . , xd−1, y) ∈ Z
d} with 0 ≤ u1, . . . , ud−1 < 1.
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and certain families of domains �T (θ) depending on additional parameters θ . It is
shown in [8, 10] that the corresponding discrepancy for |�u ∩ �T (θ)| after a suitable
normalization converges in distribution as T → ∞, with (u, θ) considered random.
It should be noted that the obtained limit distributions in [8, 10] are different from the
Normal Law. Further related results about distribution of Diophantine approximants
were proved in [11] and [7].

1.1 Main results

Let L1, . . . , Ld : R
d → R be linearly independent linear forms and N (x) :=

L1(x) · · · Ld(x). For a bounded interval I ⊂ R
+ and T > 0, we consider the domains

�T (I ) := {x ∈ R
d : N (x) ∈ I and 0 < L1(x), . . . , Ld(x) < T

}
.

We write X for the space of unimodular lattices in R
d equipped with the unique

SLd(R)-invariant probability measure μ. The following result provides an analogue
of (1.4) for μ-generic unimodular lattices:

Theorem 1.1 Let DT denote the discrepancy function for �T (I ). If d ≥ 9, then

μ
({

� ∈ X : Vol(�T )−1/2DT (�) < ξ
}) −→ 1

σ(I )
√
2π

∫ ξ

−∞
e−t2/2σ(I )2 dt as T → ∞,

for all ξ ∈ R, where

σ(I )2 := 1

ζ(d)

∞∑
p,q=1

Leb
(
pd I ∩ qd I

)

pdqd Leb(I )
.

Remark 1.2 We explain in Sect. 4.1 that one may, without loss of generality, prove
Theorem 1.1 in the special case when Li (x) = xi for i = 1, . . . , d.

Athreya, Ghosh and Tseng [1] studied the related problem of "spiraling" of Dio-
phantine approximants which involves counting the lattice points in the domains

{
(x, y) ∈ R

d−1 × R : ‖x‖ · |y| ∈ I ,
x

‖x‖ ∈ B, 0 < ‖x‖ < T , 0 < y < T
}
,

defined for an interval I ⊂ R
+ and a Borel subset B ⊂ Sd−1. Our method allows us

to analyze the distribution of the error term for this counting problem.
Theorem 1.1 is a special case of Theorem 1.3 below, which deals with the following

general setting. For k ≥ 2 and positive integers d1, . . . , dk , we set

d = (d1, . . . , dk) and d = d1 + · · · + dk,

and define Sd :=∏k
j=1 S

d j−1, where Sd j−1 denotes the unit sphere in Rd j , endowed

with the standard Euclidean inner product, with the convention that S0 = {−1, 1}.
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The corresponding norm on R
d j will be denoted by ‖ · ‖, the spherical measure on

Sd j−1 will be denoted by κ j , and we set

κ := κ1 ⊗ · · · ⊗ κk . (1.5)

Let us also fix rotation-invariant smooth metrics on each Sd j−1 with d j ≥ 2. If d j = 1,
we endow S0 = {−1, 1}with the discrete distance. If B ⊂ Sd is a Borel set and ε > 0,
we denote by Bε the ε-thickening of B with respect to the products of the chosen
metrics. We say that a Borel set B ⊂ Sd has a smooth boundary if

κ(Bε) − κ(B) � ε, for all small enoughε > 0,

where the implicit constants are independent of ε.
Let now L j : Rd → R

d j , j = 1, . . . , k, be linear maps such that (L1, . . . , Lk) is
a bijection of Rd . We define

N (z) :=
k∏
j=1

‖L j (z)‖d j and ξ(z) :=
( L1(z)

‖L1(z)‖ , . . . ,
Lk(z)

‖Lk(z)‖
)
. (1.6)

Given a bounded interval I ⊂ (0,∞), a Borel set B ⊂ Sd and T > 0, we consider
the domains

�T (I , B) := {z ∈ R
d : N (z) ∈ I , ξ(z) ∈ B and 0 < ‖L1(z)‖, . . . , ‖Lk (z)‖ < T

}
. (1.7)

Our main result is the following:

Theorem 1.3 When k ≥ 2 and d ≥ 9, the discrepancy functions for the sets �T (I , B)

satisfy,

μ
({

� ∈ X : Vol(�T )−1/2DT (�) < ξ
}) −→ 1

σ(I , B)
√
2π

∫ ξ

−∞
e−t2/2σ(I ,B)2 dt as T → ∞,

for all ξ ∈ R, where

σ(I , B)2 := 1

ζ(d)

⎛
⎝

∞∑
p,q=1

Leb
(
pd I ∩ qd I

)

pdqd Leb(I )

⎞
⎠(1 + κ(B ∩ −B)

κ(B)

)
.

Theorems 1.1 and 1.3 have been announced in [5] for d ≥ 4. However, it turned
out that the technical part of our argument works only for d ≥ 9.

In the next section, we summarize the main steps of the proof of Theorem 1.3. Our
argument can be roughly divided into two parts that involve:

• a construction of a suitable approximation for the counting function (Sect. 4),
• analysis of such approximations (Sect. 3).



12 Page 6 of 44 M. Björklund, A. Gorodnik

1.2 Concerning novelty

We want to stress that the approximation of the counting function in this paper is
very different from, and much more involved than, the approximation employed in
our previous paper [7]. In the latter paper, the domains in which the lattice points were
counted could be perfectly tiled by a fixed subgroup of diagonal matrices, thus essen-
tially reducing the question whether a Central Limit Theorem holds, to (an unbounded
version of) the setting in [6].

In this paper however, the relevant domains in which we wish to count, are foliated
by lower-dimensional subsets, which all admit nice tilings by (higher rank) diagonal
subgroups of matrices, but these subgroups depend in a non-trivial way on the leaf
in the foliation. We can approximate the counting function on each of these leaves,
and bunch the resulting approximations together into a functional tiling (see Sect. 2
for more details). This functional tiling is an integral of averages of a parameterized
family of smooth functions over yet another parameterized family of subgroups of
diagonal matrices. Each of these parameterized averages can in principle be analyzed
using the techniques from [6, 7], but that is not enough.

The issue is that the parameterized family of smooth functions in the averages is
not bounded in the relevant parameter (even after the cuspidal cut-offs), which causes
serious problems in our cumulant machinery, more specifically in our analysis of
"clustered tuples". To circumvent this, we need to make use of some special features
of the geometry at hand (see Sect. 3.5.2).

2 Outline of the proof

Our argument will involve analysis on the space X of unimodular lattices in R
d ,

which can be considered as a homogeneous space X  SLd(R)/SLd(Z). The space
X supports a unique SLd(R)-invariant probability measure, which we shall denote by
μ throughout the paper.

Given a bounded Borel measurable function f : Rd → R with bounded support,
its Siegel transform f̂ : X → R is defined by

f̂ (�) :=
∑

z∈�\{0}
f (z), for � ∈ X .

According to Siegel’s Mean Value Theorem [27], if f is Riemann integrable, then

∫

X
f̂ dμ =

∫

Rd
f (z) dz, (2.1)

where we normalise the Lebesgue measure dz on Rd so that the unit cube is assigned
volume one.
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Suppose that �T is a bounded Borel set in R
d , which does not contain the origin.

Then, with the above notations,

|�T ∩ �| = χ̂�T (�) and Vol(�T ) =
∫

X
χ̂�T dμ, (2.2)

so that

DT (�) = χ̂�T (�) −
∫

X
χ̂�T dμ.

In the setting of Theorem 1.3, these formulas can be rewritten further. In what follows,
we retain the notation used there. In particular, we have fixed k ≥ 2 and d ≥ 3, as
well as a k-tuple d = (d1, . . . , dk) of positive integers with d = d1 + · · · + dk . We
have chosen a bounded interval I ⊂ (0,∞) and a Borel set B ⊂ Sd with a smooth
boundary. We denote by �T = �T (I , B) the sets defined in (1.7). There is no loss of
generality in assuming that the maps L j are the standard coordinate projections (see
Sect. 4.1). Then the domains �T can be conveniently foliated by the level sets

Ls,ξ := {z ∈ R
d : N (z) = s and ξ(z) = ξ

}
, fors ∈ Iandξ ∈ B,

which are invariant under the subgroup A < SLd(R) of diagonal matrices of the form

a(u) :=Diag
(
eu1 Id1 , e

u2 Id2 , . . . , e
uk−1 Idk−1 , e

− 1
dk

∑k−1
j=1 d j u j Idk

)
, for u ∈ R

k−1. (2.3)

We note that A  R
k−1 since

a(u)a(v) = a(u + v) for allu, v ∈ R
k−1.

The initial idea of our approach is that the level sets Ls,ξ can be tessellated, using the
action of a discrete subgroup of A on Rd . Unfortunately, the domains �T themselves
do not possess such simple tilings. However, it turns out that each of the intersections
�T ∩Ls,ξ has a tilingwhere tiles and the discrete subgroup depends on the parameters s
and T (but not on the parameter ξ ).Wewill show that the indicator functionsχ�T canbe
approximated by suitable integrals of varying functional averages. These “functional
tilings” stem from the above tilings for different values of s and ξ and are constructed
using the following data:

• A collection of finite measure spaces (YT ,i , κT ,i ) indexed by T > 0 and i in a
finite set I,

• A collection of bounded Borel functions fT ,i : Rd × YT ,i → [0,∞) with T > 0
and i ∈ I,

• A collection of finite subsets Q(yi ) of A with yi ∈ YT ,i .
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The corresponding “functional tiling” is given by

FT (z) :=
∑
i∈I

∫

YT ,i

⎛
⎝ ∑

a∈QT ,i (yi )

fT ,i (az, yi )

⎞
⎠ dκT ,i (yi ), for z ∈ R

d . (2.4)

We shall show that for a suitable choice of the data, FT provides an approximation for
the characteristic function χ�T in the sense that

∥∥χ�T − FT
∥∥
1 = o

(
Vol(�T )1/2

)
as T → ∞.

Assuming this, we can then write

χ̂�T − vol(�T )

Vol(�T )1/2
= χ̂�T − F̂T

Vol(�T )1/2
+ F̂T − ∫X F̂T dμ

Vol(�T )1/2
+
∫
X

(
F̂T − χ̂�T

)
dμ

Vol(�T )1/2
,

where the first and third term on the right hand side tend to zero in the L1(μ)-norm.
Thus, the distributional limit of DT (�) is the same as the distributional limit of the
sequence of functions

ϒT (�) := Vol(�T )−1/2
(
F̂T (�) −

∫

X
F̂T dμ

)
.

The significance of this observation is that Siegel transforms of functional tilings like
FT can be investigated using homogeneous dynamics techniques.

Since averages of this form also arise in other arithmetic problems, we will analyze
their behavior in an abstract axiomatic setting (cf. assumptions (I.a)–(I.c) and (II.a)–
(II.c) below). This analysis will be carried out in Sect. 3. Our main result here is
Theorem 3.19. Notably, it shows that when certain basic norm estimates for functions
fT ,i hold, the distributional convergence of ϒT (�) holds provided that the variance
‖ϒT ‖L2(X) converges. Next, in Sect. 4 we construct an approximation for χ�T of
the form (2.4) satisfying our assumptions (I.a)–(I.c) and (II.a)–(II.c). Once such an
approximation is available, our main result will be a corollary of Theorem 3.19.

3 Analysis of general functional tilings

In this section we consider a family of functions FT on R
d defined by a “func-

tional tiling” as in (2.4). Our goal is to analyze the asymptotic behavior of the sums
F̂T (�) =∑z∈�\{0} FT (z) for lattices� inRd .Wewill formulate several assumptions
on the objects defining FT and then in the next section demonstrate that the developed
framework does apply to our setting.

We hope that the axiomatic approach outlined in this paper can be used in other
counting problems as well. Our main result here is Theorem 3.19, which establishes
the Central Limit Theorem for (F̂T ), with respect to the measure μ.
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3.1 Some remarks about the axioms

The goal of this section is to describe a general approach for proving Central Limit
Theorems for Siegel transforms of functional tilings (FT ) of the form (2.4). Our
approach is based on two sets of assumptions on the data

(I, (YT ,i , κT ,i ), fT ,i , Q(yi )).

The first set of assumptions are labelled I.a,I.b,I.c and are described in Sect. 3.2, while
the second set of assumptions are labelled II.a, II.b, II.c and are described in Sect. 3.4.

The first set of assumptions simply describes the objects in the data that make up
the functional tiling. The key point here is that the functions fT ,i are smooth in the
first variable and supported in a fixed compact subset of Rd (in particular, the Siegel
transform of fT ,i (·, yi ) is well-defined and smooth for every yi ∈ YT ,i and for all
i ∈ I.

The second set of assumptions is deeper. The first two assumptions (II.a and II.b)
are concerned with the finite subsets QT ,i (yi ). Roughly speaking, II.a requires that
QT ,i are well-separated subsets of the group A described in the previous subsection,
while II.b takes this assumption a bit further, namely that there is a sequence (Q̃T ,i )

(independent of yi ∈ YT ,i ) and a family of quasi-isometric embeddings βT ,i (·, yi ) of
R
k−1 into itself such that QT ,i (yi ) = βT ,i (Q̃T ,i , yi ). These two assumptions will be

useful when we estimate the contribution to cumulants of (truncations of) F̂T ,i (·, yi )
coming from separated tuples (Sect. 3.5.1)

The remaining assumption II.c is the most technical one. It is used to control the
contribution to cumulants of (truncations of) F̂T coming from clustered tuples (Sect.
3.5.2). Roughly speaking, the idea behind this assumption can be explained as follows.
By II.b, the yi -dependence of the map βT ,i is rather mild, and, up to bounded error,
βT ,i is close to a map β̃T ,i which is independent of yi . The essence of the assumption
II.c is that the sums in functional tilings like (2.4) can be estimated from above by
sums over subsets which are independent of yi . Although this assumption probably
can be weakened, it holds in the setting that we are interested in, and it simplifies a lot
of the upper estimates of integrals involving products of the fT ,i ’s.

3.2 Functional averages and their truncations

Let I be a finite set. For T > 0 and i ∈ I, we consider:
(I.a) finite measure spaces (YT ,i , κT ,i ) satisfying supT ,i κT ,i (YT ,i ) < ∞,
(I.b) bounded Borel functions fT ,i : Rd × YT ,i → [0,∞) such that for yi ∈ YT ,i ,

the map x �→ fT ,i (x, yi ) is smooth, and supported in a compact set K ⊂ R
d ,

independent of T , i , and yi ,
(I.c) a set-valued map yi �→ QT ,i (yi ) from YT ,i into the set of finite subsets of the

subgroup A < SLd(R) of diagonalizable matrices of the form a(u) defined in
(2.3) such that

sup
i,yi

|QT ,i (yi )| � VT
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with a parameter VT satisfying VT → ∞ as T → ∞.

For f ∈ C∞
c (Rd), let ∂k f denote the partial derivative of f with respect to the

k-th coordinate for k = 1, . . . , d. If β = (β1, . . . , βd) is a multi-index, we set ∂β f =
∂

β1
1 · · · ∂βd

d f , and define

‖ f ‖C p = max|β|≤p
‖∂β f ‖∞, for p ≥ 1, (3.1)

where |β| = β1 + · · · + βd .
We use the notations

MT := max
i∈I

∫

YT ,i

∥∥ fT ,i (·, yi )
∥∥∞ dκT ,i (yi ), (3.2)

MT ,q := max
i∈I

sup
yi∈YT ,i

∥∥ fT ,i (·, yi )
∥∥
Cq . (3.3)

Given the data in (I.a)–(I.c), we consider the family of functions given by

FT (z) :=
∑
i∈I

∫

YT ,i

⎛
⎝ ∑

a∈QT ,i (yi )

fT ,i (az, yi )

⎞
⎠ dκT ,i (yi ), for z ∈ R

d , (3.4)

and their Siegel transforms

F̂T (�) =
∑
i∈I

∫

YT ,i

⎛
⎝ ∑

a∈QT ,i (yi )

f̂T ,i (a�, yi )

⎞
⎠ dκT ,i (yi ), for � ∈ X . (3.5)

Our goal is to show that under suitable assumptions the functions

ϒT (�) := V−1/2
T

(
F̂T (�) −

∫

X
F̂T dμ

)

converge in distribution. One of the difficulties here is that Siegel transforms (even
for bounded Borel functions with bounded support) are not bounded. Nonetheless,
they are typically only large on sets of very small μ-measure and belong to L p(X) for
p < d (see Lemmas 3.2 and 3.3 below). Here and later in the paper we always assume
that d ≥ 3 so that the Siegel transforms are L2-integrable. This makes it possible
to efficiently approximate a Siegel transform by bounded functions on X whose L p-
distance from the original Siegel transform is small. To make this approximation
precise, we shall use a family of compactly supported cutoff functions ηL : X → [0, 1]
with L > 0, constructed in [7, Lemma 4.11] such that for every compact set K ⊂ R

d

and f ∈ C(K ), we have

∥∥ f̂ ηL
∥∥
L∞(X)

�K L‖ f ‖∞. (3.6)
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Furthermore, for every ε > 0,

∥∥ f̂ (1 − ηL )
∥∥
L1(X)

�K ,ε L−d+1+ε‖ f ‖∞ and
∥∥ f̂ (1 − ηL )

∥∥
L2(X)

�K ,ε L−d/2+1+ε‖ f ‖∞,

(3.7)

where the implicit constants are independent of L .
We introduce a parameter LT → ∞, which will be specified later, and introduce

the functions ϕT ,i : X × YT ,i → [0,∞) defined by

ϕT ,i (�, yi ) := f̂T ,i (�, yi )ηLT (�), for � ∈ X and yi ∈ YT ,i ,

which provide compactly supported truncations of the functions f̂T ,i (·, yi ). We then
consider

�T (�) :=
∑
i∈I

∫

YT ,i

⎛
⎝ ∑

a∈QT ,i (yi )

ϕT ,i (a�, yi )

⎞
⎠ dκT ,i (yi ), for � ∈ X .

The following lemma shows that this function approximates the Siegel transform F̂T
if the parameter LT grows fast enough.

Lemma 3.1 If for some ε > 0,

L−d/2+1+ε
T V 1/2

T MT → 0 as T → ∞, (3.8)

then

∥∥F̂T − �T
∥∥
L2(X)

= o
(
V 1/2
T

)
as T → ∞.

Similarly, if

L−d+1+ε
T V 1/2

T MT → 0 as T → ∞, (3.9)

then

∥∥F̂T − �T
∥∥
L1(X)

= o
(
V 1/2
T

)
as T → ∞.

Before we proceed to the proof of this lemma, we discuss its relevance to our
arguments so far. We wish to prove convergence in distribution for the functions

ϒT = V−1/2
T

(
F̂T − �T

)+ V−1/2
T

(
�T −

∫

X
�T dμ

)
+ V−1/2

T

∫

X

(
�T − F̂T

)
dμ.

If LT is chosen as in (3.9), then the first and third term of the right hand side tend to
zero in the L1-norm, whence ϒT converges in distribution to a continuous measure if
and only if the functions
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�T := V−1/2
T

(
�T −

∫

X
�T dμ

)
(3.10)

do. In the upcoming subsections, we will analyse this type of sequences.

Proof of Lemma 3.1 By construction, we have

∥∥F̂T − �T
∥∥
L2(X)

≤
∑

i∈I

∫

YT ,i

∑

a∈QT ,i (yi )

∥∥( f̂T ,i (·, yi ) ◦ a
)
(1 − ηLT ◦ a)

∥∥
L2(X)

dκT ,i (yi ).

Since the measure μ is A-invariant, the inner terms are independent of a ∈ QT ,i (yi ),
whence

∥∥F̂T − �T
∥∥
L2(X)

≤
∑
i∈I

∫

YT ,i

|QT ,i (yi )|
∥∥ f̂T ,i (·, yi )(1 − ηLT )

∥∥
L2(X)

dκT ,i (yi ).

By the assumption (I.b), the supports of the functions x �→ fT ,i (x, yi ) are all contained
in a fixed compact set K ⊂ R

d , independent of T , i and yi . Hence, by (3.7),

∥∥ f̂T ,i (·, yi )(1 − ηLT (·))∥∥L2(X)
�K,ε L−d/2+1+ε

T ‖ fT ,i (·, yi )‖∞, for all yi ∈ YT ,i .

Furthermore, by the assumption (I.c), we have |QT ,i (yi )| ≤ VT , so that we conclude
that

∥∥F̂T − �T
∥∥
L2(X)

�K,ε L−d/2+1+ε
T VT

(∑
i∈I

∫

YT ,i

‖ fT ,i (·, yi )‖∞ dκT ,i (yi )

)
.

This implies the first part of the lemma, and the proof of the second part is similar.
��

3.3 Sobolev norms andmixing estimates

In order to obtain quantitative estimates on correlations, we need to control the smooth-
ness of the functions. Our main tool for this purpose are Sobolev norms, which we
now introduce. First note that every Y in the Lie algebra sld(R) of SLd(R) induces a
differential operator DY on C∞(X) by

(DYϕ)(�) = d

dt
ϕ(etY�) |t=0 for smooth functions ϕon X .

More generally, if we fix a basis Y1, . . . ,Ym of sld(R) with m = d2 − 1, and if
Y is a monomial in the universal enveloping algebra of sld(R) with respect to this
basis, say Y = Y η1

1 · · · Y ηm
m for non-negative integers η1, . . . , ηm , then we define

Dη := Dη1
Y1

· · · Dηm
Ym

, and refer to the integer |η| := η1 + · · · + ηm as the order of
Dη, where η = (η1, . . . , ηm). We write C∞

c (X) for the space of compactly supported
functions ϕ such that all the derivatives Dηϕ exist.
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Let� ∈ X . We say that a linear subspace V < R
d is�-rational if V ∩� is a lattice

in V . If V is �-rational, we denote by d�(V ) the volume of V /V ∩ �. We define

α(�) = sup
{
d�(V )−1 : V < R

d is� − rational
}
.

It can readily be checked that α is a proper function on X , and that for every compact
set C ⊂ SLd(R), there is a constant AC > 0 such that

A−1
C α(�) ≤ α(g�) ≤ ACα(�), for all g ∈ C and� ∈ X . (3.11)

Before we introduce Sobolev norm, wemention important properties of the α-function
in relation with Siegel transforms.

Lemma 3.2 ([26], Lemma 2) If f : Rd → R is a bounded function with bounded
support, then

∣∣ f̂ (�)
∣∣�supp( f ) α(�)‖ f ‖∞, for all � ∈ X .

The following estimate is also well-known (see e.g. [13, Lemma 3.10]):

Lemma 3.3
∫
X α p dμ < ∞ for every p < d.

The following norms were introduced and studied by Einsiedler, Margulis and
Venkatesh [12].

Definition 3.4 (Sobolev norms) Letq be a positive integer. Forϕ ∈ C∞
c (X), itsSobolev

norm Sq(ϕ) of order q is defined as

Sq(ϕ) :=
∑
|η|≤q

(∫

X
|αd Dηϕ|2 dμ

)1/2

.

The explicit expression of the norm Sq will not be important in our paper. Instead
we shall use as black boxes, the following properties of the norms, established in [12]
and in our previous paper [7].

Proposition 3.5 ([12], Subsect. 3.7) For all sufficiently large q,

(i) Sq(ϕ) �q Sq+1(ϕ) and ‖ϕ‖L∞(X) �q Sq(ϕ) for all ϕ ∈ C∞
c (X).

(ii) for some p ≥ 1, we have Sq(ϕ1ϕ2) �q Sq+p(ϕ1)Sq+p(ϕ2), for all ϕ1, ϕ2 ∈
C∞
c (X).

(iii) there exists σq > 0 such that Sq
(
ϕ ◦ a(u)

) �q eσq‖u‖Sq(ϕ), for all u ∈ R
k−1,

where a(u) is defined in (2.3) and ‖ · ‖ is the �∞-norm on Rk−1.

For our next proposition, we need some notation and preliminary results. First, we
recall some further properties of the cut-off functions ηL constructed in [7]:
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Proposition 3.6 ([7], Lemma 4.11) There exists a constant c > 0 such that

supp ηL ⊂ {α ≤ cL
}
, for all L > 0,

and for all q ≥ 1, f ∈ C∞(Rd), and L > 0,

sup
|η|≤q

∥∥∥Dη

(
f̂ ηL

)∥∥∥
L∞(X)

�supp( f ),q L ‖ f ‖Cq .

Remark 3.7 The second inequality in Proposition 3.6 is not explicitly stated in [7].
However, Lemma 4.11 in [7] tells us that ‖DηηL‖L∞(X) �η 1, so the inequality in
the proposition above follows after iterated use of the product rule for derivatives, in
combination with Lemma 3.2 and the fact that the supports of the functions DηηL are
still contained in {α � L} for every η (where the implicit constants are independent
of L and η).

The following corollary concerning Sobolev norms of truncated Siegel transforms
is now immediate.

Corollary 3.8 For all q ≥ 1, f ∈ C∞(Rd), and L > 0,

Sq
(
f̂ ηL

)�supp( f ),q Ld+1‖ f ‖Cq .

We also record the following corollary for future references. It is immediate from
the inequalities in (3.11) and the first part of Proposition 3.6.

Corollary 3.9 For every compact set C ⊂ SLd(R), there is a constant BC > 0 such
that

ηL ◦ g ≤ χ{α≤BCL} for allg ∈ CandL > 0.

Recall that A  R
k−1 via the map u �→ a(u) defined in (2.3). Let us throughout

the rest of the section denote by ‖ · ‖ the �∞-norm on R
k−1. The following theorem

is a special case of [4, Theorem 1.1]. Roughly speaking, this theorem asserts that if
ϕ ∈ C∞

c (X), then the family u �→ ϕ(a(u)·) consists of "almost independent" random
variables, at least if the u’s are far apart.

Theorem 3.10 (Theorem 1.1 in [4]) For every r ≥ 2, there exist qr ≥ 1 and δr > 0
such that for all q ≥ qr , ϕ1, . . . , ϕr ∈ C∞

c (X), and u(1), . . . , u(r) ∈ R
k−1,

∣∣∣∣∣
∫

X

( r∏
m=1

ϕm ◦ a(u(m))

)
dμ −

r∏
m=1

∫

X
ϕm dμ

∣∣∣∣∣�r ,q e−δr min j �=k ‖u( j)−u(k)‖
r∏

m=1

Sq (ϕm ).

Theorem 1.1 in [4] is formulated for general r -tuples of elements in G = SLd(R),
and not just for r -tuples in A. Furthermore, in the version in [4], themini �= j -expression
is applied to differences with respect to an invariant Riemannian metric on G. The
restriction of any such metric to A is quasi-isometric to the �∞-distance on Rk−1, and
the resulting constants are assumed to have been absorbed in δr and by the �-sign.
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3.4 Cumulants

We review the notion of cumulants, and a classical CLT-criterion due to Frechet and
Shohat. In this subsection (X , μ) can be a general probability measure space.

Definition 3.11 (Cumulants) Fix r ≥ 2. Given ϕ1, . . . , ϕr ∈ L∞(X), we define their
cumulant cumr (ϕ1, . . . , ϕr ) of order r by

cum[r ](ϕ1, . . . , ϕr ) :=
∑

P∈P[r ]

(−1)|P |−1
∏
I∈P

(∫

X

∏
i∈I

ϕi dμ

)
,

whereP[r ] denotes the set of partitions of the set [r ] = {1, . . . , r}. Given� ∈ L∞(X),
we define its r -cumulant cumr (�) by

cumr (�) := cum[r ](�, . . . , �).

Remark 3.12 It is clear that cum[r ] is multi-linear in the functions ϕ1, . . . , ϕr , and if
one of them is a constant function, then cum[r ](ϕ1, . . . , ϕr ) = 0 (see e.g. [23, Subsect.
3.1]). In particular,

cum[r ](ϕ1, . . . , ϕr ) = cum[r ]
(

ϕ1 −
∫

X
ϕ1 dμ, . . . , ϕr −

∫

X
ϕr dμ

)

and

cumr

(
� −

∫

X
� dμ

)
= cumr (�).

Furthermore, the 2-cumulant of � is just the μ-variance of �.

The main property of cumulants that makes them valuable to us in this paper is
summarized in the following CLT-criterion by Frechet and Shohat, which can be
deduced from their results in [14]. It is essentially the classical method of moments
tailored for (distributional) convergence to the normal distribution.

Proposition 3.13 (Frechet–Shohat’s cumulant criterion) Let (�T ) be a sequence of
real-valued, bounded and measurable functions on X such that

• ∫X �T dμ = 0,
• the limit σ 2 := limT ‖�T ‖2

L2(X)
exists and is finite,

• cumr (�T ) → 0 for all r ≥ 3.

Then the μ-distributions of �T converge in the sense of distribution to the Normal
Law with mean zero and variance σ 2 (the case σ = 0 is interpreted as convergence
in the sense of distributions to the Dirac measure at 0).
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Remark 3.14 There are no explicit mentioning of cumulants in the paper of Frechet and
Shohat, so in particular Proposition 3.13 is not directly featured there. A more modern
(and explicit) exposition of cumulants can be found in [23], although our formulation
of Proposition 3.13 is not explicit there either. However, it is noted in [23, Subsect. 3.2]
that cumulants of random variables can be expressed in terms of moments (and vice
versa). By the classical method of moments, to prove that the μ-distributions of �T

converges in the sense of distributions to the centered Normal Law with variance σ 2

it suffices to check that all moments (or cumulants) of �T with respect to μ converge
(as real numbers) to the moments (or cumulants) of the centered Normal Law with
variance σ 2. Since cumulants of a random variable can be expressed as logarithmic
derivatives of the Fourier transform of the corresponding probability distribution (see
e.g. [23, Subsect. 3.1]), it follows after some straightforward computations thatNormal
Laws are characterized as those probability distributions whose cumulants of order
r ≥ 3 all vanish (at least within the class of distributions that are uniquely determined
by their moments).

In order to apply this proposition, we have to analyze the cumulants cumr (�T ).
This task will be carried out in the next section.

3.5 Estimating cumulants of order r ≥ 3

Let �T be defined by (3.10). Our goal is to show that under suitable additional con-
ditions,

cumr (�T ) → 0 as T → ∞

for all r ≥ 3. Since

cumr (�T ) = V−r/2
T cumr

(
�T −

∫

X
�T dμ

)
= V−r/2

T cumr (�T ),

this is equivalent to

cumr (�T ) = o
(
V r/2
T

)
as T → ∞. (3.12)

Let us from now on fix r ≥ 3. For each r -tuples i = (i1, . . . , ir ) ∈ Ir , we set

YT ,i := YT ,i1 × · · · × YT ,ir and κT ,i := κT ,i1 ⊗ · · · ⊗ κT ,ir ,

and for y = (y1, . . . , yr ) ∈ YT ,i , we set

QT ,i (y) := QT ,i1(y1) × · · · × QT ,ir (yr ).
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Wewrite elements of QT ,i (y) as u = (u(1), . . . , u(r)). Using the multi-linearity of the
cumulants, we see that cumr (�T ) can be written as

∑

i∈Ir

∫

YT ,i

∑

u∈QT ,i (y)

cum[r ]
(
ϕT ,i1 (·, y1) ◦ a(u(1)), · · · , ϕT ,ir (·, yr ) ◦ a(u(r))

)
dκT ,i (y).

We shall make the following additional assumptions regarding the data defining the
function�T . Throughout this section, ‖·‖ denotes the �∞-norm onRk−1 and B(x, γ )

the ball with respect to this norm.

(II.a) There exist finite sets Q̃T ,i ⊂ R
k−1 satisfying:

• for all γ ≥ 1

∣∣Q̃T ,i ∩ B(u, γ )
∣∣� γ k−1, (3.13)

where the implicit constants are independent of u, T , and i .
• maxi |Q̃T ,i | � VT with a parameter VT satisfying VT → ∞ as T → ∞.

(II.b) There exist Borel maps βT ,i : Rk−1 × YT ,i → R
k−1 such that

QT ,i (yi ) = βT ,i
(
Q̃T ,i , yi

)

satisfying:

• there exist c1, c2 > 0, independent of T , such that for all u, v ∈ Q̃T ,i ,

min
i, j

inf
yi∈YT ,i

inf
y j∈YT , j

∥∥βT ,i (u, yi ) − βT , j (v, y j )
∥∥ ≥ c1‖u − v‖ − c2, (3.14)

• there exist maps β̃T ,i : Rk−1 → R
k−1 such that for all u ∈ Q̃T ,i ,

sup
T

sup
yi∈YT ,i

∥∥βT ,i (u, yi ) − β̃T ,i (u)
∥∥ < ∞. (3.15)

(II.c) For the functions fT ,i from (I.b), there exist Borel functions hT ,i : Rd×YT ,i →
[0,∞) such that

fT ,i
(
a(βT ,i (u, yi ))z, yi

) ≤ hT ,i
(
a(β̃T ,i (u))z, yi

)

for all u ∈ Q̃T ,i , yi ∈ YT ,i , and z ∈ R
d . We further assume that the family of

the functions

HT ,i (z) :=
∫

YT ,i

hT ,i (z, yi ) dκT ,i (yi )

is uniformly bounded, and there exists a fixed compact set K′ ⊂ R
d such that

supp(HT ,i ) ⊂ K′
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for all T and i .

Remark 3.15 We note that the condition (I.c) from Sect. 3.2 follows immediately from
condition (II.a) and the first part of condition (II.b).

With this new notation, we set

�r ,T ,i (y) :=
∑

u∈Q̃T ,i

cum[r ]
(
ϕT ,i1 (·, yi1 ) ◦ a

(
βT ,i1 (u

(1), yi1 )
)
, · · · , ϕT ,ir (·, yir ) ◦ a

(
βT ,ir (u

(r), yir )
))

,

where Q̃T ,i := Q̃T ,i1 × · · · × Q̃T ,ir . Then

cumr (�T ) =
∑
i∈Ir

∫

YT ,i

�r ,T ,i (y) dκT ,i (y). (3.16)

For γ > 0, we define the r -diagonal γ -neighborhood �r (γ ) by

�r (γ ) :=
{
(u(1), . . . , u(r)) ∈ (Rk−1)r : ‖u( j) − u(k)‖ ≤ γ for all j, k

}
.

We split the sum defining �r ,T ,i into two subsums subdivided with respect to the set
�r (γ ). Namely, we choose a parameter γT ,r → ∞, which will be specified later, and
write

�r ,T ,i = �
(1)
r ,T ,i + �

(2)
r ,T ,i ,

where �
(1)
r ,T ,i (y) denotes the sum over clustered r -tuples

∑

u∈Q̃T ,i∩�r (γT ,r )

cum[r ]
(
ϕT ,i1 (·, yi1 ) ◦ a

(
βT ,i1 (u(1), yi1 )

)
, · · · , ϕT ,ir (·, yir ) ◦ a

(
βT ,ir (u(r), yir )

))
, (3.17)

and �
(2)
r ,T ,i (y) denotes the sum over separated r -tuples:

∑

u∈Q̃T ,i∩�r (γT ,r )c

cum[r ]
(
ϕT ,i1 (·, yi1 ) ◦ a

(
βT ,i1 (u(1), yi1 )

)
, · · · , ϕT ,ir (·, yir ) ◦ a

(
βT ,ir (u(r), yir )

))
. (3.18)

The aim in the upcoming subsections is to find conditions on the parameters γT ,r and
LT such that for every i = (i1, . . . , ir ) ∈ Ir ,

∫

YT ,i

∣∣�(1)
r ,T ,i (y)

∣∣ dκT ,i (y) = o
(
V r/2
T

)
as T → ∞, (3.19)

and

sup
y∈YT ,i

∣∣�(2)
r ,T ,i (y)

∣∣ = o
(
Vr/2
T

)
as T → ∞. (3.20)

Together with the assumption (I.a) in Sect. 3.2, these estimates imply (3.12).
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3.5.1 Analysis of the separated tuples

Now we prove the estimate (3.20) involving separated tuples. The crucial ingredient
here is the estimates on higher-order correlations (Theorem 3.10), which allows us to
establish an estimate on cumulants following our approach from [6].

We recall the estimate from Proposition 3.5(iii) that for every q ≥ 1, there exists
σq > 0 such that

Sq
(
ϕ ◦ a(u)

)�q eσq‖u‖Sq(ϕ) for all ϕ ∈ C∞
c (X) andu ∈ R

k−1.

We may without loss of generality assume that the map q �→ σq is increasing. Fur-
thermore, we may also assume that the map r �→ δr in Theorem 3.10 is decreasing.
In particular, without loss of generality we can assume that

δr < rσq , for all q, r ≥ 1. (3.21)

The following lemma is a corollary of the main technical results from our work [6].

Lemma 3.16 There is an integer qr ≥ 1, such that for every integer q > qr , there exists
a constant cr ,q > 0, with the property that for every γ > 0 and for all ϕ1, . . . , ϕr ∈
C∞
c (X) and u(1), . . . , u(r) ∈ R

k−1 with

max
j �=k

‖u( j) − u(k)‖ > cr ,qγ,

we have

∣∣∣cum[r ]
(
ϕ1 ◦ a(u(1)), . . . , ϕr ◦ a(u(r))

)∣∣∣�r ,q e−γ
r∏
j=1

Sq(ϕ j ).

Proof The proof follows the argument in [6, Sec. 6.4]. Let us fix r ≥ 2, γ > 0 and
an integer q ≥ 1. We define parameters β0 = 0, β1,…, βr recursively by β j+1δr −
3rσqβ j = γ . Then because of (3.21),

0 < β1 < 3β1 < β2 < · · · < βr−1 < 3βr−1 < βr .

It is also clear from the recursive definition that

βr ≤ cr ,q γ (3.22)

for a constant cr ,q > 0. Combining [6, Prop. 6.1] and [6, Prop. 6.2], we conclude that
there is an integer qr such that if q > qr , then

∣∣∣cum[r ]
(
ϕ1 ◦ a(u(1)), . . . , ϕr ◦ a(u(r))

)∣∣∣�r ,q e−γ
r∏
j=1

Sq(ϕ j ),
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for all u(1), . . . , u(r) ∈ R
k−1 such that max j �=k ‖u( j) − u(k)‖ > βr . Together with

(3.22), this proves the lemma. ��

Now we apply Lemma 3.16 to estimate �
(2)
r ,T ,i , and deduce a criterion for (3.20).

From now on qr denotes the integer from Lemma 3.16.

Proposition 3.17 Let qr be as in Lemma 3.16 and suppose that the parameters LT

and γT ,r are chosen so that for some q > qr ,

Lr(d+1)
T V r/2

T e−c1γT ,r /cr ,q Mr
T ,q → 0, as T → ∞, (3.23)

where c1 is the positive constant in condition (II.b), and cr ,q is given by Lemma 3.16.
Then, for every i = (i1, . . . , ir ) ∈ Ir ,

sup
y∈YT ,i

∣∣�(2)
r ,T ,i (y)

∣∣ = o
(
Vr/2
T

)
, as T → ∞.

Proof We first note that if (u(1), . . . , u(r)) belongs to Q̃T ,i ∩ �r (γT ,r )
c, then by con-

dition (II.b), for all im, in ∈ I,

∥∥βT ,im (u(m), yim ) − βT ,in (u
(n), yin )

∥∥ > c1γT ,r − c2,

for all yim ∈ YT ,im and yin ∈ YT ,in . Applying Lemma 3.16 with γ defined by c1 γT ,r −
c2 = cr ,qγ, we deduce that

∣∣∣cum[r ]
(
ϕT ,i1 ◦ a

(
βT ,i1(u

(1), yi1)
)
, · · · , ϕT ,ir ◦ a

(
βT ,ir (u

(r), yir )
))∣∣∣

is estimated by

�r ,q e−c1γT ,r /cr ,q
r∏

m=1

Sq(ϕT ,im ),

where we in the last �-sign have absorbed the e−c2/cr ,q -factor. We recall that

ϕT ,i (�, yi ) = f̂T ,i (�, yi )ηLT (�).

By Corollary 3.8,

Sq
(
ϕT ,i (·, yi )

)�K,q Ld+1
T

∥∥ fT ,i (·, yi )
∥∥
Cq ,
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whereK ⊂ R
d is a fixed compact set which contains all of the supports of the functions

x �→ fT ,i (x, yi ) as yi ranges over YT ,i . We conclude that

sup
y∈YT ,i

∣∣�(2)
r ,T ,i (y)

∣∣�r ,K,q

(
r∏

m=1

|Q̃T ,im |
)

e−c1γT ,r /cr ,q Lr(d+1)
T Mr

T ,q

= Vr
T e−c1γT ,r /cr ,q Lr(d+1)

T Mr
T ,q .

This implies the proposition. ��

3.5.2 Analysis of the clustered tuples

Next,we dealwith the clustered tuples. Our analysis here is one of themain novelties of
this paper. We stress that we do not assume that the maps T �→ ‖ fT ,i‖∞ are bounded
(otherwise, our analysis could have been carried out as in [6]). This is also where the
assumption (II.c) becomes crucial. This condition says roughly that the κT ,i -integrals
of fT ,i are bounded functions. The main purpose of this subsection is to explain how
this "bounded on average"-condition can be used to derive (3.19).

Proposition 3.18 Suppose that the parameters LT and γT ,r satisfy for some ε > 0,

Lr−d+ε
T V 1−r/2

T γ
(r−1)(k−1)
T ,r → 0, as T → ∞. (3.24)

Then,

∫

YT ,i

∣∣�(1)
r ,T ,i (y)

∣∣ dκT ,i (y) = o
(
V r/2
T

)
, as T → ∞.

Proof Expanding the definition of the cumulant in (3.17), we deduce that

∣∣�(1)
r ,T ,i (y)

∣∣�r max
P

∑

u∈Q̃T ,i∩�r (γT ,r )

∏

I∈P

∫

X

⎛
⎝∏

k∈I
ϕT ,ik

(
a
(
βT ,ik

(u(k), yik )
)
�, yik

)⎞
⎠ dμ(�). (3.25)

We recall that

ϕT ,i (�, yi ) = f̂T ,i (�, yi )ηLT (�).

By condition (II.c), there exist Borel functions hT ,i : Rd × YT ,i → [0,∞) such that

fT ,i
(
a
(
βT ,i (u, yi )

)
z, yi

) ≤ hT ,i
(
a
(
β̃T ,i (u)

)
z, yi

)
,

for all u ∈ Q̃T ,i , z ∈ R
d , and yi ∈ YT ,i . Hence, setting

h(z) := sup
T ,i

∫

YT ,i

hT ,i (z, yi ) dκT ,i (yi ),
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we deduce that

∫

YT ,i

f̂T ,i
(
a
(
βT ,i (u, yi )

)
�, yi

)
dκT ,i (yi ) =

∑
z∈�\{0}

∫

YT ,i

fT ,i
(
a
(
βT ,i (u, yi )

)
z, yi

)
dκT ,i (yi )

≤ ĥ
(
a
(
β̃T ,i (u)

)
�
)
.

We recall that according condition (II.c), the function h is uniformly bounded and its
support is contained in a fixed compact set. In particular, it follows from Lemma 3.2
that

ĥ(�) � α(�), for all � ∈ X . (3.26)

By condition (II.b), there is a fixed compact set C ⊂ A such that

a
(
βT ,i (u, yi ) − β̃T ,i (u)

) ∈ C, for all u ∈ Q̃T ,i , yi ∈ YT ,i , and T > 0.

By Corollary 3.9, there is a constant B = B(C) > 0 such that

ηLT ◦ g ≤ χ{α≤B LT } for allT andg ∈ C,

whence

ηLT

(
a
(
βT ,i (u, yi )

)
�
) = ηLT

(
a
(
βT ,i (u, yi ) − β̃T ,i (u)

)
a
(
β̃T ,i (u)

)
�
)

≤ χ{α≤B LT }
(
a
(
β̃T ,i (u)

)
�
)
.

Combining the above estimates, we conclude that

∫

YT ,i

ϕT ,i
(
a
(
βT ,i (u, yi )

)
�, yi

)
dκT ,i (yi ) ≤ ψT

(
a
(
β̃T ,i (u)

)
�
)
,

where ψT is defined by

ψT (�) := ĥ(�) χ{α≤B LT }(�), for � ∈ X . (3.27)

Therefore, we deduce from (3.25) that

∫

YT ,i

∣∣�(1)
r ,T ,i (y)

∣∣ dκT ,i (y) �r max
P

∑

u∈Q̃T ,i∩�r (γT ,r )

∏

I∈P

∫

X

⎛
⎝∏

k∈I
ψT

(
a
(
β̃T ,ik

(u(k))
)
�
)
⎞
⎠ dμ(�). (3.28)

We observe that it follows from (3.26), (3.27), and Lemma 3.3 that

sup |ψT | = O(LT ) and ‖ψT ‖L p(X) = Op(1) for p < d. (3.29)
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In particular, it also follows that for p ≥ d,

‖ψT ‖L p(X) = Op,q

(
L1−q/p
T

)
for all q < d.

According to the general Hölder inequality, for exponents pk ∈ (1,∞] satisfying∑
k 1/pk = 1,

∫

X

⎛
⎝∏
k∈I

ψT

(
a
(
β̃T ,ik (u

(k))
)
�
)⎞
⎠ dμ(�) ≤

∏
k∈I

∥∥∥ψT ◦ a
(
β̃T ,ik (u

(k))
)∥∥∥

L pk (X)
=
∏
k∈I

‖ψT ‖L pk (X).

Therefore, when |I | < d,

∫

X

(∏
k∈I

ψT

(
a
(
β̃T ,ik (u

(k))
)
�
))

dμ(�) = O(1),

and when |I | ≥ d,

∫

X

(∏
k∈I

ψT

(
a
(
β̃T ,ik (u

(k))
)
�
))

dμ(�) = Oε

(
L |I |−d+ε
T

)
for all ε > 0.

We conclude that for every partition P ,

∏
I∈P

∫

X

(∏
k∈I

ψT

(
a
(
β̃T ,ik (u

(k))
)
�
))

dμ(�) = Oε

(
Lr−d+ε
T

)
,

and from (3.25),

∫

YT ,i

∣∣�(1)
r ,T ,i (y)

∣∣ dκT ,i (y) �r ,ε
∣∣Q̃T ,i ∩ �r (γT ,r )

∣∣ Lr−d+ε
T .

Since

∣∣Q̃T ,i ∩ �r (γT ,r )
∣∣ ≤

∑

u∈Q̃T ,i1

r∏
k=2

∣∣Q̃T ,ik ∩ {v : ‖v − u‖ ≤ γT ,r }
∣∣ ,

it follows from condition (II.a) that

∣∣Q̃T ,i ∩ �r (γT ,r )
∣∣� VT γ

(k−1)(r−1)
T ,r ,

whence
∫

YT ,i

∣∣∣�(1)
r ,T (y)

∣∣∣ dκT ,i (y) �r ,ε VT γ
(k−1)(r−1)
T ,r Lr−d+ε

T ,



12 Page 24 of 44 M. Björklund, A. Gorodnik

for all ε > 0, which implies the assertion of the proposition. ��

3.6 Main result

In this section, we finally prove convergence in distribution of the functions

ϒT (�) = V−1/2
T

(
F̂T (�) −

∫

X
F̂T dμ

)
,

where

F̂T (�) =
∑
i∈I

∫

YT ,i

⎛
⎝ ∑

a∈QT ,i (yi )

f̂T ,i (a�, yi )

⎞
⎠ dκT ,i (yi ).

We recall that the data in this formula satisfy the conditions (I.a)–(I.c) and (II.a)–(II.c).
We further put an additional condition on the norms of the functions fT ,i , using the
notation introduced in (3.2)–(3.3).

The main result of Sect. 3 is the following theorem:

Theorem 3.19 Suppose that

• There exists θ0 > 0 such that

MT = O
(
V θ0
T

)
.

• For q ≥ 1, there exists θq > 0 such that

MT ,q = O
(
V

θq
T

)
.

• The limit

σ := lim
T→∞ ‖ϒT ‖L2(X)

exists and is finite.

If d > 4(1 + θ0), then the functions ϒT on (X , μ) converge in distribution to the
Normal Law with variance σ .

Proof We shall use Proposition 3.13. We recall that by Lemma 3.1, the functions F̂T
can be approximated by functions

�T (�) :=
∑
i∈I

∫

YT ,i

⎛
⎝ ∑

a∈QT ,i (yi )

ϕT ,i (a�, yi )

⎞
⎠ dκT ,i (yi ),
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so that

∥∥F̂T − �T
∥∥
L2(X)

= o
(
V 1/2
T

)
.

This implies that the functions

�T (�) = V−1/2
T

(
�T (�) −

∫

X
�T dμ

)

satisfy

∥∥∥ϒT − �T

∥∥∥
L2(X)

→ 0.

Then, in particular, limT→∞ ‖�T ‖L2(X) = σ . It also follows that if �T converges
in distribution to the Normal Law, so does ϒT . Hence, it remains to verify that the
conditions of Proposition 3.13 hold for the functions �T , namely, that

cumr (�T ) = V−r/2
T cumr (�T ) → 0 for all r ≥ 3.

Since the later cumulant can be expressed as (3.16), this will follow from Proposi-
tions 3.17 and 3.18.

Now it remains to choose the parameters LT and γT ,r so that the conditions in
Lemma 3.1, Propositions 3.17, and 3.18 are satisfied. To do this, we shall take

LT = V ρ
T and γT ,r = Mr log VT , (3.30)

where ρ and Mr are positive real numbers, which will be chosen later. The condition
(3.8) in Lemma 3.1 is satisfied if ρ is chosen so that for some ε > 0

V ρ(−d/2+1+ε)+1/2+θ0
T → 0,

or equivalently, if

ρ >
1 + 2θ0

d − 2 − 2ε
. (3.31)

We write qr for the index introduced in Lemma 3.16 and fix an integer q > qr . The
condition (3.23) in Proposition 3.17 is satisfied if

V
ρr(d+1)+r/2− c1Mr

cr ,q
+rθq

T → 0,

which can always be arranged by choosing Mr large enough, depending on r , ρ, d.
Finally, the condition (3.24) in Proposition 3.18 is satisfied if we choose the constants
ρ and Mr such that for some ε > 0,
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V ρ(r−d+ε)+1−r/2
T (Mr log VT )(r−1)(k−1) → 0.

This holds provided that

ρ(r − d + ε) < r/2 − 1. (3.32)

Hence, it is sufficient to choose ρ so that both (3.31) and (3.32) hold for all r ≥ 3.
This is possible provided that

1 + 2θ0
d − 2 − 2ε

< ρ ≤ 1

2
.

Since ε > 0 is arbitrary, this argument works provided that d > 4 + 4θ0. ��
Remark 3.20 In order to proceed with the proof above it is sufficient to have that

∥∥∥ϒT − �T

∥∥∥
L1(X)

→ 0 (3.33)

and

lim
T→∞

∥∥�T
∥∥
L2(X)

= σ. (3.34)

According to Lemma 3.1, condition (3.33) holds under assumption (3.9). This assump-
tion is weaker than (3.8), so that we can replace (3.31) by the assumption

ρ >
1 + 2θ0

2d − 2 − 2ε
. (3.35)

Then the argument can be carried out when d > 2(1 + θ0), provided that we can
establish (3.34) independently.

4 Proof of themain theorem

In this section, we prove our main theorem (Theorem 1.3). We recall that our goal is
to analyze the lattice counting function for the domains

�T = �T (I , B) = {z ∈ R
d : N (z) ∈ I , ξL (z) ∈ B and 0 < ‖L1(z)‖, . . . , ‖Lk (z)‖ < T

}
. (4.1)

Ultimately, we will construct an approximation of the characteristic function χ�T by
functional averages of the form (2.4) and show that these functional averages satisfy
the assumptions of Theorem 3.19, so that Theorem 1.3 will be a consequence of
Theorem 3.19. This is a tedious and rather technical task, so it might be beneficial for
the reader to first take a look in Sect. 4.7, where the main objects of the section are
summarized, and the most important verifications are indexed.
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4.1 A basic reduction

Let L j : Rd → R
d j with j = 1, . . . , k, I ⊂ (0,∞), and B ⊂ Sd be the objects

defining the sets �T . We also consider the basic domains

�0
T (I , B) := {z ∈ R

d | N (z) ∈ I , ξ(z) ∈ B and 0 < ‖z1‖, . . . , ‖zk‖ < T
}
, (4.2)

where

N (z) :=
k∏
j=1

‖z j‖d j and ξ(z) :=
(

z1
‖z1‖ , . . . ,

zk
‖zk‖

)
. (4.3)

Then �T = L−1(�0
T ) for the invertible linear map L = (L1, . . . , Lk). Let us write

L = cL0 with c ∈ R
× and det(L0) = 1. Then

�T = L−1
0

(
sgn(c)|c|−1/d�0

T (I , B)
) = L−1

0

(
�0

T (|c|−1 I , sgn(c)B)
)
.

Therefore, for any lattice �,

∣∣� ∩ �T | = ∣∣L0(�) ∩ �0
T (|c|−1 I , sgn(c)B)

∣∣,

and

Vol
(
�0

T (|c|−1 I , sgn(c)B)
) = Vol

(
�0

T (I , B)
)
.

Since the measure on the space of lattices is invariant under L0, it is sufficient to
analyze the distribution of the function � �→ |� ∩ �0

T | − Vol(�0
T ).

From now on we assume that the sets�T = �T (I , B) are defined by (4.2),where I
is a non-empty bounded interval in (0,∞), and B is a Borel subset of Sd with positive
measure.

4.2 A coodinate system

The sets �T are more conveniently studied in a different coordinate system which we
now introduce. We use notations

R
d
∗ :=

∏k

j=1
R
d j \{0} and Sd :=

∏k

j=1
Sd j−1.

Let

π : Rd
∗ −→ R

k−1 × R × Sd : z �→ (
u(z), s(z), ξ(z)

)
, (4.4)
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where

u(z) := (log ‖z1‖, . . . , log ‖zk−1‖) ,

s(z) := log N (z) =
k∑
j=1

d j log ‖z j‖,

ξ(z) :=
(

z1
‖z1‖ , . . . ,

zk
‖zk‖

)
.

It is readily checked that the map π is equivariant with respect to the group A defined
in (2.3) in the following sense:

π(a(u)z) = (u(z) + u, s(z), ξ(z)), for allu ∈ R
k−1andx ∈ R

d
∗, (4.5)

and that the inverse map π−1 is given by

π−1(u, s, ξ) =
(
eu1ξ1, . . . , e

uk−1ξk−1, e
(
s−∑k−1

j=1 d j u j

)
/dk ξk

)
. (4.6)

If one computes the Jacobian of this inverse map, the following lemma emerges:

Lemma 4.1 For every bounded Borel function f : Rk−1 ×R×Sd → R with bounded
support,

∫

R
d
∗
f (π(z)) dz = 1

dk

∫

Sd

∫

R

(∫

Rk−1
f (u, s, ξ) du

)
es ds dκ(ξ).

Here dz denote the volume element on Rd which assigns volume one to the unit cube,
du is the volume element on R

k−1 such that the unit cube in R
k−1 has volume one,

and the measure κ is defined in (1.5).

Let us now write out the set �T in (u, s, ξ)-coordinates. We define

�T := π(�T ) ⊂ R
k−1 × R × Sd ,

and given a point z in Rd
∗ , we set

u = u(z) = (u1, . . . , uk−1), s = s(z), ξ = ξ(z).

Then z ∈ �T if and only if

s ∈ log I , ξ ∈ B, u1 < log T , . . . , uk−1 < log T , s −
k−1∑
j=1

d ju j < dk log T .
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We now set v j = u j − log T for j = 1, . . . , k − 1. Then, the above conditions on u
are equivalent to

v1, . . . , vk−1 < 0 and
k−1∑
j=1

d jv j > −(d log T − s). (4.7)

For s < d log T , we let δT (s) denote the diagonal (k − 1) × (k − 1)-matrix whose
diagonal elements δT , j (s) are given by

δT , j (s) := d log T − s

d j
, for j = 1, . . . , k − 1.

We note that since the interval I is bounded, the inequality s < d log T is satisfied for
all x ∈ �T (I , B) when T > esup(I )/d . Then (4.7) can be re-written as

min
j

δT , j (s)
−1v j < 0 and

k−1∑
j=1

δT , j (s)
−1v j > −1,

Let

S1 :=
{
(w1, . . . , wk−1) ∈ R

k−1 : w1, . . . , wk−1 < 0 and
∑k−1

j=1
w j > −1

}
(4.8)

and

vT := (log T , . . . , log T ).

We conclude that

�T = π(�T ) = {(u, s, ξ) : s ∈ log I , ξ ∈ B, u ∈ δT (s)S1 + vT
}

(4.9)

when T > esup(I )/d .

4.3 Volume and variance computations

The above parametrization of �T leads, in particular, to an an easy computation of its
volume, and the mean and the variance of the Siegel transforms χ̂�T .

Lemma 4.2 There exists a polynomial PI ,B such that

PI ,B(t) = ck−1(I , B)tk−1 + O(tk−2),

where

ck−1(I , B) = dk−1

d1 · · · dk Leb(I ) Volk−1(S1) κ(B),
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such that

Vol
(
�T (I , B)

) = PI ,B(log T ),

for all T > esup(I )/d .

Proof It follows from (4.9) and Lemma 4.1 that

Vol(�T ) = κ(B)

dk

∫

log I
Volk−1

(
δT (s)S1 + vT

)
es ds

= κ(B)

dk
Volk−1(S1)

∫

log I

(d log T − s)k−1

d1 · · · dk−1
es ds.

If we expand the inner parenthesis and integrating term-wise, we deduce that
Vol(�T ) = PI ,B(log T ) for the polynomial

PI ,B(t) = κ(B)

dk
Volk−1(S1)

∫

log I

(dt − s)k−1

d1 · · · dk−1
es ds.

The leading term of this polynomial is ck−1(I , B)tk−1 with

ck−1(I , B) = dk−1

d1 · · · dk κ(B)Volk−1(S1)
∫

log I
es ds = dk−1

d1 · · · dk κ(B) Volk−1(S1) Leb(I ),

which finishes the proof of the lemma. ��
From (2.2), we also obtain that

∫

X
χ̂�T dμ = PI ,B(log T ) = ck−1(I , B)(log T )k−1 + O

(
(log T )k−2).

To compute the variance of the Siegel transform, we need the following

Theorem 4.3 (Rogers’ mean-square value theorem, [24]) Let d ≥ 3 and let f : Rd →
R be a bounded and non-negative Borel measurable function with bounded support.
Then f̂ ∈ L2(X) and

∫

X

(
f̂ −

∫

X
f̂ dμ

)2
dμ = 1

ζ(d)

∑
p,q≥1

(∫

Rd
f (pz) f (qz) dz +

∫

Rd
f (pz) f (−qz) dz

)
,

where ζ denotes the Riemann zeta-function.

For a future reference,we also note that a straightforward application of theCauchy-
Schwarz inequality to the expression in Theorem 4.3 yields the following corollary:
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Corollary 4.4 If d ≥ 3 and f : R
d → R is a bounded and non-negative Borel

measurable function with bounded support, then

∥∥ f̂ ∥∥2L2(X)
≤ ‖ f ‖21 + 2

ζ(d/2)2

ζ(d)
‖ f ‖22.

Now using Theorem 4.3, we compute the variance:

Corollary 4.5

σ 2 := lim
T→∞

∫
X

(
χ̂�T − ∫X χ̂�T

)2
dμ

Vol(�T )
= 1

ζ(d)

⎛
⎝

∞∑
p,q=1

Leb
(
pd I ∩ qd I

)

pdqd Leb(I )

⎞
⎠

×
(
1 + κ(B ∩ −B)

κ(B)

)
.

Proof By Theorem 4.3,

∫

X

(
χ̂�T −

∫

X
χ̂�T

)2
dμ = 1

ζ(d)

∑
p,q≥1

(
Vol(p−1�T ∩ q−1�T ) + Vol(p−1�T ∩ −q−1�T )

)
.

If we split this sum into sums over {p = q} and {p �= q} and use the symmetry of p
and q and the formula Vol(q−1�T ) = q−d Vol(�T ) for every q ≥ 1, we see that this
sum can be written as

Vol(�T ) + Vol(�T ∩ −�T ) + 2

ζ(d)

∞∑
q=1

1

qd

q−1∑
p=1

(
Vol
(
�T ∩ (q/p)�T

)+ Vol
(
�T ∩ −(q/p)�T

))
.

We observe that for c, T > 0, I ⊂ (0,∞), and B ⊂ Sd ,

±c�T (I , B) = �cT (cd I ,±B),

and for T1, T2 > 0, I1, I2 ⊂ (0,∞), and B1, B2 ⊂ Sd ,

�T1(I1, B1) ∩ �T2(I2, B2) = �min(T1,T2)(I1 ∩ I2, B1 ∩ B2).

Hence, we deduce from Lemma 4.2 that for every c ≥ 1,

κ±(c) := lim
T→∞

Vol(�T ∩ ±c�T )

Vol(�T )
= lim

T→∞
Vol
(
�T (I ∩ cd I , B ∩ ±B)

)

Vol(�T )
= Leb(I ∩ cd I )

Leb(I )

κ(B ∩ ±B)

κ(B)
.
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Then since we are assuming that d ≥ 3, we can apply the Dominated Convergence
Theorem to conclude that the limit σ 2 exists and

σ 2 = 1 + κ(B ∩ −B)

κ(B)
+ 2

ζ(d)

∞∑
q=1

1

qd

q−1∑
p=1

(
κ+(q/p) + κ−(q/p)

)

=
⎛
⎝1 + 2

ζ(d)

∞∑
q=1

1

qd

q−1∑
p=1

Leb
(
I ∩ (q/p)d I

)

Leb(I )

⎞
⎠
(
1 + κ(B ∩ −B)

κ(B)

)
.

This implies the stated formula. ��

4.4 Tessellations of the setsÄT(I, B)

In this subsection, we construct, for all large enough T , a functional tiling of the
indicator function χ�T using the coordinate system introduced in the previous section.
This tiling will be the basis for our smooth approximation scheme later. Before we
can state our main observation (Corollary 4.10) of this subsection, we need some
preliminaries. For a positive integer N , we define

S(N ) :=
⎧⎨
⎩(u1, . . . , uk−1) ∈ R

k−1 : u1, . . . , uk−1 < 0 and
k−1∑
j=1

u j > −N

⎫⎬
⎭ ,

and set

S1 := S(1) and S2 := [−1, 0)k−1\S(1). (4.10)

We note that this definition of S1 coincides with the one given in (4.8) above. Geo-
metrically, S1 and S2 are the lower and upper pieces of the unit cube (−1, 0]k inRk−1

cut in half by the hyperplane u1 + · · · + uk−1 = −1. Furthermore, we define

PN ,i := {n ∈ [0, N ]k−1 ∩ Z
k−1 : Si − n ⊂ S(N )

}
, for i = 1, 2.

The next lemma tells us that S(N ) can be tesselated by translates of S1 by vectors
in PN ,1 and by translates of S2 by elements of PN ,2. We stress that while the sets of
integer vectors PN ,1 and PN ,2 are not disjoint, the translates of S1 and S2 by vectors
in the respective sets are disjoint.

Lemma 4.6 For every positive integer N,

S(N ) =
⎛
⎝ ⊔

n∈PN ,1

(S1 − n)

⎞
⎠⊔

⎛
⎝ ⊔

n∈PN ,2

(S2 − n)

⎞
⎠ .
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In particular,

max
n∈PN ,i

‖n‖∞ � N and |PN ,i | � Volk−1(S(N )) � Nk−1.

Proof Fix u ∈ S(N ), and note that since −N ≤ u j ≤ 0 for all j , there are unique
integers 0 ≤ n j ≤ N such that

w := u + n ∈ [−1, 0)k−1, where n = (n1, . . . , nk−1),

and thus either w ∈ S1 or w ∈ S2, whence u ∈ Si − n for either i = 1, 2. Clearly
these are disjoint events, so in particular,

S(N ) =
⎛
⎝ ⊔

n∈PN ,1

(S1 − n)

⎞
⎠⊔

⎛
⎝ ⊔

n∈PN ,2

(S2 − n)

⎞
⎠ ,

which finishes the proof. ��
We observe that in view of (4.9) the sets �T are related to suitable dilations of the

sets S(N ). Indeed, for T and s with s < d log T , we let

τT (s) := Diag
(
τT ,1(s), . . . , τT ,k−1(s)

)

denote the diagonal (k − 1) × (k − 1)-matrix with the positive diagonal entries

τT , j (s) := d log T − s

d j�log T � , for j = 1, . . . , k − 1, (4.11)

then

�T = {(u, s, ξ) : s ∈ I , ξ ∈ B, u ∈ τT (s)S(�log T �) + vT
}
.

Therefore, applying Lemma 4.6 toS(�log T �), we get the following “functional tiling”
for the characteristic function χ�T .

Lemma 4.7 For all (u, s, ξ) ∈ R
k−1 × R × Sd with s < d log T ,

χ�T (u, s, ξ) =
∑

n∈P�log T �,1
χS1

(
τT (s)−1(u + τT (s)n − vT )

)
χlog I (s) χB(ξ)

+
∑

n∈P�log T �,2
χS2

(
τT (s)−1(u + τT (s)n − vT )

)
χlog I (s) χB(ξ).

In particular, for all T > esup(I )/d , this identity holds everywhere.
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4.5 Construction of a functional tiling

Nowwe construct our functional tiling, namely, the objects satisfying conditions (I.a)–
(I.c) and (II.a)–(II.c) with VT := Vol(�T ).

4.5.1 Construction of the sets ˜QT,i , QT,i(y) andmapsˇT,i , ˜ˇT,i (assumptions
(II.a)–(II.b))

Let us now rewrite the assertion of Lemma 4.7, so that it fits the decomposition (2.4).
We note that

τT (s) = τ∞ + O
(
1/(log T )

)
as T → ∞ (4.12)

uniformly on s in compact sets, where

τ∞ := Diag(d/d1, . . . , d/dk−1).

We define

βT : Rk−1 × R → R
k−1 and β̃T : Rk−1 → R

k−1

by

βT (u, s) := τT (s)u − vT and β̃T (u) := τ∞u − vT (4.13)

for u ∈ R
k−1 and s ∈ R. Let

Q̃T ,i := P�log T �,i ⊂ R
k−1, for i = 1, 2. (4.14)

From Lemmas 4.2 and 4.6, we see that |Q̃T ,i | � Vol(�T ). The condition (3.13) in
(II.a) can be also checked easily. The following lemma verifies condition (II.b). We
recall that ‖ · ‖ denotes the �∞-norm on Rk−1.

Lemma 4.8 Let J ⊂ R be a bounded interval.

(i) There exist c1, c2 > 0 such that for all T ≥ T0(J ), s1, s2 ∈ J , and u, v ∈ Q̃T ,i ,

∥∥βT (u, s1) − βT (v, s2)
∥∥ ≥ c1‖u − v‖ − c2.

(ii) There exists c3 > 0 such that for all T ≥ T0(J ), s ∈ J , and u ∈ Q̃T ,i ,

∥∥βT (u, s) − β̃T (u)
∥∥ ≤ c3.

Proof Since ‖u‖ � log T for all u ∈ Q̃T ,i , this lemma follows immediately from
(4.12) and the definitions of the maps βT and β̃T . ��
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Remark 4.9 While in Sect. 2 we have allowed βT and β̃T to also depend on i , it is not
necessary at this point. However, to properly work with these functions in our setting,
we also need to define the finite measure spaces (YT ,i , κT ,i ), for i = 1, 2. This will
be done in the next section.

Let us now rewrite the decomposition in Lemma 4.7 using the standard coordinates.
We set

QT ,i (s) := βT
(
Q̃T ,i , s

)
(4.15)

and

h̃T ,i (u, s, ξ) := χSi

(
τT (s)−1u

)
χlog I (s) χB(ξ),

for i = 1, 2, and note that the assertion in the lemma above can be written as

χ�T (u, s, ξ) =
∑

w∈Q̃T ,1

h̃T ,1(u + βT (w, s), s, ξ) +
∑

w∈Q̃T ,2

h̃T ,2(u + βT (w, s), s, ξ)

=
∑

v∈QT ,1(s)

h̃T ,1(u + v, s, ξ) +
∑

v∈QT ,2(s)

h̃T ,2(u + v, s, ξ) (4.16)

for all large enough T . Let us now set

hT ,i := h̃T ,i ◦ π, for i = 1, 2.

Since χ�T = χ�T ◦ π , the equivariance (4.5) of π yields the following corollary of
Lemma 4.7:

Corollary 4.10 For all large enough T ,

χ�T (z) =
∑

v∈QT ,1(s(z))

hT ,1(a(v)z) +
∑

v∈QT ,2(s(z))

hT ,2(a(v)z), for z ∈ R
d
∗ .

Westress that the summation range in the above formula dependon the point z, albeit
in a weak way via s(z). In the next subsection, we will get rid of this z-dependence
upon introducing an additional average. The price we have to pay for this is that the
functions hT ,i will be replaced with more complicated functions fT ,i , which depend
on the an extra variable, coming from the average.

4.5.2 Construction of the spaces (YT,i,�T,i) and functions fT,i (assumptions
(I.a)–(I.b))

If T ⊂ R
k−1 is a subset and r ≥ 0, we denote by Tr the r -thickening of T with respect

to this norm. Similarly, for a subset B of Sd , we denote by Br the r -thickening of B
with respect to the rotation-invariant metric on Sd .
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Since |v| � log T for every v ∈ Q̃T ,i , it follows from (4.12) that for any bounded
interval J ⊂ R, there exist c(J ) > 0 such that for all s, t ∈ J , T ≥ T0(J ), and
v ∈ Q̃T ,i ,

∥∥τT (s)−1(βT (v, s) − βT (v, t))
∥∥ = ∥∥τT (s)−1(τT (s)v − τT (t)v)

∥∥ ≤ c(J ) |s − t |.

Hence, we deduce that for all s, t ∈ J satisfying |s − t | ≤ r , T ≥ T0(J ), u ∈ R
k−1,

and v ∈ Q̃T ,i ,

χSi

(
τT (s)−1(u + βT (v, s))

) ≤ χ(Si )c(J )r

(
τT (s)−1(u + βT (v, t))

)
. (4.17)

Let us now introduce a parameter ε ∈ (0, 1) and a non-negative real smooth function
ρε on R with

supp(ρε) ⊂ [−ε/2, ε/2] and
∫

R

ρε(t) dt = 1. (4.18)

For future reference, we also note that ρε can be chosen, so that

‖ρεT ‖Cq � ε−1−q . (4.19)

By the standard properties of convolutions,

χlog I ≤ ρε ∗ χ(log I )ε ≤ χ(log I )2ε .

Then, using (4.17), we deduce that for every u ∈ R
k−1 and v ∈ Q̃T ,i ,

h̃T ,i
(
u + βT (v, s), s, ξ

) = χSi

(
τT (s)−1(u + βT (v, s))

)
χlog I (s) χB(ξ)

≤
∫

(log I )ε
χSi

(
τT (s)−1(u + βT (v, s))

)
ρε(s − t) χB(ξ) dt

≤
∫

(log I )ε
χ(Si )cε

(
τT (s)−1(u + βT (v, t))

)
ρε(s − t) χB(ξ) dt,

where c = c(J ) > 0 for a fixed bounded interval J which contains (log I )ε for all
0 < ε < 1. Let ψi,ε be a smooth function on R

k−1 such that

χ(Si )cε ≤ ψi,ε ≤ χ(Si )2cε , for i = 1, 2, (4.20)

and let ϑε be a smooth function on Sd such that

χB ≤ ϑε ≤ χBε . (4.21)

For future reference, we note that these functions can be constructed, so that

‖ψi,ε‖Cq � ε−1−q and ‖ϑε‖Cq � ε−θq for some θq > 0. (4.22)
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From the above estimate, we deduce that for every u ∈ R
k−1 and v ∈ Q̃T ,i ,

h̃T ,i
(
u + βT (v, s), s, ξ

) ≤
∫

(log I )ε
ψi,ε

(
τT (s)−1(u + βT (v, t))

)
ρε(s − t) ϑε(ξ) dt . (4.23)

By the same argument as in (4.17), we also have for all s, t ∈ J satisfying |s − t | ≤ ε,
T ≥ T0(J ), u ∈ R

k−1, and v ∈ Q̃T ,i ,

χ(Si )2cε

(
τT (s)−1(u + βT (v, t)

) ≤ χ(Si )3cε

(
τT (s)−1(u + βT (v, s))

)
.

Then it follows from (4.20) and (4.21) that

h̃T ,i
(
u + βT (v, s), s, ξ

) ≤
∫

(log I )ε
ψi,ε

(
τT (s)−1(u + βT (v, t))

)
ρε(s − t) ϑε(ξ) dt, (4.24)

and
∫

(log I )ε
ψi,ε

(
τT (s)−1(u + βT (v, t))

)
ρε(s − t) ϑε(ξ) dt

≤
∫

(log I )ε
χ(Si )2cε

(
τT (s)−1(u + βT (v, t))

)
ρε(s − t) ϑε(ξ) dt

≤
∫

(log I )ε
χ(Si )3cε

(
τT (s)−1(u + βT (v, s))

)
ρε(s − t) ϑε(ξ) dt

≤ χ(Si )3cε

(
τT (s)−1(u + βT (v, s))

)
χ(log I )2ε (s) χBε (ξ). (4.25)

We introduce a parameter εT ∈ (0, 1), to be specified later, and define

YT := (log I )εT and κT := Leb |YT . (4.26)

For y ∈ YT , we set

f̃T ,i
(
(u, s, ξ), y

) := ψi,εT (τT (s)−1u) ρεT (s − y) ϑεT (ξ) (4.27)

and consider

F̃T (u, s, ξ) :=
∫

YT

( ∑
w∈QT ,1(y)

f̃T ,1
(
(u + w, s, ξ), y

))
dκT (y)

+
∫

YT

( ∑
w∈QT ,2(y)

f̃T ,2
(
(u + w, s, ξ), y

))
dκT (y).

It follows from (4.23) that for every u ∈ R
k−1 and v ∈ Q̃T ,i ,

h̃T ,i
(
u + βT (v, s), s, ξ

) ≤
∫

YT
f̃T ,i
(
(u + βT (v, y), s, ξ), y

)
dκT (y).
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Hence, by (4.16) and (4.24),

χ�T (u, s, ξ) ≤
∫

YT

( ∑

v∈Q̃T ,1

f̃T ,1
(
(u + βT (v, y), s, ξ), y

))
dκT (y)

+
∫

YT

( ∑

v∈Q̃T ,2

f̃T ,2
(
(u + βT (v, y), s, ξ), y

))
dκT (y)

= F̃T (u, s, ξ).

Let

χ+
�T

(u, s, ξ) :=
∑

v∈Q̃T ,1

χ(S1)3cεT

(
τT (s)−1(u + βT (v, s))

)
χ(log I )2εT

(s) χBεT
(ξ)

+
∑

v∈Q̃T ,2

χ(S2)3cεT

(
τT (s)−1(u + βT (v, s))

)
χ(log I )2εT

(s) χBεT
(ξ).

(4.28)

Then it follows from (4.25) that

F̃T (u, s, ξ) ≤ χ+
�T

(u, s, ξ).

We conclude that

χ�T ≤ F̃T ≤ χ+
�T

. (4.29)

The estimate indicates that F̃T provides an approximation for the characteristic func-
tion χ�T . Let us now define fT ,i : Rd × R → [0,∞) by

fT ,i (z, y) = f̃T ,i (π(z), y) for z ∈ R
d
∗ and y ∈ YT , (4.30)

and fT ,i (z, y) := 0 for all z ∈ R
d\Rd

∗ . Then fT ,i is smooth in the z-coordinate. We
also set

FT := F̃T ◦ π. (4.31)

From (4.5) we see that the function FT can be written as

FT (z) =
∫

YT

( ∑
v∈QT ,1(y)

fT ,1
(
a(v)z, y

))
dκT (y)

+
∫

YT

( ∑
v∈QT ,2(y)

fT ,2
(
a(v)z, y

))
dκT (y), (4.32)

which is exactly the form of functional tiling analyzed in Sect. 3.
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The following lemma demonstrates that the function FT proves a good approxima-
tion for the characteristic function χ�T = χ�T ◦ π .

Lemma 4.11 Let p ≥ 1. For εT = Vol(�T )−η with η > p/2, then

∥∥χ�T − FT
∥∥
L p = o

(
Vol(�T )1/2

)
as T → ∞.

Proof We shall use the integral formula from Lemma 4.2. From (4.29),

∥∥χ�T − F̃T
∥∥
L p ≤ ∥∥χ+

�T
− χ�T

∥∥
L p

�
(∫

Sd

∫

Rk−1

∫

R

∣∣χ+
�T

(u, s, ξ) − χ�T (u, s, ξ)
∣∣p es ds du dκ(ξ)

)1/p
.

We recall that χ+
�T

and χ�T are given by (4.28) and (4.16) respectively. By successive
use of the triangle-inequality, this expression is less than A1 + A2, where

Ai :=
∑

v∈Q̃T ,i

(Ai,1(v) + Ai,2(v) + Ai,3(v))

with

Ai,1(v) :=
(∫

Sd

∫

Rk−1

∫

R

χ(Si )3cεT
\Si
(
τT (s)−1(u + βT (v, s))

)
χJ (s) χBεT

(ξ) es ds du dκ(ξ)

)1/p
,

Ai,2(v) :=
(∫

Sd

∫

Rk−1

∫

R

χ(Si )3cεT

(
τT (s)−1(u + βT (v, s))

)
χ(log I )2εT

\(log I )εT (s) χBεT
(ξ) es ds du dκ(ξ)

)1/p
,

Ai,3(v) :=
(∫

Sd

∫

Rk−1

∫

R

χ(Si )3cεT

(
τT (s)−1(u + βT (v, s))

)
χJ (s) χBεT \B (ξ) es ds du dκ(ξ)

)1/p
.

Since

Lebk−1
(
τT (s)((Si )3cε\Si )

)� ε

uniformly over s ∈ J and sufficiently large T , we conclude that Ai,1(v) � ε
1/p
T

uniformly over v. Also since

Lebk−1
(
τT (s)(Si )3cε

)� 1

uniformly over s ∈ J and sufficiently large T , and

Leb1
(
(log I )2ε\(log I )ε

)� ε and κ(Bε\B) � ε,

we deduce that Ai,2(v) + Ai,3(v) � ε
1/p
T uniformly on v. Therefore,

∥∥χ�T − F̃T
∥∥
L p � (|Q̃T ,1| + |Q̃T ,2|

)
ε
1/p
T � Vol(�T ) ε

1/p
T .
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Hence, when εT = Vol(�T )−η with η > p/2, we have ‖χ�T − FT ‖L p =
o
(
Vol(�T )1/2

)
. ��

4.5.3 Construction of the maps hT,i (assumption (II.c))

Let us now turn to the construction of the maps hT ,i satisfying the condition (II.c).
We recall that hT ,i should be non-negative Borel functions on Rd × YT ,i satisfying

fT ,i
(
a(βT (v, y))z, y

) ≤ hT ,i
(
a(β̃T (v))z, y

)

for all v ∈ Q̃T ,i , z ∈ R
d , and y ∈ YT ,i . Moreover, we arrange that the supports the

functions x �→ hT ,i (x, y) lie in a fixed compact set, independent of y ∈ YT , and

sup
z,T

∫

YT
hT ,i (z, y) dκT (y) < ∞.

We shall use the coordinate system (4.4). Then in view of (4.30), it is sufficient to
construct non-negative Borel functions g̃T ,i on (Rk−1 × R × Sd) × YT such that

f̃T ,i
(
(u + βT (v, y), s, ξ), y

) ≤ g̃T ,i
(
(u + β̃T (v), s, ξ), y

)
, (4.33)

for all v ∈ Q̃T ,i and (u, s, ξ) ∈ R
k−1 × R × Sd and y ∈ YT , whose supports lie in a

set K × YT ,i , with a fixed compact K ⊂ R
k−1 × R × Sd , and such that

sup
(u,s,ξ),T

∫

YT
g̃T ,i

(
(u, s, ξ), y

)
dκT (y) < ∞.

Indeed, if such maps have been constructed, we can simply set hT ,i = g̃T ,i ◦ π . We
recall from (4.27) that

f̃T ,i
(
(u, s, ξ), y

) = ψi,εT (τT (s)−1u) ρεT (s − y) ϑεT (ξ),

where ψi,εT satisfies

χ(Si )cεT
≤ ψi,εT ≤ χ(Si )2cεT

.

By Lemma 4.8(ii), there is a compact set D0 ⊂ R
k−1 such that

βT (v, y) − β̃T (v) ∈ D0, for all v ∈ Q̃T ,i , y ∈ YT , andT ≥ T0(J ).

Furthermore, by the construction of the map τT in (4.11), there exists a compact set
D ⊂ R

k−1 such that

τT (s)
(
(Si )2cεT − D0

)
⊂ D, for alls ∈ Jand sufficently largeT .
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Hence, for all s ∈ J , u ∈ R
k−1, v ∈ Q̃T ,i , y ∈ YT , and sufficiently large T ,

ψi,εT

(
τT (s)−1(u + βT (v, y))

)
≤ χ(Si )2cεT

(
τT (s)−1(u + β̃T (v) + βT (v, y) − β̃T (v))

)

≤ χ(Si )2cεT −D0

(
τT (s)−1(u + β̃T (v))

)

≤ χD(u + β̃T (v)).

Let us now define

g̃T ,i
(
(u, s, ξ), y

) := χD(u) ρεT (s − y) ϑεT (ξ).

Then the estimate (4.33) clearly holds. Furthermore,

∫

YT ,i

g̃T ,i ((u, s, ξ), y) dκT (y) ≤
∫

J
χD(u)ρεT (s − y) ϑεT (ξ) dy ≤ χD(u)χJεT

(s) χBεT
(ξ),

which is clearly compactly supported and bounded, uniformly in T .

4.6 Estimation of the function norms

In order to apply our general result from the previous section (Theorem 3.19), We
have to estimate the norms of the functions fT ,i , specifically, the quantities MT and
MT ,q defined in (3.2)–(3.3).

Lemma 4.12 For the functions fT ,i defined in (4.30),

MT � ε−1
T and MT ,q � ε

−rq
T

with rq > 0.

Proof We use that fT ,i (·, y) = f̃T ,i (·, y) ◦ π , and the maps f̃T ,i (·, y) are supported
in a fixed compact subset of Rk−1 ×R× Sd , which is independent of y ∈ YT ,i . Then
the restrictions to this compact set of all partial derivatives of the map π are uniformly
bounded. Therefore, it is sufficient to estimate

M̃T := max
i

∫

YT

∥∥ f̃T ,i (·, y)
∥∥
C0 dκT ,i (y) and M̃T ,q := max

i
sup
yi∈YT

∥∥ f̃T ,i (·, y)
∥∥
Cq .

We recall from (4.27) that

f̃T ,i
(
(u, s, ξ), y

) = ψi,εT

(
τT (s)−1u

)
ρεT (s − y) ϑεT (ξ).

According to (4.20), (4.19), and (4.21),

‖ψi,εT ‖C0 ≤ 1, ‖ρεT ‖C0 � ε−1
T , ‖ϑεT ‖C0 ≤ 1.
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Hence, we conclude that
∥∥ f̃T ,i (·, y)

∥∥
C0 � ε−1

T . This proves the first estimate. Using

additionally (4.22), we conclude that also
∥∥ f̃T ,i (·, y)

∥∥
Cq � ε

−rq
T for some rq > 0,

which implies the second estimate. ��

4.7 Proof of Theorem 1.3

Let us now summarize what we have done in this technical section. The aim has been
to produce smooth approximations FT for the indicator functions χ�T to which the
arguments of Sect. 3 apply. These approximations are given explicitly in (4.32). They
are integrals of varying averages which are fibered over the finite measure spaces

(YT , κT ) =
(
(log I )εT ,Leb |(log I )εT

)
.

These averages are constructed using finite subsets Q̃T ,i and QT ,i (y) ofRk−1, defined
in (4.14) and (4.15), andBorelmapsβT : Rk−1×YT → R

k−1 and β̃T : Rk−1 → R
k−1,

defined in (4.13). The approximations FT depend on a choice of a parameter εT , which
we take εT = Vol(�T )−η for some η > 0. In order for these approximations to be
useful for us, we arrange that

∥∥χ�T − FT
∥∥
L p(X)

= o
(
Vol(�T )1/2

)
as T → ∞, for p = 1, 2. (4.34)

According to Lemma 4.11, one can take η > 1. Then (4.34) holds. The averages are
further made up by Borel functions fT ,i : Rd × YT → [0,∞), which are defined in
(4.27) and (4.30). These functions are smooth in the first variable, but unbounded as
T → ∞. They are however "bounded on average", in the sense that there are Borel
functions hT ,i : Rd × YT → [0,∞) defined in Sect. 4.5.3. Ultimately, this provides
the framework outlined in (I.a)–(I.c) and (II.a)–(II.c) from Sect. 3, so that we can apply
Theorem 3.19 with VT = Vol(�T ). The conditions on the norms MT and MT ,q have
been verified in Lemma 4.12 with θ0 = η > 1. We recall that the limit

σ := lim
T→∞ V−1/2

T

∥∥∥∥χ̂�T −
∫

X
χ̂�T dμ

∥∥∥∥
L2(X)

.

has been computed in Corollary 4.5. In view of (4.34), it follows from Corollary 4.4
that

∥∥χ̂�T − F̂T
∥∥
L p(X)

= o
(
V 1/2
T

)
as T → ∞, for p = 1, 2. (4.35)

Hence, we conclude that also

lim
T→∞ V−1/2

T

∥∥∥∥F̂T −
∫

X
F̂T dμ

∥∥∥∥
L2(X)

= σ.

Now we have verified all the assumptions of Theorem 3.19.
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We conclude that the functions V−1/2
T

(
F̂T − ∫X F̂T dμ

)
converge in distribution to

the Normal Law with variance σ when d > 4(1+ η) with some η > 1, namely, when
d ≥ 9. Because of (4.35), the functions

V−1/2
T

(
χ̂�T (�) −

∫

X
χ̂�T dμ

)
= V−1/2

T

(
|� ∩ �T | − Vol(�T )

)

also converge in distribution to the same limit.
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