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Abstract
In this paper, we study the metric theory of dyadic approximation in the middle-
third Cantor set. This theory complements earlier work of Levesley et al. (Math Ann
338(1):97–118, 2007), who investigated the problem of approximation in the Cantor
set by triadic rationals. We find that the behaviour when we consider dyadic approxi-
mation in the Cantor set is substantially different to considering triadic approximation
in the Cantor set. In some sense, this difference in behaviour is a manifestation of
Furstenberg’s times 2 times 3 phenomenon from dynamical systems, which asserts
that the base 2 and base 3 expansions of a number are not both structured.
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1 Introduction

1.1 Background and statement of results

In 1984, Mahler wrote a note entitled “Some Suggestions for Further Research” [30]
in which he posed a number of interesting questions which he deemed worthy of
attention. One of these questions posed by Mahler, which is of particular interest to
us here, was the following:

How close can irrational elements of Cantor’s set be approximated by rational
numbers
(i) in Cantor’s set, and
(ii) by rational numbers not in Cantor’s set?

Since the publication of Mahler’s note, this question has attracted a huge amount
of interest and a wide variety of people have uncovered information about various
aspects of this problem. See, for example, [2, 4, 5, 8, 9, 13, 19–21, 26, 27, 29, 33, 38]
and references therein.

Arguably, the first step towards addressing Mahler’s problem outlined above was
the work of Weiss [38], who showed that μ-almost no point in the Cantor set is very
well approximable. Here μ denotes the natural measure on the middle-third Cantor
set as defined in (1.4) below. We shall write Cantor set and middle-third Cantor set
interchangeably throughout. Recall that Dirichlet’s Approximation Theorem tells us
that for any x ∈ R, we have

∣
∣
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∣
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q
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1

q2 (1.1)

for infinitely many pairs (p, q) ∈ Z×N. We say that x ∈ R is very well approximable
if the exponent 2 in the denominator of the right-hand side of (1.1) can be improved,
i.e. increased. That is, x ∈ R is very well approximable if there exists ε > 0 such that
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q2+ε
(1.2)

for infinitely many pairs (p, q) ∈ Z × N. A higher-dimensional generalisation of
Weiss’s result was subsequently demonstrated in the works of Kleinbock, Linden-
strauss, and Weiss [26], and Pollington and Velani [32]. The framework was later
vastly generalised by Das, Fishman, Simmons and Urbański [15, 16].

In spite of the work of Weiss [38], in [29] Levesley, Salp, and Velani were able to
prove that there do in fact exist very well approximable numbers (aside from Liouville
numbers) in themiddle-thirdCantor set, thus solving amore precise problem attributed
to Mahler which is stated in [10, Problem 35].
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This result prompts further study of Mahler’s question from the point of view of
irrationality exponents. The irrationality exponent ξ(x) of x ∈ R is defined as

ξ(x) := sup

{

ξ ∈ R :
∣
∣
∣
∣
x − p

q

∣
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∣
∣
<

1

qξ
for infinitely many (p, q) ∈ Z × N

}

.

By Dirichlet’s Approximation Theorem, we know that ξ(x) ≥ 2 for all x ∈ R. A
real number x ∈ R is very well approximable if we have strict inequality here, i.e.
if ξ(x) > 2. The result of Weiss [38] shows us that for μ-almost all points in the
middle-third Cantor set this is not the case. Nevertheless, the work of Levesley, Salp,
and Velani [29] shows that the set of non-Liouville points in the middle-third Cantor
set with irrationality exponent strictly greater than 2 is non-empty. Further results
concerning the irrationality exponents of points in the middle-third Cantor set have
been obtained in [9, 13].

In this paper, we will be concerned with another aspect of Mahler’s problem. In
particular,wewill be concernedwith the problemof howwell points in themiddle-third
Cantor set canbe approximatedbydyadic rationals; that is, rationalswith denominators
which are powers of 2. To some extent, our present work is motivated by the work of
Levesley, Salp, and Velani [29] who, in resolving [10, Problem 35], considered triadic
approximation in the middle-third Cantor set. In particular, they proved a ‘zero-full’
dichotomy for the μ-measure of the points in the middle-third Cantor set which are
ψ-well approximable by triadic rationals; that is, rationals with denominators which
are powers of 3. In fact, the work of Levesley, Salp, and Velani is far more general and
they actually proved such a ‘zero-full’ dichotomy for the Hausdorff measures of the
set in question with respect to general gauge functions.

Throughout, wewill let K denote themiddle-thirdCantor set. Recall that K consists
of the points x ∈ [0, 1] which have a ternary expansion consisting entirely of 0’s and
2’s. We will also denote by γ the Hausdorff dimension of K , namely

γ := dimH K = log 2

log 3
. (1.3)

Throughout, for a subset X ⊂ R, we will denote the Hausdorff dimension of X by
dimH X . For a real number s > 0, we shall write Hs(X) to denote the Hausdorff
s-measure of X .

We will denote by μ the natural measure on K . More precisely, μ is the Hausdorff
γ -measure restricted to the middle-third Cantor set, i.e. for X ⊂ R which is Borel,

μ(X) = Hγ (X ∩ K )

Hγ (K )
= Hγ (X ∩ K ), (1.4)

where we have the last equation because it happens thatHγ (K ) = 1, see [17, Theorem
1.14]. Moreover, μ(K ) = 1 and so μ is a probability measure on K . For further
information on Hausdorff measure and dimension, we refer the reader to [18].

Given b ∈ N, we will write

A(b) = {bn : n = 0, 1, 2, 3, . . . }.
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Given ψ : N → R
+, let

W3(ψ) :=
{

x ∈ [0, 1] :
∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
<

ψ(q)

q
for infinitely many (p, q) ∈ Z × A(3)

}

.

Here R
+ := [0,∞).

Regarding triadic approximation in the middle-third Cantor set, the following state-
ment follows immediately from [29, Theorem 1].

Theorem 1.1 (Levesley–Salp–Velani [29]) For ψ : N → R
+,

μ(W3(ψ)) =

⎧

⎪⎨

⎪⎩

0 if
∑∞

n=1 ψ(3n)γ < ∞,

1 if
∑∞

n=1 ψ(3n)γ = ∞.

In this paper, we will consider analogous statements for approximating points in
the Cantor set by dyadic rationals rather than triadic rationals.With this in mind, given
a function ψ : N → R

+, we will be concerned with

W2(ψ) :=
{

x ∈ [0, 1] :
∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
<

ψ(q)

q
for infinitely many (p, q) ∈ Z × A(2)

}

.

Along the same lines as Theorem 1.1, we have the following conjecture1, which
represents the clean-cut dichotomy which we expect to be the truth regarding dyadic
approximation in the middle-third Cantor set.

Conjecture 1.2 (Velani) For monotonic ψ : N → R
+, we have

μ(W2(ψ)) =

⎧

⎪⎨

⎪⎩

0 if
∑∞

n=1 ψ(2n) < ∞,

1 if
∑∞

n=1 ψ(2n) = ∞.

Remark 1.3 It is possible that Conjecture 1.2 may even hold without the monotonicity
hypothesis.

To give a heuristic idea forwhy onemight believe the above conjecture to be correct,
suppose for a moment that dyadic rationals of denominator 2n were uniform random
variables in [0, 1]. Then the expected number of dyadic rationals of denominator 2n

lying in a subinterval I ⊂ [0, 1] would be ≈ 2n × ( the length of I ).

For each n ∈ N, let An := ⋃2n

a=0 B
(

a
2n ,

ψ(2n)
2n

)

. Then W2(ψ) = ⋂∞
j=0

⋃∞
n= j An ,

and
⋃∞

n= j An is a cover of W2(ψ) for each j ∈ N. Now, consider a fixed n ∈ N

and suppose for this n that ψ(2n)
2n ≈ 3−N . In particular, by our assumption on the

1 We thank Sanju Velani for suggesting to us that this statement should be true. The present work supports
this.



Dyadic approximation in the middle-third Cantor set Page 5 of 49 11

distribution of dyadic rationals, we would expect 	
(
2N

3N

)

×2n dyadic rationals to lie

within distance ψ(2n)
2n of the N th level of the construction (this is called KN later on)

of the middle-third Cantor set. Thus, this number represents the maximum number
of individual balls in An which can possibly intersect the middle-third Cantor set.
Moreover, it is known that

μ(B(z, r)) 	 rγ (z ∈ R, 0 < r ≤ 1), (1.5)

see for instance [38] or [36, §2]. So, we have

μ(An) 	
(
2N

3N

)

× 2n ×
(

ψ(2n)

2n

)γ

≈ 2N ×
(

ψ(2n)

2n

)

× 2n × (3−N )γ = ψ(2n).

Combining the above heuristics with the convergence Borel–Cantelli Lemma (Lemma
1.16) gives rise to the convergence part of the above conjecture.

By considering balls of radius ψ(2n)/2n centred at triadic rationals within the
Cantor set, we can obtain a similar heuristic for the complementary lower bound
μ(An) � ψ(2n). If we knew that μ(An ∩ Am) were O(μ(An)μ(Am)) in some
suitably averaged sense, then the divergence Borel–Cantelli Lemma [7, Proposition
2] would complete the proof.

Unfortunately, we cannot prove such bold claims about the interaction of the dyadic
rationals with the middle-third Cantor set. Unlike in the case of triadic rationals, where
we know exactly how they are distributed with respect to the middle-third Cantor set
K , we know very little about how dyadic rationals are distributed with respect to
K . For this reason, studying dyadic approximation in the Cantor set is significantly
harder than studying triadic approximation in the Cantor set and, as of yet, we have
been unable to prove Conjecture 1.2 in full. As a first step towards this conjecture, the
following convergence statement is relatively straightforward to establish—we will
provide a direct proof in Sect. 2.1.

Proposition 1.4 For ψ : N → R
+, if

∞
∑

n=1

ψ(2n)γ < ∞, (1.6)

then μ(W2(ψ)) = 0.

Using Fourier analysis, we are able to establish the following improvement upon
the above benchmark result.

Theorem 1.5 (Main convergence theorem) If

∞
∑

n=1

(2− log n/(log log n·log log log n)ψ(2n)γ + ψ(2n)) < ∞, (1.7)

then μ(W2(ψ)) = 0.
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Remark 1.6 We may deduce Proposition 1.4 from Theorem 1.5 via two observations.
First, by replacing ψ by ψ0 : y �→ min{3/4, ψ(y)}, we may assume that ψ(2n) < 1
for all n, since

‖2nα‖ < ψ(2n) ⇐⇒ ‖2nα‖ < ψ0(2
n).

Second, observe that

2ψ(2n)γ > 2− log n/(log log n·log log log n)ψ(2n)γ + ψ(2n).

Thus, assuming (1.6), it follows that (1.7) also holds and we may apply Theo-
rem 1.5 to deduce Proposition 1.4. The improvement is super-logarithmic assuming
∑∞

n=1 ψ(2n) < ∞. For instance, (1.7) holds for ψ(2n) = (log n)αn−1/γ whenever
α ∈ R, whereas (1.6) fails even for ψ(2n) = n−1/γ .

From Theorem 1.1, we know that for μ-almost every α ∈ K the inequality

‖3nα‖ < n− log 3/ log 2 (1.8)

admits infinitely many solutions n ∈ N, where ‖x‖ denotes the distance from x to the
nearest integer for x ∈ R. However, we see from Theorem 1.5 that for μ-almost every
α the inequality

‖2nα‖ < n− log 3/ log 2 (1.9)

has at most finitely many solutions. Thus, the behaviour is very different in the case
of dyadic approximation in the Cantor set. Observe that it is not possible to obtain this
conclusion by only using Proposition 1.4, as has already been indicated in Remark
1.6. In this sense, the additional super-logarithmic decaying factor

2− log n/(log log n·log log log n)

marks a significant difference.

Remark 1.7 Towards the end of the paper we prove, highly conditionally, the con-
vergence part Conjecture 1.2. The Lang–Waldschmidt Conjecture [28, Conjecture 1
(page 212)] is sufficient for us to improve the exponent in (1.9). We defer the detailed
statements and an extended discussion until that point.

The difference in behaviour between dyadic and triadic approximation here is fur-
ther emphasised by the following theorem due to Bugeaud [11, Theorem 7.17] which,
despite the differing metric statements, asserts that for each of the inequalities (1.8)
and (1.9) there exist uncountably many real numbers in the middle-third Cantor set
for which these inequalities are satisfied only finitely often.
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Theorem 1.8 (Bugeaud [11]) There exists a positive real number c, and uncountably
many real numbers x ∈ K which are badly approximable and, for all integers b ≥ 2
and n ≥ 1, satisfy

‖bn x‖ > b−cb(log b).

Here we ask the following complementary question.

Question 1.9 Does there exist α ∈ K \Q such that (1.9) has infinitely many solutions?

Bugeaud and Durand [13, Conjecture 1.2] anticipate that the answer should be
emphatically positive. Assuming their conjecture:

(i) If v <
γ

1−γ
then there exists α ∈ K \ Q such that

‖2nα‖ < 2−vn (1.10)

has infinitely many solutions.
(ii) If v >

γ
1−γ

and α ∈ K \ Q, then (1.10) has at most finitely many solutions.

A pertinent piece of information was provided by Schleischitz [33, Theorem 3.4],
who showed that if τ is sufficiently large, α ∈ K , and a/q ∈ Q \ K , then

|qα − a| > exp(−τqγ ),

and in fact this was established in a more general iterated function system setting.
Since 0, 1/4, 3/4, and 1 are the only dyadic rationals in K , see [37], the inequality

‖qα‖ > exp(−τqγ )

holds for α ∈ K and q = 2n whenever n ≥ 3. This is very far from the threshold
in (1.9), and also far from the threshold prophesied by Bugeaud and Durand, but is
nonetheless an elegant special case of Schleischitz’s general result.

Complementing Theorem 1.5, we prove the following statement towards the diver-
gence part of Conjecture 1.2.

Theorem 1.10 (Main Divergence Theorem) For ψ(2n) = 2− log log n/ log log log n, we
have μ(W2(ψ)) = 1.

In Sect. 5, we also provide some additional conditional results and empirical evi-
dence which provide further support in favour of Conjecture 1.2. We will see in
particular that a modest refinement of a key estimate, namely (1.11) below, would
lead to a sharp convergence theory. Moreover, consider the special case

ϕa : 2n �→ n−a,

for a ≥ 0. It is clear that

μ(W2(ϕ0)) = 1,
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and we know from Theorem 1.5 that whenever a ≥ 1/γ we have

μ(W2(ϕa)) = 0.

We shall see conditionally, in Theorems 5.2 and 5.3(a), that

μ(W2(ϕa)) =
{

0, if a > 1

1, if a ≤ 1.

In this article, we are only concerned with μ-measure. For the predicted behaviour
of the corresponding Hausdorff dimension problem, there is a conjecture of Bugeaud
and Durand [13, Conjecture 1.2].

1.2 Main ideas behind the proofs and some preliminaries

The key to proving results of the flavour we are considering is an understanding of how
dyadic rationals are distributed with respect to the middle-third Cantor set. This is not
an easy task, and is a variant of the infamous ‘times two, times three’ phenomenon.One
way to view this is that expansions in two multiplicatively independent bases cannot
both be structured. However, the story began not in number theory but in dynamical
systems, with Furstenberg’s influential works [23, 24] from the late 1960s.

Here is a conjecture of Furstenberg’s that closely resembles the more arithmetic
statements of this flavour that we will use. Any positive integer m defines a map
Tm : x �→ mx on T := R/Z by multiplication. We denote the orbit of a point x ∈ T

under such a map by Om(x) = {T r
m(x) : r ∈ N}.

Conjecture 1.11 (Furstenberg [24]) Let p and q be multiplicatively independent pos-
itive integers, and let x ∈ T \ Q. Then

dimH Op(x) + dimH Oq(x) ≥ 1.

This remains open. A weaker conjecture of Furstenberg’s [24], but still a famous
and deep one, was recently settled independently and concurrently by Shmerkin and
Wu.

Theorem 1.12 (Shmerkin [34], Wu [40]) Let p and q be multiplicatively independent
positive integers. Let Ap and Bq be closed subsets of T that are invariant under Tp

and Tq , respectively. Then, for u, v ∈ R, we have

dimH(u Ap + v) ∩ Bq ≤ max{0, dimH Ap + dimH Bq − 1}.

Without further ado, let us now describe our approach to the specific problems
at hand. A fairly straightforward counting argument enables us to deduce enough
information to establish Proposition 1.4. Refining the argument using Fourier analysis,
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we are also able to establish Theorems 1.5 and 1.10. The relevance of counting dyadic
rationals near the middle-third Cantor set will be described in greater detail in Sect. 2.

In Sect. 2, we see via Fourier analysis that the problem at hand is intimately con-
nected to the number of binary and ternary ‘digit changes’ in numbers of the form 2nm,
where n, m ∈ N. For b ∈ Z such that b ≥ 2 and y ∈ R, let Db(y) denote the number
of digit changes in the b-adic expansion of y; that is, Db(y) denotes the number of
consecutive pairs of distinct digits in the b-adic expansion of y. We want to understand
the sum D2(y) + D3(y). To this end, we will make use of the following inequality,
originally due to Stewart [35] and extended by Bugeaud, Cipu, and Mignotte [12].
Integers a and b are multiplicatively independent if, for any m, n ∈ Z, we have that
am = bn implies that m = n = 0. The statement as written below can be found in
[11, Theorem 6.9].

Theorem 1.13 (Stewart [35], Bugeaud–Cipu–Mignotte [12]) Let a, b ≥ 2 be multi-
plicatively independent integers. Then, there exists an effectively computable integer
c, which depends only on a and b, such that for every natural number n ≥ 20, we have

Da(n) + Db(n) ≥ log log n

log log log n + c
− 1.

This is a deep result which uses Alan Baker’s work on linear forms in logarithms [3].
The following more specialised statement follows easily from Theorem 1.13.

Lemma 1.14 For sufficiently large n ∈ N, we have

D2(n) + D3(n) � log log n

log log log n
, (1.11)

where the implicit constant is absolute.

Remark 1.15 In light of Theorem 1.13, the multiplicative independence of 2 and 3 is
crucial in this work. By the samemethods, we could study the approximation of points
in K by rationalswhose denominator is a power of k, where k is any positive integer that
is not a power of three. More generally, as with other manifestations of the ‘times two,
times three’ phenomenon, we could replace 2 and 3 by multiplicatively independent
positive integers k and b, respectively, with essentially the same outcomes. For any
a ∈ {0, 1, . . . , b − 1}, the appropriate analogue of K is the missing-digit Cantor set
Kb,a comprising elements of [0, 1] that can be written in base b without the digit a,
see [33].

Notation. We use the Bachmann–Landau and Vinogradov notations throughout: for
functions f and positive-valued functions g, wewrite f 	 g, or g � f , or f = O(g),
if there exists a constant C > 0 such that | f (x)| ≤ Cg(x) for all x .

In addition to our proofs relying heavily on Fourier analysis and the bounds on base
2 and base 3 digit changes discussed above, we will make use of both the standard
convergenceBorel–Cantelli Lemma and theChung–Erdős inequality fromprobability.
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Lemma 1.16 (ConvergenceBorel–Cantelli Lemma) Let (	,A, m) be a finite measure
space and let {En}n≥1 ⊂ A be a sequence of m-measurable sets in 	. If

∞
∑

n=1

m(En) < ∞,

then

m(lim sup
n→∞

En) = 0.

For the proof of the divergence result Theorem1.10, we use the following inequality
established by Chung and Erdős in [14, Equation 4]. This is similar in flavour to the
divergence counterpart of the Borel–Cantelli Lemma (see e.g. [7, Proposition 2]).

Lemma 1.17 (Chung–Erdős Inequality) Let N ≥ 1 be an integer. Let (	,A, m) be
a probability space, and let {En}N

n=1 ⊂ A be an arbitrary sequence of m-measurable

sets in 	. Then, if m
(
⋃N

n=1 En

)

> 0, we have

m

(
N
⋃

n=1

En

)

≥
(
∑N

s=1 m(Es)
)2

∑N
s,t=1 m(Es ∩ Et )

.

In order to prove the full measure statements given by Theorem 1.10 and later by
Theorem 5.3, we first intersect our sets of interest with an arbitrary interval I centred
in the Cantor set and show that these intersections have measure proportional to the
measure of the interval I . Once this has been achieved, the following lemma yields
the full measure statements we ultimately desire since μ is doubling (see Sect. 2.2 for
a definition). Lemma 1.18, as stated below, can be found in [7, Proposition 1]. We also
refer the reader to [7] for several other applications of Lemma 1.18.

Lemma 1.18 Let (	, d) be a metric space, and let m be a finite doubling measure on
	 such that any open set is measurable. Let E be a Borel subset of 	. Assume that
there are constants r0, c > 0 such that for any ball B of radius r(B) < r0 and centre
in 	 we have that

m(E ∩ B) ≥ cm(B).

Then E has full measure in 	, i.e. m(	 \ E) = 0.

1.3 Subsequent developments

This being a topical subject, there have been notable advances on these and related
problems since the initial release of this manuscript. Very recently, Baker [6] has
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shown unconditionally that

μ(W2(ϕa)) = 1 (a ≤ 0.01).

Then the three present authors, together with Baker, showed unconditionally in [1]
that

μ(W2(ϕa)) = 0
(

a ≥ γ −1 − 0.01
)

.

Those articles also discuss inhomogeneous and counting refinements.

We now describe some results from the recent works of Khalil and Lüthi [25] and
the third named author [41]. Owing to its nice properties, the Cantor measure μ is a
‘friendly’ measure, in the parlance introduced by Kleinbock, Lindenstrauss andWeiss
[26]. This class of measures includes many well-known natural measures supported
on fractals and manifolds, and has been a hugely successful medium for systematising
the metric theory of Diophantine approximation. In [26, Question 10.1], Kleinbock,
Lindenstrauss and Weiss asked if the analogue of Khintchine’s theorem holds for
friendly measures. Strengthening their question very slightly and restricting ourselves
to one-dimensional Euclidean space: if ν is a friendly probability measure on R, and
ψ : N → R

+ is decreasing, and

W (ψ) :=
{

x ∈ [0, 1] :
∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
<

ψ(q)

q
for infinitely many (p, q) ∈ Z × N

}

,

then is it true that

ν(W (ψ)) =
{

0, if
∑∞

n=1 ψ(q) < ∞
1, if

∑∞
n=1 ψ(q) = ∞ ?

This beautiful problem is still open in the case ν = μ. By dynamical means, Khalil and
Lüthi [25] have recently solved it in the case of the natural probability measure on any
missing-digit Cantor set Kb,a for which b ≥ 5 is prime, where Kb,a was introduced
in Remark 1.15. The third named author provided an independent, Fourier-analytic
approach, establishing results of this type in [41].

In [41], progress was alsomade on theHausdorff theory of Diophantine approxima-
tion on missing-digit Cantor sets. The irrationality exponent of an irrational number
x , denoted ω(x), is the supremum of w such that

∣
∣
∣
∣
x − p

q

∣
∣
∣
∣
< q−w

holds for infinitely many pairs (p, q) ∈ Z × N. For ω ≥ 2, we write

M(ω) = {x ∈ R : ω(x) ≥ ω}.
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Conjecture 1.19 (Bugeaud–Durand [13]) For ω ≥ 2, we have

dimH(M(ω) ∩ K ) = max

{
2

ω
+ γ − 1,

γ

ω

}

. (1.12)

Taking ω → 2+ in (1.12) yields the prediction [29, Equation (29)] of Levesley,
Salp and Velani, which we state explicitly below. Here

VWA =
⋃

ω>2

M(ω)

is the set of very well approximable numbers, whose μ-measure was shown to vanish
in the aforementioned work of Weiss [38].

Conjecture 1.20 (Levesley–Salp–Velani [29]) We have

dimH(VWA ∩ K ) = γ.

Levesley, Salp and Velani [29, Equation 2] were able to prove the lower bound

dimH(VWA ∩ K ) ≥ γ /2.

Denoting

κ = dimH Kb,a = log(b − 1)

log b
,

it was shown in [41] that if

b ≥ 107 + 1 (1.13)

then we have

dimH(M(ω) ∩ Kb,a) = max

{
2

ω
+ κ − 1,

κ

ω

}

in the range 2 ≤ ω ≤ 2 + η, where η > 0 is sufficiently small in terms of b. As an
aspect of a future work, we plan to relax the condition (1.13) considerably.

2 Dyadic rationals near the Cantor set

We recall a natural construction of the middle-third Cantor set. Set K0 := [0, 1]
and remove the open middle-third of this interval to obtain K1 := [0, 1

3 ] ∪ [ 23 , 1].
Subsequently, remove the open middle-third of each of these component intervals to
obtain K2 which will consist of 4 subintervals of length 3−2, and repeat this process
so that KN consists of the 2N intervals of length 3−N which remain after removing
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the open middle-thirds from each of the component subintervals of KN−1. Then K =
⋂∞

N=0 KN .

For N ∈ N, let LN be the set of rational numbers of the form b
3N where b is an

integer such that 0 ≤ b ≤ 3N and the ternary expansion of b only contains 0’s and
2’s. Thus, LN corresponds to the left-most endpoints of the intervals comprising KN .
We also define RN := {x = 1 − y : y ∈ LN } to be the set of right-most endpoints
of intervals in KN . We write CN := LN ∪ RN to denote the set of all endpoints of
intervals comprising KN . Furthermore, note that CN is the set of rationals in [0, 1]
with denominator 3N which lie in the Cantor set. For n, M ∈ N, let

An :=
2n
⋃

a=0

B

(
a

2n
,
ψ(2n)

2n

)

, and An(M) :=
2n
⋃

a=0

B

(
a

2n
,

1

3M

)

.

Observe that if N ∈ N and x ∈ CN then μ
(

B
(

x, 3−N

2

))

= 2−(N+1). Indeed, each

component interval in KN has μ-measure 2−N , and B
(

x, 3−N

2

)

contains half of such

an interval and intersects no others. Moreover, these balls are disjoint. Similarly, for
any x ∈ R we have μ(B(x, 3−N )) ≤ 2−(N−1), since B(x, 3−N ) intersects at most
two of the component intervals in KN .

As alluded to earlier, in several of the lemmas below, we will intersect our sets of
interest with an interval I = B(z, r), where z ∈ K and r > 0. This generality will
be needed in the divergence theory in order to obtain full-measure results, as opposed
to just positive-measure results, and is standard in metric Diophantine approximation
(for several examples, see [7]). The idea is that dyadic rationals should be evenly
distributed in K = supp(μ). For such an interval I = B(z, r) or I = [0, 1], for n ∈ N

and t ∈ (0,∞), we write

t An =
2n
⋃

a=0

B

(
a

2n
, t

ψ(2n)

2n

)

, t An(M) :=
2n
⋃

a=0

B

(
a

2n
,

t

3M

)

, and t I = B(z, tr).

We adopt analogous notation for translates of An and for An(M), i.e. for n ∈ N and
θ ∈ R,

An + θ =
2n
⋃

a=0

B

(
a

2n
+ θ,

ψ(2n)

2n

)

and An(M) + θ =
2n
⋃

a=0

B

(
a

2n
+ θ,

1

3M

)

.

Finally, we introduce the hybrid notations

t An + θ =
2n
⋃

a=0

B

(
a

2n
+ θ, t

ψ(2n)

2n

)

and t An(M) + θ =
2n
⋃

a=0

B

(
a

2n
+ θ,

t

3M

)

,

for n ∈ N, t ∈ (0,∞), and θ ∈ R.
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We will assume throughout this section that ψ(2n) < 1 for all n ∈ N. This is
not at all restrictive for the purposes of proving Proposition 1.4, Theorem 1.5, or
Theorem 1.10. Indeed, for the first two of these statements we may replace ψ by
y �→ min{3/4, ψ(y)} as in Remark 1.6, and in Theorem 1.10 the condition is clearly
met.

The μ-measure of a union of balls can be estimated by counting nearby triadic
rationals in CN for a sufficiently large N ∈ N. This is formalised below.

Lemma 2.1 Let I = B(z, r), where z ∈ K and r > 0, or I = [0, 1]. Let n0(I , ψ) ∈ N

be sufficiently large so that if n ≥ n0(I , ψ) then 2−n < r . Let n ≥ n0(I , ψ) and N
be positive integers such that 3−N ≤ ψ(2n)

5·2n , and let Bn be a translate of An. Then

2−(N+1)|CN ∩ 0.2Bn ∩ 0.2I | ≤ μ(Bn ∩ I ) ≤ 2−(N−1)|CN ∩ 5Bn ∩ 5I |.

Proof If x ∈ CN ∩0.2Bn ∩0.2I then B(x, 3−N /2) ⊆ Bn ∩ I . That B(x, 3−N /2) ⊆ Bn

is clear upon noting our choice of N and recalling that Bn consists of disjoint intervals
of length 2× ψ(2n)

2n . The inclusion B(x, 3−N /2) ⊆ I follows by the triangle inequality
and our choices of N and n0(I , ψ). Hence, by disjointness (since any two distinct
points in CN are distance at least 3−N apart), we have

μ(Bn ∩ I ) ≥
∑

x∈CN ∩0.2Bn∩0.2I

μ
(

B
(

x, 3−N /2
))

= 2−(N+1)|CN ∩ 0.2Bn ∩ 0.2I |.

For the second inequality, we cover [0, 1] by {B(x, 3−N ) : x ∈ SN }, where SN is
the set of rationals with denominator 3N in [0, 1]. For each x ∈ SN we have

μ
(

Bn ∩ I ∩ B
(

x, 3−N
))

≤ μ(B(x, 3−N )) ≤ 2−(N−1).

If x ∈ SN \ CN then B(x, 3−N ) does not intersect the Cantor set, so

μ
(

Bn ∩ I ∩ B
(

x, 3−N
))

≤ μ(B(x, 3−N )) = 0.

Finally, if x ∈ SN \ (5Bn ∩ 5I ) then B(x, 3−N ) does not intersect Bn ∩ I , so

μ
(

Bn ∩ I ∩ B
(

x, 3−N
))

= 0.

To see this, one can argue by contradiction, again employing the triangle inequality
and recalling our choices of N and n0(I , ψ).

Putting everything together yields

μ (Bn ∩ I ) ≤
∑

x∈SN

μ
(

Bn ∩ I ∩ B
(

x, 3−N
))

≤ 2−(N−1)|CN ∩ 5Bn ∩ 5I |,

as required. ��
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We also require the following inequality, which enables us to pass between Cantor
levels KN . Here N is roughly the level at which An lives since, up to a multiplicative
constant, the component intervals in KN are the same length as the intervals comprising
An .

Lemma 2.2 Let n, M, N ∈ N be such that

ψ(2n)

125 · 2n
≤ 3−N ≤ 5ψ(2n)

2n
≤ 3−M ≤ 29−n . (2.1)

Then

|CN ∩ 5An| 	 |CM ∩ 5An(M)|,

where the implied constant is absolute.

Proof Suppose x ∈ LN ∩ 5An ; the corresponding bound for x ∈ RN follows by
symmetry. Since x ∈ LN , we have x = a

3N for some integer a ∈ [0, 3N ), where the
ternary expansion of a consists only of 0’s and 2’s. As x ∈ 5An , there exists an integer
b ∈ [0, 2n] such that

∣
∣x − b

2n

∣
∣ <

5ψ(2n)
2n . Thus, |LN ∩ 5An| is bounded above by the

number of integer solutions (a, b) to the inequality

∣
∣
∣
∣

a

3N
− b

2n

∣
∣
∣
∣
<

5ψ(2n)

2n
,

where 0 ≤ b ≤ 2n , 0 ≤ a < 3N , and all of the ternary digits of a are 0 or 2.
Let us now decompose a by writing a = a1a2, where a1 represents the first M

ternary digits of a and a2 represents the remaining N − M digits. From this, we see
that |LN ∩ 5An| is bounded above by the number of integer solutions (a1, a2, b) to

∣
∣
∣
3N−M a1 + a2

3N
− b

2n

∣
∣
∣ <

5ψ(2n)

2n
, (2.2)

where 0 ≤ a1 < 3M , 0 ≤ a2 < 3N−M , 0 ≤ b ≤ 2n , and the ternary digits of a1, a2
are all 0 or 2. Next, we note that

a1
3M

∈ 5An(M),

since
∣
∣
∣
∣

a1
3M

− b

2n

∣
∣
∣
∣
≤
∣
∣
∣
∣

a1
3M

+ a2
3N

− b

2n

∣
∣
∣
∣
+ a2

3N
<

5ψ(2n)

2n
+ 3−M ≤ 2

3M
. (2.3)

Given a1, we see from (2.3) that b/2n is forced to lie in an interval of length 4
3M

centred at a1
3M . By hypothesis, 4

3M 	 2−n , so there are O(1) possibilities for b. Next,
suppose we are given a1 and b. Then, by (2.2), a2 must lie in an interval of length



11 Page 16 of 49 D. Allen et al.

3N ×10×ψ(2n)
2n centred at 3N b

2n − 3N a1
3M . Thus, there are O(1) solutions a2 to (2.2), by

our assumption that 3−N � ψ(2n)
2n . Finally, since a1

3M ∈ LM ∩ 5An(M), we conclude
that there are O(|LM ∩ 5An(M)|) solutions to (2.2) in total. By symmetry we have
|RN ∩ 5An| = |LN ∩ 5An|, so

|CN ∩ 5An| = 2|LN ∩ 5An| 	 |CM ∩ 5An(M)|.

��

2.1 Proof of the basic result

We presently provide a direct proof of Proposition 1.4. Recall that we assume that
ψ(2n) < 1 for all n ∈ N. If n ≥ 7 is an integer, and N ∈ N is such that

3−N ≤ ψ(2n)

5 · 2n
< 3−(N−1)

then, by Lemma 2.1 (taking I = [0, 1]), we have

μ(An) ≤ 2−(N−1)|CN ∩ 5An|.

Choose M ∈ N such that

3−M < 25−n ≤ 3−(M−1),

and note that M ≤ N . We must also have

|CN ∩ 5An| 	 |CM ∩ 5An(M)|,

by Lemma 2.2. Therefore, since 3−N � ψ(2n)
2n , 3−M � 2−n , and |CM ∩ 5An(M)| is

trivially bounded above by |CM | = 2M+1, we have

μ(An) 	 2M−N = (3M−N )γ 	 (2n/3N )γ 	 ψ(2n)γ

for n ≥ 7. Hence

∞
∑

n=1

μ(An) 	
∞
∑

n=1

ψ(2n)γ

converges, and the convergence Borel–Cantelli Lemma (Lemma 1.16) completes the
proof.
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2.2 Fourier analysis

In this section, we use Fourier analysis to count instances of dyadic rationals being
close to triadic rationals in the Cantor set. Recall that μ possesses the following two
properties:

1. (Positivity) If z ∈ K and r > 0, then μ(B(z, r)) > 0, and
2. (Doubling) If z ∈ K and r > 0, then μ(B(z, 2r)) 	 μ(B(z, r)).

In fact μ is Ahlfors–David regular; that is, for z ∈ K and r ∈ (0, 1], we have

μ(B(z, r)) � rγ ,

see [29, §6.1] or [18]. This property implies the properties (1) and (2) stated above.
Before commencing in earnest, we estimate the measure of an interval in a discrete

fashion. This is a simpler analogue of Lemma 2.1.

Lemma 2.3 Let I = B(z, r), where z ∈ K and 0 < r < 1, and let L ≥ L0(I ) be
a large positive integer. In particular, we require L0(I ) to be sufficiently large that
3−L0(I )

2 < r
5 . Then

μ(I ) � |CL ∩ I |
2L

.

The implicit constants are absolute. Moreover, if B = B(z, r), where z ∈ R and
0 < r < 1, and L is a positive integer for which 31−L < r , then

μ(B) ≤ 2−(L−1)|CL ∩ 5B|. (2.4)

Proof By the doubling property of μ, it suffices to show that

2−(L+1)|CL ∩ 0.2I | ≤ μ(I ) ≤ 2−(L−1)|CL ∩ 5I |. (2.5)

To see that this is indeed sufficient, suppose first that we wish to show that 2Lμ(I ) 	
|CL ∩ I |. This would follow from 2Lμ(0.2I ) ≤ 2|CL ∩ I |, since doubling gives

μ(I ) ≤ μ(1.6I ) 	 μ(0.8I ) 	 μ(0.4I ) 	 μ(0.2I ).

That is, it would suffice to show that 2Lμ(J ) ≤ 2|CL ∩ 5J | for J = 0.2I . By a
similar argument, the inequality 2Lμ(I ) � |CL ∩ I | would follow if we could show
that 2L+1μ(J ′) ≥ |CL ∩ 0.2J ′| for J ′ = 5I , since μ(5I ) 	 μ(I ) by the doubling
property. Since I , and therefore also J and J ′, are arbitrary intervals, it suffices to
show (2.5).

If x ∈ CL ∩ 0.2I then B(x, 3−L/2) ⊆ I , by the triangle inequality. Hence, by
disjointness (since distinct points in CL are distance at least 3−L apart), we have

μ(I ) ≥
∑

x∈CL∩0.2I

μ

(

B

(

x,
3−L

2

))

= 2−(L+1)|CL ∩ 0.2I |.
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For the upper bound, we cover [0, 1] by {B(x, 3−L) : x ∈ SL}, where SL is the set
of rationals with denominator 3L in [0, 1]. For each x ∈ SL we have

μ(I ∩ B(x, 3−L)) ≤ μ(B(x, 3−L)) ≤ 2−(L−1).

If x ∈ SL \ CL then B(x, 3−L ) does not intersect the Cantor set, so

μ(I ∩ B(x, 3−L)) = 0.

Finally, if x ∈ SL \ 5I then B(x, 3−L) does not intersect I , so

μ(I ∩ B(x, 3−L)) = 0.

Therefore

μ(I ) ≤
∑

x∈SL

μ
(

I ∩ B
(

x, 3−L
))

≤ 2−(L−1)|CL ∩ 5I |,

as required.
For the final statement, witness that in proving (2.5) we did not use the assumption

that z ∈ K . ��

2.2.1 Schwartz functions, bump functions, and tempered distributions

We briefly discuss some theory in preparation for the Fourier analysis. Full details can
be found in the distribution theory textbooks of Mitrea [31], and Friedlander and Joshi
[22]. We restrict ourselves to the one-dimensional setting.

Throughout this paper, we write e(x) = e2π i x for x ∈ R. A Schwartz function is a
function f : R → C such that if a, b ∈ Z are such that a, b ≥ 0, then

sup
x∈R

|xb f (a)(x)| < ∞,

where f (a) is the ath derivative of f . Schwartz space, denoted S(R), is the complex
vector space of Schwartz functions, together with a natural topology [31, §14.1]. The
Fourier transform of a Schwartz function f is

f̂ : R → C, f̂ (t) =
∫

R

f (α)e(−tα) dα,

and this defines an automorphism of Schwartz space [31, Theorem 3.25], with the
inverse operator sending g ∈ S(R) to

t �→
∫

R

g(α)e(tα) dα.

Note that the normalisation in [31] is slightly different.
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A bump function is a C∞, compactly supported function φ : R → [0,∞). In the
sequel, we fix a smooth bump function φ supported on [−2, 2] such that φ(x) = 1 for
x ∈ [−1, 1] and 0 ≤ φ(x) ≤ 1 for all x ∈ R. Such a function exists, by [22, Theorem
1.4.1]. As explained in [31, §3.1], bump functions are Schwartz, and have the rapid
Fourier decay property that for each number N > 0,

φ̂(t) 	N (1 + |t |)−N , (2.6)

where the subscript N denotes that the implicit constant depends on N . We note that
the bound in (2.6) may be deduced from [31, Eq. (3.1.12)].

A tempered distribution is a continuous linear functional S(R) → C. The archety-
pal example of a tempered distribution is the Dirac delta function, which sends
g ∈ S(R) to g(0), but is not a function in the classical sense. Note that a Schwartz
function f induces a tempered distribution T f sending g ∈ S(R) to

∫

R

f (α)g(α) dα.

We define translates of Schwartz functions f and of tempered distributions u by

τa f (x) = f (x − a) (a, x ∈ R)

and

τau(g) = u(τ−ag) (a ∈ R, g ∈ S(R)).

For example, denoting by δ the Dirac delta function, the distribution τaδ sends g ∈
S(R) to g(a).

The Fourier transform of a tempered distribution u : S(R) → C is the tempered
distribution

û : S(R) → C, û( f ) = u( f̂ ).

Writing g as the Fourier transform of f ∈ S(R), we obtain the Parseval formula

u(g) = û(g∨), (2.7)

where g∨ is the inverse Fourier transform of g; that is, g∨(t) = ĝ(−t).
The Fourier transform of a translate τau of a tempered distribution is

g �→ û(ge(−a·)).

Indeed, we compute that if u is a tempered distribution, a ∈ R, and g ∈ S(R), then

τ̂au(g) = τau(ĝ) = u(τ−a ĝ) = u(x �→ ĝ(x + a)) = u( ̂ge(−a·)) = û(ge(−a·)).



11 Page 20 of 49 D. Allen et al.

To see the fourth equality, observe that the Fourier transform of t �→ g(t)e(−at) sends
x to

∫

R

g(t)e(−at)e(−t x) dt =
∫

R

g(t)e(−t(x + a)) dt = ĝ(x + a).

A continuous, bounded function F is the function type of a distribution u if

u( f ) =
∫

R

f (t)F(t) dt ( f ∈ S(R)).

The distributional Poisson summation formula [22, Theorem 8.5.1] asserts that if
g ∈ S(R) then

∑

n∈Z
τnδ(g) =

∑

n∈Z

∫

R

g(t)e(nt) dt .

This admits the following generalisation.

Lemma 2.4 Let u be a tempered distribution whose Fourier transform has function
type F. Then

∑

n∈Z
τ̂nu =

∑

n∈Z
τnδ(F ·).

Proof If g ∈ S(R) then

∑

n∈Z
τ̂nu(g) =

∑

n∈Z
τ̂−nu(g)

=
∑

n∈Z
û(ge(n·)) =

∑

n∈Z

∫

R

F(t)g(t)e(nt) dt =
∑

n∈Z
τnδ(Fg),

where for the final inequality we have applied the distributional Poisson summation
formula to the Schwartz function Fg. ��

2.2.2 Counting using Fourier analysis

We now proceed with the Fourier analysis.

Lemma 2.5 Let y ∈ R, and let n, k ∈ N. Let I be either [0, 1] or a subinterval of
[0, 1] whose endpoints do not lie in K . Let

f (α) = fn(α; y) =
2n−1
∑

b=0

φr (α + y − b/2n), φr (β) = φ(rβ), r = 2n+k .
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If I = [0, 1] then let L0(I ) = 0. Otherwise, let L0(I ) be a positive integer such that
3−L0(I ) is less than the distance from the boundary of I to the boundary of K . Finally,
let M ≥ L ≥ L0(I ) be integers. Then, for T , N ∈ N such that N > 1, we have

∑

x∈LM ∩I mod 1

f (x)

= 2M−L−k
∑

|m|≤2k T

φ̂(2−km)e(2nmy)
∑

x∈LL∩I

e(2nmx)

M
∏

j=L+1

1 + e(2n+1m/3 j )

2

+ ON

(

2M−L |LL ∩ I |
T N

)

,

where the subscript N indicates that the implied constant depends on N . Here x ∈
LM ∩ I mod 1 means that x + m ∈ LM ∩ I for some m ∈ Z.

Proof Consider the distribution

u =
∑

x∈LM ∩I

δx ,

where δx denotes theDirac delta function at x , namely δx = τxδ. This is the distribution
that sends g ∈ S(R) to

∑

x∈LM ∩I g(x). By the Parseval formula (2.7) and Lemma
2.4, we have

∑

x∈LM ∩I mod 1

f (x) =
∑

w∈Z
τwu( f ) =

∑

w∈Z
τ̂wu( f ∨) =

∑

w∈Z
τwδ(F f ∨), (2.8)

where F is the function type of û and f ∨ is the inverse Fourier transform of f ; more
explicitly, we recall that

f ∨(t) = f̂ (−t).

Via the change of variables β = α + y − b
2n and an application of Fubini’s Theorem,

we compute that

f̂ (t) =
∫

R

f (α)e (−tα) dα

= e(t y)

2n−1
∑

b=0

e
(−tb/2n)

∫

R

φr (β)e (−tβ) dβ.

Observe that if t ∈ Z then, employing the change of variables α′ = rβ, we have

f̂ (t) = e(t y)2n12n |t r−1φ̂(t/r) = 2−ke(t y)φ̂(t/r)12n |t . (2.9)
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The function type of δ̂x is e(−x ·), since

δ̂x (g) = δx (ĝ) = ĝ(x) =
∫

R

g(t)e(−t x) dt

for g ∈ S(R). Thus, by the linearity of the Fourier transform, the function type F of
û is

F(t) =
∑

x∈LM ∩I

e(−t x)

=
∑

ε1,...,εM ∈{0,2}
∑

j≤M ε j /3 j ∈I

∏

j≤M

e(−tε j/3
j ).

As L ≥ L0(I ), we see that if ε1, ε2, . . . ∈ {0, 2} then
∞
∑

j=1

ε j

3 j
∈ I ⇐⇒

∑

j≤L

ε j

3 j
∈ I .

In particular
∑

j≤M ε j/3 j ∈ I if and only if
∑

j≤L ε j/3 j ∈ I . Therefore

F(t) =
∑

ε1,...,εM ∈{0,2}:
∑

j≤M ε j /3 j ∈I

e

⎛

⎝−t
M
∑

j=1

ε j/3
j

⎞

⎠

=
∑

ε1,...,εL∈{0,2}:
∑

j≤L ε j /3 j ∈I

∑

εL+1,...,εM ∈{0,2}
e

⎛

⎝−t
L
∑

j=1

ε j

3 j

⎞

⎠ e

⎛

⎝−t
M
∑

j=L+1

ε j

3 j

⎞

⎠.

Since the elements of LL ∩ I are precisely the
∑

j≤L ε j/3 j ∈ I with ε j ∈ {0, 2} for
all j , note that

∑

ε1,...,εL∈{0,2}:
∑

j≤L ε j /3 j ∈I

e

⎛

⎝−t
∑

j≤L

ε j

3 j

⎞

⎠ =
∑

x∈LL∩I

e(−t x).

Next, we observe that

∑

εL+1,...,εM ∈{0,2}
e

⎛

⎝−t
M
∑

j=L+1

ε j

3 j

⎞

⎠ =
∑

εL+1,...,εM ∈{0,2}

M
∏

j=L+1

e(−tε j /3
j )
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=
M
∏

j=L+1

∑

ε j ∈{0,2}
e(−tε j /3

j ) =
M
∏

j=L+1

(1 + e(−2t/3 j ))

= 2M−L
M
∏

j=L+1

1 + e(−2t/3 j )

2
.

Hence, we obtain

F(t) = 2M−L
∑

x∈LL∩I

e(−t x)

M
∏

j=L+1

1 + e(−2t/3 j )

2
.

By (2.8) and (2.9), we now have

∑

x∈LM ∩I mod 1

f (x) =
∑

w∈Z
τwδ(F f ∨) =

∑

w∈Z
F(w) f̂ (−w)

= 2M−L−k
∑

w∈Z
e(−wy)

∑

x∈LL∩I

e(−wx)

M
∏

j=L+1

1 + e(−2w/3 j )

2
φ̂(−w/r)12n |w.

Substituting w = −2nm and recalling that r = 2n+k , we obtain

∑

x∈LM ∩I mod 1

f (x) = 2M−L−k
∑

m∈Z
φ̂(m/2k)e(2nmy)

∑

x∈LL∩I

e(2nmx)

M
∏

j=L+1

1 + e(2n+1m/3 j )

2
.

Let us now estimate the part of the above sum involving m such that |m| > 2k T . First,
we see that

∣
∣
∣
∣
∣
∣

∑

x∈LL∩I

e(2nmx)

M
∏

j=L+1

1 + e(2n+1m/3 j )

2

∣
∣
∣
∣
∣
∣

≤ |LL ∩ I |.

Next, we use the fact that φ is Schwartz, and thus has the rapid Fourier decay property
(2.6), to deduce that for each number N > 1,

∑

|m|>2k T

|φ̂(m/2k)| 	N

∑

m>2k T

(m/2k)−N = 2k N
∑

m>2k T

m−N

≤ 2k N
∫ ∞

2k T
m−N dm = 2k N (2k T )1−N

N − 1
≤ 2k

T N−1 ,
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where the subscript N indicates that the implied constant depends on N . From here
the proof concludes. ��

To control the product term in Lemma 2.5, we use digit changes in base 3. Set

ρ = |1 + e(1/9)| < 0.94

throughout.

Lemma 2.6 Let n, L, M ∈ N with L ≤ M, and let m ∈ Z \ {0}. Then

∣
∣
∣
∣

M
∏

j=L+1

1 + e(2n+1m/3 j )

2

∣
∣
∣
∣
≤ ρD3(2n+1|m|;L,M),

where D3(2n+1|m|; L, M) is the number of digit changes in the ternary expansion
of 2n+1|m| between the L’th and M’th digits, counting from the left. Note that when
L = M, both sides in the above inequality are equal to 1.

Proof Wemay assume,without loss of generality, thatm ∈ N. Each term in the product
has norm at most 1. For j ≥ 2, observe that 1+e(2n+1m/3 j ) has norm being bounded
away from 2 if the fractional part of 2n+1m/3 j is not too close to 0 or 1. Suppose
that the ( j − 1)’st and j’th ternary digits of 2n+1m are different. Then the ternary
expansion of 2n+1m/3 j is

2n+1m/3 j = [integer part].ab . . . ,

where ab ∈ {01, 02, 10, 12, 20, 21}. This means that the fractional part of 2n+1m/3 j

is bounded away from 0 and 1. Indeed, it is easy to check that ‖{2n+1m/3 j }‖ ≥ 1/9
in this scenario. Consequently, we have

∣
∣
∣
∣
∣

1 + e
(

2n+1m/3 j
)

2

∣
∣
∣
∣
∣
≤ ρ.

The lemma now follows from the definition of D3(2n+1|m|; L, M). ��

Finally, we obtain the following estimate.

Lemma 2.7 Let θ ∈ R, and let I be either [0, 1] or a subinterval of [0, 1] whose
centre lies in K . Let L be the maximum of the values L0(I ) in Lemmas 2.3 and 2.5.
Let n ≥ n0(I ) be a large positive integer, and let k be an integer in the range

1 ≤ k ≤ ε log n

log log n
,
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where ε > 0 is a sufficiently small, effectively-computable constant. In particular, n
should be sufficiently large that Lemma 1.14 can be applied, and so that

L + 6 ≤ c log n

4 log log n
and 2n ≥ 3L+5,

where c is the implicit constant in Lemma 1.14.

(a) If M is the positive integer satisfying

3−5−M < 2−n−k ≤ 3−4−M , (2.10)

then

|CM ∩ 0.2An(M) ∩ 0.2I | � 2M−kμ(I ).

(b) If M is the positive integer satisfying

35−M < 2−n−k ≤ 36−M , (2.11)

then

|CM ∩ (45An(M) + θ) ∩ 5I | 	 2M−kμ(I ).

The values of ε and the implicit constants do not depend on θ, n, k, I .

Proof Recall that μ has the doubling property so, if I �= [0, 1] then by rescaling I , we
may assume that its endpoints do not lie in the Cantor set. To prove part (a), it suffices
to prove that

|CM ∩ 0.2An(M) ∩ I | � 2M−kμ(I ).

This can be seen via a similar argument to that used at the beginning of the proof of
Lemma 2.3.

By the construction of the bump function φ, assuming (2.10) we have

|CM ∩ 0.2An(M) ∩ I | ≥ |LM ∩ 0.2An(M) ∩ I | ≥
∑

x∈LM ∩I mod 1

fn(x; 0),

(2.12)

with the notation of Lemma 2.5. Indeed, as φr is supported on [−21−n−k, 21−n−k]
and has image in [0, 1], the right-hand side is bounded above by the number of pairs
(b, x) ∈ {0, 1, . . . , 2n} × (LM ∩ I ) such that

∣
∣
∣x − b

2n

∣
∣
∣ ≤ 2

3M+4 ,
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and this count is in turn is bounded above by |LM ∩0.2An(M)∩I | ≤ |CM ∩0.2An(M)∩
I |.

Using Lemma 2.5 with y = 0 and a suitably large fixed N , together with (2.12),
we see that for some constant cN > 0 we have

|CM ∩ 0.2An(M) ∩ I |

≥ 2M−L−k

⎛

⎝
∑

|m|≤2k T

φ̂(2−km)
∑

x∈LL∩I

e(2nmx)

M
∏

j=L+1

1 + e(2n+1m/3 j )

2

⎞

⎠

− 2M−L cN
|LL ∩ I |

T N
,

where T ≥ 1 and M ≥ L . The zero frequency, i.e. m = 0, contributes

2M−L−k φ̂(0)|LL ∩ I | = c12
M−kμ(I ),

where c1 > 0 and the above equality can be seen as the definition of c1. Moreover, by
Lemma 2.3,

2M−L−k φ̂(0)|LL ∩ I | � 2M−kμ(I ).

Thuswe see that c1 is bounded (from above and away from zero) by absolute constants,
i.e. E−1 < c1 < E for some absolute constant E > 1.

For the remaining terms, we first deal with 2M−L cN |LL ∩ I |/T N . We choose T to
be such that

2M−LcN
|LL ∩ I |

T N
≤ 0.5c12

M−kμ(I ).

For the above to hold, we need

T N ≥ 2cN

φ̂(0)
2k .

We set the value of log T to be max
{

0, k log 2
N + log(2cN /φ̂(0))

N

}

. That is, we choose

T = max{1, (2cN /φ̂(0))1/N2k/N }.

Now for the sum with 0 < |m| ≤ 2k T , the triangle inequality gives

∣
∣
∣
∣
∣
∣

∑

0<|m|≤2k T

φ̂(2−km)
∑

x∈LL∩I

e(2nmx)

M
∏

j=L+1

1 + e(2n+1m/3 j )

2

∣
∣
∣
∣
∣
∣
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≤ φ̂(0)|LL ∩ I |
∑

0<|m|≤2k T

∣
∣
∣
∣
∣
∣

M
∏

j=L+1

1 + e(2n+1m/3 j )

2

∣
∣
∣
∣
∣
∣

.

In light of Lemma 2.3, this is bounded above by a constant times

2Lμ(I )
∑

0<|m|≤2k T

∣
∣
∣
∣
∣
∣

M
∏

j=L+1

1 + e(2n+1m/3 j )

2

∣
∣
∣
∣
∣
∣

.

Next, we will apply Lemma 2.6, and so we need to estimate D3(2n|m|; L, M). First
recall, by Lemma 1.14, that for some constant c > 0 we have

D2(2
n|m|) + D3(2

n|m|) ≥ c
log log (2n|m|)

log log log (2n|m|) , (2.13)

and note that

D3(2
n|m|; L, M) ≥ D3(2

n|m|) − (�3(2
n|m|) − M + L),

where �3(2n|m|) is the number of ternary digits of 2n|m|. From (2.10), we see that
M + 5 = �3(2n+k). As 2n|m| ≤ 2n+k T (since |m| ≤ 2k T ), we must therefore have

�3(2
n|m|) ≤ �3(2

n+k T ) ≤ �3(2
n+k) + �3(T ),

and consequently �3(2n|m|) − M ≤ �3(T ) + 5. Hence

D3(2
n|m|; L, M) ≥ D3(2

n|m|) − �3(T ) − L − 5.

Furthermore

D2(2
n|m|) ≤ 1 + D2(|m|) ≤ 1 + log |m|

log 2
.

Using (2.13), we now see that

D3(2
n|m|; L, M) ≥ D3(2

n|m|) − �3(T ) − L − 5

≥ c log log (2n|m|)
log log log (2n|m|) − D2(2

n|m|) − �3(T ) − L − 5

≥ c log log (2n|m|)
log log log (2n|m|) − log |m|

log 2
− 6 − �3(T ) − L. (2.14)

As log log(·)/ log log log(·) is increasing, we may replace its argument by 2n for a
lower bound, to see that the first term on the right-hand side of (2.14) is at least
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c log n
2 log log n . Meanwhile, the upper bound on |m| assures us that log |m| ≤ k log 2+log T .
Therefore

D3(2
n|m|; L, M) ≥ c log n

2 log log n
− k − log T

log 2
− �3(T ) − L − 6.

Since n ≥ n0(I ), we may assume that n is arbitrarily large compared to L , so that
L + 6 ≤ c log n

4 log log n and, hence

D3(2
n|m|; L, M) ≥ c log n

4 log log n
− k − log T

log 2
− �3(T ).

Moreover,

�3(T ) = �log T / log 3� + 1 ≤ log T + 1 ≤ log T + k.

Recalling that log T = max
{

0, k log 2
N + log(2cN /φ̂(0))

N

}

as well as k ≥ 1 and noting

that φ̂(0) ≥ 2 we now see that

D3(2
n|m|; L, M) ≥ c log n

4 log log n
− 2k − 3 log T

≥ c log n

4 log log n
− k

⎛

⎝2 + 3 log 2

N
+

3 log
(
2cN

φ̂(0)

)

N

⎞

⎠

≥ c log n

4 log log n
−
(

2 + 3
log 2

N
+ 3| log(2cN )|

)

k.

For convenience, we write

κn,N ,k = c log n

4 log log n
−
(

2 + 3
log 2

N
+ 3| log(2cN )|

)

k.

Now Lemma 2.6 gives

∑

0<|m|≤2k T

∣
∣
∣
∣
∣
∣

∏

j≤M

1 + e(2n+1m/3 j )

2

∣
∣
∣
∣
∣
∣

	 2k T ρκn,N ,k .

Recalling that

T = max

{

1,

(
2cN

φ̂(0)

)1/N

2k/N

}

≤ 1 +
(
2cN

φ̂(0)

)1/N

2k/N ,
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we see that

2−k
∑

0<|m|≤2k T

∣
∣
∣
∣
∣
∣

∏

j≤M

1 + e(2n+1m/3 j )

2

∣
∣
∣
∣
∣
∣

	 ρκn ,N ,k +
(
2cN

φ̂(0)

)1/N

2k/N ρκn,N ,k .

Observe that

2k/N ρκn,N ,k = ρκn,N ,k+k log 2/(N log ρ).

Again, for convenience, we write

κ ′
n,N ,k = κn,N ,k + k log 2/(N log ρ).

Thus, the non-zero frequencies contribute at most

C · 2M−L2Lμ(I )ρκ ′
n,N ,k = C · 2Mμ(I )ρκ ′

n,N ,k ,

for some constant C > 0. Recalling that the contribution from the zero frequency is
c12M−kμ(I ), for some c1 bounded below by a positive absolute constant, we glean
that

|CM ∩ 0.2An(M) ∩ I | ≥ c12
M−kμ(I ) − C · 2Mμ(I )ρκ ′

n,N ,k − 0.5c12
M−kμ(I )

≥ 2M−kμ(I )(0.5c1 − Cρ
κ ′

n,N ,k+k log 2/ log ρ
). (2.15)

We have

κ ′
n,N ,k + k

log 2

log ρ
= c log n

4 log log n
−
(

2 + 3 log 2

N
+ 3| log(2cN )| − (1 + N−1)

log 2

log ρ

)

k.

Next, we write

c′
N = 2 + 3 log 2

N
+ 3| log(2cN )| −

(

1 + N−1
) log 2

log ρ
.

Then we choose the value of ε to be

ε = c

8c′
N

.

As k ≤ ε log n/ log log n, this ensures that

κ ′
n,N ,k + k

log 2

log ρ
≥ c log n

8 log log n
.

Recalling that ρ ∈ (0, 1) is an absolute constant and that c1 is bounded away from 0,
the result concludes by using (2.15).
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The second inequality can be proved similarly: the zero frequency again dominates.
As Lemma 2.5 applies to LM and not CM , we note that

|CM ∩ (45An(M) + θ) ∩ 5I | = |LM ∩ (45An(M) + θ) ∩ 5I |
+|RM ∩ (45An(M) + θ) ∩ 5I |,

and by symmetry that

|RM ∩ (45An(M) + θ) ∩ 5I | = |LM ∩ (1 − (45An(M) + θ)) ∩ (1 − 5I )|.

Moreover, observe that

1 − (45An(M) + θ) = (1 − 45An(M)) − θ = 45An(M) − θ.

Thus, we may also estimate

|RM ∩ (45An(M) + θ) ∩ 5I | = |LM ∩ (45An(M) − θ) ∩ (1 − 5I )|

in the same way using Lemma 2.5, with 1− I in place of I , since 1−5I is the dilation
of the interval 1 − I by a factor of 5 about its midpoint. ��

The following technical lemma enables us to slightly relax the hypotheses (2.10)
and (2.11).

Lemma 2.8 Let θ ∈ R, and let I be a real interval. Let k, M, N , J , t ∈ N. Then,
supposing that 0 ≤ J < M and 2−n > 2t/3M−J , we have

|CM−J ∩ (t An(M − J ) + θ) ∩ I | + 1 � |CM ∩ (t An(M) + θ) ∩ I |,

where the implied constant depends only on J . If I ⊇ [0, 1], then the +1 term on the
left-hand side can be removed.

Proof First, assume that I ⊇ [0, 1]. Elements of CM−J are endpoints of the intervals
of length 3−(M−J ) forming KM−J . We see from the inequality 2−n > 2t/3M−J that
t An(M − J ) + θ is a disjoint union of intervals of length 2t/3M−J centred at shifted
dyadic rationals in [0, 1] with denominator 2n . As 2t/3M−J > 1/3M−J , observe that
for each interval forming KM−J and intersecting t An(M − J ) + θ , at least one (and
trivially at most two) of the endpoints must be included in t An(M − J ) + θ. Writing
N (M − J ) for the number of such intervals, and N (M) for the number of intervals
forming KM and intersecting t An(M − J )+ θ , and employing the same argument for
CM as for CM−J , we therefore have

1 ≤ |CM− j ∩ (t An(M − J ) + θ)|
N (M − j)

≤ 2 ( j = 0, J ).
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Let IM be such an interval counted by N (M). Then IM ⊂ IM−J for some interval
IM−J forming KM−J for which IM−J ∩(t An(M − J )+θ) �= ∅.Clearly, each interval
forming KM−J contains 2J many intervals forming KM . From here we see that

|CM ∩ (t An(M) + θ)| ≤ |CM ∩ (t An(M − J ) + θ)|
≤ 2N (M)

≤ 2J+1N (M − J )

≤ 2J+1|CM−J ∩ (t An(M − J ) + θ)|,

where the first inequality follows because t An(M) + θ ⊆ t An(M − J ) + θ .
Now, let I be a general subinterval of R. As above, we find that |CM ∩ (t An(M −

J ) + θ) ∩ I | is at most double the number of intervals forming KM and intersecting
(t An(M − J ) + θ) ∩ I . Let IM , IM−J be as in above. The additional consideration
is that endpoints of IM−J may not be in I . However, this can happen for at most
two intervals forming KM−J . Thus, writingN (M − J ; I ) for the number of intervals
forming KM−J and intersecting (t An(M − J ) + θ) ∩ I , we have

N (M − J ; I ) ≤ |CM−J ∩ (t An(M − J ) + θ) ∩ I | + 2.

Finally, we obtain

|CM ∩ (t An(M) + θ) ∩ I | ≤ |CM ∩ (t An(M − J ) + θ) ∩ I |
≤ 2J+1N (M − J ; I )

≤ 2J+1(|CM−J ∩ (t An(M − J ) + θ) ∩ I | + 2).

��

3 Convergence theory

Here we establish Theorem 1.5. As
∑∞

n=1 ψ(2n) < ∞, we may assume that ψ(2n) <

3−99 for n sufficiently large. Let n be such a large positive integer, such that additionally
log log log n > 3/ε, and Lemmas 2.1, 2.2, and 2.7 may be applied, where ε is from
Lemma 2.7. Next, let

kn = min

(

3
⌊ log n

log log n · log log log n

⌋

,
⌊− logψ(2n)

log 2

⌋

+ 1

)

,

and choose M, N ∈ N according to

3−5−M < 2−n−kn ≤ 3−4−M and 31−N <
ψ(2n)

5 · 2n
≤ 32−N . (3.1)
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These choices ensure that we have all of the inequalities in (2.1), and also the inequal-
ities

1 ≤ kn ≤ ε log n

log log n
,

which will be needed when we apply Lemma 2.7. Now, fix I = [0, 1] and observe
that

μ(An) = μ(An ∩ I ).

By Lemma 2.1, we have

μ(An ∩ I ) ≤ 2−(N−1)|CN ∩ 5An ∩ 5I |.

Applying Lemma 2.2, we deduce that

|CN ∩ 5An ∩ 5I | 	 |CM ∩ 5An(M) ∩ 5I | ≤ |CM ∩ 45An(M) ∩ 5I |.

Next, we apply Lemma 2.7(b) with θ = 0. Our current parameters M, n, k = kn do
not satisfy the conditions of (2.11) required to apply Lemma 2.7(b). However, the
parameters M − 10, n, kn do satisfy (2.11), and so

|CM−10 ∩ 45An(M − 10) ∩ 5I | 	 2M−10−kn μ(I ) 	 2M−kn μ(I ).

Now we use Lemma 2.8 to deduce that

|CM ∩ 45An(M) ∩ 5I | 	 |CM−10 ∩ 45An(M − 10) ∩ 5I |,

where the implicit constant is absolute; here we note from the calculation

3−5−M < 2−n−kn <
ψ(2n)

2n
<

3−99

2n

that the required condition 2−n > 90
3M−10 is met.

Therefore

μ(An) 	 2−N |CM ∩ 45An(M) ∩ 5I | 	 2M−kn−N μ(I ) = 2M−kn−N .

Moreover, since 3M 	 2n+kn and 3−N 	 ψ(2n)
2n by hypothesis, we have

2M−N−kn = (3M × 3−N )γ × 2−kn 	
(

2n+kn × ψ(2n)

2n

)γ

×2−kn 	 (2kn ψ(2n))γ × 2−kn ,
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and hence

μ(An) 	 (2kn ψ(2n))γ × 2−kn .

Observe that if

kn =
⌊− logψ(2n)

log 2

⌋

+ 1

then

(2kn ψ(2n))γ × 2−kn 	 ψ(2n).

Otherwise, we have

(2kn ψ(2n))γ × 2−kn

= 2−3(1−γ )
⌊

log n
log log n·log log log n

⌋

ψ(2n)γ 	 2− log n/(log log n·log log log n)ψ(2n)γ .

From the above arguments we see that

∞
∑

n=1

μ(An) 	
∞
∑

n=1

2−kn(1−γ )ψ(2n)γ 	
∞
∑

n=1

(

2− log n/(log log n·log log log n)ψ(2n)γ + ψ(2n)
)

,

which converges by our assumption (1.7). Thus, by the convergence Borel–Cantelli
Lemma (Lemma 1.16), the proof of Theorem 1.5 is complete.

4 Divergence theory

Herewe establishTheorem1.10. Let I = B(z, r), for some z ∈ K and some r ∈ (0, 1).
Define the ‘localised’ probability measure μI by

μI (A) = μ(A ∩ I )

μ(I )
,

for Borel sets A. By Lemma 1.18, recalling that μ has the necessary properties as
stated at the beginning of Sect. 2.2, it suffices to prove that

μI (W2(ψ)) � 1, (4.1)

with an implicit constant independent of I .
We begin by showing that if n ≥ n0(I ), where n0(I ) is a sufficiently large integer

such that we can apply Lemmas 2.1 and 2.7, then μI (An) � ψ(An), where the
implicit constant does not depend on I . Define N , k ∈ N according to

3−N ≤ ψ(2n)

5 · 2n
< 3−(N−1) and 3−5−N < 2−n−k ≤ 2 · 3−5−N .
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Now, since 3−N ≤ ψ(2n)
2n , we have

|CN ∩ 0.2An ∩ 0.2I | ≥ |CN ∩ 0.2An(N ) ∩ 0.2I |.

Combining this with Lemma 2.1 yields

μI (An) ≥ 2−(N+1)|CN ∩ 0.2An(N ) ∩ 0.2I |
μ(I )

.

Thus, it follows from Lemma 2.7(a) that

μI (An) � 2−(N+1) × 2N−kμ(I )

μ(I )
� 2−k .

As

2−k � 2n3−N � ψ(2n) = 2− log log n/ log log log n,

we have

μI (An) � ψ(2n), (4.2)

as claimed.
Next, we wish to bound μI (An ∩ Am). We will do this analytically when

n0(I ) ≤ n ≤ m ≤ n+,

for n+ to be specified in due course. By the triangle inequality, if B
(

a
2n ,

ψ(2n)
2n

)

intersects B
(

b
2m ,

ψ(2m )
2m

)

then

∣
∣
∣

a

2n
− b

2m

∣
∣
∣ <

ψ(2n)

2n
+ ψ(2m)

2m
,

whereupon

|b − 2m−na| < 2m−nψ(2n) + ψ(2m). (4.3)

We break the solutions (a, b) to (4.3) into at most

2(1 + 2m−nψ(2n) + ψ(2m)) 	 1 + 2m−nψ(2n)

groups, according to the value of the integer h = b − 2m−na, the idea being to handle
each group analytically.
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For agivenvalueofh = b−2m−na, the corresponding intersections B
(

a
2n ,

ψ(2n)
2n

)

∩
B
(

b
2m ,

ψ(2m )
2m

)

are contained in

Xh :=
2n
⋃

a=0

B
( a

2n
+ h

2m
,
ψ(2m)

2m

)

.

To see this, observe that if

x ∈
2n
⋃

a=0

2m
⋃

b=0

B

(
a

2n
,
ψ(2n)

2n

)

∩ B

(
b

2m
,
ψ(2m)

2m

)

,

then, for some a ∈ {0, 1, 2, . . . , 2n} and b ∈ {0, 1, 2, . . . , 2m}, we have

x ∈ B

(
a

2n
,
ψ(2n)

2n

)

∩ B

(
b

2m
,
ψ(2m)

2m

)

.

Next, write h = b − 2m−na. Then,

x ∈ B

(
b

2m
,
ψ(2m)

2m

)

= B
( a

2n
+ h

2m
,
ψ(2m)

2m

)

⊆ Xh .

Recalling from (4.3) that |h| < 2m−nψ(2n) + ψ(2m), it follows that

μI (An ∩ Am) = μI

⎛

⎝

2n
⋃

a=0

2m
⋃

b=0

B

(
a

2n
,
ψ(2n)

2n

)

∩ B

(
b

2m
,
ψ(2m)

2m

)
⎞

⎠

≤
∑

|h|<2m−nψ(2n)+ψ(2m )

μI (Xh). (4.4)

We will use our Fourier-analytic machinery from Sect. 2.2 to bound each μI (Xh).
To begin with, the triangle inequality gives

μI (Xh) ≤
2n
∑

a=0

μ

(

B

(
a

2n
+ h

2m
,
ψ(2m)

2m

))

.

Next, we apply (2.4) to each of the intervals B(a/2n + h/2m, ψ(2m)/2m) ∩ I with
L = R therein, where R is the positive integer satisfying

31−R <
ψ(2m)

2m
≤ 32−R .

This gives

μ(Xh ∩ I ) 	 2−R |CR ∩ 5Xh ∩ 5I |,
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where

5Xh =
2n
⋃

a=0

B
( a

2n
+ h

2m
,
5ψ(2m)

2m

)

,

since at most 11 of the balls can contain a given point. We thus have

μ(Xh ∩ I ) 	 2−R
∣
∣
∣
∣
CR ∩

(

45An(R) + h

2m

)

∩ 5I

∣
∣
∣
∣
. (4.5)

Let k(m, n) be the positive integer for which

2−k(m,n)−9 <
ψ(2m)

2m−n
= 2n−m−(log logm/ log log logm) ≤ 2−k(m,n)−8.

We will apply Lemma 2.7(b) with M ∈ N given by

35−M < 2−n−k(m,n) ≤ 36−M .

In order to meet the condition k(m, n) ≤ ε log n
log log n required for this, it suffices to have

m − n + log logm

log log logm
= o

( log n

log log n

)

,

and this is assured if we choose

n+ = n +
⌊

log n

log log n · log log log n

⌋

. (4.6)

To see this, we note that m �→ log logm
log log logm is increasing so, with this choice of n+, we

have

m − n + log logm

log log logm
≤ n + log n

log log n · log log log n
− n

+
log log

(

n + log n
log log n·log log log n

)

log log log
(

n + log n
log log n·log log log n

)

= o

(
log n

log log n

)

.

Now Lemma 2.7(b) gives

∣
∣
∣
∣
CM ∩

(

45An(M) + h

2m

)

∩ 5I

∣
∣
∣
∣
	 2M−k(m,n)μ(I ). (4.7)
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We see from our choices of M , R, and k(m, n) that

36−M ≥ 2−n−k(m,n) ≥ ψ(2m)

2m−8 > 2831−R > 36−R

and

34−M <
35−M

2
< 2−n−k(m,n)−1 < 28

ψ(2m)

2m
≤ 2832−R < 38−R,

so R − 4 < M < R. It follows from the above inequalities that 2−n > 90
3M and so we

may apply Lemma 2.8 with R and M playing the roles of M and M − J respectively,
and this tells us that

∣
∣
∣
∣
CR ∩

(

45An(R) + h

2m

)

∩ 5I

∣
∣
∣
∣
	
∣
∣
∣
∣
CM ∩

(

45An(M) + h

2m

)

∩ 5I

∣
∣
∣
∣
+ 1.

Combining this with (4.5) and (4.7) and the fact that M < R, we see that

μI (Xh) 	 2M−k(m,n)μ(I ) + 1

2Mμ(I )
	 2−k(m,n) + 1

2Mμ(I )
. (4.8)

Note that

3−M � ψ(2m)/2m

and

2−k(m,n) � 2n/3M � 2n−mψ(2m).

Observe also that

2−M = (3−M )γ � (2−k(m,n)−n)γ 	 2−nγ .

So, since

k(m, n) = o

(
log n

log log n

)

,

we must therefore have

1

2Mμ(I )
	 2−nγ /μ(I ) 	 2− log n 	 2−k(m,n) whenever n ≥ n0(I ).

Substituting this data into (4.8) gives

μI (Xh) 	 2−k(m,n) � 2n−mψ(2m).
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Substituting this into (4.4), we finally obtain

μI (An ∩ Am) 	 (1 + 2m−nψ(2n)) × 2n−mψ(2m)=2n−mψ(2m) + ψ(2n)ψ(2m).

(4.9)

The Chung–Erdős inequality (Lemma 1.17) gives

μI

( n+
⋃

i=n

Ai

)

≥
(∑n+

i=n
μI (Ai )

)2

∑n+

i, j=n
μI (Ai ∩ A j )

.

Estimating the denominator using (4.9) and (4.2), we have

n+
∑

i, j=n

μI (Ai ∩ A j ) 	
n+
∑

i, j=n

μI (Ai )μI (A j ) +
∑

n≤i≤ j≤n+
ψ(2i )2i− j

	
( n+
∑

i=n

μI (Ai )
)2 +

n+
∑

i=n

μI (Ai ).

For large n, by (4.2) we have

n+
∑

t=n

μI (At ) �
n+
∑

t=n

2− log log t/ log log log t .

If n is large and n ≤ t ≤ n+, then t ≤ 2n and by an application of the mean value
theorem we have

log log t

log log log t
− log log n

log log log n
= (t − n)

log log log c − 1

c(log c)(log log log c)2
≤ 1,

for some c ∈ [n, n+]. Therefore

n+
∑

t=n

μI (At ) � log n

log log n · log log log n
2− log log n/ log log log n,

and this tends to ∞ as n → ∞. Indeed, to see that 2log log n/ log log log n is sub-
logarithmic, observe that

2log log n/ log log log n = (log n)log 2/ log log log n = (log n)o(1).
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We thus obtain

μI

( n+
⋃

i=n

Ai

)

� 1

1 + 1
∑n+

t=n μI (At )

� 1.

Finally, let

Bn =
n+
⋃

i=n

Ai .

Using the continuity of the measure μI , we see that

μI

(

lim sup
n→∞

An

)

= μI

(

lim sup
n→∞

Bn

)

= μI

⎛

⎝
⋂

n≥1

⋃

k≥n

Bn

⎞

⎠

= lim
n→∞ μI

⎛

⎝
⋃

k≥n

Bn

⎞

⎠ ≥ lim
n→∞ μI (Bn) � 1.

This completes the proof that

μI (W2(ψ)) = μI

(

lim sup
n→∞

An

)

� 1,

which is (4.1).

5 Further discussion

5.1 Digit changes to different bases

The ‘times two, times three’ phenomenon is, roughly speaking, the mantra that digit
expansions to two multiplicatively independent bases cannot both be structured. One
way to quantify this is to bound from below the maximum—or equivalently the sum—
of D2(y) and D3(y), since Db(y) being small means that the base b expansion of y is
structured.

Question 5.1 Is it true that for sufficiently large y ∈ N, we have

D2(y) + D3(y) � log y?

Note that for all y ∈ N we have D2(y) + D3(y) ≤ 10(1 + log y). This bound can be
obtained using ‘naive’ estimates: observing that y has at most 1+ log y

log 2 digits in its base

2 expansion and at most 1 + log y
log 3 digits in base 3. Consequently, the number of digit
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changes in base 2 and base 3 are also bounded above by these values, respectively.
Finally, by estimating log 2 and log 3 quite crudely, e.g. 1

2 < log 2, log 3 < 2 will do,
we easily obtain the claimed upper bound. For Question 5.1, the extremal example that
we have in mind is when y is a large power of 2; if the ternary expansion were roughly
uniformly random then we would have D2(y)+ D3(y) ≈ 2 log y

3 log 3 . Reformulating, what
Question 5.1 is asking is whether, for all sufficiently large y, we have D2(y)+D3(y) �
log y. We have some empirical evidence in support of a positive answer; see the
appendix.

5.2 Conditional approximation results

As we have seen, the estimate (1.11) given in Lemma 1.14 plays an important role
in obtaining Theorems 1.5 and 1.10. Thus, one possible means of improving those
Diophantine approximation resultswould be to obtain a better lower bound for D2(y)+
D3(y). In this subsection, we discuss the extent to which such an improved bound
would lead to better approximation results.

Suppose that one has the estimate

D2(y) + D3(y) ≥ h(y),

for an increasing function h : N → (0,∞) which tends to infinity as y → ∞. Then,
by repeating the argument in the proof of Lemma 2.7, we find that the conclusions of
that lemma are valid for k ≤ εh(2n), with a suitable constant ε > 0. Now we make
the following replacement of the approximation function:

ψ̃ : 2n �→ max{ψ(2n), 2−εh(2n)}.

Suppose that

∞
∑

n=1

2−εh(2n) < ∞.

Then
∑∞

n=1 ψ̃(2n) converges if and only if
∑∞

n=1 ψ(2n) converges.
For n ∈ N, let

Ãn :=
2n
⋃

a=0

B

(
a

2n
,
ψ̃(2n)

2n

)

.

By a similar argument as in the proof of Theorem 1.5, we see that

μ(An) ≤ μ( Ãn) 	 ψ̃(2n).

Thus, by applying the convergence Borel–Cantelli Lemma (Lemma 1.16), we obtain
the following result.
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Theorem 5.2 There exists an effectively computable universal constant ε > 0 such that
the following holds. If D2(y) + D3(y) ≥ h(y) for all y ≥ 1, where h : N → (0,∞)

is an increasing function, and

∞
∑

n=1

(ψ(2n) + 2−εh(2n)) < ∞,

then

μ(W2(ψ)) = 0.

We thereby obtain the convergence part of Conjecture 1.2 conditionally, for example
if we can choose h(y) = C log log y for some sufficiently large and effectively com-
putable constant C > 0. Recall that we can choose h(y) � log log y/ log log log y
for large y unconditionally, by inequality (1.11), so in some sense we are quite close
to obtaining the convergence part of Conjecture 1.2.

Similarly, we can also improve Theorem 1.10 if we have a stronger lower bound
for D2(y) + D3(y).

Theorem 5.3 Suppose D2(y) + D3(y) ≥ h(y) for all y ≥ 1, where h : N → (0,∞)

is an increasing function.

(a) If h(y) � log y then for ψ(2n) = 1
n we have μ(W2(ψ)) = 1.

(b) If h(y) � log log y then for ψ(2n) = 1
1+log n we have μ(W2(ψ)) = 1.

This can be proved by repeating the arguments in Sect. 4. The difference is the choice
of n+ in (4.6). In Case (a), we can choose n+ = n + �εn�, where ε > 0 is a constant
which depends on the implicit constant in h(y) � log y. In Case (b), we can choose
n+ = n + �ε log n� for some ε > 0.

Remark 5.4 In Case (a), which corresponds to a positive answer to Question 5.1, the
conclusion is almost the divergence part of Conjecture 1.2. Indeed, as

∑∞
n=1

1
n(log n)2

converges, the function ψ(2n) = 1/n comes within a log-power factor of the conjec-
tured truth (or doubly-logarithmic in the input). With the same method, one can show
that the same conclusion holds for any approximation function ψ satisfying

lim sup
k→∞

2k+1
∑

n=2k

ψ(2n) > 0.

The reason for introducing Case (b) is that it appears to be closer to our reach; see
Theorem 5.6.
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5.3 Conditional estimates for D2(y)+ D3(y)

We believe that Question 5.1 should be difficult to answer. In this section, we illustrate
how to sharpen inequality (1.11) by assuming the Lang–Waldschmidt Conjecture on
Baker’s logarithmic sum estimates [28, Conjecture 1 (page 212)].

Conjecture 5.5 (Lang–Waldschmidt Conjecture) Let a1, . . . , an, b1, . . . , bn be non-
zero integers with

� :=
∑

i

bi log ai �= 0.

Then

log |�| ≥ −Cn(log A + log B),

where

A = max
i

|ai |, B = max
i

|bi |,

and Cn > 0 is an effectively computable constant which depends only on n.

Theorem 5.6 Assuming the Lang–Waldschmidt Conjecture, for sufficiently large y, we
have

D2(y) + D3(y) � log log y.

Remark 5.7 This asserts that, for some constant c > 0, we have D2(y) + D3(y) ≥
c log log y for all large enough y. This constant c is effectively computable from
Conjecture 5.5. Recalling Theorem 5.2 and the subsequent discussion regarding the
constant C , we see that if c ≥ C then the convergence part of Conjecture 1.2 would
follow.

Proof We follow Stewart’s approach in [35]. We may assume that y ≥ 16 > ee so
that log log y > 1. Let

y =
r
∑

i=0

ai2
i =

t
∑

i=0

bi3
i

be the binary and ternary expansions of y, and note that ar , bt ≥ 1. Let m1 < m2 <

· · · < mk mark the binary digit changes of y, and let n1 < n2 < · · · < ns mark the
ternary digit changes, i.e. for j = 1, . . . , k we have am j �= am j +1 and for � = 1, . . . , s
we have bn�

�= bn�+1 (and there are no other digit changes). Let

2 < θ1 < · · · < θF < t,
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with these parameters to be decided later. Observe that if each [θi , θi+1) contains an
element of

{r − m1, . . . , r − mk, t − n1, . . . , t − ns}

then k + s ≥ F .
Otherwise, suppose [θ j , θ j+1) fails to intersect this set; we will choose the θ j in

such a way as to contradict this premise. It follows from this assumption that for some
α ∈ {0, 1} we have

y =
∑

r−i /∈[θ j ,θ j+1)

ai2
i +

∑

r−i∈[θ j ,θ j+1)

α2i

= α(2r+1 − 1) +
∑

0≤r−i<θ j

(ai − α)2i +
∑

θ j+1≤r−i≤r

(ai − α)2i

= 2r−θ j
(

α2θ j +1 +
θ j
∑

u=1

(ar−θ j +u − α)2u
)

− α +
r−θ j+1
∑

i=0

(ai − α)2i ,

and similarly in ternary, for some β ∈ {0, 1, 2},

y = 3t−θ j

⎛

⎝
β

2
· 3θ j +1 +

θ j
∑

u=1

(bt−θ j +u − β)3u

⎞

⎠− β

2
+

t−θ j+1
∑

i=0

(bi − β)3i .

Hence

2y = A12
r−θ j + A2 = B13

t−θ j + B2, (5.1)

where A1, A2, B1, B2 are integers satisfying

(i) 2 · 2θ j ≤ A1 ≤ 4 · 2θ j ,
(ii) |A2| < 4 · 2r−θ j+1 ,
(iii) 3θ j ≤ B1 ≤ 6 · 3θ j , and
(iv) |B2| < 4 · 3t−θ j+1 .

Next, observe that by (5.1) we have

1 = A12r−θ j + A2

B13t−θ j + B2
= R

1 + X

1 + Y
,

where

R = A12r−θ j

B13t−θ j
, X = A2

A12r−θ j
, and Y = B2

B13t−θ j
.
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Using (i)–(iv) from above, and since necessarily we have θ j+1 > 2, we compute that

|X | ≤ 4 · 2r−θ j+1

2 · 2r
= 2 · 2−θ j+1 <

1

2

and

|Y | ≤ 4 · 3t−θ j+1

3t
= 4 · 3−θ j+1 <

1

2
.

In particular, we have R > 0 and

max{R, R−1} = max
{1 + X

1 + Y
,
1 + Y

1 + X

}

≤ 1 + 4max{|X |, |Y |} < 1 + 16 · 2−θ j+1 .

We now apply the standard inequality

log(1 + x) ≤ x (x > −1)

with x = R − 1 and R−1 − 1, to obtain

| log R| = max{log R, log(R−1)} ≤ 25−θ j+1 . (5.2)

On the other hand,

log R = log A1 + (r − θ j ) log 2 − log B1 − (t − θ j ) log 3.

So, assuming Conjecture 5.5 we have

log | log R| ≥ −C4(logmax{|A1|, |B1|} + log(r − θ j )) (5.3)

unless log R = 0. We may take C4 ≥ 1. The latter, log R = 0, would imply that

A12
r−θ j = B13

t−θ j .

Hence 3t−θ j |A1, so 3t−θ j ≤ A1 ≤ 2θ j +2, and therefore

2r+2 ≥ 3t−θ j 2r−θ j .

Observe that 3t+1 ≥ y ≥ 2r , and hence (t + 1) log 3 ≥ r log 2. Thus,

(r + 2) log 2 ≥ (t − θ j ) log 3 + (r − θ j ) log 2 ≥ (r log 2 − log 3) + r log 2 − θ j log 6.

This is only possible if

θ j ≥ r log 2 − log 12

log 6
.
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We next observe that

θ j+1 − 5 ≤ − log | log R|
log 2

≤ 3C4(θ j + log log y + 1).

When θ j <
r log 2−log 12

log 6 , the first inequality above follows from (5.2). For the second
inequality we apply (5.3) and make use of the upper bounds given in (i) and (iii) for
A1 and B1 respectively, as well as noting that 2r ≤ y.

Choosing θ1, . . . , θF so that

θ j+1 − 5 > 3C4(θ j + log log y + 1), θ j <
r log 2 − log 12

log 6
(1 ≤ j ≤ F)

contradicts our premise that [θ j , θ j+1) fails to intersect {r − m1, . . . , r − mk, t −
n1, . . . , t − ns}. For example, we can choose θ1 = 3 and θ j+1 = 6 + �3C4(θ j +
log log y +1)� for j ≥ 1. Let F ∈ N be the largest integer such that θF <

r log 2−log 12
log 6 .

Recalling that log log y > 1, we see that

log log y ≤ θ2 ≤ 6 + 3C4(4 + log log y) ≤ 21C4 log log y.

Subsequently, we have

θ j+1 ≤ 21C4θ j

for j ≥ 2. Thus we see that for j ≥ 2,

θ j ≤ (21C4)
j−1 log log y.

In conclusion, we can find

F ≥
log

(
r log 2−log 12
log log y log 6

)

log(21C4)
� log log y

many points θ1, . . . , θF ∈ (2, t) such that each [θ j , θ j+1) contains an element of

{r − m1, . . . , r − mk, t − n1, . . . , t − ns}.

This completes the proof. ��
Inserting this into Theorem 5.2, we obtain the following further refinement of the

benchmark Proposition 1.4.

Corollary 5.8 Assume the Lang–Waldschmidt Conjecture 5.5. For some effectively
computable constant ε > 0, if

∞
∑

n=1

(n−εψ(2n)γ + ψ(2n)) < ∞,
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then μ(W2(ψ)) = 0.

Remark 5.9 Corollary 5.8 applies in particular to the special case ϕa : 2n �→ n−a

discussed in the introduction, for some a < γ −1.

Corollary 5.10 Assume the Lang–Waldschmidt Conjecture, and let ε be a small positive
constant. Then for μ-almost every α, the inequality

‖2nα‖ < nε−log 3/ log 2

has at most finitely many solutions n ∈ N.
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Appendix

Here we present empirical data suggesting that Question 5.1 has a positive answer
(Fig. 1).

This was produced using the software Mathematica [39], with the following code:

M = 10ˆ7;
X_; c_; d_; X = ConstantArray[0, M];
For[n = 2, n < M + 2, n++,
c = 0; d = 0;
v = IntegerDigits[n, 2];
L = Length[v];
For[i = 1, i < L, i++,
If[Part[v, i] != Part[v, i + 1], c++, null]];
v = IntegerDigits[n, 3];
L = Length[v];
For[i = 1, i < L, i++,

http://creativecommons.org/licenses/by/4.0/
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If[Part[v, i] != Part[v, i + 1], d++, null]];
Part[X, n - 1] = (c + d)/Log[n];
]
ListLinePlot[X]

We obtain more data by only considering powers of 2 (Fig. 2).
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