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Abstract

This is the first in a series of papers about foliations in derived geometry. After intro-
ducing derived foliations on arbitrary derived stacks, we concentrate on quasi-smooth
and rigid derived foliations on smooth complex algebraic varieties and on their asso-
ciated formal and analytic versions. Their truncations are classical singular foliations
defined in terms of differential ideals in the algebra of forms. We prove that a quasi-
smooth rigid derived foliation on a smooth complex variety X is formally integrable at
any point, and, if we suppose that its singular locus has codimension > 2, its analyti-
fication is a locally integrable singular foliation on the associated complex manifold
X". We then introduce the derived category of perfect crystals on a quasi-smooth rigid
derived foliation on X, and prove a Riemann-Hilbert correspondence for them when
X is proper. We discuss several examples and applications.
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Introduction

This is the first of a series of works on foliations (mainly algebraic and holomorphic)
and derived geometry. In this paper we present a notion of a derived foliation on
algebraic or holomorphic varieties, that we think is interesting for the study of foliations
with singularities. The point of view adopted here is not completely new and goes back
to previous works by Tony Pantev and the authors on existence of potentials for shifted
symplectic structures (see e.g. [15]). In a nutshell, a derived foliation F on a scheme
X consists of a perfect complex Lz on X together withamapa : Ox — Lr
that satisfies formal properties of being a de Rham differential (i.e. is a derivation
squaring to zero). One major difficulty is to define the precise higher coherences for
such a structure, encoding the fact that a” does not really identically vanish but is only
homotopic to zero in a homotopy coherent way. This is achieved by defining derived
foliation as graded mixed commutative differential graded algebras (graded mixed
cdga’s, for short) satisfying some extra properties (see Definition 1.2.1).

In this work we quickly restrict to the case of quasi-smooth derived foliations F,
which consists of restricting Lz to be just a two terms complex of vector bundles.
Among derived foliations, these quasi-smooth derived foliations are the closest to
classical foliations in the usual sense, and we think they form the most important
class of derived foliations. A quasi-smooth derived foliation F on a smooth variety
X can be truncated into a usual algebraic singular foliation to(F) on X (e.g. in
the sense of [1, 2]). More precisely, the kernel of the morphism Q% — HO(Lyx),
induced by a, defines a differential ideal inside differential forms and thus a singular
foliation 7¢(F) on X. We remark however that arbitrary singular foliations are not
derived foliations: they can be represented by graded mixed algebras, but these do not
satisfy our conditions (except if the foliation has no singularities). Notice also that
being the truncation of a derived foliation is a non-trivial condition, even locally in
the analytic topology. Therefore, derived foliations are not really generalizations of
singular foliations, and these two class of objects do not live in the same categories.
Rather, it is more useful to keep in mind the intuition that derived foliations are
additional structures on their truncated singular foliations making them better behaved
objects.

The first two main results of this work are the following integrability theorems.
Note that for a derived quasi-smooth foliation being integrable, i.e. being induced by
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a morphism between smooth varieties, implies that its truncated singular foliation is
also integrable (by the same morphism). However, the converse is in general wrong.

Theorem 0.0.1 (Proposition 2.3.2 and Corollary 2.3.4) Let X be a smooth variety and
F be a quasi-smooth derived foliation on X. Assume that F is rigid (i.e. the induced
map Ho(a) : Qk — HO(IL]:) is surjective). Then

(1) The derived foliation F is formally integrable around each point x € X.

(2) Ifwefurther assume that F has no singularities outside a closed subset of codimen-
sion at least 2, then F is analytically integrable, locally in the analytic topology
on X. As a consequence the truncated singular foliation to(F) is analytically
integrable, locally in the analytic topology on X.

Part (1) of the above theorem is a consequence (Corollary 1.5.4) of a more general
result concerning the local structure of quasi-smooth derived foliations (see Propo-
sition 1.5.1), while part (2) is a consequence of (1) and of a theorem of Malgrange
([12]). We remark here that a consequence of the above result is that a singular folia-
tion which is not formally integrable locally at all points can not be the truncation of
a derived quasi-smooth foliation.

The second main result of this work is a Riemann—Hilbert correspondence for
derived quasi-smooth foliations. We first introduce the notion of a crystal along a
derived foliation F, which morally consists of a vector bundle together with a partial
connection along the leaves of F. Once again, there are homotopical coherences to
be taken into account, and crystals are rather defined as certain graded mixed dg-
modules over the graded mixed dg-algebra defining the derived foliation. On the other
hand, a derived foliation F defines a sheaf O zx, in the analytic topology, of locally
constant functions along F. This is a sheaf of commutative dg-algebras, which is
in general not concentrated in degree zero, and whose higher cohomology sheaves
reflect the singularities of 7. The Riemann—Hilbert correspondence can then be stated
as follows (see Corollary 4.2.2):

Theorem 0.0.2 Let F be a quasi-smooth and rigid foliation on a smooth and proper
algebraic variety X. Assume that F is non-singular outside of a closed subset of
codimension at least 2. There is an equivalence of categories

Vect(F) =~ Vect(O zn)

between on the l.h.s. the category of crystals along F, and on the r.h.s. the category
of sheaves of O ri-dg-modules which are locally free of finite rank.

The above theorem is a consequence of two results proved in the text: a more general
statement (valid without the rigidity or codimension assumptions) which relates perfect
complexes of crystals with a nilpotent condition (we call such crystals A-nilpotent) and
perfect complexes of Oz -dg-modules (see Theorem 4.2.1), and the fact that a vector
bundle crystal (i.e. an object in Vect(F)) is h-nilpotent once F satisfies the hypothe-
ses of Theorem 0.0.2 (see Theorem 3.2.3). We also prove that the above theorem is
compatible with cohomologies, giving rise to an isomorphism between algebraic de
Rham cohomology along the leaves of a crystal and the analytic cohomology of the
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corresponding sheaf of O z,-module. Note that Theorem 0.0.2 recovers for instance
Deligne’s relative Riemann—Hilbert correspondence (see [7]) and extends it to the
case of a possibly non-smooth morphism (see Sect. 4.3.1 for details). It is also pos-
sible to recover from Theorem 4.2.1 Kato-Nakayama’s logarithmic Riemann—Hilbert
correspondence (see Sect. 4.3.3).

Plan of the paper. The present work is organized in four parts. In the first section
we present the notion of derived foliations. We present several examples and show
a formal structure theorem for quasi-smooth and rigid derived foliations. We also
discuss the notion of leaves in the setting. The second section is devoted to the analytic
aspects of derived foliation. We construct the analytification functor and discuss local
integrability, in the analytic topology, of derived foliations. The third section contains
the definition of crystals along a derived foliations, their analytifications, as well as
the notion of k-nilpotent crystals. Finally, the last section contains the statement and
proof of the Riemann—Hilbert correspondence. We also have included some examples
and applications.

Related works. In [3], the authors borrow their definition of derived foliation from
[15], and study Lagrangian derived foliations in relation with the problem of realizing
the moduli space of sheaves on a Calab-Yau fourfold as the derived critical locus of
a (shifted) potential. In [1], J. Ayoub have systematically studied underived singu-
lar foliation on schemes; his theory lives algebraic geometry rather than in derived
geometry, and his purposes are somehow different, being related to differential Galois
theory.

Conventions and notations. Everything, like vector spaces, commutative dg-algebras
(often shortened as cdga’s), algebraic varieties etc., is defined over the field C of
complex numbers. The co-category of complexes (of C-vector spaces) is denoted by
dg, and the co-category of topological spaces by Top.

By convention dAff is the oo-category of derived affine schemes locally of finite
presentation over C. Derived Artin stacks are, by definition, locally of finite presenta-
tion. For a derived stack F' we denote by QCoh(F) its co-category of quasi-coherent
complexes. In the same manner Perf (F) C QCoh(F) denotes the full sub-co-category
of perfect complexes on F'.

All the various functors, Sym, ®, A, fx, f*, etc. will be suitably derived when
necessary. We will occasionally need underived functors for which we will use specific
notations Sym“, ®"“, f¥, etc., if necessary.

A vector bundle on X will be a locally free Ox-Module of finite rank.

1 Derived algebraic foliations

In this section, after some reminders on mixed graded structures, we define derived
foliations on arbitrary derived stacks, give several classes of examples of derived
foliations, study derived foliations on formal completions, and finally establish the
local structure of quasi-smooth rigid derived foliations. We also discuss the notion of
formal, algebraic and analytic leaves of derived foliations in general.
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1.1 Reminders on graded mixed objects

We remind from [6] (see also the digest [18]) the oo-category of graded mixed com-
plexes (over C). Its objects are Z-graded objects E = @,z E (n), inside the category
of cochain complexes together with extra differentials €, : E(n) — E(n + 1)[—1].
These extra differentials combine into a morphism of graded complexes € : E —>
E((1))[—1] (where E((1)) is the graded complex obtained from E by shifting the
weight-grading by +1), satisfying €2 = 0. The datum of ¢ is called a graded mixed
structure on the graded complex E. The complex E(n) is itself called the weight n
part of E.

Morphisms of graded mixed complexes are defined in an obvious manner, and
among them, the quasi-isomorphisms are the morphisms inducing quasi-isomorphisms
on all the weight-graded pieces individually. By inverting quasi-isomorphisms, graded
mixed complexes constitute an co-category denoted by € — dgé”. Alternatively, the
oo-category € — dg8” can be defined as the co-category of quasi-coherent complexes
QCoh(BH), over the classifying stack B’H for the group stack BG, x G,, (see [6,
Rmk. 1.1.1] and [17, Prop. 1.1]).

The oco-category € — dgé” comes equipped with a canonical symmetric monoidal
structure ®. It is defined on objects by the usual tensor product of Z-graded complexes
(taken over the base field C), with the mixed structure defined by the usual formula
€e®1+1R®e (see[6,§1.1]). When viewed as QCoh(BH), this is the usual symmetric
monoidal structure on quasi-coherent complexes on stacks.

Commutative algebras in € — dg8” form themselves an co-category € — cdgas”,
whose objects are called graded mixed cdga’s. Its objects can be described as Z-
graded cdga’s A = @,A(n), endowed with a graded mixed structure € which is
compatible with the multiplication in A (i.e. is a graded biderivation). The fundamental
example of such a graded mixed cdga is given by the de Rham algebra. For a cdga
A we can consider its dg-module Qk of dg-derivations as well as its symmetric cdga
Sym'y (Ql‘ [1]). The usual de Rham differential induces a graded mixed structure on
Sym’g(QL[l]) making it into a graded mixed cdga for which the induced morphism
€:A — Qi‘ is the usual universal derivation. Applied to a cofibrant model A’ of
A we get a graded mixed cdga DR(A) := Sym',, (2 i‘,[l]) which is functorial, in the
sense of oco-categories, in A. This defines an co-functor

DR : cdga —> ¢ — cdga®”
which can be checked to be the left adjoint to the forgetful co-functor sending a graded
mixed cdga A to its weight O part A(0).
We remind the existence of the realization co-functor
|—|:e€—dgt" — dg
given by RHom (C, —), where the derived hom is taken as graded mixed complexes,
and C is equipped with the trivial graded mixed complexes purely concentrated in

weight and cohomological degree 0. The object C being the unit of the symmetric
monoidal structure on € — dgé”, the co-functor | — | possesses a natural lax monoidal
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structure and thus sends graded mixed cdga’s to cdga’s. It can be explicitly described
as follows. For a graded mixed complex E we from the product

E|:= [] E(I-2p]

p=0

and endow | E | with the total differential d+¢€, where d is the cohomological differential
of E and € is the graded mixed structure. When F is a graded mixed cdga the formula
above for | E| can also be used to describe the multiplicative structure, which is induced
by the natural maps E (n)[—2n] ® E(m)[—2m] — E(n + m)[—2n — 2m].

Remark 1.1.1 The following simple observations will be useful in the rest of the paper.

e For A € cdga, the underlying graded cdga of DR(A), obtained by forgetting
the mixed structure, is naturally equivalent to Sym4(ILs[1]), where L4 is the
cotangent complex of A.

e As a consequence of the comment above, when A is a smooth algebra, the
graded mixed cdga DR(A) is canonically equivalent to the usual de Rham alge-
bra Sym A(Qh[l]) endowed with its usual de Rham differential as graded mixed
structure.

The notions of graded mixed complexes, graded mixed cdga’s and de Rham algebras
DR as defined above, all make sense internally to a (nice enough) base symmetric
monoidal C-linear co-category (see [6, Section 1.3.2], as well as [18, Rmk 1.5 and
Section 2.1]). These internal notions and constructions can be understood simply as
follows. Graded mixed cgda’s and modules make sense over any derived stack F, as
quasi-coherent sheaves of Op-linear graded mixed cdga’s and modules. Equivalently
the co-category of graded mixed modules over aderived F can be defined as QCoh (F x
BH), where, as above, H is the group stack BG, x G,,. Graded mixed cdga’s are
then naturally defined as commutative ring objects inside the symmetric monoidal
oo-category QCoh(F x BH).

Any commutative ring A in QCoh(F) will be called an Of-cdga. Any such O-
cdgapossesses an internal de Rham complex, which is a graded mixed cdga over F. We
denote this object by DR (A). Moreover, we can apply the direct image functor along
F x BH —> F to get a lax monoidal co-functor QCoh(F x BH) —> QCoh(F).
This lax monoidal co-functor is called the realization co-functor and is denoted by

| — | : QCoh(F x BH) —> QCoh(F).

When A is a cdga over F, we have a graded mixed cdga DR (A) over F, and by
applying | — | we get a cdga denoted by DR(A) := [DR!"(A)|, and called the de Rham
cohomology of A over F.There is also a relative version, for a morphism A — B of
cdga’s over F, which is [DR" (B/A)|, another cdga. The explicit formula giving the
realization recalled earlier is also valid in this internal setting. Indeed, for an object
E € QCoh(F x BH), its realization | E| is the object in QCoh(F') given by

El =[] Ep)i-2p]

p=0
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endowed with the total differential, sum of the cohomological differential and the de
Rham differential.

This discussion applies in particular to F = B’H itself. We have to note here
that QCoh(B’H x B'H) consists of doubly graded mixed complexes, i.e. complexes
endowed with two extra gradings and two associated graded mixed structures com-
patible with each others. By our convention the realization

| — | : QCoh(BH x BH) —> QCoh(BH)

consists of realizing the first graded mixed structure. For example, if one starts with
an algebra A in QCoh(BH) (i.e. a graded mixed cdga), then |DR (A)| is another
graded mixed cdga. It is obtained by considering DR (A) € QCoh(BH x BH) and
realizing it with respect to the internal mixed structure, that is the one induced from the
graded mixed structure on A as opposed to the one given by the de Rham differential.
Using the correct convention here is essential for the rest of the paper.

If we have a morphism of graded mixed cdga’s A — B, the above construction
produces an internal graded mixed cdga DR (B/A) inside graded mixed complexes.
Its realization is thus a graded mixed cdga DR(B/A) called the internal de Rham
cohomology of B relative to A.

With these notations, we have the following lemma recovering a class of graded
mixed cdga’s A from their DR (A(0)/A). We will use this lemma very often in the
rest of the text.

Lemma 1.1.2 Let A be a graded mixed cdga and assume that the canonical morphism
Syma)(A(1)) — A

is a quasi-isomorphism of graded cdga’s. Then, the canonical morphism of graded
mixed cdga’s

A — [DR™ (A(0)/A)|

is a quasi-isomorphism.

Proof Let B = A(0) and E = A(1). The internal cotangent complex of B relative
to Symp(E) is identified with E[1]. The internal de Rham algebra DR(B/A) is then
equivalent to Sym p(E[2]). We are interested in realizing the internal graded mixed
structure coming from the one of A. As E is pure of weight 1, the induced graded mixed
structure on E is trivial. The same is true for Sym? (E[2]), and we thus conclude that
the internal graded mixed structure on Sym g (E[2]) is trivial. Since we are realizing
internally, we have to realize each graded piece individually. But the realization of a
graded mixed complex M which is pure of weight p is simply M[—2p]. Therefore,
the realization of the internal de Rham algebra is tautologically given by

IDR™ (B/A)| =~ @ =0l Sym? (E[2])| = ®p=0Sym” (E).
O
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1.2 Derived algebraic foliations as graded mixed cdga'’s

In this section we present a very general notion of derived foliations over general
derived stacks. Though later in this paper, we will only be dealing with derived foli-
ations over smooth varieties, we have decided to give a general definition for further
record and applications.

Definition 1.2.1 An affine derived foliation is a graded mixed cdga A satisfying the
following extra conditions.

(1) (Connectivity) The underlying cdga A (0) is cohomologically concentrated in non-
positive degrees and is finitely presented over C.

(2) (Perfectness) The A(0)-dg-module A(1)[—1] is perfect and connective.

(3) (Quasi-freeness) The natural morphism of graded cdga’s

Syma)(A(1)) — A

is a quasi-isomorphism of graded cdga’s.
For a derived foliation A as above, the derived affine scheme X = Spec A(0) is
called the underlying derived scheme of the foliation, and we will say that the foliation
is given over X. The perfect complex on X determined by A(1)[—1] is called the
cotangent complex of the foliation.

Example 1.2.2 Let X = Spec R be a smooth affine C-scheme, 7 X its tangent bundle,
and V C T X asub-bundle whose local sections are closed under the Lie bracket canon-
ically defined on local vector fields (i.e. on local sections of 7 X /X). It is well known
thatif )V denotes the R-module of local sections of the dual vector bundle V'V, then the
Lie bracket on local sections of V induces a differential on A := Symg(VV[1]). This
gives A the structure of a derived foliation over X. Therefore, an algebraic foliation
in the usual sense can be seen as a derived foliation.

More general examples of derived foliations will be given later in this Section.

Affine derived foliations form an co-category as follows. Consider the co-category
(e — cdga®” )P, opposite to the co-category of graded mixed cdga’s. The co-category
of affine derived foliations is defined to be the full sub-oco-category of (¢ — cdgas”)??
consisting of the graded mixed cdga’s satisfying the conditions of Definition 1.2.1.
This oco-category will be denoted by dAff 7.

We have a canonical co-functor

dAffS — dAff

sending an affine derived foliation A to the derived affine scheme Spec (A(0)).

Proposition 1.2.3 The above co-functor is fibered in the sense of [23, §2.3]. Moreover,
the corresponding oo-functor

Fol : dAffP? — Caty

is a stack for the étale topology.
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Proof By construction, the co-category Fol(Spec A) is equivalent to the opposite
oo-category of graded mixed cdga’s C satisfying the conditions of Definition 1.2.1
and equipped with a cdga quasi-isomorphism C(0) >~ A. The oco-category has two
distinguished objects, the final and initial objects. The final objectis A itself, considered
as a graded mixed cdga’s purely in weight O with zero graded mixed structure. On the
other hand, the initial object is DR(A).

Letnow f : X = SpecA — Y = Spec B be a morphism of derived affine
schemes corresponding to a morphism of cdga’s B — A. The pull-back co-functor

5 Fol(Y) — Fol(X)

can be understood as follows. Let 7 € Fol(Y) be an object corresponding to a graded
mixed cdga C satisfying the conditions of Definition 1.2.1 and equipped with a quasi-
isomorphism C(0) >~ B. Associated to F is a natural diagram of graded mixed cdgas

DR(B) ——C

|

DR(A).

The pull-back foliation f*(F) € Fol(X) is then given by the graded mixed cdga
C ®pr(s) DR(A). This indeed satisfies the conditions of Definition 1.2.1 since it
is equivalent, as a graded cdga, to Sym4(E), where E is the following push-out in
B-dg-modules

B(1) ——=C()

L

Al)— > E

where A(1) is viewed as a B-dg-module via the map B — A. This proves the first
statement in the proposition, and moreover provides an explicit description of pull-
back oco-functors. This description in turns easily implies that the co-functor Fol is a
stack for the étale topology, as this reduces to the fact that quasi-coherent modules is
a stack for the étale topology. O

The above proposition can be used, by Kan extension along dAff°? — dSt°?, in
order to define derived foliations over any base derived stack.

Definition 1.2.4 Let X € dSt. The co-category

Fol(X) := Spelcigl_)F Fol(Spec A)

is called the co-category of derived foliations over X.
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We note here that when X is a derived DM-stack, then Fol(X) can be described
as the limit limy Fol(U), where U runs over all derived affine schemes étale over X.
By the explicit description of pull-backs given in the proof of Proposition 1.2.3, we
see that an object in this limit can be simply represented by a sheaf of graded mixed
cdga’s A over the small étale site X of X, together with an equivalence A(0) >~ Oy,
and satisfying the following two conditions.

e The sheaf of Ox-dg-modules A(1)[—1] is perfect and connective.
e The natural morphism of sheaves of graded cdgas

Symoy (A(1)) — A

is a quasi-isomorphism.
This simple description in terms of sheaves of cdga’s is not valid anymore for
derived foliation over more general derived stacks, such as derived Artin stacks for

instance. We will quickly restrict ourselves to derived foliations over smooth.
We introduce the following notations.

Definition 1.2.5 Let X be a derived DM-stack and F € Fol(X) be a derived foliation
over X.

e The sheaf of graded mixed cdga’s A over X corresponding to F is called the de
Rham algebra along F. It is denoted by DR(F).

e The perfect complex DR(F)(1)[—1] over X is called the cotangent complex of
JF and is denoted by IL.r. We thus have a quasi-isomorphism of quasi-coherent
sheaves of graded cdga’s over X

DR(F) = Symo, (LF[1)).

Before giving some examples of derived foliations, we fix the following terminol-
ogy.
Definition 1.2.6 Let X be a derived DM-stack, F € Fol(X) be a derived foliation
over X and L r € QCoh(X) is cotangent complex.

e We say that the foliation F is smooth if L £ is quasi-isomorphic to a vector bundle
on X sitting in degree 0.

e We say that the foliation F is quasi-smooth if Lz is quasi-isomorphic to perfect
complex of amplitude contained in cohomological degrees [—1, 0].

e We say that the foliation F is rigid if the induced morphism of coherent sheaves

H(Ly) — H(Ly)

is surjective.

Remark 1.2.7 Definition 1.2.4 above can be extended to more general settings. To start
with, we may allow X being any derived Artin stack, and we may furthermore drop the
connectivity assumption on L in order to define non-connective derived foliations.
These are useful for instance in the setting of shifted symplectic and Poisson structures
(see e.g. [3, 15]), but will not be considered in the present work.
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To finish this section, we describe a more geometric interpretation of derived folia-
tions in terms of derived loop spaces and their natural circle action. This point of view
will not be used further in the present paper, but has the advantage of being useful in
some contexts, and comes handy. Moreover, using the graded circle of [13] instead of
the formal circle, makes it possible to extend the notions of derived foliations outside
of the characteristic zero context.

_We consider the formal additive group (Ga, as well as its classifying stack § St =
BG € dSt. The group G,, acts on the formal group G and thus on the formal 01rcle
S!. The stack S is itself a group stack and thus acts on itself by translation. These two
actions combine into an action of the group stack H := § S % Gy. As explained in [17,
Prop. 1.3] the symmetric monoidal co-category QCoh(BH) is naturally equivalent to
the symmetric monoidal co-category of graded mixed complexes.

For a derived DM-stack X € dSt, its formal derived loop stack is defined by

L£rx = Map(fS”, X).

It comes equipped with a canonical action of H. By the equivalence recalled above,
between QCoh(BH) and graded mixed complexes, we see that a derived foliation over
X is the exact same thing as a a derived stack F over £/ X, together with an H-action
on JF covering the canonical action on £/ X and such that F is relatively affine over X
and of the form Speco, (L #[1]) (compatibly with the grading where L £ is of weight
one) for L £ a connective perfect complex over X. As a result, Fol(X) can be realized
as a full sub-oo-category of (dSt/IL/ X)™, of H-equivariant derived stacks over L/ X .

The above interpretation of derived foliations makes pull-back of foliations more
natural. For a morphism of derived DM-stacks f : X — Y, there is an induced H-
equivariant morphism £/ X — £/Y. For a derived foliation F € Fol(Y), realized
as an H-equivariant derived stack 7 — Y, the pull-back f*(F) simply is realized
by the pull-back of derived stacks

FXF) =~ F xpry LTX,

equipped with its natural projection down to £/ X.

Remark 1.2.8 In [8], D. Gaitsgory and N. Rozenblyum define a notion of formal mod-
uli problem under X. It is beyond the scope of this paper to make a precise comparison
between derived foliations and this notion of formal moduli problems. However, we
thank the referee for the following suggestion. For a nice enough stack X, it is rea-
sonable to expect that relative de Rham cohomology yields a conservative (possibly
fully-faithful) functor going from formal moduli problems X — Y under X, with
perfect and co-connective relative tangent complex, to derived foliations on X.

1.3 Examples

We finish this Section by giving some classes of examples of derived foliations.
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1.3.1 Lie algebroids

Let us now assume that X is a smooth DM stack. Its tangent sheaf Ty is a sheaf of
Lie-algebras on the small étale site X,; where the Lie bracket is the usual bracket of
vector fields. Recall from [14] that a Lie algebroid on X consists of a vector bundle T
on X, together two additional structures:

(1) a C-linear Lie bracket [—, —] on T'.
(2) an Ox-linear morphisma : T — Ty.

These data are required to satisfy the following compatibility relation: for any local
sections s,  of T', and any function f on X

[s, ft] = fls, t]+a(s)(f)r.

We can associate to a Lie algebroid on X a natural derived foliation on X as follows.
We consider the graded Ox-cdga Symo, (T*[1]), where T* is the Ox-linear dual to
T. The bracket on T induces a C-linear differential d : T* — T* Ap, T*, which
endows Symo, (T *[1]) with the structure of graded mixed cdga. This is an object in
Fol(X). The cotangent complex of this derived foliation is 7* by construction, and
this the above derived foliation is obviously smooth. However, it is rigid only when
a : T —> Ty identifies T with a subbundle of Ty.
It is easy to show that this construction produces a fully faithful co-functor

LieAlghd/X — Fol(X)

where LieAlgbd/ X is the category of Lie algebroids over X . The essential image of this
oo-functor can be shown to coincide with the full co-subcategory consisting of smooth
derived foliations over X (Definition 1.2.6). To be more precise, for any vector bundle
V on X, the classifying space of graded mixed structures on the sheaf of graded cgda
Symo, (V[1]) turns out to be discrete and in bijection with Lie algebroid structures
on V*. In particular, we get that the co-category of smooth derived foliations over
Spec C is equivalent to the usual category of finite dimensional complex Lie algebras.

There is also a relation between derived foliations and dg-Lie algebroids as con-
sidered in [5, 14]. To a dg-Lie algebroid T over an affine variety X = Spec A, we can
associate its Chevalley-Eilenberg cochain complex C*(T') := Sym 4(T*[1]), consid-
ered as a graded mixed cdga using the Lie bracket as mixed structure. Though this
will not be relevant in this paper, we think that this construction produces a fully faith-
Jful oo-functor from the full co-subcategory consisting of dg-Lie algebroids that are
perfect over A and of amplitude in [0, 00), to derived foliations over X.

1.3.2 Initial and final foliations
The oco-category Fol(X) possesses two important distinguished objects, namely the
initial and final objects. The initial object is called the punctual derived foliation,

or the trivial derived foliation, and is denoted by 0x € Fol(X). The corresponding
graded mixed cdga DR(F) is Oy endowed with the trivial graded mixed structure
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(concentrated in weight and cohomological degree 0). When X is smooth, Ox can also
be represented by the 0 Lie algebroids on X and intuitively corresponds to the foliation
on X whose leaves are the points of X.

The final object in Fol(X) is called the tautological derived foliation, or the de
Rham derived foliation. It corresponds to the graded mixed cdga DR(X) which is the
derived de Rham algebra of X. when X is smooth, it can also be represented by the
tautological Lie algebroid Ty itself, and intuitively is the foliation for which X is its
only leaf.

1.3.3 Algebraically integrable derived foliations

Suppose that we are given a morphism of derived DM-stacks f : X — Y that is
locally of finite presentation. The relative de Rham algebra of X over Y defines a
sheaf of graded mixed cdga DR(X/Y) on the small étale site of X, which is a derived
foliation over X. Its underlying sheaf of graded cdga’s simply is Symo, (Lx,y[1]),
where Ly is the relative cotangent complex of X over Y. This is called the derived
foliation induced by the morphism f. We will use the notation

Fr:=DR(X/Y) € Fol(X)

for this foliation. Note that F ¢ can also be understood as the pull-back f*(0y), where
Oy is the punctual foliation described above.

We set the following definition, and use the expression d-integrable to avoid con-
fusions with the usual notions of integrability of singular underived foliations that we
will meet later on (see Sect. 1.3.4).

Definition 1.3.1 Let X be a derived DM stack. A derived foliation F on X (locally)
equivalent to one of the form 7y = f*(0y), for a (locally defined) morphism f :
X — Y locally of finite presentation between derived DM stacks, will be called
algebraically (locally) d-integrable.

The reason for this name is that the derived foliation F ¢ corresponds intuitively
to the foliation on X whose leaves on are the derived fibers of the map f. See also
Remark 1.3.4. It is obvious to see that F is quasi-smooth (resp. smooth) if and only
if f is quasi-smooth (resp. smooth). Also, F is automatically rigid.

1.3.4 Pfaffian systems as quasi-smooth and rigid derived foliations

Let X be a smooth algebraic variety. Assume that we are given differential forms
w; € I'(X, Qﬁ(), for i = 1,...,n, such that the graded ideal (wq,...,wr) C
(X, Symo, (2 ﬁ([l])) is stable by the de Rham differential. We chose differential

forms w;; € I'(X, Q;) such that for all i we have

d(w;) = Zw,‘j ANW;j.

J
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We assume furthermore that the k x k matrix of forms W = (w;;);; satisfy the
following integrability condition

dW)+W AW =0.

Out of these data w; and W as above, we construct a sheaf of graded mixed cdga’s on
X by considering Sym o, (IL[1]) where L is the two terms perfect complex

w.

L::(O’;*xsz;).

The graded mixed structure on Symo, (IL[1]) is itself determined by a morphism of
complexes of sheaves of C-vector spaces

L — Ap, L

compatible with the de Rham differential on Q;( Such a morphism is obtained for
instance by specifying a morphism (9/)‘( — (9’)‘( ®0y Q}( which is a flat connection on
the vector bundle (’)’)‘(. Therefore, the matrix W defines such a graded mixed structure,
and therefore a derived foliation on X.

The derived foliations defined above depends not only on the w;’s, but also on the
choice of the matrix W. It is clear that such derived foliations are quasi-smooth and
rigid. We call such derived foliations Pfaffian derived foliations for obvious reasons.
Derived foliations which are algebraically d-integrable are always locally, for the
Zariski topology, equivalent to Pfaffian derived foliations.

1.3.5 Pull-backs of smooth and rigid foliations

Let f : X — Y be a morphism of smooth algebraic varieties and F € Fol(Y). We
have seen that there is a pull-back f*(F) € Fol(X). It is easy to see that when F is
smooth, then f*(F) is always quasi-smooth. If F is moreover rigid, then so is f*(F).
We will see later that, at least if one admits Y to be a formal scheme, all rigid and
quasi-smooth derived foliations are locally of this form (see Proposition 1.5.1). This
follows from an important property of pull-backs, namely the existence of a homotopy
push-out of cotangent complexes

Q) ——k

.

J*LF) ——= L)

The intuition behind this is that the leaves of f*(F) are obtained by derived pull-back
along f of the leaves of F. The defect of transversality of f with respect to the leaves
of F implies that the leaves of f*(F) can be singular, but are always quasi-smooth.
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1.3.6 Derived foliations, truncations and singular algebraic foliations

Our derived foliations bear an important relation with the singular foliations classically
considered in the algebraic and holomorphic contexts. There are several possible defi-
nitions of singular foliations in the literature. In [2, Definition 1.11] they are defined as
full coherent differential ideals of the sheaf of differential 1-forms. For our purposes,
the property of being full will be irrelevant, and will simply define a singular foliation
(on a smooth variety X) as a coherent subsheaf D C Q}( satisfying the condition

d(D) c DA QY c 9%,

whered : Q ﬁ( — Qi is the de Rham differential. This is equivalent to [1, Definition
6.1.1].

Let now F € Fol(X) be a derived foliation on a smooth variety X. We consider
the anchor map a : Q) — Ly and its induced morphism Q} — HO(Lx). We
let D C Q}( be the kernel of the above map, which is a coherent subsheaf of Q}(
As a comes from a morphism DR(X) — Symo, (IL#[1]) of graded mixed cdga’s
over X, it follows that the ideal in Q% generated by D is in fact a differential ideal
(d(D) C D A Q}),ie. D isan underived singular foliation on X.

Definition 1.3.2 The kernel D of H%(a) : @} — H°(L) is a singular foliation on
X called the truncation of F, and denoted by to(F).

This produces an co-functor 7y from Fol(X) to the category of singular foliations on
X. However, we will see later that not all singular foliation arise this way, and the
existence of a derived enhancement of a singular foliation is a sublte question related
to local integrability. This question will be studied in details for quasi-smooth and
rigid derived foliation (see Corollary 2.3.3).

Conversely, let D C 2 §( be a singular foliation on X. We can construct a graded
algebra

DR(D) := P (24/ < D =) pl.

p

which is the (underived) quotient of the algebra of differential forms Q7% by the graded
ideal generated by D. As D is a differential ideal, the de Rham differential induces a
graded mixed structure on DR (D) in such a way that the canonical morphism

DR(X) —> DR(D)

becomes a morphism of graded mixed cdga’s. Note that however, DR(D) does not
satisfy the condition of definition 1.2.1, as Sym (2 §( /D[1]) involves derived wedge
powers of the coherent sheaf Q;/ D[1], and might differ from (2”/ < D >)[p].
Therefore, DR (D) does not define a derived foliation in our sense. To be more precise,
the underlying graded algebra DR (D) is of the form Sym”OX (Qk /D[1]), where Sym*"
is the underived symmetric algebra functor. The construction D +— DR(D) is easily
seen to be an equivalence of categories, from singular foliations on X to graded mixed

) Birkhauser



5 Page 16 of47 B.Toén, G. Vezzosi

algebras of the form Sym’bx (M[1]) such that Q}( —> M is a coherent quotient. This
however does not define a functor from singular foliations to derived foliations.
Finally, the truncation co-functor 7o enjoys a certain universal property described
as follows. The derived foliation F has a realization |DR(JF)|, and in the same way,
the truncation 7o(F) has an underived de Rham complex (Q%/ < D >) where the
differential is the de Rham differential. There is an induced canonical morphism

IDR(F)| — (%) < D >).

This morphism is far from being an isomorphism in general, although it is an isomor-
phism in low degrees under appropriate conditions (see Proposition 3.1.5).

Note that there is a notion of pullback of singular foliation along an map f : X —
Y, with X and Y smooth. For simplicity we state it in the algebraic case, but the
analytic and formal versions are alike. If D C Q; is an algebraic singular foliation
on Y, then it’s pullback is, by definition, the subsheaf image of the composite map
(D) —> f *(Q%,) - Q ; Using this notion we give the following definition.

Definition 1.3.3 An algebraic (resp. formal, resp. analytic) singular foliation on a
smooth algebraic variety (resp. formallly smooth formal scheme, resp. smooth analytic
space) X is locally integrable if locally in the Zariski topology (resp. locally formally,
resp. locally in the analytic topology) at each point of X there exists a morphism
f : X — Y such that D equals is the pull-back by f of the punctual foliation on Y.
Equivalently, D is the image of f *(Q;) — Q ;

Clearly, if a derived foliation F is d-integrable in the sense of Sect. 1.3.1, then its
truncation to(F) is integrable in the sense above.

Remark 1.3.4 In the literature, a (locally) integrable singular foliation is also some-
times called (locally) completely integrable. We note here that the notion of
integrability of Definition 1.3.3 only coincides with the notion of [12, §3] if one fur-
ther assume that f is generically smooth on X (this is condition b) at p. 73 of loc.cit).
Therefore, to distinguish between the two, we will refer to Malgrange’s stronger notion
as local strong integrability.

1.4 Foliations over formal completions

Let X be a smooth affine variety and Y C X be a closed subvariety. For simplicity we
assume that the ideal of ¥ in X is generated by a regular sequence (fi, ..., fi). We
denote by Oy the ring of functions on the formal completion of X along Y.

Recall that we have a module Q} of differential forms on the formal completion of
X along Y, defined as the formal completion of Q; along (the ideal defining) Y. This
is a locally free Oy -module of rank the dimension of X. Moreover, it comes equipped
with a canonical derivation d : @ — Q%, which ej_(\tends to a full structure of

graded mixed cdga I/)\R( Y) on the graded cdga Sym Oy (Q %,[1]). ‘We can then consider
the oo-category of graded mixed cdga’s A endowed with a morphism

u:ﬁ-ﬁ(Y)—>A
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and satisfying the following conditions.

e The rp\orphism u induces an isomorphism @Y — A(0).
e The Oy-dg-module A(1)[—1] is perfect and connective.
e The natural morphism of graded cdga’s

Symgp, (A(1)) — A

is a quasi-isomorphism.

Let us denote by ﬁ(?) the opposite oco-category of the above oo-category of
graded mixed cdga’s under ﬁﬁ(Y ). We call its objects formal derived foliations on
the formal scheme Y. On the other hand, we may identify the formal scheme Y withits
associated (derived) stack, and therefore we may consider its co-category of foliations
Fol (?), according to Definition 1.2.4.

Proposition 1.4.1 There exists a natural equivalence of co-categories
Fol(Y) ~ Fol(Y).

Proof The formal completion of X along Y, denoted by Y, is equivalent, as an object
of dSt, to a colimit

Y := coli m,Y,
where ¥, C X is the closed sub-scheme defined by the equations (f7', ..., f'),

where (f1, ..., fx) is the regular sequence generating the ideal of ¥ in X. We thus

have Fol(Y) = lim,Fol(Y,). Now, the right hand side is directly related to Fol(¥)
by the limit co-functor

lim : limyFol(Y,) —> Fol(Y).

Note that this is well defined as lim,DR(Y,) ~ l/)\R(Y), because Q% >~ lim,Ly,.

The inverse functor is defined by sending a graded mixed cgda A under ﬁl\{(Y) to its
families of restriction

{A ®pr(y) DR(Y)}n € limy Fol(Yy).

The fact that these two oo-functors are inverse to each others is an immediate conse-
quence of the fact that the natural co-functor

Perf(Y) —> lim,Perf(Y,)

is an equivalence. O

The following is the formal version of Definition 1.3.1.
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Definition 1.4.2 Let Y (respectively, 17’\)) be the formal completion of a smooth affine
scheme Y (resp. Y’) along an ideal generated by a regular sequence. We say that a
foliation F on Y is formally (locally) d-integrable if there exists a (locally defined)
morphism of formal schemes f : Y — Y’ such that J is (formally locally) equivalent
to the pullback f*(0;,) of the final foliation 0y on Y Y’ via f.

If X is a smooth variety, x € X, and X, denotes the formal completion of X at
x, then an algebraic foliation 7 € Fol(X) is said to be formally d-integrable at x
if its restriction F to X (which is a formal foliation on X +) 1s formally d-integrable
according to the previous definition.

Note that, in the above definition, the underlying graded cdga s of f*(05) is
Symo, (]Ly/y,[l]) where ]Ly/y, is the cotangent complex of f : Y > Y.

1.5 Formal structure of rigid quasi-smooth derived foliations

In the proposition below we let A" be the formal completion of A" at 0.

Proposition 1.5.1 Let X be smooth variety and F € Fol(X) be a rigid and quasi-
smooth derived foliation on X. Then, Zariski locally on X, there eicists n>0anda
smooth and rigid derived foliation F' on the formal scheme X x A", such that F is
the pull-back of F' by the zero section X —> X x A",

Proof We will freely use the material and notations about internal De Rham complexes
and their realizations, recalled in Sect. 1.1. First of all, the statement being Zariski
local, we may assume that X = Spec A is a smooth affine variety. We consider
F € Fol(X), arigid and quasi-smooth derived foliation, which corresponds to a
graded mixed cdga DR(F) with an identification DR(F)(0) ~ A and satisfying the
conditions of Definitions 1.2.1 and 1.2.6. There is a natural morphism Qk — L7,
whose cone, by the rigidity and quasi-smooth hypothesis, must be of the form N*[1],
for a vector bundle N* over X. By localizing further on X we may suppose N*
isomorphic to O for some n > 0. We consider the push-out of graded mixed cdga’s

DR(F) — DR(F) ®pr(x) A.
On the underlying graded cdga’s, this morphism looks like
Syma(Lz[1]) —> Syma(N*[2])

and is induced by applying the Sym construction to the boundary map L — N*[1].
Moreover, as N* is a vector bundle (and X is affine) we see that the graded mixed
structure on the graded mixed cdga Sym 4 (N*[2]) must be trivial.

We now consider the induced morphism on the internal relative de Rham algebra

DR (Sym o (N*[2])/DR(F)) —> DR (A/DR(F)).
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We can then consider their internal realization, and the induced morphism on the
internal de Rham cohomology

IDR (Sym 4(N*[2])/DR(F))| —> [DR™ (A/DR(F))|.

This is a new morphism of graded mixed cdga’s and thanks to Lemma 4.1.2, the right
hand side is canonically equivalent to DR(F), so we get a morphism

IDR™ (Sym 4(N*[2])/DR(F))| —> DR(F).

The left hand side is a graded mixed cdga, say B, whose degree zero part is
[Sym 4 (N*[2])] ~ WA(N*) ~ O(X x &"). Moreover, by construction, it is not
hard to see that B is free, as a graded cdga, over the B(0)-module Qk ®a B(0).
Therefore, Proposition 1.4.1 tells us that B corresponds to a smooth foliation F” on
X x A",

The morphism of graded mixed cdga’s B —> DR(F) induces a morphism
e*(F) — Fin Fol(X), where e : X —> X x A" is the zero section. This mor-
phism is furthermore an equivalence by observing the induced morphism on cotangent
complexes. In particular, e* (F") is rigid, and this automatically implies that F” is rigid
as a foliation on X x A”. O

Remark 1.5.2 Proposition 1.5.1 has the following conceptual refinement. First of all,
the same proof shows that there exists a globally defined pair (¥’, F') consisting of a
formally smooth formal scheme X’ and a smooth rigid foliation 7" on X', together with
amap f : X — X’ such that f,., is an isomorphism and there exists an equivalence
F >~ f*(F'). This is achieved by defining

X' := Spf(IDR(F) ®prx) AD,
and F’ as the derived foliation on X’ defined by the gra