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Abstract

Generalizing a construction presented in Arsie and Lorenzoni (Lett Math Phys
107:1919-1961, 2017), we show that the orbit space of B; less the image of the
coordinate lines under the quotient map is equipped with two Dubrovin-Frobenius
manifold structures which are related respectively to the defocusing and the focusing
nonlinear Schrodinger (NLS) equations. Motivated by this example, we study the case
of B, and we show that the defocusing case can be generalized to arbitrary n lead-
ing to a Dubrovin-Frobenius manifold structure on the orbit space of the group. The
construction is based on the existence of a non-degenerate and non-constant invariant
bilinear form that plays the role of the Euclidean metric in the Dubrovin—Saito stan-
dard setting. Up to n = 4 the prepotentials we get coincide with those associated with
the constrained KP equations discussed in Liu et al. (J Geom Phys 97:177-189, 2015).
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1 Introduction

According to a classical theorem due to Chevalley, given a finite group generated by
(pseudo-)reflections the invariant functions ring of the orbit space of the group is a
polynomial ring generated by a set of invariant polynomials, called basic invariant
polynomials.

In general, the basic invariants are not uniquely defined, while their degrees depend
only on the choice of the group.

In the case of Coxeter groups, a procedure to select uniquely a set of basic invariant
polynomials was proposed by Saito in [31] and it is based on the notion of flat structure
on the orbit space.

An explicit construction of polynomial basic invariants was implemented by Saito,
Yano and Sekiguchi in [30] through a case by case analysis (with the exception of the
group E7 and Eg).
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In 1993 Dubrovin interpreted Saito’s construction in terms of bihamiltonian geom-
etry and Dubrovin-Frobenius manifolds [12]. He showed that starting from the
Euclidean metric (defined on the Euclidean space where the group acts) and from
the flat structure on the orbit space, it is possible to define a flat pencil of metrics.
This notion had been previously introduced by Dubrovin himself in the study of
a special class of bihamiltonian structures related to Dubrovin-Frobenius manifolds
[9]. Under suitable additional assumptions (exactness, homogeneity and Egorov prop-
erty) flat pencil of metrics are in one-to-one correspondence with Dubrovin-Frobenius
manifolds. Using this correspondence, he defined a polynomial Dubrovin-Frobenius
manifold structure on the orbit space of Coxeter groups. The polynomiality of the pre-
potential for any Coxeter group was conjectured by Dubrovin and proved by Hertling
in [19]. It was observed in [37] that in the case of groups B, and D, there are differ-
ent possible choices of the unit vector field leading to different Dubrovin-Frobenius
manifold structures.

In 2004, in the paper [10], Dubrovin introduced the notion of almost duality and
showed that in the case of a Coxeter group the almost dual structure coincides with a
universal structure introduced by Veselov in [36] (Veselov’s V-system). In the same
paper he found a generalization of Saito’s construction for Shephard groups (symmetry
groups of regular complex polytopes [32]). The role of the Euclidean metric in this case
is played by a flat metric defined by the Hessian of the lowest degree basic invariant.
Flatness of this metric relies on a previous result of Orlik and Solomon [27].

It turned out that the Dubrovin-Frobenius structure obtained in this way on the orbit
space of a Shephard group is isomorphic to the Dubrovin-Frobenius structure defined
on the orbit space of the associated Coxeter group.

In 2015 Kato, Mano and Sekiguchi proposed a further generalization of Dubrovin—
Saito construction in the case of well-generated complex reflection groups [20]. The
outcome of their construction is not a Dubrovin-Frobenius manifold but a flat F-
manifold [26] or, using the language of meromorphic connections, a Saito structure
without metric [29].

In 2017 two of the authors of the present paper proposed an alternative construc-
tion of (bi)-flat F-manifolds on the orbit space of complex reflection groups [3]. The
starting point of [3] is a “dual flat structure" defined by a family of flat connections
of Dunkl-Kohno type associated with a complex reflection group [14, 21, 24]. This
family of connections depends on the choice of an invariant function on the set of
reflecting hyperplanes: for each hyperplane one has to choose a “weight” and the
weights assigned to different hyperplanes must coincide if the hyperplanes belong to
the same orbit under the action of the relevant group.

A standard choice consists in assigning to each hyperplane the order of the cor-
responding reflection. In all the examples considered in [3] this choice corresponds
to Kato—-Mano-Sekiguchi flat F-manifold structure. Other admissible choices lead
to different structures and conjecturally the orbit space of a well-generated complex
reflection is equipped with a (N — 1)-parameter family of flat F-manifold structures,
where N is the number of orbits for the action of the group on the set of reflecting
hyperplanes, see [4]. This conjecture has been verified for Weyl groups of rank 2, 3 and
4, for the dihedral groups I (m), for any of the exceptional well-generated complex
reflection groups of rank 2 and 3 and for any of the groups G (m, 1, 2) and G(m, 1, 3).
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In [3] it was also pointed out that in the case of Shephard groups, in general, the
Kato—Mano—Sekiguchi construction does not reduce to Dubrovin’s construction on
the orbit space of these groups.

An alternative proof of the existence of the “standard" Kato—Mano—Sekiguchi
structure was obtained starting from a dual structure (equivalent to the flat structure
considered in [3]) by Konishi, Minabe and Shiraishi in [22].

In the present paper, combining the Dubrovin—Saito approach with the approach
pursued in [3], we present a further generalization of the Dubrovin—Saito procedure
for the series B),. In the first part of the paper, exploiting the flexibility of the second
approach we study flat F-manifold structures obtained from a dual flat structure of the
form outlined above in the case of By, B3 and Bj. In all these cases besides the one-
parameter family obtained in [3, 4] there are additional Dubrovin-Frobenius structures
associated with a suitable choice of the weights in the definition of the dual connection
and of the dual product. The corresponding solutions of WDV'V equations are no longer
polynomial due to appearance of a logarithmic term. For n = 2 it coincides with the
Frobenius manifold structure associated with focusing and defocusing NLS equation
depending on the choice of the weights: assigning weight zero to the coordinate axes
and a non vanishing weight to the remaining mirrors one gets the defocusing case,
while the opposite choice leads to the focusing case. The first choice survives also
in the case n = 3 and in the case n = 4 leading to similar solutions of WDVV
equations. These solutions appear in literature (for arbitrary n) in connection with
constrained KP equation, see [23]. As a byproduct of these computations, we get a
bilinear form invariant with respect to the action of B,,. In order to prove the existence of
a Dubrovin-Frobenius structure for any 7, in the second part of the paper, we apply the
Dubrovin—Saito procedure to the invariant bilinear form obtained in the first part. The
main difficulty encountered in the present case, if compared with the standard one, is
due to the fact that the flat pencil obtained applying the first part of the procedure is not
regular and, as a consequence, it is not possible to define all the structure constants of
the product in terms of the Christoffel symbols of the intersection form. This is also the
reason of the presence of a logarithmic term in the Dubrovin-Frobenius prepotential.

2 Bi-flat F-manifolds and Dubrovin-Frobenius manifolds

Definition 2.1 [26] A flat F-manifold is a quadruple (M, o, V, ¢) where M is a com-
plex manifold, o : Xy x Xy — X is a product on the sheaf of holomorphic
vector fields Xy, V is a connection on the holomorphic tangent bundle 7'M and e is
a distinguished holomorphic vector field, satisfying the following axioms:

(1) forevery A € C, V(3y := V 4 Ao is a flat and torsionless connection.
(2) e is the unit of the product o.
(3) eisflat: Ve = 0.

Manifolds equipped with a product o, a connection V and a vector field e satisfying
conditions (1) and (2) above will be called almost flat F-manifolds.

W Birkhauser



A Dubrovin-Frobenius manifold structure of NLS type on the... Page50f48 2

Remark 2.2 The notion of flat F-manifold makes sense in the smooth category as well.
In this case M is a smooth manifold, T M its tangent bundle and X, is the sheaf of
smooth vector fields on M.

In local coordinates (ul, ..., u"), denoting with c; ¢ the structure constants of the

product o and with F;k the Christoffel symbols of the connection V, Condition 1 in
Definition 2.1 reads

Mk _ ik k kN _
Tl-j —T,-j—i-)»(cl-j—cj,-)_O, 2.1
and
Mk
R = RE, + 1(Vick, — Vick) + 23 (ch, ety — &) = 0, (2.2)
Mk Mk . .
where T, 7 and R; ;. are the torsion and the curvature tensor of the connection

V), while Tl]; and Rl'fj ; are the torsion and the curvature tensor of the connection V.
The identity principle of polynomials applied to (2.1) and (2.2) yields the following
consequences:

(1) the connection V is torsionless,

(2) the product o is commutative,

(3) the connection V is flat,

(4) the tensor field Vlcl’.‘j is symmetric in the lower indices,
(5) the product o is associative.

From the above conditions it follows that in flat coordinates the structure constants of
the product can be written as second order partial derivatives of a vector field

=00k F', (23)

satisfying a non-trivial system of PDEs called generalized WDVV equations or oriented
associativity equations:

301 F 30y F' = 00y F' 00 F'. (2.4)

Dubrovin-Frobenius manifolds are flat F-manifolds equipped with a homogeneous
invariant metric n compatible with the connection V. More precisely

Definition 2.3 A Dubrovin-Frobenius manifold is a flat F-manifold (M, o, V, e)
equipped with a metric (i.e. a complex, bilinear, symmetric non-degenerate form)
n and a distinguished vector field E, called the Euler vector field, satisfying the fol-
lowing conditions

Vi =0, 2.5)
nXoY,Z)=n(X,YoZ), VX,Y,Z € X(M), (2.6)

le, E] =e, Liego =o,
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and
Liegn = 2 —d)n,

where d is a constant called the charge of the Frobenius manifold. The latter require-
ment means that E acts as a conformal Killing vector field of the metric 5.

In flat coordinates, the existence of an invariant metric implies F' = 5'd;F for a
scalar function F called the prepotential of the Dubrovin-Frobenius manifold. Using
this fact, it is immediate to see that the associativity equations (2.4) become the usual
WDVV associativity equations:

304 0; F'l 8038, F = 0 0x0; F'! 8040, F . 2.7)

It is worth noticing that every Dubrovin-Frobenius manifold comes together with
an almost dual, i.e. a second almost flat F-manifold structure. More precisely

Theorem 2.4 [10] Given a Dubrovin-Frobenius manifold (M, o, e, E, n, V), consider
the open set U where the endomorphism of the tangent bundle E o is invertible and con-
sider the corresponding intersection form, i.e. the contravariant metric g := (Eo) n~\.

Then on U, the data given by

(1) the Levi-Civita connection V of g,
(2) the Euler vector field E and
(3) a dual product defined as X « Y = (Eo)"' X oY, VX,Y € Xy (U),

define an almost flat F-manifold with unit E and invariant metric g~ .

Replacing V with V* := V + ix (for a suitable value of 1) one obtains a flat
connection V* satisfying V*E = 0. In this way, for any given Dubrovin-Frobenius
manifold (M, n, o, e, E, V), there are two flat structures:

o the “natural” flat structure (V, o, e) (in particular V is called the natural connection

[25]),
e the “dual” flat structure (V*, %, E) (in particular V* is called the dual connection).

It turns out that these two structures are related by the following condition:

(dv —dv+)(Xo) =0, VX € Xy (U), (2.8)
where dy is the exterior covariant derivative (two connections satisfying this condition
are said to be almost hydrodynamically equivalent [6]).

Definition 2.5 [1] A bi-flat F-manifold M is a manifold equipped with two different
flat F-structures (V, o, ¢) and (V*, x, E) related by the following conditions

(1) E is an Euler vector field.
(2) = is the dual product defined by E.
(3) V and V* satisfy condition (2.8).
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The dual flat structure defined above can be thought as a generalization of Dubrovin’s
almost duality to general flat F-manifold. In the case of Dubrovin-Frobenius manifolds
the dual connection in general does not coincide with the Levi-Civita connection of the
intersection form. However these two connections are hydrodynamically equivalent
(i.e. they are almost hydrodynamically equivalent and compatible with the same prod-
uct [6]) and belong to a two-parameter family of torsionless flat connections. This fact
is at the basis of an alternative approach to almost duality and leads to the equivalent
notion of almost duality for Saito structures. The idea is that instead of treating the
two flat structures on an equal footing one can write one of the two flat connections in
terms of the remaining data. We refer to [22] for details and in particular to Lemmas
4.2 and 4.3 for a proof of the equivalence between the two notions of duality.

3 Bi-flat F-manifolds and complex reflection groups

A complex (pseudo)-reflection is a unitary transformation of C" of finite period that
leaves invariant a hyperplane. A complex reflection group is a finite group generated
by (pseudo)-reflections. Irreducible finite complex reflection groups were classified
by Shephard and Todd in [33] and consist of an infinite family depending on 3 posi-
tive integers and 34 exceptional cases. Well-generated irreducible complex reflection
groups are irreducible complex reflection groups of rank n generated by n (pseudo)-
reflections.

3.1 Flat structures associated with Coxeter groups

A Coxeter group is automatically well-generated. For Coxeter groups we have the
following result.

Theorem 3.1 (Dubrovin, [12]) The orbit space of a finite Coxeter group is equipped
with a Dubrovin-Frobenius manifold structure (1, o, e, E) where

(1) The invariant metric n coincides with the bilinear form constructed in [30, 31].
The corresponding set of basic invariant are called Saito flat coordinates.
(2) In the Saito flat coordinates

3 L (di\ ;D
= N E = —_— l—..
¢ qun §<dn>u oul

where d; are the degrees of the invariant polynomials u; and2 = dy < dy < d3 <
- <d,_1 < d, (dy is the Coxeter number).

Dubrovin-Saito construction relies on the existence of a flat pencil of metrics asso-
ciated with any Coxeter group. Let us illustrate this construction in a simple example.

) Birkhauser
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3.2 Dubrovin-Saito construction for B,

In this case, the basic invariants have degree di = 2 and d» = 4. Up to a constant
factor they have the form

1
ul=2((@H?+ D7), W=D e e
where ¢ is an arbitrary constant. The Euclidean cometric has the standard constant
form in the coordinates (p', p?). Rewriting the Euclidean cometric in the coordinates
(ul, u2) we get
% ul u?
&= ( w2 —2c(c 4+ 16)')? + 4(c + 8)u1u2> :

According to Saito’s general result there is a unique choice of ¢ such that the cometric
n = L s g is non-degenerate and constant. Indeed the cometric

ou2
(0 1
T=\1 4c+8u!
is constant only if ¢ = —8.

According to Dubrovin’s general result for such a choice of ¢ the pencil g — A is
a flat pencil of contravariant metrics satisfying the following additional properties

e Exactness: there exists a vector field e such that
Leg=n, Len=0.
e Homogeneity:
Lpg=(d—1g,

where E! := gilnlje-/.
e Egorov property: locally there exists a function t such that

ei — nl’SaSl_’ Ei — gisas.’:-

Indeed itis immediate to check thate! = 8}, E' = %4’ and = u'. The corresponding
solution of WDVV equation is obtained solving the system [11]

d,-+dj—2

%o o, F = g'.
dy

Up to inessential linear terms the solution is
1 64
F = —ul(u)? s
S W)™+ 5(u )

W Birkhauser



A Dubrovin-Frobenius manifold structure of NLS type on the... Page90f48 2

3.3 Almost dual structure and Veselov’s v-system

In the case of Coxeter groups the almost dual structure has a special form, whose
structure is independent of the choice of the group. It is defined by the data

1 dag 0
v*, S E et , E—§ k_—_
( * N Ry p 3 k)

where

V* is the Levi-Civita connection of the Euclidean metric,

'H is the collection of the reflecting hyperplanes H,

oy 1s a linear form defining the reflecting hyperplane H,

g is the orthogonal projection onto the orthogonal complement of H,
N is a normalization factor.

Products of this form appear in the work of Veselov on V-systems [36] (see [2, 17] for
an interpretation of Veselov’s conditions in terms of flatness of a Dunkl-Kohno type
connection).

3.4 Flat structures associated with complex reflection groups

Dubrovin-Saito flat structure and Veselov’s dual structure can be generalized to com-
plex reflection groups.

Theorem 3.2 [20] The orbit space of a well-generated complex reflection group is
equipped with a flat F-structure (V, o, e, E) with linear Euler vector field where

(1) The flat coordinates for V are basic invariants (u', ..., u") of the group (gener-
alized Saito coordinates).
(2) In the Saito flat coordinates

3 " (di\ ;D
e=—— E= Z ) —.
ou P d, out

Remark 3.3 The linearity of E (i.e. the condition VV E = 0) turns out to be equivalent
to the existence of the dual flat structure. This was proved in the semisimple case in
[3] and later in the non-semisimple case (under some regularity assumptions) in [22].

The dual flat structures are described by the following theorem

Theorem 3.4 Let G be an irreducible complex reflection group acting on C". Then
the data

day day d

vi=vi- Y = Lx= Yy — Ty, E=Y pt—

( o R THTH o Qopgmy p 9 pk
HeH HeH

where
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'H is the collection of the reflecting hyperplanes H,

oy is a linear form defining the reflecting hyperplane H,

g is the unitary projection onto the unitary complement of H,
the collections of weights oy and ty are G-invariant and satisfy

OHTTH = gy = 1d, 3.1
> >

HeH HeH

o VO is the standard flat connection on C",
define a flat F-structure on C" that descends on the orbit space of the group.

The proof of this theorem can be found in [4] (Theorem 4.7) and it is a straightforward
consequence of a result of Looijenga [24] (see also Example 2.5 in [8]). In the case
of well generated complex reflection groups of rank 2,3,4 it was proved in [3, 4]
that, for a suitable choice of the weights o and Ty and of the basic invariants, there
exists a bi-flat F-manifold structure whose natural structure has the form described
in Theorem 3.2 and whose dual structure has the form described in Theorem 3.4. In
all the examples choosing o and Ty, proportional to the order of the corresponding
pseudo-reflection the natural structure coincides with the flat structures obtained in
[20]. In general the choice of the weights 7y is not unique as we are going to illustrate
in the case of B».

Remark 3.5 In the previous theorem, the unitary projections 77y are constructed using
the unique (up to a scalar multiple) G-invariant Hermitian metric on C".

3.5 A simple example: B;
3.5.1 Step 1: The dual product =

We start from the product

d
* = Z ﬂ®01.171H

o
HeH H

where

ar = pl, a = p?, as=p'—p* o= p'+p?

Let us call Orbit 1 the orbit containing the straight lines «; = 0 and o, = 0 and Orbit
2 the orbit containing the straight lines «3 = 0 and oy = 0. According to the general
rule the weights must be the same for lines in the same orbit:

X y
, 03 = 04 = .
X+y X+y

0] =0p =

W Birkhauser
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We get
sl GV =X, —yp? ol
DG +np (D2 =) T (e -pp?) R
2 yp! 2 e x(HT = x4+ ) (ph)?

C12 = € =

= C = C B .
@+n((pH2 - @22 @+ 02 ((pH? = (p?)?)
3.5.2 Step 2: The connection V

We assume that the flat coordinates of V are basic invariants. For B, up to a constant
factor they depend on a single parameter c:

u = (Y2 + (DA WP =Y (D) + e

Writing the connection V in the coordinates p!, p> we get

G DOV G )y 20ek Dyt
" PP =) T (e - ) T (@ -dy)
. 2Qc+p! 4c(p?)? s (Ge=DH*+(p1)?

= =T = T3, =
PU@2=e»?) R e =) P () - (07?)
3.5.3 Step 3: The unit vector field e

We assume that in the basic invariants e = %.

3.5.4 Step 4: The product o

From * and e we can define o in the usual way as

XoY =(ex)"'XxY, VX,Y.

We get
2)((171)3 2y(p1)2p2

1 1,22 2 1
i1 =———+2 , 1= ——"——=Cih=cC
11 x+) p(p) 11 P 12 21

2y(p?)?p! 2x(p?)3
2 2 1 2 2, 1,2
C = — = = CHH, C _2 e —
12 Xty 21 22 22 p(p") Tty

3.5.5 Step 5: The constraint on the weights
Imposing the compatibility between V and o:
ch;‘l = Vjcii
we get the constraint x = y, thatiso] =0y =03 =04 = %

) Birkhauser
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3.5.6 Step 6: The dual connection V*

Imposing the condition V*E = 0 and the condition (2.8) we obtain the Christoffel
symbols of V*:

P et D@2 -0, 4ep? bl A’

Y (7T S E) e R D i P Eh N D S P

pro_  depl o Al (et DO - ()

RTp2-p)2 T R T )2 -2 2 P2((PH% = (p»?)
In particular for ¢ = —% we have b;k = —c’;}'{.

3.5.7 Step 7: The vector potential

The above data and the Euler vector field E = ), p" % define a a bi-flat F'-manifold
structure (V, o, e, V¥, x, E) for any choice of c. Solving the system

i _aa i
Cjk = a] ak I;‘B2 N
we get the vector potential

1 . X
Fho=u'u? = — @' @c+1), F3 =——(de+ D + =)’
12 P 5
(3.2)

For ¢ = —% the vector potential comes from a Dubrovin-Frobenius prepotential.

Summarizing, assuming e = 12 the choice of the weights oy is unique (they
coincide up to a normalization factor with the order of the corresponding reflection)
while the choice of the weights Ty depends on a parameter c. In [3, 4] it was conjectured
that this additional freedom appears every time that all the mirrors do not belong to
the same orbit.

4 A modified construction
4.1 The case of B,

In flat coordinates the components of the unit vector field should be constant. Following

Dubrovin—Saito and Kato—-Mano—Sekiguchi we have assumed that the flat coordinates
are basic invariants and that e = #, where 2 is the highest degree invariant polyno-
mial. The last assumption is very natural since (up to a constant factor) the vector field
# is not affected by a change in the choice of the basic invariants. In this Section,
restricting ourselves to the case of By, we will study what happens if we remove this

hypothesis.

W Birkhauser
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Defining o in the usual way and imposing the condition
i g
Vi = Vjci

after some computations (performed with the help of Maple) we get the following
solutions

(1) y=x,e! =0,
(2)c=0x—0ande =0,
(3)6_——y_0ande =0.

The first solution corresponds to the one-parameter family of bi-flat F-manifold struc-
tures related to the vector potentials (3.2). Following the same steps outlined above,
the second and the third solution lead to the following solutions of WDV'V equations

1 1 3
F = E(u‘)%ﬂ + E(uz)2 <1n u> — 5) )

These are the prepotentials of the Dubrovin-Frobenius manifolds associated with defo-
cusing/focusing NLS equation. Indeed, let us consider the chain of commuting flows
of the principal hierarchy (see for instance [11]), obtained starting from

i i .
Upy = Uy, i=1,2.

These flows have the form
u;'(w ,kx =900 FX! i=1,2,0=0,1,2,...,

(oz) X (Ot) X’

where X (jo) =el = 8{ and the vector fields X ) are obtained solving the recursion
relations

i _ i yk
an(a) = Cij(afl)'
For instance (independently of the choice of the sign in F) we obtain
1 1 2 2
X(l)zu, X(l)zu.
Taking into account that the non-zero structure constants are

1
1 _ 1 _ 2 _ 2 _
C22_:t_u2’ cpp=cp =06 =1,

the corresponding evolutionary PDEs are given by

1

Uy, = ij(l) N —c”X(l)u +622X(1)u =u' u + u? o
2 2

Uy = cij(l)ux = C12X(1)”x + CZIX(UM (u U-)y.

) Birkhauser



2 Page140f48 AArsie etal.

They coincide with the dispersionless limit of the evolutionary system of PDEs asso-
ciated with defocusing/focusing NLS equation (compare with Example 2.12 in [13]
where u! = —v and u? = u).

It is worth mentioning that the genus expansion of the first Dubrovin-Frobenius
manifold structure is related to higher genera generalization of the Catalan numbers

[7].

Mirrors for Bs: orthogonal mirrors belong to the same orbit.

4.2 The cases B3 and B,

The previous computations becomes very cumbersome for n > 2 and it seems very
difficult to carry out all the steps without some additional assumptions.

Motivated by the previous example we investigate bi-flat F-manifold structures
associated with following two choices of the weights {oy}ye:

(1) oy = 01if H is one of the (hyper)planes pi = 0 (otherwise oy = 1). All these
(hyper)planes belong to the same orbit (Orbit I).
(2) og = 0if H is one of the (hyper)planes of Orbit II (otherwise oy = 1).

It turns out that the first choice leads to a Dubrovin-Frobenius manifold with prepo-
tentials

1 1 3
Fp, = - +u'v®u® + — ")’ — Z?)? + @) > i,
6 12 2
1 1 1 1 1
FB4 — ﬁ(ul)4u4 + g(ul)2u2u4 _ i(142)4 4 u1u3u4 + 5(1,{2)2144 + 5uz(u3)2

9 3
—7@hH? 4 J@h?nut,
while the second choice does not produce any bi-flat structure.

Remark 4.1 The above solutions of WDVV can be obtained also from solutions of
WDDV equations associated with extended affine Weyl groups of type A, by a Leg-
endre transformation. For instance, the details of the Legendre transformation between

Fp, and the prepotential associated with Agl) can be found in [28] while for details of

the Legendre transformation between Fp, and the prepotential associated with A;l)
we refer to [11] and [35].
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In order to prove the existence of a Dubrovin-Frobenius manifold structure for any
n, associated with the first choice, we will use a different strategy. The key observation
is that in all the above examples (n = 2, 3, 4) the intersection form has always the
same expression

0 1 1 pep pp pr
0 1 ppz  pip3 1 9 L _1
_ plp? |1 0 1 | P2 prp3 ppt
8By = 1 0 s gB3_ plpz p2p3 » 8B4 = 1 1 0 1
P1p2 1 1 0 3 23 P
plpd p2p3 1 1 1 0
plpt  p2pt Pt
In the next Section, starting from the intersection form defined by
. (1 —25Y)
i .
gl (p)=——7=, i,j=1,...,n 4.1)
p'p’

we will prove the existence of a flat pencil of metrics which yields a Dubrovin-
Frobenius structure for any n. Our approach relies on a suitable generalization of
Dubrovin—-Saito construction. The proof of the existence of the Saito metric closely
follows the ideas of the paper by Saito, Yano and Sekiguchi [30], while the recon-
struction of the Dubrovin-Frobenius manifold structure requires to overcome some
additional technical difficulties with respect to the standard procedure of [9] due to
the non regularity of the associated flat pencil.

5 A flat pencil of metrics associated with B,

The goal of this Section and of the next Section is to construct a Dubrovin-Frobenius
structure on the orbit space of B,, generalizing the ones previously computed for
B>, B3 and By, that lead to prepotentials containing logarithmic terms. The starting
point is the intersection form (4.1); taking the Lie derivative of g’/ with respect to
the second highest degree invariant polynomial #”~! we build a new bilinear form 7
and we prove that the pair (g, n) forms a flat pencil of metrics, which is also exact,
homogenous and satisfies the Egorov property. By Dubrovin’s general correspondence
between such pencils and Dubrovin-Frobenius structures, this will allow us to equip
the (open subset of the)n orbit space C"/B,, (where the logarithm does not degerate)
with the latter structure.

First we will prove a few preliminary results concerning g, which, in this set up,
plays the role played by the Euclidean cometric in the standard one. To this end, we
will start observing that, as in the Euclidean case, g is B, invariant and flat.

5.1 Invariance of g with respect to the action of B,

First we observe that
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Lemma 5.1 The metric defined by g;; = (ﬁ - 8,:/) pl pl and the cometric defined

i __sij .
by g/ = (1,-—3-) are inverse to each other.
r'p’

Proof First we consider gki gik (sum over i, k fixed) and we get:

ki Zn 1 ik p'pt Zn 1 ik
l — . _ l _ _ . _ l

i=1 i=1

n

. 1 pl . 1 p
k — N 2 sily - s\
ggin =) (n—l _8/([) pk(l §h =" (n—l 8/{1) o

i=1

1 p 1 ! n—2 n-=2\p
e D R e e e )
il k

The next proposition shows that the metric defined by the g;; (p)s introduced in the
previous lemma is invariant under the action of B,,. Of course, from this the invariance
of the corresponding cometric follows.

Proposition 5.2 The metric g := g;; (p)dp' @ dp! = <n—11 - 6,~j) pipldp' @ dp’ is

invariant under the action of B, on V.= R".

Proof The action of B, on V is generated by reflections with respect to the hyperplanes
(p/ =0},j=1,....,nand {p' £ p/ =0},i,j =1,...,n,i < j. We denote by
A ,j the Jacobian of the transformation associated to the reflection with respect to the
hyperplane {p/ = 0}, and analogously for A pitpi-

The matrix A ,; is a constant diagonal matrix with 1s on the main diagonal except
in position (j, j) where there is —1. Under the action of the reflection with respect
to the hyperplane {p’/ = 0}, the metric transforms as (A P_,~)T gA,i(p = p) where g
is the matrix associated to the metric, 7' denotes transposition and p = p means that
after the matrix operations have been completed, the metric is rewritten in terms of
the new coordinates p’ = p' fori # j and p/ = —p/. Now it is immediate to see
that the action of A ,; on g is to change the sign of all terms that contain p/ except the
diagonal term (anl —1)( pj )2. Then once it is rewritten in terms of the coordinates
P, the metric coincides with the original one.

As for the reflections with respect to the hyperplanes {p’ — p/ = 0} we argue as
follows. The matrix A i _,; is a constant matrix with Is on the main diagonal, except
in position (7, i) and (j, j) where there is zero and it has 1 in position (Z, j) and (j, i),
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while all the other entries are zero. Notice that A; = A pi—pi and that A ; pi—pi
is the matrix representation of a transposition. Therefore when A ;i acts on the
left on a column vector, it exchanges the positions of i-th and j-th components of the
column vector but it leaves the other unchanged. Similarly, when A ;i _,; acts on the
right on a row vector, it exchanges the positions of i-th and j-th components of the row
vector but it leaves the other unchanged. Thus, Ag_p_,gAp,-_pj = Api_pi&A,i_pi
is obtained from g first exchanging the i-th and j-th rows and then exchanging the
i-th and j-th columns (or first working with the columns and then with the rows) and
leaving the rest unchanged By the form of the columns and rows of g, after performing
the change of variables p* = p* k # i, j, p' = p/ and p/ = p', Ap png
coincides with g.

Reflections with respect to the hyperplane {p' + p/ = 0} are obtained as com-
position of reflections with respect to the hyperplanes {p' = 0}, {p/ = 0} and
{p' — p/ = 0}. To see this, just observe that the matrix A pi+pi 1S @ constant matrix
with 1s on the main diagonal except in positions (j, j) and (i, i) where there is O,
and it has —1 in positions (i, j) and (j, i). Therefore A ; =A,iApiAyi_pi-Now

pi—pi

pi+pl T
invariance follows from the previous paragraphs. The proposmon is proved. O
Recall that the elementary symmetric polynomials fi, ..., f,, in the variables
yl, ..., y", are defined by

fr = Z yi‘n-yik,k:l,...,n.

1<ij<---<ix<n

Letu®:=1,uf:=0, Vk >n+1and

u' = fi(pt, ... pA,i=1,...,n. (5.1

The previous result implies the following

Lemma 5.3 The cometric gV (u) = gk[(p)% ngjI
invariant polynomials and it is well-defined on the quotient. Moreover, for each i and
j, &Y (u) is a homogeneous polynomial in the p-variables of degree 2i +2 j — 4, which
depends at most linearly on u"~"'. In particular,

can be written in terms of the

¢''w) = 4(n* —n). (5.2)

Proof The homogeneity of the gij (u)s, as functions of the p-variables, is clear. Since
all invariant polynomials are really polynomials in (phH2, ..., (p™)?* no matter which

ones we choose, then 94 Bk £ contains a factor p* that cancels the factor pX in the denom-

inator of g*/(p) and similarly for . Thus g%/ (u) has entries that are polynomials in

the p-variables, and since it is mvarlant by Proposition 5.2, it can be written in terms
of the invariant polynomials, and thus it is well-defined on the quotient.
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As u' is a homogeneous polynomial in the p-variables of degree deg(u’) = 2i and,
for k # [, deg(g* (p)) = —2, see (5.1), then

deg(g¥(u) =2i —1+2j —1—2=2( +j) — 4, (5.3)

as function of the p-variables.

For the gij (u)s above the anti-diagonal, i.e. for i + j < n + 1, therefore we have
deg(g'/ (u)) = 2(i+j) —4 < 2(n+1) —4 = 2(n— 1), so those entries can not depend
on u”"~!. All the entries with (i, j) such that n +1 < i + j < 2n depend at most
linearly on u”~!, since in this range we have 2n — 2 < deg(g"/ (1)) < 4n — 4. Finally,
since u" = ( p1 s p")z, it is immediate to see that each term in the sum (over k and /)
g (u) = g (p)%% contains u". Since deg(u") = 2n and deg(g"" (u)) = 4n —4,
we can write g (u) = u” f, where f is polynomial in p of degree 2n — 4, so f can
not contain #”~!. This proves the claim.

Now
du' du' (1 — 8%
11 _ ki, 04U ou kn ol
g =g = > T 2P 2P
kJ=1,....,n
=4 Y (-8 =40"-n),
k,=1,....,n
thus proving (5.2). O

5.2 Flatness of g

Recall that the Christoffel symbols of the Levi-Civita connection V defined by the
metric g are the (locally defined) functions

oL igmk Ogim , 98jm _ 38i) (5.4)
L 2 3pj 3pi apm ’ ’

m=1
and that the contravariant components of V are
N (p) ==Y g™ (MTh(p). i, j.k=1,....n. (5.5)
s=1

Let g be defined as in (4.1). Then

Lemma 5.4 One has that

, 1
Ti(p) = F and Ff»‘j(p) =0 otherwise. (5.6)
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Proof In the following proof all the metric coefficients and all Christoffel symbols
depend only on the p-variables. To prove (5.6), first one computes

8gin.1 Lemr;a 5.1 i 1 _ 5im pipm
apl ap/ [\n—1

1 .
= ( - 5im> @jip™ +8jmp")

n—1

5,’j 8mj
= 8im ( i m |
This ylelds

mh (08im . 98jm _ 08ij

ap/ apt dpm
gk | . (O Omi (% Omi\ o Oim  Omj
- [g'm(pi+pm>+g’m<pf+p’"> g”<pi +pf)]

which inserted in (5.4) gives
Sii | 1 1 «
= [; Y 8" gim+ P > g’"kgjm}
Sm
|:Z gmk pmj + Z gmkg]m_mi|

m=1 p
gii |: 1 & 1 &
_ ol _Z mka, _Z mk8 :|
; 8 im+ — 8 mj
2L m=1 P’ k=1
= (Sﬂ Sl_k + Sﬁ + l gjkgij + _gikgij — gi g_lk + g_jk
2 \pt p/ 2\ p/ P 2 \pt pJ
i.e.
rk — Sij (Sik | djk
Y2 \pt o pl
which entails the thesis. O

Proposition 5.5 The metric g;; is flat.

Proof This can be proved by direct computation of the Riemann tensor using the
Christoffel symbols (5.6). A quicker way to do this is to introduce the connection 1-
form a)’j = I‘} kdpk and the corresponding curvature 2-forms Q’] = da)’j + o, A a)']‘
Due to (5.6) we have that a)i =0ifi # j and a)f = dpiil = d(log(p")), which imply

- =0,ifi # jand Q! = 0l Al = — ?)dzp = 0 (no sum over i) otherwise. So the
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curvature two-form is identically vanishing, which implies that the Riemann tensor
vanishes too. A third way to prove the flatness of g is to observe that the connection
defined by (5.6) is a logarithmic connection with weights that are invariant under the
action of B, (see Example 2.5 in [8]). O

. i\2
Remark 5.6 In the flat local coordinates y' = % the cometric g has the form
gij =18V 5.7
that is invariant under the action of A,, on the space of coordinates (yl, o Y.

5.3 Definition of n

In this subsection we introduce 7 as a Lie derivative with respect to the second highest
degree invariant polynomial of the cometric g"/ (1), see Lemma 5.3. From this, some
essential properties of the bilinear form 1 will follow.

Proposition 5.7 The Lie derivative with respect to the vector field 3;—,1 of the inter-
section form g' (u) is given by the formula

i

oun—1

n () = (u) =4Q@n —i — pHu'ti—"-1, (5.8)

Hence, n' (u) is a non-degenerate Hankel matrix with all vanishing entries above the
anti-diagonal. In particular, the entries of the anti-diagonal i + j =n + 1 are

7 W) = 4 - 1).

Proof 1f
h(x) =Y u'x"* =T+ phH% (5.9)
k=0 =1

and

n i ;

y 1 — 8% ou' du’

gl](u)= Z ( s nk ) us uk’
s pptoaptp
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A Dubrovin-Frobenius manifold structure of NLS type on the

one has

1 <N . . ‘
1 > gy =

ij=1

Since

dh(x) 8h(y)

n—i n—j

Z Z (1—5*’() du' dul

x
z] 1s,k=1 pp apsap
1 & (1=8%) 9
ZZ s nk aps

n
(B
K k
s,k=1 pp i=1 ap j=1
- 1—5S) 9 "

LS S )l
\) 1=l
6ol y

ap o,
Z (1 — 8% dh(x) dh(y)

2 ' 3

4s,k=l aps dp

n

Z”jyn’)

1

p*pk

I#s

oh
w _ H( +(p>>—2ps1"[<x+(p>)

ap*

8 S

Z]‘[( +(p>>1"[(y+<pq>)

s, k= ll#s q#k

-Zs

P°p

and

n

_lz

4
s,k=1

k

8% dn(x) ah(y)

p'p

ap*
= Z H(x + (p’)%(Z [Jo+ (p‘f)%)

s=1l#s k=1 qg#k

= h'()h' ()

1 3h(x) dh(y)
(P82 apk  gpk

-3y
- Z]‘[(x + O [+ D

- k=1 1k q#k
. h(x)h(y)
x4+ @PHHG+ (PHH)

kap

h(x)h(y)

]

_ Z[ —hh()
Sla=-nE+EHY) - @ =0+ P02
1 ~ h) ) < ~_ ) ) )
= — |h(y) — h
xfy<(k2:;x+(pk)2 ) ;yHPW )
__NOh&) = x)h(y)
= . ,
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we obtain

h'(Mh(x) — h/(X)h(y)_

1 . ij n—in—j ’ /
7 2 8wy = W () - o

ij=1

Since h'(x) = Z;é (n — kukx" %=1 see (5.9), deriving both sides of the previous
identity with respect to 1" ! we obtain

1 agh neion_j 0 o B (y)h(x) — k' (x)h(y)
1”213,”() y f——au,,l(h(xm(y)— P )

1
=h'(y) +h'(x) - Ty < —h(y) = yh'(x) + h(x) + xh’(y))

_ h(y) — h(x) + xh'(x) — yh'(y)
= o _

dg" (u) in the above

Now we have to identify the entries of the matrix 7'/ (1) = 54

expression. Deriving k times with respect x we have

nkn

< Z Wi =< ZZ ;{), 0" x" =y

1]1 11]1

Evaluating at x = 0 we obtain the term that does not depend on x, namely the term
i=n—k

_k.znn kd )y = - k<h(y) h(X)jfhy(X)—yh (y))

j=1 x=0

Similarly, deriving s times with respect y we have
1 n—s

=N ki i
Sk S Tk i,
R ®)y

Evaluating at y = 0 we obtain the term j = n — s, hence

1
Zk!s! 0" RS () =

ks <h(x) —h(y) +xh'(x) — yh/(y)>
axkays X =Yy

x=y=0
Now, we can find each entries of the matrix 1/ (). The lemma is proved. O

Remark 5.8 From now on, since we want 7' =i+l () = 1 for all i, we normalize the
cometric gV dividing it by 4(n — 1). Thus, using (5.2) we have that g!'! (1) = n.
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A matrix like '/ as determined in formula (5.8) is called lower anti-triangular.
Since the form 7 defined in (5.8) depends polynomially on the us and its determinant
is a constant different from zero, we have that

Lemma 5.9 The metric n~' depends polynomially on the u's as well. Moreover, nij is
also lower anti-triangular.

Proof Let p, () be the characteristic polynomial of the matrix associated to the inter-
section form. It is a polynomial in A with coefficients that are polynomials in the entries
of the intersection form and thus they are polynomials in the u’s. By Cayley—Hamilton
theorem, p, (n) = Oidentically, where by  we mean the matrix associated to the inter-
section form. But p,(n) = n"+c,—1 14 den4col, where ¢g = (—1)" det(1)
and 1 denotes the identity matrix. From this we get immediately

-1 _ (_l)n_l
~ det(n)

2

" e D,

from which it is clear that the entries of n~! are polynomials in the us, since det(1)

is a constant and all the other terms depend on the us as polynomials. To show that
it is also lower anti-triangular, it is enough to observe that every lower anti-triangular
matrix can be obtained as a product L A of two matrices, where L is lower triangular
and A is the matrix with all ones on the anti-diagonal and zero in the other entries.
Furthermore, it is well-known that the inverse of a lower triangular matrix is lower
triangular while the inverse of A coincides with A. This immediately shows that ™!
is also lower anti-triangular. O

5.4 The pair (g, n) is a flat pencil of metrics

Recall that
Definition 5.10 A pair of metrics (g1, g2) forms a flat pencil if

e g = g1 + Ag2 is a flat metric for all A;
e The Christoffel symbols I',’ of the metric g are of the form

In this subsection we will show that the pair (g, 1), where g and n are defined in (4.1)
and, respectively, in (5.8), gives rise to a flat pencil of metrics on C"*/B,,. Our proof is
based on the following result.

Proposition 5.11 (Lemma 1.2.in [12]) Iffor a flat metric g on some coordinate system
x = x") both the components 8 (x) of the metric g and the contravariant
components Fllg (x) of the associated Levi-Civita connection depend at most linearly
on the variable x', then g1 := g and g, defined by

87 (x) == 0,18 (x), Vi, j,

) Birkhauser



2 Page240f48 AArsie etal.

form aflat pencil if det (g (x)) # 0. The contravariant components of the correspond-
ing Levi-Civita connections are

r (x):=TY(x) and TH, (x) =0TV (x), Vi, j, k.

As a system of coordinates on C"/B, we choose the set of basic invariants
(!, ..., u"),see (5.1). Lemma 5.3 entails that the metric defined in (4.1) descends to
a metric on the quotient space having the properties required in the Proposition 5.11,
where the role of x! is played by #”~!. To conclude the proof, we are left to prove
that the contravariant components F,’cj (u) of the Levi-Civita connection defined by g
satisfy the conditions stated in Proposition 5.11. More precisely we will prove that

Proposition 5.12 The contravariant components of the Levi-Civita connection defined
by g are polynomial functions of (u', . .., u™) which depend at most linearly on u"~".

We split the proof of this proposition in two lemmata.

Lemma 5.13 In the coordinates (ul, ..., u") the contravariant components of the
Levi-Civita connections defined by g are polynomial functions of (u', ..., u").

Proof In the following, unless differently stated, we will sum over repeated indexes.
If F; «(p) are the Christoffel symbols in the p-variables and F; () those in the u-
variables, one has

apt 9%uc ap! ou® du®
duc dpiap/  ducdpl dp/

rfj(p) = TS, (u). (5.10)

Multiplying both sides of (5.10) by g% (p) 24222 41, we obtain

apk ap!
ud foa,d gl a2 c
: . dul du® ap' 0‘u ;
kl l ki
L(p)dp! = - —dp’
()8 ka Tii(pdp’ =g (p)a oK ap! 0uf D pTop) P

ul du dp' du® 3
He )ab;kaipla_pca_;laufrib(“)d”

Now observe that in the two terms of the right-hand side of the above expression

g‘l‘; gf:f = 84, so it simplifies to:
aul 92ud
g (p )a—ka—r’ (pdp! = g ()35’ gk’(p)8 e O ydu.

Using the definition of Christoffel symbols with two upper indices we get:

oul  9%ud
apk apiopl

du’ dud

fd b
—Wa—pl _Fb (l/l)dl/t s

i (pydp’ = ¢ (p)
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where we have used the fact that gki ( p)%%

variables. We thus obtain

is the cometric written in the u-

aul 9%ud . out qul

kl
Bpk 0 lap]dpj + o ap ok ap a1 (P)dp (5.11)

I/ wydu® = g4 (p)—

Introducing the contravariant Christoffel symbols Ff"( p) = —g"( p)an ;(p), from
(5.6) one obtains

65  (1=8") (8% — 1)8p

Ik (p) = bkt = —

s

pipkpm

which, inserted in (5.11), yields

ki a2.d f Kl
(1 8’)3uf 0“u j du’ du? ) l)Sljd]

fd b
;" (uw)du” = - ————dp
b p'pk apkapiapi apk apl  pk(pl)?

(5.12)

Expanding and analyzing the right-hand side of (5.12), we obtain:

f f 9,4 4

Z '1 3 auk ——dp’ — Z 8uk Bul kaljl 2dpj
l 1

i PP ap* ap'ap’ kI TR ap~ ap' p*(p")

1 ou/ 9%ud 1 oul 9%ud .
= 2 ———dp’ + § —— ——— dp/ +
ok 2 k k
Iy PP Ot @pT) i i PP P OPOP]
dul aud 1
> apk api pk(pi )de’
k,j.k#j

92ud

which can be written as:

1 ou/ [ 3% du? 1 , 1w/ %ud | .
2 kau_k[(a L;)z_%_f}dp]+ D T T
v ire; PIPR DT LGP plp ki PP OPY 3pTAp

Taking into account that

Mk — Z (pil . ..pik)z,

1<ij<--<ix<n

it is immediate to check that first term above vanishes identically, since ul, o u"
are polynomials of degree 1 in each of the (p’)? (i.e. each monomial has degree 1
or 0 in (p')?), and the second term does not contain any denominator, since they
are simplified (unless d = 1 in which case the second term is identically zero). The
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previous (long) discussion is summarized in the following formula

s b 1 au" 3%u’ ;
I (w)du’ = ———————dp’, Vr,s=1,...,n, (5.13)
b ipk 9pk dpigpi
ki, jieri i U P OPTOPOP

whose right-hand side is a 1-form with polynomial coefficients in the p-variables.
To conclude we can argue as follows. Since the left-hand side of (5.13) is Bj-
invariant, the right-hand side is so. Since the latter is a 1-form with polynomial
coefficients, the coefficients of the left-hand side are necessarily polynomial func-
tions in (ul, ..., u"), see [34, Theorem page 3]. O

Remark 5.14 The previous argument is the same used in the proof Lemma 2.1 in [12].
However, while it is evident that the left-hand side of Formula (2.8) in [12] is a 1-form
with polynomial coefficients, the polynomiality of the coefficients of the right-hand
side of (5.13) was not so and it needed to be shown.

To complete the proof of Proposition 5.12, we are left to show that the contravariant
components of the Levi-Civita connection of g depend at most linearly on «”~!. This
result follows from the following

Lemma 5.15 For every choice of s, i,k =1,...,n,
deg(TS (u)) < 4n — 4. (5.14)
Proof First we will show that for every choice of the indices
deg(I'5, (1)) = deg(u®) — deg(u®) — deg(ub). (5.15)

To this end, we start noticing that if not all the indices in the left-hand side of (5.10)
are equal, (5.6) implies

apl 9%uc ap' du® ou®

T T —_— —.FC = 0,
ouc dp'op/  duc dp' dap/ ab ()
which yields
3%uc ou du’ .
E T pe ) =0.
ap'ap/  adp' dap/
This identity, together with the definition of the invariants u Lo, implies that

"¢, (u) is a homogeneous polynomial of degree
deg(I'g, (w)) = deg(u®) — deg(u”) — deg(u”).
On the other hand, if in (5.10) i = j = [, (5.6) entails

ouc 1 9%u¢  Qu“ gub

—_ C
o oty apap @
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which implies that
deg(u) — 2 = deg(I'y, () + deg(u®) + deg(u”) — 2,
or, equivalently, that
deg (T, (u)) = deg(u) — deg(u®) — deg(u®),

proving (5.15). To conclude the proof of the Lemma, it suffices to note since F,ii () =
—g" )T, (u) and deg(u') = 2i, foralli =1,...,n,

deg(l",ii ) = deg(g”'(u)) + deg(F;k(u))

(52) deg(u‘v) + deg(uj) — 4+ deg(Fi-k (u))

(13) deg(u®) — 4 + deg(u') — deg(u")

=2s+2i —2k—4<4n—6 < 4n — 4.

O
Corollary 5.16 Since deg(u™~') = 2n — 2, it follows from Lemma 5.15 that F;{'i (u),

forall s, k,i =1,...,n, depends at most linearly on w1,

Summarizing, we have
Theorem 5.17 The pair (g, n) gives rise to a flat pencil of metrics.

Proof The metric g'/ (u) is well-defined on the quotient, it depends at most linearly
on u"~! by Lemma 5.3 and it is flat by Proposition 5.5. Furthermore, its contravariant
Christoffel symbols are also polynomial functions that depend at most linearly on

u"~! by Proposition 5.12. Therefore, since n'/ (u) := a?f;ijl (u) has non-zero constant
determinant by Proposition 5.7, (g, n) forms a flat pencil of metrics by Proposition
5.11. O

We close this subsection with a result which will play a crucial role to prove the
existence of a Dubrovin-Frobenius structure on the orbit space C"/B,,.

Proposition 5.18 (Corollary 2.4 in [12]) There exists a set of B, -invariant, homoge-
neous polynomials tY(p), ..., 1" (p), deg (t*(p)) = 2k forallk =1, ..., n, such that
n' is constant in the coordinates @t .M.

Proof We will make only a few comments about the proof of this statement, referring
the reader, for more details, to [12]. In this reference the existence of this set of coordi-
nates was proven for (all Coxeter groups and) g equal to the standard Euclidean metric
of R". The proof was based on the following hypothesis, all of them verified also in our
case: the flatness of 7 and the polynomiality of both n~! and of the Christoffel sym-
bols of 1, when written in the coordinates defined by any set of invariants (ul, o, u'h)
with deg(u’)= d;. Under these assumptions it is immediate to check that the Pfaffian
system defining the flat coordinates has polynomial coefficients. The statement of the
theorem then follows from
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o the analiticity of the solutions of a compatible Pfaffian systems with polynomial
coefficients (see for instance [18]).
e the invariance of the space of solutions with respect to scaling transformations

ut — iyt

O

Lemma 5.19 Inour case, the flat coordinates of Proposition 5.18 can be further chosen
so that:

0" (6) = 8ipi—j- (5.16)
The coordinates so defined are called Dubrovin—Saito flat coordinates.

Proof By Proposition 5.18 flat coordinates for 1/ are homogenous invariant polyno-
mials with distinct degrees. Therefore, in order to prove the claim of the Lemma, by
Corollary 1.1 in [11] it is enough to show that there exists a system of flat coordinates
1, ..., " such that Nnun () = 0. Consider the contravariant metric 1 written in the
u-variables, see (5.8). Observe that """ (1) = 0. Recall that n,, (1) = #(n)adj()nn,

where adj() = CT and where C is the cofactor matrix of 1, whose entry (i, j) is
(—1)**/ times the (i, j) minor of 1. Since 7 is lower anti-triangular, its (7, n) minor

is zero, therefore 1,, (1) = 0. Rewriting n~!in a flat coordinate system (¢!, ..., ")
we have n;; (u(1)) 34 %4 d* @ di'. Now
(6 = miy ey 2 2
=n;i(u — .
Nnn Nij 3 9t
But since gti,i = 0 for degree reasons unless i = n, and analogously for the other

partial derivatives, we have

du"\ >
Nnn (€)= Npn (u(t)) <al‘”> =0,

(no sum over n) since 1,, (1) = 0. O

Remark 5.20 1t is easy to check that non-vanishing contravariant Christoffel symbols

ai. « Of the Saito flat metric in the coordinates (ul, ..., u") are given by
ij . .
4y jpy =4 —j).

Using the above formula one can verify that the invariants ul, u" and 7, see Formula
(6.3) in Section 6 below, are flat coordinates.

Remark 5.21 Ttis also immediate to verify that, in the Dubrovin—Saito flat coordinates,
g'1(t) = n, up to a possible rescaling by a constant, see Remark 5.8.
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Remark 5.22 The same results of this section can be obtained writing the A, -invariant
metric (5.7) in a suitable set of A,-invariant polynomials of degrees 1,2,...,n
obtained combining the elementary symmetric polynomials

fr = Z yi1~~yik,k=1,...,n.

1<ij<--<iy<n
in a suitable way (like in the case of B, with (p’)? replaced by 2y?). The drawback
of this “interpretation” is that the dual product does not seem to admit a natural
explanation in this context.
6 Dubrovin-Frobenius structure of NLS type on C"/B,
6.1 From flat pencils of metrics to Dubrovin-Frobenius manifolds
Flat pencils of contravariant metrics are a key component in the theory of Dubrovin-
Frobenius manifolds. More precisely, one can prove that any Dubrovin-Frobenius
structure defines a flat pencil of contravariant metrics (see [11]), and, conversely, that

a Dubrovin-Frobenius structure can be defined starting from a flat pencil of metrics
satisfying the following three additional properties, see [9] (see also [11] and [5]):

e Exactness: there exists a vector field e such that
Leg=mn, Len=0, (6.1
where £, denotes Lie derivative with respect to e. This condition play an important
role in the theory of evolutionary bihamiltonian PDEs both in the dispersionless
and in the dispersive cases (see for instance [16]).
e Homogeneity:

Lrpg=(d-1g, (6.2)

where E! := gilnljej.
e Egorov property: locally there exists a function t such that

e =nSo,T,  E'= gt (6.3)

Exactness implies that [e, E] = e and combining this with the homogeneity condition
one obtains

Len=LgLeg =L LEG— LiEe1g =(d—2)n. (6.4)

Moreover, for Dubrovin-Frobenius manifolds the vector fields e and E coincide with
the unit vector field and the Euler vector field, respectively.
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To prove that the flat pencil (g, ) induces a Dubrovin-Frobenius structure on
C"/B,,, we will start to show that the (g, n) is exact, homogeneous and that it satisfies
the Egorov property or, using Dubrovin’s terminology, that it is quasihomogeneous.

Lemma 6.1 The pair (g, n) form an exact pencil.

Proof The first of (6.1) is true by definition and the second follows from the fact that
1 does not depend on u" ! as it can be inferred from formula (5.8). O

Lete = J% Write oy := % for all k. Recall that
n' =4Qn —i— jutil (6.5)

Then

Lemma 6.2 If T is given by

o 1 2 (n=2) 1
T = —4(n -y (u —Z(n - (u) ) (6.6)
then
e = nijajr, (6.7)

so the first of (6.3) is fulfilled.
Proof The proof is by a direct computation. Using (6.6) and (6.5), one obtains

. 1 " . (n—2) 1
r__ - js. o _ s,
¢ _4(n—1);<'7 2 o 8"“)
_ 1 i n—=2) 14
“an-0" T am—n2" "
_@n=i=2) iy, =)Qn-i-1 ;4
T - n—12 "

(6.8)

Since ufk = 0 forall k < 0, ifi < n — 1 both summands in (6.8) are zero. If i = n,
(6.8) becomes

(21’1 —n— 2)un+1_n_(n - 2)(21’1 —-—n-—- 1)Mn—nu1_(n — 2)u1 _ (I’l — 2)u0u1=

= 0,
(n—1) (n—1)? (n—1) (n—1)
since u? = 1. Finally, if i = n — 1, one obtains
2n—mn—-1-2) n—1+-n n—-2)2n—(m—-1) — l)u(n_l)_nu1 _ 1
(n—1) (n—1)?
which proves our statement. O
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Lemma 6.3 Defining

El = gijajt (6.9)
one has that

E'=g''y;el, (6.10)
so that the second of (6.3) is fulfilled.

Proof This follows from (6.7) and from (6.9), recalling that n/n;; = §;. ]

One can prove that

Lemma 6.4

1 2,9
E=— 2 6.11
2(n—1)k§p 9 pk ©.10)

Proof The proof follows at once from (5.1), (6.6) and (6.9). First one computes

9 1,2 ) 9 2 . .
(u.) =4p/u' and L.=2pju1—2(pj)3,
apJ ap/
which yield
at 1 plu! -
— = - ().
apl 2m—1) |n—1
Then
El — ij( )a_‘L’_ 1 i(l_&j) pjul —( j)3
-8 papf_z(n—l)j:1 pipi |n—1 P
1 |: ul .~
= > —(p’)]
2p’(n—l)j¢l_ n—1
1 (n—Du' | i
_2pi(n—1)[ o1 4w
_ 7
T 2mn—-1)°

m}

Recall that deg(u¥) = 2k, and that g’* is a homogeneous polynomial of degree 2k +
2] — 4 (in the us). From this it follows:
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Proposition 6.5 We have that
Lpg=(d—-1g, (6.12)

whered =1 — therefore condition (6.2) is fulfilled.

(n 1y

Proof First one observes that £ g (duf) = ﬁduk. Then

(Leg)(du',du*) = Lp(g(du', du)) — g(Lpdu', du*) — g(du', Lrdu*)

l k
— Lok _ Ik _ Ik
E8 (n—l)g (n—l)g
I+ k
— Lok _ Ik
E§ n— 1)8
_ [+k—2 gk Itk gk
(n — 1) (n + 1)
—_ 2 glk
(n—1)
= - du', du).
e 1)g( u,du®)
O
Before moving on, we observe that
Remark 6.6 If (f',..., f) is any system of homogeneous coordinates in the p-
variables
1 5,9 afl
E=—" — =
2(n—1)];p apk — 1)Z Zap" afi

L AN
2(n—1)2(; )Bf/
= Z g(f’)ffaf]

Our next step in the construction of the Dubrovin-Frobenius structure on C"/B,,,
will be the introduction of the structure constants defining the relevant product. To
this end, recall that a homogeneous flat pencil (g, ) on M is called regular if the
endomorphism of 7 M defined by

Rl = V;’Ei — vj.’E", (6.13)

is invertible, where, in the previous formula, V", V& denote the (covariant derivative
operators of the) Levi-Civita connections of the metrics 1 and, respectively, g. Under
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the regularity assumption, the flat pencil defines a structure of a Dubrovin-Frobenius
manifold on M whose structure constants are defined by the following formulas

el = LTy, — ngk)(R‘l){ (6.14)

where L} = 2 nin, F,,gk and Fgé « are the Christoffel’s symbols of the metrics n and,
respectively g. From now on, unless explicitly stated, all the tensors will be written
in the flat Dubrovin—Saito coordinates, see Proposition 5.18 and Lemma 5.19 above.
Since in these coordinates I‘,,i, « = Oforalll, s, k, in order to keep the notation more
readable, we use directly the notation I'’ « for the Christoffel symbols associated to g
(as we did in Sect. 5.4). Under these assumptions, Formula (6.14) becomes

. A L . LGS
e, =—LiTL (RN = =g niy UL (RTH] = i THR™YH!, (6.15)

s S

see [5] and references therein. On the other hand, one can prove that the flat pencil of
metrics (g, ) defined above is not regular. To this end it suffices to note that

.ood—=1 . .
R = Ta; + V;?E’, (6.16)

see, for example, [5, Remark 5.7], which, in our case, entails

G =Dy
r __ 1
Rj_ p— 8j. (6.17)
In fact, sinced =1 — %, using the Dubrovin—Saito flat coordinates
od—1_. . 1 i . G-=D
R.=——8 +V'E' = — 8" 8= ,
J 2 itV n—lf+n—lj n—1

see Remark 6.6. In spite our flat pencil of metrics is not regular, we will be able to
prove the following

Theorem 6.7 The flat pencil of metrics g — An gives rise to a Dubrovin-Frobenius
structure on C" | B, generalizing those computed explicitly for the cases n = 2,3, 4.

The proof of this result will consist of the following steps:

(i) Definition of the structure constants of the product.
(ii) Proof of the commutativity of the product.
(iii) Existence of a flat unit vector field.
(iv) Identification of the metric n with the invariant metric of the Dubrovin-Frobenius
manifold.
(v) Identification of the cometric g with the intersection form of the Dubrovin-
Frobenius manifold.
(vi) Symmetry of the tensor Vc.
(vii) Associativity of the product.
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In all steps of the proof we will work in Saito flat coordinates. In order to prove the
last step we will preliminarily prove that the functions

bl = (1+4d, —%F)c;j, (6.18)

coincide with the contravariant Christoffel symbols of the cometric g. This will allow
us to obtain part of the associativity conditions as a consequence of the vanishing of
the curvature.

We start with a preliminary lemma:

Lemma 6.8 In Saito flat coordinates the contravariant symbols of the Levi-Civita of
the metric g satisfy

Fn-i—l—h,k — l—wzl—i-l—m,k’ (6.19)
g = gisTik, (6.20)
rir = rikry, 6.21)
e = il (h,m) £ (1, 1). (6.22)

R! R’ ’ ’

where F;’ k are the contravariant Christoffel symbols of g in Saito flat coordinates.

Proof The following identities hold true (see [9] and [5]):

nhsA = Nms Ah s (6.23)
g AJk = gfwk (6.24)
AYASF = AIFAY (6.25)
ALRTY} = A;j(R 1)l. (6.26)

where the tensor A{;lk is given in terms of the Levi-Civita connections V" and Vé by
the formula

IJ _ IsJjk lk
Am = Nim (77 F(g)A -g F(,/)s) = Nim (77 Sr(g)x - gjsr(n)b)

In Saito flat coordinates F(];)i = I‘ijk, F(J:)i =0, Aljk = I‘ijk, nij = i n+1—; and the

above identities reduce to identities (6.19,6.20,6.21,6.22). O

6.2 Step 1: Definition of the cl’:ks
As we have already mentioned, the definition of the Dubrovin-Frobenius structure on
C"/ B, cannot completely hinge on (6.14) since the endomorphism R defined in (6.17)

in not invertible. On the other hand, the loss of information is restricted to the case
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R; =0,i.e.i = j = 1, see Formula (6.17). In this way, Formula (6.15) permits to fix
all the cj. S, but the ones with i = 1. In other words, for all i # 1

hi
. iy
1
Note that one has that
' FnJrlfj,i 6.19 ki
jk
R! R,l'

1

Both equalities follow since we are working with the Dubrovin—Saito coordinates. In
particular, the first equality follows from the form of the metric n when written in
these coordinates, i.e. n;; = 6; n+1—;, see Lemma 5.19. The remaining csks will be
defined via the following:

cli= VG, ) # () (6.29)
(n—1)
Cn 1= (6.30)

The structure constants cl’Fj sdefinedin (6.27) and (6.29), are homogeneous polynomials
of the p-variables of degree 2(n — 1 +k —i — j), see (the end of the proof of) Lemma
5.15. In particular, note that, with the exception of ¢},

k=0, (6.31)

foralli, j, k suchthati + j > n 4k — 1. Notice that due to (6.30) the corresponding
prepotential cannot be defined when 1" = 0. As a consequence the Dubrovin-Frobenius
manifold structure we are going to study is defined on the orbit space of B, less the
image of the coordinate hyperplanes under the quotient map.

Remark 6.9 Hereafter we will normalize the degree of the p-homogeneous polyno-
mials by ﬁ accordingly with the expression of Euler vector field, see (6.11). In
other words, we will set

k
di = deg (fi) = ——, (6.32)
n—1
where f is any degree 2k, homogeneous polynomial in the p-variables. For example
n—1+k—i—j

n—1

, (6.33)

dp—14k—i—j = deg (cll-‘j) =

and d;4 ;o = deg (gij w)) = i+j_12, see (5.3).

n—
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6.3 Step 2: Commutativity of the product
We have to prove that for all i, j,k =1, ..., n,

c;k = c;'q., (6.34)
For i # 1 this follows automatically from (6.28). Fori = 1,k = n, j # n we have

1 (629) | (629 n+l—j
Cin = Cpj = Cnn -

Fori =1,k # n, j # n we have

1 (6£9) 1 (629) cn+1—j

jn nj nn

Fori =1,k # n, j # n we have

Ln+1-k n+l1—j,n+1—k n+1—k,n+1—j
ok _ ©19 T'n ©.22) I'n _
jk = "nj T gtk T RF1-k - Rn+1—j = Yk
n+1—k n+1—k n+l—j

6.4 Step 3: Existence of a flat unit vector field

We now prove that the unit of the product defined above is the vector field e =
that is

_0
oun—1°

ik o_ i S
e —Sj, Vi,j=1,...,n.

For i # 1 this follows from the results for regular quasihomogeneous pencil [9]. For
i = 1 we have

1 k 1 .
Cire =Cj a1 Vi=1,...,n.

This means that we have to prove the identities

We observe that the functions c].’n_1 are homogeneous polynomials of the p-variables
of degree 2(1 — j). Thus for j # 1 they vanish. For j = 1 we have

6.29
Cl ( s ) n

_n k _ ¢n
1,n—1 Cn,n—l = Cyr€ _811’

where the last equality follows from the fact that cil. kek = 8; fori # 1. Itis immediate
to check that V7e = 0. Indeed, since u" is flat, the passage from the coordinates
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(ul, ..., u"™) to the flat basic invariants does not affect the form of e that remains
constant in the new coordinates.

6.5 Step 4: Identification of the metric 77 with the invariant metric

We need a preliminary lemma.

Lemma6.10 Foralli, j,k=1,...,n

i ontl—k  _ ntl—j
Cik = Cnt1—i,j = Cntl-ik: (6.35)

Proof Thecasei = 1,and (j, k) = (n,n) istrivial. If i = 1 and (j, k) # (n, n), then

1 (629) n+1—k
Cik = Cpj ,

which coincides with the first of the (6.35). The second one holds true because of the
symmetry of the lower indices of the c’j > Formula (6.34). If i # 1 and k # n then

n+l—j,i
i 62 Iy
C./k - Ri ’
i

and

i,nt+1—k n+1—k,i n+1—j,i

e Ce R S O R R OB Y S O

ntl—ij T ntl—k i - i L
Rn+1—k Ri Ri

On the other hand, if i # I,k =nand j #n

1-,i,n+1—j 1—‘n—&-l—j,i
nel—k 1 6.29) nt1—j (628) I'n 6.22) I'n 6.28) ;
ntl—ij = Cn+l—ij = Canti-i T axi=; = T @i = Sine
’ R J R!
n+1—j

c

Finally if i # 1 and (j, k) = (n, n), then the three terms of the identity are zero, see
(6.31). O

We have now all the ingredients to prove that
MisCip = MjsCiy- (6.36)
This follows at once from (6.35) and from n;; = &; 41— ;. In fact

s onHl—i o onHl—j
NisCjk = Cjk - = Cik = NjsCik-
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6.6 Step 5: Identification of the cometric g with the intersection form.

We will now prove the identity
i EF = gy 6.37
Jjk =8 i, (6.37)

which amounts to say that the operator of multiplication by the Euler vector field E,
defined via the (6.29), (6.30) is the affinor, i.e. a tensor field of type (1, 1), defined
composing (the covariant metric) n with (the contravariant metric) g. To prove (6.37),
we write E = E'9; and first we observe that (6.13) entails

R; = (V";E' — V&,E") = —rj.lE’, (6.38)
which, for i # 1, yields

627 1 ©6.16) 1 6.38) 1 Is i 6.17) li
=D =) = —niug R U= .

C?;El = R,-njzl“,lek Enﬂgl‘yrikEk = —nj8 njig
i i i

On the other hand, the case i = 1 and j # n can be reduced to the previous one. In
fact

’H’l*jEl _

nt+l—j,l
Cni 8

6.29 _
c}-lEl (=) n+l—j,1

Mn = & =g'n;,

where the other equalities follow from the case i # 1 and from the explicit form of 7.
Finally, ifi = 1 and j = n:

| 0 (63D | ., Remark66 | , , 630 n—1 n
cyE =" c, E = " cdpt" = ————

11 1
o =h=8 =8 e

Note that in the first equality we used the explicit form of the Euler vector field, in the
fifth the normalization of g (see Remark 5.21) and in the last the explicit form of 7.
The identity (6.37) implies

g =l Efpt = o BRIt (6.39)

In other words the cometric g can be identified with the intersection form.
We prove now an useful identity that we will use later.

Lemma 6.11
gisci,m = glsci,m, (6.40)

foralls,m,l=1,...,n.
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Proof 1f m # n and [ # 1 (any i)

s 1 ©28) G TET ey T
Csm = 8 Rl = 8 n+l—m
1 Rn+lfm
i,n+l—m
©20) 4T 6.28) 15 ntl-m (635 [
- Rn—',—l—m - Cotl—is — Cons -
n+l—m

Ifm #n,l =1andi # 1 (note that if i = 1 the identity is trivially verified)

is 1 (629) ¢ ni1-m(6.28) g g
Csm = Chs = n+1—-m
Rn+1—nz
i,n+1—m
620 151 (628) 15 n+1-m (635 15 i
- Rn+1_m - n+l—i,s — sm*
n+1l—m

Ifm =n,l =1andi =1 (6.40) is trivally true. On the other hand, if m = n,l =1
and i # 1 we have

(glsc;'n _ gisc;n)En — (glscz _ giscik)Ek

N

— glsgtrnrs _ glsglrnrs

=0,
and this implies g'* cf;n —g's csln = 0 since E" = d,u". The first equality follows
from (6.37) and from the fact that (6.40) holds true if m # n,l = 1 andi # 1, see the
previous computation. On the other hand, the last equality is obtained trading r with
s in (for example) the second summand. Finally, since i and / appear symmetrically
in (6.40), the case m = n,i = 1 and i # 1 follows from the previous computation
simply exchanging the role of i and /. O

6.7 Step 6: Symmetry of V¢

In Saito flat coordinates the vanishing of the curvature of the pencil implies
o,/ = ori¥, (6.41)

forall s, j,k,I =1,...,n, where I‘,ij denote the contravariant Christoffel symbols
of the metric g, see [9]. This observation entails that

Proposition 6.12

dscly = ek, Vs, jkl=1,....n. (6.42)
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Proof If k # 1, then (6.42) follows from the definition of the structure constants. In

. . i Trk o .
fact in this case ¢*, = "’Rk’ , where %k are constants. If k = 1 and (7, [) = (n, n),

it %
the right-hand side of (6.42) is zero unless s = n when this identity is trivially true. If
s # n, then also the left-hand side of (6.42) is zero since n + s > n. Finally, if k = 1
and (j, n) # (n, n), then

1 1 n+l—j n+l1—j 1 1
3st1 = 8sc,j = 05¢y = 0;Cpy = alcsj = 3[CjS.

O
6.8 Interlude: structure constants of the product and Christoffel symbols
Letdr =3 —d =2+ % and let
c;'{j = niscéj:k (6.43)
for all i, j, k, where the c!ks were defined in (6.27), (6.29) and (6.30). Let
B (1 +d; =) i k=1 6.44
k.—(—f—j—?)ck, i,j,k=1,...,n. (6.44)
Remark 6.13 Note that forall j =1,...,n,
dr j—1
14+d;— — = .
R A T
We will prove that
Theorem 6.14 The b,ijs defined in (6.44) satisfy the following equations
g = by +b] (6.45)
g bl = g7bik, (6.46)

foralli, j,k=1,...,n.

To prove this statement we need a couple of preliminary results which we enclose in
the following lemmata.

Lemma 6.15 Let c the (1, 2)-tensor field defined by (6.27), (6.29) and (6.30). Then
Lgc=c. (6.47)
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Proof If ¢ = c;ka,- ® dt! ® dt*, since

n—l+i—j—k

n—1

£Edli e

’

(6.48)

i . i .
1 dt', Lrgo;, = — 9; and deg (c’jk) =

n—

see (6.33) above, one has

Lge = (Lpcly)d @ d! @ di* + ¢ (Ledy) ® di! @ di*
+ 0 ® (Lpdt)) @ di* + 0 ® diY ® (Lidt*)
648

For later use, we observe that from the very last equality, solving for (£ EC; )0 ®
dt! ® dt* one obtains:

E™ 8mc'1jk = cljk + djc/k — dlcljk — dkc/k, (6.49)
where the d;s were defined in (6.32). O

Once these preliminary results are settled, one can prove Theorem 6.14.

Proof First note that (6.37) implies

g =il B (6.50)

Then we compute

3(s) = a'lc), ™) = ! Gxc), ) E" 4 nlc) o EM 2 pil(EM ucl) + din .
6.51)
Using (6.49) to substitute E™ Bmc[jk in (6.51), we obtain
(g = n”(c{k +djc], — dic},). (6.52)

Since the pencil (g, ) is homogeneous and exact,
Legn=d—-2n=~1-—dp)n,
see (6.4) (here n denotes the contravariant metric). On the other hand, since 7 is

constant when written in the Saito flat coordinates, working with the covariant metric,
one has
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0= Lg(n@,d)) = (Len) @i, 0) +n(Ledi, d) + ndi, LEd)

which entails

= (dp — Dn(9;, 9) — 0 E" 00, 9) — O E™n(9;, Im)

= (dr — D' —din' —am",

—n'ldy = ' (—dr + 1+ dp).

Inserting this identity in (6.52), one gets

(g’ = 17”(2 +di+d; — dp)cfk.

This should be compared with

. . d .
b +b] = (1+d,-—§)cjj+<

l—i—d,’——F

d>c

2

Jji

T

To this end, first one observes that the invariance of the metric n w.r.t. the product

implies

In fact

c,’fhzc,}jm, Yh,m,k=1,...,n.

hi mj hi _mj

mh ! !
Cp =N N7 NiCh =n"N7NjiCix = Cf -

From this one concludes that

b +b]' = (2+di +d; —dr)c).

hm

To prove (6.46) we use (6.43), (6.44), (6.50) and we compute

gzsbgk (6é4) 77sz;VnhEh <1 +dp — TF) n]lcgcs

6.37) ; dr ;

= 0 e m (1 +di — 7) n’lcl
(6.40) dp .

=" 0" g™ 0 (1 +di — 7) n’'c],

6.36) i < dr\ ;
€29 yim g5k (1 +di — 7) /et

6.40) d
(: ) 77lmgshrlhl (1 +d — 7F)

. d
©2D piley, EM (1 +di— TF> 0
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Theorem 6.14 implies that

Proposition 6.16 The bij s defined in (6.44) are the contravariant Christoffel symbols
of the metric g in the Saito flat coordinates, i.e.

bl =TV Vi, jk=1,...,n. (6.54)

To conclude the proof of Theorem 6.7 we are left to show that the product defined
by the c‘j «S 18 associative.

6.9 Step 7: Associativity of the product
We start noticing that since (g, 1) is a flat pencil, expressing the conditions of zero-

curvature for the Levi-Civita connection defined by g, := g — An in the Saito flat
coordinates, one obtains the following set of equations

asbi* — bt =0, (6.55)
b bk — bikb = 0. (6.56)

The first set of conditions (6.55) does not provide additional information since it follow
from the symmetry (in the lower indices) of V7¢. Indeed

dr : ‘ .
(1 tdi — 7) (ase/ = ael*) = REn" (aycfy — ek ) =0, (6.57)

Let us consider the second set of conditions (6.56). First we note that using the (6.44)

and recalling that RF = (1+d; — dTF) for all k, these conditions can be rewritten as
follows

ko di sk ik iy (053) ki ji ks ki Js kpd jh kmg.i s dos
RyRj(cse]” —eie’) =" RyRj(es ¢ —¢f'e)”) = R Ry’ ™ (¢ = cigcyy) = 0.

(6.58)

The quadratic conditions (6.58) entail the associativity of the product defined by the
c’j S, that is

s K}
ChsCmi = CmsChi>
but when one of the index m, h is equal to n (of course, if both indices are equal to n

the statement is trivially true).
For this reason, to conclude the proof we are left to show that

i1 i1
ChiChom = CkiCnm> (6.59)
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for all possible values of i, k, m. It is worth noticing that if k = n the previous identity
is trivially satisfied. We start checking that

ChyClm = ChyChn = 0. (m, k. 1) # (n,n, 1). (6.60)
. . ij ij X bn+1—j,[ r!+1—k.i
First recall that, since b = T'}’, we have c’jk = & i d = by (6.28). By a

i i

direct computation

il i i i1 il il
CulClm ~ CkiCnm = €1 Ckm — Ck1Cnm T Z (Cnlckm - Cklcnm)

1#1
1i pn+l—m,l n+l—k,i ;n+l1—m,l
(629),628) ; n4l-m _ i ntl-m b by b, by
= Cc,1C — 1€ —I—Z —_ — -
nl%nk k1%nn Ri R[ Ri Rl
1#1 i 1 i !

i pntl-m “pi pntl-m
R R R; R

1i plin+1—m n+l—k,i ;l,n4+1—m
bl bl b by )
n+l—m 1#1

F Rn+1—m Rl: Rn+l—m
1

i .1,n+1—m i 3 ln+1—
628),(622) bi' by by by Z(
n+l—m i n+l—m

n+l—m

1i p.1,n+1—m ni 3 lLn+l—m 1i 3 l,n+1—m n+1—1,i 3 1,n+1—m
_bi' by D' by n Z <blbk _ by by
T pi pntl-m i n+1—m i pnt+l-m i n+l—m
Ri RnJr]fm Ri Rn+17m 1#1 Ri Rn+17m Ri Rn+17m
pli bl,n-H—m pi bl,n+1—m pli bl,n-H—m
_bi'h _ b b T R =
n+l—m

T pi pntl-m i pn+l-m i
Ri Rn+17m Ri Rn+17m 1#1 Ri R

i 1. l,n+l—m
blt b
k “l

pi pntl-m
Ri Rn+17m

n+l—m l#n
1i plin+l—m /i . lin+l—m
_ bl bk bk bl

= pi pntl-m  pi pntl-m
Ri Rn+17m Ri Rn+17m

=0.

Remark 6.17 In the previous computation, the fourth line follows from the third one,
applying (6.19) to both b;'H_k’i and b5 1™ In the fifth line, the second summation
stems after declaring s = n + 1 — [ (and then s = /) in the second summand of the
summation of the fourth line.

If m, k) # (n,n) and i = 1, (6.59) becomes

Ll 1
CniCim = CkiCrnm- (6.61)

By (6.58), we know that

!

cheb =chel o i=1,...n—1 (6.62)

since we are also assuming k # n, m # n. Therefore, (6.61) can be rewritten in the

following equivalent form
(Ci1Chm — CurCim) E' = 0,

since, for what already proven, the only non-zero contribution in this sum is the one

with i = n.

W Birkhauser



A Dubrovin-Frobenius manifold structure of NLS type on the... Page 450f48 2

Using (6.37), one gets

1 1 1 1 i 1 il 1 1 i
(CitChm — CaCim) E" = ¢i1E oy — iy E

1 I 1 1
=8 S’)slckm —Cr8 S’]sm

(6.40) 1, ! s Il
= &8 Y’7mlcks_clzlg Nsm

-0, (6.63)

whose last equality is obtained changing s with / in the second summand of (6.63).
Therefore (6.61) holds.
As already observed above, if m = k = n (any i) (6.59) becomes

il il
CnlCnn — CniCnn = 0.

We are left to consider the case m = n and k # n (any i), that is we need to prove

c;,cfm — cfdc,lm =0, k#n, anyi. (6.64)
We first observe that c;'llcfcs — c;'dcf” =0fors =1,...,n — 1, for any i since for
i # 1 this is (6.60), while for i = 1 this is (6.61). Therefore we can rewrite (6.64) in

the equivalent form,
cillcfcsEs - C;clclleS =0,
which, together with (6.37), yields

i s i s (6.40) 5 i s i (6.36) s li
c;,zg ﬁsk—cfdg Nsn = cn;g’nsk—ck,glnsn = (Cnﬂhk—ckﬂlsn)glzo-

This concludes the proof of Theorem 6.7. O

7 Conclusions and open problems

In this paper, combining the procedure presented in [3] for complex reflection groups
with a generalization of the classical Dubrovin—Saito procedure, we have obtained a
non-standard Dubrovin-Frobenius structure on the orbit space of B, more precisely
on the orbit space less the image of coordinate hyperplanes under the quotient map.
The procedure of [3] allowed us to get explicit formulas in the cases n = 2, 3, 4 while
the generalized Dubrovin—Saito procedure allowed us to prove the existence of this
structure for arbitrary n. Two main questions are still open:
—For n = 2, 3, 4 the dual product is defined by

1 do
*:ﬁ Z —H®O‘HTL'H
HeH “H
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with o = 0 for all the mirrors in the Orbit I and oy = 1 for all the mirrors in the
Orbit II. Is it true for arbitrary n?
—For n = 2, 3, 4 the Dubrovin-Frobenius prepotentials

1 1 3
Fp, = —tH** £ (> (In? =2 ).
B 2( ) 2() n )

5
Il

[P 1,23 I 133 3 30 3321, .3

—(t ttt — @)t — =(t t7)°Int

6()+ +12() 2()+()n,

1 1 1 1 1

Fr o= — (D)%% 4 20022% — () 215834 £ Z )24 1 12132
By 108() +6() 72()+ +2() +2()
9 42,3 40 4

——(t —(")*Int",

4()+2()n

coincide with the solutions of WDV'V equations associated with constrained KP equa-
tion (see [23]) and enumeration of hypermaps (see [15]), in particular the case n = 2
is related to the defocusing NLS equation and higher genera Catalan numbers. Is it
true for arbitrary n?

In both cases we expect that the answer is positive.
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