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Abstract
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1 Introduction
1.1 Rigid local systems and automorphic representations

Rigid local systems on a punctured curve are those that don’t admit deformations that
preserve the local monodromy at the punctures. Many well-known local systems in
arithmetic are rigid, e.g., Kloosterman sheaves and hypergeometric sheaves. Katz [13,
14] studied rigid local systems systematically, and he gave an algorithm for producing
all tame rigid local systems of arbitrary rank. This algorithm has been extended by
Arinkin [1] (and Deligne) to cover all rigid local systems.

For a reductive group H over Q; an H-local system on a curve U is a homomor-
phism from 71(U, u) to H(Q,). There is a notion of rigidity for H-local systems
generalizing the rigidity for rank n local systems. Much less is known about rigid
H-local systems for general H.

Rigid local systems have seen application in inverse Galois theory and in the con-
struction of motives with exceptional Galois groups, see [4, 5, 26]. In particular it
is of interest to construct many examples of rigid H-local systems, especially for
exceptional groups H.

While [5] use the Katz algorithm to construct and classify rigid G»-local systems,
this algorithm is unavailable for a general reductive group H. Even for rank n local
systems it is often computationally and technically involved. In a series of works [10,
26, 27] a new method of constructing rigid H-local systems is developed, and many
examples are given. The key new ingredient in that method is to use the Langlands cor-
respondence for function fields to transport the problem of constructing rigid H -local
systems into constructing rigid G-automorphic representations. Here H is identified
with the Langlands dual group G of G.

This method has several advantages. When trying construct a rigid H-local system
using the Katz algorithm one has to construct a rank n local system and impose
conditions on it to force its global monodromy to lie in H. Not all rigid H-local
systems can be obtained in this way.

In the geometric Langlands approach one may directly construct H-local systems.
In addition it turns out that rigid automorphic representations are sometimes easier to
obtain, and techniques from the geometric Langlands program are crucial in passing
from rigid automorphic representations to local systems.

This paper aims to expand the zoo of rigid G-automorphic representations and rigid
G-local systems by generalizing the construction of [27]. We consider F = k(t), the
function field of P! over k = [Fg. The G-automorphic representations we construct
have depth zero at 0 and positive depth 1/m at co. The corresponding G-local systems
over P!\ {0, oo} are tamely ramified at 0 and wildly ramified at oo, and are expected
to be rigid.

1.2 Euphotic representations

In this introduction let G be a split almost simple group over the function field F = k(t)
of ]P’,'(. Let Fy, Fso be the local fields of F at 0, oo € Pl
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The starting point of [27] is a class of supercuspidal representations of G(Fso)
introduced by Reeder and Yu [21] called epipelagic representations. They generalize
an earlier construction of simple supercuspidal representations by Gross and Reeder
[9] that motivated the construction of Kloosterman sheaves in [10].

In this paper, we define a more general class of representations of the p-adic group
G (Fs) than epipelagic ones which we call euphotic representations.’

The data needed to construct a euphotic representation is a triple (P, ¥, x). Here

e P is a parahoric subgroup of G(F);

e Y is a linear function on the vector space Vp = P /PLF (the first nontrivial
associated graded of the pro-unipotent radical PZ, under the Moy-Prasad filtration).
We require Y to be semisimple in the sense that its orbit under Lp = P /P1 is
closed.

o Let Ly be the stabilizer of ¥ under Lp, and By, be a Borel subgroup of Ly with

quotient Cartan Ty,. Then x is a character x : Ty (k) — @Z

A euphotic representation m of type (P, ¥, x) is an irreducible representation of
G (Fy) that contains an eigenvector under By (k)P(;"o on which By (k) acts via x

(inflated from Ty (k)) and P2 acts via iy o ¥ (inflated from Vp, and vy : k — @ZX is
a fixed nontrivial additive character).

Compared to the notion of epipelagic representations in [21], we have relaxed the
condition on ¥: it is only required to have a closed orbit under Lp and not required to
have finite stabilizer under Lp. Functionals on Vp with closed orbit that are not stable
are also encountered in work of Kamgarpour and Yi on the geometric Langlands
correspondence for hypergeometric sheaves [12].

1.3 Euphotic automorphic data

To construct rigid G-automorphic representations, we start with a triple (P, ¥, x) as
above, and choose a parahoric subgroup Qg of G (Fp). We impose several conditions
on these data (see Definition 3.4.1) which are of geometric nature (i.e., they only have
to do with the situation over k). Among these conditions is the requirement that certain
Hessenberg varieties coming from cyclic gradings on g have a stabilizer property under
a group action, which we call “spectrally meager” (see Definition 3.3.1), a notion that
we believe is of independent interest.

We prove that a euphotic automorphic datum (P, ¥, x, Qo) is weakly rigid in the
following sense: there is a small (but nonzero) number of irreducible cuspidal auto-
morphic representations 7w of G (A ) such that 77 is euphotic of type (P, ¥, x), 70
contains a nonzero Qp-fixed vector, and 7 is unramified otherwise; and the number of
such cuspidal automorphic representations is uniformly bounded when & is replaced
with any finite extension. This is proved by analyzing the space of automorphic func-
tions cut out by the eigen-conditions at 0 and oo, and Hessenberg varieties naturally
show up in this analysis.

' oceanography euphotic is synonymous to epipelagic, stressing the role of light. Depending on the
transparency of the ocean water the euphotic zone may vary in depth - in analogy there are more possibilities
for the depth of a euphotic representation than for the depth of an epipelagic representation.
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1.4 Hecke eigensheaves and local systems

To construct the G-local systems out of these automorphic representations, we consider
automorphic sheaves instead of functions. The automorphic datum (P, ¥, x, Qo)
gives rise to an abelian category P = P(y, x) of perverse sheaves on a certain
moduli stack of G-bundles on IP% with level structures given by Pt and Q. This
category has only finitely many simple objects, which is an indication of rigidity.

Here comes a crucial difference with all previous work on rigid automorphic
representations. Previously the analogous categories P always decomposed into
Hecke-stable pieces with one simple object (a Hecke eigensheaf) in each piece, and
the framework of [26] allowed us to extract a G-local system from each Hecke eigen-
sheaf. In the euphotic situation, the category P sometimes has more than one simple
object yet there isn’t an obvious way to decompose it further. We remark that this is
a feature rather than a bug: it is likely that these more complicated categories P give
nontrivial global L-packets. To deal with this situation, we extend the framework of
[26] to extract eigen local systems from a Hecke eigencategory rather than a Hecke
eigensheaf. The extra work needed is of categorical nature: we need to analyze the
structure of semisimple factorizable module categories under a neutral Tannakian cat-
egory. We give a self-contained treatment of this issue in “Appendix A”, proving a
classification result in Theorem A.4.1.

The main results of general nature in this paper can be summarized as follows. For
simplicity we state the results in the case G is split. For notations, see Sect. 4.

1.4.1 Theorem (See Theorem 4.2.2 and Prop. 4.3.2) Assume G is split. Let (Pso, ¥, X,
Qo) be a euphotic automorphic datum. Consider the category P(yr, x) of perverse
sheaves on Bung (Qo, PM)y that are (By, x Vp, ASy W K )-equivariant. Then

(1) The category P, x) has finitely many simple objects up to isomorphisms,
and all of them are clean extensions from an explicit locally closed substack of
Bung (Qo, P%1).

(2) There are finitely many semisimple G-local systems {Eq }gex over G, 1 (for some
index set ¥), and a decomposition of P** (Y, x) (semisimple ob]ects inPWr, x))

PE, x) =P Po

o€eEX

into Hecke- stable subcategorles such that each Py is an Ey-module category
under Rep(G(,)for GU = Autg(Es) (whose action on Py is denoted by e), and
the action of the geometric Hecke operator Ty (Where V € Rep(G) Jon A€ Py
is given by

Ty(A) =P ER(E,(V): E]e A)
E

in Perv(G,, ¢ x Bung(Qo, PL")p). Here the direct sum is over all irreducible

local systems E over ij, E;(V) e LOC(Gm,E) is the (semisimple) local system
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on (ij associated to E; and V, [E5 (V) : E] is the multiplicity space of E in
Es(V), viewed as an object in Rep(ag).

(3) The geometric monodromy of each G-local system E is tame and unipotent at 0.
Under Lusztig’s bijection between unipotent classes in G and two-sided cells of
the affine Weyl group Wy, the unipotent monodromy of E, at O corresponds to
the two-sided cell cq containing the longest element of Wy,,.

1.5 Examples

More than half of the paper is devoted to various examples of euphotic automorphic
data that are not epipelagic.

The starting point of our work is a new rigid G-connection on P'\{0, oo} found
by the first-named author [11]. We looked for the automorphic representation corre-
sponding to the ¢-adic counterpart of that G,-connection, and arrived at the notion
of euphotic automorphic data in general. This G, example is presented in detail in
Sect. 5.

In Sect. 6 we give a complete list of euphotic automorphic data when the parahoric
subgroup P is the hyperspecial parahoric G(O). The list in this case turns out to
be closely related to the classification of double partial flag varieties G/P; x G/ P>
that are spherical as a G-variety. The latter problem has been solved by Stembridge
[24], and we use his results. We then study in Sect. 7 the Hessenberg varieties that
appear in these examples in more detail, in order to conclude that they are spectrally
meager, thereby verifying that the list in Sect. 6 indeed gives euphotic automorphic
data.

In Sect. 8 we give some potential examples of euphotic automorphic data, mostly
for exceptional groups. For these groups we have only checked one of the conditions
in the definition of euphotic automorphic data.

1.6 Questions for further study

(1) The most complicated part in verifying a euphotic automorphic datum is to show
that certain Hessenberg varieties are spectrally meager, a condition on the stabiliz-
ers of a certain solvable group action. In Sect. 7 we deal with Hessenberg varieties
arising from the adjoint representation of G, and we show they are spectrally mea-
ger by relating them to Springer fibers. What is still missing is an effective criterion
for Hessenberg varieties to be spectrally meager in general.

(2) We make predictions on the Langlands parameters of euphotic representations
in Sect. 2.4, especially about their slopes. This prediction is closely related to
another open problem of showing that the G-local systems we obtain from euphotic
automorphic data are indeed cohomologically rigid (see Prop. 4.3.3 for evidence).

(3) Give a complete list of (P, ¥, Qo) for each almost simple quasi-split G, such
that there exists x making (P, ¥, x, Qo) into a euphotic automorphic datum.

) Birkhauser
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1.7 Notation and preliminaries
1.7.1 The curve X

Fix a finite field k of characteristic p and let F be the field of rational functions on
X = IP,l. Fix an affine coordinate ¢ on X\{oo}, and we identify F' = k(¢). The closed
points | X| of X are in bijection with the places of F. For x € |X| we denote by O,
the completed local ring of X at x and by Fy its field of fractions. The ring of addeles
of F is the restricted product

Ar =[] Fu

xe|X|
1.7.2 The split group G

Let G be a split, connected semisimple group over k which is almost simple over
k. Fix a maximal split torus T C G, a Borel subgroup B containing T, and extend
these choices into a pinning ¥ = (T, B, {x;}ic;) of G (where I indexes the set of
simple roots). Let Aut'(G) be the finite group of pinned automorphisms of G, which
is identified with the outer automorphism group of G. Let g = Lie G.

We make the following assumption:

There exists a non-degenerate Ad(G)-invariant symmetric bilinear form ong.
This assumption is satisfied when char(k) is sufficiently large.
1.7.3 The quasi-split group G

Let e € {1,2,3}. Assume p # e and that k contains all e-th roots of unity. Fix an
injective homomorphism oy : e (k) — Aut’ (G).

Let G be the quasi-split form of G over G,, = X —{0, oo} determined by Houc. More
precisely, let G,, = Spec k[tVe 1=Vl > G, = Spec k[, t~!] be the p-torsor, and
consider the Weil restriction Resg- /G G. Then G is the fixed point subgroup of
Resg- /GmG under the diagonal action of ., on both @;, and on G via Ogy;.

The base changes G r, and G r, are quasi-split forms of G over the respective local
fields determined by the same homomorphism 6oy, viewing i, (k) as the the quotient
of Gal(Fg / Fo) and Gal(F3,/ F) realized by the tamely ramified extensions k(¢ 1/ey)
and k(t~1/9)).

Let A = T*e-°. From the construction of the group scheme G over G,,,, the constant
torus A x G, is a maximal split torus of G. Similarly, A, and A are maximal split
tori of G, and G .

1.7.4 Coefficient field

We fix a prime ¢ 7 char(k). The representations of p-adic groups and adelic groups
will be on Q,-vector spaces. Sheaves considered in this paper are étale complexes with
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Qy-coefficients over k-stacks or k-stacks. All sheaf-theoretic functors are understood
to be derived.

2 Euphotic representations

In this section we introduce a class of representations of the p-adic group G (F) that
generalize the epipelagic representations introduced by Reeder and Yu in [21].

This section concerns only the quasi-split group G, over Foo. We denote G,
simply by G in this section. Using the affine coordinate ¢ on X \ {00}, we identify Fi
with K = k((t~")) and write K, = k(t~'/¢)).

2.1 Parahorics and gradings
2.1.1 Affine roots and root subgroups

The Lie algebra Lie G is the p.-invariants on g ® K, (where u, acts both on K, by
Galois action and on g via Ooyt). The torus A = THe-° (see Sect. 1.7.3) acts on Lie G
by the adjoint action and additionally this algebra carries a G,,-action given by scaling
the uniformizer  ~!/¢ of K,. The set of affine roots W, with respect to A can also be
identified with the weights of A x (,, for this action on Lie G. The set of real roots
W C W,s consists of those affine roots which are non-trivial on the torus A.

Denote by LG the loop group of G. For any real root o € Wy, there is a subgroup
Uy C LG whichisisomorphic to G, over k and whose Lie algebra is the «-eigenspace
under the action of A x G,, on Lie G, cf. [27, Sections 2.1 & 2.2].

The Borel subgroup B fixed in Sect. 1.7.3 gives a set of simple affine roots A C
W,r and positive affine roots \If;if C Wt

2.1.2 Parahoric subgroups

The maximal split torus A ® K of G fixed in Sect. 1.7.3 defines an apartment 2{ of
the building of G(K). Then W, can be identified with a set of affine functions on 2,
whose vanishing affine hyperplanes give a stratification of 2 into facets. There is a
unique set of positive integers {1y }aea,; such that ) ngo = 1 as functions on
A,

The fundamental alcove C C 2L is cut out by the inequalities @ > O forall & € Agg.
Let § C C be a facet in the closure of C. Let J = {« € Aatfla|z = 0}. Let

o€ Aqff

m=mg= Z nge € N.
a€Nafr\J

In the rest of the paper we also assume
The characteristic p = char(k) does not divide m.

) Birkhauser
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Let P C G(K) be the (standard) parahoric subgroup corresponding to §. Let
P O P™ O P be the first three steps in the Moy-Prasad filtration of P with respect
to xp, the barycenter of §. In other words

P" = G(K)wpiyms PTT =G(K)po/m-

Let Lp = P/P™ be the Levi factor of P (a connected reductive group over k). There is
a canonical section Lp < P whose image contains A; we identify Lp with the image
of this section. The quotient Vp = P™ /P is a representation of Lp over k.

Let W(P) C W, be the affine roots that appear as the weights of A x G, on Lie P;
similarly define ¥ (PT), W (P™"), W(Lp) and ¥(Vp). Then

1
W(Lp) = {a € Wasrla(xp) =0}, W(Vp) = {a € Wastla(xp) = Z} -
2.1.3 Cyclic grading on the Lie algebra

Let g = Lie G. Then the barycenter xp gives a Z/mZ-grading on g

g= P 90

ieZ/mZ

compatible with the Z/eZ-grading on g obtained from 6oy (under the reduction map
Z/mZ — 7Z./eZ) and such that g(0) can be canonically identified with Lie (Lp), and
g(i) can be canonically identified with G (K) i /G(K) p, il fori # 0. In particular
we have Vp = g(1) as Lp-modules. For more details, see [21, Theorem 4.1].

2.2 Euphotic representations

Let P be a standard parahoric subgroup of G(K). Let ¥ € Vg be a vector whose Lp-
orbit is closed. Using an Ad(G)-invariant form on g, which exists by our assumption
in Sect. 1.7.2, the Lp-module V' may be identified with g(—1). Then the Lp-orbit of
Y is closed if and only if ¢ € g(—1) is semisimple as an element of g.

Fix an additive character ¥ : k — @Z . For an admissible representation (77, V)
of G(K) over Q, let

VED) = (y e Vim(g)v = ya (W (g)v, Vg € P).

2.2.1 Definition Let ¢ € Vp be a vector whose Lp-orbit is closed. Let (7, V) be an
irreducible admissible representation of G (K ). We say that it is euphotic with respect
to (P, ¥) it V®"¥) £ 0.

2.2.2 Action ofL.,,

Let Ly be the stabilizer of ¥ under Lp. Then Ly is a (not necessarily connected)
reductive group over k. In fact, since ¥ can be identified with a semisimple element of

W Birkhauser
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g lying in g(—1), its centralizer Gy in G is a reductive group whose Lie algebra gy, is
stable under the Z/mZ-grading. Viewing the Z/mZ-grading on g as an action of u,,
on G, Lp is the neutral component of G#”. Then G, is stable under the p1,,-action,
and Ly, C (Gy )" is the union of components that lie in Lp.

Let (7, V) be a euphotic representation of G(K). There is an action of L (k) on
V®"¥) We will be interested in those (7, V) such that V®"9) contains a principal
series representation of L (k). More precisely, let By, C L:’b be a Borel subgroup of

o

the neutral component Ly, of Ly,. Let Ty, be the quotient torus of By,.

2.2.3 Definition Let ¢ € g(—1) be semisimple and let x : Ty (k) — @Z be a char-
acter. Let (7, V) be an irreducible admissible representation of G(K). We say that
it is euphotic with respect to (P, v, x) if the action of By (k) on V®Y) contains a

nonzero eigenvector on which By, (k) acts via the character By (k) — Ty (k) LS @Z .

By Frobenius reciprocity, an irreducible admissible (7, V) is euphotic with respect
to (P, ¥, x) if and only if it is a quotient of the compact induction

¢ —indg ') o (Y 0 ) B ).

2.3 Relation with epipelagic representations

For simplicity in this subsection we assume G is split over F (i.e., e = 1) and LOw is
split over k. We lift Ty, to a maximal split torus Ty C Ly over k. Up to changing
by an element in the same Lp-orbit, we may assume 7y, C A (A is a maximal split
torus of Lp). Then H = Cg(Ty) is a Levi subgroup of G containing T. From the
construction, H is stable under the 1,,,-action on G which gives the Z/mZ-grading.

We claim that the induced Z/mZ-grading on b = Lie H is stable in the sense of
[20, §5.3]. Indeed, it suffices to show that the stabilizer (Hly )" is finite modulo Ty,
but this is true because (IHy, )# is a reductive group containing Ty as a maximal torus
which at the same time is central, hence (Hy, )" /Ty, is finite. The theory developed in
[20, Corollary 15] then attaches a regular elliptic conjugacy class [w] in the extended
Weyl group Wex (H, T) ( component group of the normalizer of T in Aut(lH)). One
checks that [w] indeed is a well-defined conjugacy class in W(G, H, T) = (Ng((H) N
Ng(T))/T.

Let H = HH®; K, a Levi subgroup of G. The Z/mZ-grading on f gives a standard
parahoric subgroup Py C H and ¥ € h(—1) can be viewed as a linear function on
PJI; / P;_’;r. We expect that a euphotic representation of G (K) with respect to (P, v, x)
should be a composition factor of a parabolic induction from an epipelagic represen-
tation of H (K) with respect to (Py, ) in the sense of [21], whose central character
restricts to y on Ty, C ZH.

2.4 Predictions on the Langlands parameter
Again for simplicity we assume e = 1, i.e., G is split, and that L is split over k.

) Birkhauser
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2.4.1. Let G be the Langlands dual of G (over Q) equipped with a maximal torus T
and an isomorphism X*(T) = X4 (T). Then the roots CD(G T) are identified with the
coroots ®V (G, T). Recall the Levi subgroup H introduced in Sect. 2.3. Let HcG
be the Levi subgroup containing T such that CD(H T) C <D(G T) is identified with
the set ®V(H, T) C ®V(G, T).

242. Let Wg D Igx D I; be the Weil group, inertia group and wild inertia of the
local field K. Let 7 be a euphotic representation of G (K) with respect to (P, ¥, x).
Let o : W — G be the Langlands parameter of .

For p = char(k) large, we make the following predictions on p:

(1) Consider the torus S= [H H]NT. Then, up to G- con]ugacy, one should be able
to arrange that t px (I Jr) C S. We also expect that o, (1 K) is regular in S ie., 1ts
centrallzer inG is Ca (S) This implies that p, (Ig) lies in the normalizer NG(S)
of Sin G.

(2) By (1), pr induces a homomorphism

plame . ame — /1t s N&(S)/S.

The group Ng (S )/ S is a possibly disconnected reductlve group with T / S — Hab

as a maximal torus. Let plame-s$ (I tame _, - AL S(S) / S be the semisimplification of
tame

e,

There is an inclusion NG(H T) = NG(H) N NG(T) C NG(S) Then up to

conjugacy p2™®** should have image in Ng (H, T)/ S. The composition

tame,ss

reme 2 N~(H,T)/S — Ng(H,T)/T = W(G, H,T)

should map a topological generator of Iy lame 14 a regular elliptic element w €
W(G,H,T) = W(G,H,T) which is in the regular elliptic conjugacy class
attached to P in Sect. 2.3.

(3) Let NG(H T) C NG(H T) be the preimage of the cyclic group (w) C
W(G, H,T). Then by (2), up to conjugacy p‘ame 5§ should have image in
NG(H T) / S, which is an extension of (w) by T / S. Since w acts trivially on
Ty, the projection T - T / S — va dual to the inclusion Ty C T extends to a
homomorphism Ng (H T) / S ﬁ// Then the composition

tame,ss

Eme L NA(H,TY /S - Ty
should correspond to the character x of Ty (k) under local class field theory.
(4) The slopes of the adjoint representation Ad(p;) : Wx — Aut(g) are either 0 or
1/m, and
Swan(Ad(py)) = dim L — dim Ly,. 2.1

The prediction on Swan conductors (2.1) is based on tll\e fpllowing heuristics. The
Swan conductor should be 1/m for each root ¥ € ®(G,T) = ®Y(G, T) which is
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nontrivial on the image p (/ ;g), and should be zero on other root spaces and on t. Those
a" suchthat oV | pIh) = 1 correspond exactly to the coroots of the centralizer Gy, with

respect to T. Let R = {a € ®(G, T)|a(y¥) # 0}, then Swan(Ad(p,)) = #R'/m.
On the other hand, the w,,-action on g preserves R’ and freely permutes R’. We get
that g(0) = g/~ is the direct sum of gy N g(0) = Lie Ly and 1-dimension from the
sum of root spaces for each p,,-orbit of R’. Therefore the number of 1,,,-orbits on R’,
which is #R’/m, is the same as dim L — dim Ly, hence the prediction (2.1).

Let /@™ (m) C 1™ be the unique subgroup of index m. Assume the character x is
sufﬁ<:1ently generic, then ,ot“me will be semisimple and by (3) above, p2™¢ (1™ (m))
should be conjugated into 7 / S. The genericity of x should imply that the centralizer of

pame(J¥me(m)) in Cg (S )/ SisT / S. Therefore, for x sufficiently generic, we should
have G K) = C(S)Pr" UK ") = T Therefore we expect to have

dim g %) = dimt” = dim Ty, = rkLy. (2.2)

3 Euphotic automorphic data

In this section we define euphotic automorphic data, and give a criterion for them to
be rigid.

3.1 Pre-euphotic automorphic data
3.1.1 Opposite parahorics

Let P4, be a standard parahoric subgroup of G(Fas) corresponding to a facet § C C
in the apartment 2, of the building of G(F) corresponding to the split torus Af,_.
Let 2o be the apartment in the building of G (Fp) corresponding to the split torus A .
Then there is a unique isomorphism 2o, = Ay characterized by the following two
conditions

(1) The natural action of X,(A)r on 2 corresponds to the opposite of the natural
action of X, (A)r on 2.

(2) The special vertex in 20, corresponding to the parahoric G(Os) maps to the
special vertex in g corresponding to the parahoric G (Oy).

Let us denote both 2, and 2o by 2 under this identification. Let Py be the parahoric
subgroup of G (Fp) corresponding to the same facet § that we used to define Po.,. We
say Py thus constructed is opposite to P,. Then the Levi factors Lp,, and Lp, can be
canonically identified, which we denote by Lp, or simply L.

3.1.2 Definition A pre-euphotic automorphic datum is a tuple (Poo, ¥, x, Qo) where

e P is a standard parahoric subgroup of G(F);
o V€ fooc with closed orbit under L;

o x:Ty(k) — Q, isacharacter.
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o LetPy C G(Fp) be the parahoric subgroup opposite to Po,. Then Qg is a parahoric
subgroup of G (Fp) which is contained in Py and contains the torus A.

The parahoric Qg C Pg corresponds to a facet §’ in 2y whose closure contains §.
Let xq be the barycenter of §'. The parahoric Qg also determines a parabolic subgroup
Q of L = Lp, (containing A) such that Qo is the preimage of Q under the projection
PO — L.

3.1.3 Weyl groups

Let W be the Weyl group of G with respect to T. The Weyl group W of G with respect
to A can be identified with the fixed points W#<. The Iwahori-Weyl groups of G (F)
and G (Fp) wigh respect to A can be identified under the identification A, = 2p; we
denote it by W = X, (A) x W. For w € W, choose ellifting of it in Ng (T) (k)*e; for
an arbitrary element w = (A, wi) € X, (A) x W = W, we have its lifting w = .

Let Wyt C W be the affine Weyl group generated by affine simple reflections. Let
@ = Staby; (C), the stabilizer of the fundamental alcove under W. Then the projection

induces an isomorphism 2 Sw / Wagr, and Q is a finite abelian group.
Let Wp (resp. W) denote the Weyl group of L (resp. Lq, the Levi of Qg or Q),
both as subgroups of W,e. We have Wo C Wp.

3.2 The space of automorphic forms
3.2.1 A space of automorphic forms

We will impose more conditions on the data (P, ¥, x, Qo). To motivate these con-
ditions, we consider automorphic representations 7 = ®', x| Tx of G(AF) for which

(1) my is unramified for x # 0, oo;
@) w0 # 0;
(3) 7 is euphotic with respect to (P, ¥, x) in the sense of Definition 2.2.3.

Any such automorphic representation 7 contains a nonzero vector in the following
space

(ByP%L,. 1)

F=Fun | GIF\G(AF)/Qo x [ GO
x7#0,00

of Q,-valued functions on which By P} C Py acts via the character 41 defined by
pls, = x and ptlps = Y o . Let To = G (klz, 1~"]) N Q. Through the equality

GIF\G(AR)/(Qox [] GO xPLH) =PLN\G(Fx)/To (3.1
x7#0,00
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of double cosets, cf. [27, 2.12] we identify
F = Fun(G(Fso)/ o) BvPoe ),

We have the Birkhoff decomposition [27, 3.2]

G(Fs) = ]_[ Poowl. (3.2)
[w]eWp\W/Wq

From this we get a decomposition

F= @ Fw

[wleWp\W/Wo
where F[,) is the subspace of functions supported on PoowI.

3.2.2 The space Fyy
Let w € W. We have

PL\Poolo/ o = L(k)/ Qu(k) = (L/Qu) (k) (3.3)

where Q,, = Ad(w)I'oNL = Ad(w)QpN L is the parabolic subgroup of L containing
A with roots

V(Qy) = {a € Yre|a(xp) =0, a(wxg) < 0}.

Let f € Flw). Assume f is not identically zero on the double coset P ¢wIy for
some £ € L. For any o € V(Vp) (i.e., a(xp) = 1/m) and u € U, we have

-1

flu) = Y @) f ().

If we furthermore assume that o (wxq) < 0, then U,,-1, C I'g and we find that

FO) = fEiAd@ )W) = f(eui) = Y u) f(@w).

.. . —1 .
This implies that ¢ v vanishes on the space

Vy 1= EB Vp(a).

a(xp)=1/m
a(wx@)<0

In other words

-1

Cyevt P wwcw
a(xp)=—1/m
a(wxg)<0
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We may alternatively write Vuf into a sum of A-weight spaces

Vo= P Vi@
1

(o, wxQ—xp)<;;

Note that VuJ; is stable under Q..

3.2.3 Definition Let Y, be the closed subscheme of the partial flag variety L/Q,,
defined by

Yo ={-QueL/Qu| "  ¥eVli)

3.2.4Remark (1) The variety Y,, is a Hessenberg variety in the sense of [8], attached
to the L-module Vp and the Q,,-stable subspace VUJ;. It carries an action of the
stabilizer Ly by right translation.

(2) If w = 1, or more generally if gp is in the closure of w§q, then Y,, = L/ Q.

(3) If we change w to ww for some wy € Wg, then both O, and Vuf are unchanged,
hence Yy, = Yy, -

(4) If we change w to wow for some wy € Wp, then we may lift w, to W, € L, and
right multiplication by %, induces an isomorphism L/Q., S L / Qw,w Which

restricts to an isomorphism Yy, — Yy,u.

The above discussion implies that any function f € F[,,) must be supported on
Yy (k) (as a function on (L/ Q) (k) under (3.3)). In view of the eigen property under
By, we get the following description of Fiy).

3.2.5Lemma For any w € W let [w] be its (Wp, Wq) coset in W. Then there is a
canonical isomorphism

Frw) = Fun(Y,, (k) Bv ©-0)

where the right side is the space of eigenfunctions on Yy, (k) under the left translation
of By (k) with eigen-character x. The isomorphism is given by F, 5 f + fy, where
Jw(€Quw) = f(lwTo) for all £Qy € Yy (k).

3.3 Spectrally meager varieties

In examining when the space F,) is zero we arrive at the following notion.

3.3.1 Definition (1) Let H be a connected reductive group over k with Borel subgroup
Bp. Let Y be a scheme of finite type over k with an H-action. We say that Y is
spectrally meager if for any geometric point y € Y (k) the stabilizer Stabp w ()
contains a nontrivial torus.

(2) If Y is a spectrally meager H-scheme, let S(Y') be the collection of (nontrivial)
subtori of T, ¢ (the universal Cartan of H) given by the images of Stabg,, (y)° —

Ty forall y € Y (k).
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3.3.2Remark (1) The definition of spectrally meager H-scheme does not depend on
the choice of the Borel subgroup By . It is therefore intrinsic to the H-scheme Y.

(2) If Y is a spectrally meager H-scheme, the collection S(Y) of subtori is finite.
Indeed, we may partition Y into finitely many locally closed connected By -stable
subschemes {Y,} such that the torus part of the stabilizer of By on each point of
Y, has the same dimension, then each Y, contributes a single torus in S(Y).

(3) The terminology “spectrally meager” may be justified as follows.
Let x : Tg(k) — @ZX be a character with the property that x|sx) # 1 for any
S € S(Y) defined over k, then the H (k)-module Fun(Y (k)) does not contain any
simple constituent of the principal series representation Indg;k&)( x). The same
property holds after any finite base change k' /k.
On the other hand, making the obvious definition over C, if Y is an affine H -variety
over C which is spectrally meager, then O(Y) as an algebraic H-module contains
the irreducible H-module V; with highest weight A only if A € X,.(S)" for some
S € §(Y), i.e., A lies in the union of finitely many proper sublattices in X*(7').

3.3.3 Corollary (of Lemma 3.2.5) Let w € w. If Yy, is spectrally meager as an L. -
scheme, and x is nontrivial on S(k) for any torus S € S(Yy,) that is defined over k,
then f[w] =0.

Proof For any y € Y, (k), the stabilizer StabBw (y) maps to a nontrivial torus S €
S(Yy). Since xls@) # 1, all (By (k), x)-eigenfunctions on Y, (k) must vanish at y.
We conclude that F[,,) = 0 by Lemma 3.2.5. O

3.4 Euphotic automorphic data

3.4.1 Definition A pre-euphotic automorphic datum (P, ¥, x, Qo) is called a
euphotic automorphic datum if it satisfies the following conditions:

(1) For w € €2, any Borel subgroup By of Ly acts on Y,, with an open orbit with
finite stabilizers.

(2) Forany w € W — WpQ W, the Ly -scheme Yy, is spectrally meager.

(3) Let K, be the Kummer local system on Ty attached to x (see [26, Appendix
A.3.5]). Then for any S € Uw¢WPQWQS(Yw) (this is a subtorus of wa over k),
the restriction IC, |5 is a nontrivial local system.

We call the euphotic automorphic datum (P, ¥, x, Qo) strict if moreover the fol-
lowing holds:

(1) For any w € Q and any x € (L/ 0.,) (k) outside the open By -orbit let Sy be the
image of Stab By (x)° — TW,E and assume that K, |, is a nontrivial local system
(in particular, Sy is a nontrivial torus).

(2) The stabilizer on the open By, -orbitis ZG.

3.4.2 Remark (1) The conditions for a pre-euphotic automorphic datum to be a
euphotic automorphic datum can be checked after base changing the situation
to k.
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(2) The open By -orbit condition in Definition 3.4.1 is saying that Yy, is a spherical
Ly, -variety. This implies that By, has finitely many orbits on Yy, by [2].

(3) As w varies in W, there are only finitely many different L -equivariant isomor-
phism types of the schemes Y;,. Indeed, there are only finitely many possibilities
for @y and Vy,. Therefore the union Uy¢wpawyS(Yy) is a finite set.

3.4.3 Proposition Let (P, ¥, x, Qo) be a euphotic automorphic datum. Then

(1) The space F is finite-dimensional and consists of cusp forms. In particular, any
automorphic representation w satisfying the conditions in Sect. 3.2.1 is cuspidal.

(2) For any finite field extension k' [k, consider the similarly defined space F¥ using
the base change automorphic data (Poo, ¥, x, Qo). Then dim@ F¥ is bounded
independent of k'. ’

Proof (1) Forany w € W— WpQ W, the assumptions in Corollary 3.3.3 are satisfied

(for any S € S(Yy) defined over k, x|s) is nontrivial if and only if /C, | St is
nontrivial). Therefore F,,) = 0.
If w € Q, the space F; = Fun(Yy, (k))(Bw(k)’X) has finite dimension because
there are finitely many By -orbits on Y,, over k (see Remark 3.4.2(2)), hence
finitely many rational orbits as well. we conclude that F is finite-dimensional
and stable under the spherical Hecke operators at all places x ¢ {0, oco}. By [15,
Lemme 8.24], F consists of cusp forms.

(2) The universal bound for dim F’ k" comes from bounding the number of By (k')-
orbits on Y, (k) for w € €. The number of such orbits is bounded by
>, #mo(Stab By (X)) where x runs over a set of representatives of the finite set

Y (k)/ By (k). o

3.4.4Remark One may generalize the notion of a (pre-)euphotic automorphic datum
by adding a character n of L (k) (or arank one character local system £, on Lg). We
leave it to the reader to modify the third condition in Definition 3.4.1 in this situation
(which should involve IC, and KC,)).

4 Hecke eigencategory and local systems

Unless otherwise stated, in this subsection all £-adic sheaves are over the relevant
spaces base-changed to k.

4.1 Automorphic sheaves
Let (P, ¥, x, Qo) be a euphotic automorphic datum.
4.1.1 A category of automorphic sheaves
We denote by
Bun := Bung (Qo, P;“o"’)

W Birkhauser



Euphotic representations and rigid automorphic data Page 17 0f 73 76

the moduli stack of G-bundles on P! with level structure Qp at 0 and P at co. It
carries an action of By X Vp by changing the level structure at co. The character
Yoy : Vp = PL/PLt — @, determines an Artin-Schreier sheaf ASy on Vp.
Similarly we get a Kummer sheaf on Ty, whose pullback along By, — Ty we denote
by ).

Let D(y, x) be the derived category of Q,-complexes on Bung with (Bw’; X
VP,E’ Ky XASy )-equivariant structures. In [26], a more elaborate notion of geometric
automorphic data is defined, including the data of a character sheaf on the center ZG.
In our case we simply take the trivial local system on ZG. For the details we refer to
[26, Section 2.6].

More generally, for any scheme S over k, we define D(S, ¥, x) to be the derived
category of Q,-complexes on S xz Bung with (Bx//j X Vp g, Ky KIASy )-equivariant
structures.

Let Py, x) C DY, x) and P(S, ¥, x) C D(S, ¥, x) be the full abelian subcat-
egory of perverse sheaves.

4.1.2Lemma (1) The category P(Y¥, x) has finitely many simple objects up to iso-
morphism.

(2) Let S be a scheme of finite type over k. Any simple perverse sheaf in P(S, ¥, x) is
of the form Fs X A, where Fg is a simple perverse sheaf on Sz, and A € Py, x)
is a simple object.

Proof All stacks in the proof are understood to be over k; we omit the base change
(—)z from the notations.

(1) Stratify Bun into locally closed substacks Bunp,) indexed by classes [w] €
Wp\VT/ /Wq using the Birkhoff decomposition (3.1) and (3.2). By the discussion
in Sect. 3.2.2, the restriction of any A € D(y, x) to Buny,] can be identified
with an object Ay € D(p ) (Yw). By the genericity condition on the Kummer
sheaf K, (see Definition 3.4.1), for any w € W — WpQWgq, any geometric point
y € Yy, the restriction of IC, to Stabp " (y) is nontrivial. Therefore Af,,; = 0. This
implies that any object A € D(y, x) has vanishing stalks and costalks outside the
open strata Ll,cqBunfy,) (one for each connected component of Bun). For w € Q
let jy, : Yy x Vp < L/Qy x Vp = Bunp,] <> Bun be the embedding. Here the
first arrow is a closed embedding and the second is the open inclusion of the open
stratum. Then the sum of the functors j} gives a t-exact equivalence

JF DWW, x) — @ Dp, wvp. i, RAS,) Yw X Vp) = @ D, i) (Yw).

we2 we

By Remark 3.4.2(2), Y, has finitely many By, -orbits. This implies that the category
Perv(g, k,)(Yw) has finitely many simple objects. Therefore the same is true for

P, x).
(2) The above argument shows that the restriction map along the embedding idg X j :
S X UypeqYy X Vp < S x Bun induces an equivalence

DS, ¥, x) > @D Dis,.ic,) (S x Yu).

weR
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Let B € Pervig, 1,)(S x Yu) be a simple object, for some w € Q. Let ¥, =
Uyes Zo be the stratification into By -orbits. Then B is the middle extension of
a local system By on a locally closed By -stable substack of S x Y, which is
necessarily of the form S’ x Z, for some ¢« € ¥ and §' C S locally closed
irreducible. Choose a point z € Z, and let I, be the stabilizer of By at z. Then
via restriction to S” x {z}, (By, K )-equivariant local systems on S’ x Z, are the
same as (I'y, KC [T'y)-equivariant local systems on S’, with the trivial action of T,
on S’. Let I'y be the neutrual component of I'y. If IC, [Ty is nontrivial, there are no
such local systems. If IC,, |I";, is trivial, then /) |I"y descends to o(I'y) and gives

aclass & € H? (mo(Ty), @;) by [26, A.4.1]. The class & gives a central extension
1 — @Z — B — mo(I'y) — 1. By [26, A.4.4], (I'y, K, |I'y)-equivariant local
systems on S’ (with the trivial T'y-action) are the same as local systems on S’

with an action of the group E such that @Z C E acts by scaling on the local
system. Thus any irreducible (By, K, )-equivariant local system By on S" x Z,
must be of the form Foy X p for an irreducible local system Fy on S’ and an
. . . . X . .

irreducible representation p of E on which QQ, acts by scaling. View p as a
(By, K)-equivariant local system .4y on Z,. We have By = Fy X Ag. Let Fg

and A be the middle extensions of Fy and Ag respectively to S and Z4, then
B=FsX A

4.1.3 Geometric Hecke operators

We briefly review the construction of geometric Hecke operators. For details we refer
to [26, §4.2]. First consider the case G is split. Let Hk be the Hecke correspondence

3 I
Bun <—— Hk ——= G, x Bun

which classifies (x, &, £, o) where x € G,,, £, £’ € Bun and « is an isomorphism

of G-torsors &|x\(x} = &'|x\(x} respecting the level structures. The maps W oand 7
send (x, &, &, a) to € and (x, &) respectively.

By the geometric Satake equivalence, for each representation V ¢ Rep(a )
there is a G[[¢] x Aut(k[[#]))-equivariant perverse sheaf on the affine Grassmannian
Grg = G((t))/GIt] denoted ICy. This perverse sheaf can be “spreadout” over Hk
(still denoted ICy ) such that its x-restriction to every fiber of 7 is isomorphic to ICy .
The geometric Hecke operator is the functor

— <«
Ty = h(h* (=) ®ICy) : D, x) = DG, ¥, X)-

The formation of Ty is additive in V. R
More generally, for any finite set /, any scheme S, V € Rep(G’ ), there is a functor

TSy : D(S. ¥, x) > DG}, x S, v, x)
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defined using the version of the Hecke stack that modifies the bundle simultaneously
at a collection of points indexed by /. These functors have factorization structures: for
I=LUubL,V; e Rep(GI") and V = V| X V,, there is a canonical isomorphism

~ ml I
T, , =T oTdy, . 4.1
SV G2 xS,V 5V @1

Moreover, for any surjection I — J with the diagonal map G’ < G! and G,fl —
G! , there is a canonical isomorphism

1 ~mJ
TS,V |G,{L><SxBun = TS,V|(A;J .

When G is quasi-split, the only modification to the above discussions is that G,
should be replaced with the p.-covering G,, over which G is split.
4.1.4 Proposition Let (P, ¥, x, Qo) be a euphotic automorphic datum.

(1) The functor Ty [1] is exact for the perverse t-structures. R
(2) For any simple perverse sheaf A € P(yr, x) and V € Rep(G), Ty (A) is isomor-
phic to a finite direct sum

Ty(A) = @ EWV)aaoRA.
A/

Here A’ runs over simple objects in P(y, x) and E(V) A ' is a semisimple local

systemon G, 1.

(3) For simple perverse sheaves A, A’ € P(¥, x) andV € Rep(a) there is a canon-
ical isomorphism

EWV)an = EV) Y4 4.2)

(4) More generally, for any finite set I, V € Rep(al) and any simple perverse sheaf
AeP, x), T{/ (A) takes the form

T! (A) = EB E'WV) xRA. 4.3)
A/

Here E'(V) is a finite direct sum of local systems on G,In of the form W, Ej,
where E; are semisimple local systems on Gm;.

(5) Note that . acts on G by pinned automorphisms and on @;/E by deck transfor-
mations. For § € [, V € Rep(@l ), let V¢ be the representation given by the

-~ 1 —~

composition G! L3N G! — GL(V); let ¢! also denote the diagonal action of ¢ on
1
G, x - Then there is an isomorphism functorial in A, A" and V, and compatible
with the group structure of [Le:

CYE' V) pouw EE' (VYA Y E Le.
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Proof (1)(2) We first show a weak version of (1): suppose A is supported on the neutral
component, i.e., it is a clean extension from Bunyyj, then Ty (A)[1] is perverse for any
V e Rep(a). The proof is similar to the argument in [27, third paragraph in the
proof of Theorem 3.8], and we only give a sketch. The key point being that the map
7 : mHk — G, x Bun is ind-affine, where [1jHk C Hk is the preimage of Bunyy

under / . This boils down to the fact that Bunjj; C Bun® (the neutral component of
Bun) is the non-vanishing locus of a section of a certain determinant line bundle, which
pulls back to an ample line bundle on the affine Grassmannian. Therefore [;)Hk C Hk
is the nonvanishing locus of a section of a line bundle relative ample with respect to
7, hence the ind-affineness of 7 I Hk.

Then we prove a weak version of (2): Ty (A) = @4 E(V) 4 .4 K A" for some
E(V)a 4 that is a direct sum of shifted semisimple local systems on G,, 7. By the

decomposition theorem ((h_ is locally a fibration and 7 is ind-proper), Ty (A) is a
semisimple complex on G, x Bun. By Lemma 4.1.2, we conclude that Ty (A) has
the required form for semisimple complexes E(V)4 4 € D(G,, 7). The fact that

Ty (A) is locally constant along G, follows from the ULA property of both (h_*.A
and ICy with respect to the projection to G,,. For details we refer to the argument in
[26, Lemma 4.4.6].

Now we prove (1) in general. Note that the same argument for the weaker version
may fail for A supported on other components of Bun: it may happen for some w €
that the boundary of Bunj, has codimension > 1, so it cannot be the non-vanishing
locus of a section of a line bundle.

For w € Q, let Bun® be the corresponding component of Bun (so that Bun,,] C
Bun® is open), and D, (¥, x) be the subcategory of D(y, x) supported on Bun®.
Similarly define P, (v, x). Let B € P, (v, x). Since Ty (B) is locally constant along
G, it suffices to fix any geometric point x € G,,, and check that Ty (B)|(x}xBun is
perverse. Let us denote the geometric Hecke operator at x by

V(=) = TV(_)|{x}xBun DWW, x) = DWW, x).
The weak version of (1) that is already proven says that:
Forany V € Rep(a), Vxy (=) sends Po(r, x) to P(¢r, x). 4.4)

Choose V € Rep(a) whose central character corresponds to —w under the
canonical isomorphism X*(Z@) = Q. Then K = Vx,B € Doy, x). Now
B is a direct summand of (VY ® V)x;B = VVx(K). By (4.4), B is a direct
summand of VVx,” HOIC, therefore a direct summand of V'V, A for some simple
object A € Py(y, x). Now for any V' € Rep(a), V’%,B is a direct summand of
Vi (VVr A) = (V' @ VY)x, A, which is perverse by (4.4).

Finally (1) together with the weak version of (2) implies the full version of (2).

(3) Let o be the involution on Hk that switches the two G-bundles. Then there is
a well-known isomorphism between ICy and o*]D)ﬁ (ICyv) (both on Hk, where ]1))7

denotes the relative Verdier duality with respect to the map 7). This follows from
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the similar statement for the Satake category. From this and standard sheaf-theoretic
functor manipulations we obtain an adjunction

Hom(Tyv (A'), @y X A) = Hom(Q, K A, Ty (A))

as complexes on G,,, x Bun, functorial in A, A" € D(¥, x). In view of the decompo-
sition in (2), we get (4.2).

(4) Same argument as above shows that T{, (A) is a semisimple perverse sheaf
on G,’n x Bun locally constant along G,’n. By Lemma 4.1.2, we can write T{,(.A) in
the form (4.3), with E?(V) 4 4 alocal system on G/, upon shifting by |7|. Now the
factorization structure of T{, allows us to conclude that each E’(V) 4 4 is indeed an
external tensor product. For example, take / = {1,2},and V = V| X V, € Rep(al ),
then Ty, (A) = @E(V2) 4.4 KA. Acting on both sides by Tg,,, v, again, the left side
becomes T{, (A) by the factorization isomorphism (4.1), and the right side becomes

P EVDaa BREV)4uRA
A/’A//

with both A" and A" running through simple objects in P (¥, x). We conclude

EMI VR V) A =@ EVD a0 REVD) 4 - (4.5)
A/

The case of general / follows by an iteration of the same argument.
(5) follows from the Out(G) = Out(G)-equivariance of the geometric Satake equiv-
alence. See [26, §4.2.3], and [10, Appendix B]. O

4.2 Eigen local systems

Next we will extract ©G-local systems from the category P (v, x).

4.2.1. Let P*(yr, x) C P, x) be the subcategory of semisimple objects. Let
Loc((/},:%) be the tensor category of Q,-local systems (of finite rank) over @YE
Let C be the full subcategory of Loc(((%) consisting of finite direct sums of simple
factors of E(V) 4.4 when V runs over Rep(@) and A, A’ simple objects in P (¥, x).
Since E(Vi @ V) a4 = @y EVD)a,4r @ E(V2) 4 4 (restricting (4.5) to the
diagonal), we see that C is stable under tensor product. Proposition 4.1.4(3) shows
that C is closed under duality. Therefore C is a semisimple rigid tensor subcategory of

Loc(G,, 1), hence neutral Tannakian.

By Proposition 4.1.4, P = P* (¢, x) is a factorizable R = Rep(a)—module
category with coefficients in C, in the sense of Sect. A.2 Applying Corollary A.4.2
(and Remark A.4.3 for nonsplit G), we get the following result.

4.2.2 Theorem Let (P, ¥, x, Qo) be a euphotic automorphic datum. Then there are
finitely many semisimple [.-equivariant G-local systems {Es}sex over ij (for
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some index set ), and a decomposition

P, x) =P Po

geX

such that

(1) Let G, = Autg (Es) (a reductive group over Qy which can be identified with
a subgroup of G up to conjugacy; it is equipped with a [L.-action). Each Py is
an E>-module category under Rep(ag) (denote the action of W € Rep(ag) on
A € Py by W o A) with functorial isomorphisms W e A = W¢ e A for ¢ € i..

(2) Forany A € P, and V € Rep(a), there is an isomorphism functorial in V and
A

Tv(A) = P ERE(V): E]le A) € DGy, ¥, X)
E

—

Here the direct sum is over all irreducible local systems E over G, z,

Es(V) €
Loc((/;;;) is the (semisimple) local system on (/G;% associated to E, and V,
and [EJ(V) : E1 is the multiplicity space of E in E5(V), viewed as an object in
Rep(Gy).

Moreover, there is a version of the above isomorphism for any finite set I and
V e Rep(al ), and these isomorphisms are compatible with the factorization

Structures.

We recall that a G-local system on (/SYE is called semisimple if the Zariski closure

of the image of 71(G,, 7) in G is reductive.

4.2.3 Descent to k

After a finite extension of k, we may assume that each simple object A in P (¢, x)
has the property Fr*. A = A, where Fr : Bun — Bun is the Frobenius morphism with
respect to k. In particular, each summand P, in Theorem 4.2.2 is stable under Fr*. Fix
a Weil structure Fr*.A = A for each simple A € P(y, x). Applying Remark A.4.3
to the I' = FrZ-equivariant structure on the factorizable Rep(a)—module structure on
P35 (¢, x) with coefficients in C (where Fr acts trivially on Rep(@) and on P* (¢, x)
by the fixed Weil structures, and it acts by Fr* on C), we conclude that each E, viewed
as a tensor functor Rep(@) — C carries a Fr-equivariant structure. In other words, E,
carries a Weil structure (depending on the choice of Weil structures of simple objects

in P, x)).

4.2.4 Remark (1) A p.-equivariant G-local system on ([/};% is the same thing as a

LG =G x WUe-local system on G such that the induced p.-cover of G,, 7 is

m,E’
G,, z- Therefore, after choosing abase pointx € G,, 7, the E;; in the above theorem

is the same data as continuous homomorphisms o, : 71(G,, 7, x) — LG(@Z).
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The discussion in Sect. 4.2.3 gives an extension of p, to the Weil group of G,
so it is a Langlands parameter in the usual sense for the quasi-split group G over
F =k(1).

(2) The upshot of the above theorem is that, we not only can extract a - G-local system
E, from each indecomposable summand P, of the category P** (¢, x), but there
is a residual action of Rep(Aut(E,)) on P,. The Rep(Aut(E, ))-module category
P, may be viewed as a secondary invariant attached to the automorphic datum in
question that is not covered by the usual Langlands parameter E,, . The relationship
between this secondary invariant and global L-packets deserves further study. A
closely related phenomenon is discussed in [6] under the name fractional Hecke
eigensheaves.

(3) The number of simple objects in P (i, x) can be large in some examples. We will
see in an example for G = Sp,, (see Sect. 6.4, case (1)) that P(yr, x) has 2"
simple objects all supported on the open By, -orbit of L/ Q. It remains unclear how
P35 (¢, x) decomposes into indecomposables in this case.

(4) The above theorem (or rather Corollary A.4.2) improves [26, Theorem 4.4.2]. In
loc.cit, we consider the situation where the relevant category of perverse sheaves
‘P has a unique simple object on each connected component of Bun (indexed by €2,
and Q = X*(Z 6) when G is split). In this case, P is necessarily indecomposable
because the Hecke operators will mix up the components transitively. Corollary
A.4.2 then gives a G-local system E (rather than a weak G-local system in the
sense of [26, Def. 4.3.2]), together with an E;-action of Rep(Aut(E)) on P. Since
ZG C Aut(E ), Rep(Aut(E)) is graded by X*(Z 6), and this grading is compatible
with the decomposition of P according the connected components of Bun.

(5) Inpractice, to calculate these local systems, we need to calculate the local systems
E(V) 4, 4 that appear in Proposition 4.1.4. These can be calculated in the same
way as described in [26], as part of the derived direct image of a family of varieties
over G, closely related to the Beilinson-Drinfeld affine Grassmannian.

4.2.5 Corollary Assume that G is split and simply-connected. Let (P, ¥, x, Qo) be a
strict euphotic automorphic datum. Denote by Z G* the set of characterso : ZG (k) —

X . I
Qg . Then there is a decomposition

P, 0= P Po

oceZG*

such that each Py, contains a unique simple perverse sheaf A, which is a Hecke
eigensheaf with semisimple eigen G-local system E.

Proof Denote by O the open By -orbit of L/ Q. Using strictness the proof of Lemma
4.1.2 implies an equivalence of categories

1

D, x) = Dy xc)(L/Q) = D, x,)(O).

Fixing a point y € O (k) identifies P(, x) with Rep(ZG, Q;) and hence we obtain
the desired decomposition and uniqueness of the simple perverse sheaf A,. More
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explicitly A, = jiF, is the perverse sheaf whose restriction to O corresponds to the
character o. For any H € D(S, ¥, x) we may decompose its restriction to S x y as
follows

(ds x Y*H= P (ids x )Mo,
oceZG*

according to the action of ZG. For H € P(S, ¥, x) (or any shifted perverse sheaf)
we obtain a decomposition

H= P (7' & ds x )" He) O B jF,,
0eZG*

cf. [26]. Note that the automorphism group of any point of Bung (Qo, By PZ,) contains
ZG. Therefore we may speak of the subcategory D(Y, x ), on which ZG acts through
o.By[26, §4.4.1] the geometric Hecke operator Ty sends D (v, x)o to D(Gpy, ¥, X))o
and by Proposition 4.1.4 Ty (A )[1] is perverse. Therefore we have

Tv(As) = Ty (As)e = (07 ® (ids x y)*Ty (A,))%C K jiFy

using the decomposition above. Again by Proposition4.1.4 Ty (A, ) is locally constant
along Gy, and the claim follows. O

4.3 Local monodromy and rigidity

In this subsection we assume that G is split, so that LG = a.}et Poso, ¥, x, Qo) be
a euphotic automorphic datum. By Theorem 4.2.2, we have a G-local system E, over
G,), ; for each indecomposable summand P, of P** (¥, x). Let po : 71 (G, . 1) —

m,k
G (Qy) be the geometric monodromy representation attached to E .

4.3.1 Lusztig’s bijection

To describe the local monodromy of E, at 0, recall Lusztig’s bijection [17, Theo-
rem 4.8]:

{two-sided cells in Wy} <— {unipotent classes in 6} 4.6)

4.3.2 Proposition For any local system E, attached to the euphotic automorphic
datum

(Poos ¥, X, Qo).

the local monodromy pg | Ir, (IF, is the inertia group at 0) is tame, and maps a

topological generator of I}?Ome into the unipotent class of G which corresponds to
the two-sided cell cq of Wafr containing the longest element of Wq under Lusztig’s
bijection (4.6).
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Proof 1t suffices to prove the case where G is simply-connected. The proof is almost
the same as in the epipelagic case, cf. [27, §4.11-4.18], replacing Py in loc.cit. by Qp.
The only thing that needs to be adapted in our situation is [27, Lemma 4.12]. Here the
analogous statement should be: consider the action of Dq,(G(t))/Qo) on D(¥, x),
then any perverse sheaf K € Pervg,(G((#))/Qo) acts as a t-exact endo-functor of
D(Y, x).Consider the Hecke correspondence Hk that classifies modifications of Bun
at 0, with two maps <h_, 7 : Hkg — Bun. Let Hkj, = 77’1 (Bungip) N 7’1 (Bungyy).
Since Bunyy; is the preimage of the open stratum [pt/L] C Bung (Py, P), we may
identify fibers of 7’ = 7|Hk6 : Hki; — Bunyy) with Auty_0)(Ep,,p,,)/L where
Ep,.P,, s the open pointin Bung (Py, Ps) with automorphism L. Equivalently, we may
identify Auty_{0)(Ep,,p.,)/ L With Auty_(g) (cE'PO’P;rQ ) by choosing a PZ -reduction of
Ep, pz,- From this we see that the fibers of " are ind-affine. Since T is a Zariski
locally trivial fibration, it is ind-affine. O

4.3.3 Proposition Under the assumptions in the beginning of Sect. 4.3, assume further

o The restriction pg |1 is as predicted in Sect. 2.4.2.

e The image of p, does not lie in any proper Levi subgroup of G (equivalently,
Aut(Ey) is finite).

Then E, is cohomologically rigid in the sense that
H* (X7, jixAd(E;)) = 0.

Here j : G,, — X is the open embedding, and Ad(E) is the adjoint local system
attached to E.

Proof We have the exact sequence

0— g @G, ) _ o URe) @ GroUre)

— HN(G,, 7, Ad(Ey)) — H' (X7, jiAd(E,)) — 0.

m,%’
So the cohomological rigidity condition boils down to

dimH!(G,, 7, Ad(E,)) — dim§?Ro) — dim§Pe o) 4 gPe ™1 ©ui) — 0. (4.7

m,k>

By the second assumption, dimg o@1(©0) = 0. Letu € Gbea unipotent element

in the class correspondlng to the longest element wq,o of Wq. By Proposition 4.3.2,
dim g %) = dim G, = rkG + 2dim B, (B, is the Springer fiber of u). By [27,
Lemma 4.6], we have dim B, = £(wq,0). Hence

dim g ") = 1kG + 2€(wq.0) = dim Lg.
By (2.2), dim g Ure) = dim Ty
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By the Grothendieck-Ogg-Shafarevich formula

dimH!(G, 7. Ad(E,)) = Swan(Ad(E,)) = dim L — dim Ly,

m,k’

as predicted in Sect. 2.4.2. Using these calculations, (4.7) is equivalent to
dim L —dim Ly —dim Ty, = dim Ly,.

Since dim By, = (dim Ty, + dim Ly )/2, dim L — dim Ly = 2dim L/Q, the above
identity is equivalent to

dim L/Q = dim By,

which is guaranteed by the condition (1) in Definition 3.4.1. O

5 An example in type G>

From this section on, we will give several families of examples of (strict) euphotic
automorphic data.

5.1 Therigid connection from [11]

The motivating example for our construction of rigid automorphic data is a certain
rigid irregular G,-connection discovered by the first-named author. By [11, Theorem
1.1.] there is a rigid irregular connection £ on G,, ¢ with differential Galois group
G» and with the following local data. At z = 0 the connection is regular singular and
has subregular unipotent monodromy. On the punctured formal disc D° at z = oo the
connection £ is isomorphic to

El(z%, o, (A, A™Y)) @ El(Z%, 2, 1) @ (—1)

where by (1, A~1) we denote a regular singular formal connection of rank two with
monodromy A and 2~ and similarly for (—1). Further, El(z2, a, (A, 271)) is an ele-
mentary formal connection in the sense of [22, §2]. It is the direct image of a formal
exponential connection twisted by a regular singular connection along a twofold cov-
ering of the formal disc.

The local data of this connection dictates our guess for the local representations in
Sect. 3.2.1. The parahoric subgroup Qg should correspond to the unipotent conjugacy
class of the connection at z = 0 as in Sect. 4.3, (1).

The choice of the character ¥ corresponds to the occurence of the formal exponen-
tial connection, an additive parameter, and the character x reflects the multiplicative
parameter at z = oo of the formal connection, given by the regular singular con-
nection (1, A~!). Note that in addition the formal connection at z = oo becomes
diagonalisable after pullback to a two-fold cover.
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5.2 Constructing the automorphic form

Assume G is split of type G, and denote by A = {w, ap} the simple roots of G,
where o is the long root. Consider the parahoric Py, with L = SO4 with roots
o> and the highest root . We have V = Sym>(St) ® St’, where St is the standard
representation of the short root SLy <> SOy, and St’ is the standard representation of
the long root SL;. In this case m = 2and V = V*. We may identify V* with the space
of bihomogeneous polynomials in two sets of variables (x, y) and (u, v) that are cubic
in (x, y) and linear in (u, v). Then take ¥ = x3u + y>v. We have Ly = G,y ¥ pp: the
projection L, — PGL; to the short root factor is an isomorphism onto the normalizer
of a maximal torus A in PGL;; the other projection Ly — PGL; onto the long root
factor has image Npgr,(A) with kernel 3. We then have Ty, = By = G,, C Ly
(with index 2) acting as ¢ - (x, y, u, v) = (tx,t "'y, t=3u, 13v). Take Q C L such that
L/Q = P! is the flag variety of the short root factor. The choice of Q determines the
parahoric Qg. Then T, acts on L/Q with an open free orbit.

5.2.1 Proposition Let x : Ty (k) — @; be a non-trivial character. Then the automor-
phic datum (Pso, ¥, x, Qo) is euphotic and strict.

Proof Note that for dimension reasons any pointin L/ Q outside the open By, -orbit will
have a positive dimensional stabilizer. Therefore since Ly is a torus this immediately
implies that (P, ¥, x, Qo) is strict if it is euphotic.

For w # id we will prove that if Y, # @ then Y, is finite. The first step is to single
out the cases in which Y;, is empty.

Suppose w is given such that all weights of VUJ; lie in a half-space in X*(A)gr not

containing 0. For ! /S Vuf we can then find a torus 7" such that 0 € T'.¢"' ¢ and
since the orbit of i is closed this implies ¢ = 0, a contradiction. In this case we
therefore get Yy, = 0.

Let 8 = a1 + 37 and suppose w is given such that —«; and S (resp. o1 and —B) are
not weights of le. In this case every v € Vuf is a reducible polynomial contradicting
the irreducibility of . Again this implies Y, = @.

These observations determine a region U C X, (A)g suchthat Yy, = #if wxg ¢ U
in the following way. Recall that for example — g is a weight of V- if and only if

1
(=B, wxg — xp) < 3

This is equivalent to

<_ﬁ’ wxQ — .X'P) =

N =
N | —

and noting that 8(xp) = 1/2 this is furthermore equivalent to

<ﬂ» wa) > é
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Fig.1 Affine root system of type G, with the region U/, the line o1 + 2oy = 0 and the fundamental alcove

Combining all cases in which Y, = ¥ we find that if Y, # @ then wxg € U with
U={xeXi(A)g |0 <{a,x) <lor 0<(B,x) <1},

a union of two strips in the plane (Fig. 1).

It remains to prove that Yy, is finite whenever wxq € U. By W -symmetry it suffices
to consider just one quadrant, e.g. the one defined by (n, x) > 0 and (&2, x) > O.
This leaves us with the case where wxg lies in the above quadrant and additionally
satisifes (o + 202, wxg) < 0 and the case where w = 54, 1«, is a simple reflection
across the hyperplane perpendicular to ¢ + «;. Note that Y, C Y, whenever w’ is
in the first case and w = sq,+4,, SO actually it suffices to prove that Y, is finite in the
second case.

In this case we have that L/Q,, = P! x P! and V;* is the direct sum of weight
spaces corresponding to

{1, a1 + a2, a1 + 202, B, — (1 + 2a2), —B}.

Let C C }P’%x:y) X }P’%M:v) = L/Q, be the curve defined by ¥ = x3u + y3v = 0. If
et Y € Vi then (¢ mod Q,) = 0. Moreover in this case the projectionw : C —
P! onto the second factor (which is a finite map of degree 3) is ramifiedin £ mod Q..

Thus Yy, is contained in the ramification locus of 7 which is finite. O

5.2.2 Corollary There is a unique cuspidal automorphic representation satisfying

(1) 7y is unramified for x # 0, co;
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(2) 7 # 0;
(3) T is euphotic with respect to (Poo, ¥, X).
+
In addition dim 71(?0 = dim ng“’w) = 1 and 7 appears with multiplicity one in the

automorphic spectrum of G.

Proof This is immediate from the proof of Proposition 3.4.3. In this case the space of
functions F is one-dimensional and the statement follows. O

Corollary 4.2.5 implies the following geometric version of the above statement.

5.2.3 Corollary There is a Hecke eigensheaf Ay on Bung,(Qo, PZH) with semisimple
eigen Gr-local system E;. Under the assumptions in Sect. 4.3 the local system E; is
cohomologically rigid.

6 The hyperspecial cases
6.1 The setup

6.1.1. In this section and the next, we assume that G over F is split and simply-
connected. We consider the special case where P, = G(O). The reductive quotient
of P, over k is G; by abuse of notation we will also denote G by G, T by T, etc.

In this case, the grading on g is trivial, and ¥ € g = g(—1). Extending k if
necessary, we may assume ¢ € Lie 7. Then Ly = Gy is a Levi subgroup of G. We
will use Py to denote a parabolic subgroup of G containing Gy as a Levi subgroup.
Note that only the associate class of Py is well-defined.

Recall that O denotes another parabolic subgroup of G, the level at 0, chosen in
such a way that any Borel subgroup By, C Gy acts on the partial flag variety G/Q
with an open almost free orbit. This is equivalent to requiring that G/ Py x G/Q is a
spherical G-variety and

dim Gy, +dim Ly = #dg 6.1)

where @ is the set of roots of G and L g is the Levi quotient of Q.

6.1.2. Stembridge [24] has classified pairs of parabolic subgroups (Py, Q) such that
G /Py x G/Q is G-spherical. In type A and C this was preceded by work of Magyar—
Weymann—Zelevinsky, see [18, 19]. In this classification, the following are the ones
that satisfy the dimension equality (6.1). There are no examples of exceptional types.

6.1.3 Notation

In the sequel we will concentrate on the case where G is one of the groups
SL(V), Spin(V) or Sp(V), for some finite-dimensional vector space V over k
(char(k) # 2) equipped with a quadratic form in the case G = Spin(V) or a symplectic
form in the case G = Sp(V).
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For d > 1, write P; C G for the stabilizer of a d-dimensional subspace, isotropic
in the case outside type A. Similarly, for 1 < d < d’, let P4 4 denote the stabilizer
of a d-dimensional subspace inside a d’-dimensional subspace, both being isotropic
outside type A.

For parabolic subgroups P" and P” of G, we write (Py, Q) ~ (P’, P”) to denote
that Py is conjugate to P" and Q is conjugate to P”.

Below we often base change to k without changing the notation.

6.2 Type Ay—1,n > 2,[18, Theorem 2.4]

Let G = SL, and let G be the split form of G over F. Let Ao be the partition of n
determined by the blocks of a Levi factor of Q. Let Ay be the partition of n determined
by the multiplicities of the eigenvalues of Y (for example, Ay = (223) means that
has three distinct eigenvalues, with multiplicities 2, 2 and 3). The following are the
only cases where By has an open orbit on L/Q with finite stabilizers.

M n=2,x=>0,n-1),%y =(1");
R)n=2,x0=>0", 4y =(,n—1);
B)n=2mm=>2,rAg=m,m), Ay =(m,m—1,1);

@ n=2mm=>2,Ag=m,m~—1,1), Ay = (m, m);
G)n=2m+1,m=>2rg=m~+1,m), Ay = (m, m, 1);
6) n=2m+1,m=>2,Ap0=m,m, 1), Ly = (m+1,m);
(M n=6xr0=1(2,2,2), Ay =(4,2);
@B)n=61rp=04,2),r =(2,2,2).

6.2.1Remark Any tame rigid local system on P! — {0, I, oo} is determined by the
collection of conjugacy classes of its local monodromies around the punctures. For
tame rigid local systems on P! — {0, 1, oo} of rank n with generic semisimple regular
monodromy at one puncture Simpson classifies the possible Jordan types of local
monodromies in [23, Theorem 4]. They are in canonical bijection with the above
list (up to interchanging Ao and Ay ) in the sense that the collections (Ao, Ay, (1))
exhaust Simpson’s list.

6.3 Type B, n > 2, [24, Corollary 1.3.B.]

Let G = Spin(2n + 1) and let G be the split form of G over F. The action of By on
G/ Q has an open orbit with finite stabilizers if we have one of the following.

(1) Any n, (Py, Q) ~ (P,, P,) (Siegel parabolic);
(2) n=2,(Py, Q) ~ (P1, P»);
(3) n=2,(Py, Q) ~ (P2, P);
4) n=3,(Py, Q) ~ (P1, Pp);
(5) n=3,(Py, Q) ~ (P2, P1).
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6.4 Type Cp, n > 3,[24, Corollary 1.3.C.]

Let G = Sp(2n) and let G be the split form of G over F. The action of By, on G/Q
has an open orbit with finite stabilizers if we have one of the following.

(1) Any n, (Py, Q) ~ (P,, P,) (Siegel parabolic);
(2) n=3, (Py, Q) ~ (P1, P2);
(3) n=3,(Py, Q) ~ (P2, P1).

6.5 Type D, [24, Corollary 1.3.D.]

Let G = Spin(2n) and let G be the split form of G over F. Note that there are two
conjugacy classes of n-dimensional isotropic subspaces (permuted by O (2n)) whose
stabilizers we simply denote by P, (two conjugacy classes of maximal parabolics of
G). The action of By on G/Q has an open orbit with finite stabilizers if we have one
of the following.

(1) n = 4, (Py, Q) ~ (P4, P17), or anything in the same orbit under the outer
automorphisms of G;

(2) n = 4, (Py, Q) ~ (P12, P4), or anything in the same orbit under the outer
automorphisms of G;

(3) n=5,(Py, Q) ~ (Ps, P3);

(4) n =5, (Py, Q) ~ (P3, Ps);

(5) n =06, (Py, Q) ~ (P, P3);

(6) n =06, (Py, Q) ~ (P3, Pe).

6.5.1 Theorem Assume  and Q are in any of the above cases. Recall that v € Lie T
sothat Ty =T.

(1) Assume that x : Tk) — @Z is non-trivial on the connected center of
any maximal Levi subgroup of G containing T. Then the automorphic datum
(G(Os0), ¥, x, Qo) is euphotic.

(2) All cases in type A and D with x as in (1) are strict euphotic automorphic data.
In type B and C no case is strict.

The proof of Theorem 6.5.1 is carried out in the following section.

6.5.2 Remark The condition on x may be described more explicitly in each type.

Type A,,. The character x on the diagonal torus 7" of SL(V) is given by a collection
of characters 1, ..., x, of k* modulo simultaneous multiplication by the same char-
acter of k™. Any maximal Levi subgroup is isomorphic to S(GL, xGLp) witha+b = n
and a, b > 0.Its center is the subtorus given by the image of the embedding G,, — T,
2> @, 279, where o’ = a/ ged(a, b), b = b/ ged(a, b), and
2 appears a times, I appears b times. We therefore require for any non-empty sub-
set I C {1, ..., n} of cardinality a and with non-empty complement J of cardinality
b that

a/ ged(a,b)

b/ ged(a,b)
<H Xi) #| 1 1x

iel jeJ
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Types B,,, C,, Dy,. Identify T = G, in the usual way, and write x = (X1, ..., Xn)-
The maximal Levi subgroups are of the form

GL, x G’

where G’ is a classical group of rank n — a of the same type as G (in the case of type
D,, a # n — 1). The connected centers of maximal Levi subgroups are the images
of maps G,, — G, z — (¢1(2), ..., ¢s(z)) where @;(z) is either 1 or z or 7L
Therefore the condition on x is that, for any disjoint subsets I [[J C {1,2,...,n}

such that I U J # &, we have

l_[Xi # l_[Xj-

iel jedJ
Here, when I or J is empty, the corresponding product is 1.

6.6 Stabilizers on Hessenberg varieties

Recall that VUJ; =6 ( )<1 8o Which we will denote by g,. Then

a,wxQ

Y ={g0uw € G/Qu | ¥ € *gul.

By definition these spaces are Hessenberg varieties as defined for example in [3]. The
subvector space g,, of g is automatically a Hessenberg space, i.e. it is stable under
the adjoint action of the parabolic subgroup Q,, and it contains its Lie algebra q,,.
For classical groups, Hessenberg varieties may be described concretely in terms of
(isotropic) flags.

Let V be a finite-dimensional vector space over k and let G be SL(V), Spin(V) or
Sp(V) where we endow V with a symmetric bilinear (resp. symplectic) form (—, —).
Then ¥ € g is an anti-self adjoint endomorphism of the vector space V and the
condition ¥ € §g,, may be translated into the condition that if

OcFcCc---CF.CV

is the flag corresponding to g we have v (F;) C Fj,(;) for a non-decreasing function h
satisfying i (i) > i associated to the space g,,, cf. [25, §2].

In this section we study the stabilizers of a Borel subgroup By, of G acting on the
Hessenberg variety Y,,. The goal is prove that for w # id the Hessenberg variety Y,
is a spectrally meager Gy -variety.

6.6.1Lemma Let Q C G be a parabolic subgroup with corresponding Lie algebra q
and U C g a subspace containing q and which is stable under the adjoint action of
Q. Assume that there is a parabolic subgroup P of G with Lie algebra p such that
QO CPandU C p. Let y € U be semisimple and let Gy, be the centralizer of  in
G. Then the Gy -variety Yy (Q,U) ={g € G/Q | ¥ € U} is spectrally meager.
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Proof Let By, C Gy be a Borel subgroup. Denote by e € G the identity element.
It suffices to prove that the stabilizer of ¢Q contains a non-trivial torus. Indeed, if
g0 € Yy(Q,U) we have y € 8U C 8p and the assumptions of the Lemma are
satisfied for ¢ 0, #U and & P. Since Stabg, (¢Q) = By N#Q = Stabp, (¢ - $Q) we
may conclude.

We will argue in two steps. Let M be the Levi quotient of P and m its Lie algebra.
Consider the map

7Yy (Q,U) = Yy (P,p)

induced by the projection G/Q — G/P whose fiber above eP is identified with
M /Qpn where Q) is the image of Q in M. Since  is semisimple and ¢ € p, the
stabilizer Py of ¥ in P is a parabolic subgroup of G and its Levi quotient Py /Uy,
coincides with the stabilizer Mx/} of the image of ¥ in m. Write Y/ = 1 (eP) C
Yy (Q, U). The parabolic Py acts on Y’ and the action factors through M. Since
Y C M/Qpy we know that the center Z(M) stabilizes every point of Y’. Thus
H := Gy N Q contains a group of the form Z - Uy, where Z is a torus surjecting onto
Z(M).

Let By, C Gy be a Borel subgroup. The second step is to analyze the action of H
on Gy /By . Using the Bruhat decomposition we write

Gy/By= |] PywBy/By
weWy\W

where Wy is the Weyl group of M. Since H acts on each cell we only need to
consider one such cell PywBy /By . Note that PywBy, /By = Py /(Py N ¥ By) and
Staby (pwBy,) = Staby (pPy N Y By). Let H = H /Uy . This acts on M& and we
have that

Staby (p(Py N ¥ By)) — Stabg (p)

is surjective (for the action of H on My /B). Here B denotes the image of Py,NYB
in M. Finally, since M5 / B is the full flag variety of M, every point is stabilized by
the center Z(M) C H of M. O

6.6.2 Corollary Let Q, U and r be as in the previous Lemma. Assume that there is
a maximal parabolic P with Lie algebra p such that Q' = Q N P is a parabolic
subgroup of G and € p. Then Yy (Q, U) is spectrally meager for the G -action.

Proof Define U’ = U Nyp. Note that since i € p, actually eQ € Yy (Q, U’). We have
a surjective morphism Yy, (Q’, U’) — Yy (Q, U’). For any point y € Yy (Q',U")
denote by y the image under this morphism. We have that Stabp,, (y) C Stabg,, (¥), so
it suffices to prove the claim for eQ" € Yy (Q’, U’). This immediately follows from
the previous Lemma 6.6.1. O
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6.6.3 Remark 1In particular for flag varieties of classical groups to prove that Yy, is
spectrally meager it suffices to prove that for any (isotropic) flag F, € Y,, we can
refine it to a flag such that one of the (isotropic) subspaces in the resulting flag is
Y-stable. From the proof of Lemma 6.6.1 it follows that in this case the stabilizer of
any point in Y, contains the center of the Levi subgroup of the maximal parabolic
subgroup stabilizing the {-stable space.

Denote by @ the set of roots of G and let A = {«1, ..., «,} be the positive simple
roots. By finite Weyl group symmetry we may and will assume that wx is dominant.

6.6.4 Corollary Assume that there is a simple root o; such that (o, wxg) > 1. Then
Yy is spectrally meager.

Proof Let P be the maximal proper parabolic subgroup of G containing Q,, but not
the root subgroup corresponding to «;. If g,, ¢ p = Lie P, then g,;, C g, and
(o;, wxqQ) < 1. Vice versa if (o;, wxqg) > 1, then g,, C p. Therefore Lemma 6.6.1
proves the claim. O

This shows that we can restrict ourselves to the study of Y,, for w such that 0 <
(o;, wxqQ) < 1 for all simple roots a; € A.

7 Detailed analysis of stabilizers

In the following we will carry out a case-by-case analysis of the cases with an almost
free open orbit listed in Sect. 6. We will show that any flag in any Hessenberg variety
Y, for w # id may be refined to a flag s.th. one of the spaces appearing in it is ¥/-
stable. This will prove the first part of Theorem 6.5.1. Strictness in types A and D is
proved in Sect. 7.5.

7.0.1Remark Let V be a vector space over k. In types B, C and D we will denote the
bilinear form by (—, —). We will often make use of the fact that g is the Lie algebra of
endomorphisms of V which are anti-selfadjoint with respect to the given bilinear form.
In particular the non-zero eigenvalues of ¥ occur in pairs x, —x and the eigenspaces
of x and —x are dual with respect to the given bilinear form. For any non-zero x
the eigenspace V (x) is isotropic and orthogonal to all other eigenspaces apart from
V(—x). In types B,C and D we will always denote the eigenvalues by +x (and +y
in a single case in type D). Since v is semisimple we can decompose any vector v
according to the eigenvalues of i and if x is an eigenvalue, v, is the summand of v
in the x-eigenspace. When working with flags F, of a vector space V we will denote
flags and the condition on them imposed by 1 in the following way

—~
Oc---CcFCFCF,C---CV

By this we mean that ¢ (F;) C F; and the indices denote the dimensions of the spaces.
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7.1 Type Ap—q

Let V be a finite-dimensional k-vector space and G = SL(V). We identify X, (S) =
{(k = (kj) e 7" | Z?:l k; = 0} such that for the standard basis ej, ..., e of Z"
for the simple roots «;. We write wxg = (x1,...,x,) in

Vo % %
we have a; = ¢; e

coordinates for that basis. Recall that

Yo ={g0w € G/Qu | ¥ € 4gu}.

The parabolic O, is determined by the roots that evaluate non-positively on wxgq. The
space g,, contains the root space g, for any root « if and only if (o, wxg) < 1. Let
Q' be the opposite parabolic to Q, so that —xq = x¢. To describe the Hessenberg
varieties explicitly in terms of flags we will instead work with the variety Y_,, defined
by the point —wxg. This will only switch around the type of Q.

Similarly we define g_,, sothat g, C g—, if and only if and only if (o, wxq) > —1.
Write o = Z‘,i;} ay forand oj; = —a;; fori < j. We have (j;, wxQ) = x; — x;
and go;; C g—y if and only if

(aji, wxq) > —1
or in other words if and only if x; — x; < 1. In terms of ¥ and a flag
OckcC---CFCV

the condition g, i C0-w is satisfied if and only if ¥ (F;) C F;. We can therefore
read off the condition imposed on any flag F, € Y, from the coordinates of wx¢. The
number of different entries in wxqg determines the number of different spaces in the
flag. The numbers of entries that coincide determine the dimensions of the associated
graded spaces. We label the associated graded by the entries of wx¢q. For example if
n =5 and wxqQ = (x1, X2, X2, X3, X4) we have

chl Fl sz F3Cx3 F4CX4V

and v is allowed to map F| to any space whose associated graded is labelled by a
number y such that x; — y < 1.

The Weyl group acts on X, (T) ® Q by permutation of the coordinates and the
coroot lattice by integer translations with vectors (k1, ..., k,) such that Z;‘zl ki = 0.
The arguments in each case work for any parabolic subgroup Q corresponding to the
partition A . Therefore we only argue for one of these.

7.1.1 Case (1), 6.2

The barycenter of Qg is xQ = (%, —%, e, —ﬁ). If wxg # xqg we find that wxq

has at least four different entries. Mod Z only one entry may be congruent to %,
all others are congruent to _2]_n’ Four of them being pairwise different forces two
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consecutive entries to have a difference of 1. Therefore the corresponding space in the
flag has to be -stable.

7.1.2 Case (2), 6.2

The barycenter is

n—1 n-3 3—n 1—n
xXQ = , ) .
Q 2n 2n

Let wxqg = (x1, ..., x,) be dominant and not equal to xg. Assume that there is an
index ip such that x;, — x;,4+1 > 2/n. Then we have

n—1 1 2
X1 — Xp E Xi —Xip1 = (n )n +

i=1

—=1.
n

Since any flag F, € Y, is a full flag this implies that ¥ (F1) C F; forsome j <n—1.
Let v € Fy \ {0} and write v = vy + vy according to the eigenvalues of 1. Assume
the x-eigenspace V (x) is the one-dimensional eigenspace. If v, = 0, F is {-stable
and we are done. If v, # 0, V(x) C F1 + ¥ (F1) C Fj and F) is yr-stable.

We may therefore assume that x; — x;+1 < 1/n. Write x; = ¢; + k; with ¢; €
(it a3 3 Iy and k; € Z. We have Y k; = 0. Since

n
lgi — qiv1] < ——
n

we have the following three cases

n—1

9i = qi+1 = — ki — ki1 =1,

n—1
qi — qgi+1 = Taki — ki1 =-1,

1
q9i — qi+1 = ;»ki —kit1=0.

Now ¢; — gi+1 = —"n;l implies that ¢; = 12;;1” and ¢j+1 = % and vice versa in

the second case. In particular, since the g; are pairwise different, only one of the first
two cases may appear and it can only happen for a single index. This implies that
the integer vector (k, ..., k) has only two distinct entries, but this contradicts the
assumption Y '_, k; = 0. Therefore the only case in which x; — x;11 < 1/n is the
case in which wxq = xq.
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7.1.3 Case (3),6.2

We have xq = (5, ..., 37, —%-. - .., —5-) With both entries occuring m-times. If
wxQ # x@ and wxQ = (x1, ..., X,) is dominant, then it has at least four different
entries. The condition 0 < {o;, wxg) < 1/2 implies that any flag in ¥, contains a
part of the form

—( —(
..ChhCcFKhCFC....

Then W = F, + ¥ (F) + w2(F1) is ¥r-stable. Indeed, let x, y, z be the eigenvalues
of i with eigenspaces V (x), V(y), V(z) of dimensions m, m — 1, 1 respectively. If
every vector V € Fj is of the form v = v, + vy, then Fi + ¥ (F) is -stable.
Otherwise W D V (z), so for any w = wy +wy +w; € F> we getw, +w, € W and
xwy + ywy € W, ie. wy, wy € W, proving the claim.

7.1.4 Case (4),6.2

Here we have

3n 777 3n 3n 7 3n 3n

<m+1 m+1 m-—1 m—1 3m—l)
xQ =

with entries occurring m-times, m — 1 times and one time in this order. We may assume
that for xq # wxqg = (x1, ..., x,) we have 0 < x; — x;41 < 1/3, because otherwise
we can insert a space of the form F + ¢ (F).

In addition we know that wxg must have at least five different entries, say yi, ... ys
and their classes mod Z need to be ordered as follows

) 3 ’

<m+1 m—1 3m—-1 m+1 m—l)

3n 3n 3n 3n 3n
since —22=1 may onl i = mtl 4k and Th diti
% y only appear once. Write y; = “5= + k; and so on. The condition
0 < y; —yiy1 < 1/3 implies that k; = kp = k3 and k4 = k5 = k3 — 1. Since all other

entries are congruent to m3';1 or — m3;1 mod Z we conclude that the integer vector by

which we translate has the shape

k,....k,k—=1,..., k=1,

a contradiction to the sum of these entries vanishing.

7.1.5 Case (5) &(6), 6.2

The arguments in these cases are the same as in the previous two.
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7.1.6 Case(7),6.2

The barycenterisxg = (1/3,1/3,0,0, —1/3, —1/3). We may assume that for wxg =
(x1,...,x6) we have 0 < x; — x;41 < 1/3. Otherwise there is an index i such that
Xxi — xjy2 = l and ¥ (F;) C Fi41. In that case since ¥ has only two eigenvalues we
may insert the stable space F; + ¥ (F;).

Now assume that all entries of wxqg = (x1, ..., x¢) are pairwise different. In that
case the classes of the entries must be ordered as follows

21 21
_5_705_7_50 )
3'3 33

because otherwise we will find two successive entries whose difference is at least 2/3.
If x; = 2/3 + k1 and so on where k; € Z then we find that k| = k» = - - - = kg. This
contradicts the condition Z?:l ki =0.

We are therefore reduced to the following situation. For wxqg # xQ we always have
exactly four different proper subspaces and ¥ maps as follows

SN
L..CPH CFRhRCFKCFC....

We are left to consider two cases, either dim(F;) = 1 or dim(F) = 2.

In the first case we assume that F7 is not already stable. Choose a non-zero vector
v € F; and extend it to a basis v, w of F>. Write v = v, + v, according to the
eigenvalues of y» (where the y-eigenspace V (y) has dimension 2) and similarly for
w. The space F, + ¥ (F>) is spanned by vy, wy, vy and wy. If vy and wy are linearly
independent, V(y) C F>» + ¥ (F2) C F4 and hence Fy is stable. If they are linearly
dependent, F> + ¥ (F) is {-stable and we may insert that.

In the second case choose a basis v, w of F>. Then with the same notation as before
F>+ F, contains vy, wy, vy and wy. If vy and wy, are linearly dependent F contains
a non-zero eigenvector and we may insert the line spanned by it. If not, F> + ¥ (F2)
contains the whole y-eigenspace V (y) and we are done.

7.1.7 Case (8),6.2

The barycenter is xg = (1/6,1/6,1/6,1/6, —1/3, —1/3). For wxqg # xq we will
find at least four different entries xi, ..., x4. We may assume as before that 0 <
Xxi — Xxi+1 < 1/2, because otherwise a space in the flag will already be -stable.
Therefore wxg will have exactly four different entries, say yi, y2, ¥3, y4 and the classes
mod Z will be ordered either as (—1/3,1/6,—1/3,1/6) or (1/6, —1/3,1/6, —1/3).
The associated graded spaces that are labelled by —1/3 have to be one-dimensional
and cannot occur consecutively. Therefore we get the following list of possible flags
that we need to consider:

OCFiCcFhCcFCV,
OCFhCFCFCV,
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OCFK CF,CFsCV,
OCFICF,CFsCV,
OCFICFCFyCV.

The indices indicate the dimensions of the spaces and the endomorphism i always
maps a space to the next one. In the first three cases we may insert the spaces F; +
Y (F1) + Y2 (F1), Fa + ¥ (F2) + ¥2(F) and F3 + ¥ (F3) 4 ¥2(F3) respectively.

The last two cases are similar to each other. We will present the argument only
for the fourth case. First note that we may assume that Fy + ¥ (F4) = Fj5 since
otherwise Fj is already y-stable. Thus Fy + ¥ (Fy) + ¥2(Fi) C F4 + ¥ (F4) and for
v = vy +vy+v; € F1\{0} we getvy, vy, v; € Fy+ 1 (Fy). We may assume that they
are all non-zero because otherwise F1 + 1 (F1) is y-stable. Since F4s N Y (Fy) # 0
there is a vector w € Fy such that ¢ (w) € Fy. Thus Fy + 1/ (F4) contains wy, wy, w;.
If any pair (wy, vx), (wy, vy) or (wz, v;) is linearly independent, the corresponding
eigenspace lies in F4 + ¥ (F4) and this would imply that F4 + 1 (Fy) is y-stable.

We therefore assume that the above pairs are all linearly dependent. Since w # 0
we may additionally assume that w, # 0 and hence we can write v, = Aw, for
some non-zero A. Since Fy D F1 + ¥ (F}) it contains (x — y)vy + (z — y)v, and also
(x — y)wy + (z — y)w;. In particular Aw, — v, € F4 and therefore if Aw, — v, # 0
we get v, € Fqand F) + ¢ (F1) + 1//2(F1) € Fy. If Aw; — v, = 0 we can do the same
for vy and find that actually v = Aw. Since w € Fy N (Fy) is arbitrary this implies
dim(F4 Ny (F4)) = 1 and hence ker(y) N F4 # 0, i.e. say z = 0 and Fy4 contains a 0-
eigenvector ug. Again if ug and vg are linearly independent, then V (0) C F4 + ¥ (Fa)
and if they are dependent, then F; + ¥ (F1) + W2(F1) C Fj4, so we are done.

7.2 Type B,
Let V be a finite dimensional k-vector space of odd dimension equipped with a non-
degenerate symmetric bilinear form (—, —) and G = Spin(V). Asin type A we use the
evident identification X*(T) = Z" to write wxg € X4 (T) in coordinates. A (partial)
flag in type B stabilized by a parabolic Q,, can be thought of as a flag of isotropic
spaces together with their complements

0OCFC CF1CFRCF- CFCV.
The condition that ¢ € g,, imposes the same conditions as in type A for the flag

OCcFC---CF,_1 CEF,.

In addition, mapping from a space F; to F ].L is determined by the value of the root
e; +ej (or ¢; for j = i) and hence for wxg = (x1, ..., x,;) we may label the flag
above as follows

0Cy F1C---Cy, Fu Co Frc_y, FX CcFlc_,, V.
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Again v is allowed to map F; to any space whose associated graded is labelled by y
such that x; — y < 1.

The finite Weyl group acts on X, (T) ® Q by arbitrary permutations and sign changes
of the coordinates. We may translate using the coroot lattice, i.e. by integer vectors
whose coordinates sum to an even number. We can therefore produce a finite list of
possible cases for wxq (using the condition that 0 < («;, wxg) < 1 for all simple
roots).

7.2.1 Case (1), 6.3, (Py, Q) ~ (Pp, Pp)

In this case the barycenter is xg = (1/2, ..., 1/2). Therefore wxqg will have coor-
dinates in 1/2 + Z. The condition 0 < (¢;, wxg) < 1 immediately implies that all
coordinates of wxq have to be equal to 1/2, i.e. wxQ = x is the only possibility and
there is nothing to prove.

7.2.2 Case (2),6.3

This case is similar to Case (1). Since xg = (1/2, 1/2), there is no other possibility
than wxg = xq.

7.2.3 Case (3),6.3

We have xg = (1/2, 0) and the only non-trivial possibility for wxq is wxg = (1, 1/2).
In this case the flag is

N TN 7Y
OCFICF CF+CFtcCV.

and we may insert Fy + ¥ (Fp).
7.2.4 Case (4),6.3

We have xqg = (1/2, 1/2, 0). The possible non-trivial cases for wxq are

() wxg = (1,1/2,1/2),
(i) wxg = (2,3/2,1/2).

In case (i) the corresponding flag is

N TN Y
OCFCFCFCFtcv.

Choose a non-zero vector v € Fj. Denote the non-zero eigenvalues of ¥ by x and
—x and write v = v, 4+ vo + v_, according to the eigenspace decomposition of V.
We get that

(v, ¥?v) =0
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and from that it follows that (v,, v_,) = 0. Since Py ~ Pj, we have dim V(x) =
dim V(—x) = 1 and either v, = 0 or v_, = 0. Assume that v_, = 0. In that case
W = F1 + ¢ F) contains v = vy + vy and v,. This space therefore has a basis of
eigenvectors and is y-stable. Since W C F3 it is automatically isotropic and we may
insert this space into the given flag.

In case (ii) the flag is

N TN TN TN T
OCFICFCF CF-CFCFtcV.

Because Py ~ Pp, ¥ has three eigenvalues and if neither Fy nor F> are v-stable,
then F3 = F1 + v F| + wzFl which is stable.

7.2.5 Case (5), 6.3

We have xq = (1/2, 0, 0). The possible non-trivial cases for wx¢ are

(i) wxg = (1,1/2,0),
(i) wxg = (1, 1,1/2).

In case (i) the flag is

N TN 7Y
OCFICFR CF+CFtcCV.

Let v € F; be non-zero and write v = v, + vo + v_y according to the eigenspace
decomposition of V. Since ¥ (v) € F3, it’s isotropic. We have ¥ (v) = xvy — xv_y
and

0= (YW), ¥y() = —2x(vy, V—y).
Therefore (v,, v_y) = 0. The space W = F| + v F1 + wzFl is Y-stable and we
claim it is isotropic. Since ¥ (v) € F; and ¥2(v) € in it is enough to prove that
(W2 (w), y2(w)) = 0 for any w, w’ € Fi. But Fy is aline, so w = Av and w’ = pv
for some A, u € k. Therefore

(W2 w), Y2w")) = Aexvy 4+ 2oy, 2oy 4+ x20_y) = 2x* (g, vy) = 0

and we can insert W into the above flag.
In case (ii) the flag is

N TN Y
0CFHCFCFCF-cV.

For v, w € F,, since Y2 F, C Fj- C F;- we have
0= (v, P> (W) = x> (v, W) + (v, ).
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The space W = F> + ¥ F, + 2 F is y-stable. We claim it is isotropic. For this it is
enough to show that (¥2(v), ¥2(w)) = 0 for any v, w € F>. But

(W2 ), Y2 (w)) = (x> (vy + v—y), X2 Wy + w_y)) = x*(Ur, woy) + (V_y, wy))

which vanishes by the previous calculation. Therefore W isisotropic and since F3 C W
they have to be equal.

7.3 Type C,

Let V be a finite dimensional k-vector space of even dimension equipped with a
symplectic form (—, —) and G = Sp(V'). As before we may write wx¢ in coordinates
using the identification X*(T) = Z". Similar to type B we consider flags

OCFIC"‘CFn—ICFnCF,ilCF]J_CV

and label them the same way, but without the middle step. The endomorphism ' is
allowed to map F; to any space whose associated graded is labelled by y such that
xi—y<l

The finite Weyl group acts by arbitrary permutations and sign changes on the coor-
dinates of wx¢ and the coroot lattice by arbitrary integer vector translations.

7.3.1 Case (1), 6.4

The barycenter is xq = (1/4, ..., 1/4). Thus any coordinate of wxqg = (x1, ..., Xp)
liesin 1/4 + Z or 3/4 + Z. Therefore x; —x; = 0orx; —x; = 1/2foranyi < j.
By the condition 0 < (o, wxg) < 1 we conclude that x, = 1/4. Therefore if all
coordinates agree, wxQ = x(. For flags of the form

OCFCF c(F)*cFtcv

we find that ¥ (F) C F’ since the difference of any two distinct coordinates is 1/2.
Since Py ~ Py, the space W = F + v (F) is stable and can be inserted into the flag.
We can use this argument whenever we have at least three distinct coordinates. In the
case that we only have two distinct coordinates the flag is of the form

OCFCFtcvVv

with ¥ (F) C F* and we can insert the space W = F + ¢ (F). Letv + ¢ (v'), w +
Y (w') € W. Then

v+ Y ), w+y@") = (v, w) + v, yW)) + YO, w) + (Y), ¥ ")
= (Y@, y@))
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since F is isotropic and ¥ (F) C FL. Since 1 is anti-self adjoint, (¥ (v), ¥ (w')) =
—(v/, y2(w’)). Now since Py ~ P, is the Siegel parabolic, ¥ has eigenvalues say x
and —x and it follows that ¥ is scalar multiplication by x?. Therefore

— (v, PP W)) = —x* (v, w') =0
and we find that W is isotropic.

7.3.2 Case (2),6.4

We have xq = (1/3, 1/3, 0). The possible non-trivial cases for wxg are

(i) wxg = (2,1/3,0),

(i) wxq = (2/3,2/3.,0),
(iii) wxg = (1,2/3,1/3),
(vi) wxq = (4/3,2/3,0),
) wxg = (1,1/3,1/3),
(vi) wxq = (4/3,1,1/3).

In case (i) we have flags

T8 T

OCFICFR CF+-CFtcV.

We claim that W = F, + 1 (F}) is isotropic and that if neither F; nor F, are -
stable then F, + ¥ (F7) is y-stable. Because ¥ (F1) C F> it suffices to prove that
(v, yv'y = 0 for any v, v’ € Fy. This is clear since Fj is one-dimensional.

To prove W is stable, let v € F| be non-zero. We have

0= (v, ¥v) = —2x(vy, v_y),

i.e.vy =0orv_, = 0. Assume we have v_y = Oandlet w = wy + wo + w_, = F;
be any vector. Then

O = (Us ¢w> = _x<vx’ w—x>'

If v, = 0, then Fj is yr-stable, so we get that w_, = 0 and F, + ¥ (F) contains
vy, Vg and wo. If vy and wq are linearly dependent, then V(x) C F> and by what we
said above no vector in F> has a component in the (—x)-eigenspace. This implies that
F> is yr-stable. We may therefore assume that vy and wy are linearly independent and
hence F, + v (F1) is spanned by eigenvectors.

In case (ii) the flags are of the form

N
0CF CFtcCV.
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Choose a basis v, w for F,. Since dim V (x) = 1 there are scalars A, u such that
Avy + pw, = 0 and not both of them are zero. Let u = Av + pw. Since v, w are a
basis, u # 0. If u_, = 0 then ug # 0 and hence F> contains the eigenline spanned
by ug. If u_, # 0 then for any u’ € F, we have

0=, yu) = (U, u_y),

i.e. u,, = 0.1In this case F» + ¥ (F>) is y-stable and isotropic.
In case (iii) we have flags

N Y
0OCFCF,CF CF-CFtcV.

We claim that W = F>, + W (F>) + wz(Fz) is isotropic. To prove that it suffices to
show that (Y v, ¥2w) = 0 and that (v, ¥2w) = 0 for any v, w € F>. We have

(o, ¥2w) = (Yo, ¥?w) + (Yu, Pwo) = x> (Yo, w) = 0.
The same argument works for (¥2v, ¥2w) = 0 and thus W is isotropic. If F> is not

Y-stable, then F3 = F, + ¢ (F>) and F3 C W. Hence W = F3.
In case (iv) the flags are

OCFICERCFCFtcCV

and we may take F1 + ¥ (F1) + 1/f2(F 1) which is isotropic with the same argument
as in case (iii).
In case (v) consider

Y
0CF CFCFtcCV.

For v € F; non-zero we have v, = 0 or v_, = 0 and hence F| + ¥ (F1) is y-stable.
For case (vi) we get full flags

N TN N 7Y
OCFICFRCFCF-CFCcV

and we may simply insert F| + ¥ (F1) + V2(FY).
7.3.3 Case (3),6.4

We have xq = (1/3, 0, 0). The possible non-trivial cases for wxg are

(1) wxg =(2/3,0,0),
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(i) wxg = (1, 1/3,0),
(iii) wxq = (1,2/3,0),
(vi) wxg = (1,1, 1/3).

In case (i) the flags are of the form

TN
0CF CFtcv.

Let v € F; be non-zero. Then (v, ¥2v) = —(v, v) = 0, hence W = F| + ¥ (Fy) +
V2(F1) C FIJ- Since also (v, ¥ v) = 0 we find that (vy, v_,) = 0. This implies that
W is isotropic.

In case (ii) we have flags

7
OCFCFCFCFtcv.

If F; is not stable, then F» = F1 + ¥ (F1). Let F; be spanned by v = vy + vg + v_y.
As before we find that (v, v_,) = 0 and hence (v, ¥2v) = 0. Thus ¥ (F>) C FZJ-
and we may insert Fy + ¥ (Fp) + V2(F)).

In case (iii) we consider

N TN 7Y
OCFICFR CF+CFtcCV.

This works the same as case (ii).
In case (iv) we have

N Y
0OCFHCFCFCV.

We have F, N Y (F,) # 0 and there is a v € F, such that ¥ (v) € F;. Therefore
F> is spanned by two vectors of the form w, + wg and u_, + ugp and F, + ¥ (F>) is
Yr-stable.

7.4 Type D,

Let V be a finite dimensional k-vector space of even dimension equipped with a non-
degenerate symmetric bilinear form (—, —) and G = Spin(V). Using the identification
X*(T) = Z" we write wxq in coordinates. A full flag in type D, is the data of a flag
of isotropic spaces
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C ¢
0CF CFC...CF Ft,C...CFCFtcV.

CC
F,

with two Lagrangian subspaces F,, and F,, such that F, N F, = F,_;. The labelling
is done as before. We denote the non-zero eigenvalues of ¢ by =x (and £y in the case
n = 4). The finite Weyl group acts by arbitrary permutations and even sign changes
on the coordinates of wx¢q. The coroot lattice acts by translation with integer vectors
whose coordinates sum to an even integer.

7.4.1 Case(1),6.5

Wehave xq = (1/2, 1/4, 0, 0). Because y has only two eigenvalues we may eliminate
cases in the orbit of x¢ for which v maps a space to the next one. This leaves us with
the following possibilities.

(i) wxg = (3/4,1/2,0,0),
(i) wxq = (1,1/2,1/4,0),
(iii) wxg = (1,3/4,1/2,0),
(iv) wxg = (1,1,1/2, 1/4).

In case (i) the flags are of the form

Y
OCFICF CF+CFcCV.

It’s enough to show that F, + ¥ (F>) is isotropic. For that it suffices to prove that
(Yv, yw) = 0 for all v, w € F>. This follows from the fact that ¥2(w) = x%w.
Indeed we have

(Yv, yw) = —(v, y?w) = —x*(v, w) = 0.

The same argument works in cases (iii) and (iv).
In case (ii) we have flags

0C Fi\ C F> C F3 FfCFCcFtcv.
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Assume that F> + ¥ (F1) # F3. Then ¥ (F;) C F> and we may take F| + ¥ (Fy).

If F> + ¢ (F1) = F3, then F3 C F, + ¥ (F>) and this space is isotropic by the same
argument as before. Therefore this space is a Lagrangian subspace containing F3 and
as such it is either Fj4 or F 4{ and we are done.

7.4.2 Case (2), 6.5

We have xq = (1/4,1/4,1/4, 1/4) and the possible non-trivial cases are

(1) wxg = (3/4,3/4,1/4,1/4),
(i) wxg =(5/4,3/4,1/4,—1/4).

In case (i) we consider flags

N Y
0OCFHCFCFCV.

Choose a basis u, v € F». We first want to prove that v, = 0 for all v" € F». Since
dim V (x) = 1 there are scalars A, w, which are not both zero such that tyu, +Ay vy =
0. Define w = A,v + pyu. Then w # 0 and since (w, y>w) = 0 we find that
(wy, w_y) = 0. This implies that wy, = 0 or w_, = 0. Without loss of generality we
may assume that wy = 0,i.e. w = wo + w—_y + w_,. Now Yw, wzw € F2l implies
that w_, € in and w_y, € F2L If w_y = 0 then if also w_, = 0 the space F>
contains wg 7 0 and in particular the line spanned by it and we may insert that. So
either w_yx # 0 or w_, # 0 and we may assume that w_, # O (otherwise we end up
eliminating the y-component in F»). Now for all v € F> we have (v/, w_,) = 0 and
therefore v' = v} + vy +v_, + v’ .

In the second step we will prove that also v
are scalars A, u_y such that

’y = 0 for all v € F>. As before there

AxVoy + p—yt—y = 0.

We define w’ = A_,v + p—xu # 0. The same argument as before shows that w’ , €
F2l and that we may assume it’s non-zero. This proves that v; =0 forallv € F>.

A simple calculation now shows that W = F; 4 ¥ (F») 4+ ¥2(F,) is y-stable and
isotropic. If neither F; nor F> + 1 (F3) are already stable, then W is either F4 or some
other Lagrangian and we may insert that space.

In case (ii) the flags are

—~—~

0OCFICF, CFCFCFCFCF}cCV.

Since 1//2(F2) C F2L we can insert the space Fp + ¢ (F>) + wz(Fz) and the argument
is the same as in case (i).
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7.4.3 Case (3), 6.5

We have xq = (1/4,1/4,0,0,0) and may assume that x; — x;41 < 1/2fori <3
(otherwise we may insert a space of the form F + ¥ (F) immediately). This leaves us
with the following non-trivial cases

(i) wxg = (3/4,3/4,1/4,0,0),
(i) wxq = (5/4,3/4,3/4,0,0),
(ili) wxg = (5/4,1,3/4,3/4,0).

In case (i) the flags are of the form

TN

0CFHCFCFCFcV.

It’s enough to show that actually ¥ (F3) C F3L. This will imply that F3 + ¢ (F3) is
isotropic and stable. Choose a basis v, vy of F> and extend to the basis vy, vz, v3 of
F3. We need to show that (u, ¥ (v)) = 0 for all u,v € F3. Write u = Y_ A;v; and
v =Y [;v; in the chosen basis. We have

(, Y (v)) = u3u, ¥(v3))
since ¥ (F>) C FgJ- Furthermore since also v (F3) C le we have
walu, Y(v3)) = A3uz(vs, ¥ (v3)).
The last term vanishes because for any w = w, + w_, we have
(w, ¥ (w)) = —x(Wy, W—x) +x(W_y, wx) =0

since the pairing is symmetric.
Cases (i1) and (iii) work the same as case (i) in Sect. 7.4.1.

7.4.4 Case (4), 6.5

We have xq = (1/4,1/4,1/4,1/4, 1/4) and the non-trivial possibilities for wxq are

() wxq = (3/4,3/4,1/4,1/4,1/4),
(i) wxq = (5/4,3/4,1/4,1/4, —1/4),
(iii) wxq = (7/4,5/4,3/4,1/4,1/4),

In case (i) we consider flags

N
0OCFRCFCF-CV.
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We claim that W = F> 4+ ¢ (F2) 4+ ¥%(F>) is isotropic. Note that we may assume
to be injective on F3, because otherwise we can insert its kernel. It suffices to show
that (v, ¥2w) = 0 and that (y2v, ¥2w) = 0 for all v, w € F>. We have

(v, v?w) = (Yu, ¥?w) + (Yv, xwo) = x*(Yv, w) =0

and similarly we get (¥>v, ¥2w) = 0. This implies that the dimension of W is at most
5 and hence we have F> N/ (F2) # 0 or (F> + v (F2)) N2 (F>) # 0. In the first case
F> contains a non-zero vector w such that Yw € F> and hence it contains 2xw, + xwg
and —2xw_, — xwp. We may assume that wy, wo, w—x 7 0 because otherwise F;
contains an eigenvector. Now F3 is spanned by 2xw, + xwg and —2xw_, — xwg and
hence F, + ¥ (F3) is {-stable.

If ;2N (F) = 0and (F» + ¥ (F2) N ¥2(F>) # 0 we either have that W is
five-dimensional in which case it’s Lagrangian and we may insert it into the flag or
V2(F>) C F> + ¥ (F>) in which case F> + ¥ (F») is ¥ -stable.

In cases (ii) and (iii) we may simply insert the space F1 + ¥ (F1) + wz(F 1) which
is automatically stable and isotropic.

7.4.5 Case (5), 6.5

We have xg = (1/4,1/4,1/4,0,0,0) and as for n = 5 we may assume that x; —
Xi+1 < 1/2fori < 4. This leaves us with the following cases

(i) wxg =(3/4,3/4,1/4,0,0,0),
(i) wxg =(1,1,3/4,3/4,1/4,0),
(i) wxg =(5/4,1,3/4,3/4,0,0),

The arguments in these cases are the same as forn = 5.

7.4.6 Case (6), 6.5

We have xq = (1/4,1/4,1/4,1/4,1/4,1/4). The list of possible cases is

(1) wxg = (3/4,3/4,1/4,1/4,1/4,1/4),
(i1) wxg = (3/4,3/4,3/4,3/4,1/4,1/4),
(iii) wxqg = (5/4,3/4,1/4,1/4,1/4, —1/4),
(iv) wxg =(5/4,3/4,3/4,3/4,1/4,—-1/4),
(v) wxg = (5/4,5/4,3/4,3/4,1/4,1/4),
(vi) wxqg = (5/4,5/4,5/4,3/4,1/4, —1/4)),
(vil)) wxg = (7/4,5/4,3/4,1/4,1/4,1/4),

(viil)) wxqg = (7/4,7/4,5/4,3/4,1/4, —1/4),
(ix) wxq = (9/4,7/4,5/4,3/4,1/4,1/4).

In case (i) we look at flags

N
0CFRCF CF-CV.
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We may assume that /|, is injective. As before W = F> + ¢ (F2) + Y2(F>) is
isotropic and -stable. If dim(W) = 6 it’s Lagrangian and either equal to Fg or we
may insert it as a second Lagrangian subspace. If dim(W) < 6 wehave F,Ny (F>) # 0
or (Fy + ¥ (F2)) N Y2 (F,) # 0.

If F> N (F2) # 0 we conclude that F> + v (F>) is y-stable as in the corresponding
case forn = 5. If F, N y(F>) = 0 and (F; + ¥ (F>)) N2 (F,) # 0 there is a vector
v+ (1) € Y2 (F>). Thisimplies vg = Oand ¥ (1) = x2(v+¥ ()= (v) € Y2 (F).
Therefore ¥ (1) = Y2(u’) for some u’ € F, and hence u € F» Ny (F>) = 0. In
the end we find that v # 0, i.e. F> contains the non-zero vector v = vy + v_x.
If either component vanishes, then v is an eigenvector and we may insert the line
spanned by it into the flag. If both are non-zero, then since vy, v_, € ¥>(F,) we get
Uy, V—y € (F2 + ¥ (F2)) N 1/f2(F2) and this intersection has to be two-dimensional.
But that implies 1//2(F2) C (F> + ¥ (F>) and hence F> + ¥ (F3) is y¥-stable.

In case (ii) we consider flags of the form

Y
0CF CF CFCV.

The space Fu + ¥ (F1) + 1//2(F4) is isotropic. If Fy is not stable, then Fy + 1 (Fy) is
at least five dimensional. If this space itself is not already stable, then Fy + ¥ (F4) +
Y2 (Fy) is Lagrangian and we may use it to refine the flag. In case (iii) we may simply
insert the space F| + ¢ (F1) + W2(F}). Case (iv) is similar to case (ii), we may insert
the space Fy + ¥ (Fy) + ¥2(Fy).

In case (v) we have flags

N N N Y
0CFH CF CF CFtCFCV.

We may insert >+ (Fy) if itis equal to F4. Otherwise F>Nr (F>) # 0and there is
avector w € F, suchthat v (w) € F>. We then find that F, + 1 (F2) contains wy, wW_y
and wy. If any of these vanishes, F; contains an eigenvector. Otherwise F> + ¥ (F3)
is generated by these three vectors.

Cases (vi)-(ix) are easy, simply use the spaces F + v (F) + 1//2(F ) where F always
denotes the first-non zero step of the flag.

7.5 Stabilizers on the unit coset

In the previous section we proved the first part of Theorem 6.5.1. In the following we
analyze the unit coset in more detail. We prove strictness in types A and D.

7.5.1Remark The covering Spin(V) — SO(V) induces an isomorphism on flag vari-
eties. The stabilizers only differ by the kernel of the covering. Therefore in types B
and D we may (and will) work with SO(V) in the following.

7.6. Fix a maximal torus 7 and a Borel B containing it. We may assume Q O B and
Y € t. Then Gy D T, and we may assume T C By C B.Let Py = BGy;thisisa
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standard parabolic subgroup of G containing G as a Levi subgroup. Let N, N v, Ny
be the unipotent radicals of B, Py and By respectively.

Let Wy be the Weyl group of the Levi subgroup of Q containing 7. The double
cosets B\G/Q are parametrized by W/Wg. Let w € W, and let w be any lift of
w to Ng(T). Then we can identify the B-orbit of wQ/Q with N/N N ™ Q (write
Y Q = Ad(w) Q). The left translation action of By, = Ny T on Bw Q/Q becomes left
translation of Ny, on N/N N * Q and the action of T by conjugation. Using the left
Ny -action, every By, orbiton N /N NY Q intersects NY/NYN»Q.OnNY/NYN¥Q,
there is the residual action of By, N Q by conjugation. Therefore, it suffices to show
that the stabilizers of the action of By, N* Q on N ¥ /NY N* Q by conjugation contain
nontrivial tori, except in one case.

Let Wy, C W be the Weyl group of Gy, (with respect to T').

7.6.1 Lemma Let wq be the longest element in W with respect to the simple reflections
defined by B. If w is not in the double coset WywoWg, then the action of T on
NY/NY N Q has positive dimensional stabilizers.

Proof Let N 0 be the unipotent radical of the parabolic of G opposite to Q and
containing T. The inclusion N¥ N *N o €N ¥ induces an isomorphism NV N

YN 0 > NY /NY N Q. To verify the claim, it suffices to show that the set of

roots ®(N¥ N¥N é) does not span X*(T)q rationally, unless w € Wy woWy. This
can be checked case by case.

For example, consider the case where G = Sp(V) and Py and Q are both Siegel
parabolic subgroups. Let {e, ..., ey, e_y, . .., e—_1} be a symplectic basis of V;let T
be the diagonal torus with respect to this basis. The above claim is equivalent to the
following statement: let L, L’ be two Lagrangian subspaces spanned by part of the
basis. Let Ny be the unipotent radical of the stabilizer of L, and similarly define Ny .
Then as long as L # L’, the action of T on L N L’ has positive dimensional stabilizers.

This latter statement can be proved as follows. Identify N; with Sym? (L) using the
symplectic form. Then N, NN, C Ny is identified with the subspace Sym?(L N L")
of Sym?(L). If L # L’, let T be the subtorus of T corresponding the basis elements
e+; such that ex; ¢ L N L'. Then T} acts trivially on Sym>(LN L) = N, N Ny. O

7.6.2 Remark More precisely let U denote the rational span of ®(NY N*¥N 0)- If
U # X*(T)q then the stabilizer contains m(xeb(G)mU ker(a). The set ®(G) N U is
the root system of a Levi subgroup of G and ﬂaeCD(G)ﬁU ker(«) is its center.

7.7. It remains to treat the case w € WywoWg. Write w € vwoWg for some v €
Wy,. We need to consider the stabilizers of the conjugation action of By, N " Q on
NV /NY N0 Q. Conjugating by a lifting of v in Ng, (T), we may as well consider the
action of V' By N*0 Q0 on NY/NYNw Q. Let Q' = (Y0Q)~ be the opposite parabolic
of “oQ and let M = Q' N *¥0Q (common Levi of Q' and *“° Q). Then v By N"Q
always contains a Borel subgroup By of the Levi subgroup H = Gy N M of G.
Identifying N¥ /N¥ N0 Q with N¥ NN o'» we reduce to considering the action of
By on NV N N by conjugation (the whole H acts on NY N N¢' by conjugation).
We remark that after this reduction, the roles played by Py and Q" are symmetric.
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Below we describe case-by-case the action of H on NV N Ny in linear algebra
terms. In the following, V,,, V, always denote an n-dimensional space; when n = 1,
we use G, (V1), Gm(V{) to denote the one-dimensional torus that acts on Vi, V]’ by
scaling.

In all cases N¥ N N o’ is a vector group, and we describe it as a representation of
H. The Borel subgroup By of H acts on N¥ N N o’ with an open orbit with finite
stabilizer. In the following we analyze the orbits of By acting on NV N N more
precisely. Recall that by P; we denote the stabilizer of a d-dimensional subspace V
and by P; 4 the stabilizer of aflag0 C V; C V C V with V being d’-dimensional.
We list the possible conjugacy classes of Q and the corresponding H -representation
NY N Ng.

7.8 Type A
(1) H = T (in this case there is no need to describe N¥ N Ng).
(2a) G = SLou, (P1//7 0) ~ (Py, Pm,m+1) or (P, Pm,2m—l) or (Py, Pl,m) or
(Pm, Pm—1.m). Then we have
H = S(GL(Vjy) x GL(Vjy—1) x G (V1)),

and N¥ N Ng' = Hom(V,,_1, V;») @ Hom(V1, V},) or its dual.
(2b) G = SLow, (Py, Q) ~ (P, P1,m) or (Py, Py—1,2m-1). Then we have

H = S(GL(Vju—1) x GL(V,,_)) X G (V1) x G (V))),
and N¥ N Ng =Hom(V,,—1, V, _,) ®Hom(Vy, V{) @ Hom(V,,—1, V) or its
dual.
(33) G = SLZm—H» (P1//7 Q) ~ (va Pm,m+1) or (va Pl,m+1) or (Pm—Ha Pm,2m) or
(Pm+1, Pm.m+1). Then we have

H = S(GL(V;) x GL(V,,) x G (V1)),

and NY N Ng' = Hom(V,,, V,,) ® Hom(V1, V) or its dual.
(3b) G = SLom+1, (Py, Q) ~ (P, Pyom) or (Pyuy1, P m+1). Then we have

H = S(GL(Vi—1) x GL(Vip) X G (V1) x G (V))),

and N¥ N Ng = Hom(V,,;, Viy—1) @ Hom(V,,, V1) ® Hom(V1, Vl’) or its dual.
(4) G = SL¢. We have

H = S(GL(V2) x GL(V3) x GL(V3')),

and NV N Ng = Hom(V2, V;) @ Hom(V,, V') or its dual.

Case (1) is clear for dimension reasons: any non-open orbitin N NN o’ has dimen-
sion less than that of T, hence has positive dimensional subtorus in the stabilizers. In
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addition it’s easy to check that the stabilizer on the open orbit is just the center of SL,,
and that outside the open orbit the stabilizer always contains the center of a maximal
Levi subgroup.

We reduce the cases (2a)(2b)(3a)(3b) to Case (1). We give the argument only for
(2a). Leta : Vyy_1 = Vyp,b: Vi —» Vy,anda @ b : V1 & Vi — V,,. The image
Stabp,, (a, b) — GL(coker(a @ b)) contains a Borel subgroup of the target. Therefore
Stabp,, (a, b) contains a nontrivial torus if @ @ b is not surjective (equivalently not an
isomorphism). In the remaining case, we may assume a @b : Vy,_ ® Vi — V,, isan
isomorphism. Such (a, b) form a single orbit O under H. We have an isomorphism
of stacks By\O = B(V,,—1)\GL(V,,)/B(V};,), where By = B(V,,—1) x B(V,,), and
B(V,,—1) is embedded into GL(V,,,) via a. This is exactly the situation of case (1) for
GL(V},,) where By is the Borel subgroup of a Levi subgroup of of type (m — 1, 1).
The computation of the generic stabilizer and stabilizer outside the open orbit is also
reduced to Case (1).

For Case (4) we can use similar argument as above to reduce to the open H -orbit O
wherea : Vo — V2’ and b : V) — Vz/ are both isomorphisms. For this H-orbit O, we
use a and b to identify V; and V,’ with V3, and write By = S(B; x B}, x B}) (where
By C GL(V») is a Borel etc), then Stabg,, (a, b) surjects onto (B, N B} N BY) /G,
(modulo scalar matrices). If (a, b) is in a non-open By -orbit, then two of the Borels
B>, B), B} are the same and (B> N B, N B})/G,, contains the center of some maximal
Levi subgroup. On the open orbit it’s clear that the intersection B, N B} N B is the
center of GL; and hence the generic stabilizer is the center of SLg.

7.9 Type B

(1) H=GL(Vy), NV NNy = A2(V,)) @ V.
2 H=T =Gu(V})) x Gu(V), NV NNg =V @ V[ & V; ® (V))¥
(3) H=Gu(V1) x Gu(V)) x SO(V3), NV NNog =Vi®@ Vs ® Vi ® V.

Case (1) is not strict as it may have several relevant orbits.

In Case (2) the stabilizer on the open orbit is u» = {£id}, so it is not strict.

We consider Case (3). We identify N AN o with V3 ® Vi on which (4, i, X) €
G x G, x SO(V3) acts as (v, x) — (AXv, Aux). Let B3 € SO(V3) be the stabilizer
of an isotropic line £. Fix a vector (v, x). If v is isotropic or x = 0 it’s easy to see that
the stabilizer of (v, x) in By = B3 x G, X G, contains a torus. Therefore assume that
v is anisotropic and x # 0. Denote by (, ) the symmetric bilinear form on V3. Then if
(A, i, X) € Stabg,, (v, x) wefind that u = A~ " and (v, v) = (AXv, AXv) = A2 (v, v),
implying that A = 1. The vector v determines a splitting V = (v)* @ (v) and
Stabso(vy) (V) = SO((v)1) = G,,. If v € £ the stabilizer Stabpg,, (v, x) contains this
G, The open orbit is given by those (v, x) where v ¢ £+ and x # 0. It is easily
verified that in this case the stabilizer is u, = {#id} and hence this case is also not
strict.
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7.10 Type C

(1) H =GL(V,), N¥ N Ng' = Sym?(V,).
(2) H=Gpu(V1) xGu(V)) xSL(V2), NV NNy = Vi@V, @ Vi Vi® Vi ® Vy.

We consider Case (1). We may identify Sym?(V,,) with the space of quadratic forms
on V' .LetL =ker(q) C V,,and P, C GL(V,) be the parabolic subgroup stabilizing
L. Then we have a natural map Stabg,, (¢9) C By N P, — GL(L) whose image is
a Borel subgroup of GL(L). Therefore if L # 0, Stabg, (¢) contains a nontrivial
torus. Now suppose L = 0, i.e., g is nondegenerate. We equip V,, with the quadratic
form induced from ¢, and still denote it by g. Let By be the stabilizer of a complete
flagF=0cC Vi C---C Vy—1 C V). Consider the relative position of the flag
FL =0 c VnJ-_1 cC - VIJ- C Vu) ((—)7* is taken under the quadratic form g). If
F and F+ are not opposite, consider the first i > 1 such that V; N ViJ- # 0 (i.e., the
first i such that g|y, is degenerate), in which case ker(q|V;) is 1-dimensional. Then
Stabg,, (q) — G (ker(q|V;)) is surjective, hence Stabp, (¢) contains a nontrivial
torus. If F and F are opposite, then ¢ is the in the open By -orbit of Sym?(V,,). The
intersection of the stabilizers of F and F~ is a maximal torus 7 of GL(V,,) and the
stabilizer on the open orbit is the 2-torsion T[2] = uj.

We consider Case (2). An element (A, u, X) € H acts on a vector (v, x, y) as
(AXv, 22x, Ay). Let By be the stabilizer of aline £ C V, and By = G, x G, X Bs.
If v = 0 then Stabg,, (v, x, y) contains B;. If x = 0 then the stabilizer contains the
intersection of B; and the stabilizer of (v) and if y = 0 the stabilizer contains a torus
coming from the G,,-factors. We therefore assume that v # 0, x # 0 and y # 0. The
open orbit is given by those (v, x, y) for which in addition v ¢ £. The stabilizer on
the open orbit is up = {Fid}. If v € £ the stabilizer does not contain a torus but the
unipotent radical of B;.

7.11 Type D

(1) (Py, Q) ~ (P4, P1p). Then H = G,,(V}) x Gy (V]) x GL(V2), NY N Ny =
Vi@ Vi@V, e Vi® V.

(2) H=GL(V») x GL(V3), NY N Ng = V3 ® V2 & A*(V3).

(3) H = GL(V3) x GL(V4), N N Ng = V3 ® V| & A*(V3).

We consider Case (1). An element (A, u, X) € H acts on a vector (u, v, x) via
(u,v,x) = (AXu, uXv, Aux). Let B € GL(V>) be a Borel subgroup stabilizing a
line £ C V and By = G, x G, x By. If x = 0 the stabilizer of (u, v, x) contains
a torus coming from the G,,-factors. If u = O then the condition on X is equivalent
to asking that it stabilizes the line spanned by v and Stabg, (0, v, w) contains the
intersection of B, with the Borel subgroup stabilizing (v). The same happens for
v = 0 and we may therefore assume that u # 0,v 7# 0 and x # 0. The open orbit
is given by those vectors (u, v, x) for which x # 0, u ¢ ¢, v ¢ £ and u and v are
linearly independent (i.e. X is contained in the intersection of three pairwise different
Borel subgroups). It’s easy to check that the stabilizer on the open orbitis o = {%id}.
One may check explicitly that outside the open orbit the stabilizers contain tori which
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are contained in centers of maximal Levi subgroups. For x = 0 one finds a torus of
the form Z(GL>) in a Levi subgroup isomorphic to GL; x SO(4) and for x # 0 one
obtains the center of a Levi subgroup isomorphic to G, x SO(6) (as long as we’re
outside the open orbit).

For Case (2) we identify V3 ® V, with Hom(V;", V). An element (Y, X) € H
acts on f € Hom(Vy, V2) via f > Yf X! Let (0, f) € Hom(V5, V2) & A%(V3)
and let By = Stab(£) x Stab(F) for a line £ C V; and a full flag F given by
0 C F1 C F, C V3. If f is not surjective clearly Stabg, (f, @) contains a torus. We
therefore assume f is surjective and hence has a one-dimensional kernel L C V' If
(Y, X) € Stabp,, (f, w) then X stabilizes the flag

0cLcflwcv;.

Denote by F the flag in V" orthogonal to F with respect to the canonical pairing for
V3 and V3. The open orbit is given by those (f, ) for which F L and the above flag
are opposite (i.e. X lies in a maximal torus of GL(V3)) and for which w (considered
as a 2-form on V') is not contained in any of the duals of the planes /\2(F2L LD
A7), A2(F5 @ L) @ AX(FL) or A2(Fib) @ A2(F71(0)). Tt is easy to verify
that the stabilizer on the open orbit is u» = {Z£id} and that it contains a torus outside
this orbit. More precisely if f is not surjective, the stabilizer contains the center of
a Levi subgroup isomorphic to G, x SO(8). If f is surjective then outside the open
orbit the stabilizers contain the center of a Levi subgroup isomorphic to GLs. Case
(3) works the same. This concludes the proof of strictness in type A and D.

8 Potential examples
In this section we give a list of triples (Poo, ¥, Qo) in type A and exceptional types
as potential examples of euphotic automorphic data with a generic choice of x. In

these examples, we only check that By acts on L/Q with an open orbit with finite
stabilizers (part of condition (1) in Definition 3.4.1).

8.1 Type A
8.1.1 Setup
Let G = PGL(V) for some vector space V over k of dimension #, and let G be the
split form of G over F. Since all parahoric subgroups of G (F) can be conjugated to
be contained in G (O ) in this case, we may assume Poo, C G (O ). For such P, the

corresponding Z/mZ-grading on g = ®;cz/mzg(i) is induced from a Z/mZ-grading
on the vector space

V = ®icz/mzVi
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such that

9(i) = @jez/mzHomi (V;, Viyj), Vi € Z/mZ — {0},
g(0) = Lie L = (®ez/mzEndr (V) /k - idy.

Conversely, any Z/mZ-grading on V with V; # 0 for all i € Z/mZ arises from a
parahoric subgroup P, C G(Ox). Note that

L= [] GLV)|/AGy,
JEZ/mZ.

Vp = ®jez/mzHomi (V;, V;_1).
We give two classes of potential examples.

8.1.2 Case (1)
Assume the dimensions of V; satisfy
dimVy=dy, dimV;=dfori #0, anddy>d > 0.

Let Qo C GL(Vy) be a parabolic subgroup; let 19 € End(Vp) be a semisimple
element. We assume

e The pair (Qoq, ¥o) appears in the list of hyperspecial euphotic data of type A in
Sect. 6.2.

o Let V(? be the zero eigenspace of ¥; and let V;; be the sum of nonzero eigenspaces.
Then dim V) = dy — d and dim V; = d.

With these preliminary data, we construct Q and v as follows. Let Q C L be the
parabolic subgroup

0=|0ox [[ GLW)|/AGw.

i€Z/mZ—{0}

Viewing ¢ as a collection of maps V; — V;_; fori € Z/mZ, we then require it to

restrict to isomorphisms Vé = V_i 5.3 Vi = Vé C W, and to restrict to zero
on V(?. Moreover we require that v | Vy = .

8.1.3. We check that in the above situation, By, acts on L/Q with an open orbit with
finite stabilizers. Indeed, L/Q = GL(Vy)/Qo, and Ly = PGL(Vp)y, (the centralizer
of Y in PGL(Vp)). Therefore we reduce to the case discussed in Sect. 6.2 for the
group PGL(Vp).
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8.1.4 Case (2)

Take Qq to be the standard Iwahori subgroup of G(Fp) (i.e., O C L is a Borel
subgroup). Fix a decomposition

Vi=t,®V>, ielZ/mZ

where dim ¢; = 1. Viewing ¥ € Vp as a collection of maps V; — V;_y, let it restrict

to an isomorphism ¢; — £;_1 and be zero on Vio.

8.1.5. We check that in the above situation, By acts on L/Q with an open orbit
with finite stabilizers. We have L/Q = nieZ/mZ F1(V;). We also have Ly, =
[liez Im. GL(VI.O) (an extra factor of G, acting on all the lines ¢; gets cancelled after
dividing by scalar matrices). Therefore By, = [[;., /mZ By i where By, ; C GL(Vl.O)
is a Borel subgroup. The required property of the By, -action on L/ Q follows from the
same property for the By, ;-action on FI(V;), which is checked in case (2) of Sect. 6.2.

8.1.6 Remark We expect case (2) to correspond to hypergeometric local systems with
slope 1/m at co and unipotent monodromy at 0. Rigid automorphic data corresponding
to hypergeometric local systems are constructed in the work of Kamgarpour and Yi
[12].

8.2 Convention

In the exceptional cases, we always assume G is of adjoint type. We will indicate the
type of P, by coloring the affine Dynkin diagram of G(Fs): the white nodes are
simple roots of L = Lp, and the black nodes are simple roots not contained in L.

When we describe L and Vli‘, we will use V;, Vi’ , Wi, F;, etc. to indicate vector
spaces of dimension i over k.

8.3 Type 3D,
Type of Poo:

o

R ——¥ ]

In this case m = 3. We have L = PGL(V3) actingon Vg = Sym3(V3)®det(V3)’1.

Choose a basis {e], e, e3} for V3. Take ¥ = (e1e2e3) @ (e1 Aex Ae3)™ ) e Vp.
Then Ly is the normalizer of the diagonal torus in L with respect to the basis {e; }.

Potential choices of Q: take Q to be a maximal proper parabolic subgroup of L so

that L/ Q = P(V3) or P¥(V3). Then By, = L°1// acts on L/Q with an open free orbit.
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8.4 TypeF4

8.4.1. Type of P:

e ——>o0

In this case m = 3. We have L = (SL(V3) x SL(V3’))/AM3 (modulo diagonal
center) acting on Vi = Symz(V3) ® V3’ . The factor SL(V3) has short roots of G and
SL(V3) has long roots.

Choose abasis {x1, x2, x3} of V3, and a basis {e], e, e3} of V3/. Take Y = x12 ®ey+
x% Qe+ x32 ® e3. Then Lf/f is a 2-dimensional torus. The projection pr — PGL(V3)
is an isomorphism onto the diagonal torus of PGL(V3) with respect to the basis {x;}.
The other projection Low — PGL(V3’ )isa ,u%—cover of the maximal torus of PGL(V3’ )
with respect to the basis {e;}.

Potential choices of Q:

(1) L/Q =P(V3) or PY(V3). In these cases By, = pr acts on L/ Q with an open free
orbit.
(2) L/Q = P(V3) or PY(V}). In these cases By = Ly, acts on L/Q with an open

orbit with stabilizer u%.

8.4.2. Type of P:

oO——>o

In this case m = 2. We have L = (SL(V2) x Sp(Vs))/Apa (Ve is a symplectic
space of dimension 6, i, embeds diagonally into the center of each factor), and
VEEW® KS(VG). Here A° (Vi) is the cokernel Vg — A3 Vg given by wedging with
the symplectic form on Vg, so dim K3(V6) = 14.

Choose a basis {eq, ez} for V; choose a Lagrangian splitting Vg = W3 & Wg". Let
6 be a volume form on W3 (i.e., 0 € A3W3, 0 # 0) and 6* be the dual volume form
on W3 Consider ¥ = e; ®6 +e2 ®6*. Then L°1// = GL(W3)/u2, where GL(W3) <—
SL(V2) x Sp(Ve) is the following embedding. The projection GL(W3) — Sp(Ve)
identifies GL(W3) as the Siegel Levi preserving the splitting W3 @ W3 The projection
GL(W3) — SL(V») is the composition of det : GL(W3) — G, and G,, — SL(V;)
given by t — diag(t_l, t) in the basis {e, e3}.

Potential choices of Q:

(1) L/Q =P(V2) x P(Vg). Then By acts on L/Q with an open free orbit.

(2) L/Q is the space of Lagrangians in V. The open pr—orbit of L/Q is isomorphic
to the space of non-degenerate quadratic forms on W3, which has an open By, -orbit
with stabilizer /,L%.
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8.5 Type Eg

8.5.1. Type of P:

In this case m = 3. We have L = SL(V3) x SL(V4) x SL(V5)/(u3 x 3 x u3)[1=!1
actingon Vi = V3 ® V3 ® V. Here (13 x 13 x w3)[1=1 is the subgroup of the central
w3’s with product 1.

Choose bases {x;}1<;<3 for V3, {x]}1<i<3 for V; and {x]'}1<;<3 for V;. Take ¢ =
X x| ®x] +x2®x,®x) +x3®x; x5 € Vp. Then LY, is a4-dimensional torus.
The projection Lf// — PGL(V3) x PGL(V3) is an isomorphism onto the diagonal torus
in the target with respect to the chosen bases. Same for the other two projections.

Potential choices of Q: L/Q can be P(V3) x IP’(V3’), or changing P to PV, and
changing (V3, V3) to other pairs (V3, V5) or (V4', V3). The action of By = Ly, on
L/ Q has an open free orbit in all cases.

8.5.2. Type of P:

and two other cases by symmetry.

In this case m = 2. We have L = SL(Vg) x SL(V2)/(u3 x 1)Auy acting on
Vi = A3 (V) ® Va.

Choose a basis {eq, ea} for Va; choose a splitting Vg = W3 @ Wé into two 3-
dimensional spaces. Let 6 (resp. ') be a volume form on W3 (resp. Wj). Consider
Y =0 Qe + 6 Q er. The projection Lfy — PGL(Vg) identifies Lfy with the Levi
subgroup of PGL(Vs) preserving the splitting W3 @ Wj.

Potential choices of Q: L/Q is a partial flag variety of PGL(Vp) of type (3, 2, 1)
(dimensions of associated graded of the partial flag, in any order). Now By is a Borel of
LOW’ which projects isomorphically to a Levi of PGL(Vg) of type (3, 3). The situation
By \L/Q appears as a special case of Sect. 6.2(4), from which we know that By, acts
on L/Q with an open free orbit.
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8.6 Type 2E¢

8.6.1. Type of P:

o o o<L——0oeo o

In this case m = 4. Then L = (SL(V4) x SL(V2))/ T acting on V' = Symz(V4) ®
V», where T is the central subgroup {(x, x2) € ua x o).

Choose a basis {eq, ep} for V> and a basis {x1, y1, x2, y2} for V4. Take y = x1y1 ®
€1 + x2y2 ® e>. Then the projection L?p — PGL(V4) is an isomorphism onto the
diagonal torus with respect to the basis {x1, y1, x2, y2}.

Potential choices of Q: L/Q = P(Vy) or PY(Vy). It is clear that in both cases
By = Lj, acts on L/Q with an open free orbit.

8.6.2. Type of Poo:

[¢]

o<L——o

[¢]

In this case m = 4. We have L = (Spin(V7) x SL(V2))/Aus acting on Vli‘ =
Ag ® Vo where Ag is the 8-dimensional spin representation of Spin(V7).

We have an embedding ¢ : Spin(V7)/P; — PAg, where Spin(V7)/P3 classifies
maximal isotropic subspaces in V7. Choose a splitting V; = W3 @ W3/ @ (xq), where W3
and Wj are maximal isotropic and paired perfectly to each other and both orthogonal
to xo. Let {ey, ez} be a basis for V5. Take ¢ = @([W3]) ® e1 + ¢([W;]) ® e (here
@([W3]) € Ag is alifting of ¢([W3]), unique up to a scalar; same for ¢([W3])). The
projection Lfﬂ — SO(V7) is an isomorphism onto the Levi subgroup isomorphic to
GL(W3) that stabilizes the splitting V7 = W3 & W3/ @ (xo). The projection L?// =
GL(W3) — PGL(V,) factors through the determinant and maps onto the diagonal
torus with respect to the basis {eq, e3}.

Potential choices of Q:

(1) L/Q isthe partial flag variety of Spin(V7) classifying maximal isotropic subspaces
of V7. The situation By \L/Q appears as a special case of Sect. 6.3(1), and we
have checked that By, acts on L/Q with an open orbit with finite stabilizers.

(2) L/Q =Q(V7) x P(V;), where Q(V7) C IP(V7) is the quadric. Identify By \L/Q
with B(W3)\Q(V7), where B(W3) C SL(W3) is a Borel subgroup. It is then easy
to check that B(W3) acts on Q(V7) with an open free orbit.

8.7 Type E;

8.7.1. Type of P:

[e] [¢] [ ] o [e] [¢] (¢]

and another case by symmetry.
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In this case m = 3. We have L = SL(Vs) x SL(V3)/(n2 x 1)Aps acting on
= A(Ve) ® Vi

Choose a basis {eq, ez, e3} for V3; choose a splitting Vg = W1 & W> & W3 into
three 2-dimensional subspaces. Let 9; be a volume form on W;. Consider the element
Y = 01®e1+0,Qer+63Re3. The projection Lf// — PGL(V) is an isomorphism onto
the Levi of SL(V) stabilizing the splitting Vs = W & W> @ W3, and the projection
L°w — PGL(V3) has image equal to the diagonal torus with respect to the basis {e;}.

Potential choices of Q: L/Q is the partial flag variety of PGL(Vg) with associated
graded dimensions (4, 2) (in any order). The situation By, \ L/ Q appears in the example
Sect. 6.2(8), from which we know that By, acts on L/Q with an open free orbit.

8.7.2. Type of P:

and another case by symmetry.

In this case m = 2. Then L is isogenous to (Spin*(Vi2) x SL(V»))/Au, acting
on fo = A;rz ® V», where Spin+(V12) is one of the half-spin quotient of Spin(V13)
acting on its half-spin representation A;rz.

Choose a basis {ej, e2} for V. There is an embedding ¢ : Spin(V12)/Pe —
IP’A;'Z, where Spin(V12)/ Pe is the partial flag variety of one of the two families of
Lagrangian subspaces in V5. Fix a splitting Vi, = W @ W into Lagrangians. Take
¥ = o([Ws]) ® e1 + @([W{]) ® ea (here ¢([W]) is a lifting of ¢ ([We]) to Az,
up to scalar; same for ¢([Ws])). The projection Lfﬁ — PSO(V17) is an isomorphism
onto the Siegel Levi stabilizing the splitting Vi = We & W¢, so L7, = GL(We)/ 2.
The projection L°1// = GL(Wg) /2 — PGL(V,) factors through the determinant and
maps onto the diagonal torus of PGL(V;) with respect to the basis {e1, e;}. Note that
dim By =21.

Potential choices of Q:

(1) L/Q = SO(V12)/ P; is the partial flag variety classifying isotropic F3 C Vi». The
situation By \ L/Q has been analyzed in Sect. 6.5(3).

(2) L/Q = SO(V12)/Ps x P(V,), where the first factor classifies isotropic F5 C V3.
We check the open orbit condition as follows. We first reduce to study the action
of B]}/ (a Borel subgroup of SL(Wg)) on ¥ = SO(V)2)/Ps. Note that Y classifies
a pair of Lagrangians Us, Ué C V12 such that dim(Ug N Ué) = 5. We may assume
Us is conjugate to We. There is an open subset Y’ C Y classifying those (Us, Ug)
such that Ug is the graph of a skew-symmetric map a : W, — We. We may identify
Y’ with /\2(W6) x P(Ws) (the choice of Ué is the same as choosing a hyperplane
in Us, or in W{). The situation of B]}/ acting on Y’ is essentially the same as case
(1) of Sect. 7.9.

(3) L/Q = SO(V12)/ P16 x P(V2), where the first factor classifies isotropic F; C
F¢ C Vi for Fg a Lagrangian in the same connected component of Wg. The same
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argument as in the previous case reduces to the action of Bl}/ on A2Wg x PV (We),
which is essentially the same as case (1) of Sect. 7.9.

8.7.3. Type of Poo:

o

In this case m = 4. We have L isogenous to (SL(V4) x SL(V,) x SL(V»))/ T acting
on V}i‘ =V® VA( ® V>, where T is the central subgroup {(x, y,z) € a4 X g X
palx~lyz =1} of L.

Fix splittings V4 = X2 @ Y2 and V,; = X}, @Y, into planes. Let px : X» = X/, and
TR Y; be isomorphisms. Let ¢x be the composition V4 — X» 2 X, — vy,
viewed as an element in V; ® VA{. Similarly define @y. Let {e], e2} be a basis of V5.
Take ¥ = @x ®e; +@y Qer. Then L"w isthe image of i : S(GL(X) x GL(Y)) xG,, —
SL(Vy) XSL(VA() xSL(V,) — L.Hereisends (gx, gy, A) (withdet(gx) det(gy) = 1)
to the triple (gx D gy, A~ (pxgxcp;(l @Awygygogl, diag(x, 2~1)). We have dim By =
6.

Potential choices of Q:

(1) L/Q =SL(V4)/ Q1 xP(V,), where SL(V4)/ Q1 is a partial flag variety of SL(V4)
with associated graded dimensions (2, 1, 1) (in any order). The situation By \L/Q
appears as a special case of Sect. 6.2(4), and we have checked that By acts on
L/Q with an open orbit with finite stabilizers.

(2) L/Q = SL(V,))/Q} x P(V2), where SL(V,)/Q/ is the partial flag variety of
SL(VA{) with associated graded dimensions (2, 1, 1) (in any order). Again the
situation By \ L/ Q appears as a special case of Sect. 6.2(4), from which we know
that By, acts on L/Q with an open orbit with finite stabilizers.

8.8 Type Eg

Type of Poo:

(¢]

In this case m = 5. We have L = (SL(V5) x SL(VS’))/us actingon Vg = A2(V5)®
Vi, here the embedding 15 < SL(Vs) x SL(V3) is z > (zzidvs, Zidv;)-

Choose a basis {x;}1<i<5 of V5, and a basis {e;}1<j<5 of Vs/" Take v =
ZieZ/SZ Xi—1 A Xi+1 ® e;. Then the projection L — PGL(V5) is an isomorphism
onto the diagonal torus of PGL(Vs) with respect to the basis {x;}. Same for the other

o

projection Ly, — PGL(V5).
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Potential choices of Q: L/Q = P(Vs), PV (Vs), P(Vi) or PV (V7). In all these cases
By = L°¢ acts on L/Q with an open free orbit.
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Appendix A: Factorizable module categories

In this appendix we define and classify semisimple factorizable module categories
over a neutral Tannakian category with coefficients. We will apply the classification
result here to the category of semisimple perverse sheaves in the automorphic category
D(yr, x) in Sect. 4. The materials presented here are an elementary case of the theory
of chiral homology that does not involve the language of oco-categories, so that we
give self-contained proofs.

A.1. Notations

The notations used in the appendix differ from the ones in the main body of the paper.

Let L be an algebraically closed field of characteristic zero. All abelian categories
in this subsection will be L-linear. Let Vect denote the category of finite-dimensional
vector spaces over L.

Let P be a semisimple L-linear abelian category such that Endp (X) = L for each
simple object X € P. Let Irr(P) denote the set of isomorphism classes of simple
objects in P. Objects in P will be denoted X, Y, .. ..

Let (R, ®) and (C, ®) be semisimple rigid tensor category over L. Objects in R
and C will be denoted V, W, . . ..

A.2. Factorizable module categories with coefficients

We say that P is a factorizable R-module category with coefficients in C, if for every
finite set / there is a bi-exact functor RE! x P — C¥/ K P (Deli gne’s tensor product)

(V,X)— VX, forV e R'gl, XeP
with the following extra structures:
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(1) When I = &, we understand that RMT ~ Vect, and the action of RYD ig the
usual action of Vect on P by tensoring.

(2) Any map of finite sets ¢ : I — J induces ¢R : RRI _, RBJ sending X;¢; V; to
X ;e (®i; V). Similarly it induces ¢¢ : Y _ ¢®J Then there is a functorial
isomorphism ¢ (V)*s X = (¢¢ Kidp)(Vx;X) € CB¥/ K P, for V e R¥ and
X eP.

(3) If I = I’ uI” is a partition of I then there is a functorial isomorphism
Viap (Vi X) = (VR V" )x X for Ve REI' v e RE!” and X € P.
Here on the left side, when V' acts on V%2 X € C®! "R P, it only acts on the
‘P-factor.

These structures have to satisfy the usual compatibilities: composition of maps in
(1), refinement of partitions in (2), and the compatibility of (1) and (2) for maps
o U’ I'ul” — J uJ”. We do not spell out the details.

For X' € C® ®Pand Y € P, let Hom(X', Y) and Hom(Y, X’) denote the inner
homs taking values in C®!. For example, Hom(Y, X’) is characterized by having
an isomorphism Homgw; (C, Hom(Y, X")) = Homw; xp(CKY, X") functorial in
C € C®!. Then the axioms imply that for X, Y e P,V € REI , there is a functorial
isomorphism

Hom(V; X, Y) = Hom(X, V"% Y) € C®/. (A.1)

For I equal to a singleton set, we denote V; X simply by VxX. The factorizable
R-module structure on P in particular gives an Ep-action V - V*(—) of R on P.

A.2.1Example (1) Letr : R — C be a tensor functor, which extends to r/ : R
C%! Then for any semisimple abelian category P, Va; X := r/ (V)X X gives P
the structure of a factorizable R-module category with coefficients in C. Such P
are a categorical analogue of an eigenspace under a commutative algebra action,
therefore we say that P is eigen with eigenvalue r : R — C.

(2) A factorizable R-module category with coefficients in C = Vect is the same as an
E>-module category for R.

(3) We may combine the above two examples. Let C’ be another semisimple rigid
tensor category and r : R — C X C’ be a tensor functor. Let P be an E>-module
category for C’. Then P also carries the structure of a factorizable R-module
category with coefficients in C as follows. For V € RY¥ and X € P, let Va7 X be
the image of 7/ (V) X X under the functor idXa/ : C®¥ RKCP/ KPP — cH KP,
where a) is the action map of C’ X7 on P. We say that P is inflated from the
E>-action of C’ on P.

(4) As a special case of the above example, consider the case R = Rep(H) and
C = Rep(M) for reductive groups H and M over L. Let p : M — H be a
homomorphism and H, be the centralizer of p(M), and let C' = Rep(H,). Then
we have the restriction functor r : R = Rep(H) — Rep(M x H,) = CX (.
For any E>-module category P under Rep(H,), the construction in (3) gives a
factorizable Rep(H )-module category with coefficients in C = Rep(M), inflated
from the E»-action of Rep(H,) on P.
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A.3 Indecomposable module categories

We call a factorizable R-module category P with coefficients in C indecomposable
if P is not the direct sum of two nonzero factorizable R-module categories with
coefficients in C.

A3.1Lemma Let P be a semisimple abelian category over L with finite set Irr(P)
of simple objects up to isomorphism. Suppose P is equipped with the structure of a
factorizable R-module categories with coefficients in C.

(1) For X, Y € Irr(P), define X ~ Y if for some V € R, VxX contains C XY as
a direct summand, for some nonzero object C € C. Then ~ is an equivalence
relation.

(2) For each equivalence class s € Irt(P)/ ~, let Py be the full subcategory whose
objects are direct sums of objects in s. Then Py is an indecomposable factorizable
R-module categories with coefficients inC, and P = @er(p)/~Ps as factorizable
R-module categories.

Proof (1) The transitivity of ~ is clear from the definition of the R-action. Taking
V = 15 the unitin R, we see that X ~ X. To show that ~ is reflexive, suppose Y
showsupin VxX, then we have anonzeromap f : VxX — CKY forsome C € C.
Rewrite f asamap h : C¥ — Hom(V«xX, Y) in C. Using the adjunction (A.1), h
corresponds to a nonzero map &’ : C¥Y — Hom(X, VV«Y), which corresponds to
anonzero f': CY X X — VVxY, showing that Y ~ X.

(2) isclear.

A.4. Classification

Now assume R = Rep(H), C = Rep(M) for reductive groups H and M over L. The
next result shows that any indecomposable factorizable Rep(H )-module category with
coefficients in Rep(M) must take the form of Example A.2.1(4).

A.4.1 Theorem Let P be a semisimple abelian category over L with finitely many
simple objects. Suppose P is equipped with the structure of an indecomposable fac-
torizable Rep(H)-module category with coefficients in C = Rep(M). Then there is a
homomorphism p : M — H, unique up to H-conjugation, such that the factorizable
Rep(H)-module structure on ‘P with coefficients in Rep(M) is inflated from an E>-
module structure of P under Rep(H,), where H, is the centralizer of Im(p) in H (see
Example A.2.1(4)).

Combine this theorem with Lemma A.3.1, we can speak about the eigen-
decomposition of a decomposable P. We give a statement that does not mention
the fiber functors of R and C explicitly.

A.4.2 Corollary Let P be a semisimple abelian category over L with finitely many
simple objects. Let R and C be semisimple neutral Tannakian categories over L.
Suppose P is equipped with the structure of a factorizable 'R-module category with
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coefficients in C. Then there is a well-defined finite set of (isomorphism classes of)
tensor functors {o : R — Clsex and a unique decomposition

P=EP7Pr

oEX

such that the factorizable R-module structure on P, with coefficients in C is inflated
from an E»-action of Rep(Aut® (o)) on Py.

Proof We choose fiber functors of R and C to identify them with Rep(H ) and Rep(M).
In the decomposition of P into indecomposables (see Lemma A.3.1(2)), we apply
Theorem A.4.1 to each P; to get a homomorphism pg : M — H, such that P is
inflated from an Ej-action of Rep(H),) on Ps. Now let X be the set of H-conjugacy
classes of {ps}setr(p)/~- A homomorphism p : M — H up to H-conjugacy is the
same datum as a tensor functor o : R — C, so we may identify X with a set of tensor
functors {o : R — C}. For 0 € X with the corresponding p : M — H, Let P, be
the direct sum of P for those p; conjugate to p under H. Note that Aut® (o) = Hp,
so P, is inflated from an E-action of Rep(Aut®(0)). O

A.4.3 Remark We state an equivariant version of Corollary A.4.2. Suppose both R and
C are equipped with actions of a group I'. The actionof y e T'on V € R¥! and
W e C¥! are denoted V? and WY . Suppose further that the action of R on P is
equipped with functorial isomorphisms

VV*IX = (V*[X)V, V)/ el

compatible with the group structure on I' and the factorization structure. Here the
action of y on the right side is only on the C N7 _factor. Under these assumptions, each
functor o : R — C constructed in Corollary A.4.2 is equipped with a I"-equivariant
structure. Therefore Aut® (o) also carries an action of I". Moreover, the E,-action
of Rep(Aut® (o)) on P, (denoted e) is equipped with a I'-invariant structure, i.e.,
functorial isomorphisms

Ue; X=U"e; X, ¥y el,UcRep(Aut® @)™, X e P,

compatible with the group structure on I" and the factorization structure.

The rest of the appendix is devoted to the proof of Theorem A.4.1.

A.5. Proof of Theorem A.4.1

First some notations. Let IndP be the category of ind-objects in P: it is equivalent to
Irr(P)-graded vector spaces of possibly infinite dimension. We denote by w : C W=
Rep(M') — Vect the forgetful functor for various /. We also denote the forgetful
functor C¥! X P — P by w. Let Irr(H) and Irr(M) denote the set of (isomorphism
classes of) irreducible representations of H and M.
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For any V € Irr(H) we have an embedding my : V ® VY = End(V) C Oy as
matrix coefficients. Same for M.
The proof goes in several steps.

A.5.1. The affine scheme S

For each V € Irr(H), the action VxX € Rep(M) X P for various X € Irr(P) only
involves finitely many irreducible representations W € Irr(M). We denote this finite
setby I'y C Irr(M). Note that 'y always contains the trivial representation 1 of M,
for Vx(VVxX) contains 15z X X as a direct summand.

We define a moduli problem as follows. For any L-algebra R, let S(R) be the set
of Hopf algebra homomorphisms ¢ : Oy — Oy ® R such that, for any V € Irr(H),
@(my (End(V))) lies in the span of my (End(W)) ® R for W € I'y. Then S(R) is
a subset of homomorphisms of algebraic groups Mg — Hpg. Note that S(R) # O
since it contains the trivial homomorphism Mg — Hpg (because ['y contains 1R).

We claim that S is representable by an affine scheme of finite type over L. Indeed,
choose a faithful Vy € Irr(H), then ¢ € S(R) is determined by the restriction
<p|mV0(End(V0)) : End(Vy) — EBWerVOEIld(W) ® R, which is representable by an
affine space of finite dimension. This realizes S as a closed subscheme of an affine
space. Moreover, S carries an action of M x H by conjugation on Oy and Op.

We give generators and relations for the ring of regular functions Ogs. This part is
inspired by [16, §6]. Forany f € Oy andany g € M (L), defineafunction® s , € Og
that assigns to each R-point ¢ : Oy — Oy @ R the value @ o (p) = evgee(f) € R,
where evy : Oy ® R — R is the evaluation at g.

The functions {® 1 ¢} re,.cem(r) generate Og as an L-algebra. Indeed it suffices
torun f through a basis of the matrix coefficients for a faithful V) € Irr(H), and take
a finite set of g; such that their images in HWGFVO End(W) span.

We now give the relations among {® ¢ ¢} ey, gem(r)- We claim that the relations
are generated by the following:

(1) Forany g € M(L), the assignment f +— ® s , is L-linear.

(2) Let V € Irr(H). Then for any finite L-linear combination ) _; ¢;g; of elements
in M(L) such that ), ¢;gilw = Oforall W € 'y, then ) ; ¢;® o, = O for all
f € my(End(V)).

(3) Forany f, f'€ Oy and g € M(L), wehave ®fp o = Of D pr .

(4) Forany f € Oy and g, g’ € M (L), we have Doy = D <I>f[.,gCDf/’g/ if A(f) =
>; fi ® f! for the comultiplication A on Op.

It is easy to see that these relations indeed hold in Og. To show they are all the
relations, suppose we are given an assignment ® s , — ¢ o € R satisfying the above
relations, we show how to construct a Hopf algebra map ¢ : Oy — Op ® R such
that ® 7 , evaluated at ¢ € S(R) is ¢y . For any f € Oy, relation (2) ensures
that there exists a unique element ¢(f) € @werymw(End(W)) ® R C Oy @ R
such that evep(f) = @f , for any g € M(L). Relation (1) says that the assignment
f = o(f) gives a linear map ¢ : Oy — Op ® R. Relation (3) shows that ¢ is
an algebra homomorphism. Relation (4) shows that ¢ is a coalgebra homomorphism.
This proves the claim.
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A.5.2. Construction of an action of Og on each object in P

We view Og as an algebra ind-object in Rep(H) using the conjugation action of H.
For each X € P we will construct a map ay : w(Og*xX) — X in IndP, compatible
with the algebra structure on Og, such that the following diagram is commutative for
any V € Rep(H) and X € P

Vaw(OsxX) — (0 K ide) (Ogx(V*X))

iidv*ax laV*X

VxX VxX

Here the top row is induced by the commutativity constraint of the action of R on P;
in (w X ide)(Osx(V*X)) we emphasize that w is applied to the first factor of C, so
the result is still an object in C X P. Moreover, all maps in IndP are compatible with
the Og-actions. See [7, §22].

In other words, if we define an internal Hom(X, Y) € IndRep(H) for X, Y € P by
the adjunction Homp (w(V*X),Y) = Hompy (V, Hom(X, Y)) for all V € Rep(H),
then we need to construct an algebra homomorphism oy : Os — End(X) in
IndRep(H), that is compatible with morphisms in P.

The construction of oy is analogous to V. Lafforgue’s excursion operators [15]. For
any g € M (L) we first define a map ag x : @(Op*X) — X as the composition

oOpxX)= P o(VRV)*2X)
Velrr(H)

E0 P o((VRV)x1X) = 0(0xX) T 1gsX = X. (A2)

Velrr(H)

Here the second step uses that (V & VY)x( 21X € Rep(Mz) X P, hence (g, 1) € M?
actson w((V X VV)*{LZ}X). The last map ev| : Oy — 1 isevaluationat 1 € H.

The map oy x then gives amap “é,x : Oy — End(X) inIndRep(H). Itis supposed
to be the composition

@, ¢ ay
On —> Os — End(X)

where @, , denotes the H-equivariant map Oy — Og that sends f € Oy to O .
We need to check the ring relations (2)—(4) in Sect. A.5.1 hold for oz;’,,  to ensure that
the maps {a;,, v gem(r) together give an algebra map Og — End(X).

(2) This follows from the definition of y:in V R VVx X = VY (Vx( X) €
X2 P, the first factor only involves W € T'y C Irr(M), and > _ ¢;g; acts on
these W by zero.
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(3) We need to show that the following diagram is commutative

idoy, Mag x
0Oy W Oy*1,2)X) ———— 0 (OpxX) X x

\Lmult
g X

w(Og*X)

Here the map “mult” is induced by the multiplication Oy ® Oy — Op.Let
V.V, W e Ire(H). Let m};"" : End(V) ® End(V') — End(W) be the com-
position of the multiplication of matrix coefficients in Oy with the projection to
End(W). Since mL/V’V is equivariant under left and right H-action, it is induced
from a pair of maps /LVVV’V, VeV > Wand vV VY@ VY > WYin
Rep(H) such that m&’v/ = ,LLK/'V/ X v“{,’v/ in Rep(H?). Then the required com-
mutativity restricted to my (End(V)) K my-(End(V")) follows from the following
commutative diagram in Rep(H 2)

(,()(V |Z VV & V/ |Z V *{1 2,1, 2/ X) (V |Z Vv & V/ |Z V/v*{l 2,1 2/}X)

(VR VYR (VY @ VY)x10X) — 2o w((V @ VYR (VY ® VY )x1.X)

l l

,1
(W B WV 2X) (&1 (W B WV 2X)

(4) We need to show, for any g, g’ € M (L), the following diagram is commutative in
IndRep(H)

On s End(X)

oy x Oy o

£~ > End(X) ® End(X)

Here the right vertical map is given by composition of internal Hom. Restricting
to the sub-coalgebra End(V) C Oy for any V € Irr(H), we need to show the
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following diagram is commutative

(gg",1)

w(V R VV«X) w(V R VY%X)
\Lidv®c0evv®idvv \Levv
w(VR (VY Q V)R VVxX) X
T&

,1,8'1
p(VEVVRVREVYX) E (VR VYRV R VVRX)

Both compositions w(V X VVxX) — X are adjoint to the following map

w(VxX) 5 o (VxX) 5 w(VX).
This finishes the proof of relation (4).

A.5.3. Construction of p

The action of Og on X € P gives the following map in P (here we are viewing Og
as a trivial H-submodule of Og)

Og RX — a)(Og*X) — w(Og*xX) 2 x.

This gives an action of (’)g (as a plain L-algebra) on X € IndP, commuting with all
morphisms in IndP (i.e., (’)g acts on idp). For each X € Irr(P), Since End(X) = L,
this action factors through a homomorphism 0y : (’)g — L. Since all morphisms in
P commute with the Og -action, all simple objects X with the same € form a union
of equivalence classes in the sense of Lemma A.3.1. Since P is indecomposable, there
is only one equivalence class on Irr(P), hence all simple objects X have the same 0y,
which we denote by 6. _

LetZ C Og be the ideal generated by ker(0). Let Z C S be the closed subscheme
definedbyZ,and Z := Z,.q C S thereduced scheme. Since M is reductive, conjugacy
classes of homomorphisms M — H form a discrete set, hence Speq is a disjoint union
of H-orbits. Since the only H -invariant functions on Z are the scalars, itis a single H -
orbit, i.e., the H-orbit of some homomorphism p : M — H. Therefore Z = H/H,.

A.5.4. The action of Og on X € P factors through O z

By the previous step, the action of Og on any X € P factors through the quotient
Oz, ie,amapay : o(OzxX) — X. We show that o’y further factors through a
map By : w(OzxX) — X.

Let J C Oz be the nilpotent radical. Since S is of finite type over L, J" = 0 for
some n > 0. Let X € Irr(P), we show that the restriction of oy to w(J*X) is zero.
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If not, let £ be the smallest positive integer such that ax|w (T txX) = 0. Since @y :
o(J'%X) — X is nonzero, it is surjective since X is simple. Applying 7-action
we still get a surjection o (J*w(J =1, X)) - w(JxX). We have a commutative
diagram

o (T*xo (T X)) —— o (T*X)

| |

o(T%X) X

where the left arrow is given by the multiplication 77~ — 7¢, and all other maps
are the action maps. Now the top arrow is surjective and the bottom one is zero by
assumption, which implies the right arrow is zero. This shows thatoy : w(J*X) — X
is zero, i.e., the action of Oz on X factors through Oz.

In the sequel we denote the action map of Oz on X by

Bx : w(OzxX) —> X.

A.5.5. Construction of an E>-action of Rep(H,) on P

We will denote this action by e. Since the image of the restriction functor Rep(H) —
Rep(H,) generate Rep(H,) under taking direct summands, it suffices to define V o
X := o(V*X) for any V € Rep(H), and check that any H,-equivariant map V —
V' induces a map w(VxX) — w(V'xX) in a way functorial in V, V' and X and
compatible with compositions.

In the previous step we have shown that Oz = L[H]"» (right translation invariants)
acts on X. For any W € Rep(H), we have a map my z : Wir @ WY — Oz
in Rep(H) given by the taking the matrix coefficient w ® & +— (h — (&, hw)).
In particular, taking W = VY @ V' for V, V' € Rep(H), we get a map my z :
Hompy, (V, V) ® (V® V") — Oz in Rep(H). Composed with the action map Bx
we get

*id
Py vix 1 Hompy, (V, V) @ o((V @ VY )aX) 2255 0 0z+x) 25 x (A3)
which is the same as a map

yv.v..x : Hompg, (V, V') = Homp(o((V ® V'V)*X), X)
— Homp (0 (V+X), o(V'xX)).

One checks these maps are compatible with compositions V. — V’/ — V” using the
fact that Bx is compatible with the ring structure on O z. This finishes the construction
of VeX.
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A.5.6. The action of Rep(H) on P is inflated from the Rep(H,,)-action

To show this, we need to check that for any g € M(L),V € Rep(H) and X € P,
the following two endomorphisms of w(V«X) are the same: the first one, which we
denote by ay, is obtained by the action of g on the forgetful functor w; the second one,
which we denote by b, comes by evaluating yy v x at p(g) € Hompg, (V, V).

Consider the map ¢y, : V® VY — Oz given by £ @ v > cy(h) =
(E, hp(g)h~1v) = (h7'&, p(g)h~'v). We are using that p(g) commutes with H,
to conclude that cy , is right invariant under H, hence giving a function on Z. The
map cy 4 is H-equivariant for the diagonal action of H on V ® V. Consider the
following map

*id
Sy ox 1 o((V @ V)xX) L% H0z0x) 25 x.

By adjunction it gives an endomorphism d of @ (V*X). On the one hand, the definition
of the Og-action, see (A.2), implies that d, = ag; on the other hand, comparing
dv,g,x to the map Yv.v.x in (A.3), we see that dv,g,x 1s the restriction of Yv.v.x to
p(8) ® w((V ® VY)xX), hence dg = bg. This shows a, = b, and finishes the proof
of Theorem A.4.1. O
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