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Abstract
We show the equivalence of several amenability type conditions for C∗-dynamical
systems. As an application, based on the Pimsner–Meyer construction, we give a new
method to produce amenable actions on simple C∗-algebras.
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1 Introduction

The notion of amenability for non-singular actions of locally compact groups on mea-
sure spaces was introduced by Zimmer [54]. Later the notion was extended for actions
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on von Neumann algebras by Anantharaman-Delaroche [2]. The study of the topo-
logical counterpart, namely, the notion of amenability for C∗-dynamical systems, was
initiated byAnantharaman-Delaroche [3]. This has seen a great success, particularly in
the case of actions on commutative C∗-algebras, in connection with the study of exact-
ness [24,33,38]. For some significant applications of amenable actions, see [22,52],
and Chapter 15 of [10] for instance.

Recently there is a resurgence of interest in the study of amenability for group
actions on noncommutative C∗-algebras [8,11,12,19,48]. This is due to emergence of
new interesting examples and phenomena of amenable C∗-dynamical systems [46,
48]. After the seminal work [3], a number of definitions have been proposed for
amenability type conditions for C∗-dynamical systems (see e.g., [4,8,11,12,18,19]).
Recently many of them have been shown to be equivalent in some cases, by Buss–
Echterhoff–Willett [12], and by Bearden–Crann [8]. For details, we refer the reader
to [8,12], and references therein.

The purpose of this article is two fold. First, we prove further equivalence among
amenability type conditions for C∗-dynamical systems. Notably, we establish the
equivalence of the quasi central approximation property [11], the Exel–Ng approxi-
mation property [19], and (von Neumann) amenability [8,12] in full generality. This
closes the circle of implications that were left open (see Section 8.1 of [12] for details).
We note that this is already proved in [12] for discrete and unital C∗-dynamical sys-
tems. However, we emphasize that even if one is interested only in discrete and unital
C∗-dynamical systems, there is a need to develop the theory for locally compact group
actions on non-unital C∗-algebras. The need originates from our second main result,
a construction of new examples of amenable C∗-dynamical systems (Sect. 6). Unlike
the previously known ad hoc constructions [46,48], our new construction is functo-
rial. More precisely, we show that the equivariant Pimsner construction [41], recently
studied by Meyer [36], preserves amenability. This provides plenty of new interesting
examples of amenable actions on simple C∗-algebras. The proof of the amenability of
the Pimsner–Meyer system G � B is built on the analysis of the fixed point algebra
BT of the gauge action by the circle group T. This involves the study of associated
C∗-dynamical systems G × T � B, G � B � T, and their subsystems, which are no
longer discrete and unital. (For details, see Sect. 5.)

2 Preliminaries

We fix notations and collect some results from the literature.

2.1 Locally compact groups

Throughout the article, the symbol G stands for a locally compact (Hausdorff) group.
For basic facts on locally compact groups, we refer the reader to the book [20]. Unless
otherwise specified, we do not assume any conditions on G. Denote by e ∈ G the unit
element. Denote by m the Haar measure on G. Denote by � : G → R>0 the modular
function of G.Put
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Pc(G) :=
{
f ∈ Cc(G) : f ≥ 0,

∫
G

f dm = 1

}
.

2.2 C∗- andW∗-dynamical systems

A G-C∗-algebra is a pair (A, α) of a C∗-algebra A and an action α : G � A which is
point-norm continuous. AG-W∗-algebra is a pair (M, α) of a vonNeumann algebraM
and an action α : G � M whose induced action G � M∗ is point-norm continuous.
Such pairs are also referred to as a C∗-dynamical system, a W∗-dynamical system,
respectively. A map between C∗- or W∗-dynamical systems is called a G-map when
it is G-equivariant. For instance, a G-equivariant unital completely positive (u.c.p.)
map is called a G-u.c.p. map.

For aG-W∗-algebra (M, α), we equip L∞(G)⊗̄M with the diagonal action α̃ of the
left translation action and α. We identify M with the G-W∗-subalgebra C1L∞(G) ⊗M
of L∞(G) ⊗̄ M in the obvious way.

Let (A, α) be a G-C∗-algebra. A function k : G → A is said to be of positive type
if for any finite subset F ⊂ G, the matrix

[
αs

(
k

(
s−1t

))]
s,t∈F ∈ MF (A)

is positive.

2.3 The G-C∗-correspondence L2(G,A)

For a G-C∗-algebra (A, α), the associated G-C∗-correspondence L2(G, A) over A is
fundamental to formulate amenable actions.Wefirst recall the definition. LetCc(G, A)

denote the set of all compactly supported continuous A-valued functions on G. We
equip Cc(G, A) with the A-bimodule structure given by

(aξ)(g) := a · ξ(g), (ξa)(g) := ξ(g)a for a ∈ A, ξ ∈ Cc(G, A), g ∈ G.

On Cc(G, A), define the A-valued inner product 〈 , 〉 : Cc(G, A) × Cc(G, A)

→ A by

〈ξ, η〉 :=
∫
G

ξ(g)∗η(g) dm(g).

Define α̃ : G � Cc(G, A) by

[
α̃g(ξ)

]
(h) := αg(ξ(g−1h)) for ξ ∈ Cc(G, A), g, h ∈ G.
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Now define L2(G, A) to be the completion of Cc(G, A) with respect to 〈 , 〉. Thus
L2(G, A) is a Banach space with respect to the norm

‖ξ‖ := ‖〈ξ, ξ 〉‖1/2 for ξ ∈ L2(G, A).

The A-bimodule structure on Cc(G, A) and α̃ continuously extend to L2(G, A). We
denote the extendedoperations and action by the same symbols. These operationsmake
L2(G, A) a G-C∗-correspondence over A. That is, L2(G, A) is a C∗-correspondence
over A satisfying

α̃g(aξ) = αg(a)α̃g(ξ), α̃g(ξa) = α̃g(ξ)αg(a), 〈α̃g(ξ), α̃g(η)〉 = αg(〈ξ, η〉)

for g ∈ G, a ∈ A, ξ, η ∈ L2(G, A). Note that α̃ extends to the left L1(G)-action

α̃ f (ξ) :=
∫
G

f (g)α̃g(ξ) dm(g), f ∈ L1(G), ξ ∈ L2(G, A).

When the underlying action α is clear from the context, we also write

g ∗ ξ := α̃g(ξ), f ∗ ξ := α̃ f (ξ) for ξ ∈ L2(G, A), g ∈ G, f ∈ L1(G).

These notations are compatible with the convolution products on L1(G). For a ∈ A
and ξ ∈ L2(G, A), put

[ξ, a] := ξa − aξ.

2.4 Amenability ofW∗-dynamical systems

Recently Bearden–Crann [8] established the following useful characterizations of
amenability of G-W∗-algebras, by extending the work of Anantharaman-Delaroche
[3] in the case of discrete groups. Note that for exact groups, the statement is shown
in [12] by a different method.

Theorem 2.1 ([8], Theorem 1.1). Let α : G � M be a W∗-dynamical system. The
following conditions are equivalent:

(1) The action α is amenable; that is, there is a G-conditional expectation

L∞(G) ⊗̄ M → M .

(2) The action α is amenable when restricted to the center Z(M) of M; that is, there
is a G-conditional expectation

L∞(G) ⊗̄ Z(M) → Z(M).

(3) There is a net (ξi )i∈I in Cc(G,Z(M)) satisfying 〈ξi , ξi 〉 = 1 for i ∈ I and that
〈ξi , α̃g(ξi )〉 → 1 uniformly on compact subsets of G in the ultraweak topology.
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2.5 Exact groups and amenable actions

Amenability of group actions is first introduced by Zimmer [54] in the measurable
context. This is a powerful concept to capture amenable sides of non-amenable groups.
Later its continuous analogue is introduced by Anantharaman-Delaroche. Here we
recall the definition.

Let Prob(G) ⊂ C0(G)∗ denote the space of regular probability measures on G
equipped with the weak-∗ topology. We equip Prob(G) with the left translation G-
action.

Definition 2.2 Let α : G � X be a continuous action of G on a locally compact
(Hausdorff) space. The action α is said to be (topologically) amenable if there is a net

mi : X → Prob(G); i ∈ I

of continuous maps satisfying ‖mi (αg(x)) − (g.mi )(x)‖ → 0 uniformly on compact
subsets of G × X .

We identify the action G � X with the associated action G � C0(X) via the Gelfand
duality. In particular we use the same symbol for these two actions.

Anantharaman-Delaroche establishes useful characterizations of amenable dynam-
ical systems [3,4].

Theorem 2.3 ([4], Proposition 2.5).Letα : G � X be a continuous action on a locally
compact space X. The following conditions are equivalent.

(1) The action α is amenable.
(2) There is a net (ki )i∈I ⊂ Cc(G,C0(X)) of positive type functions with ki (e) ≤ 1

which strictly converges to 1 uniformly on compact subsets of G.
(3) There is a net (ξi )i∈I in L2(G,C0(X)) satisfying ‖ξi‖ ≤ 1 for i ∈ I and that

〈ξi , α̃g(ξi )〉 → 1 uniformly on compact subsets of G in the strict topology.

When a group admits an amenable action on a (non-empty) compact space,
there are some consequences in C∗-algebra theory. Motivated by such phenomena,
Anantharaman-Delaroche has introduced the following definition.

Definition 2.4 ([3], Definition 3.1). A locally compact group G is said to be amenable
at infinity if it admits an amenable action on a compact space.

Denote by C lu
b (G) the C∗-algebra of all bounded left uniformly continuous C-valued

functions on G. It is not hard to see that for any continuous action G � X on a
compact space X , there is a unital G-∗-homomorphism C(X) → C lu

b (G). Therefore,
when G is amenable at infinity, the left translation action G � C lu

b (G) is amenable.
Amenability at infinity has a strong connection with exactness of groups. Recall

that a locally compact group G is said to be exact [33] if the reduced crossed product
functor−�rG preserves short exact sequences. Ozawa [38] has shown that for discrete
groups, amenability at infinity is equivalent to exactness. For locally compact second
countable groups, in [9], based on metric geometry (see e.g., [17,43,44]), the same
equivalence is established. Here we extend the statement to general locally compact
groups G.
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Proposition 2.5 A locally compact group G is exact if and only if it is amenable at
infinity.

Proof By Theorem 7.2 in [4], amenability at infinity implies exactness. We have to
show the converse. Assume G is exact.

We first consider the case that G is compactly generated. By the Kakutani–Kodaira
theorem [29], one has a compact normal subgroup K � G with the second countable
quotient group G/K . Since G is exact, so is G/K [33]. By Theorem A of [9], one has
an amenable action G/K � X on a compact space. Since K is compact, the inherited
action G � X is amenable.

In general, sinceG is locally compact, it is the directedunionof compactly generated
open subgroups (Gi )i∈I .Note that exactness passes to open subgroups ([33], Corollary
3.5). Hence each action Gi � C lu

b (Gi ) is amenable. Observe that, for each i ∈ I , the
right Gi -coset decomposition of G gives a unital Gi -embedding C lu

b (Gi ) → C lu
b (G).

This yields the amenability of G � C lu
b (G). �

2.6 Universal enveloping G-W∗-algebras

For aG-C∗-algebra (A, α), unfortunately the extended actionα : G � A∗∗ may not be
continuous. Here we recall Ikunishi’s universal enveloping G-W∗-algebra of a G-C∗-
algebra [25]. This is a replacement of the second dual A∗∗ in the equivariant setting.
Our presentation follows that of [12]. A somewhat similar work is found in [7].

Consider the inclusions

A ⊂ M(A � G) ⊂ (A � G)∗∗.

Define A′′
α to be the ultraweak closure of A in (A � G)∗∗. By the universality of the

full crossed product, this definition coincides with Ikunishi’s original definition [25].
(In fact, one can also replace the full crossed product by the reduced one. This follows
from the proof of the lemma below.)

For a C∗-algebra A, denote byS(A) the state space of A, equipped with the weak-∗
topology.

Definition 2.6 Let (A, α) be a G-C∗-algebra. We say that a state ϕ ∈ S(A) is G-
continuous if the map G � g �→ ϕ ◦ α−1

g is continuous in norm.

We record the following useful characterization of the predual of A′′
α .

Lemma 2.7 A state ϕ ∈ S(A) belongs to (A′′
α)∗ ⊂ A∗ if and only if it is G-continuous.

Thus the extended action α : G � A′′
α is continuous in the W∗-sense.

Proof Assume ϕ ∈ S(A) is G-continuous. Then for any ε > 0 there is f ∈ Pc(G)

such that ψ := ∫
G f (g)(ϕ ◦ α−1

g ) dm(g) satisfies ‖ψ − ϕ‖ < ε. Let (π,H, ξ) be the
GNS-triple of ϕ. Consider the ∗-representation of A � G on L2(G,H) given by the
covariant representation (π̃, λ ⊗ idH), where π̃ : A → B(L2(G,H)) is given by

(π̃(a)ξ) (g) := π
(
α−1
g (a)

)
ξ(g), a ∈ A, ξ ∈ L2(G,H), g ∈ G.
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Then one has ψ(a) = 〈 f 1/2 ⊗ ξ, π̃(a)( f 1/2 ⊗ ξ)〉 for a ∈ A. Hence ψ ∈ (A′′
α)∗.

Since ε > 0 was arbitrary, this implies ϕ ∈ (A′′
α)∗.

Conversely, assume that ϕ ∈ S(A) defines a normal state on A′′
α . By definition, the

state ϕ comes from a state ψ on A � G. Let (π,H, ξ) be the GNS-triple of ψ . Then,
in turn, π gives rise to a covariant representation πA : A → B(H) and u : G � H.
Note that the unitary representation u is strongly continuous. Now G-continuity of ϕ

follows from the formula (ϕ ◦ α−1
g )(a) = 〈ugξ, πA(a)ugξ 〉, a ∈ A. �

For a contractive completely positive (c.c.p.) map � : A → B between C∗-algebras,
� is said to be non-degenerate if �((A)1)(B)1 is dense in (B)1. Here (X)1 denotes
the closed unit ball of a Banach space X .

Lemma 2.8 Let (A, α) and (B, β) be G-C∗-algebras. Let � : A → B be a non-
degenerate G-c.c.p. map. Then� admits a normal G-u.c.p. extension�′′ : A′′

α → B ′′
β .

Proof Consider the dual map �∗ : B∗ → A∗. Since �∗ is G-equivariant, by
Lemma 2.7,�∗ restricts to the map�∗

c : (B ′′
β)∗ → (A′′

α)∗. The dual map�′′ := (�∗
c)

∗
gives a normal extension of �. Since � is non-degenerate, �′′ is unital. �

For any Hilbert spaceH and a von Neumann algebra M ⊂ B(K), denote byH⊗̄M
the Hilbert W∗-module

H ⊗̄ M := {
T ∈ B(K,H ⊗ K) : T x ′ = (

idH ⊗ x ′) T for all x ′ ∈ M ′}
∼= {

T (P0 ⊗ 1) : T ∈ B(H) ⊗̄ M
}
,

where P0 is any fixed rank-one projection onH. Note that in the second presentation,
the M-valued inner product is given by 〈S, T 〉 := S∗T ∈ P0 ⊗̄ M = M for S, T ∈
H ⊗̄ M . If H0 ⊂ H is a dense subspace and M0 ⊂ M is an ultraweakly dense ∗-
subalgebra, then the unit ball of the algebraic tensor productH0 � M0 is ultrastrongly
dense in (H ⊗̄ M)1 by Kaplansky’s density theorem (applied to B(H) ⊗̄ M). In
particular, when A ⊂ M is an ultrastrongly dense ∗-subalgebra, the unit ball of
Cc(G, A) is ultrastrongly dense in the unit ball of Cc(G, M) ⊂ L2(G) ⊗̄ M .

2.7 Amenability conditions for C∗-dynamical systems

We review amenability type conditions for C∗-dynamical systems.
The first definition is based on enveloping W∗-algebras.

Definition 2.9 ([3,8,12]) A C∗-dynamical system α : G � A is said to be amenable
if the universal enveloping W∗-dynamical system α : G � A′′

α is amenable (in the
sense of Theorem 2.1).

The next two definitions are based on the G-C∗-correspondence L2(G, A).

Definition 2.10 ([19], Definition 3.6, see also Definition 3.27 in [12]) AG-C∗-algebra
(A, α) is said to have the Exel–Ng approximation property if there is a bounded net
(ξi )i∈I in L2(G, A) with

〈ξi , aα̃g(ξi )〉 → a
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in norm uniformly on compact subsets of G for each a ∈ A.

Recently, motivated by examples in [46], a different amenability type condition is
introduced in [11].

Definition 2.11 ([11,12]) A G-C∗-algebra (A, α) is said to have the quasi-central
approximation property (QAP) if there is a net (ξi )i∈I in L2(G, A) satisfying

‖ξi‖ ≤ 1for all i ∈ I , ‖ [ξi , a] ‖ → 0for all a ∈ A,

and

〈ξi , α̃g (ξi )〉 → 1

uniformly on compact subsets of G in the strict topology.
Note that the third condition can be replaced by the following condition: 〈ξi , ξi 〉 →

1 strictly, and for every a ∈ A, ‖(α̃g(ξi ) − ξi )a‖ → 0 uniformly on compact subsets
of G.

We will show that these two conditions are in fact equivalent. We first recall the
following lemma. This is a part of Kasparov’s technical lemma (Lemma in page 152
of [30]). As the part we use is easy to show, for reader’s convenience, we include a
proof.

Lemma 2.12 Let (A, α) be a G-C∗-algebra. Then there is a G-approximate unit of
(A, α); that is, there is an approximate unit (ei )i∈I of A with ‖αg(ei ) − ei‖ → 0
uniformly on compact subsets of G.

Proof Take an approximate unit (x j ) j∈J of A. Fix f ∈ Pc(G) and set y j :=∫
G f (g)αg(x j ) dm(g) for j ∈ J . Then (y j ) j∈J is an approximate unit of A. More-
over the net (y j ) j∈J is equi-G-continuous. (That is, the maps G � g �→ αg(y j );
j ∈ J , are equicontinuous in norm.) Since αg(yi ) − yi → 0 weakly for all g ∈ G,
by the Hahn–Banach theorem (cf. the construction of a quasi-central approximate
unit), one has an approximate unit (ei )i∈I in the convex hull of {y j : j ∈ J } satis-
fying ‖αg(ei ) − ei‖ → 0 for all g ∈ G. As (ei )i∈I is equi-G-continuous, in fact the
convergence is uniform on compact subsets of G. �
For two elements x, y in a normed space X , denote by x ≈ε y when ‖x − y‖ < ε.

Theorem 2.13 The QAP is equivalent to the Exel–Ng approximation property.

Proof Clearly the QAP implies the Exel–Ng approximation property.
Assume that (A, α) is a G-C∗-algebra with the Exel–Ng approximation property.

Choose aG-approximate unit (ei )i∈I of A. Take a bounded net (ξ j ) j∈J inCc(G, A) ⊂
L2(G, A) that witnesses the Exel–Ng approximation property of α. Put

c := sup
j∈J

‖ξ j‖2.
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Let a compact set K ⊂ G, a finite set F ⊂ (A)1, and ε > 0 be given. Take i ∈ I
satisfying eia ≈ε a ≈ε aei , αg(ei ) ≈ε/c ei for a ∈ F , g ∈ K . Choose j ∈ J with

〈ξ j , x α̃g
(
ξ j

)〉 ≈ε x for x ∈ {e2i , eiaei , eia∗aei : a ∈ F}, g ∈ K ∪ {e}.

Put ζ := eiξ j . Observe that

〈ζ, ζ 〉 = 〈ξ j , e2i ξ j 〉 ≈ε e2i .

In particular ‖ζ‖2 < 1 + ε. For any g ∈ K ,

〈ζ, α̃g(ζ )〉 = 〈eiξ j , αg(ei )α̃g(ξ j )〉 ≈ε 〈eiξ j , ei α̃g(ξ j )〉 = 〈ξ j , e2i α̃g(ξ j )〉 ≈ε e2i ≈ε 〈ζ, ζ 〉.

For any a ∈ F ,

〈ζa, aζ 〉 ≈ε a∗eiaei ≈2ε a∗e2i a ≈ε 〈ζa, ζa〉,
〈aζ, aζ 〉 = 〈ζ, a∗aζ 〉 ≈ε eia

∗aei ≈2ε eia
∗eia ≈ε 〈aζ, ζa〉.

These relations yield

‖[ζ, a]‖2 < 8ε.

This proves the QAP of α. �
Remark 2.14 The proof also shows that the third condition in the definition of the QAP
can be replaced by the following (formally stronger) condition.

〈ξi , ξi 〉 → 1 strictly and ‖ξi − α̃g(ξi )‖ → 0 uniformly on compact subsets of G.

3 Characterizations of amenable C∗-dynamics

In this section, we show that amenability is equivalent to the QAP for general
C∗-dynamical systems. This closes the circle of implications that were left open
(cf. Section 8.1 of [12]). We remark that the statement was recently shown by Buss–
Echterhoff–Willett [12] (see also [1]) for unital discrete C∗-dynamics. However we
emphasize that, even if one is interested only in unital discrete C∗-dynamics, the
generalities here are crucial in Sect. 6.

The following lemma replaces a uniform convergence condition by a pointwise
convergence condition (cf. Lemma 3.5 in [8]).

Lemma 3.1 Let (A, α) be a G-C∗-algebra. Let (ξi )i∈I be a bounded net in L2(G, A).
Then (ξi − g ∗ ξi )a → 0 for every a ∈ A and g ∈ G uniformly on compact subsets of
G if and only if (ξi − f ∗ ξi )a → 0 for every a ∈ A and f ∈ Pc(G).
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Proof The ‘only if’ part follows from direct calculations. We prove the converse. Let
a compact subset K ⊂ G, a finite subset F ⊂ (A)1, and ε > 0 be given. Take
f ∈ Pc(G). Define

U := {u ∈ G : ‖u ∗ f − f ‖1 < ε}.

Choose a finite sequence s0 := e, s1, . . . , sn in G satisfying K ⊂ ⋃n
m=0 smU . We put

fm := sm ∗ f ∈ Cc(G) for m = 0, 1, . . . , n. Assume that ξ ∈ (L2(G, A))1 satisfies
‖(ξ − fm ∗ ξ)a‖ < ε for m = 0, 1, . . . , n, a ∈ F . Then for a ∈ F and g ∈ K , taking
u ∈ U and m with g = smu, one has

(g ∗ ξ)a = [(smu) ∗ ξ ] a ≈ε [(smu) ∗ f ∗ ξ ] a ≈ε ( fm ∗ ξ) a ≈ε ξa.

This proves the claim. �
Now we are able to prove the promised theorem. For a later application (Corol-

lary 3.4), we also give a new characterization of amenable actions by the second dual.

Theorem 3.2 Let (A, α) be a C∗-dynamical system. The following conditions are
equivalent.

(1) The action α has the QAP.
(2) The action α is amenable.
(3) There is a G-conditional expectation

L∞(G) ⊗̄ Z
(
A∗∗) → Z

(
A∗∗) .

Here we equip L∞(G) ⊗̄ Z(A∗∗) with the diagonal G-action α̃ of the left trans-
lation action and the (possibly discontinuous) action induced from α.

Proof As the statement is trivial for compact groups, we may assume that G is non-
compact.

(3) ⇒ (2): As Z(A′′
α) is a G-invariant (unital) direct summand of Z(A∗∗), this is

clear (by Theorem 1.1 of [8]).
(2) ⇒ (1): We first prove that the QAP is equivalent to the following formally

weaker condition. To ease the notation, write Q(ξ) := 〈ξ, ξ 〉 for ξ ∈ L2(G, A) and
define for ϕ ∈ S(A) a seminorm ‖ · ‖ϕ on L2(G, A) by ‖ξ‖ϕ := ϕ(Q(ξ))1/2.

Claim A G-C∗-algebra (A, α) has the QAP if (and only if) it satisfies the following
condition:

(�) For every ϕ ∈ S(A), every finite subsets E ⊂ A, F ⊂ Pc(G), and every ε > 0,
there is ξ ∈ Cc(G, A) that satisfies

‖ξ‖ ≤ 1, ‖ξ‖ϕ > 1 − ε, max
(a, f )∈E×F

‖(ξ − f ∗ ξ)a‖ϕ < ε, max
a∈E ‖[ξ, a]‖ϕ < ε.
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Proof of the Claim Assume that (A, α) satisfies condition (�) in the Claim. Then, by
the Hahn–Banach theorem, for every finite subsets E ⊂ A and F ⊂ Pc(G), the norm
closed convex hull of the set

{((
a∗(1 − Q(ξ))a

)
a∈E , (Q((ξ − f ∗ ξ)a))(a, f )∈E×F , (Q([ξ, a]))a∈E

) : ξ ∈ (L2(G, A))1
}

in �∞(E�(E×F)�E, A) contains 0. Hence one has functions ξ1, . . . , ξn ∈ Cc(G, A)

and λ1, . . . , λn ∈ [0, 1] with ∑n
i=1 λi = 1 satisfying

n∑
i=1

λi Q (ξi ) ≤ 1,
n∑

i=1

λi a
∗ (1 − Q (ξi )) a ≤ ε,

n∑
i=1

λi Q ((ξi − f ∗ ξi ) a)

≤ ε,

n∑
i=1

λi Q ([ξi , a]) ≤ ε

for all a ∈ E , f ∈ F . Put L := {e}∪[⋃ f ∈F supp( f )]. Take t1, . . . , tn ∈ G satisfying

[
L · supp (ξi ) · t−1

i

]
∩

[
L · supp (

ξ j
) · t−1

j

]
= ∅

for all i �= j . Define ξ ∈ Cc(G, A) to be

ξ(g) :=
n∑

i=1

λ
1/2
i �(ti )

1/2ξi (gti ), g ∈ G.

Then, by routine calculations, for any a ∈ E and f ∈ F , we have

Q(ξ) ≤ 1, a∗(1 − Q(ξ))a ≤ ε, Q ((ξ − f ∗ ξ)a) ≤ ε, Q([ξ, a]) ≤ ε.

Indeed one has Q(ξ) = ∑n
i=1 λi Q(ξi ), and similar for the other three. By Lemma 3.1,

this shows the QAP of α. �
Now assume (A, α) is amenable. We verify that (A, α) satisfies condition (�) in

the Claim. Let ϕ ∈ S(A), finite subsets E ⊂ (A)1, F ⊂ Pc(G), and ε > 0 be given.
Take a compact neighborhood V of e ∈ G satisfying

‖a − αs(a)‖ < ε, ‖ f − s−1 ∗ f ∗ s‖1 < ε

for all s ∈ V , a ∈ E , f ∈ F . Define ϕV ∈ S(A) to be

ϕV (a) := 1

m(V )

∫
V

ϕ (αs(a)) dm(s), a ∈ A.

Note that by Lemma 2.7, ϕV defines a normal state on A′′
α . Then, as (A′′

α, α) is
amenable, by Theorem 1.1 of [8] and Kaplansky’s density theorem (see Sect. 2.6),
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one can choose η ∈ Cc(G, A) satisfying

‖η‖ ≤ 1,

1 − ‖η‖2ϕV
+

∑
f ∈F

‖η − f ∗ η‖2ϕV
+

∑
a∈E

‖[η, a]‖2ϕV
< ε2.

Hence one can find s ∈ V satisfying the same inequality but ϕV being replaced by
ϕ ◦ αs . Then, putting ξ := s ∗ η ∈ Cc(G, A), one has

‖ξ‖ ≤ 1, ‖ξ‖ϕ = ‖η‖ϕ◦αs > 1 − ε,

‖ξ − f ∗ ξ‖ϕ = ‖η − s−1 ∗ f ∗ s ∗ η‖ϕ◦αs

≤ ‖
(
s−1 ∗ f ∗ s − f

)
∗ η‖ + ‖η − f ∗ η‖ϕ◦αs

< 2ε for f ∈ F,

‖[ξ, a]‖ϕ = ‖[η, α−1
s (a)]‖ϕ◦αs < 3ε for a ∈ E .

This shows that (A, α) satisfies condition (�) in the Claim.
(1) ⇒ (3): Assume that α has the QAP. Take a net (ξi )i∈I in Cc(G, A) as in the

definition of the QAP. For ξ, η ∈ Cc(G, A), we define a bounded linear map

�ξ,η,∗ : A∗ → L1 (
G,Z

(
A∗∗)

∗
)

to be

[[
�ξ,η,∗(ϕ)

]
(g)

]
(x) := ϕ

(
ξ(g)∗x · η(g)

)
for ϕ ∈ A∗, x ∈ Z

(
A∗∗) , g ∈ G.

Via the canonical identification

L1 (
G,Z

(
A∗∗)

∗
) = (

L∞(G) ⊗̄ Z
(
A∗∗))

∗

([51], Chapter 4, Theorem 7.17), the dual map defines a normal bounded map

�ξ,η : L∞(G) ⊗̄ Z
(
A∗∗) → A∗∗.

For F ∈ L∞(G) � Z(A∗∗), direct calculations show that

�ξ,η(F) =
∫
G

ξ(g)∗F(g)η(g) dm(g).

Then, by the Cauchy–Schwarz inequality, we have

‖�ξ,η(F)‖ ≤ ‖ξ‖‖η‖‖F‖.

Since �ξ,η is normal, Kaplansky’s density theorem yields

‖�ξ,η‖ ≤ ‖ξ‖‖η‖.
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A similar argument shows that, when η = ξ , the map �ξ,ξ is (completely) positive.
Now take a net (ξi )i∈I which witnesses the QAP of α. For each i ∈ I , put

�i := �ξi ,ξi : L∞(G) ⊗̄ Z
(
A∗∗) → A∗∗.

Let � be a point-ultraweak cluster point of the net (�i )i∈I . We show that � is a
G-conditional expectation L∞(G) ⊗̄ Z(A∗∗) → Z(A∗∗). For any a ∈ A and F ∈
L∞(G) � Z(A∗∗), we have

[�i (F), a] = �ξi ,ξi a(F) − �ξi a∗,ξi (F).

By the normality of the appearingmaps, the equation is still valid for all F ∈ L∞(G)⊗̄
Z(A∗∗). As ‖[ξi , a]‖, ‖[ξi , a∗]‖ → 0, we have

‖�ξi ,aξi − �ξi ,ξi a‖ → 0, ‖�ξi a∗,ξi − �a∗ξi ,ξi ‖ → 0.

Note also that �a∗ξi ,ξi = �ξi ,aξi . Thus ‖[�i (F), a]‖ → 0 for F ∈ L∞(G) ⊗̄Z(A∗∗)
anda ∈ A. Hence�maps intoZ(A∗∗). For z ∈ Z(A∗∗), we have�i (z) = z〈ξi , ξi 〉 →
z. Hence � : L∞(G) ⊗̄ Z(A∗∗) → Z(A∗∗) is a conditional expectation.

Finally, let s ∈ G be given. For F ∈ L∞(G) � Z(A∗∗), a ∈ (A)1, and i ∈ I , we
have

a∗αs

(
�i

(
α̃−1
s (F)

))
a =

∫
G
a∗αs (ξi (g))

∗ αs

(
α−1
s F(sg)

)
αs (ξi (g)) a dm(g)

=
∫
G
a∗αs

(
ξi

(
s−1g

))∗
F(g)αs

(
ξi

(
s−1g

))
a dm(g)

= �α̃s (ξi )a,α̃s (ξi )a(F),

while

a∗�i (F)a = �ξi a,ξi a .

Thus, by Kaplansly’s density theorem,

‖a∗ [
�i (F) −

(
αs ◦ �i ◦ α̃−1

s

)
(F)

]
a‖ ≤ 2‖ (α̃s (ξi ) − ξi ) a‖‖F‖

for all F ∈ L∞(G) ⊗̄ Z(A∗∗) and a ∈ (A)1. This shows that � is G-equivariant. �
Remark 3.3 The proof of Theorem 3.2 shows that the uniform convergence condition
in the definition of the QAP can be relaxed to the pointwise one.

The following is a consequence of Theorem 3.2. For exact groups, the statement is
shown in [12].

Corollary 3.4 Let H be a closed subgroup of G. Let α : G � A be an amenable
C∗-dynamical system. Then the restriction action α|H : H � A is also amenable.
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Proof The statement is clear for open subgroups. Hence it suffices to show the state-
ment for compactly generated G. In this case, by the Kakutani–Kodaira theorem [29],
one can find a compact normal subgroup K �G whose quotient group G/K is second
countable. Put

H̄ := H/(K ∩ H), Ḡ := G/K .

Then as explained in page 65 in [20], one has a measure-class preserving Borel iso-
morphism H̄ × (H̄\Ḡ) → Ḡ of the form

H̄ × (H̄\Ḡ) � (h̄, x) �→ h̄ · s(x) ∈ Ḡ.

This gives rise to a normal unital H̄ -embedding

� : L∞(H̄) → L∞(Ḡ).

Let � : L∞(H) → L∞(H̄) denote the H -conditional expectation given by averag-
ing by the right (K ∩ H)-action with respect to the Haar measure on K ∩ H . Let
ι : L∞(Ḡ) → L∞(G) be the obvious G-embedding. By Theorem 3.2, one has a
G-conditional expectation

� : L∞(G) ⊗̄ Z(A∗∗) → Z
(
A∗∗) .

The composite

� ◦ [
(ι ◦ � ◦ �) ⊗̄ idZ(A∗∗)

] : L∞(H) ⊗̄ Z
(
A∗∗) → Z

(
A∗∗)

gives an H -conditional expectation. �
The following proposition gives a useful obstruction of amenability of C∗-

dynamical systems. Note that the statement is shown in [12] for discrete groups.

Proposition 3.5 Let (A, α) be a G-C∗-algebra. If α is amenable, then the associated
action G � S(A) is amenable.

Proof Define a G-c.c.p. map � : A → C0(S(A)) to be

[�(a)](ϕ) := ϕ(a) for a ∈ A, ϕ ∈ S(A).

Then by Dini’s theorem, � is non-degenerate. Take a net (ξi )i∈I ⊂ Cc(G, A) which
witnesses the QAP of α. Since � is a non-degenerate G-c.c.p. map, the functions

ki (g) := �
(〈ξi , α̃g (ξi )〉

) ; g ∈ G, i ∈ I

in Cc(G,C0(S(A))) witness the amenability of G � S(A) ([4], Proposition 2.5). �
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We conclude the non-commutative analogue of Theorem 7.2 in [4].

Corollary 3.6 If G admits an amenable action on a unital C∗-algebra, then G is exact.

For later use, we record the following permanence properties of amenability of C∗-
dynamics from [12]. They also follow rather immediately from the characterization
(3) in Theorem 3.2 (togather with Remark 3.8 below), except that the first one by the
QAP. For the last statement, note that for any amenable normal closed subgroup N �G,
the natural embedding of L∞(G/N ) into L∞(G) admits a G-equivariant conditional
expectation.

Proposition 3.7 Amenability of G-C∗-algebras is inherited to G-inductive limits,
G-hereditary C∗-subalgebras, G-extensions, G-quotients, and the range of G-
conditional expectations.

For a C∗-dynamical system α : G � A and an amenable normal closed subgroup
N � G with N ⊂ ker α, the induced action G/N � A is amenable if and only if α is
amenable.

Remark 3.8 Here we recall the following general fact about c.c.p. maps and von
Neumann algebraic tensor product. Let ϕ : M1 → M2 be a c.c.p. map between von
Neumann algebras and N be another von Neumann algebra. It is well-known that,
when ϕ is normal, the (algebraic) tensor product map ϕ � idN : M1 � N → M2 � N
uniquely extends to a normal c.c.p. map

ϕ ⊗̄ idN : M1 ⊗̄ N → M2 ⊗̄ N .

Maybe less well-known is that, even when ϕ is not normal, there is a c.c.p. map
ϕ ⊗̄ idN : M1 ⊗̄ N → M2 ⊗̄ N that is uniquely determined by the condition

(
idM2 ⊗̄ ψ

) (
ϕ ⊗̄ idN

) = (ϕ ⊗ idC)
(
idM1 ⊗̄ ψ

) : M1 ⊗̄ N → M2 ⊗ C
∼= M2

for every ψ ∈ N∗. This follows from the identification Mi ⊗̄ N = CB(N∗, Mi ) as
an operator space. Alternatively, in the case where N = B(�2(I )), this follows from
the identification of M ⊗̄ B(�2(I )) and the space of M-valued I × I matrices whose
finite submatrices have uniformly bounded norms. For a general vonNeumann algebra
N ⊂ B(�2(I )), the map ϕ ⊗̄ idB(�2(I )) restricts to the desired map, thanks to Tomita’s
tensor commutant theorem.

Now let M3, N1, N2 be other von Neumann algebras. It is not difficult to see from
the above condition that

(
ϕ ⊗̄ idN2

) (
idM1 ⊗̄ θ

) = (
idM2 ⊗̄ θ

) (
ϕ ⊗̄ idN1

)

for any normal c.c.p. map θ : N1 → N2. It is also clear that

(
ϕ2 ⊗̄ idN

) ◦ (
ϕ1 ⊗̄ idN

) = (ϕ2 ◦ ϕ1) ⊗̄ idN

for any c.c.p. maps ϕi : Mi → Mi+1; i = 1, 2. Thus when M1, M2, N are G-W∗-
algebras and ϕ : M1 → M2 is a G-c.c.p. map, the map ϕ ⊗̄ idN is G-equivariant with
respect to the diagonal actions.
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4 Characterizations through central sequence algebras

In the context of classification/structure theory of operator algebras, it is more natural
and desirable to characterize a property of non-commutative dynamical systems via
the (relative) central sequence algebras. This approach appears in Connes’s successful
classification of automorphisms on injective factors [14].

For the QAP, such (formally stronger) reformulations are obtained in [48], Theo-
rem C, in some important cases. These properties in fact play fundamental roles in
the classification of amenable C∗-dynamical systems [48]. Here we establish such
reformulations for general exact group C∗-dynamics.

In the usage of central sequence algebras, it is natural to restrict the attentions to
second countable groups and separable C∗-algebras. Therefore, in this section, we
only consider such cases.

Kirchberg’s central sequence algebra

Here we recall Kirchberg’s (relative) central sequence algebras [32]. Let A be a C∗-
algebra. Denote by A∞ the limit algebra of A on N:

A∞ := �∞(N, A)/c0(N, A).

Set A∞ := A∞ ∩ A′. Here we regard A as a C∗-subalgebra of A∞ by the diagonal
embedding. Let B ⊂ A∞ be a C∗-subalgebra. Then define

Ann(A∞, B) := {
x ∈ A∞ : x · B = 0 = B · x} .

Observe that Ann(A∞, B) is an ideal of A∞ ∩ B ′. We set

F∞(B, A) := (
A∞ ∩ B ′) /Ann

(
A∞, B

)
.

For a sequence (xn)∞n=1 in the preimage of A∞ ∩ B ′, we denote by [xn]∞n its image in
F∞(B, A). Observe that

‖ [xn]∞n ‖F∞(B,A) = sup{‖ [
(xn)

∞
n=1 + c0(N, A)

] · b‖A∞ : b ∈ (B)1}.

When B is σ -unital, a standard reindexation argument shows that F∞(B, A) is unital
[32]. If (A, α) is aG-C∗-algebra and B ⊂ A∞ is invariant under the diagonalG-action,
thenwe denote by F∞,α(B, A) the set of allG-continuous elements in F∞(B, A) [49].
Note that F∞,α(B, A), equipped with the restriction action, is a G-C∗-algebra. Put
F∞(A) := F∞(A, A), F∞,α(A) := F∞,α(A, A) for short. For notational simplicity,
we reuse the same symbol α for the induced G-actions on A∞, F∞,α(B, A).

Proposition 4.1 Let G be second countable. Let α : G � A be an amenable action
on a separable C∗-algebra. Then for any unital G-C∗-algebra (C, γ ), there is a G-
u.c.p. map C → F∞,α(A).
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Proof Take a sequence (ξn)
∞
n=1 ∈ Cc(G, A) ⊂ L2(G, A) as in the definition of the

QAP. Fix ϕ ∈ S(C). For each n ∈ N, define �n : C → A to be

�n(c) :=
∫
G

ϕ
(
γ −1
g (c)

)
ξn(g)

∗ξn(g) dm(g), c ∈ C .

We show that the sequence (�n)
∞
n=1 defines a G-u.c.p. map �∞ : C → F∞,α(A).

Observe that for a ∈ A, c ∈ C , and n ∈ N, the Cauchy–Schwarz inequality implies

‖[a,�n(c)]‖ ≤ 2‖c‖‖[a, ξn]‖.

Thus the sequence (�n)
∞
n=1 defines a c.c.p. map �∞ : C → F∞(A) by

�∞(c) := [�n(c)]∞n , c ∈ C .

Since �n(1) = 〈ξn, ξn〉, the map �∞ is unital. For c ∈ C and s ∈ G,

αs

(
�n

(
γ −1
s (c)

))
=

∫
G

ϕ
(
γ −1
sg (c)

)
αs (ξn(g))

∗ αs (ξn(g)) dm(g)

=
∫
G

ϕ
(
γ −1
g (c)

) [
α̃s (ξn) (g)

]∗
α̃s (ξn) (g) dm(g).

Hence

‖a∗ (αs (�n(c)) − �n (γs(c))) a‖ ≤ 2‖c‖‖ (α̃s (ξn) − ξn) a‖

for all a ∈ (A)1 and c ∈ C . This shows that�∞ isG-equivariant. As�∞ is continuous
and C is a G-C∗-algebra, we obtain �∞(C) ⊂ F∞,α(A). �
Definition 4.2 Let (A, α) be a G-C∗-algebra. We say that an element (xn)∞n=1 ∈
�∞(N, A) is equi-G-continuous in the strict topology, if for any a ∈ A, the maps

G � g �→ αg(xn)a; n ∈ N

are equicontinuous in norm. Similarly, for a bounded sequence (ξn)
∞
n=1 ⊂ L2(G, A),

we say the sequence is equi-G-continuous in the strict topology if for any a ∈ A, the
maps

G � g �→ α̃g (ξn) a; n ∈ N

are equicontinuous in norm.

Lemma 4.3 Let G be second countable. Let (A, α) be a separable G-C∗-algebra.

(1) Let a ∈ F∞,α(A). Then any its representing sequence (an)∞n=1 ∈ �∞(N, A) is
equi-G-continuous in the strict topology.
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(2) Let ξ ∈ L2(G, F∞,α(A)). Then for any ε > 0, there is a bounded sequence
(ηn)

∞
n=1 ∈ Cc(G, A) as follows.

• (ηn)
∞
n=1 is equicontinuous in norm, and equi-G-continuous in the strict topol-

ogy,
• ηn’s are supported in a same compact set,
• sup{‖ηn(g)‖ : n ∈ N, g ∈ G} < ∞,
• the map η∞(g) := [ηn(g)]∞n ; g ∈ G, sits in Cc(G, F∞,α(A)) and satisfies

η∞ ≈ε ξ .

Proof (1): This is Lemma 2.2 in [49].
(2):Wemay assume that ξ = ∑N

i=1 ρi⊗xi for someρi ∈ Cc(G) and xi ∈ F∞,α(A).
For each xi , take a representing sequence (xi,n)∞n=1 ∈ �∞(N, A). Set

ηn :=
N∑
i=1

ρi ⊗ xi,n ∈ Cc(G, A).

Then, by (1), this gives the desired sequence. �
Theorem 4.4 Let G be a second countable exact group. Let α : G � A be a C∗-
dynamical system on a separable C∗-algebra. Then the following conditions are
equivalent.

(1) The action α is amenable.
(2) For any unital G-C∗-algebra C, there is a G-u.c.p. map C → F∞,α(A).
(3) There is a sequence (ξn)

∞
n=1 in L2(G, F∞,α(A)) satisfying 〈ξn, α̃g(ξn)〉 → 1 in

norm, uniformly on compact subsets of G.
(4) There is a sequence (kn)∞n=1 ⊂ Cc(G, F∞,α(A)) of positive type functions con-

verging to 1 in norm uniformly on compact subsets of G.
(5) The action α : G � F∞,α(A) is amenable.
(5) For any G-invariant separable C∗-subalgebra B ⊂ A∞, the action α : G �

F∞,α(B, A) is amenable.

Remark 4.5 In a private communication, the authors are informed from Siegfried
Echterhoff that he, together with Alcides Buss, Rufus Willett, has independently
obtained the same statement for unital discrete C∗-dynamics.

Proof of Theorem 4.4 (1) ⇒ (2): This is Proposition 4.1.
(2) ⇒ (4): Let G � X be an amenable action on a compact space. Choose a

sequence (kn)∞n=1 ⊂ Cc(G,C(X)) of positive type functions which converges to 1
uniformly on compact subsets of G. Take a G-u.c.p. map � : C(X) → F∞,α(A).
Then the sequence (� ◦ kn)∞n=1 confirms condition (4).

(4) ⇒ (3): This follows from Proposition 2.5 of [3].
(3) ⇒ (6): Let a compact set K ⊂ G and ε > 0 be given. Choose ξ ∈

Cc(G, F∞,α(A)) with ‖ξ‖ = 1 and 〈ξ, α̃s(ξ)〉 ≈ε 1 for s ∈ K .
Choose a bounded sequence (ξn)

∞
n=1 ∈ Cc(G, A) as in Lemma 4.3 (2) such that

ξ∞(g) := [ξn(g)]∞n satisfies ξ∞ ≈ε ξ . We may assume that ‖ξ∞‖ ≤ 1. Observe that
for any a ∈ A, the functions
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s ∈ K �→ ‖a∗(〈ξn, α̃s(ξn)〉 − 1)a‖; n ∈ N

are equicontinuous. Hence for any a ∈ (A)1, one has

lim sup
n→∞

max
s∈K ‖a∗ (〈ξn, α̃s (ξn)〉 − 1) a‖ < 3ε.

Now let B ⊂ A∞ be a separable G-invariant C∗-subalgebra. Let F =
{y1, . . . , ym} ⊂ (F∞,α(B, A))1 be a finite subset. Take a dense sequence (xi )∞i=1
in (B)1. For each xi , y j ; i ∈ N, j = 1, 2, . . . ,m, fix their representing sequences
(xi,n)∞n=1, (y j,n)∞n ∈ (�∞(N, A))1. By the choice of ξn’s and the observation in the
previous paragraph, one can find a subsequence (ξl(n))

∞
n=1 satisfying

‖ [
xi,n, ξl(n)(g)

] ‖ < 1/n for all i ≤ n, g ∈ G, n ∈ N,

‖ [
yi,n, ξl(n)(g)

] ‖ < 1/n for all i = 1, . . . ,m, g ∈ G, n ∈ N,

max
s∈K ‖x∗

i,n

(〈ξl(n), α̃s
(
ξl(n)

)〉 − 1
)
xi,n‖ < 3ε for all i ≤ n, n ∈ N.

Define the map ζ̃ : G → �∞(N, A) to be

ζ̃ (g) := (
ξl(n)(g)

)∞
n=1 , g ∈ G.

By the above three inequalities, by passing to the quotient, ζ̃ defines a function ζ ∈
Cc(G, F∞,α(B, A)) satisfying [ζ, y] = 0 for y ∈ F and 〈ζ, α̃s(ζ )〉 ≈3ε 1 for s ∈ K .
This confirms condition (6).

(6) ⇒ (5) ⇒ (3): Trivial.
(3) ⇒ (1): Let F ⊂ A be a finite set. Let e ∈ K ⊂ G be a compact subset.

Let 0 < ε < 1. Take a ∈ (A)1 satisfying ax ≈ε x ≈ε xa for all x ∈ F and that
αs(a) ≈ε a for all s ∈ K (Lemma 2.12).

Choose ξ ∈ Cc(G, F∞,α(A)) with 〈ξ, α̃s(ξ)〉 ≈ε 1 for s ∈ K , ‖ξ‖ ≤ 1. Applying
Lemma 4.3 (2) to ξ and ε > 0, one has a sequence (ξn)

∞
n=1 ⊂ Cc(G, A) as in the state-

ment. By the choice of (ξn)
∞
n=1, one has m ∈ N satisfying a∗〈ξm, α̃s(ξm)〉αs(a) ≈3ε

a∗a for all s ∈ K and ‖[ξm, y]a‖ < ε for all y ∈ aF . Set ζ := ξma. Then
〈ζ, α̃s(ζ )〉 ≈3ε a∗a for all s ∈ K . In particular ‖ζ‖ <

√
1 + 3ε < 2. For any

x ∈ F ,

xζ ≈2ε axζ = axξma ≈ε ξmaxa = ζ xa ≈2ε ζ x .

This shows the QAP of α. �
Remark 4.6 When G is discrete, one can replace ‘∞’ by any free ultrafilter ω on N.
In particular, the theorem removes the assumptions of Theorem C in [48]

Remark 4.7 Theorem 4.4 does not hold true for non-exact groups. To see this, consider
a second countable non-exact group G ([21,37]). Then the left translation action G �

C0(G) is amenable, but it fails conditions (3) to (6).
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5 On compact group fixed point algebras

When one wants to show the nuclearity of a given C∗-algebra, the following theorem
is quite powerful: A C∗-algebra is nuclear if it admits a compact group action whose
fixed point algebra is nuclear. The theorem is successfully applied to celebrated C∗-
algebras, including the Cuntz algebras, irrational rotation algebras, graph algebras,
Pimsner algebras. For details, we refer the reader to Section 4.5 of [10].

Here we establish its C∗-dynamics analogue. This result is important in the next
section, where we give a powerful framework to produce amenable actions on simple
C∗-algebras.
Theorem 5.1 Let G be a locally compact group. Let K be a compact group. Let
(A, α × β) be a (G × K )-C∗-algebra. Then the following conditions are equivalent.

(1) The action G × K � A is amenable.
(2) The action G � A is amenable.
(3) The induced action G � A � K is amenable.
(4) The restriction action G � AK is amenable.

The implication (2) ⇒ (4) follows from Proposition 3.7. The implication (1) ⇒ (2)
follows from Corollary 3.4. We show the implications (4) ⇒ (3) ⇒ (1), which
complete the proof. The proof of (4) ⇒ (3) is by studying the Wassermann type
inclusion [53].

For this, we first recall some basic facts on compact group actions. Let K be a
compact group. Let ρ : K � L2(K ) denote the right regular representation. Let
(A, β) be a K -C∗-algebra. Consider the K -C∗-algebra (A ⊗ K(L2(K )), β ⊗ Adρ).
Then there is a natural identification (A ⊗ K(L2(K )))K = A � K . Since we need an
explicit isomorphism, let us recall the proof.

Proof Wefirst recall that, by the Peter–Weyl theorem,C∗
λ(K ) = K(L2(K ))Adρ . Define

a ∗-homomorphism π : A → A ⊗ C(K ) to be

π(a)(k) := β−1
k (a) for a ∈ A, k ∈ K .

We regard A ⊗ C(K ) as a C∗-subalgebra ofM(A ⊗ K(L2(K ))) in the obvious way.
Then, one has π(A) ⊂ M(A ⊗ K(L2(K )))K and

A ⊗ K(L2(K )) = span[π(A)(1 ⊗ K(L2(K )))].
By applying the conditional expectation

∫
K βk ⊗Adρk dm(k) to both sides, we obtain

(
A ⊗ K

(
L2(K )

))K = span
[
π(A)

(
1 ⊗ C∗

λ(K )
)] = A � K .

�
Proof of (4) ⇒ (3). Take an approximate unit (pi )i∈I of projections in C∗

λ(K ) ⊂
K(L2(K )). Note that

(1 ⊗ pi )
(
A ⊗ K

(
L2(K )

))K
(1 ⊗ pi ) =

(
A ⊗ K

(
pi L

2(K )
))K
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for i ∈ I . Thus A � K is (the closure of) the directed union of C∗-subalgebras
(A ⊗ K(pi L2(K )))K , i ∈ I . Notice that for each i ∈ I , the conditional expectation

idA ⊗ tr :
(
A ⊗ K

(
pi L

2(K )
))K → AK ⊗ Cpi

has finite index. Recall that a conditional expectation E on a C∗-algebra B is said
to have finite (probabilistic) index [40] if it satisfies E ≥ λ · idB for some positive
number λ > 0.

Now let (A, α ×β) be a (G× K )-C∗-algebra. Then all constructions above respect
the G-action α. Hence the implication (4) ⇒ (3) follows from the next lemma.

Lemma 5.2 Let (B, β) ⊂ (A, α) be an inclusion of G-C∗-algebras with a G-
conditional expectation E of finite index. If β is amenable, then so is α.

Proof Denote by ι : B → A the inclusion map. Consider the normal extensions
ι′′ : B ′′

β → A′′
α , E

′′ : A′′
α → B ′′

β (see Lemma 2.8). Observe that E ′′ ◦ ι′′ = idB′′
β
.

We regard B ′′
β as a G-W∗-subalgebra of A′′

α by ι′′. Then E ′′ : A′′
α → B ′′

β is a normal
G-conditional expectation. Since E has finite index, so does E ′′. Thus the statement
follows from the next lemma. �
Lemma 5.3 Let (N , β) ⊂ (M, α) be an inclusion of G-W∗-algebras with a normal
G-conditional expectation E of finite index. If (N , β) is amenable, then so is (M, α).

Proof For the following, consult 1.1.3 in [42] (statements 6◦ to 9◦ hold true in general,
by replacing a normal faithful state ϕ there with a normal faithful semifinite weight,
which always exists [50]). Consider the basic construction of E :

〈M, eN 〉 = B

(
L2(M)

)
∩ (J N J )′.

As E is G-equivariant, the G-action on M extends to a (continuous) G-action on
〈M, eN 〉 which fixes the Jones projection eN . Since E is of finite index, there is a
normal completely positive map

Ê : 〈M, eN 〉 → M

satisfying Ê(xeN y) = xy for x, y ∈ M . The map

E1 := Ê
(
1〈M,eN 〉

)−1 · Ê : 〈M, eN 〉 → M

defines a conditional expectation (called the dual conditional expectation; see Section
1.2 in [42] for details). Since Z(N ) ∼= Z(〈M, eN 〉) via the G-∗-isomorphism z �→
J z∗ J , the G-action on 〈M, eN 〉 is amenable. Since E1 is G-equivariant, this shows
the amenability of (M, α). �
Proof of (3) ⇒ (1) We will give a sequence of (G × K )-u.c.p. maps

L∞(G × K ) ⊗̄ A′′
α×β → L∞(G) ⊗̄ A′′

α×β → L∞(G) ⊗̄
(
A′′

α×β�̄K
)

→ A′′
α×β�̄K → A′′

α×β
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whose composite is a conditional expectation onto A′′
α×β . Here we equip the W∗-

crossed product A′′
α×β�̄K with the conjugate K -action.

The first map is given by idL∞(G) ⊗̄ mK ⊗̄ idA′′
α×β

, where mK denotes the Haar
(probability) measure on K . The second map is the canonical inclusion.

To give the third map, we first take a G-conditional expectation

� : L∞(G) ⊗̄ (A � K )′′α → (A � K )′′α,

which exists by assumption. As the K -action on (A�K )′′α is inner, the map� is in fact
(G × K )-equivariant. By the universal property of (A � K )′′α , we have a G-invariant
central projection z ∈ (A � K )′′α with A′′

α×β�̄K = z(A � K )′′α . Therefore � restricts
to a (G × K )-conditional expectation

L∞(G) ⊗̄
(
A′′

α×β�̄K
)

→ A′′
α×β�̄K .

To construct the fourth map, choose a local basis U of e ∈ K consisting of K -
conjugation invariant sets. (Such a U exists by the Peter–Weyl theorem.) Define ζU :=
m(U )−1/2χU ∈ L2(K ) for U ∈ U . Take any point-ultraweak cluster point of the
(G × K )-u.c.p. maps (idA′′

α×β
⊗ ωζU )U∈U . Here we identify A′′

α×β�̄K with the W∗-
subalgebra of A′′

α×β ⊗̄ B(L2(K )) in the same way as noted after Theorem 5.1.
Now it is clear from the definitions that the resulting composite is indeed a (G×K )-

conditional expectation. �

6 New constructions of non-commutative amenable actions

6.1 New constructions

All the previously known constructions [46] of (really) non-commutative amenable
actions depend on the reduced crossed product construction. In this section we give
a new construction based on the Pimsner construction [41] (see also [36]). Notable
advantages of the present construction are

• it works for arbitrary locally compact groups,
• it is easy to control equivariant Kasparov theoretic data [30],
• it does not involve the infinite tensor product construction. (In particular it provides
simple amenable C∗-dynamics even from proper actions.)

We say an inclusion A ⊂ B of C∗-algebras is non-degenerate if AB is dense in B.

Theorem 6.1 Let (A, α) be an amenable C∗-dynamical system. Then there is a non-
degenerate ambient G-C∗-algebra (B, β) of (A, α) with the following properties.

• The action β is amenable and outer.
• The C∗-algebra B is purely infinite simple.
• When A is nuclear, so is B.
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When A is separable and G is second countable, one can further arrange B to be
separable, and the inclusion A ⊂ B to be KKG-equivalent.

Proof We show that Meyer’s construction [36] gives the desiredG-C∗-algebra (B, β).
The statements except the amenability of (B, β) are shown in the proof of Theorem
2.1 in [36] (cf. [34,41]). To show the amenability of the resulting G-C∗-algebra, we
first recall the construction of (B, β).

Take a non-degenerate faithful ∗-representation π : A → B(H) on a Hilbert space
H with π(A) ∩ K(H) = 0. When A is separable, we may choose a separable H.
Define π̃ : A → B(L2(G,H)) to be

(π̃(a)ξ) (g) := π
(
α−1
g (a)

)
(ξ(g)) for ξ ∈ Cc(G,H), a ∈ A, g ∈ G.

Set E := L2(G,H) ⊗ A, a right Hilbert A-module. On E , we equip the left A-action
ϕ : A → B(E) and the isometric G-action γ as follows.

ϕ := π̃ ⊗ 1, γ := (λ ⊗ idH) ⊗ α.

Then ϕ and γ make E a G-C∗-correspondence over A. By the choice of π ,

IE = ϕ(A) ∩ K(E) = 0.

From now onwe freely use the facts and notations on the Toeplitz–Pimsner algebras
recorded in Section 4.6 of [10]. Let B := TE be the Toeplitz–Pimsner algebra of E
[41]. We equip B with the G-action β induced from γ ; βg(Tξ ) := Tγg(ξ) for g ∈ G,
ξ ∈ E . The canonical embedding A → B is non-degenerate and G-equivariant. We
will show the amenability of (B, β).

Let σ : T � B be the gauge action. Clearly σ commutes with β. By Theorem 5.1,
it suffices to show the amenability of (Bσ , β).

Recall that

Bσ = span{TξT
∗
η : ξ, η ∈ E⊗n, n ∈ Z≥0}.

For each n ∈ Z≥0, set

B≤n := span
{
TξT

∗
η : ξ, η ∈ E⊗k, k ≤ n

}
, Bn := span

{
TξT

∗
η : ξ, η ∈ E⊗n

}
.

Observe that both B≤n and Bn areG-C∗-subalgebras of B.Moreover Bσ is (the closure
of) the directed union of B≤n’s. Therefore, by Proposition 3.7, it suffices to show the
amenability of (B≤n, β)’s.

As B≤0 = A, the case n = 0 is the assumption. For a given n ∈ N, assume that
B≤n−1 is amenable. Recall that we have a short exact sequence

0 → Bn → B≤n → B≤n−1 → 0
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which is obviouslyG-equivariant. Observe that Bn ∼= K(E⊗n) asG-C∗-algebras. Note
that E⊗n ∼= L2(G,H)⊗n ⊗ A asG-C∗-correspondences over A. (Indeed, when n = 2,
the map

[ξ ⊗ a] ⊗A [η ⊗ b] �→ [
ξ ⊗ π̃(a)η

] ⊗ b; ξ, η ∈ L2(G,H), a, b ∈ A

extends to the desired isomorphism. The statement for general n ∈ N is shown in a
similar way.) Therefore

(Bn, β) ∼=
(
K

(
L2(G,H)⊗n

)
⊗ A,Ad(λ⊗idH)⊗n ⊗α

)
.

This isomorphism shows the amenability of (Bn, β). �

6.2 Consequences

As Theorem 6.1 is applied to many C∗-dynamics, we naturally obtain various new
examples of simple amenable C∗-dynamics. Here we list significant examples among
them.

The next result improves the main results of [46]. This gives a more complete
answer to questions of Anantharaman-Delaroche ([4], Question 9.2 (c), (d)).

Corollary 6.2 The following statements hold true.

(1) For every non-amenable exact group G, there is a unital inclusion (A, α) ⊂ (B, β)

of unital G-C∗-algebras with the following properties:

• Both A and B are purely infinite simple, nuclear.
• The action α is amenable.
• B � G �= B�rG.

(2) For every non-amenable group G, there is a non-degenerate inclusion (A, α) ⊂
(B, β) of G-C∗-algebras with the following properties:

• Both A and B are purely infinite simple, nuclear.
• The action α is amenable.
• B � G �= B�rG.

Proof We only show statement (1). Statement (2) is shown in the same way after using
the proper action G � G instead of α0 below.

Since G is exact, by Proposition 2.5, one can choose an amenable action α0 : G �

A0 on a unital nuclear C∗-algebra. Choose a unital faithful covariant representation
(π, u) of A0 on a Hilbert space H. Set B0 := π(A0) + K(H). We equip B0 with the
G-action β0 := Adu . Then as the restriction action G � K(H) is inner, B0 � G �=
B0�rG (see e.g., Lemma 3.1 of [46]). Applying the construction in Theorem 6.1 to
the ∗-representations ⊕

N
π and

⊕
N
idB0 on

⊕
N
H respectively, we obtain a unital

inclusion (A, α) ⊂ (B, β) of the resulting G-C∗-algebras. As in the statement, both
A and B are purely infinite simple nuclear, and α is amenable. Furthermore, since
the canonical conditional expectation B → B0 is G-equivariant, the canonical map
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B0 � G → B � G is injective. (This follows from Exercise 4.1.4 of [10] in the
discrete group case, and the same proof works for general locally compact groups.)
Thus B � G �= B�rG. �

On amenable models in equivariant Kasparov category

Recently the second author obtained the first classification result of C∗-dynamics
beyond amenable groups [48]. This motivates to generalize Izumi’s conjectures ([26–
28]) to amenable actions. Recall that, roughly speaking, the original conjecture claims
a bijective correspondence between (torsion free) amenable group actions on Kirch-
berg algebras (up to appropriate identifications) and certain topological invariants.
The surjectivity part of the original conjecture was recently confirmed by Meyer [36].
Here we prove the amenable action analogue of the surjectivity part for groups with
the Haagerup property in the stabilized case. (We refer the reader to the book [13] for
groups with the Haagerup property.) This is a consequence of Theorem 6.1, a signif-
icant theorem of Higson-Kasparov [23], and Meyer’s results [36]. By (the proofs of)
Theorems 3.7 and 3.10 in [36], it suffices to show the following statement.

Corollary 6.3 Let G be a second countable group with the Haagerup property. Then
there is an amenable action α : G � O∞ ⊗ K with (O∞ ⊗ K, α) ∼KKG C.

Proof A deep result of Higson–Kasparov provides a separable nuclear proper G-
C∗-algebra A(H) with A(H) ∼KKG C ([23], Theorems 8.5, 8.6). As proper G-C∗-
algebras are amenable, Theorem 6.1, applied to A(H), together with the Kirchberg–
Phillips classification theorem [31,39], gives the desired C∗-dynamics. �

For free groups, the analogous result holds true in the unital case. The next theorem
is included in the proof of Theorem 5.1 in [47]. By applying Theorem 6.1, we obtain
a new simpler proof.

Corollary 6.4 ([47]). Let� be a countable free group. Then there is an amenable action
α : � � O∞ with (O∞, α) ∼KK� C.

Proof We realize � as a discrete subgroup of SL2(R). Then the left translation action
� � SL2(R)/SO(2) is amenable. As SL2(R)/SO(2) ∼= R

2, we obtain an amenable
action α : � � R

2. Applying Theorem 6.1 to (C0(R
2), α), we obtain a �-Kirchberg

algebra (B, β) with (B, β) ∼KK� (C0(R
2), α). In particular B ∼KK C by the Bott

periodicity. Moreover the induced action � � K0(B) is trivial. Take a free basis S of
�. Choose a projection p ∈ B whose class [p]0 generates K0(B) [15]. By [15], for
each s ∈ S, one can take u(s) ∈ U(M(B)) with Adu(s)(βs(p)) = p. Define a new
action ζ : � � B to be ζs := Adu(s) ◦ βs for s ∈ S. Then p is ζ -invariant. As the
unital �-inclusion C ⊂ pBp is KK-equivalent, by Theorem 8.5 of [35], the inclusion
is in fact KK�-equivalent. By the Kirchberg–Phillips classification theorem [31,39],
we have pBp ∼= O∞. �
We remark that there are non-exact groups with the Haagerup property [6]. Therefore
the cocycle perturbation argument used in the above proof does not work to such
groups.
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The following observation gives an obstruction to the existence of an amenable
representative in the category KKG .

Proposition 6.5 Let G be a locally compact second countable group. Let A be a
separable G-C∗-algebra. If there is an amenable G-C∗-algebra B satisfying A ∼KKG

B, then the quotient map qA : A � G → A�rG is KK-equivalent.

Proof Let x ∈ KKG(A, B) be a KKG-equivalence. Then we have the following com-
mutative diagram in KK:

A � G
jG (x)−−−−→ B � G

qA

⏐⏐� qB

⏐⏐�
A�rG

jGr (x)−−−−→ B�rG.

Here jG, jGr : KKG → KK denote Kasparov’s full and reduced crossed product func-
tors [30] respectively. Since x is a KKG-equivalence, the row maps are isomorphisms.
As B is amenable, the map qB is an isomorphism. Thus qA is a KK-equivalence. �
Thus groups satisfying the statement of Corollary 6.3 must be K-amenable [16].

6.3 Exotic construction

Here we give yet another construction of amenable actions on simple C∗-algebras.
The construction is an improvement of the one used in the proof of Proposition B in
[46].

Theorem 6.6 Any locally compact group G admits an action α : G � A on a simple
nuclear C∗-algebra such that A �α G = A�r,αG and that A�r,αG is nuclear.

In the original article [46], we need to assume second countability ofG. This is because
we have used the Baire category theorem to take an appropriate amenable action on
the Cantor set (cf. [45]). The new construction presented here does not depend on the
Baire category theorem.

To construct the desired G-C∗-algebra, following the strategy in [46], we first
construct a suitable amenable action on a compact space.

Let S be an infinite set. Let FS be the free group generated by S. For each R ⊂ S,
let �R denote the subgroup of FS generated by R. Denote by Pfin(S) the set of finite
subsets of S.

Lemma 6.7 There is an amenable free action β : FS � {0, 1}S.
Proof For each F ∈ Pfin(S), choose an amenable free action αF : �F � {0, 1}N. (See
e.g., Lemma 2.3 of [45] for the existence of such an action.) Let βF : FS � {0, 1}N
be the action defined to be

βF
s :=

{
αF
s s ∈ F

id{0,1}N s ∈ S\F .
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Set

β :=
⊗

F∈Pfin(S)

βF : FS �

(
{0, 1}N

)Pfin(S)

.

By standard calculations of cardinals, |N × Pfin(S)| = |S|. Hence ({0, 1}N)Pfin(S) ∼=
{0, 1}S . For each F ∈ Pfin(S), the restriction β|�F factors αF . Therefore β|�F is
amenable and free. Hence so is β. �
Proposition 6.8 Let T ⊂ S be a subset satisfying |S| = |T |. Then there is an amenable
free action α : FS � {0, 1}S whose restriction to �T is minimal.

Proof By Lemma 6.7, one has an amenable free action β : FS � {0, 1}S . Set γ :=⊗
S β : FS � [{0, 1}S]S . Note that X := [{0, 1}S]S ∼= {0, 1}S . Let CO(X) denote the

set of clopen subsets of X . Take a bijection ϕ : T → [CO(X)\{∅, X}]2. Denote by
ϕ(t) = (ϕ(t)1, ϕ(t)2). For each t ∈ T , take a homeomorphism ht on X such that

• ht (γt (ϕ(t)1)) = ϕ(t)2,
• ht is of the form

H × id{0,1}(S×S)\(W×F)

for some F ∈ Pfin(S), countable subset W ⊂ S, and some homeomorphism H
on {0, 1}W×F . Here we identify X with {0, 1}W×F × {0, 1}(S×S)\(W×F) in the
obvious way.

Set hs := idX for s ∈ S\T . Define α : FS � X to be αs := hs ◦ γs for s ∈ S. Then,
for any proper clopen subsets Y , Z ⊂ X , the element t := ϕ−1(Y , Z) ∈ T satisfies
αt (Y ) = Z . As X is totally disconnected, this shows that α|�T is minimal. For each
F ∈ Pfin(S), α|F factors β|F . Hence α is amenable and free. �
Proof of Theorem 6.6 Take an infinite set T and a homomorphism h : FT → G with
dense image. Choose a set S with T ⊂ S, |S| = |S\T | = |T |. Extend h to a homomor-
phism k : FS → G by setting ks = e for s ∈ S\T . By Proposition 6.8, one can find
an amenable free action α : FS � {0, 1}S =: X such that α|�S\T is minimal. Define
γ : FS � X × G to be the diagonal action of α and the left translation action via
k. Note that γ is amenable, minimal, and free. Let ϕ : G � X × G be the diagonal
action of the trivial action and the right translation action. Then γ and ϕ commute.
Therefore ϕ induces a G-action on C0(X × G)�r,γ FS . This G-C∗-algebra possesses
the desired properties ([3,5]). �
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