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Abstract
Let K be an imaginary quadratic field. In this article, we study the eigenvariety for
GL2/K , proving an étaleness result for the weight map at non-critical classical points
and a smoothness result at base-change classical points. We give three main appli-
cations of this; let f be a p-stabilised newform of weight k ≥ 2 without CM by K .
Suppose f has finite slope at p and its base-change f/K to K is p-regular. Then: (1)We
construct a two-variable p-adic L-function attached to f/K under assumptions on f
that conjecturally always hold, in particular with no non-critical assumption on f /K .
(2) We construct three-variable p-adic L-functions over the eigenvariety interpolating
the p-adic L-functions of classical base-change Bianchi cusp forms. (3)We prove that
these base-change p-adic L-functions satisfy a p-adic Artin formalism result, that is,
they factorise in the same way as the classical L-function under Artin formalism.

Mathematics Subject Classification Primary 11F41 · 11F67 · 11F85 · 11S40;
Secondary 11M41

1 Introduction

Let f ∈ Sk+2(�1(N )) be a classical eigenform of weight k + 2 ≥ 2 and level N
divisible by p (which we may always assume after possibly p-stabilising from prime-
to-p level). Suppose Up f �= 0, i.e. f has finite slope. When considering questions
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about the Iwasawa theory of f , there are two notions that occur repeatedly; firstly, base-
changing f to an imaginary quadratic field K , studying p-adic L-functions attached
to the resulting Bianchi modular form (e.g. [7,53]), and secondly, allowing f (and the
associated p-adic L-functions) to vary in a p-adic family.

Previous constructions of p-adic L-functions attached to Bianchi modular forms
have focused exclusively on the case of ‘non-critical slope’, namely, under the hypoth-
esis that the slope—the p-adic valuation of theUp-eigenvalue αp( f )—is ‘sufficiently
small’. This misses many interesting cases (see Remark 2.14). For example, if p is
split in K and E/Q is an elliptic curve with good ordinary reduction at p, then its
corresponding modular form fE has level M prime to p and two p-stabilisations
f , f ′ to level N = Mp, one of which has critical slope base-change to K . If p is
inert or ramified, the situation is even more pronounced, as fully half of the possible
range of slopes of base-change forms is critical. This gives a ‘missing’ base-change
p-adic L-function for every modular form of prime-to-p level, and some examples
with no existing base-change p-adic L-functions. Further, variation of these p-adic
L-functions in families has previously been proved only for p split, and little is known
beyond the case of Hida families, i.e. for slope exactly 0.

1.1 Our results

In this paper, we aim towards a more complete theory of p-adic L-functions attached
to base-change Bianchi modular forms. Suppose:

(a) f does not have CM by K ,
(b) f is either new or a p-stabilisation of a newform of level prime to p, and
(c) its base-change f/K to K is p-regular (in the sense of (C3) in Definition 2.2[K ]).

Our main result, Theorem A, is the variation of p-adic L-functions in a p-adic
family through f/K , via the construction of a three-variable p-adic L-function. Our
construction is unconditional when f/K is non-critical, and more generally is valid
under hypotheses on f/K that conjecturally always hold. This generalises previous
constructions for Hida families when p is split in K , and when p is inert or ramified,
we believe this construction to be entirely new, even for Hida families.

We apply this in Theorem B to construct the ‘missing’ p-adic L-functions attached
to p-regular base-change forms. Suppose f as above has critical slope. Under the same
(conjecturally automatic) hypotheses, we construct a p-adic L-function attached to
f/K . We make no non-criticality assumptions and allow arbitrary p. This p-adic L-
function naturally has two (cyclotomic and anticyclotomic) variables; note that it is
difficult to construct this directly from p-adic L-functions attached to f , as we would
not see any anticyclotomic variation.

After restricting to the cyclotomic line, in Theorem C we relate our constructions
to the p-adic L-functions attached to the original form f via a p-adic analogue of
the factorisation given by classical Artin formalism. This generalises a result that is
important in the Iwasawa theory of elliptic curves, and that was previously known
only under an even more restrictive slope condition that excludes cases of important
arithmetic interest.
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To prove these results, we build on work of the second author, who gave con-
structions of p-adic L-functions for (non-critical slope) Bianchi modular forms,
under no base-change assumption, in [56]. The p-adic L-function was shown to be
the Mellin transform of a class in overconvergent cohomology/modular symbols, as
introduced by Stevens in the classical setting [52]. This class, and hence the p-adic
L-function, is canonical up to p-adic scalar. The main input of the current paper is
a pairing of this construction with a systematic study of the eigenvariety parametris-
ing Bianchi modular forms. The use of overconvergent cohomology in constructing
eigenvarieties—generalising the pioneeringwork of Hida in the ordinary setting—was
known to Stevens, later explored by Ash–Stevens [3], Urban [55] and more recently
by Hansen [27] and the authors [17].

1.2 The Bianchi eigenvariety

The Bianchi situation is very different from the classical and Hilbert settings, and
requires new ideas. Most strikingly, cuspidal Bianchi modular forms contribute to the
cohomology of the associated locally symmetric space in more than one degree (in
degrees 1 and 2). The p-adic L-functions of [56] are constructed using classes in H1

c;
but Bianchi eigenvarieties are naturally constructed using classes that appear only in
H2
c (Lemma 4.2). In particular, the use of existing techniques to vary classes in H1

c in
families is obstructed by the existence of classical classes in H2

c . This is related to the
fact that GL2(C) does not admit discrete series, and the classical points in the Bianchi
eigenvariety—the points corresponding to classical Bianchi modular forms—are not
Zariski-dense. This is captured in the phenomenon that the cuspidal part of the Bianchi
eigenvariety is one-dimensional lying over a two-dimensional weight space.

Overcoming this obstruction is a key step in the construction, and occupies all of
Sect. 4. We isolate certain curves� in weight space that allow us to pass from families
in H2

c to families in H1
c (Proposition 4.4), as needed to relate to p-adic L-functions.

Under a smoothness hypothesis on �, that is satisfied for all base-change families, we
prove an étaleness result (Theorem 4.5) for the eigenvariety at non-critical classical
points. These results require no base-change condition. Again, the situation is made
difficult by existence of classes in H2

c ; we hope the techniques we use will apply in
more general ‘badly behaved’ settings, e.g. GLn/Q for n ≥ 3.

In Sect. 5 we construct a ‘parallel weight’ eigenvariety Epar using degree 1 over-
convergent cohomology over the parallel weight line in the Bianchi weight space.
In Epar, we recover the desirable property that the classical points are Zariski-dense,
and by p-adic Langlands functoriality it contains all classical points corresponding
to base-change forms. In Propositions 5.4 and 5.10 we prove that the base-change
eigenvariety Ebc ⊂ Epar is smooth and reduced at decent (see Definition 5.5) classi-
cal base-change points f/K (under no non-criticality assumption). The result uses a
base-change deformation functor described in an appendix by Carl Wang-Erickson
that allows us to reduce to a case treated by Bellaïche [10].

We say f/K is �-smooth if the inclusion Ebc ⊂ Epar is locally an isomorphism at
f/K . For decent f/K , this is equivalent to Epar being smooth at f/K . By the étaleness
result of Theorem 4.5, any non-critical f/K is�-smooth. More generally, a conjecture
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of Calegari andMazur [20]—which predicts that the only classical families of Bianchi
modular forms are CM or come from base-change—would imply that every f/K is
�-smooth. We discuss this in detail in Sect. 5.3.

1.3 Applications to p-adic L-functions

We summarise our main applications. Let f ∈ Sk+2(�1(N )) satisfy (a), (b) and (c)
above, and suppose f is decent and f/K is �-smooth. LetX (ClK (p∞)) be the two-
dimensional rigid space of p-adic characters on ClK (p∞), the ray class group of K
of conductor p∞. Let φ be a finite order Hecke character of K of conductor prime to
pOK . Let x f be the point in the Coleman–Mazur eigencurve C corresponding to f ,
and let VQ be a neighbourhood of x f in C. If y ∈ VQ is a classical point, write fy for
the corresponding classical eigenform. For a Zariski-dense set of classical y ∈ VQ,
the base-change fy/K is non-critical (Definition 2.8). In Sect. 6.1, in the language of
distributions, we prove:

Theorem A Up to shrinking VQ, and for sufficiently large L ⊂ Qp, there exists a
unique rigid-analytic function

Lφ
p : VQ × X

(
ClK

(
p∞)) −→ L

such that at any classical point y ∈ VQ(L) of weight ky + 2 with non-critical base-
change, and anyHecke characterϕ of K with conductor f|p∞ and infinity type (0, 0) ≤
(q, r) ≤ (ky, ky), we have

Lφ
p

(
y, ϕp−fin

) = cy
(∏

p|p Zp(ϕ)
)
A

(
fy/K , ϕ

) · �
(
fy/K , ϕφ

)
(1.1)

where cy ∈ L× is a p-adic period at y, ϕp−fin ∈ X (ClK (p∞)) is the p-adic avatar
of ϕ, Zp(ϕ) is an Euler-type factor, A( fy/K , ϕ) is an explicit non-zero scalar, and
�( fy/K ,−) is the L-function of fy/K , all of which are defined in Sect. 2.4. For a fixed

set {cy} of p-adic periods, this Lφ
p is unique.

In particular, for y ∈ VQ as in the theorem, the specialisation ofLφ
p at y is precisely

the two-variable p-adic L-function (twisted by φ) attached to fy/K . Thus Lφ
p is the

three-variable p-adic L-function attached to VQ and φ. The meat of the proof is in
producing a canonical class (up to scaling) in the overconvergent cohomology over
the eigenvariety, interpolating the overconvergent classes of [56] at classical points.
We do this in Sects. 4–6 using the local geometry of the parallel weight eigenvariety.
Given this class, Lφ

p is defined as its (twisted) Mellin transform.
We comment briefly on the ‘choice’ of periods cy . We do have some control over

them; under a non-vanishing hypothesis, which is satisfied for f/K non-critical and
conjecturally for all f/K , any two systems of periods {cy}, {c′

y} for which there exists
a three-variable p-adic L-function are of the form cy = α(y)c′

y , where α ∈ O(VQ)×.
We show this in Proposition 6.15.

When p splits in K , using the strategy and results developed in the present paper,
in [18] Theorem A is proved in the p-irregular case (i.e. when (c) fails).
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Remark It is natural to ask if there are analogues of Theorem A for Bianchi modular
forms that are not base-change. A general Bianchi modular form F still varies in a
1-dimensional p-adic family V of overconvergent Bianchi modular symbols (The-
orem 3.8) over a curve � in the (2-dimensional) Bianchi weight space. When F is
non-critical and � is smooth at the weight of F , then we prove V is étale over �

(Theorem 4.5, Corollary 4.8). In this case we prove existence of a rigid function
Lφ

p : V × X (ClK (p∞)) → L satisfying the interpolation (1.1) of Theorem A.
If V is a classical family (i.e. the classical points in V are Zariski-dense), then

� is parallel, hence smooth. We thus unconditionally construct three-variable p-adic
L-functions around non-critical points in every classical family.

In general the nature of V ismysterious; itmight contain only finitelymany classical
points, so (1.1) could be empty outsideF! We give a possible arithmetic interpretation
in this case, and the construction of Lφ

p in general, in Remark 6.11.

Now suppose f/K is critical and �-smooth, so we cannot use [56]. Using The-
orem A, we define the ‘missing’ p-adic L-function for f/K to be the specialisation

Lφ
p( f/K ,−) := Lφ

p(x f ,−). This is a two-variable p-adic L-function attached to f/K
satisfying the expected growth property andwhichwe prove is canonical up to a p-adic
scalar (corresponding to the p-adic period of f ). In Theorem 6.14, we prove:

Theorem B Suppose f/K is critical and �-smooth. Then we have

Lφ
p

(
f/K , ϕp−fin

) = 0

for all ϕ of conductor f|p∞ and infinity type (0, 0) ≤ (q, r) ≤ (k, k).

Theorem B gives at least a conjectural construction for every p-regular finite slope
f/K , so it goes much further than [56] (see Remark 2.14).
The L-functions of f and f/K are related by Artin formalism L( f/K , s) =

L( f , s) · L( f , χK/Q, s), where χK/Q is the quadratic character associated to K/Q.
For the p-adic L-functions, such a factorisation does not make sense on the nose, since
L p( f/K ) is two-variabled whilst L p( f ) and L

χK/Q
p ( f ) are both one-variabled (valued

onX (Cl+
Q
(p∞)) ∼= X (Z×

p )). We fix this by letting Lcyc
p ( f/K ) denote the restriction

of L p( f/K ) to the cyclotomic line. In Theorem 7.5, we then prove:

Theorem C Suppose f/K is �-smooth and that Lcyc
p ( f/K ) and L p( f )L

χK/Q
p ( f ) are

both non-zero. Then Lcyc
p ( f/K ) = L p( f )L

χK/Q
p ( f ) as distributions on Z×

p .

This is a GL2-analogue of Gross’s (GL1) p-adic Artin formalism relating Katz
and Kubota–Leopoldt p-adic L-functions [25]. A factorisation relating Rankin and
symmetric square p-adic L-functions, again mimicking classical Artin formalism, has
been obtained by Dasgupta [22].

We remark that since our periods are only defined up to an algebraic scalar, this
is really an equality of one-dimensional lines in the (infinite-dimensional) space
O(X (Cl+

Q
(p∞))). We explain this more fully in Sect. 7.2. When f has sufficiently

small slope—namely, slope h < (k + 1)/2—this theorem is automatic from classical
Artin formalism, since both sides satisfy a growth property that renders this line unique
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with respect to their interpolation properties. For more general slopes, this result is far
from obvious, as the growth and interpolation properties are satisfied by an infinite
number of distinct lines in O(X (Cl+

Q
(p∞))), and we really require the additional

input of our three-variable p-adic L-function to see the equality.
Ideally, we would also be able to control the (p-adic and archimedean) periods

integrally to pin downanequality of latticeswithin this line, but this seems an extremely
subtle question; studying integral period relations in the Bianchi base-change case
was already the subject of [54], even before studying this in the context of p-adic
L-functions. We comment further in Sect. 7.

The non-vanishing condition is automatically satisfied when f and f/K are non-
critical. Under a conjecture of Greenberg, which says that all critical elliptic modular
forms are CM, we expect that L p( f ) and L

χK/Q
p ( f ) can be related to Katz p-adic

L-functions, and are always non-zero; work in this direction is explained in [8]. We
conjecture that Lcyc

p ( f/K ) is similarly never zero.
A case of particular interest where this theorem applies is the following. Let E/Q

be an elliptic curve with good supersingular reduction at odd p, and let fα be a p-
stabilisation of the corresponding weight 2 classical modular form corresponding to
a root α of the Hecke polynomial at p. Since h = vp(α) = 1/2 and k = 0, this is
outside the range where Theorem C is automatic. Suppose p splits in K . Then the
base-change fα/K has (non-critical) slope 1/2 at each of the primes above p. Since
the L-function of fα/K corresponds to a p-depleted L-function for E/K , we get a
factorisation

Lcyc
p,α(E/K ) = L p,α(E/Q)L p,α

(
EχK/Q/Q

)

of the p-adic L-function of E/K in terms of the p-adic L-functions of E and its
quadratic twist by χK/Q. In the ordinary case this factorisation was required in Skinner
and Urban’s proof of the Iwasawa main conjecture (see [53]).

Finally, we remark that modulo the existence of anticyclotomic p-adic L-functions
in Coleman families, the same methods also apply to restriction to the anticyclotomic
line. In this case, under the same non-vanishing hypothesis, we obtain Lanti

p ( f/K ) =
Lanti
p ( f )2 (where the anticyclotomic p-adic L-function exists). We leave the details

to the interested reader. Note that anticyclotomic p-adic L-functions do not yet exist
in the case where f is critical. The above suggests that a good candidate for (the
square of) an anticyclotomic p-adic L-function in this case is the restriction to the
anticyclotomic line of the p-adic L-function attached to f/K in this paper.

2 Bianchi modular forms and p-adic L-functions

In this section, we fix notation and recap the results of [56], always using the conven-
tions op. cit. Fix embeddings Q ↪→ C and Q ↪→ Q
 for each prime 
. Let K be an
imaginary quadratic field with ring of integers OK and discriminant −d. Let p be a
rational prime; the choice Q ↪→ Qp fixes a p-adic valuation vp on Q.
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Denote the adele ring of K by AK = C × A
f
K , where A

f
K denotes the finite adeles.

For an ideal f ⊂ OK , let ClK (f) := K×\A×
K /I (f)C× denote the ray class group of K

modulo f, where I (f) := {x ∈ (OK ⊗ Ẑ)× : x ≡ 1 (mod f)}. Throughout, we work
at level n ⊂ OK divisible by each prime of K above p. We write U1(n) for the open
compact subgroup of GL2(OK ⊗Z Ẑ) of matrices congruent to

( ∗ ∗
0 1

)
modulo n, and

K∞ = SU2(C)C×, and we define the associated locally symmetric space by

Y1(n) := GL2(K )\GL2(AK )/K∞U1(n).

We define H3 := C × R>0; the space Y1(n) decomposes as a finite disjoint union of
quotients of H3.

Let j ≥ 0 be an integer. For any ring R, let Vj (R) denote the space of polynomials
over R of degree at most j . Throughout, we will denote modules of locally analytic
distributions by D(∗). These carry an action of U1(n), and the corresponding local
systems on Y1(n) will be denoted by D(∗).

We will use f for a classical modular form and F a Bianchi modular form. For X
an affinoid in a rigid space,O(X)will denote the ring of rigid functions on V . We will
write V (resp. VQ) for affinoids in the Bianchi (resp. Coleman–Mazur) eigenvariety. If
y is a classical point in an eigenvariety, we will write Fy or fy for the corresponding
(Bianchi or classical) normalised modular form of minimal level, which will always
be uniquely defined by our running assumptions.

2.1 Bianchi modular forms, L-functions and cohomology

Let λ = (k, v) be a weight, where k = (k1, k2) and v = (v1, v2) are two elements of
Z2. There is a finite-dimensional C-vector space Sλ(U1(n)) of Bianchi cusp forms of
weight λ and level U1(n), which are vector-valued functions on GL2(AK ) satisfying
suitable transformation, harmonicity and growth conditions. These objects are defined
precisely in e.g. [56, Def. 1.2]. If k1 �= k2, then Sλ(U1(n)) = 0 (see [28]), so we will
restrict to parallel weight k1 = k2 = k ≥ 0; and in this case, we can always twist the
central character by a power of the norm to assume that v1 = v2 = 0 as well. For the
rest of this section, we fix λ = [(k, k), (0, 0)], and we will write this as λ = (k, k)
without further comment.

For q ⊂ OF prime, fix a uniformiser �q of Kq. Consider �q ∈ A
f ,×
K trivial at

every place �= q. We have Hecke operators Tq := [U1(n)
( 1

�q

)
U1(n)]. If q|n, we

write Uq instead of Tq. For each v ∈ ClK (n), let uv ∈ A
f ,×
K be a representative, and

define 〈v〉 := [U1(n)
( uv

uv

)
U1(n)]. The double coset operators Tq,Uq, 〈v〉 are all

independent of choices of representatives and act on Sλ(U1(n)). An eigenform is a
simultaneous eigenvector. Attached to an eigenform F is a character εF : ClK (n) →
Q

×
with 〈v〉F = εF (v)F for all v ∈ ClK (n).

Definition 2.1 LetHn,p denote theZp-algebra generated by the Hecke operators {Tq :
(q, n) = 1}, {Up : p|p} and {〈v〉 : v ∈ ClK (n)}.

Our theorems require n to be divisible by each prime p above p. If p � N and
F ∈ Sλ(U1(N)) is an eigenform, let ap(F) denote the Tp eigenvalue of F , and let
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αp and βp denote the roots of the Hecke polynomial X2 − ap(F)X + εF (p)N (p)k+1.

The p-stabilisations of F are

Fαp(g) := F(g) − βpF
((

�−1
p 0
0 1

)
g
)

, Fβp(g) := F(g) − αpF
((

�−1
p 0
0 1

)
g
)

.

Then Fαp and Fβp are eigenforms of level U1(Np) with Up-eigenvalues αp and βp.
Throughout the paper, we work with the following Bianchi modular forms:

Conditions 2.2 [K ] Let λ = (k, k) and n ⊂ OF divisible by each p|p. Let F ∈
Sλ(U1(n)) be a finite slope p-regular p-stabilised newform, in the sense that:

(C1) F is an eigenform, and for each p|p, we have UpF = αpF with αp �= 0;
(C2) there exist S ⊂ {p|p}, N prime to S, and a newform Fnew ∈ Sλ(U1(N)) such

that n = N
∏

p∈S p and F is obtained from Fnew by p-stabilising for p ∈ S;

(C3) for each p ∈ S, X2 − ap(Fnew)X + εFnew(p)N (p)k+1 has distinct roots.

Note newforms of level n themselves satisfy (C2),(C3) with S = ∅.

LetF satisfyConditions 2.2[K ] and let�(F , ϕ) denote the (completed) L-function
of F , normalised as in [56]. Here ϕ runs over Hecke characters of K . By Hida [30,
Thm. 8.1], we see that there exists a period�F ∈ C× and a number field E containing
the Hecke eigenvalues of F such that if ϕ is an algebraic Hecke character of infinity
type 0 ≤ (q, r) ≤ (k, k) with q, r ∈ Z, we have

�(F , ϕ)/�F ∈ E(ϕ), (2.1)

where E(ϕ) ⊂ Q is the extension of E generated by the values of ϕ.

2.2 Base-change

Let fnew ∈ Sk+2(�1(N )) be a classical cuspidal newform of nebentypus ε fnew , gen-
erating an automorphic representation π of GL2(AQ). Let BC(π) be the base-change
of π to GL2(AK ) (see [36]). The base-change of f to K is the normalised new vector
Fnew in BC(π), which is a Bianchi modular form of weight (k, k). If fnew has level N ,
the level of Fnew is an ideal n ⊂ OK with N

(N ,d)
OK |n|NOK , recalling −d = disc(K )

(see [23, §2.1]); so if (N , d) = 1, then n = NOK . If fnew does not have CM by K ,
then Fnew is cuspidal.

If p � N , let αp, βp be the roots of X2 − ap( fnew)X + ε fnew(p)pk+1, and for
p|p, let αp, βp be the roots of X2 − ap(Fnew)X + εFnew(p)N (p)k+1. If p is split or
ramified in K , then we can take αp = αp, βp = βp; and if p is inert, then we may
take αp = α2

p, βp = β2
p. If fα (resp. fβ ) is the p-stabilisation of fnew corresponding

to αp (resp. βp), we define its base-change to be the p-stabilisation Fαα (resp. Fββ)

of Fnew corresponding to αp (resp. βp) for all p|p.
We will consider the following classical analogue of Conditions 2.2[K ]:

Conditions 2.2 [Q] Let N be divisible by p. Let f ∈ Sk+2(�1(N )) such that:

(C1′) f is an eigenform, and Up f = αp f with αp �= 0;
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(C2′) f is new or the p-stabilisation of a newform fnew of level prime to p;
(C3′) If f is the p-stabilisation of fnew, then αp �= βp. If p is inert, ap( fnew) �= 0;
(C4′) f does not have CM by K .

Remark 2.3 We explain the extra condition in (C3′). We say fnew is p-regular if
αp �= βp. Conjecturally, every such fnew is p-regular (see e.g. [10, §1.3]). From
the description of αp and βp in terms of αp and βp, we see if fnew is p-regular, then
its base-change Fnew is p-regular except if p is inert and α2

p = β2
p, which occurs if

and only if ap( fnew) = 0. Thus if f satisfies Conditions 2.2[Q], then its base-change
F (which is cuspidal by (C4′)) satisfies Conditions 2.2[K ].

When p splits in K , in [18] Theorem A is proved for p-irregular F .

2.3 Classical and overconvergent cohomology

Definition 2.4 For a ring R and λ = (k, k), let Vλ = Vk,k(R) := Vk(R) ⊗R Vk(R).
(We think of Vλ as polynomials on OK ⊗Z Zp that have degree at most k in each
variable). This space has a natural left action of GL2(R)2 induced by the action of
GL2(R) on each factor by

(
a b
c d

) · P(z) = (a + cz)k P
(
b+dz
a+cz

)
,

inducing a right action on the dual Vλ(R)∗ := Hom(Vλ(R), R). When R is a K -
algebra, this gives a local system Vλ(R)∗ on the space Y1(n) (denoted L1(Vλ(R)∗) in
[16, Def. 4.2]). The Hecke algebra Hn,p acts on H1

c(Y1(n),Vλ(R)∗) as usual (e.g. [29,
p.346–7]), and by Hida [30, §3,§8] and [28], we have:

Theorem 2.5 There is a Hecke-equivariant injection

Sλ (U1(n)) ↪→ H1
c

(
Y1(n),Vλ(C)∗

)
, F �→ φF .

Let F ∈ Sλ(U1(n)) satisfy Conditions 2.2[K ]. Then the generalised F-eigenspace
H1
c(Y1(n),Vλ(C)∗)(F) for Hn,p is 1-dimensional, and φF/�F has coefficients in

Vλ(E)∗, for �F ∈ C× and E as in (2.1).

Let R be an (OK ⊗Z Zp)-algebra, and L a finite extension of Qp.

Definition 2.6 Let A(R) be the space of locally analytic functions OK ⊗Z Zp → R.
When R = L , we equip this space with a weight λ action of the semigroup

�0(p) :=
{(

a b
c d

) ∈ M2
(OK ⊗Z Zp

) : vp(c) > 0 ∀p|p, a ∈ (OK ⊗Z Zp
)×

, ad − bc �= 0
}

by setting
(
a b
c d

)·ζ(z) = (a+cz)kζ
(
b+dz
a+cz

)
.WriteAλ(L) forA(L)with this action.

As n is divisible by each prime above p, U1(n) acts on Aλ(L) by projection to p.

Definition 2.7 Let D(R) := Homcts(A(R), R) be the space of R-valued locally ana-
lytic distributions on OK ⊗Z Zp. When R = L as above, we write Dλ(L) for this
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space equipped with the weight λ right action of �0(p) given by μ|γ (ζ ) = μ(γ · ζ ).

ThenDλ(L) gives rise to a local system on Y1(n), which we denote byDλ(L). In [16,
Def. 4.2] this local system is denoted L2(Dλ(L)).

There is a natural mapDλ(L) → Vλ(L)∗ given by dualising the inclusion of Vλ(L)

into A(L). For each i , this induces a specialisation map

ρλ : Hi
c(Y1(n),Dλ(L)) −→ Hi

c(Y1(n),Vλ(L)∗).

Definition 2.8 Let F ∈ Sλ(U1(n)) be an eigenform. We say F is non-critical if ρλ

becomes an isomorphism (for each i) upon restriction to the generalised eigenspaces
of the Hecke operators at F . If F is non-critical, let �F ∈ H1

c(Y1(n),Dλ(L)) denote
the unique lift ofφF/�F consideredwith L-coefficients, wherewe assume L contains
all embeddings of the fields K and E (from (2.1)).

Definition 2.9 If F ∈ Sλ(U1(n)) is an eigenform, we say F has small slope (or non-
critical slope) if vp(αp) < (k + 1)/ep for all p|p, where UpF = αpF and ep is the
ramification degree of p.

Theorem 2.10 [16, Thm. 8.7] If F has small slope, then F is non-critical.

2.4 Modular symbols andMellin transforms

Let �0 := Div0(P1(K )) denote the space of ‘paths between cusps’ in H3, and let V
be any right �0(p)-module. For a discrete subgroup � ⊂ �0(p)∩SL2(K ), define the
space of V -valued modular symbols for � to be the space

Symb�(V ) := Hom� (�0, V )

of functions satisfying the�-invariance property that (φ|γ )(δ) := φ(γ δ)|γ = φ(δ) for
all δ ∈ �0, γ ∈ �,where� acts on the cusps by

(
a b
c d

)·r = (ar+b)/(cr+d). It also
acts naturally onH3, and by [15, Prop. 8.2] we have an isomorphismH1

c(�\H3,V ) ∼=
Symb�(V ), where V is the corresponding local system on �\H3.

The spaceY1(n) decomposes as a disjoint union of spaces�i\H3, for�i ⊂ GL2(K )

discrete subgroups indexed by i ∈ ClK = ClK (OK ) (see [16, §4.2.2]). Each �i

depends on a choice of representative ti ∈ A
f ,×
K of i ∈ ClK . From the above this

induces a (non-canonical) decomposition

H1
c(Y1(n),V ) ∼= ⊕

i∈ClK Symb�i
(V ). (2.2)

When V is a �0(p)-module, there is a natural action of the Hecke algebra Hn,p on
the direct sum, defined as in [56, §3.3], and (2.2) is Hecke-equivariant.

Let ClK (p∞) := K×\A×
K /C× ∏

v�p O×
v . We have a decomposition ClK (p∞) =

�i∈ClKCliK (p∞), where CliK (p∞) is the fibre of i under the canonical surjection
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ClK (p∞) � ClK . The choice of representative ti ∈ A
f ,×
K identifies CliK (p∞) non-

canonically with (OK ⊗Z Zp)
×/O×

K . Let R be an (OK ⊗Z Zp)-algebra such that
D(R) carries a right action ofU1(n), hence giving rise to a local system on Y1(n). Let
� ∈ H1

c(Y1(n),D(R)), and write � = (�1, ..., �h) with each � i ∈ Symb�i
(D(R)).

Define, for i, j ∈ ClK , a distribution μi (�
j ) ∈ D(CliK (p∞), R) as follows. We

have a distribution � j ({0} − {∞})|(OK⊗ZZp)× on (OK ⊗Z Zp)
×. This restricts to a

distribution on (OK ⊗Z Zp)
×/O×

K , which gives the distribution μi (� j ) on CliK (p∞)

under the identification above. Then define the Mellin transform of � to be the (R-
valued) locally analytic distribution on ClK (p∞) given by

Mel(�) := ∑

i∈ClK
μi (�

i ) ∈ D (ClK (p∞), R) .

A simple check identical to the arguments given in [16, Prop. 9.7] shows that the
distribution Mel(�) is independent of the choice of class group representatives.

Definition 2.11 Let F be a non-critical cuspidal Bianchi eigenform of level U1(n)
with associated overconvergent class �F . The p-adic L-function of F is the Mellin
transform L p(F) := Mel(�F ) ∈ D(ClK (p∞), L).

Given an algebraicHecke characterϕ of K of conductor f = ∏
p|p prp |(p∞), there is

a natural associated character ϕp−fin of ClK (p∞) (see [56, §7.3]). LetUf = ∏
p|p U

rp
p .

The main theorem of [56] is the following (Thm. 7.4 op. cit.):

Theorem 2.12 For any Hecke character ϕ of K of conductor f|(p∞) and infinity type
0 ≤ (q, r) ≤ (k, k), we have

L p
(F , ϕp−fin

) =
(∏

p|p Zp(ϕ)
)
A(F , ϕ)�(F , ϕ), (2.3)

for

Zp(ϕ) :=
{
1 − [αpψ(p)]−1 : p � f

1 : else and A(F , ϕ) :=
[

ϕ(xf)d τ̃ (ϕ−1)#O×
K

(−1)k+q+r2ϕf(xf)αf�F

]

.

Here xf is an explicit idele representing f, ϕf is the restriction of ϕ to
∏

v|f K×
v , τ̃ (ϕ−1)

is the Gauss sum from [56, §1.2.3], and UfF = αfF . For hp = vp(αp), L p(F) is
(hp)p|p-admissible [56, Defs. 5.10,6.14]. If F has small slope, L p(F) is unique with
these interpolation and growth properties.

Remark 2.13 Let φ be a finite order Hecke character of K . We obtain the twisted
p-adic L-functions Lφ

p of the introduction by using twisted Mellin transforms. If
φ has principal conductor (c) prime to p, then for b ∈ (OK /c)×, let μb

i (�
i ) :=

μi (�
i | ( 1 b

0 c

)
), and define Melφ(�) := ∑

b∈(OF/c)×
∑

i∈ClK φ(b)μb
i (�

i ). Then via

[15, §3.4], we have Lφ
p(F) = Melφ(�F ). In general, we follow [56, §7.1]; if φ has
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conductor c, then write c·[ti ] = (ci )·[t ji ] for ci ∈ K× and [ti ], [t ji ] ⊂ K the fractional
ideals corresponding to the ideles ti , t ji . Then define

Melφ(�) :=
∑

b∈(OF/c)×

∑

i∈ClK
φ(b)μb

i

(
� ji

)
, μb

i

(
� ji

)
:= μi

(
� ji |

(
1 db
0 ci

))
,

with db ∈ [ti ] for all i and db ≡ b (mod c) (cf. [56, §7.1]). This is independent of the
choice of ci , and Lφ

p(F) := Melφ(�F ) ∈ D(ClK (p∞), L).

Remark 2.14 Suppose pOK = pp is split. Let Fnew be base-change of weight λ =
(k, k) and level N prime to p. The Hecke polynomials at p and p coincide; let α, β

be the roots, so α + β = ap(Fnew) and vp(αβ) = k + 1. When α �= β, there
are four stabilisations Fαα,Fαβ,Fβα,Fββ to level Np. If vp(ap(Fnew)) > 0, then
0 < vp(α), vp(β) < k + 1, so each stabilisation is small slope, giving four p-adic
L-functions attached to F . If k = 0, these are the p-adic L-functions of [38, §5]. If
vp(ap(F)) = 0, then take vp(α) = 0, vp(β) = k + 1; then only fαα has small slope,
and [56] does not give p-adic L-functions for Fαβ,Fβα or Fββ .

For p inert, the Hecke roots α, β satisfy vp(αβ) = 2(k + 1); so at least one of
vp(α), vp(β) is ≥ k + 1, and there is always a missing p-adic L-function.

3 The Bianchi eigenvariety

We summarise results on the Bianchi eigenvariety, following [27]. Hansen’s results are
stated for singular cohomology, but in [27, §3.3] he gives tools to produce (identical)
proofs for cohomology with compact support.

3.1 Distributions over the weight space

Definition 3.1 The Bianchi weight space of level n is the rigid analytic space WK ,n

whose L-points, for L ⊂ Cp any sufficiently large extension of Qp, are

WK ,n(L) = Homcts((OK ⊗Z Zp)
×/E(n), L×),

where E(n) := {ε ∈ O×
K : ε ≡ 1 (mod n)}. This can be identified with Z(GL2(K )) ∩

U1(n), hence this invariance ensures the existence of non-trivial ‘weight λ’ local
systems on Y1(n). Since the level will typically be clear from context, we will usually
drop the subscript n from the notation.

A weight λ ∈ WK (L) is classical if it can be written in the form ελalg, where ε is
a finite order character and λalg(z) = zk = zk1 zk2 , where k = (k1, k2) ∈ Z2≥0.

Remark 3.2 This is a slightly smaller space of ‘null weights’ than that considered
in Hansen, who uses the characters on the torus T (Zp) of diagonal matrices in
GL2(OK ⊗Zp Zp). The two spaces are essentially the same after twisting by a power of
the norm, and the smaller space allows clearer comparison with the Coleman–Mazur
eigencurve.



Families of Bianchi p-adic L-functions Page 13 of 45 82

For each λ ∈ WK (L), as before one can define a weight λ action of �0(p) on

A(L) by γ ·λ f (z) = λ(a + cz) f
(
b+dz
a+cz

)
, and hence a dual action on D(L). We can

vary these action in families over WK . Let � ⊂ WK be an affinoid, equipped with a
tautological character

χ� : (OK ⊗Z Zp
)× −→ O(�)×,

such that for any λ ∈ �(L), the homomorphism λ : (OK ⊗Z Zp)
× → L× factors as

(OK ⊗Z Zp)
× → O(�)× → L×, where the second map is evaluation at λ. We can

thus equip A� := A(O(�)) with a ‘weight �’ action of �0(p) given by

γ ·� f (z) = χ�(a + cz) f
(
b+dz
a+cz

)
. (3.1)

Dually we get an action on D� := D(O(�)), giving a local system D� on Y1(n).
If � ⊂ � is a closed subset, then D� ⊗O(�) O(�) ∼= D� (see [27, §2.2]). In

particular, if λ ∈ �(L) corresponds to a maximal ideal mλ ⊂ O(�), then D� ⊗O(�)

O(�)/mλ
∼= Dλ(L).

3.2 The eigenvariety and base-change functoriality

One of the main results of [27] specialises, in our setting, to the following. Recall from
above that his results apply also to compactly supported cohomology, and recall Hn,p

from Definition 2.1. We write H∗
c for total cohomology.

Theorem 3.3 (Hansen). There exists a separated rigid analytic space En, and a mor-
phism w : En → WK , such that for each finite extension L of Qp, the L-points y of
En with w(y) = λ ∈ WK (L) are in bijection with systems ψy : Hn,p → L of Hecke
eigenvalues occurring in H∗

c (Y1(n),Dλ(L)).

The level n will often be clear from context, so we usually drop the subscript.
LetWQ denote the (null) weight space for GL2/Q, that is, the rigid analytic space

whose L-points areWQ(L) = Homcts(Z
×
p , L×) for L ⊂ Cp. For the rest of the paper,

let C be the Coleman–Mazur eigencurve of tame level �1(N ′), for N ′ the prime-to-p
part of N . Abusing notation, we call the weight map w : C → WQ.

A point y ∈ En (resp. C) is classical if there is a Bianchi (resp. classical) eigenform
Fy (resp. fy) of weight w(y) such that tFy = ψy(t)Fy (resp. t fy = ψy(t) fy) for
all t ∈ Hn,p (resp. for all classical Hecke operators t). A classical point y satisfies
Conditions 2.2[K ] if Fy does (resp. Conditions 2.2[Q] if fy does).

There is (for any level n) a closed immersion WQ ↪→ WK ,n induced by the norm
map (OK ⊗Z Zp)

× → Z×
p . Then [27, Thm. 5.1.6] or [33, Thm. 3.2.1] combined with

[33, §4.3] gives:

Theorem 3.4 There is a finite morphism BCN : C −→ ENOK of rigid spaces inter-
polating base-change functoriality on classical points. More precisely, if y ∈ C(L)

corresponds to a classical modular form f , then BCN (y) ∈ E(L) corresponds to the
(stabilisation to level NOK of the) system of eigenvalues attached to the base-change
of f to GL2/K.
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This is based on an idea of Chenevier [19]. We actually require a refined version
of this result, defined locally, giving more precise control over the level. Let x be a
classical point in C satisfyingConditions 2.2[Q], corresponding to a level N eigenform
fx . If the level of its base-change Fx is not NOK , i.e. if the level drops under base-
change, thenBCN (x) ∈ ENOK corresponds to aBianchi form that does not satisfy (C2)
of Conditions 2.2[K ]: it has also been stabilised at some other q � p dividing NOK .
Locally at such x ∈ C, however, it is possible to define a p-adic base-change map BCn

that does send points satisfying Conditions 2.2[Q] to points satisfying Conditions
2.2[K ].
Proposition 3.5 Let x ∈ C be a classical point satisfying Conditions 2.2[Q]. Then
there exists a neighbourhood VQ ⊂ C of x, an ideal n ⊂ OK divisible by each p|p
and with N

(N ,d)
OK |n|NOK , and a finite morphism BCn : VQ → En that interpolates

base-change functoriality on classical points and such that every classical point in
BCn(VQ) satisfies Conditions 2.2[K ].
Proof We closely follow the strategy of [10, Lem. 2.7]. Let VQ be a neighbourhood
of x in C. Let ρVQ

: GQ → GL2(O(VQ)) be the attached Galois representation over

VQ (from e.g. [5, §4]) where GQ = Gal(Q/Q). For a classical point y ∈ VQ, the tame
level of fy depends only on [ρVQ

|I
](y) for 
 �= p, where I
 is the inertia subgroup at


 (see [50]) defined using the embedding Q ↪→ Q
. Note ρVQ
|I
 is trivial unless 
|N .

By considering the attached family of Weil–Deligne representations, one sees that the
conductor of ρVQ

|I
 is locally constant at x (see [48, Thm. 3.1], noting that the Weil–
Deligne representation attached to the classical cuspidal point x is pure). Hence we
may shrink so that the conductor at each 
|N—and hence the tame level—is constant
over VQ. Then every classical point in VQ satisfies Conditions 2.2[Q].

The Galois representation attached to BCN (VQ) ⊂ ENOK is ρVQ
|GK , where GK =

Gal(K/K ). The tame level of z ∈ BCN (VQ) similarly depends only on [ρVQ
|IK ,


](z),
where IK ,
 = I
 ∩ GK . Thus the tame level is constant over BCN (VQ) ⊂ ENOK .
Thus if fx base-changes to level n, then so does fy for every nearby classical y ∈ C.
Applying [33, Thm. 3.2.1] we get the required map VQ → En.
Remark 3.6 For clarity of argument, in the remainder of the paper, we will assume
that if x ∈ C satisfies Conditions 2.2[Q], then there is a neighbourhood VQ of x in
C such that every classical point of BCN (VQ) ⊂ ENOK satisfies Conditions 2.2[K ].
This is always the case, for example, if the tame level of x is coprime to d. Since the
proofs in the sequel are all local in nature, all of the results can be proved without this
assumption by working in En for some n|NOK and using Proposition 3.5. We shall
henceforth always drop the N and n and just write BC and E .

3.3 The dimensions of irreducible components

Proposition 3.7 Let F ∈ Sλ(U1(n)) be a finite slope cuspidal Bianchi eigenform.
There is a point xF ∈ E(L) corresponding to F .

Proof If F is non-critical, then there are eigenclasses � i ∈ Hi
c(Y1(n),Dλ(L)) for

i = 1, 2 corresponding to F , and hence a point xF ∈ E(L). If F is critical, then
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consider the long exact sequence of cohomology attached toDλ → V ∗
λ . The cokernel

of the map ρ2 : H2
c(Y1(n),Dλ(L)) → H2

c(Y1(n),Vλ(L)∗) can be identified as a
subspace of a degree 3 overconvergent cohomology group (see [16, §9.3]); but an
analysis as in [10, Lem. 3.9] shows that cuspidal eigensystems do not appear in such
spaces. In particular, after restricting to the generalised eigenspace atF , the map ρ2 is
surjective. Thus H∗

c (Y1(n),Dλ(L))(F) �= 0, and there exists a Hecke eigenclass with
the same eigenvalues as F in this space, as required.

For our purposes, if F is critical it suffices to assume F is base-change, whence
such a point xF arises in the image of BC.

Theorem 3.8 (Hida, Hansen–Newton). Suppose F is non-critical. Any irreducible
component I of E passing through xF has dimension 1.

Proof In the ordinary case, this is due to Hida [31]. In general, Hansen [27, Prop.
B.1] shows that I has dimension at least 1. The following was pointed out to us by
Hansen. Suppose I is a 2-dimensional irreducible component passing through xF , and
let � = w(I). Let ρI be the two-dimensional Galois pseudocharacter ρI over I of
[32]. Let Iss be the set of points y of I such thatw(y) is classical non-parallel in� and
y has small slope. This set is Zariski-dense in I. Each y ∈ Iss necessarily corresponds
to a classical form by [16, Thm. 8.7], and this classical form must be Eisenstein, as
classical cuspidal forms exist only at parallel weights. Hence the specialisation of ρI
at y is reducible. Reducibility is a Zariski-closed condition, so ρI and its specialisation
at xF are reducible. AsF is cuspidal, its attached Galois representation is irreducible,
so we get a contradiction.

4 Families of modular symbols

In Sect. 3, we gave results about p-adic families using the total cohomology. The
p-adic L-functions of [56] arise only from H1

c , however, so in this section we refine
the above to show that p-adic families can be realised in H1

c throughmodular symbols.
Unlike in classical settings, this is obstructed by the contribution of a cuspidal Bianchi
eigenform F to classical cohomology in degrees 1 and 2. Counter-intuitively, a key
step in overcoming this is the ‘purity’ result of Lemma 4.2, which implies that F
appears in Hi

c(Y1(n),D�)—for two-dimensional affinoids �—only for i = 2. This
control allows us to isolate families of modular symbols (in H1

c) over certain curves
in � and prove that they are free of rank one over a Hecke algebra.

4.1 Families in H1
c (Y1(n),D6)

A slope-adapted affinoid is a pair (�, h), where � = Sp(O(�)) ⊂ WK is a two-
dimensional affinoid in weight space and h ∈ Q≥0 such that there exists a Up-slope
decomposition (as in [55, §2.3.1]), stable under the action ofHn,p fromDefinition 2.1:

H∗
c (Y1(n),D�) ∼= H∗

c (Y1(n),D�)≤h ⊕ H∗
c (Y1(n),D�)>h .
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Definition 4.1 For a slope-adapted affinoid (�, h), let

T�,h := Image of Hn,p ⊗ O(�) in EndO(�)

(
H∗
c (Y1(n),D�)≤h

)

(using total cohomology). We define a local piece of the eigenvariety by

E�,h := Sp
(
T�,h

)
.

The affinoids E�,h glue to give E . We have a bijection between eigensystems ψx :
Hn,p → L arising in H∗

c (Y1(n),Dλ(L))≤h and x ∈ E�,h(L) with w(x) = λ ∈ �(L).
Attached to such x is a maximal idealmx ⊂ T�,h ; pulling back gives a maximal ideal
inHn,p⊗O(�). This maximal ideal is generated bymλ and t−ψx (t) for all t ∈ Hn,p,
where mλ is the maximal ideal of O(�) attached to λ.

The following is an unpublished result of David Hansen.

Lemma 4.2 (i) The spaces H0
c(Y1(n),Dλ)

≤h and H0
c(Y1(n),D�)≤h are both 0.

(ii) Let x be a cuspidal classical point of E�,h. The system of eigenvalues for x occurs
in Hi

c(Y1(n),D�)≤h if and only if i = 2.

Proof (i) Recall A(R) from Definition 2.6. Let A0(R) ⊂ A(R) be the subspace of
rigid analytic functions, and let D0 = D0(R) = Homcts(A0(R), R). For R = L
or O(�), these spaces carry actions of �0(p) exactly as in Definition 2.6 and (3.1)
respectively, and we thus get attached local systems D0 on Y1(n).

We first prove that H0
c(Y1(n),D

0) = 0. For singular cohomology, we have
H0(Y1(n),D0) = ⊕i∈ClKH0(�i\H3,D0) = ⊕i∈ClKH0(�i ,D0) = ⊕i∈ClK (D0)�i ,

where �i are as defined in [56, Def. 3.2]. For b ∈ OK , let γb := (
1 b
0 1

)
, which

acts on A0 by sending f (z) to f (z + b). For each i , there is an ideal Ii ⊂ OK

such that {γb : b ∈ Ii } ⊂ �i (see [56, Def. 3.2]). Fix i ∈ ClK and b ∈ Ii , and let
μ ∈ (D0)�i ; then μ(z �→ z) = μ|γb(z �→ z) = μ(z �→ z) + μ(z �→ b), so that
μ(z → b) = 0 and hence μ is zero on the constant functions. Suppose μ is zero on
functions that are polynomial of degree less than r − 1. Then consider any monomial
z �→ θ j,r+1(z) := z j zr+1− j of degree r + 1. We have

μ
(
θ j,r+1

) = μ|γb
(
θ j,r+1

) = μ
(
z �→ (z + b) j

(
z + b

)r+1− j
)

= μ
(
θ j,r+1

) + bjμ
(
θ j−1,r

) + b(r + 1 − j)μ
(
θ j,r

)

for all b ∈ Ii , where the lower terms vanish by assumption. Taking 0 �= b ∈ Z

gives jμ(θ j−1,r ) + (r + 1 − j)μ(θ j,r ) = 0; and taking 0 �= b ∈ √−dZ gives
jμ(θ j−1,r )−(r+1− j)μ(θ j,r ) = 0. Solving,we conclude thatμ(θ j−1,r ) = μ(θ j,r ) =
0, and since we can work with arbitrary 0 ≤ j ≤ r , we conclude that μ vanishes on
all monomials of degree r . Thus μ = 0 by induction, so (D0)�i = 0, and hence
H0(Y1(n),D0) = 0. Then H0

c(Y1(n),D
0) = 0 since the excision exact sequence for

the Borel–Serre compactification of Y1(n) starts 0 → H0
c → H0. After passing to the

small slope parts, overconvergent cohomology with coefficients in D0 and D agree
[55, Lem. 2.3.13], proving (i).
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(ii) We first claim that x does not appear as an eigensystem in H3
c , for which we

follow [45, Lem. 5.2]. We identify H3
c(Y1(n),D�) ∼= H0(Y1(n),D�) using Poincaré

duality. This decomposes into a direct sum ⊕i∈ClKD�/�iD�, and an analysis as op.
cit. shows the only eigensystems supported on this module are attached to overconver-
gent weight (0, 0) Eisenstein series. They are thus not cuspidal, and x does not appear
in H3

c .
It remains to show x does not appear in H1

c(Y1(n),D�). We exploit Hansen’s Tor
spectral sequence

Ei, j
2 = TorO(�)

−i

(
H j
c (Y1(n),D�)≤h , L

)
�⇒ Hi+ j

c (Y1(n),Dλ)
≤h ,

where mλ is any maximal ideal of O(�) and L = O(�)/mλ. Since O(�) is regular
of dimension 2, the TorO(�)

i groups vanish for i ≥ 3, so that E−3,2
2 = 0. As E1,0

2 = 0
as well, we see that

E−1,1
3 = ker

(
E−1,1
2 → 0

)
/Image

(
0 → E−1,1

2

)
= E−1,1

2 ,

and continuing, that E−1,1∞ = TorO(�)
1 (H1

c(Y1(n),D�)≤h, L). This contributes to the
grading onH0

c(Y1(n),Dλ)
≤h , which is zero by the above; hence this Tor term vanishes.

A similar analysis, using that E0,0
2 = E−4,2

2 = 0, shows that

E−2,1∞ = E−2,1
2 = TorO(�)

2

(
H1
c(Y1(n),D�)≤h, L

)
= 0

as well. Then TorO(�)
i (H1

c(Y1(n),D�)≤h,O(�)/mλ) = 0 for all i > 0, and for any
maximal idealmλ, so by Hansen [27, Prop. A.3], theO(�)-module H1

c(Y1(n),D�)≤h

is either zero or projective. As it is torsion by Hansen [27, Thm. 4.4.1], it cannot be
projective, so it vanishes, as required.

Despite this purity in degree 2, we now show how to exhibit families of Bianchi
modular forms in H1

c , where our constructions of p-adic L-functions take place.

Definition 4.3 Let x ∈ E�,h(L) be any point corresponding to a maximal ideal mx

in T�,h . Let Px be a minimal prime of T�,h contained in mx , and write Pλ for
the contraction of Px to O(�). Define � = O(�)/Pλ and let � = Sp(�) be the
corresponding closed subset inside �, which is a rigid curve by Theorem 3.8. If such
a curve � ⊂ � arises in this way, we say that x varies in a family over �.

Proposition 4.4 Let x be a cuspidal classical point of E�,h(L) that varies in a family
over �. Then, after possibly shrinking �,

H1
c (Y1(n),D�)≤h

mx
�= 0.

Proof Given Lemma 4.2, the result now follows from [27, Lem. B.3] combined with
the final remark of Appendix B op. cit. We sketch a direct proof. The ideal Pλ has
height one, and still has height one in the localisation O(�)mλ . This localisation is a
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regular local ring, and hence a unique factorisation domain, so all height one primes are
principal, and we can take some generator r ofPλO(�)mλ . After possibly shrinking
�, and scaling by a unit in O(�)mλ , we may assume r ∈ O(�). We obtain a short
exact sequence 0 → D� → D� → D� → 0, where the first map is multiplication
by r . By truncating the associated long exact sequence at the first degree 2 term, and
localising at x , we obtain a short exact sequence

H1
c (Y1(n),D�)≤h

mx
→ H1

c (Y1(n),D�)≤h
mx

→ H2
c (Y1(n),D�)≤h

mx
[r ] → 0.

By Lemma 4.2, the first term vanishes, so the second map is an isomorphism.Minimal
primes of T�,h are in bijection with associated primes in H2

c(Y1(n),D�)≤h by [40,
Thm. 6.5] and Lemma 4.2, so the system of eigenvalues corresponding to x is Px -
torsion. Thus Pλ is an associated prime of H2

c(Y1(n),D�)
≤h
mx , i.e. it annihilates a

non-zero element. Thus H2
c(Y1(n),D�)

≤h
mx [r ] is non-zero, from which we conclude.

We were unable to find a proof of this proposition that used only the short exact
sequence 0 → D� → D� → Dλ → 0, due to the presence of classes in both degree
1 and 2; the additional input from D�, via the ‘purity’ of Lemma 4.2, appears to be
necessary to obtain sufficient control.

Recall mx ⊂ Hn,p ⊗ O(�); we have a maximal ideal mx ⊗O(�) � ⊂ Hn,p ⊗ �.
Let

T�,h := image of Hn,p ⊗ � in End�

(
H1
c (Y1(n),D�)≤h

)
.

By Proposition 4.4, the image of mx ⊗ � ⊂ Hn,p ⊗ � in T�,h is maximal; abusing
notation, we also denote this by mx . Thus mx corresponds to a point x ∈ Sp(T�,h).

4.2 A structure theorem

Let x ∈ E�,h(L) correspond to a cuspidal non-critical classical Bianchi eigenform
F , varying in a family over a curve � ⊂ �. Let λ = w(x). By Theorem 2.5, the
following holds if F satisfies Conditions 2.2[K ]:

TheHn,p-generalised eigenspace H1
c

(
Y1(n),Vλ(L)∗

)
(F)

is one-dimensional.
(4.1)

Theorem 4.5 Let F be non-critical satisfying (4.1). Suppose � is smooth at λ. Then
the spaceH1

c(Y1(n),D�)
≤h
mx is free of rank 1 over (T�,h)mx , which (after replacing �

with � ⊗Qp L) is itself free of rank 1 over �mλ .

Note that smoothness of � is satisfied in base-change components. We give the
proof after two lemmas, and thank Adel Betina, who contributed to Lemma 4.6.

Lemma 4.6 The �mλ -module H
1
c(Y1(n),D�)

≤h
mx is generated by one element.
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Proof The localisation H1
c(Y1(n),D�)

≤h
mx is a finite �mλ -module by general facts on

slope decompositions. Thus we may freely use Nakayama’s lemma.
From the short exact sequence of distribution spaces given by the natural surjection

spλ : D� → Dλ, we obtain a long exact sequence of cohomology, which (sincemλ is
principal by smoothness) we truncate to an exact sequence

0 → H1
c (Y1(n),D�)≤h ⊗� �/mλ → H1

c (Y1(n),Dλ)
≤h .

Since localising is exact, we deduce the existence of an exact sequence

0 → H1
c (Y1(n),D�)≤h

mx
⊗�mλ

�mλ/mλ → H1
c (Y1(n),Dλ)

≤h
mx

. (4.2)

The last term is the generalised eigenspace corresponding to the system of eigenvalues
attached to x . (At this point, we are assuming that we have extended the base field
of � so that x is defined over �/mλ). As x is non-critical, this is isomorphic to the
generalised eigenspace ofF for Hn,p in the classical cohomology, and by assumption
(4.1), this is one-dimensional. Suppose the first term is 0; then by Nakayama’s lemma,
we must have H1

c(Y1(n),D�)
≤h
mx = 0, which contradicts Proposition 4.4. Hence the

first term is one-dimensional and there is an isomorphism

H1
c (Y1(n),D�)≤h

mx
⊗�mλ

�mλ/mλ
∼= H1

c (Y1(n),Dλ)
≤h
mx

.

Now we use Nakayama again. A generator of H1
c(Y1(n),D�)

≤h
mx ⊗�mλ

�mλ/mλ lifts

to a generator of H1
c(Y1(n),D�)

≤h
mx over �mλ , which completes the proof.

Lemma 4.7 The �-module H1
c(Y1(n),D�)≤h is projective.

Proof We use the identification with modular symbols. For fixed i , let {δ j : j ∈ J }
be a finite set of generators for �0 as a Z[�i ]-module [56, Lem. 3.8]. For any R, the
map Symb�i

(D(R)) ↪→ D(R)J , � �→ (�(δ j )) j∈J is an injective R-module map.
By passing to the direct sum over all i ∈ ClK , we obtain a �-module embedding
of H1

c(Y1(n),D�) into a finite direct sum of copies of D� . But D� is a torsion-free
�-module since � is a domain. Hence H1

c(Y1(n),D�)≤h is finite torsion-free over �.
Thus Tor�i (H1

c(Y1(n),D�)≤h,�/mλ) = 0 for all i > 0 and λ ∈ �; for i = 1, this is
by torsion-freeness, and for i ≥ 2, this follows by smoothness of � (so � is regular
of dimension 1) and [40, Thm. 19.2]. We conclude by Hansen [27, Prop. A.3].

Proof (Theorem 4.5) By Lemmas 4.6 and 4.7, H1
c(Y1(n),D�)

≤h
mx is free of rank 1

over �mλ . As

(
T�,h

)
mx

⊂ End�mλ

(
H1
c (Y1(n),D�)≤h

mx

) ∼= �mλ

is non-zero by our assumption on �, we must have (T�,h)mx
∼= �mλ . As the actions

of T�,h and � on H1
c(Y1(n),D�)≤h are compatible, we see H1

c(Y1(n),D�)
≤h
mx is free

of rank 1 over (T�,h)mx , completing the proof of Theorem 4.5.
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Corollary 4.8 Possibly shrinking �, there exists a connected component V = Sp T ⊂
Sp(T�,h) containing x such that H1

c(Y1(n),D�)≤h ⊗T�,h T is free of rank one over
T , which is free of rank one over �. Thus the weight map V → � is étale.

Proof (Compare [14, Lem. 2.10]). Define rigid analytic localisations by

�λ = lim−→
λ∈U⊂�

O(U ),
(
T�,h

)
x = lim−→

x∈V⊂Sp(T�,h)

O(V ),

H1
c (Y1(n),D�)≤h

x = lim−→x∈V⊂Sp(T�,h)
H1
c (Y1(n),D�)≤h ⊗T�,h O(V ).

By Bosch and Remmert [12, §7.3.2,§7.3.3], �λ and (T�,h)x are faithfully flat exten-
sions of�mλ and (T�,h)mx respectively, with isomorphic completions; and combining
[12, §7.3.3, Prop. 4] with Theorem 4.5, we see H1

c(Y1(n),D�)≤h
x is free of rank one

over (T�,h)x , which is free of rank one over �λ. Thus we are in the situation of [14,
Lem. 2.10] (over the rigid space �), so that—possibly shrinking �—we may choose
V ⊂ Sp(T�,h) such that T = O(V ) is free of rank one over � = O(�). A sec-
ond application of the same lemma to the second and third equations, over the rigid
space Sp(T�,h), now shows that, after potentially shrinking � and V again, we have
H1
c(Y1(n),D�)≤h ⊗T�,h T free of rank one over T , as required.

5 The parallel weight eigenvariety

We describe a ‘parallel weight eigenvariety’ Epar ⊂ E , using H1
c over the parallel

weight line, that contains the base-change image and is better behaved than the whole
space E . This bears comparison with the ‘middle-degree eigenvariety’ of [13]. We
show smoothness at certain classical points in the base-change image.

5.1 Definition and basic properties

In [27], the eigenvariety E arises from a datum D = (WK ,L ,M , Hn,p, ψ), where
L is a Fredholm hypersurface,M is a coherent sheaf onL given by (total) overcon-
vergent cohomology, and ψ : Hn,p → EndO(L )(M ) is the natural map. Define an
eigenvariety datum Dpar := (WK ,par,Lpar,M 1

par, Hn,p, ψpar), where:

(i) WK ,par is the parallel weight line inWK , i.e. the image of WQ inWK ;
(ii) L par is the union of the irreducible components ofL that lie aboveWK ,par, which

is itself a Fredholm hypersurface;
(iii) M 1

par is the coherent sheaf on L par such that for any slope ≤ h affinoid L
par
�,h

lying above � ⊂ WK ,par, we have M 1
par(L

par
�,h) = H1

c(Y1(n),D�)≤h (as in [27,
Prop. 4.3.1]);

(iv) and ψpar : Hn,p → EndO(Lpar)(M
1
par) is naturally induced from ψ .

That this datum does give a well-defined eigenvariety, denoted Epar, is a simple check
using the machinery developed in [27, §3, §4].
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Proposition 5.1 Every irreducible component of Epar has dimension 1 and contains a
very Zariski-dense set of classical points.

Proof For the dimension statement, we may check locally over some � = Sp(�)

by the properties of irreducible components [9, Lem. II.7.4]. As H1
c(Y1(n),D�)≤h is

projective over � (Lemma 4.7), this follows as in [27, Thm. 4.5.1(i)].
The classical weights correspond to classical weights in WQ, so are very Zariski-

dense in WK ,par. Let (�, h) be a slope-adapted affinoid for � ⊂ WK ,par containing
a classical weight. Note � contains a very Zariski-dense set of classical weights such
that h is a small slope, and every point in Sp(T�,h) above these weights is classical
by Theorem 2.10. Thus the classical points are very Zariski-dense in Sp(T�,h) (cf. [9,
Prop. II.8.6]); and gluing, the same is true in Epar.
Proposition 5.2 The parallel weight eigenvariety Epar is reduced.
Proof We closely follow [9, Thm. II.8.8]. We first give a Zariski-dense set of y ∈ Epar
with reduced local rings. For a slope-adapted (�, h) containing a classical weight, let
R = � and M = H1

c(Y1(n),D�)≤h ; then M is finite projective over R (Lemma 4.7).
Let Z ⊂ � = Sp(�) be the set of classical weights κ = (k, k) such that h < (k+1)/2;
this set is Zariski-dense. Let Y = w−1(Z) ⊂ Sp(T�,h). Then:

(1) each y ∈ Y is a non-critical slope classical point, and
(2) Fy is either new at p|p or a regular p-stabilisation (as irregular stabilisations have

slope (k + 1) fp/2, for fp the inertia index of p|p).
By (2), Up acts semisimply on H1

c(Y1(n),V
∗

κ )(Fy) for each p|p. The operators Tq for
q � n act semisimply, as they commute with their adjoints under the natural Petersson
inner product [30, (3.4a) and before (8.2a)]. Finally, the operators 〈v〉 act semisimply
as they have finite order. We deduce Hn,p acts semisimply on H1

c(Y1(n),V
∗

κ )(Fy),
hence on H1

c(Y1(n),Dκ )(Fy) by (1). Similarly to (4.2), for each κ ∈ Z we have a
Hecke-equivariant inclusion

M ⊗� �/mκ ↪→ H1
c (Y1(n),Dκ)≤h =

⊕

y∈Y ,w(y)=κ

H1
c (Y1(n),Dκ)(Fy) ,

so Hn,p acts semisimply on M ⊗� �/mκ for all κ ∈ Z . Then [9, Prop. I.9.1] implies
T�,h is reduced. Ranging over all slope-adapted pairs, we obtain a Zariski-dense set
of points in Epar with reduced local rings.

For all z ∈ Epar, the local ring of Epar at z contains no embedded primes; this can
be checked locally over a suitable slope-adapted pair (�, h), whence it follows from
[9, Prop. I.3.4] and the projectivity of H1

c(Y1(n),D�)≤h over �. Reducedness of Epar
now follows from [19, Lem. 3.11].

Corollary 5.3 There is a closed immersion Epar ↪→ E .
Proof By reducedness and [33, Thm. 3.2.1], it suffices to check an inclusion of a very
Zariski-dense set of points. As every classical point x ∈ Epar corresponds to a system
of eigenvalues that appears in H1

c(Y1(n),Dλ) for some λ ∈ WK ,par, the conditions of
the theorem are satisfied, giving the required closed immersion.
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5.2 The base-change eigenvariety and smoothness

By Hansen [27, Thm. 5.1.6], we see that BC (see Remark 3.6) factors through C →
Epar. Let Ebc := BC(C) ⊂ Epar denote the image.

Proposition 5.4 Let f ∈ Sk+2(�1(N )) be an eigenform satisfying Conditions 2.2[Q],
corresponding to x f ∈ C(L). Suppose f is non-critical. ThenBC : C → Ebc is locally
an isomorphism at x f , and hence Ebc is smooth at BC(x f ).

Proof We look more closely at the construction of BC. The Coleman–Mazur eigen-
curve arises from an eigenvariety datum (WQ,LQ, MQ, HQ,N ,p,ψQ). There is a
natural map φ : Hn,p → HQ,N ,p (see [33, §4.3]). We define a new eigenvariety
datum (WQ,LQ,MQ, Hn,p, ψQ ◦φ), giving rise to an intermediate eigenvariety CK .
Let� = Sp(�) be an affinoid inWQ which is slope-h adapted forMQ; then there is a
mapBC′ : C�,h → CK

�,h arising from the inclusionO(CK
�,h) ⊂ O(C�,h) of�-algebras

induced by the inclusion φ(Hn,p) ⊂ HQ,N ,p. By Hansen [27, Thm. 5.1.2], there is a
closed immersion CK ↪→ Epar, and the map BC is the composition C → CK ↪→ Epar.
It suffices to show that BC′ is locally an isomorphism at x f .

Since f is non-critical, after localising and base-extending �, by Bellaïche [10]
we know that O(C�,h)mx is free of rank one over �mλ . Since O(CK

�,h)mBC′(x) is a
�mλ -subalgebra containing 1, it must be isomorphic toO(C�,h)mx , and BC

′ is locally
an isomorphism at x f . As C is smooth at x f (see [10, Thm. 2.16]), we deduce that CK

is smooth at BC′(x f ), as required.

We now consider the analogue of Proposition 5.4 when f is critical. We need an
additional mild hypothesis, following [10, §1.4]:

Definition 5.5 We say f is decent if f is non-critical, or f has vanishing adjoint
Selmer group H1

f (Q, ad ρ f ) = 0, where ρ f : GQ → GL2(L) is the p-adic Galois
representation attached to f .

All f are conjectured to be decent (see [10, §2.2.4]). Vanishing of H1
f (Q, ad ρ f )

is proved under conditions on the residual image in [1].
Now suppose f is critical and decent. Let x := BC(x f ) and denote by tx the tangent

space of Ebc at x . As Ebc is a curve, we know dimL tx ≥ 1; so to prove Ebc is smooth
at x , it suffices to show dimL tx ≤ 1. We use deformations of Galois representations,
adapting [10, Thm. 2.16].

Notation 5.6 Let S be the union of the infinite place with the set of places of Q

supporting N , and SK the set of places of K lying over S. We let GQ,S and GK ,SK be
the Galois groups of the maximal algebraic extension of Q (resp. K ) ramified only at
the places S (resp. SK ).

Note ρ f factors through GQ,S ; from now on we consider ρ f as defined on GQ,S .
Let ρx = ρ f |GK ,SK

, the Galois representation attached to x . Throughout, we use
decomposition groups

GKq → GK ,SK , GQq → GQ,S (5.1)
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and complex conjugation c ∈ GQ,S defined by the choices of embeddings fromSect. 2.
Likewise, Iq ⊂ GKq denotes an inertia subgroup; similarly, we use Iq over Q.

Definition 5.7 LetAL denote the category of Artinian local L-algebras Awith residue
field L , and for each A ∈ AL , let X ref(A) be the set of deformations (under strict
equivalence) ρA of ρx to A satisfying the following.

(i) If q is a prime of K dividing n but coprime to p, then ρA|Iq is constant.
(ii) For each p | p in K , we have:

(1) (null weights) for each embedding τ : Kp ↪→ L , one of the τ -Hodge–Sen–Tate
weights of ρA|GKp

is 0;
(2) (crystalline periods/weakly refined) there exists α̃p ∈ A such that the Kp ⊗Qp

A-module Dcrys(ρA|GKp
)ϕ

fp=α̃p is free of rank 1 and (̃αp (modmA))= αp,
where fp is the inertia degree of p.

Let X ref,bc(A) to be the set of deformations ρA ∈ X ref(A) also satisfying:
(iii) (base-change) ρA admits an extension to GQ,S deforming ρ f .

Write tref := X ref(L[ε]) and tref,bc := X ref,bc(L[ε]) for the corresponding tangent
spaces where, as usual, L[ε] = L[X ]/(X2).

We can evaluate ρ f at complex conjugation c, and note that the operation

ι : ρA �−→ [
ad ρ f (c) · ρc

A : g �→ ρ f (c)ρA(cgc)ρ f (c)
]

is a functorial involution on X ref . We thank Carl Wang-Erickson for explaining the
utility of this involution, and for supplying the appendix that proves the following.

Proposition 5.8 (i) The fixed point functor (X ref)ι is canonically isomorphic to
X ref,bc.

(ii) The deformation problems X ref,bc, X ref on AL are pro-represented by complete
Noetherian local rings Rref,bc, Rref ∈ AL . The involution ι induces an automor-
phism ι∗ : Rref → Rref , and there is a natural surjection

Rref � Rref
(
(1 − ι∗)

(
Rref

)) ∼= Rref,bc.

(iii) There is a canonical injection tref,bc ↪→ tref of tangent spaces, whose image is the
subspace (tref)ι fixed by the involution ι∗ : tref → tref induced by ι.

Lemma 5.9 There exists a neighbourhood V of x in Ebc and a Galois representation
ρV : GK ,SK → GL2(O(V )) such that for each classical point y ∈ V , the specialisa-
tion ρV ,y of ρV at y is the Galois representation attached to y.

Proof By a theorem of Rouquier and Nyssen (see [47] or [43]), one obtains such
a representation from the Galois pseudorepresentation on Ebc ⊂ E constructed in
[32]. One can check that if VQ is a suitable neighbourhood of x f in C, then ρV is
the restriction of ρVQ

to GK ,SK , where ρVQ
: GQ,S → GL2(O(VQ)) lifts ρ f . (This

restriction can be seen to take values in the subring O(V ) ⊂ O(VQ) by using the
explicit description of this inclusion in [33]).
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Proposition 5.10 Let f ∈ Sk+2(�1(N )) satisfy Conditions 2.2[Q], corresponding to
x f ∈ C(L). Suppose f is critical and decent. Then Ebc is smooth at x = BC(x f ).

Proof By the discussion after Definition 5.5, it suffices to prove that the tangent space
tx of Ebc at x has dimension at most 1. Let Ox be the local ring of Ebc at x . After
localising ρV at x , we obtain a representation ρV ,x : GK ,SK → GL2(Ox ). Now if I
is a cofinite length ideal of Ox , then from the interpolation property of ρV and [37,
Prop. 4.1.13] we deduce that ρV ,x ⊗ Ox/I satisfies condition (ii,2) defining X ref,bc,
with α̃p the image of theUp operator inOx/I (see also Lemma A.4 of the appendix).
Using the same argument as in the proof of [10, Thm. 2.16], or using the fact that
ρV = ρVQ

|GK ,SK
, we deduce conditions (i) and (ii,1). We have a given extension to

GQ,S , giving (iii). Thus the strict class of ρV ,x ⊗Ox/I is an element of X ref,bc(Ox/I ).
Considering the universal property, and taking the limit with respect to I , we obtain
a morphism Rref,bc → Ôx , the target being the completed local ring at x . A standard
argument (see [11, Prop. 4.5]) shows that this morphism is surjective. It follows that
dimL tx ≤ dimL tref,bc.

To bound the dimension of tref,bc, we reduce to a result of Bellaïche. Indeed, in [10,
Thm. 2.16], he defines a deformation functor D onGQ-representations deforming ρ f ,
satisfying the GQ analogues of the conditions defining X ref . Using the hypothesis that
H1

f (Q, ad ρ f ) = 0, he bounds the dimension of the Zariski tangent space of D, which

he denotes tD , by 1.We will show there exists an isomorphism tD ∼= tref,bc. Indeed, by
ignoring all the deformation conditions, we can view tref,bc as a subspace of the tangent
space without conditions, which we identify with H1(K , ad ρx ). Using condition (iii)
and Proposition 5.8 it is moreover a subspace of H1(K , ad ρx )

ι ∼= H1(Q, ad ρ f ).
As dimL tD ≤ 1, the result then follows from the following claim.

Claim 5.11 Under φ : H1(K , ad ρx )
ι ∼−→ H1(Q, ad ρ f ), the tangent space tref,bc is

mapped isomorphically onto the tangent space tD from [10, Thm. 2.16].

Proof If ρε
x ∈ tref,bc, then it admits an extension ρε

f to GQ deforming ρ f . By
Lemma A.4 of the appendix, ρε

f satisfies precisely the conditions required to be in

tD = D(L[ε]) in [10]. Hence φ(tref,bc) ⊂ tD . If conversely we take a deformation
ρε
f ∈ tD , then again by Lemma A.4 we have ρε

f |GK ∈ X ref(L[ε]). But by definition

this restriction also lies in X ref,bc(L[ε]), so in fact in tref,bc. This is enough to show
that tD ⊂ φ(tref,bc), completing the proof of the claim.

5.3 The 6-smoothness condition

Wewould like to conclude that Epar is smooth at base-change points (or twists thereof).
However, there might exist other irreducible components of Epar, not contained in Ebc,
that meet Ebc at such points.

Definition 5.12 A point x ∈ Ebc is�-smooth if every irreducible component I ⊂ Epar
through x is contained in Ebc (equivalently, if the natural inclusion Ebc ⊂ Epar is locally
an isomorphism at x).
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For decent f satisfying Conditions 2.2[Q]with base-changeF , by Propositions 5.4
and 5.10 Epar is smooth at xF if and only if xF is �-smooth. If F is non-critical then
xF is �-smooth by Corollary 4.8.

We conjecture that every decent classical base-change point is �-smooth. At non-
critical points, this holds by Corollary 4.8. In general, this is implied by the following
generalisation of a conjecture of Calegari–Mazur [20, Conj. 1.3].

Recall if y is a classical point of the Bianchi (resp. Coleman–Mazur) eigenvariety,
then Fy (resp. fy) is the corresponding modular form. If y is such a point, and ϕ is
a finite order Hecke character of K (resp. Q), write y ⊗ ϕ for the classical point (in
the relevant eigenvariety) attached to the modular form Fy ⊗ ϕ (resp. fy ⊗ ϕ). Note
y ⊗ ϕ might appear in an eigenvariety of different tame level to y.

Conjecture 5.13 Let I be a non-ordinary irreducible component of Epar. There exists
an integer M prime to p, an irreducible component J of the Coleman–Mazur eigen-
curve CM of tame level �1(M), and a finite order Hecke character ϕ of K , such that
I = BC(J ) ⊗ ϕ in the following sense: for all classical points y of I, there exists a
classical z ∈ J such that y = BC(z) ⊗ ϕ.

Calegari and Mazur conjecture that every ordinary component of Epar is either
twisted base-change (as in Conjecture 5.13) or is CM (so is transfer from a GL1-
eigenvariety). Non-ordinary CM components do not exist (by slope considerations).

This is a Bianchi version of a folklore conjecture, which says that automorphic
representations vary in p-adic families with a Zariski-dense set of classical points if
and only if they satisfy a self-duality condition [2], [55, Intro.].

Proposition 5.14 Conjecture5.13 implies that every classical base-changepoint xF =
BC(x f ) is �-smooth.

Proof Let I ⊂ Epar be an irreducible component through xF . We must prove that I is
contained in Ebc. If I is ordinary, then xF is ordinary and hence small slope; so Epar
is étale over � by Theorem 4.5, hence smooth, and xF is �-smooth.

Suppose I is non-ordinary. By the conjecture, there exists some M , an irreducible
component J ⊂ CM and a Hecke character ϕ of K such that I = BC(J ) ⊗ ϕ. Thus
there exists some classical modular form g such that BC(xg) ⊗ ϕ = BC(x f ), and we
have an equality of Galois representations ρ f |GK = ρg|GK ⊗ ϕ, identifying ϕ with
its associated Galois character (via class field theory). Since ρ f |GK and ρg|GK both
admit extensions toGQ, so does ϕ, and it follows that there exists a Dirichlet character
ϕQ such that ϕ = ϕQ ◦ NK/Q. Further, perhaps after multiplying ϕQ by the quadratic
character χK/Q attached to K/Q, we see that ρ f = ρg ⊗ ϕQ.

Let y ∈ I be a classical point. By the conjecture, y = BC(z)⊗ϕ for some classical
z ∈ J . We see ρ fz |GK ⊗ ϕ = (ρ fz ⊗ ϕQ)|GK . By the same argument as Proposition
3.5, for z in a neighbourhood of xg in CM we have ρ fz ⊗ ϕQ unramified outside N , so
z ⊗ ϕQ appears in C. For such z, we have y = BC(z) ⊗ ϕ = BC(z ⊗ ϕQ) ∈ Ebc. The
set of such y is Zariski-dense in I, as it accumulates at xF . Thus a Zariski-dense set of
points inI appear in Ebc, soIred ⊂ Ebc by e.g. [33, Thm. 3.2.1]. But by Proposition 5.2,
I = Ired is reduced, and we conclude.
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6 Three-variable and critical p-adic L-functions

Throughout Sect. 6, let f ∈ Sk+2(�1(N )) be a decent eigenform satisfying Conditions
2.2[Q], and letF ∈ Sλ(U1(n)) be its base-change. ThenF satisfiesConditions 2.2[K ],
and by the previous section it varies in a family V = Sp T ⊂ Ebc ⊂ Epar over � =
Sp� ⊂ WK ,par. IfF is critical, suppose it is�-smooth in the sense of Definition 5.12,
whence Epar is smooth at xF by Proposition 5.10. We will write x := xF ∈ V for the
point corresponding to F , with associated maximal ideal mx ⊂ T , and let e be the
ramification degree of V → � at x . We also write y for a general point of V , with
associated maximal ideal my ⊂ T ; if y is classical we write Fy for the associated
Bianchi modular form.

By �-smoothness, V is the unique irreducible component of Sp(T�,h) ⊂ Epar
through x . Possibly shrinking �, we may take V connected and smooth, so there
exists an idempotent ε on T�,h such that T = εT�,h ⊂ T�,h is a summand, and

H1
c (Y1(n),D�)≤h ⊗T�,h T = εH1

c (Y1(n),D�)≤h ⊂ H1
c (Y1(n),D�)≤h .

6.1 Three-variable p-adic L-functions

Recall the Mellin transform Mel : H1
c(Y1(n),D�)≤h → D(ClK (p∞),�) is valued

in a space of three-variable analytic functions—two variables coming from functions
on ClK (p∞), and one variable on �. When F is critical, we expect that V → �

is not étale, and we cannot identify V and �; then the p-adic L-function should
be an element of D(ClK (p∞), T ), not D(ClK (p∞),�). Following Bellaïche, we
define a Mellin transform over V , rather than �. For this, we consider the space
H1
c(Y1(n),D�)≤h ⊗� T ,which has natural T -structures on each factor (with T acting

onH1
c(Y1(n),D�)≤h via T ⊂ T�,h). The two T -structures are not the same in general.

Definition 6.1 Let y ∈ V (L) and κ = w(y). Define

spy,2 : H1
c (Y1(n),D�)≤h ⊗� T −→ H1

c (Y1(n),D�)≤h ⊗� T /my

⊂ H1
c (Y1(n),Dκ (L))≤h .

This map (‘specialisation in the second factor’) is equivariant for the action of the
Hecke operators on the cohomology in both the target and source (i.e. for the first
T -structure on the source). It is not in general equivariant if we equip the source with
the second T -structure and the target with the natural Hecke action.

Similarly, we can define a specialisation map at the level of distributions.

Definition 6.2 With y as above, define spy to be the map

spy : D (
ClK

(
p∞)

,�
) ⊗� T −→ D (

ClK
(
p∞)

,�
) ⊗� T /my

= D (
ClK

(
p∞)

,�
) ⊗� L ∼= D (

ClK
(
p∞)

, L
)
,

where the last isomorphism is [27, Prop. 2.2.1].
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Define the Mellin transform over V to be the map MelV := Mel ⊗ id in the top
row of (6.1). From the definitions, we see the following diagram commutes:

H1
c(Y1(n),D�)≤h ⊗� T

MelV

spy,2

D(ClK (p∞),�) ⊗� T

spy

H1
c(Y1(n),Dκ(L))≤h Mel D(ClK (p∞), L).

(6.1)

Recall the p-adic L-function at y is defined as the Mellin transform of a class
in the generalised eigenspace H1

c(Y1(n),Dκ (L))my . To use (6.1), we would like to
find a class � ∈ H1

c(Y1(n),D�)≤h ⊗� T such that spy,2(�) lies in this generalised
eigenspace. We have a criterion for this:

Lemma 6.3 Let � ∈ H1
c(Y1(n),D�)≤h ⊗� T such that (t ⊗ 1 − 1 ⊗ t) · � = 0 for

all t ∈ T (that is, the first and second T -structures agree on �). Then spy,2(�) ∈
H1
c(Y1(n),Dκ(L))my is a Hecke eigenclass for all y ∈ V (L).

Proof Letψy : T → L be the system ofHecke eigenvalues at y. By definition of spy,2,
for all t ∈ T we have spy,2[(1 ⊗ t) · �] = ψy(t)spy,2(�). Since the two T -actions
agree on�, we have spy,2[(1⊗t)·�] = spy,2[(t⊗1)·�]; and since spy,2 is equivariant
for the Hecke actions on the cohomology, we have spy,2[(t ⊗ 1) · �] = t · spy,2(�).
Combining, we have t · spt,2(�) = ψy(t)spt,2, from which we conclude.

We say an affinoid � = Sp(�) ⊂ WK ,par is nice if � is a principal ideal domain.
Every classical weight has a basis of nice affinoid neighbourhoods (see after [10, Defn.
3.5]); so we may shrink � and V so that � is nice. We now remove the assumption
that F is non-critical in Theorem 4.5 and Corollary 4.8.

Proposition 6.4 (i) H1
c(Y1(n),D�)

≤h
mx is free of finite rank over (T�,h)mx .

(ii) Possibly shrinking �, there exists a connected component V = Sp T ⊂ Sp(T�,h)

of x such that H1
c(Y1(n),D�)≤h ⊗T�,h T is free of rank one over T .

Proof To prove part (i) we use [10, Lem. 4.1]. This says that if R and T are discrete
valuation rings, with T a finite free R-algebra and M a finitely generated T -module
that is free as an R-module, then M is finite free over T .

As � is a PID, and the module H1
c(Y1(n),D�)≤h is finite over � (by general

properties of slope decompositions) and torsion-free (by Lemma 4.7), it is finite free
over �. It follows that T�,h is also finite and torsion-free over �, and hence also
a finite free �-module. Since WK ,par and Epar are rigid curves that are smooth and
reduced (Proposition 5.2) at λ and x , the local rings �mλ and (T�,h)mx are discrete
valuation rings. We conclude (i) by Bellaïche’s lemma.

The argument from Corollary 4.8 shows that we can shrink � and V = Sp T so
H1
c(Y1(n),D�)≤h ⊗T�,h T is free of finite rank over T . This rank is preserved by

localising at any point of V . Let y ∈ V (L) be a non-critical classical cuspidal point
satisfying (4.1); such points are Zariski-dense. By Theorem 4.5, H1

c(Y1(n),D�)
≤h
my is

free of rank one over Tmy , completing the proof.
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As V is smooth and reduced at x , the extension Tmx /�mλ is a finite extension of
DVRs, so Tmx = �mλ [X ]/(Xe − u) for a uniformiser u ∈ �mλ (recalling e is the
ramification degree of w at x). Possibly shrinking, this lifts to T = �[X ]/(Xe − u).

Definition 6.5 Let �V be a generator of H1
c(Y1(n),D�)≤h ⊗T�,h T over T , and

�V :=
e−1∑

i=0

Xi�V ⊗ Xe−1−i ∈ H1
c(Y1(n),D�)≤h ⊗� T .

HereweuseH1
c(Y1(n),D�)≤h⊗T�,h T = εH1

c(Y1(n),D�)≤h ⊂ H1
c(Y1(n),D�)≤h ,

for ε the idempotent above. If F is non-critical, Corollary 4.8 says e = 1, and
�V = �V .

Lemma 6.6 For all t ∈ T , we have (t ⊗ 1 − 1 ⊗ t) · � = 0.

Proof For the generator t = X , this sum telescopes (cf. [10, Lem. 4.13]).

Note �V depends on the choices made only up to multiplication by an element of
T× (in either T -structure). We now formally have (compare [10, Prop. 4.14]):

Proposition 6.7 Let y be any non-critical classical point in V (L) satisfying Condi-
tions 2.2[K ]. Then spy,2(�V ) generates the (one-dimensional) generalised eigenspace
H1
c(Y1(n),Dκ(L))my .

Proof This follows directly from Lemmas 6.3 and 6.6.

Definition 6.8 LetLp(V ) = MelV (�V ) ∈ D(ClK (p∞),�)⊗�T ∼= D(ClK (p∞), T ).

For y as in Proposition 6.7, if �Fy is the overconvergent modular symbol attached
to Fy in Sect. 2.3, then spy,2(�V ) = cy�Fy for some cy ∈ L×. By (6.1) we see that
spy(Lp(V )) = Mel(spy,2(�V )) = cy L p(Fy). When combined with Theorem 2.12,
this proves Theorem A from the introduction. To get the precise statement of Theo-
rem A:

– for twists by a finite order Hecke character φ, we define Lφ
p(V ) := MelφV (�V ),

where MelφV := Melφ ⊗ 1 (for Melφ as defined in Remark 2.13);
– we use the Amice transform [51], [13, Def. 5.1.5] to identifyD(ClK (p∞), T )with
the space of rigid analytic functions V × X (ClK (p∞)) → L;

– and finally, we obtain the function on VQ ×X (ClK (p∞)) by pulling back under
BC : VQ → V .

For h ∈ (Q≥0)
p|p, recall the notion of μ ∈ D(ClK (p∞), L) being h-

admissible from [56, Defs. 5.10,6.14,§7.4]. These definitions generalise directly to
μ ∈ D(ClK (p∞), T ) using the Banach algebra structure on T . Recall αp is the Up-
eigenvalue of F . Slopes at p are locally constant over V , so we may shrink so that the
slope is constant over V . Then identically to [56] we have:

Proposition 6.9 Let hp = vp(αp) and h = (hp)p|p. Then Lp(V ) is h-admissible.
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Remark 6.10 Our construction of Lp(V ) required F to be �-smooth (which is con-
jecturally always the case). It seems likely that this is a necessary condition to carry
out the construction of Lp(V ) via overconvergent cohomology. There are two key
inputs: the class �V and the Mellin transform MelV . If F is not �-smooth, then
over V we have the Mellin transform but we have little control on the geometry
of Epar at F and the structure of H1

c(Y1(n),D�)mx , so it is hard to construct the
class �V . One could instead work over the (unique, smooth) base-change component
Vbc = Sp(Tbc) ⊂ V through F . Using smoothness, one can exhibit a canonical quo-
tient MVbc of H

1
c(Y1(n),D�) ⊗T�,h T that is free of rank one over Tbc, and construct

a ‘good’ class �Vbc in this quotient. However, the Mellin transform does not descend
to this quotient. Thus �-smoothness appears necessary to simultaneously obtain both
�V and MelV .

Remark 6.11 More generally, suppose we do not assume that F ∈ Sλ(U1(n)) is
base-change. Suppose F satisfies Conditions 2.2[K ] and is non-critical. By Propo-
sition 3.7 and Theorem 3.8, there exists at least one (not necessarily parallel) curve
� = Sp(�) ⊂ WK such that F varies in a family V = Sp(T ) over �. If � is smooth
at λ, then Corollary 4.8 says V → � is étale at xF and H1

c(Y1(n),D�)≤h ⊗T�,h T
is free of rank one over �. Let �V be a generator. The methods of this section show
Lp(V ) := MelV (�V ⊗ 1) ∈ D(ClK (p∞), T ) interpolates the p-adic L-functions of
all classical non-critical y ∈ V . If V contains a Zariski-dense set of classical points,
then � is parallel (as it then contains a Zariski-dense set of parallel weights; see also
[49, Thm. 1.1]), hence smooth. This construction thus gives a three-variable p-adic
L-function over any classical family through F .

In this generality, classical y are not always Zariski-dense in V , but one might
expect that Lp(V ) still carries interesting information about the arithmetic of F .
For example, if one could prove a functional equation for Lp(V ), then it might be
possible use Lp(V ) to prove [15, Conj. 11.2], giving an arithmetic description of the
L-invariants attached to F (similar to [14,26]).

6.2 Critical base-change p-adic L-functions

Suppose now F is critical and �-smooth. Recall x = xF ∈ V .

Definition 6.12 Let L p(F) := spx (Lp(V )) ∈ D(ClK (p∞), L).

To prove the interpolation property for L p(F) from Theorem B of the introduction,
we give another description of L p(F) using a strategy of Bellaïche.

Theorem 6.13 (See [10, Cor. 4.8]) The eigenspace H1
c(Y1(n),Dλ(L))[F] is one-

dimensional over L, and its image under the specialisation map ρλ is 0.

Proof The proof closely follows the strategy of Bellaïche; each step is proved identi-
cally to the referenced result. Firstly, there is an isomorphism

(
T�,h

)
mx

⊗�mλ
�mλ/mλ

∼= (
Tλ,h

)
mx

,

where Tλ,h is the image of Hn,p ⊗ L in EndL(H1
c(Y1(n),Dλ)

≤h) and we again write
mx for the maximal ideal of this space corresponding to x (see [10, Cor. 4.4]).
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After possibly enlarging L , there exists a uniformiser u of�mλ and an isomorphism
of �mλ -algebras

�mλ [X ]/ (
Xe − u

) ∼= (
T�,h

)
mx

that sends X to a uniformiser of (T�,h)mx , where e is the ramification index of the
weight map w : Epar → WK ,par at x (see [10, Prop. 4.6]).

This is enough to show that the generalised eigenspace H1
c(Y1(n),Dλ(L))(F) =

H1
c(Y1(n),Dλ(L))mx has dimension e over L and is free of rank one over the algebra

(
Tλ,h

)
mx

∼= L[X ]/ (
Xe) . (6.2)

(See [10, Thm. 4.7]). Under this isomorphism, we see that the eigenspace is exactly
the subspace Xe−1H1

c(Y1(n),Dλ(L))(F). If e > 1, then X acts nilpotently on this
eigenspace, hence its image under ρλ, which is thus 0. If e = 1 and ρλ �= 0, then ρλ is
a non-trivial map between 1-dimensional vector spaces, so must be an isomorphism,
contradicting F being critical; so ρλ = 0.

Theorem 6.14 The p-adic L-function L p(F) is (vp(αp))p|p-admissible. For Hecke
characters ϕ of K of conductor f|(p∞) and infinity type 0 ≤ (q, r) ≤ (k, k), we have

L p(F , ϕp−fin) = 0. (6.3)

Proof. Firstly, L p(F) is admissible by specialising Proposition 6.9 at x .
ByTheorem6.13 the eigenspaceH1

c(Y1(n),Dλ)[F] is one-dimensional; let�F be a
generator. NowMel(�F )(ϕp−fin) = 0 for allϕ as in (6.3), as evaluation ofMel(�F ) at
ϕp−fin depends only on ρλ(�F ) [56, §7.6], and ρλ(�F ) = 0. Thus it suffices to prove
that L p(F) andMel(�F ) are equal up to rescaling.RecallH1

c(Y1(n),D�)≤h⊗T�,h T is
free of rank one over T . Let�V be as in Definition 6.5. Identically1 to [10, Prop. 4.14],
at x (up to rescaling) we have spx,2(�V ) = �F . Finally specialisation is compatible
with Mellin transforms by (6.1), so

L p(F) = spx (MelV (�V )) = Mel
(
spx,2 (�V )

) = Mel (�F ) .

By construction, Lp(V ) is well-defined only up to the choice of �V in Defini-
tion 6.5, corresponding to changing the p-adic periods {cy}. Specialising, we see
L p(F) is only well-defined up to scalar multiple. However, this scalar indeterminacy
is expected, arising from scaling the periods of F .

Unlike in the non-critical slope case, the admissibility and interpolation properties
are not sufficient to determine L p(F) uniquely in D(ClK (p∞), L)/L×. However, up
to scaling L p(F) is uniquely determined by interpolation over V , and does not depend
further on the method of construction:

1 There is a typo op. cit.; from the context, Symb±
� (Dk′ )( f ′

β′ ) should be Symb±
� (Dk′ )[ f ′

β′ ].
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Proposition 6.15 Suppose L p(F) �= 0. LetL′
p : V ×X (ClK (p∞)) → L be analytic

and (vp(αp))p|p-admissible satisfying the interpolation property of Theorem A, with
possibly different constants c′

y . Then L′
p(x) = c · L p(F) for some c ∈ L.

Proof Let L ′
p(F) := L′

p(x). If L
′
p(F) = 0 we take c = 0; so assume L ′

p(F) �= 0.
Let

C(y, φ) := L′
p(V )(y, φ)

Lp(V )(y, φ)
∈ Frac

(
O(

V × X (ClK (p∞)
))

.

To see this is well-defined, note there exists a Zariski-dense set Vss ⊂ V of classical
small slope points y in V of weight (k, k), where k > 2. For any finite order Hecke
character ϕ of conductor pr > 1, the quantity L(Fy, ϕ, k + 1) converges absolutely
to a non-zero number; it follows that L p(Fy, (ϕ| · |k)p−fin) �= 0, since the p-adic
L-function does not have an exceptional zero there. As every connected component
of O(X (ClK (p∞))) contains a character of the form (ϕ| · |k)p−fin, it follows that
L p(Fy) is not a zero-divisor in O(X (ClK (p∞))) (as on every such component the
only zero-divisor is 0). Now let D ∈ D(ClK (p∞), T ) such that DLp(V ) = 0. At any
y ∈ Vss, we have spy(D)spy(Lp(V )) = 0, and as spy(Lp(V )) = cy L p(Fy) is not a
zero-divisor we see spy(D) = 0. As D vanishes at a Zariski-dense set of points, we
have D = 0, so Lp(V ) is not a zero-divisor and C(y, φ) is well-defined.

At each classical y ∈ Vss, the p-adic L-function L p(Fy) is uniquely determined
up to scalar multiple by its interpolation and admissibility properties, as in [56, Thm.
7.4]. Thus Lp(y) and L′

p(y) are scalar multiples, so C(y,−) ∈ L . As such points are
Zariski-dense, for all z ∈ V we see C(z,−) is constant, that is, C ∈ Frac(O(V )).
Since (by assumption) neither L p(F) nor L ′

p(F) is zero, C does not have a zero
or pole at x . Hence we may shrink V further so that C has no zeros or poles, that
is, C ∈ O(V )×. Specialising to x , we see that L p(F) and L ′

p(F) differ by scalar
multiplication by c := C(x) ∈ L×, as required.

Remark 6.16 This proof shows there is a subspaceWF ⊂ D(ClK (p∞), L), of dimen-
sion ≤ 1, such that for any Lp : V ×X (ClK (p∞)) → L satisfying the interpolation
property of Theorem A, we have Lp(x) ∈ WF . Further, up to shrinking V any two
such functions Lp, L′

p with Lp(x),L′
p(x) �= 0 differ by O(V )×, as claimed in the

introduction (also cf. Proposition 7.9). We can also treat twisted p-adic L-functions
Lφ

p by using twisted Mellin transforms Melφ (Remark 2.13).

7 Factorisation of base-change p-adic L-functions

Let f be a classical eigenform with base-change F to K , and let χK/Q denote the
quadratic Hecke character attached to K/Q. Artin formalism says that for any rational
Hecke character ϕ, we have

�
(F , ϕ ◦ NK/Q

) = �( f , ϕ)�
(
f , ϕχK/Q

)
.

We now prove an analogue of this for p-adic L-functions (see Theorem 7.5).
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7.1 p-adic L-functions attached to classical eigenforms

Let f ∈ Sk+2(�1(N )) be a decent eigenform satisfying Conditions 2.2[Q], and let
�( f , ϕ) be its L-function, normalised to include the Euler factors at infinity. Here ϕ

ranges over Hecke characters of Q. Denote the eigenvalue of f at p by αp( f ) and the

periods of f by �±
f ∈ C×, which are well-defined up to Q

×
. Let h := vp(αp( f )).

For any Dirichlet character χ of conductor M , let τ(χ) := ∑
a (mod M) χ(a)e2π ia/M

be its Gauss sum. Let η = ηpη
p be a Dirichlet character, where ηp has conductor pt

and ηp has conductor C prime to p. The following is due to many people.

Theorem 7.1 There exists a locally analytic distribution Lη
p( f ) on Z×

p such that, for

any Hecke character ϕ = χ | · | j , where χ is finite order of conductor pn > pt and
0 ≤ j ≤ k, we have

Lη
p

(
f , ϕp−fin

) =
{

(Cpn) j+1

τ((χη)−1)�±
f αp( f )n

�( f , ϕη) : f is non-critical,

0 : f is critical.

The sign of �±
f is given by χη(−1)(−1) j = ±1. The distribution is admissible of

order h, and if h < k + 1, it is uniquely determined by this interpolation property.

If η is the trivial character, we just write L p( f ) for this distribution.

Proof When η is trivial, see e.g. [10,44]; in our normalisations, �( f , ϕ) =
�( f , χ, j + 1). In general, we can use a slight variation of their methods. In both
papers, one constructs an overconvergent modular symbol � f , then sets L p( f ) :=
� f {0 − ∞}|Z×

p
. If a ∈ (Z/CZ)×, then one defines a distribution La

p( f ) on Z×
p by

La
p( f ) := [

� f |
(
1 a
0 C

)] {0 − ∞}|Z×
p
,

then defines Lηp

p ( f ) = ∑
a∈(Z/CZ)× ηp(a)La

p( f ). Finally, we define Lη
p( f , ϕp−fin)

:= Lηp

p ( f , ϕp−finηp). Proving the interpolation result is then a formal calculation
(compare Remark 2.13), noting that χη = (χηp)η

p has conductor Cpn as pn > pt .

One also has a more involved interpolation formula at χ of conductor pn ≤ pt .
There are also many constructions of this in families; see for example [10].

Theorem 7.2 Let x f be the point of C corresponding to f . There exists an affinoid
neighbourhood VQ of x f and a locally analytic distributionLη

p(VQ) ∈ D(Z×
p ,O(VQ))

such that at any classical point y ∈ VQ,

Lη
p(y, φ) := spy

(
Lη

p(VQ)
)

(φ) = c±
y L

η
p

(
fy, φ

)
,

where φ is locally analytic on Z×
p , c

±
y ∈ Q

×
p depends only on y, and ηφ(−1) = ±1.
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7.2 Statement of p-adic Artin formalism

7.2.1 Indeterminacy of p-adic L-functions

There are indeterminacies in all the constructions of p-adic L-functions discussed so
far in this paper, arising from the choices of (complex and p-adic) periods. We make
this more precise.

For a Bianchi modular form F of weight λ, the p-adic L-function L p(F) (where
it exists) is the Mellin transform of a class �F ∈ H1

c(Y1(n),Dλ) (see Definition 2.11
or Theorem 6.14). In general, the class �F is only canonical up to p-adic scalar,
and rescaling �F similarly rescales L p(F). We see that the subspace Qp · L p(F) ⊂
D(ClK (p∞), Qp) is canonically defined by our construction. Note here that there is
only one complex period �F to choose (as GL2(C) is connected).

For a classical modular form f , as GL2(R) has two connected components, there
are two choices of complex period �±

f . Correspondingly, the overconvergent modular

symbol � f in the proof of Theorem 7.1 has the form � f = �+
f + �−

f , where �±
f is

in the ±-eigenspace for the action of
( −1

1

)
on overconvergent modular symbols.

In this case, each �±
f can be scaled independently by Qp.

Where p-adic L-functions exist, we then have Lη
p( f ) = Lη,+

p ( f )+Lη,−
p ( f ), where

Lη,±
p ( f ) is defined analogously using �±

f . These are supported on disjoint ±-halves

of A(Z×
p , Qp); precisely, if φ is a character of Z×

p , then Lη,±
p ( f , φ) �= 0 only if

ηφ(−1) = ±1. The Lη,±
p ( f ), like the �±

f , can be scaled independently by Qp, but as

above, we get two canonical subspaces Qp · Lη,±
p ( f ),⊂ D(Z×

p , Qp).
For p-adic Artin formalism, we need to consider twists of f by χK/Q. Attached to

f and χK/Q, we have four canonical spaces

Qp · L±
p ( f ), Qp · LχK/Q,±

p ( f ) ⊂ D
(
Z×
p , Qp

)
,

corresponding to the Mellin transforms of the (two) lines Qp · �±
f of overconvergent

modular symbols. Taking a product reduces this to only one canonical space:

Lemma 7.3 Independently rescaling �±
f does not change the space

W K
f := Qp · L p( f )L

χF/Q
p ( f ) ⊂ D

(
Z×
p , Qp

)
.

Proof As K is imaginary, we have χK/Q(−1) = −1.Write L p( f ) = L+
p ( f )+L−

p ( f )

and L
χK/Q
p ( f ) = L

χK/Q,+
p ( f )+L

χK/Q,−
p ( f ). As L+

p ( f ) and L
χK/Q,+
p ( f ) have disjoint

support, the ++ term in the product vanishes (and similarly for the −− term), so

L p( f )L
χK/Q
p ( f ) = L+

p ( f )L
χK/Q,−
p ( f ) + L−

p ( f )L
χK/Q,+
p ( f ).
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Now, if we rescale �+
f by c+ ∈ Qp in the construction of L+

p ( f ) and L
χK/Q,+
p ( f ),

then we scale both terms in the right-hand side by c+ and remain inWK
f ; and similarly

for rescaling �−
f .

7.2.2 Statement of p-adic Artin formalism

Let f ∈ Sk+2(�1(N )) be a decent eigenform satisfying Conditions 2.2[Q], and let F
be its base-change. Assume F is �-smooth, and let L p(F) ∈ D(ClK (p∞), Qp) be
its p-adic L-function from Sect. 6.2.

Definition 7.4 We define the restriction of L p(F) to the cyclotomic line, denoted by
Lcyc
p (F) ∈ D(Z×

p , Qp), to be the locally analytic distribution on Z×
p given by

Lcyc
p (F , φ) := L p

(F , φ ◦ NK/Q

)
,

where φ is any locally analytic function on Z×
p

∼= Cl+
Q
(p∞).

Recall WK
f ⊂ D(Z×

p , Qp) from Lemma 7.3, and define

W cyc
F = Qp · Lcyc

p (F) ⊂ D
(
Z×
p , Qp

)
.

Theorem 7.5 Suppose that Lcyc
p (F) and L p( f )L

χK/Q
p ( f ) are both non-zero. Then

W cyc
F = WK

f as lines in D(Z×
p , Qp).

We will show that it is possible to choose generators of WK
f and W cyc

F that have
the same growth and interpolation properties. When the slope is < (k + 1)/2, these
properties uniquely determine the line and force the equalityW f = W cyc

F , as we show
in Sect. 7.3. Cases of more general slopes arise very naturally in arithmetic, however,
and in that case there are a priori an infinite number of lines W ⊂ D(Z×

p , L) with
generators satisfying the same growth and interpolation properties. In this case, it is
far from obvious that WK

f = W cyc
F , and our methods—where we deform these lines

in p-adic families—are required.
We will prove this by fixing our choices of the periods �F and �±

f such that

�F = (−1)k#O×
K�+

f �
−
f /2τ

(
χK/Q

)
, (7.1)

which pins down choices of generators Lcyc
p (F) ∈ W cyc

F and L p( f )L
χK/Q
p ( f ) ∈ WK

f .
This choice is possible by the parity of χK/Q and classical Artin formalism. We then
prove that for this choice, there is an equality (of distributions on Z×

p )

Lcyc
p (F) = L p( f )L

χK/Q
p ( f ).

Remark 7.6 Evidently it would be desirable to prove a more precise version of this
theorem and give an equality of elements within this line for some canonical periods.



Families of Bianchi p-adic L-functions Page 35 of 45 82

This appears to be extremely subtle; controlling the periods, with no recourse to p-adic
L-functions, is already difficult, and is the subject of [54].

7.3 Proof of Theorem 7.5 for slope h < (k+ 1)/2

Recall the Hecke eigenvalues ofF can be described simply in terms of the eigenvalues
of f :

(i) When p splits as pp in K , we have αp(F) = αp(F) = αp( f ).
(ii) When p is inert in K , we have αpOK (F) = αp( f )2.
(iii) when p is ramified as p2 in K , we have αp(F) = αp( f ).

We see that F has small slope if and only if

vp(αp( f )) <

{
k + 1 : p split,
k+1
2 : p inert or ramified.

We see αpOK (F) = αp( f )2, whereUpOKF = αpOK (F)F . Thus if h = vp(αp( f )),
then Lcyc

p (F) and L p( f )L
χK/Q
p ( f ) are admissible of order 2h [44, Def. 6.1].

Suppose now h < (k + 1)/2. As 2h < k + 1, both Lcyc
p (F) and L p( f )L

χK/Q
p ( f )

are uniquely determined by their values at critical characters (e.g. [4]). In this case,
it thus suffices to prove the interpolation properties agree. By classical Artin formal-
ism, the classical L-values at critical characters agree, so it suffices to check that the
constants in the interpolation formulae agree. For characters factoring through NK/Q,
the interpolating constant of the Bianchi p-adic L-function can be simplified. Write
d = d ′ pt , where d ′ is prime to p. If η is a Hecke character of K , let τK (η) be the
Gauss sum from [16, Def. 2.6]. If η is finite order and cond(η) = MOK is principal,
then this admits an explicit description as

τK (η) :=
∑

a∈(OK /MOK )×
η(a)e

2π iTrK/Q

(
a

M
√−d

)

, (7.2)

identifying (OK /MOK )× with the associated quotient of Ô×
K .

Remark 7.7 We remark that this is different from the (somewhat non-standard) Gauss
sum τ̃ (η) from [56, §1.2.3] (which we used in Theorem 2.12). If η has finite order,
then τK (η) = τ̃ (η−1) (via [56, p.621]). For compatibility with [56], we have tried to
use τ̃ as much as possible, but for non-principal conductor it is much more convenient
to use the (idelic) formulation of [16].

Proposition 7.8 Let φ = χ | · | j with cond(χ) = pn > pt and 0 ≤ j ≤ k, and let
ϕ = φ ◦ NK/Q. Then

Lcyc
p (F , φ) = L p(F , ϕ) =

[
(d ′) j+1 p2n( j+1)#O×

K

(−1)k2αpOK (F)nτK
(
χ−1 ◦ NK/Q

)
�F

]

�(F , ϕ).
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Proof This is an exercise in book-keeping. In this setting the factors Zp of The-
orem 2.12 are equal to 1; the infinity type is ( j, j), simplifying the sign. If p is
unramified in K (i.e. d = d ′), then cond(χ ◦ NK/Q) = pnOK , so the terms ϕ(xf) and
ϕf(xf) cancel as the conductor is principal. Recall τK is inverse to the Gauss sum τ̃

used in [56] on finite order characters, whilst τ̃ (φ ◦ NK/Q) and τ̃ (χ ◦ NK/Q) differ
by [NK/Q(

√−d)Norm(pnOK )] j = d j p2nj (see e.g. [56, §2.6]). Using the standard
identity τK (χ ◦ NK/Q)τK (χ−1 ◦ NK/Q) = NK/Q(cond(χ ◦ NK/Q)) we move the
Gauss sum to the denominator, as in Theorem 7.1.

If pOK = p2 is ramified (i.e. t > 0), then f := cond(χ◦NK/Q) = p2n−t need not be
principal, so the computation is more involved. Noting (d ′) j p2nj = d j p(2n−t) j , one
can show this by tracking through the definitions of ϕ(xf), ϕf(xf) and τ̃ (ϕ−1) in [56]. It
is more convenient, though, to use the adelic formulation of the interpolation formula
from [16, Thm. 12.1]. From [16, Def. 2.6], we see τK (ϕ) = d jτK (χ ◦ NK/Q) =
d j p2n−t/τK (χ−1 ◦ NK/Q). We conclude as π

j
f in [16, Thm. 12.1] is p(2n−t) j here.

By (7.1) and the identity αpOK (F) = αp( f )2, we see that

(d ′) j+1 p2n( j+1)#O×
K

(−1)k2αpOK (F)n�F
· τ(χK/Q)−1 = (pn) j+1

αp( f )n�
±
f

· (d ′ pn) j+1

αp( f )n�
∓
f

. (7.3)

When h < (k + 1)/2, Theorem 7.5 now follows by combining (7.3) with the identity

τK
(
χ ◦ NK/Q

)
τ

(
χK/Q

) = τ(χ)τ
(
χχK/Q

)

ofGauss sums (applied toχ−1, notingχ−1
K/Q

= χK/Q). This is a characteristic 0 version
of the classical Hasse–Davenport identity. It can be verified locally by decomposing
the Gauss sums into a product of local epsilon factors, as in [42, Prop. 6.14]; the
local result is proved, for example, in [39, §6]. This completes the proof in the slope
< (k + 1)/2 case.

7.4 Proof of Theorem 7.5 in general

Now suppose f has slope h ≥ k+1
2 . Both L p( f )L

χK/Q
p ( f ) and Lcyc

p (F) are admissible
of order 2h ≥ k + 1, so are not determined by interpolation at critical values. To
circumvent this, we use the three variable p-adic L-function through F .

Let VQ be a neighbourhood of x f in C lying over� ⊂ WQ
∼= WK ,par. Let V denote

the image of VQ under the p-adic base-changemap, a neighbourhood of xF = BC(x f )

in Ebc. For any classical point y ∈ VQ, write fy for the corresponding modular form,
and write Fy for its base-change to K .

The slope of a Coleman family is locally constant. We can shrink VQ and� so that:
(1) along V , the slope at p is constant, equal to vp(αpOK (F)) = 2vp(αp( f )) = 2h;
and (2) any classical weight 
 ∈ �\{k} satisfies 
 + 1 > 2(k + 1) ≥ 2h. If y is a
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classical point in VQ above such a weight 
, then vp(αp( fy)) = h < 
+1
2 , so

Lcyc
p

(Fy
) = L p

(
fy

)
L

χK/Q
p

(
fy

)

by Sect. 7.3, where again we normalise the periods appropriately.
AsF is �-smooth, by Sect. 6.1 we have a three-variable p-adic L-function Lp(V )

over V . We can restrict this to a two-variable function Lcyc
p (V ) ∈ D(Z×

p ,O(V )).
Composing with BC∗ : O(V ) → O(VQ), we view this in D(Z×

p ,O(VQ)).

Proposition 7.9 Suppose that Lcyc
p (F) and L p( f )L

χK/Q
p ( f ) are non-zero. After pos-

sibly shrinking VQ and rescaling by O(VQ)×, we have a factorisation

Lcyc
p (V ) = Lp

(
VQ

)LχK/Q
p

(
VQ

)
.

In particular, in D(Z×
p ,O(VQ)) we have an equality of O(VQ)-lines

O (
VQ

) · Lcyc
p (V ) = O (

VQ

) · Lp
(
VQ

)LχK/Q
p

(
VQ

)
.

In the general case, Theorem 7.5 follows by specialising this identity at x f .
Rescaling byO(VQ) corresponds to renormalising the complex and p-adic periods.

For each classical y ∈ VQ(L), we take �Fy = (−1)
#O×
K�+

fy
�−

fy
/2τ(χK/Q) ∈ C×.

The renormalisation of p-adic periods is handled in the proof.

Proof After taking the Amice transform, we may consider the functions in question
as analytic functions on the two-dimensional rigid space VQ × X (Z×

p ), where, as in
the introduction, we writeX (Z×

p ) for the rigid character space of Z×
p . Consider, then,

the quotient

C = C(z,−) := Lcyc
p (V )

Lp
(
VQ

)LχK/Q
p

(
VQ

) ∈ Frac
(
O

(
VQ × X

(
Z×
p

)))
.

This is well-defined by a similar argument to that in Proposition 6.15. At each classical
point y �= x f in VQ, we have C(y, φ) is constant in φ using the factorisation at very
small slope points.As such points are Zariski-dense,we deduce thatC(z, φ) is constant
in φ for any z ∈ VQ, soC ∈ Frac(O(VQ)). Since (by assumption) neither Lcyc

p (F) nor
L p( f )L

χK .Q
p ( f ) is zero, C does not have a zero or pole at x f . Hence we may shrink

VQ further so that C ∈ O(VQ)×. But this corresponds to renormalising the p-adic
periods and completes the proof.

Remark 7.10 By their constructions, Lcyc
p (V ) and Lp(VQ)LχK/Q

p (VQ) are themselves
only well-defined up to multiplication by elements ofO(VQ)×, so this indeterminacy
is expected. The non-vanishing condition is always satisfied if f andF are non-critical
by non-vanishing of a classical critical L-value. As described in the introduction, it
is conjectured that L p( f ) and L

χK/Q
p ( f ) are never zero, and similarly we conjecture

that L p(F) is never zero.
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Remark 7.11 Suppose p is split and f has level N prime to p. Let αp and βp denote
the roots of the Hecke polynomial of f at p, and assume αp �= βp. There are two
possible p-stabilisations fα , fβ of f to level pN . The base-changeF has four possible
p-stabilisations to level pNOK ; as in Remark 2.14, we can consider Fαα,Fαβ,Fβα

and Fββ . Then Fαα and Fββ are the base-changes of fα and fβ , but Fαβ and Fβα

cannot be base-change themselves, as they have distinct eigenvalues at p and p. In
this case, Loeffler and Zerbes have mentioned to the authors that Lcyc

p (Fαβ, φ) can
be expressed as a linear combination of the two products L p( fα, φ)L

χK/Q
p ( fβ, φ) and

L p( fβ, φ)L
χK/Q
p ( fα, φ).

7.5 Non-criticality under base-change

Let f ∈ Sk+2(�1(N )) be a decent eigenform satisfying Conditions 2.2[Q]. If f has
non-critical slope then its base-changeF can still have critical slope. However, critical
slope forms can still be non-critical, so it is natural to ask: if f is non-critical (resp.
critical), is F non-critical (resp. critical)? Conjecturally, we can use Theorem 7.5 to
answer this positively:

Corollary 7.12 (i) If f is critical, then either: (i-a) F is critical; or (i-b) F is non-
critical and L p( f )L

χK/Q
p ( f ) = 0.

(ii) If f is non-critical, then either: (ii-a) F is non-critical; or (ii-b) the weight map
Epar → WK ,par is étale at xF , and Lcyc

p (F) = 0; or (ii-c) there is a classical
family of non-base-change Bianchi cusp forms through F .

Conjecturally p-adic L-functions are non-zero, andwe expect eigenvarieties should
not be étale at critical points, so (i-b) should not happen and (ii-b) should be doubly
impossible; and (ii-c) contradicts Conjecture 5.13. Thus conjecturally f is non-critical
if and only if F is non-critical.

Proof Note from [10, Thm. 2] that if f is critical, then L p( f ) vanishes at every
critical ϕp−fin. Similarly, if F is critical �-smooth, then L p(F) vanishes at every
critical ϕp−fin (Theorem 6.14). Thus if we have non-vanishing of a critical p-adic
L-value of f (resp. F), then f (resp. F) is necessarily non-critical.

(i) Suppose (i-a) fails, i.e. f is critical but F is non-critical, so L p(F) exists by
Theorem 2.12. There is a Dirichlet character ϕ of conductor pn > 1 such that

L
(F , ϕ ◦ NK/Q, k + 1

) = L( f , ϕ, k + 1)L( f , ϕχK/Q, k + 1) �= 0.

Indeed, if k > 0, then for any ϕ, the Euler product expressions for L( f , ϕ, k + 1)
and L( f , ϕχK/Q, k +1) absolutely converge to non-zero complex numbers. If k = 0,
then this is a consequence of the main result of [46].

Since ϕ has non-trivial p-power conductor, the p-adic L-functions L p( f ),
L

χK/Q
p ( f ) and Lcyc

p (F) do not have exceptional zeros at φ = (ϕ| · |k)p−fin; so as
F is non-critical, by (2.3) we have Lcyc

p (F) �= 0. If L p( f )L
χK/Q
p ( f ) �= 0, then by

Theorem 7.5, up to non-zero rescaling we have Lcyc
p (F) = L p( f )L

χK/Q
p ( f ). We then

have
0 �= L p

(F , φ ◦ NK/Q

) = L p( f , φ)L
χK/Q
p ( f , φ), (7.4)
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meaning f is non-critical, a contradiction. So L p( f )L
χK/Q
p ( f ) = 0, and (i-b) holds.

(ii) Suppose f is non-critical. If F is non-critical, then (ii-a) occurs; and if F is
critical and F is not �-smooth, then (ii-c) occurs by Propositions 5.1 and 5.4. So
suppose F is critical and �-smooth. By Proposition 5.4 and �-smoothness, since f
is non-critical, BC : C → Epar is locally an isomorphism over WQ

∼= WK ,par at
x f . By non-criticality, the weight map C → WQ is étale at x f (e.g. [10]), so we see
Epar → WK ,par is étale at xF .

Now suppose Lcyc
p (F) �= 0. We know L p( f )L

χK/Q
p ( f ) �= 0 by non-criticality of

f , so by Theorem 7.5 up to non-zero rescaling we have Lcyc
p (F) = L p( f )L

χK/Q
p ( f ).

By the same arguments to (7.4), one can choose a locally analytic φ on Z×
p such that

L p
(F , φ ◦ NK/Q

) = Lcyc
p (F , φ) = L p( f , φ)L

χK/Q
p ( f , φ) �= 0,

contradicting Theorem 6.14 as F is critical. Thus Lcyc
p (F) = 0, and (ii-b) holds.

7.6 Restriction to the anticyclotomic line

Themethods of this section apply in another related case, the details of which we leave
to the interested reader;we thankLennartGehrmann for pointing this out to us.By class
field theory ClK (p∞) ∼= Gal(K∞/K ),where K∞ is the maximal abelian extension of
K unramified outside p. Above, we restricted to the cyclotomic subextension in K∞;
we can also naturally restrict to the anticyclotomic subextension K anti∞ /K . The anticy-
clotomic p-adic L-function of f over K is a distribution Lanti

p ( f ) on Gal(K anti∞ /K ),
admissible of order h, that satisfies the interpolation property that at a critical anticy-
clotomic character χ of K , we have

(
Lanti
p ( f , χ)

)2 = (∗)�(F , χ),

for an explicit factor (∗). These objects were introduced by Bertolini and Darmon
in [6] for ordinary elliptic curves, and general constructions now exist (e.g. [34]). If
h < k+1

2 , this interpolation property is enough to show that (after normalising the
periods) we have

Lanti
p ( f )2 = Lanti

p (F), (7.5)

where Lanti
p (F) is the restriction of L p(F) to the anticyclotomic line (see e.g. [24]

for this result in the ordinary case). Suppose there exists such a two-variable function
Lanti

p (VQ), over a neighbourhood VQ in C, interpolating the anticyclotomic p-adic
L-functions at classical weights. Then the methods of this section show that, under
an analogous non-vanishing condition, and up to multiplication by an element of
O(VQ)×, we have an equality of two-variable distributions

Lanti
p

(
VQ

)2 = Lanti
p (V ). (7.6)

If h ≥ k+1
2 , we can obtain the identity (7.5) for F by specialising (7.6) at F .
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Appendix: A base-change deformation functor (by Carl
Wang-Erickson2,3)

The point of this appendix is to supply the proof of Proposition 5.8, regarding defor-
mations of Galois representations. The main idea we will apply here applies under the
following running assumptions:

(A) there is an index 2 subgroup H ⊂ G and a chosen element c ∈ G�H of order 2.
Equivalently, G is expressed as a semi-direct product H � 〈c〉;

(B) char(L) �= 2, for L the base coefficient field of the deformed representation.

In the first section we set up the theory of the base change deformation functor. In
the second section, we verify that this theory is compatible with arithmetic conditions
imposed when G is a Galois group over Q.

A.1. The base change deformation functor

Wework under assumptions (A)–(B) above. Let ρ : G → GLd(L) be a representation
that is absolutely irreducible after restriction to H . LetAL be the category of Artinian
local L-algebras (A,mA)with residue field L .We denote by X the deformation functor
for ρ|H . This is the functor from AL to the category of sets given by

A �→ {ρ̃A : H → GLd(A) | (ρ̃A mod mA) = ρ|H } / ∼, (A.1)

2 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA. carl.wang-
erickson@pitt.edu
3 C.W.E. was supported by EPSRC grant EP/L025485/1.
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where ∼ is the equivalence relation of “strict equivalence,” that is, conjugation by
1 + Md(mA) ⊂ GLd(A). We will let ρA ∈ X(A) denote a deformation of ρ|H with
coefficients in A. This is in contrast to the notation ρ̃A, which we reserve for a lift of
ρ|H to A, i.e. a homomorphism ρ̃A ∈ ρA as in (A.1).

Let Xbc denote the subfunctor of X cut out by the condition that some (equivalently,
all) ρ̃A ∈ ρA admits an extension to a homomorphism ρ̃G

A : G → GLd(A) such
that ρ̃G

A |H = ρ̃A. In this case, we say that ρA admits an extension to an A-valued
deformation ρG

A of ρ.
For h ∈ H , we write hc := chc ∈ H for twisting by c. Likewise, for a group

homomorphism η with domain H , let ηc(h) := η(hc).

Lemma A.1 Let A ∈ AL andρA ∈ X(L). ThenρA admits an extension to G deforming
ρ if and only if there exists ρ̃A ∈ ρA such that

ad ρ(c) · ρ̃c
A = ρ̃A. (A.2)

Proof Assume that there exists ρ̃A ∈ ρA and ρ̃G
A : G → GLd(A) such that ρ̃G

A |H =
ρ̃A. Because the characteristic of L is not 2, the deformation functor for ρ|〈c〉 is
trivial; compare the proof of [21, Prop. 5.3.2]. Equivalently, there exists some x ∈
1 + Md(mA) ⊂ GLd(A) such that ad x · ρ̃G

A (c) = ρ(c). Then one readily observes
that ad x · ρ̃A is a solution to (A.2).

Next we prove the converse. Assume that we have ρ̃A solving (A.2). Then we define
ρ̃G
A : G → GLd(A) by

ρ̃G
A (g) :=

{
ρ̃A(g) for g ∈ H ,

ρ(c)ρ̃A(h) for g = ch, h ∈ H .

It is then straightforward to calculate that ρ̃G
A is a group homomorphism such that

ρ̃G
A |H = ρ̃A.

Notice that the map of lifts ρ̃A of ρ|H to A sending

ι̃ : ρ̃A �→ ad ρ(c) · ρ̃c
A

is an involution on lifts of ρ|H . Its fixed points are exactly those lifts satisfying (A.2).
This involution descends to an functorial involution of deformations

ι : X(A) → X(A).

To justify this claim, we calculate that for any x ∈ GLd(A),

ι̃ (ad x · ρ̃A) = ad ρ(c) · ad x · ρ̃c
A = ad y · (ι̃ (ρ̃A)) ,

where y = ad ρ(c) · x .
Let X ι denote the ι-fixed subfunctor of X , and let t (resp. tbc) denote the tangent

space X(L[ε]/(ε2)) (resp. Xbc(L[ε]/(ε2)).
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Proposition A.2 (i) There is a canonical isomorphism X ι ∼= Xbc.
(ii) The deformation problems Xbc, X on AL are pro-represented by pro-objects

Rbc, R ∈ ÂL . The involution ι induces an automorphism ι∗ : R → R, and
there is a natural surjection

R � Rbc := R
((1−ι∗)(R))

.

(iii) There is a canonical injection tbc ↪→ tof tangent spaces. The imageof this injection
is the subspace tι ⊂ t fixed by the involution ι∗ : t → t induced by ι.

Proof Part (i) follows directly from Lemma A.1.
For Part (ii), it is well-known that X is pro-representable; see e.g. [41]. It is a brief

exercise that a homomorphism R → A kills (1−ι∗)(R) if and only if the corresponding
deformation of ρ|H is ι-fixed. Then the pro-representability of Xbc by Rbc follows
from (i).

Part (iii) follows from Part (ii) and the perfect L-linear duality of mR/m2
R and

X(L[ε]/(ε2)).

A.2 Galois-theoretic conditions

Let G = GQ,S and H = GK ,SK (see Notation 5.6). We also use the decomposition
groups and complex conjugation c ∈ G given in (5.1). The data (G, H , c) satisfy
assumption (A), as K/Q is imaginary quadratic.

Because the level of the modular form f of Proposition 5.10 is supported by S, and
because p,∞ ∈ S, the representation ρ f of the absolute Galois group of Q factors
through GQ,S . We let ρ := ρ f : G → GL2(L), as in Definition 5.5, with its critical
refinement with eigenvalue αp. It is an L-linear representation, where L is a p-adic
field; thus we have satisfied assumption (B).

Deformation theory as in §A.1 can be carried out for continuous representations of
G and H , using the p-adic topology of L , and the arguments therein make good sense
in this setting. This is standard; see e.g. [35, §9]. From now on, we impose continuity
without further comment.

Because G and H satisfy the finiteness condition �p of [41, §1.1], it follows that
the deformation rings R, Rbc of Proposition A.2 representing X , Xbc are Noetherian
and (equivalently) t, tbc have finite L-dimension.

Lemma A.3 Conditions (i) and (ii) of Definition 5.7 determine a subfunctor X ref ⊂ X
that is Zariski-closed, hence representable by a quotient ring R � Rref .

Proof This is standard—see e.g. [11, p.26] and [35, Prop. 8.13]. In particular, the
important assumption [35, (8.8.1)] is satisfied because f has been critically refined.

Proof of Proposition 5.8 Because both the “ref” and “bc” conditions have been shown
to be Zariski-closed conditions on X , their intersection functor X ref,bc is representable
by a quotient Rref � Rref,bc. Then apply Proposition A.2 and its proof.
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To make Proposition 5.8 useful, we check that the properties of a G-deformation
ρG
A of ρ f guaranteeing that ρG

A |H determines a point of X ref (and, consequently, a
point of X ref,bc) are what we would naturally expect them to be.

Lemma A.4 Let ρG
A be a deformation of ρ f : G → GL2(L) to A ∈ AL . Then

ρG
A |H ∈ X ref(A) if and only if ρG

A satisfies

(i) For primes q | N such that q �= p, ρG
A |Iq � ρ|Iq ⊗L A.

(ii) The restriction ρG
A |Gp has

(1) one Hodge–Sen–Tate weight is constant and equal to 0, and
(2) there exists α̃p ∈ A such that the A-module Dcrys(ρ

G
A |Gp )

ϕ=α̃p is free of rank
1 and (̃αp mod mA) = αp.

Proof It is a straightforward exercise about representations and the corresponding
Frobenius isocrystals to verify that the statements of (i)–(ii) of Lemma A.4 are equiv-
alent to (i)–(ii) of Definition 5.7 under both extension and restriction.
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