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Abstract
We prove a functorial correspondence between a category of logarithmic sl2-
connections on a curve X with fixed generic residues and a category of abelian
logarithmic connections on an appropriate spectral double cover π : Σ → X. The
proof is by constructing a pair of inverse functors πab, πab, and the key is the con-
struction of a certain canonical cocycle valued in the automorphisms of the direct
image functor π∗.
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1 Introduction

This paper describes an approach to analysing meromorphic connections on Riemann
surfaces. The technique, called abelianisation, is to introduce a decorated graph � on
a Riemann surface X in order to establish a correspondence between meromorphic
connections on vector bundles of higher rank over X and meromorphic connections on
line bundles (which we call abelian connections) over a multi-sheeted ramified cover
Σ → X. Namely, given a flat vector bundle E on X, an application of the standard
local theory of singular differential equations near each pole allows one to extract
valuable asymptotic information in the form of locally defined flat filtrations on E ,
first discovered by Levelt [18]. These filtrations, often called Levelt filtrations, can be
organised into a single flat line bundle L over Σ, and E can be recovered from L using
the combinatorial data encoded in �.

1.1 Main result

In this paper, we restrict our attention to the simplest case of sl2-connections with
logarithmic singularities and generic residues. Our main result (Theorem 3.3) is a
natural equivalence between a category of sl2-connections on X and a category of
logarithmic abelian connections on a double cover Σ of X. More precisely, fix (X,D) a
compact smooth complex curvewith a finite set ofmarked points, fix the data of generic
residues along D, and choose an appropriate meromorphic quadratic differential ϕ on
X with double poles along D. Then ϕ gives rise to a double cover π : Σ → X (called
the spectral curve) ramified at R ⊂ Σ, a graph � on X (called the Stokes graph), and a
transversality condition on the Levelt filtrations extracted at nearby poles as dictated
by �. Then there is a natural equivalence of categories:

⎧
⎪⎪⎨

⎪⎪⎩

sl2-connections onX
with logarithmic poles at D
with very generic residues
transverse with respect to �

⎫
⎪⎪⎬

⎪⎪⎭

⎧
⎪⎪⎨

⎪⎪⎩

abelian connections on Σ
with logarithmic poles

at π−1(D) ∪ R with fixed residues
equipped with odd structure

⎫
⎪⎪⎬

⎪⎪⎭

∼
πab

�

π�
ab

.

Given a flat vector bundle E on X, the abelianisation functor πab
� extracts Levelt filtra-

tions alongD and glues them into a flat line bundleL overΣ. In order to recover E from
L, the main difficulty is that the naive guess that E is the pushforward π∗L is incorrect
because π∗L necessarily has logarithmic singularities along the branch locus. The
solution is to realise the combinatorial content of the Stokes graph � in cohomology:
we construct a canonical cocycle V on X (called the Voros cocycle) which deforms
the pushforward functor π∗, as a functor, and this deformation is the nonabelianisa-
tion functor π�

ab. The Voros cocycle is constructed in a completely standardised and
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combinatorial way from the Stokes graph �. This is significant because it means V is
constructed without reference to any specific choice of E or L, thereby setting up an
equivalence of categories.

1.2 Context: spectral networks and exactWKB

Analysis of higher rank connections using abelian connections over a multi-sheeted
cover has previously appeared in the context of spectral networks [7–10,14], and
even earlier from a different point of view in the context of the exact WKB analysis;
e.g., [4,16,21]. The purpose of our work is to give a mathematical formulation of
abelianisation of connections, and this paper is the first and important step in this
direction. Our point of view, via the deformation theory of the pushforward functor,
sheds light on the mathematical content of the methods of spectral networks and the
exact WKB analysis, unifying the insights coming from these theories. Indeed, the
local expressions for the Voros cocycle V involve precisely the same type of unipotent
matrices that appear in the pioneering work of Voros on the exact WKB analysis [21]
(we callV theVoros cocycle exactly for this reason). At the same time, the off-diagonal
terms of V are given in terms of abelian parallel transports along canonically defined
paths on the spectral curve. These appeared in the work of Gaiotto–Moore–Neitzke
[8] which inspired the current project. In fact, one of the main achievements of this
paper is giving a clear mathematical explanation that the path-lifting rule appearing
in [8] emerges simply from the repeated application of the Voros cocycle.

1.3 Outlook

Abelianisation of connections can be seen as generalising the abelianisation of Higgs
bundles [1,13] (a.k.a. the spectral correspondence, which is a key step in the analysis of
Hitchin integrable systems and the geometric Langlands programme) to flat bundles.
Indeed, Proposition 3.6 shows that the abelianisation line bundle L is the correct
analogue of the spectral line bundle. It was also conjectured in the work of Gaiotto–
Moore–Neitzke [8] that such a procedure of abelianisation of connections should yield
symplectic cluster coordinates on moduli spaces of meromorphic connections. This
article (which is an extension of the work the author completed in his thesis [19]) is
thus the first important step in realising this programme in mathematical terms.

1.4 Content

The article is dedicated to the proof of Theorem 3.3, which proceeds by constructing
the functors πab

� , π�
ab and showing that they form an inverse equivalence. Propositions

3.5 and 3.6 give a summary of the main properties of the relationship between (E,∇)

and its abelianisation (L, ∂). We also make the curious observation that the nonabelian
Voros cocycle may itself be abelianised: there is an abelian cocycle ´ on the spectral
curve Σ which completely determines the Voros cocycle V in the sense of Proposition
3.16.
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2 Logarithmic connections and spectral curves

Throughout this paper, let X be a compact smooth complex curve and D ⊂ X a finite
set of marked points. We assume that D is nonempty with |D| > χ(X) = 2 − 2gX,
where gX is the genus of X. The Lie algebra sl(2,C) is denoted by sl2.

2.1 Logarithmic connections and Levelt filtrations

2.1. A logarithmic sl2- connection on (X,D) is the data (E,∇, M) of a holomorphic
rank-two vector bundle E on X, a CX-linear map of sheaves

∇ : E −→ E ⊗ �1
X(D)

satisfying the Leibniz rule ∇( f e) = e ⊗ d f + f ∇(e) for all e ∈ E, f ∈ OX, and a
trivialisation M : det(E) ∼−→ OX such that M(tr∇)M−1 = d. They form a category,
which we denote by Conn2sl(X,D). We will often omit “M” from the notation.

2.2. Generic Levelt exponents and residue data. The residue sequence for �1
X(D)

implies that the restriction of ∇ to D is a well-defined OD-linear endomorphism
Res∇ := ∇|D ∈ H0

X

(
End(E |D)

)
, called the residue of∇ alongD. A further restriction

of Res∇ to any point p ∈ D is an endomorphism of the fibre Resp ∇ ∈ End(E |p)
whose eigenvalues±λp ∈ C are called theLevelt exponents of∇ atp. The determinant
map det : End(E |D) → OD sends Res∇ to a global section of OD:

a := − det Res∇ =
{
ap := − det(Resp ∇) = λ2p ∈ C

∣
∣ p ∈ D

}
∈ H0

X(OD) .

2.3 Definition (Generic residue data) The Levelt exponents ±λp at p are called
generic if Re(λp) 
= 0 and λp /∈ 1

2Z. We will refer to any section a ∈ H0
X(OD)

as residue data, and say it is generic if for each p ∈ D, the two square roots ±λp of
ap define generic Levelt exponents.

2.4. Thus, a is generic if and only if each complex number ap is not purely negative
real or a quarter square n2/4 for some n ∈ Z. We will always order the generic Levelt
exponents by their increasing real part: −λp ≺ λp if and only if Re(λp) > 0. The
assumption that Re(λp) 
= 0 is necessary for the construction in this paper because
we will use the ordering ≺, but the assumption that λp /∈ 1

2Z (usually called non-
resonance) can be removedwithout a great deal of difficulty; in this paper, however,we
restrict ourselves to this simplest situation and generalisations will appear elsewhere.

2.5 Example Perhaps the most familiar explicit example is the following. Take X :=
P1, fix d ≥ 3 distinct points D := {u1, . . . , ud} ⊂ P1, and d constant matrices
A1, . . . , Ad ∈ sl2 with A1 + · · · + Ad = 0. We usually choose an affine coordinate
z on P1 =: P1

z such that ud is the point at infinity. Then the trivial rank-two vector
bundle E = OP1 ⊕ OP1 is equipped with a logarithmic connection ∇ defined with
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respect to the standard basis for E by the following formula in the affine coordinate
charts z and w = z−1:

∇ := d +
d−1∑

i=1

Ai

z − ui
dz and ∇ = d −

d−1∑

i=1

Ai

1 − uiw

dw

w
. (1)

Evidently,∇ has logarithmic singularities at each point ui with residue Resui ∇ = Ai .
The residue Res∇ along D is then simply the full collection of the chosen matrices
{A1, . . . , Ad}. The eigenvalues ±λi ∈ C of each Ai are the Levelt exponents of ∇, so
the residue data of ∇ is a = {

λ21, . . . , λ
2
d

}
.

2.6. The central object of study in this paper is the category of logarithmic sl2-
connections on (X,D) with fixed generic residue data a, for which we shall use the
following shorthand notation:

Conn2X := Conn2sl(X,D; a) ⊂ Conn2sl(X,D) .

2.7. Local diagonal decomposition. Fix a point p ∈ D, and consider a connection
germ (Ep,∇p) at p with generic Levelt exponents ±λp at p, where Re(λ) > 0. A
coordinate trivialisation Ep ∼−→ C {z}2 transforms ∇p to a logarithmic sl2-differential
system d + A(z)z−1 dz, where A(z) is some sl2-matrix of holomorphic function
germs. By [22, Theorems 5.1, 5.4], there exists a holomorphic SL2 gauge trans-
formation which transforms the given differential system into the diagonal system
d + diag(−λp,+λp)z−1 dz which depends only on λp and z. This classical theorem
about singular ordinary differential equations admits vast generalisations, but we do
not need themhere. Togetherwith the fixed ordering on theLevelt exponents, it induces
a graded decomposition of Ep with respect to which ∇p is diagonal.

2.8 Proposition (Local diagonal decomposition) Let (Ep,∇p, Mp) be the germ of a
logarithmic sl2-connection at p ∈ D with generic Levelt exponents ±λp. Then there
is a canonical ordered decomposition

Ep ∼−→ 	−
p ⊕ 	+

p with ∇p � ∂−
p ⊕ ∂+

p ,

where (	±
p , ∂±

p ) is a rank-one logarithmic connection germ at p with residue ±λp.
Moreover, M induces a flat skew-symmetric isomorphism Mp : 	−

p ⊗ 	+
p

∼−→ OX,p.

Here, “skew-symmetric” means that Mp is multiplied by −1 under the switching
map. The order on the Levelt exponents −λp ≺ +λp determines a ∇p-invariant filtra-
tion E•

p := (
	−

p ⊂ Ep
)
on the vector bundle germ Ep, which we will refer to as the

Levelt filtration in reference to the more general such concept studied by Levelt in his
thesis [18].

We will refer to the ∇p-invariant filtration E•
p := (

	−
p ⊂ Ep

)
, given by the order on

the Levelt exponents −λp ≺ +λp, as the Levelt filtration on the vector bundle germ
Ep. Clearly, any pair of logarithmic sl2-connection germs (Ep,∇p), (E ′

p,∇′
p) with the
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same generic Levelt exponents ±λp at p are isomorphic and any such isomorphism
is necessarily diagonal with respect to the diagonal decompositions. Any morphism
(Ep,∇p) → (E ′

p,∇′
p) necessarily preserves the Levelt filtration.

2.9 Example Continuing Example 2.5, assume that ∇ has generic residue data, and
restrict our attention to the disc germ of, say, the singularity u1. There is an SL2 matrix
G = G(z), holomorphic at z = u1, such that

G∇G−1 = d +
[−λ1

+λ1

]
dz

z − u1
.

Then the line subbundles 	−
1 ,	+

1 are generated by e− := G−1
[
1
0

]
and e+ := G−1

[
0
1

]
.

2.2 Logarithmic connections and double covers

Logarithmic connections can be pulled back andpushed forward along ramified covers.
In this section we describe these operations, restricting ourselves to the simplest case
of double covers π : Σ → X with simple ramification and which are trivial over the
polar divisor D. Thus, let C := π−1(D) and let R ⊂ Σ be the ramification divisor. Here
and everywhere, we assume that R has no higher multiplicity and that the branch locus
B := π(R) ⊂ X is disjoint from D. We denote by σ : Σ → Σ the canonical involution.

2.10. Odd abelian connections. Connections on line bundles are sometimes called
abelian connections. The line bundleOΣ(R) carries a canonical logarithmic connec-
tion ∂R, defined to be the connection for which the canonical map OΣ → OΣ(R) is
flat. Explicitly, if z is a local coordinate on Σ vanishing at r ∈ R, then the local section
z−1 ∈ OΣ(R) gives a trivialisation, in which ∂R is given by

∂R(z
−1) = d(z−1) = −z−1 dz ⊗ z−1 , i.e., ∂R = d − z−1 dz .

2.11 Definition (Odd abelian connection) An odd abelian logarithmic connection on
(Σ, R ∪ C) is the data (L, ∂, μ) consisting of an abelian logarithmic connection on
(Σ, R ∪ C) equipped with a skew-symmetric isomorphism μ : L ⊗ σ ∗L ∼−→ OΣ(R)
intertwining ∂ ⊗ σ ∗∂ and ∂R.

Here, “skew-symmetric” means μ satisfies σ ∗μ = −μ. Abelian connections with
a similar structure but over the punctured curve Σ \ C∪ R have appeared in [14, §4.2]
under the name equivariant connections. We refer to the isomorphism μ as the odd
structure on (L, ∂). Odd abelian connections form a category

Conn1Σ = Conn1odd(Σ, R ∪ C)

where morphisms are morphisms of connections φ : L → L′ that intertwine the
odd structures μ,μ′ in the sense that μ′ ◦ (φ ⊗ σ ∗φ) = μ. It is easy to check that
if μ1, μ2 are any two odd structures on the same abelian connection (L, ∂), then
(L, ∂, μ1) ∼= (L, ∂, μ2), and there are exactly two such isomorphisms.
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2.12 Proposition (Residues of odd connections) The residue of any odd abelian con-
nection (L, ∂, μ) at a ramification point is −1/2. In particular, the monodromy of ∂

around a ramification point is −1. Furthermore, if p ∈ D and p± ∈ C are the two
preimages of p, then the residues of ∂ at p± satisfy

Resp− ∂ + Resp+ ∂ = 0 .

Proof The residue of ∂R at r ∈ R is−1. If λ = Resr ∂ , then the residue of the connection
∂⊗σ ∗∂ at r is 2λ, so the odd structure onL forces λ = −1/2. Next, since σ(p−) = p+,
the residue at p− of σ ∗∂ is equal to the residue of ∂ at p+. This means ∂ ⊗ σ ∗∂ has
residue Resp− ∂ +Resp+ ∂ at p−. But the residue of ∂R at p− is 0, so the odd structure
on L forces the identity. ��

By using the residue theorem for connections [6, Cor. (B.3), p.186], it is easy to
compute the degree of a line bundle carrying an odd connection.

2.13 Proposition (Degree of odd connections) If (L, ∂, μ) ∈ Conn1odd(Σ, R∪C), then
deg(L) = 1

2 |R| = − deg(π∗OΣ).

2.14. Pullback and pushforward of connections. The pullback ofOX-modules along
π extends to a pullback functor on connections

π∗ : Conn2sl(X,D) → Conn2sl(Σ,C)

by the rule π∗∇(π∗e) = π∗(∇e) for any local section e ∈ E . Clearly, the Levelt
exponents of ∇ at p ∈ D and the Levelt exponents of π∗∇ at any preimage p̃ ∈ C of
p are the same. More interesting is pushing connections forward along π . The direct
image functor π∗ of OΣ-modules can be used to pushforward connections from Σ
down to X, but the relationship between the polar divisors is more complicated (see
[11, proposition 2.17] for more generality).

2.15 Proposition (Pushforward of odd abelian connections) The direct image π∗
extends to a functor

π∗ : Conn1odd(Σ, R ∪ C) −→ Conn2sl(X, B ∪ D) . (2)

Moreover, for any ∂ ∈ Conn1odd(Σ, R ∪ C), if ±λ ∈ C are its residues at the two
preimages p± ∈ C of a point p ∈ D, then the Levelt exponents of π∗∂ at p are ±λ.

Proof A logarithmic connection on (Σ, R∪C) is a map ∂ : L → L⊗�1
Σ

(R∪C), and

its direct image is therefore π∗∂ : π∗L → π∗
(
L ⊗ �1

Σ
(R ∪ C)

)
. We claim that there

is a canonical isomorphism �1
Σ

(R ∪ C) ∼−→ π∗�1
X(B ∪ D). First, π∗�1

X(B ∪ D) =
(
π∗�1

X

)
(π∗(B ∪ D)), where π∗(B ∪ D) = 2R ∪ C (pulled back as a divisor). The

derivative map dπ : TΣ → π∗TX drops rank along R; i.e., it is a nonvanishing section
of the line bundle T ∨

Σ
⊗ π∗TX(−R), thereby inducing an isomorphism π∗TX ∼−→

TΣ(R). Dualising, we get π∗�1
X

∼−→ �1
Σ

(−R). Thus, the projection formula implies

π∗
(
L ⊗ �1

Σ
(R ∪ C)

) ∼= π∗L ⊗ �1
X(B ∪ D). To check that π∗∂ satisfies the Leibniz



78 Page 8 of 35 N. Nikolaev

rule, let e ∈ π∗L be a local section on some open set U ⊂ X, and f ∈ OX(U). Then
π∗ ∂( f e) = π∗

(
∂(π∗ f · e) )

. Now it is clear that the Leibniz rule forπ∗∂ follows from
the Leibniz rule for ∂ . Therefore, (π∗L, π∗∂) is a rank-two logarithmic connection on
(X, B ∪ D).

To show that the odd structure on L induces an sl2-structure on π∗L, recall that
there is a canonical isomorphism det(π∗L) ∼= det(π∗OΣ) ⊗ Nm(L), where Nm(L)

is the norm of L [12, Cor. 3.12]. For a double cover, there is a canonical isomorphism
π∗ Nm(L) ∼= L⊗ σ ∗L. Moreover, it is easy to see that π∗ det(π∗OΣ) is canonically
isomorphic to OΣ(−R). The statement about the residues is obvious because π is
unramified over D. ��
2.16. Image of π∗. One can show that the monodromy of π∗∂ around the branch locus
B is a quasi-permutation representation of the double cover Σ → X [17]. As a result,
no connection on (X,D) is the pushforward of an abelian connection on Σ. In other
words, the image of the pushforward functor π∗ in Conn2sl(X, B ∪ D) does not even
intersect the subcategory Conn2sl(X,D). Abelianisation fixes this problem: in Sect. 3.3,
we will explicitly construct a deformation of the pushforward functor π∗ which does
map into Conn2sl(X,D).

2.3 Spectral curves for quadratic differentials

Letϕ be a quadratic differential on (X,D), bywhichwemean ameromorphic quadratic
differential on X with at most order-two poles along D; i.e., it is a global holomor-
phic section of S2�1

X(2D). The standard reference is [20]; see also [3, §§2,3]. By the
Riemann–Roch Theorem,

dimH0
X

(
S2�1

X(2D)
) = 2|D| + 3gX − 3 . (3)

2.17. Quadratic residue. In any local coordinate x centred at p ∈ D, a quadratic
differential ϕ with a double pole at p is expanded as ϕ = (apx−2 + · · · ) dx2. The
coefficient ap ∈ C is a coordinate-independent quantity, called the (quadratic) residue
of ϕ at p and denoted Resp(ϕ). The residue of ϕ along D is thus a global section
a = Res(ϕ) ∈ H0

X(OD), same as what we called residue data in Sect. 2.1. There is a
quadratic residue short exact sequence:

0 S2�1
X(D) S2�1

X(2D) OD 0 .Res (4)

2.18 Lemma For any a ∈ H0
X(OD), there is a quadratic differential ϕ on (X,D) with

Res(ϕ) = a.

Proof By the Kodaira Vanishing Theorem, H1
X

(
S2�1

X(D)
) = 0, which implies that

the residue map Res : H0
X

(
S2�1

X(2D)
) → H0

X

(
OD

)
is surjective. This means that any

residue data a decorating the divisor D can be lifted to a quadratic differential ϕ. ��
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2.19. In view of (3), the only configuration (X,D) for which there is a unique quadratic
differential ϕ with specified residues is (gX, |D|) = (0, 3) (i.e., P1 with three marked
points). In this case, the three-dimensional vector space of quadratic differentials
H0
X

(
S2�1

X(2D)
)
can be parameterised by the residues α, β, γ at the three points of

D. Identifying (X,D) with (P1, {0, 1,∞}), one can show that the unique quadratic
differential with residues α, β, γ at the double poles 0, 1,∞ is

ϕ = γ z2 − (α − β + γ )z + α

z2(z − 1)2
dz2 . (5)

2.20. Generic quadratic differentials. We will say that a quadratic differential ϕ is
generic if all zeroes are simple. The subspace of generic quadratic differentials in
H0
X

(
S2�1

X(2D)
)
is obviously open dense given as the complement of a hypersurface. If

(gX, |D|) 
= (0, 3), then the space of quadratic differentials is at least one-dimensional;
but if (gX, |D|) = (0, 3), this is a condition on the residues of ϕ. One can use (5) to
calculate that the open subspace of generic quadratic differentials for (gX, |D|) = (0, 3)
is the complement of the quadratic hypersurface

{
α2 + β2 + γ 2 − 2αβ − 2αγ − 2βγ = 0

}
⊂ C3

αβγ
∼= H0

X

(
S2�1

X(2D)
)
. (6)

2.21 Lemma Let a ∈ H0
X(OD) be generic residue data. If (gX, |D|) = (0, 3), assume

in addition that a is contained in the complement of the hypersurface (6). Then there
exists a generic quadratic differential ϕ on (X,D) such that Res(ϕ) = a.

2.22 Example Consider the following examples of meromorphic quadratic differen-
tials on X := P1

z :

ϕ1 := 1
9

z2−z+1
z2(z−1)2

dz2 ,

ϕ2 := 1
9

z4+1
z2(z−1)2(z+1)2

dz2 ,

ϕ3 := e3π i/4 1615
4z4+15i z2+4

(z4+1)2
dz2 .

The quadratic differential ϕ1 is of the form (6) with α = β = γ = 1/9. They
respectively have double poles along D1 := {0, 1,∞}, D2 := {0,±1,∞}, and D3 :={
e±π i/4, e±3π i/4

}
. Each quadratic residue ofϕ1 andϕ2 is 1/9; each quadratic residue of

ϕ3 is eπ i/4. The quadratic differential ϕ1 has two simple zeros at e±π i/3. The quadratic
differentials ϕ2, ϕ3 both have four simple zeros; they are respectively e±π i/4, e±3π i/4

and ± 1
2e

π i/4,±2e3π i/4. Consequently, all three of these quadratic differentials are
generic with generic residues.

2.23. The log-cotangent bundle. Let Y be the total space of �1
X(D), sometimes called

the log-cotangent bundle, and let p : Y → X be the projection map. Like the usual
cotangent bundle, the log-cotangent bundle Y has a canonical one-form, which can be
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constructed as follows. Let θ ∈ H0(Y, p∗�1
X(D)

)
be the tautological section. Then the

fibre product

A p∗TX(−D)

TY p∗TX ,

�

p∗

exists in the category of vector bundles, because p : Y → X is a surjective submer-
sion. Unravelling the definition of the fibre product, we find that A consists of all
vector fields on Y that are tangent to the divisor p∗D ⊂ Y; i.e., A ∼= TY(− log p∗D).
Finally, dualising the surjective map A → p∗TX(−D) yields an injective morphism
p∗�1

X(D) ↪→ �1
Y(log p∗D). The canonical one-form ηY ∈ H0(Y,�1

Y(log p∗D)
)
on Y

is then defined as the image of the tautological section θ under this map.

2.24 Example Take X = P1
z withD = {0, 1,∞}. Then�1

P1(D) has a trivialisation over

the affine z-chart given by the logarithmic one-form z−1(z − 1)−1 dz. With respect to
this trivialisation, the canonical one-form ηY is simply yz−1(z − 1)−1 dz where y is
the linear coordinate in the fibre.

2.25. The spectral curve. If ϕ is a quadratic differential on (X,D), then p∗ϕ is a
section of S2

(
�1

Y(log p∗D)
)
via p∗�1

X(D) ↪→ �1
Y(log p∗D). The spectral curve of ϕ

is the zero locus in Y of the section η2Y − p∗ϕ ∈ S2
(
�1

Y(log p∗D)
)
:

Σ := Zero
(
η2Y − p∗ϕ

)
. (7)

We denote by π : Σ → X the restriction to Σ of the canonical projection p : Y → X.
We also denote the ramification divisor by R ⊂ Σ and the branch divisor by B ⊂ X.
As a double cover, Σ is equipped with a canonical involution σ : Σ → Σ.

If ϕ is generic, then Σ is embedded in Y as a smooth divisor, and the projection
π : Σ → X is a simply ramified double cover, branched exactly at the zeroes of ϕ,
and trivial over the points of D. Its genus is gΣ = |D| + 4(gX − 1) + 1. (see, e.g., [1,
remark 3.2]). Using the Riemann–Hurwitz formula, the number of ramification points
|R| of π , which is the same as the number of zeroes |B| of ϕ, is

|R| = |B| = 2|D| + 4(gX − 1) . (8)

2.26 Example For the quadratic differential ϕ1 from Example 2.22, the spectral curve
Σ has genus 0, hence is a copy of P1. If we trivialise �1

P1(D) over the affine z-

chart using the differential form z−1(z − 1)−1 dz, then Σ is given by the equation
y2 = 1

9 (z
2 − z + 1). For both quadratic differentials ϕ2 and ϕ3, the spectral curve has

genus 1, so it is an elliptic curve over P1, and it is given by y2 = 1
9 (z

4 + 1).
Notice that, although the quadratic differential ϕ1 is singular at the points 0, 1 in the

affine z-chart, its spectral curve Σ is perfectly well-behaved above these points (see
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Fig. 1 A real slice of the total
space of �1

P1 (D) over the real

line in P1
z . In blue is the spectral

curve Σ of the quadratic
differential ϕ1 from Example
2.22

Fig. 2 A real slice of the total
space of �1

P1 over the real line

in P1
z . In blue is the curve given

by the equation (y dz)2 = ϕ1,
where ϕ1 is the quadratic
differential from Example 2.22

Fig. 1). This is a manifestation of the fact that our spectral curveΣ is embedded inside
the total space of the logarithmic cotangent bundle rather than the usual cotangent
bundle. In contrast, constructing a spectral curve of ϕ1 using the same equations but
in the usual cotangent bundle yields a curve which escapes from the total space above
the points 0, 1 (see Fig. 2).

2.27. The canonical one-form. Pulling back the canonical one-form ηY to Σ yields a
differential form η with logarithmic poles along C := π−1(D), called the canonical
one-form on Σ. It satisfies η2 = π∗ϕ and σ ∗η = −η, and can therefore be thought
of as the ‘canonical square root’ of the quadratic differential ϕ. It has zeroes along
the ramification locus R, and its residues at the two preimages p± ∈ C of any point

p ∈ D satisfy Resp− η = −Resp+ η and
(
Resp± η

)2 = Resp ϕ. If the residue data
a = Res(ϕ) is generic, we can fix an order on the preimages of p:

p− ≺ p+ :⇔ Re
(
Resp− η

)
< 0 < Re

(
Resp+ η

)
. (9)

If p− ≺ p+, we shall call p− a sink pole and p+ a source pole. The divisor C is thus
decomposed equally into sinks and sources C = C− � C+.

2.4 Logarithmic connections and spectral curves

In general, connections do not have an invariant notion of eigenvalues or eigenvectors.
However, in the presence of a spectral curve, we can make sense of these notions as
follows.
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2.28. Let π : Σ → X be the spectral curve of a generic quadratic differential ϕ

with generic residue data a along D. Suppose (E,∇) ∈ Conn2X is a logarithmic sl2-
connection on (X,D) with residue data a. If p ∈ D, let ±λp be the Levelt exponents
at p, which by construction are the residues of η at the preimages p± ∈ C. Consider
the local diagonal decomposition Ep ∼= 	−

p ⊕ 	+
p .

Let z be a local coordinate on Σ centred at p± in which η is in normal form
±λp dz /z. Since Σ is unramified over p, we also use z as a local coordinate on X
centred at p. If we fix a basepoint p∗ near p, then examining the Levelt normal form
of ∇p with respect to the coordinate z we obtain germs of (multivalued) flat sections
ψ±
p which can be expressed as ψ±

p = f ±
p e±

p , where e±
p is a (univalued) generator

of 	±
p , and f ±

p is the germ of a (multivalued) function defined in the coordinate z

by f ±
p (z) = exp

(
− ∫ z

p∗ ±λp dz′ /z′
)

. The observation is that the integrand in this

expression is precisely the canonical one-form η thought of as written in the local
coordinate z near p.
2.29. To express this in a coordinate-free way, let U ⊂ X be any simply connected
open neighbourhood of p disjoint from B and all other points of D. Then U has two
disjoint preimages U± on Σ where U± contains p±. Let η± be the restriction of η to
U±, and we can think of η± as being defined on U. Define (multivalued) functions

on the punctured neighbourhood U◦ := U \ {p} by f±(q) := exp
(
− ∫ q

p∗ η±
)

. Note

that the germ of f± at p is precisely f ±
p , and that f± satisfies the differential equation

dlog f± = −η±; moreover, f± is nowhere-vanishing on U◦. Analytically continue the
solutions ψ±

p to multivalued flat sections ψ± of E over U◦, and define e± := f −1± ψ±.

These sections of E form a basis of holomorphic generators over U satisfying:

∇e± = η± ⊗ e± .

Thus, we can think of e± as an eigensection of ∇ with eigenvalue η±, and the line
subbundles 	±

U ⊂ E |U that they generate determine the flat eigen-decomposition of
(E,∇) over U that uniquely continues the local diagonal decomposition of Ep:

E |U ∼−→ 	−
U ⊕ 	+

U with ∇ � ∂− ⊕ ∂+ .

2.30. More invariantly, let Ũ ⊂ Σ be any simply connected neighbourhood of a pole
p ∈ C = π−1(D) ⊂ Σ which is disjoint from R and all other points of C. Let f be
any (multivalued) solution of the differential equation dlog f = −η defined over the
punctured neighbourhood Ũ

∗ := Ũ \ {p}. Then the same calculation as above shows
that the pullback π∗E over Ũ has a section e which is an eigensection of π∗∇ with
eigenvalue η:

π∗∇e = η ⊗ e .



Abelianisation of Logarithmic sl2-Connections Page 13 of 35 78

Fig. 3 A horizontal strip on X (left) and onΣ (right). Topologically an open disc, the boundary consists of
exactly four critical leaves of F or

→
F, two points in D or C (not necessarily distinct), and two points in B or R

(necessarily distinct). The preimage of a horizontal strip on X is a pair of horizontal strips on Σ. Notation:
points in B or R are denoted by ; points in D or C are denoted by

2.5 The Stokes graph

Fix some generic residue data a. If (gX, |D|) = (0, 3), assume in addition that a
is contained in the complement of the hypersurface (6). For any generic quadratic
differential ϕ on (X,D) with residues a, let Σ be its spectral curve with canonical
one-form η.
2.31. The horizontal foliation. The curves X and Σ, viewed as real two-dimensional
surfaces, are naturally equipped with singular foliations F and

→
F, respectively, with

the property that
→
F

π−→ F is the orientation double cover of F. These foliations are
well-known (see, e.g., [15,20]), and we only recall what is necessary (see [3, §3] for a
concise survey). The foliation

→
F can be defined as the integration of the real distribution

ker
(
Im(η)

)
inside the real tangent bundle of Σ. Concretely, the local equation for a

leaf passing through a point p is given by Im
( ∫ z

p η
)

= 0. Evidently, this foliation

is singular at the poles C = π−1(D) and at the ramification points R. The foliation
F, defined as the image of

→
F under π , is often called the horizontal foliation for the

quadratic differential ϕ; it is singular at the poles D and the branch points B. A leaf of
F (or

→
F) is critical if one of its endpoints belongs to B (or R). A critical leaf of F is a

saddle trajectory if both of its endpoints belong to B.
2.32. If the horizontal foliation F has no saddle trajectories, then by [3, Lemma 3.1]
the open real surface X \ (D ∪ B ∪ �), where � is the union of all critical leaves of
F, decomposes into a finite disjoint union of topological open discs, called horizontal
strips (Fig. 3). Similarly, the open real surface Σ \ (C ∪ R ∪ →

�), where
→
� is the union

of all critical leaves of
→
F, is also a finite disjoint union of horizontal strips (Fig. 3).

2.33. Saddle-free quadratic differentials and very generic residues. If the horizon-
tal foliation F has no saddle trajectories, then the quadratic differential ϕ is said to be
saddle-free. It follows from [3, Lemma 4.11] that the subset of quadratic differentials
which are saddle-free is open dense. Note that “saddle-free” may be a condition on
the residue data a. For example, if (gX, |D|) = (0, 3), the quadratic differential ϕ with
given residues a is unique (given by (5)) and may fail to be saddle-free. In this case,
there are only two ramification points r± ∈ Σ, so a saddle trajectory occurs if and

only if the canonical one-form η satisfies Im
( ∫ r+

r− η
)

= 0 for a path of integration
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Fig. 4 From left to right: plot of critical trajectories of quadratic differentials ϕ1, ϕ2, ϕ3 from Example
2.22. In plots 1 and 2, the trajectories that escape the picture frame tend to infinity

in Σ \ C ∼= P1 \ {6points}. If b± ∈ B are the two branch points, then upon identifying
X ∼= P1 and choosing a branch cut in order to write η with

√
ϕ, where ϕ is given by

(5), this integral can be explicitly computed in terms of logarithms and it defines a
closed real-analytic subset of C3

αβγ . It therefore determines an explicit condition on
the residues a = {α, β, γ } for the unique ϕ to be saddle-free. We will say that residue
data a is very generic if there exists a generic saddle-free quadratic differential ϕ with
residues a.

Ultimately, however, this apparent rigidity in our construction is artificial and can
be removed by using a more topological argument. We will study this as well as other
non-generic situations elsewhere.

2.34 Example All three quadratic differentials ϕ1, ϕ2, ϕ3 from Example 2.22 are
saddle-free. The true plots of their critical trajectories are presented in Fig. 4.

2.35. The Stokes and spectral graphsNowwe define themain combinatorial gadgets
in our construction. Let ϕ be a generic and saddle-free quadratic differential.

2.36 Definition (Stokes graph, spectral graph) The Stokes graph � is the graph on X
whose vertices are D ∪ B and whose edges are the critical leaves of F. The spectral
graph

→
� is the oriented graph on Σ whose vertices are C∪ R and whose edges are the

critical leaves of
→
F.

Thus,
→
�

π→ � is a (ramified) orientation double cover of graphs. Each face of �

and
→
� is a horizontal strip. We refer to the edges and the faces of � as Stokes rays

and Stokes regions; and to the edges and the faces of
→
� as spectral rays and spectral

regions. The graphs �,
→
� are bipartite with bipartitions �0 = D ∪ B and

→
�0 = C ∪ R.

The polar vertices C are further divided into sinks and sources (cf. 2.27):

• sink vertices C−: those where Re(Res η) < 0;
• source vertices C+: those where Re(Res η) > 0.

If p ∈ D, we will always denote its preimages in C by p−,p+ where p± ∈ C±. They
satisfy the relation σ(p±) = p∓. All spectral rays incident to a sink/source are oriented
into/out of the sink/source, so spectral rays

→
�1 are divided by parity:

• positive spectral rays
→
�+
1 : polar vertex is a source;

• negative spectral rays
→
�−
1 : polar vertex is a sink.
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Fig. 5 Every spectral ray and every Stokes ray has a polar vertex and a ramification/branch vertex. Depicted
are the pair of opposite spectral rays α+, α− on Σ in the preimage of the Stokes ray α on X. Notation:We
index Stokes rays by α, β, . . .; the corresponding positive spectral rays are denoted by α+, β+, . . . and the
negative ones by α−, β−, . . .

2.37. Spectral rays always occur in pairs: the involution σ maps a spectral ray to a
spectral ray of opposite parity. Stokes rays have no natural notion of parity; instead,
the preimage of every Stokes ray α ∈ �1 is a pair of opposite spectral rays α+ ∈→
�+
1 , α− ∈ →

�−
1 (see Fig. 5). The graphs �,

→
� are squaregraphs: every Stokes region is

a quadrilateral with two branch vertices and two polar vertices, and its boundary is
made up of four Stokes rays (Fig. 6).

Similarly, every spectral region is a quadrilateral with two ramification vertices and
two polar vertices (one of which is a source and one is a sink), and its boundary is
made up of four spectral rays (two of which are positive and two are negative). We
index them as described in Fig. 6:

�2 =
{
I = {

i, i ′
} ∣

∣
∣ i, i ′ ∈ →

�2 with σ(i) = i ′
}

.

Each branch point has three incident Stokes rays and three incident Stokes regions,
but each Stokes region has two branch vertices, so there are 3|B| Stokes rays and 3

2 |B|
Stokes regions in total. So, using (8),

∣
∣�1

∣
∣ = 6|D| + 12(gX − 1) and

∣
∣�2

∣
∣ = 3|D| + 6(gX − 1) (10)

∣
∣
→
�1

∣
∣ = 12|D| + 24(gX − 1) and

∣
∣
→
�2

∣
∣ = 6|D| + 12(gX − 1) . (11)

Note also that
∣
∣
→
�±
1

∣
∣ = 1

2

∣
∣
→
�1

∣
∣ = 6|D| + 12(gX − 1) = ∣

∣�1
∣
∣.

2.38 Example Figure 4 shows a plot of the Stokes graph of the quadratic differential
ϕ1 from Example 2.22. Figure 7 shows a more schematic rendering.

Fig. 6 Two spectral regions i, i ′ in the preimage of the Stokes region I = {
i, i ′

}
. Here, r1, r2 ∈ R are the

ramification points above the branch points b1,b2 ∈ B. Notation:We index faces of
→
� by letters i, j, k, . . .,

though if two faces are both preimages of the same Stokes region I , we will usually call them i, i ′. A face
of �, whose preimage consists of faces i, i ′ of →

�, is indexed by the unordered pair I = {
i, i ′

}
. Notice that

if a Stokes region I = {
i, i ′

}
has polar vertices p,q ∈ D, and if the spectral region i has polar vertices

p+,q−, then the spectral region i ′ has polar vertices p−,q+
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∞−

∞+
1−

0+

1+

0−

r1 r2
π−→ 0 1

∞

b1

b2

Fig. 7 Right: a schematic picture of the Stokes graph � (orange) of the quadratic differential ϕ1 from
Example 2.22. The point at infinity has been blown up to an orange bounding circle. Left: the corresponding
spectral graph

→
� on the spectral curveΣ ∼= P1. The preimages of the points 0, 1,∞ carry a label according

to whether the vertex is a sink or a source

2.39. The Stokes open cover. The graphs �,
→
� define canonical acyclic open covers

(i.e., every finite intersection is either empty or a disjoint union of contractible open
sets) of the punctured curves

X◦ := X \ (D ∪ B) and Σ◦ := Σ \ (C ∪ R)

by enlarging all edges and faces as follows. For every face I ∈ �2 and every edge
α ∈ �1, let UI and Uα be the germs of open neighbourhoods in X◦ of the face I and
the edge α, respectively. We continue calling them Stokes regions and Stokes rays. We
define spectral regions Ui and spectral rays U±

α for all i ∈ →
�2, α± ∈ →

�1 in the same
way. We obtain what we call Stokes open covers of X◦ and Σ◦, respectively:

U� := {
UI

∣
∣ I ∈ �2

}
and U→

� := {
Ui

∣
∣ i ∈ →

�2
}

. (12)

If p is a vertex of UI , then intersecting UI with the infinitesimal disc Up around p can
be seen as the germ of a sectorial neighbourhood of p (or a disjoint union of two).
In fact, the infinitesimal punctured disc U∗

p centred at p is covered by such sectorial
neighbourhoods whose double intersections are the Stokes rays incident to p.

2.40. Any double intersection UI ∩ UJ of Stokes regions is either a single Stokes ray
or a pair of disjoint Stokes rays with the same polar vertex but necessarily different
branch vertices, and there are no nonempty triple intersections. Sowe define the nerves
of these covers by

U̇� := {
Uα

∣
∣ α ∈ �1

}
and U̇→

� := {
U+

α ,U−
α

∣
∣ α ∈ �1

}
. (13)

We adopt the following notational convention: if Uα is a Stokes ray contained in the
double intersection UI ∩ UJ , then UI ,UJ are ordered such that going from UI to UJ

the Stokes ray α is crossed anti-clockwise around the branch vertex of Uα .
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∞−

∞+
1−

0+

1+

0−

r1 r2
π−→ 0 1

∞

b1

b2

Fig. 8 The Stokes and spectral regions from Fig. 7 are appropriately coloured to showwhich pair of spectral
regions lie in the preimage of which Stokes region

2.41. The restriction of the projection π : Σ → X to any spectral region Ui , any
spectral ray U±

α , or any infinitesimal disc U±
p around a pole p± is an isomorphism

respectively onto its image Stokes region UI = U{i,i ′}, Stokes ray Uα , or infinitesimal
disc Up around the pole p; we denote these restrictions as follows:

πi : Ui
∼−→ UI and π±

α : U±
α

∼−→ Uα and π±
p : U±

p
∼−→ Up .

2.42 Example For the differential ϕ1 from Example 2.22, the Stokes open covers of
X◦ = P1 \ {0, 1,∞} and Σ◦ = P1 \ {0±, 1±,∞±} are illustrated in Fig. 8.

2.6 Transverse connections

2.43. If UI is a Stokes region with I = {
i, i ′

}
, denote its polar vertices by p,p′ ∈

D. Given a connection (E,∇) ∈ Conn2X, consider its local diagonal decompositions
Ep ∼= 	−

p ⊕ 	+
p and Ep′ ∼= 	−

p′ ⊕ 	+
p′ . Let us analytically continue the flat abelian

connection germs 	−
p ,	−

p′ to UI using the flat structure on E :

(	i , ∂i ) := the unique continuation of(	−
p , ∂−

p )toUI ,

(	i ′ , ∂i ′) := the unique continuation of (	−
p′ , ∂

−
p′ ) toUI .

(14)

2.44.Transversality ofLevelt filtrations.These continuations equip the vector bundle
E over UI with a pair of flat filtrations E•

p,I = (
	i ⊂ EI

)
and E•

p′,I = (
	i ′ ⊂ EI

)
,

where E•
p,I , E•

p′,I are the unique continuations to the Stokes region UI of the Levelt

filtrations E•
p = (

	−
p ⊂ Ep

)
, E•

p′ = (
	−

p′ ⊂ Ep′
)
.
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α

β

p q b

Fig. 9 A Stokes region UI whose polar vertices coincide. The subset of X bounded by the Stokes rays α, β

in the complement of UI must contain another point q ∈ D, for otherwise all Stokes rays incident to the
branch point b are also incident to p. But then the complement of � has a connected component which is
not a horizontal strip contradicting [3, Lemma 3.1]. Generically, the monodromy of ∇ around the pole q
does not preserve the Levelt filtration coming from p

2.45 Definition (Transversality with respect to �) We will say that a connection
(E,∇) ∈ Conn2X is transverse with respect to � if for every Stokes region UI the
two filtrations E•

p,I , E•
p′,I are transverse: E•

p,I � E•
p′,I .

In other words, the two flat line subbundles	i ,	i ′ ⊂ EI are required to be distinct.
Such transverse connections form a full subcategory Conn2X(�) ⊂ Conn2X.

That such connections exist is obvious: one can, for example, choose a point in
each Stokes region UI and connect it to some fixed basepoint by an arbitrary path
that avoids D. Then �-transversality is equivalent to avoiding finitely many algebraic
conditions. In fact, the same argument shows that (with respect to an appropriate
topology) the subset of �-transverse connections is open dense. We do not need these
details here, and only mention that these and other moduli-theoretic considerations
will be described in great detail in a future publication.

2.46 Proposition (Semilocal diagonal decomposition of transverse connections) If
(E,∇, M) ∈ Conn2X(�), then the restriction EI := E |UI

to any Stokes region UI

has a canonical flat decomposition

EI ∼−→ 	i ⊕ 	i ′ with ∇ � ∂i ⊕ ∂i ′ ,

where (	i , ∂i ) and (	i ′ , ∂i ′) are defined by (14). Moreover, the sl2-structure M defines
a flat skew-symmetric isomorphism MI : 	i ⊗ 	i ′

∼−→ OUI .

The main construction in this paper (Theorem 3.3) is an equivalence between
Conn2X(�) and a certain category of odd abelian connections on the spectral curve
Σ.
2.47. Transversality over Stokes rays. Suppose Uα is a Stokes ray contained in the
double intersection UI ∩UJ of two adjacent Stokes regions. Then E has two diagonal
decompositions over Uα:

EI ∼−→ 	i ⊕ 	i ′ , EJ ∼−→ 	 j ⊕ 	 j ′ . (15)

Let p′ ∈ D be the common polar vertex of UI ,UJ . Then 	i ′ ,	 j ′ are continuations
of the same line bundle germ 	−

p′ ⊂ Ep, so 	i ′ = 	 j ′ over the Stokes ray Uα .
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With respect to this pair of decompositions, the identity map on E has the following
upper-triangular expression, which will be exploited throughout our construction in
this paper:

(
EI id== EJ

)∣
∣
∣
Uα

=
[
1 �α

0 gα

]

:
	i ′ 	 j ′

	i 	 j

⊕
1

⊕
gα

�α . (16)

2.48 Remark Note that in the definition of transversality with respect to �, it is not
required that the two polar vertices p,p′ of UI be different. If p = p′ it may seem
that no connection ∇ can be transverse with respect to � for such a Stokes graph, but
this is not the case. This is because the Stokes region UI defines two disjoint sectorial
neighbourhoods of p, so the two analytic continuations	i ,	i ′ ⊂ EI of the same germ
	−

p are generically not the same, as explained in Fig. 9.

3 Abelianisation

3.1.As before, let (X,D) be a smooth compact curve equipped with a nonempty set of
marked points D such that |D| > 2 − 2gX. Suppose D is decorated with very generic
residue data a in the sense of Definition 2.3 and 2.33. We are studying the category

Conn2X = Conn2sl(X,D; a)

of logarithmic sl2-connections on (X,D) with residue data a.
Ourmethod is to choose a generic saddle-free quadratic differentialϕ on (X,D)with

residues a. Let π : Σ → X be the spectral curve of ϕ, and let � be the corresponding
Stokes graph on X. Consider the subcategory of connections that are transverse with
respect to � in the sense of Definition 2.45:

Conn2X(�) ⊂ Conn2X .

3.2. The main result of this paper is that Conn2X(�) is equivalent to a category of odd
abelian connections on the spectral curve Σ as follows. For every p ∈ D, let ±λp ∈ C
be the Levelt exponents of the residue data a at p (arranged such that Re(λp) > 0).
Put C := π−1(D), let C± be as in 2.35, let R ⊂ Σ be the ramification divisor of π , and
define abelian residue data along C ∪ R as follows:

λ := {±λp
∣
∣ p± ∈ C±

} ∪ {−1/2
∣
∣ r ∈ R

}
. (17)

Consider the category of odd abelian logarithmic connections on (Σ,C ∪ R) with
residues λ, for which we use the following shorthand notation:

Conn1Σ := Conn1odd(Σ,C ∪ R; λ) .
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3.3 Theorem (Abelianisation of logarithmic sl2-connections)There is a natural equiv-
alence of categories Conn2X(�) ∼= Conn1

Σ
.

Expressed more explicitly, this equivalence is

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(E,∇, M)

logarithmic �-transverse
sl2-connections on(X,D)

with generic Levelt exponents{±λp
∣
∣ p ∈ D

}

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(L, ∂, μ)

odd logarithmic abelian
connections on (Σ,C ∪ R)

with residues

{
− 1

2 along R

±λp at p± ∈ C±

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

∼= .

We will prove this theorem by constructing a pair functors,

Conn2X(�) Conn1
Σ

πab
�

π�
ab

.

called abelianisation and nonabelianisation with respect to �; they are constructed
in Sects. 3.1 and 3.3, respectively. In Proposition 3.21, we prove that they form an
equivalence of categories.

3.1 The abelianisation functor

In this subsection, given an sl2-connection (E,∇, M) ∈ Conn2X(�), we construct an
abelian connection (L, ∂, μ) ∈ Conn1

Σ
, and show that this construction is functorial.

The idea is to extract the diagonal decompositions of E at the poles of ∇, analytically
continue them to the spectral regions on the spectral curve, and then glue them into a
flat line bundle using canonical isomorphisms that arise due to transversality.

Definition at the poles. Given p ∈ D, consider the local diagonal decomposi-
tion Ep ∼−→ 	−

p ⊕ 	+
p from Proposition 2.8. We define (L, ∂) over the infinitesimal

disc U±
p around p± to be the pullback of the connection germ (	±

p , ∂±
p ):

(L±
p , ∂±

p ) := (π±
p )∗

(
	±

p , ∂±
p

)
. (18)

Thus, (L±
p , ∂±

p ) is the germof a logarithmic abelian connection atp± with residue±λp.
It also follows that (π∓

p )∗	±
p = σ ∗L±

p , so the pullback of the flat skew-symmetric
isomorphism Mp : 	−

p ⊗ 	+
p

∼−→ OX,p to the disc U±
p defines a flat skew-symmetric

isomorphism
μ±
p := (π±

p )∗Mp : L±
p ⊕ σ ∗L∓

p
∼−→ OU±

p
. (19)

Definition on spectral regions. Let Ui ⊂ Σ be a spectral region, and let p−
be its sink vertex. We define (L, ∂) by uniquely continuing the germ L−

p using the flat
structure on π∗E :

(Li , ∂i ) := the unique continuation of(L−
p , ∂−

p )toUi .
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U−
α

U+
α

p−p+
r

Uj

Ui Uj′

Ui′

Fig. 10 U±
p is a pair of opposite spectral rays, r is their common ramification vertex, and p± are their

respective polar vertices. Ui ,U j are a pair of oriented Stokes regions which have U+
α in their intersection,

arranged such that the ordered pair (Ui ,U j ) respects the cyclic anti-clockwise order around r. Let Ui ′ :=
σ(Ui ),U j ′ := σ(U j ), so U−

α is a connected component of Ui ′ ∩ U j ′

Evidently, (Li , ∂i ) := π∗
i (	i , ∂i ) for	i defined by (14). Furthermore, ifUi ′ = σ(Ui ),

then π∗
i 	i ′ = σ ∗Li ′ for	i ′ defined by (14). So if I = {

i, i ′
}
, the pullback toUi of the

sl2-structure MI from Proposition 2.46 defines a flat skew-symmetric isomorphism

μi := π∗
i MI : Li ⊗ σ ∗Li ′

∼−→ OUi . (20)

Gluing over spectral rays. For every α ∈ �1, consider the pair of opposite
spectral rays α± ∈ →

�±
1 , and let p± ∈ C± be their respective polar vertices. Let

UI = U{i,i ′},UJ = U{ j, j ′} ⊂ X be the pair of adjacent Stokes regions which intersect
along the Stokes ray Uα as described in Fig. 10.

By transversality with respect to �, the vector bundle E has two diagonal decom-
positions over the Stokes ray Uα:

EI ∼−→ 	i ⊕ 	i ′ , EJ ∼−→ 	 j ⊕ 	 j ′ . (21)

Then	i ′ ,	 j ′ are continuations of the same line bundle germ	−
p′ ⊂ Ep, so	i ′ = 	 j ′

over the Stokes ray Uα . The identity map on E , written with respect to this pair of
decompositions, is the upper triangular matrix (16). We therefore define

(
g−
α : Li ′

∼−→ L j ′
)

:= (π−
α )∗

(
1 : 	i ′ == 	 j ′

)
,

(
g+
α : Li

∼−→ L j

)
:= (π+

α )∗
(
gα : 	i

∼−→ 	 j

)
.

(22)

The upper-triangular form (16) of the identity map on E also implies that the gluing
maps g−

α , g+
α intertwine the pullbacks μi , μ j and μi ′ , μ j ′ , respectively.

Gluing near the poles. For every p ∈ D, let U±
p ⊂ Σ be the infinitesimal disc

neighbourhoods of p±. Consider a Stokes region UI = U{i,i ′} such that Ui is incident
to p+ and Ui ′ is incident to p−. First, the intersection of Ui ′ with U−

p is a sectorial
neighbourhood of p−, and the line bundle Li ′ is the unique continuation of the germ
L−
p , so identity is the gluing map here. On the other hand, the intersection of Ui with
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U+
p is a sectorial neighbourhood of p+, over which by Propositions 2.8 and 2.46 we

have two decompositions Ep ∼−→ 	−
p ⊕ 	+

p and EI ∼−→ 	i ⊕ 	i ′ . Then the obvious
isomorphism Ep ∼−→ EI over this double intersection implies

	+
p

∼−→ (
	−

p ⊕ 	+
p
)/

	−
p

∼−→ Ep
/
	−

p
∼−→ EI

/
	i ′

∼−→ (
	i ⊕ 	i ′

)/
	i ′

∼−→ 	i .
(23)

The pullback of this map is the desired gluing map L+
p

∼−→ Li . These gluing maps
satisfy the cocycle condition, because if Ui and U j are two adjacent spectral regions
incident to p+, then the identitymap EI ∼−→ EJ over the intersection of Stokes regions
UI = U{i,i ′} andUJ = U{ j, j ′} has the upper-triangular form (16), and therefore induces
an isomorphism EI

/
	i ′

∼−→ EJ
/
	 j ′ . The isomorphism 	i ⊕ 	i ′

∼−→ 	−
p ⊕ 	+

p
given by the identity on E is unipotent. So its determinant 	i ⊗ 	i ′

∼−→ 	−
p ⊗ 	+

p
intertwines MI and Mp, and therefore also μi and μ+

p as well as μi ′ and μ−
p .

Extension over ramification. This completes the construction of (L, ∂, μ) on
the spectral curve Σ away from the ramification divisor R. Deligne’s construction [5,
pp. 91–96] gives an extension over R with logarithmic poles and residues −1/2, and
it is easy to check that for any such extension, μ extends uniquely to an odd structure.
Deligne extensions are unique only up to a unique isomorphism (see also [2, Theorem
IV.4.4]), but it is possible to fix this ambiguity as follows (details are not important for
us here and will appear elsewhere). If r ∈ R is any ramification point and b = π(r) is
the corresponding branch point, let UI ,UJ ,UK be the three Stokes regions incident
to b. Then the germ Lr of L at r is the pullback of the line bundle germ 	b at b which
is defined as the kernel of the canonical map 	I ⊕ 	J ⊕ 	K −→ Eb. As a result, we
obtain an abelian connection (L, ∂, μ) ∈ Conn1

Σ
.

Finally, functoriality of our construction readily follows from the fact that mor-
phisms of connections necessarily preserve diagonal decompositions.

3.4 Proposition The assignment (E,∇, M) �→ (L, ∂, μ) extends to a functor

πab
� : Conn2X(�) −→ Conn1Σ .

We callπab
� the abelianisation functor, and the image (L, ∂, μ) of (E,∇, M) under

πab
� the abelianisation of (E,∇, M) with respect to �. The following proposition

summarises someproperties of abelianisation all ofwhich are immediate consequences
of the construction.

3.5 Proposition (Properties of abelianisation) Let (E,∇, M) ∈ Conn2X(�), and let
(L, ∂, μ) ∈ Conn1

Σ
be its abelianisation.

(1) deg(L) = − 1
2 |R| = − deg(π∗OΣ).

For any p ∈ D, let Up be the infinitesimal disc around p. Let Ep ∼−→ 	−
p ⊕ 	+

p be
the local diagonal decomposition (Proposition 2.8). Then there is a canonical flat
isomorphism

(2) π∗Lp = π∗L|Up
∼−→ 	−

p ⊕ 	+
p

∼−→ Ep.
Let U±

p be the infinitesimal disc around the preimage p± ∈ C of p. Recall the notation
π±
p := π |U±

p
: U±

p
∼−→ Up. Then there are canonical flat isomorphisms
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(3) Lp± = L|U±
p

∼−→ (π±
p )∗	±

p =: L±
p .

LetUI ⊂ X be a Stokes regionwith polar vertices p, p′ ∈ D, and let EI ∼−→ 	i ⊕	i ′ be
the semilocal diagonal decomposition of E over UI (Proposition 2.46), where 	i ,	i ′
are as in (14). Then there is a canonical flat isomorphism

(4) π∗L|UI
∼−→ 	i ⊕ 	i ′

∼−→ EI .
Let Ui ,Ui ′ be the spectral regions above UI incident to p−, p′− ∈ C, respectively,
and recall the notation πi := π |Ui : Ui

∼−→ UI . Then there are canonical flat
isomorphisms

(5) Li = L|Ui ∼−→ π∗
i 	i and Li ′ = L|Ui ′ ∼−→ π∗

i ′	i ′ .

Finally, recall that η is the canonical one-form on the spectral curve Σ.

(6) The abelian connection ∂ − η on the abelianisation line bundle L is holomorphic
alongC; it has logarithmic poles only along the ramification divisor Rwith residues
−1/2.

The following proposition, which readily follows from the discussion in Sect. 2.4,
expresses the sense in which the abelianisation of connections is the analogue of
abelianisation of Higgs bundles.

3.6 Proposition (Spectral properties of abelianisation) For any simply connected open
subset U ⊂ Σ \ R, the abelianisation line bundle L has a generator e which is an
eigensection for ∂ with eigenvalue η (in the sense of Sect. 2.4); i.e., it satisfies the
following equation:

∂e = η ⊗ e .

Moreover, over any spectral region Ui ⊂ Σ, there is a canonical flat inclusion L ↪→
π∗E with respect to which this section e is an eigensection for π∗∇ with eigenvalue
η:

π∗∇e = η ⊗ e .

3.7 Example Let us illustrate the above construction in the simplest possible explicit
example. Consider a logarithmic sl2-connection (E,∇) from Example 2.5 with d = 3.
Namely, X = P1, E = O⊕2

P1 , and D := {0, 1,∞}. Let A1, A2 be any pair of sl(2,C)-
matrices, both with eigenvalues ±1/3, and let ∇ be given by the formula (1). Then
the ∇ has Levelt exponents ±1/3 at each pole.

To abelianise ∇, we must choose a generic saddle-free quadratic differential on
(X,D)with residues 1/9 at each point ofD. One such choice is the quadratic differential
ϕ1 from Example 2.22. Its spectral curve Σ was described in Example 2.26, its Stokes
and spectral graphs were detailed in Fig. 7, and the relevant Stokes open cover was
presented in Fig. 8. Finally, in Fig. 11, we illustrate the abelianisation construction by
displaying which Levelt line subbundle is considered on which Stokes and spectral
region.
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Fig. 11 Illustration of the construction of the abelianisation line bundleL for a connection on (P1, {0, 1, ∞})
from Example 2.5 using the quadratic differential ϕ1 from auto 2.22

3.2 TheVoros cocycle

This section introduces the main ingredient in constructing the deablianisation functor
π�
ab, the Voros cocycle. Let (L, ∂, μ) be its abelianisation of (E,∇, M) ∈ Conn2X(�).

3.8. The canonical nonabelian cocycle V . Let Uα ∈ �1 be a Stokes ray on X with
polar vertex p ∈ D and branch vertex b ∈ B. It is a component of the intersection
of exactly two Stokes regions UI ,UJ (see Fig. 12). Consider the pair of canonical
identifications given by Proposition 3.5(4):

ϕI : E |UI
∼−→ π∗L|UI

and ϕJ : E |UJ
∼−→ π∗L|UJ

. (24)

Over the Stokes ray Uα , their ratio yields a flat automorphism of (π∗L, π∗∂):

Vα := ϕJ ◦ ϕ−1
I ∈ Aut

(
π∗L|Uα

)
(25)

where π∗L denotes the associated local system ker(π∗∂) on X◦. The nerve of the cover
U� of X◦ consists of Stokes rays, so we obtain aČech 1-cocycle V with values in the
local system Aut(π∗L):

V := {
Vα

∣
∣ α ∈ �1

} ∈ Ž1(U�,Aut(π∗L)
)
. (26)

3.9 Lemma If (E,∇, M) ∈ Conn2X(�), let (L, ∂, μ) be its abelianisation, and consider
the pushforward π∗L = π∗πab

� E . If V is the cocycle (26), then there is a canonical
isomorphism

V · π∗πab
� E ∼−→ E .
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Proof The action of the cocycle V on the pushforward bundle π∗L is a new bundle
E ′ := V · π∗L. Explicitly, the local piece E ′

I over a Stokes region UI is defined to be
π∗L|UI

, and the gluing data over a Stokes ray Uα ⊂ UI ∩ UJ is given by Vα:

E ′
I

∣
∣
Uα

E ′
J

∣
∣
Uα

π∗L|Uα
π∗L|Uα

.

∼

∼
Vα

But this commutative square together with (24) and (25) imply that E and E ′ are
canonically isomorphic. ��

3.10. Transposition paths. Let us explicitly compute each automorphism Vα with
respect to a pair of canonical decompositions of π∗L over the Stokes ray Uα . Through
the isomorphisms π∗L|UI

∼−→ 	i⊕	i ′ and π∗L|UJ
∼−→ 	 j⊕	 j , the automorphism

Vα = ϕJ ◦ϕ−1
I overUα is just the identity on E written as amap	i ⊕	i ′ → 	 j ⊕	 j ′ .

Notice that 	i ′ = 	 j ′ because they are continuations of the same line bundle germ at
p, so using (16) we find:

Vα = idE =
[
1 �α

0 gα

]

:
	i ′ 	 j ′

	i 	 j

⊕
1

⊕
gα

�α (27)

Now, we can decompose the map �α : 	i → 	 j ′ through canonical inclusions,
projections, and the upper-triangular expressions (16) for the identity on E as follows:

�α =
⎛

⎝	i −→
	i ′ 	k′

	i 	k

⊕ ⊕ −→ 	k −→
	k 	 j ′

	k′ 	 j

⊕ ⊕ −→ 	 j ′

⎞

⎠

We interpret the first and second upper-triangular expressions as the identity maps on
E over Uγ and Uβ , respectively. Since all these bundle maps are ∇-flat, the map �α

can be interpreted as the endomorphism of the fibre of E over a point in Uα obtained
as the composition of ∇-parallel transports PI , PK , PJ along paths δI contained in
UI from Uα to Uγ , followed by δK contained in UK from Uγ to Uβ , followed by δJ
contained in UJ from Uβ back to Uα (see Fig. 12).

Explicitly:

(
	i 	 j ′

) (
	i 	i 	k 	k 	 j ′ 	 j ′

)
�α = PI 1 PK g−1

β PJ .

The key idea, which goes back to Gaiotto–Moore–Neitzke [8], is to notice that this
expression has an interpretation as a parallel transport for the abelian connection ∂ on
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α−α+

β+γ−

γ+β−

δi

δk

δj′

r

Ui Uj′

Uk

Uj

Uk′

Ui′

p′′
+p′

−

p+ p−
π−→ α

β

γ
δI

δK

δJ

b

UJ

UI

UK
p

p′

p′′

Fig. 12 UI ,UJ ,UK ⊂ X are the Stokes regions with I = {
i, i ′

}
, J = {

j, j ′
}
, K = {

k, k′}. The stokes
rays Uα,Uγ ,Uγ are indicated by α, β, γ (same for the spectral rays). b ∈ B is the branch point and r ∈ R
is the ramification point above b

the spectral curve. Indeed, if we fix points p,p′,p′′ in Uα,Uγ ,Uβ as shown in Fig. 12,
then through the canonical identification of fibres using Proposition 3.5(4), we have:

(
	i |p 	 j ′

∣
∣
p

) (
	i |p 	i |p 	k |p 	k |p 	 j ′

∣
∣
p 	 j ′

∣
∣
p

)

(
L|p+ L|p−

) (
L|p+ L|p′− L|p′− L|p′′+ L|p′+ L|p−

)

�α
∼= ∼= = PI

∼=

1

∼=

PK

∼=

g−1
β

∼=

PJ

∼= ∼=

�+
α

= pi (g−
γ )−1 pk (g+

β )−1 p j ′

.

Here,�+
α is defined by the diagram; we used (22), and pi , pk , p j ′ are ∂-parallel transports along

the paths δi , δk , δ j ′ which are the lifts of δI , δK , δJ as shown in Fig. 12. Since g+
β , g−

γ are precisely
the gluing maps for L, we find that �+

α is nothing but the parallel transport of ∂ along the clockwise
semicircular path δ+

p := δ j ′δkδi (our paths compose the same way as maps: from right to left)
around the ramification point r starting at p+ and ending at p−. The Stokes graph determines such
sheet transposition paths on all Stokes rays: i.e., for any p ∈ Uα , the path δ+

p on Σ is the unique lift
starting at p+ of a clockwise loop δp based at p ∈ Uα around the branch point b (see Fig. 13).

3.11 Lemma For every Stokes ray Uα ⊂ X and every point p ∈ Uα , the automorphism Vα,p of the
fibre π∗L|p is:

Vα,p =
[
1 �+

α,p
0 1

]

:
L|p− L|p−

L|p+ L|p+

⊕ ⊕�+
α,p , �+

α,p := Par
(
∂, δ+

p

)
. (28)

The correspondence p+ �→ δ+
p is a well-defined map δ+

α : U+
α → Ω1(Σ

◦
), where Ω1(Σ

◦
) is

the fundamental groupoid of the punctured spectral curve, which is the set of paths on Σ◦ = Σ \ R
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α−α+

δ+p

rp+ p−
π−→

α
δp

b
p

Fig. 13 The sheet transposition path δ+
p associated with the positive spectral ray α+. Its projection onto X

is a clockwise loop δp around the branch point b

considered up to homotopy with fixed endpoints. If we define a flat bundle isomorphism

�+
α := Par(∂, δ+

α ) : L|U+
α

∼−→ σ ∗ L|U+
α

,

then �α = π∗�+
α defines an endomorphism of π∗L over the Stokes ray Uα . So Lemma 3.11 may

be expressed in terms of bundle maps as follows.

3.12 Lemma For every α ∈ �1, the automorphism Vα of π∗L|Uα
is Vα = id + π∗�+

α .

3.13. The Voros cocycle. One of the central observations in this paper is that formula (28) does not
depend on the fact that (L, ∂) is the abelianisation of (E, ∇). Indeed, this formula is written purely
in terms of the parallel transport along canonically defined paths onΣ◦ and the pushforward functor
π∗. In other words, if (L, ∂) ∈ Conn1

Σ
is any abelian connection (i.e., not a priori the abelianisation

of some connection on X), then for each Stokes ray α ∈ �1, we can consider the automorphism Vα

of π∗L over Uα defined by

Vα |p =
[
1 �+

α

∣
∣
p+

0 1

]

:
L|p− L|p−

L|p+ L|p+

⊕ ⊕�+
α , �+

α

∣
∣
p+

:= Par
(
∂, δ+

α

∣
∣
p+

)
, (29)

for each p ∈ Uα with preimages p± ∈ U±
α . As a bundle automorphism over Uα ,

Vα = id + π∗�+
α ∈ Aut

(
π∗Lα

)
, (30)

where π∗L := ker(π∗∂) and π∗Lα := π∗L|Uα
. This yields a cocycle

V := {
Vα

∣
∣ α ∈ �1

} ∈ Ž1
(
U�,Aut(π∗L)

)
. (31)

Now, if φ : (L, ∂) −→ (L′, ∂ ′) is a morphism in Conn1
Σ
, and V , V ′ are respectively the cocycles

forL,L′ defined by the formula (29), then the identity ∂φ = φ∂ ′ immediately implies the following
commutative square for every α:

π∗Lα π∗Lα

π∗L ′
α π∗L ′

α

Vα

π∗φ π∗φ

V ′
α

. (32)

In other words, for every Stokes ray α ∈ �1, the collection

Vα :=
{
Vα ∈ Aut

(
π∗Lα

)}

(L,∂)
, (33)
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indexed by abelian connections (L, ∇) ∈ Conn1
Σ
, forms a natural transformation

Vα : π∗ ⇒ π∗ .

of the pushforward functor (2), defined over Uα . We obtain a cocycle valued in the local system
Aut(π∗) of nonabelian groups on the punctured base curve X◦ consisting of natural automorphisms
of π∗.

3.14 Definition (Voros cocycle) The Voros cocycle is the nonabelian Čech 1-cocycle

V := {
Vα

∣
∣ α ∈ �1

} ∈ Ž1
(
U�,Aut(π∗)

)
.

��
3.15. Abelianisation of the Voros cocycle. The parallel transports �α can also be arranged into
a cocycle as follows. If (L, ∂) ∈ Conn1

Σ
is any abelian connection, then �+

α = Par(∂, δ+
α ) ∈

Hom(L+
α , L−

α ) = Hom(L+
α , σ ∗L+

α ), where L := ker(∂) and L±
α := L|U±

α
for each α ∈ �+

1 .

The sheaf Hom(L, σ ∗L) is a local system of abelian groups, and we can define an abelian Čech
1-cocycle on Σ◦ by

� := {
�+

α , �−
α

∣
∣ ± α ∈ →

�±
1

} ∈ Ž1
(
U→

�,Hom(L, σ ∗L)
)
, (34)

by �+
α := Par(∂, δ+

α ) and �−
α := 0. If φ : (L, ∂) −→ (L′, ∂ ′) is a morphism in Conn1

Σ
, and �, �′

are the corresponding cocycles, then the identity ∂φ = φ∂ ′ implies for every α a pair of commutative

squares:

L±
α σ ∗L±

α

L ′±
α σ ∗L ′±

α

�±
α

φ σ ∗φ

�′±
α

. (35)

In other words, for every α, the collection of flat homomorphisms

´±
α :=

{
�±

α ∈ Hom(L±
α , σ ∗L±

α )
}

(L,∂)
,

indexed by abelian connections (L, ∂) ∈ Conn1
Σ
, forms a natural transformation

´±
α : id �⇒ σ ∗ ,

defined over U±
α . Here, σ

∗ : Conn1
Σ

→ Conn1
Σ

is the pullback functor by the canonical involution

σ . Thus, we obtain a cocycle valued in the local system Hom(id, σ ∗) of abelian groups on the
punctured spectral curveΣ◦ consisting of natural transformations from the identity functor id to the
pullback functor σ ∗:

´ := {
1±

α

∣
∣ α ∈ �1

} ∈ Ž1
(
U→

�,Hom(id, σ ∗)
)
. (36)

Formula (30) makes it apparent that the Voros cocycle V is completely determined by the cocycle
1; let us make this precise. Suppose (L, ∂) ∈ Conn1

Σ
, and choose a point p ∈ Uα for some α. If
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p± ∈ U±
α are the two preimages of p, then the canonical isomorphism π∗Lp

∼−→ Lp− ⊕ Lp+ on
stalks induces a canonical inclusion of Hom(L, σ ∗L)p± into E\�(π∗L)p via

Hom(L, σ ∗L)p± = Hom(Lp± , σ ∗Lp± )

= Hom(Lp± , Lp∓ ) ↪→ End(π∗Lp) = End(π∗L)p .

Given any c ∈ Hom(L, σ ∗L)p± , we denote its image in End(π∗L)p by π∗c.

3.16 Proposition The Voros cocycle V and the abelian cocycle ´ satisfy V = 1+ π∗1, where 1 is
the identity cocycle.

That is to say, the nonabelian Voros cocycle V is actually ‘in disguise’ the data of an abelian cocycle
´ but on a different curve. In other words, ´ should be thought of as the abelianisation of the Voros
cocycle.

Proof Notice that π induces a double cover U̇→
� → U̇� , yielding a map on cocycles:

Ž1
(
U→

�,Hom(id, σ ∗)
)

−→ Ž1
(
U�,Aut(π∗)

)
given by c �−→ 1+ π∗c . (37)

Then formula (30) implies that V is the image of ´. ��

3.3 The nonabelianisation functor

In this section, we construct the nonabelianisation functor π�
ab and prove that it is an inverse equiv-

alence to the abelianisation functor πab
� . The main ingredient is the Voros cocycle V, and the

construction proceeds in two steps. If (L, ∂) is an abelian connection on Σ, we first use the the
pushforward functor π∗ to obtain a rank-two connection (π∗L, π∗∂) on (X,D ∪ B). But π∗∂ does
not holomorphically extend over the branch locus B, because it has nontrivial monodromy around
B, as we remarked after the proof of Proposition 2.15. Therefore, π∗ cannot invert πab

� , because its
image is not even contained in Conn2X. Instead, step two is to use the Voros cocycle V to deform π∗
as a functor. The result is the nonabelianisation functor π�

ab.

3.17. Construction of ∇. Given any abelian connection (L, ∂, μ) ∈ Conn1
Σ
, we construct

(E, ∇, M) ∈ Conn2X(�). Consider the pushforward (π∗L, π∗∂, π∗μ). The Voros cocycle V deter-

mines a cocycle V := V(L) ∈ Ž1
(
U�,Aut(π∗L)

)
.

Definition over Stokes regions. The main step in the construction is to use V to reglue
π∗L over Stokes rays. For each Stokes region UI , let

EI := π∗L|UI
, ∇I := π∗∂|UI

, MI := π∗μ|UI
,

and if Uα is a Stokes ray in the ordered double intersection UI ∩ UJ , then the gluing over Uα is
given by Vα : EI

∼−→ EJ . If Ui is a spectral region in the preimage of UI , then since EI (UI ) =
L(Ui ) ⊕ σ ∗L(Ui ), the map MI defines an sl2-structure on each local piece EI . Moreover, MI and
MJ glue over Uα because Vα is unipotent with respect to the corresponding decompositions.

Definition at the poles. Recall that the infinitesimal punctured disc U∗
p centred at a point

p ∈ D is covered by sectorial neighbourhoods coming from the Stokes regions incident to p. Thanks
to the upper-triangular nature of the Voros cocycle V , we obtain a flat bundle E∗

p over U∗
p equipped

with a filtration (E∗
p )• whose associated graded is canonically isomorphic to π∗L|U∗

p
. Now, it is a

simple fact that if the associated graded of a filtered connection extends over a point, then the filtered
connection itself extends with the same Levelt exponents. Thus, E∗

p has a canonical extension over
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α−
α+ ℘′

℘′
−

℘′
+℘′′℘′′

−

℘′′
+

π−→ α
℘

℘−

℘+

Fig. 14 A short path ℘ on X intersecting the Stokes ray α and its lifts ℘′, ℘′′ to Σ

Up to a bundle Ep with connection ∇p that has logarithmic poles at p and Levelt exponents ±λp. It
remains to define ∇ over the branch locus B.

Definition at the branch points.We will first compute the monodromy of ∇ around each
branch point directly to show that it is trivial, and then use Deligne’s canonical extension [5, pp.
91–96].

3.18 Lemma The monodromy of ∇ around any branch point is trivial. Therefore, the connection
(E, ∇, M) on X◦ has a canonical holomorphic extension over B.

The technique is to express the parallel transport of ∇ along paths on X in terms of the parallel
transport of ∂ along their lifts to Σ as well as the sheet transposition paths. We adopt the following
notation for the parallel transports of ∇, ∂, π∗∂ , respectively:

P : ��1(X◦) → GL(E), p : ��1(Σ
◦) → GL(L), π∗ p : ��1(X◦) → GL(π∗L) .

It follows immediately from the construction of E that if ℘ is a path on X◦ contained in a Stokes
region, then P(℘) = π∗ p(℘). Explicitly, let ℘′, ℘′′ be the two lifts of ℘ to Σ. Let x, y be the
startpoint and the endpoint of ℘, and similarly for ℘′, ℘′′. Then, for example, the fibre Ex = E |x is
the direct sum of fibres Lx′ ⊕ Lx′′ of L. With respect to these decompositions, the parallel transport
P(℘) : Ex −→ Ey is expressed as

P(℘) = π∗ p(℘) =
[
p(℘′) 0
0 p(℘′′)

]

:
Lx′ Ly′

Lx′′ Ly′′
⊕ ⊕ . (38)

We say that a path ℘ on X◦ (or Σ◦) is a short path if its endpoints do not belong to the Stokes
graph � (or to the spectral graph

→
�) and it intersects at most one Stokes ray (or spectral ray). If ℘ is

a short path on X◦ that intersects a Stokes ray α ∈ �1, then ℘ is divided into two segments ℘−, ℘+
(Fig. 14).

Each ℘± is contained in a Stokes region, so P(℘±) = π∗ p(℘±). On the other hand, the vector
bundle E is constructed by gluing π∗L to itself over Uα by the automorphism Vα , so we obtain the
following formula for P(℘):

P(℘) = π∗ p(℘+) · Vα · π∗ p(℘−) . (39)

Explicitly, let ℘′, ℘′′ denote the two lifts of ℘ to Σ, where ℘′ intersects α− and ℘′′ intersects α+
(Fig. 14). The parallel transport P(℘) : Ex −→ Ey can be expressed as

P(℘) =
[
p(℘′+) 0
0 p(℘′′+)

] [
1 �+

α

0 1

] [
p(℘′−) 0
0 p(℘′′−)

]

=
[
p(℘′) p(℘′+)�+

α p(℘′′−)

0 p(℘′′)

]

.
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The off-diagonal term p(℘′+)�+
α p(℘′′−) is the parallel transport of ∂ along the concatenated path

℘+
α := ℘′+δ+

α ℘′′− (Fig. 15), so

P(℘) =
[
p(℘′) p(℘+

α )

0 p(℘′′)

]

:
Lx′ Ly′

Lx′′ Ly′′
⊕ ⊕ . (40)

Proof of Lemma 3.18 Fix a branch point b ∈ B, and let Uα,Uβ,Uγ be the three Stokes rays incident
to b. Fix a basepoint x in the Stokes region UI as shown in Fig. 16, and also fix a loop ℘ around b.
We calculate the monodromy P(℘). Fix two more basepoints y, z in the other two Stokes regions,
thus dividing the loop ℘ into three short paths denoted by ℘α, ℘β, ℘γ , as explained in Fig. 17. Then
P(℘) = P(℘γ )P(℘β)P(℘α). Each P(℘•) (where • = α, β, γ ) can be expressed via (39) as

P(℘•) = π∗ p(℘•+) · V(•) · π∗ p(℘•−) .

Now, let ℘′, ℘′′ be the two lifts of ℘ to Σ, as explained in Fig. 18. The lifts ℘′′
α, ℘′

β, ℘′′
γ intersect

the positive spectral rays α+, β+, γ+, giving rise to three sheet transposition paths ℘+
α , ℘+

β , ℘+
γ as

shown in Fig. 19. By inspection,

℘+
α = (℘′

γ ℘′
β)−1 , ℘+

β = (℘′
α℘′′

γ )−1 , ℘+
γ = (℘′′

β℘′′
α)−1 . (41)

℘′
℘′

−

℘′
+

℘′′
℘′′

−

℘′′
+

δ+α

�
℘′

℘′
−

℘′
+

℘′′
℘′′

−

℘′′
+

℘+
α

Fig. 15 The concatenated path ℘′+δ+
α ℘′′− (left) is homotopic to ℘+

α (right)

Fig. 16 Three Stokes rays
α, β, γ on X incident to the
branch point b ∈ B, and an
anti-clockwise loop ℘ around b
based at x

α

β

γ

x

℘
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Fig. 17 The loop ℘ from Fig. 16
is homotopic to the concatenated
path ℘γ ℘β℘α as shown

α

β

γ

℘α

℘β

℘γ
x

y

z

α−

β+
γ−

α+

β− γ+

℘′

℘′′

x′

x′′

α−

β+
γ−

α+

β− γ+

℘′
α

℘′
β

℘′
γ

℘′′
α

℘′′
β

℘′′
γ

x′

y′

z′

x′′

y′′

z′′

Fig. 18 Left: Let x′, x′′ be the two preimages of x on Σ as shown. Right: Let y′, y′′, z′, z′′ be the lifts of
y, z as shown, ℘′ = ℘′

γ ℘′
β℘′

α and ℘′′ = ℘′′
γ ℘′′

β℘′′
α

℘+
α

y′x′′

℘+
β

y′

z′′

℘+
γ

x′′

z′′

Fig. 19 Three sheet transposition paths ℘+
α , ℘+

β , ℘+
γ arising from the intersections of ℘′′

α, ℘′
β , ℘′′

γ with
positive spectral rays α, β, γ , respectively
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The explicit formula (40) gives three expressions:

P(℘α) =
[
p(℘′

α) p(℘+
α )

0 p(℘′′
α)

]

:
Lx′ Ly′

Lx′′ Ly′′
⊕ ⊕ ,

P(℘β) =
[
p(℘′

β) 0
p(℘+

β ) p(℘′′
β)

]

:
Ly′ Lz′

Ly′′ Lz′′
⊕ ⊕ ,

P(℘γ ) =
[
p(℘′

γ ) p(℘+
γ )

0 p(℘′′
γ )

]

:
Lz′ Lx′′

Lz′′ Lx′
⊕ ⊕ .

Notice that P(℘β) is lower-triangular in the given decompositions of �∗L|y and �∗L|z, because
it is the lift ℘′

β of ℘β starting at y′ that intersects the positive spectral ray β+. Also notice that the
source fibre of P(℘α) is decomposed as Lx′ ⊕ Lx′′ , whilst the target fibre of P(℘γ ) is decomposed
as Lx′′ ⊕ Lx′ , so the monodromy P(℘) ∈ Aut

(
Lx′ ⊕ Lx′′

)
is given by

P(℘) =
[
0 1
1 0

] [
p(℘′

γ ) p(℘+
γ )

0 p(℘′′
γ )

] [
p(℘′

β) 0

p(℘+
β ) p(℘′′

β)

] [
p(℘′

α) p(℘+
α )

0 p(℘′′
α)

]

=
[

p(℘′′
γ ℘+

β ℘′
α) p(℘′′

γ ℘+
β ℘+

α ) + p(℘′′
γ ℘′′

β℘′′
α)

p(℘′
γ ℘′

β℘′
α) + p(℘+

γ ℘+
β ℘′

α) p(℘′
γ ℘′

β℘+
α ) + p(℘+

γ ℘+
β ℘+

α ) + p(℘+
γ ℘′′

β℘′′
α)

]

.

Applying relations (41), we find that ℘′′
γ ℘+

β ℘′
α = ℘′′

γ (℘′
α℘′′

γ )−1℘′
α = 1, which is a constant path

at x′, so the top-left entry of P(℘) is 1. Next, the path ℘+
γ ℘+

β ℘′
α appearing in the bottom-left entry,

simplifies to (℘′′
γ ℘′′

β℘′′
α)−1, so p(℘+

γ ℘+
β ℘+

α ) = p(℘′
γ ℘′

β℘′
α)−1. Now, ℘′′

γ ℘′′
β℘′′

α℘′
γ ℘′

β℘′
α is a loop

around the ramification point r based at x′, and since the connection ∂ has monodromy −1 around
r by Proposition 2.12, we find:

p(℘′′
γ ℘′′

β℘′′
α℘′

γ ℘′
β℘′

α) = −1 .

It follows that p(℘′
γ ℘′

β℘′
α)−1 = −p(℘′′

γ ℘′′
β℘′′

α), and so the bottom-left entry of P(℘) is 0. Similarly,
we can calculate the other entries of P(℘) and find that P(℘) = id. ��

3.19. Diagonal decompositions and transversality. The fact that the connection ∇ is transverse
with respect to � is deduced from the fact that the local and semilocal diagonal decompositions of
E (Propositions 2.8 and 2.46) can be easily recovered from our construction as follows. Let Up be
the infinitesimal disc around a pole p ∈ D. If U±

p are respectively the infinitesimal discs around p±,
let L±

p := L|U±
p
and 	±

p := π∗L±
p . Then it follows from the construction of E over Up that the

local diagonal decomposition of Ep is precisely π∗L|Up = 	−
p ⊕ 	+

p . As a result, the local Levelt

filtration of E at p is E•
p = (

	−
p ⊂ Ep

)
.

Let UI be a Stokes region with I = {
i, i ′

}
and with polar vertices p,p′ such that the spectral

regionsUi ,Ui ′ are respectively incident to the preimages p−,p′−. By construction, ifLi (′) := L|Ui(′)
and 	i (′) := π∗Li (′) , then EI = 	i ⊕ 	i ′ . Of course, Li is the unique continuation of L−

p from
U−
p to Ui , and therefore 	i is the unique continuation of 	−

p from Up to UI . Same for 	i ′ . As a
result, the direct sum 	i ⊕ 	i ′ is nothing but the transverse intersection E•

p,I � E•
p′,I of Levelt

filtrations E•
p,E•

p′ continued to UI . This demonstrates the fact that ∇ is transverse with respect to �,

so (E, ∇, M) ∈ Conn2X(�).
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3.20 Proposition The correspondence (L, ∂, μ) �→ (E, ∇, M) extends to a functor

π�
ab : Conn1Σ −→ Conn2X(�) .

This follows immediately from the commutative square (32). We call π�
ab the nonabelianisation

functor, and the image (E, ∇, M) of (L, ∂, μ) under π�
ab the nonabelianisation of (L, ∂, μ) with

respect to the Stokes graph�. Finally, ourMain Theorem 3.3 follows from the following proposition.

3.21 Proposition The functors πab
� , π�

ab form a pair of inverse equivalences of categories.

Proof Given (E, ∇, M) ∈ Conn2X(�), let (L, ∂, μ) ∈ Conn1
Σ

be its image under πab
� . By construc-

tion, the Voros cocycle V applied to L is the cocycle V from (26). Lemma 3.9 gives a canonical
isomorphism π�

abπ
ab
� E ∼−→ E , so π�

abπ
ab
� ⇒ Id.

The converse is clear from the discussion above of diagonal decompositions and transversality
(3.3), so we will be brief. Given (L, ∂, μ) ∈ Conn1

Σ
, let (E, ∇, M) in Conn2X(�) be its nonabelian-

isation, and suppose L′ is the abelianisation of E . First, we have L±
p

∼−→ L′±
p for every p ∈ D. If

Ui ⊂ Σ is a spectral region with sink polar vertex p−, then 	i = π∗Li is the unique continuation
of 	−

p . Both Li and L′
i are the unique continuations of (π−

p )∗	−
p to Ui , we get L′

i
∼−→ Li . Thus,

L,L′ are canonically isomorphic over Σ \ R, and because their extensions over R are unique, this
isomorphism also extends over Σ. So L ∼−→ L′ = πab

� π�
abL, and hence id ⇒ πab

� π�
ab. ��
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