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Abstract
We prove the existence of quasi-Jacobi form solutions for an analogue of the Kaneko–
Zagier differential equation for Jacobi forms. The transformation properties of the
solutions under the Jacobi group are derived. A special feature of the solutions is the
polynomial dependence of the indexparameter. The results yield an explicit conjectural
description for all double ramification cycle integrals in the Gromov–Witten theory of
K3 surfaces.

Mathematics Subject Classification 14J28 · 14N35 · 11F50 · 11F11

1 Introduction

1.1 K3 surfaces

The Yau–Zaslow formula (proven by Beauville [2] and Bryan–Leung [3]) evaluates
the generating series of counts of rational curves on K3 surfaces in primitive classes
as the inverse of the discriminant

�(τ) = q
∏

n≥1

(1 − qn)24
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where q = e2π iτ and τ ∈ H is the standard variable of the upper half-plane.
More general curve counts on K3 surfaces are defined by the Gromov–Witten

invariants

〈
α; γ1, . . . , γn

〉S
g,β

:=
∫

[Mg,n(S,β)]red
π∗(α)

n∏

i=1

ev∗
i (γi )

where Mg,n(S, β) is the moduli space of n-marked genus g stable maps to a K3
surface S representing the class β ∈ H2(S,Z), and

π : Mg,n(S, β) → Mg,n, evi : Mg,n(S, β) → S, i = 1, . . . , n

are the forgetful and evaluation maps. The integral is taken over the reduced virtual
fundamental class and the insertions are arbitrary classes

α ∈ H∗(Mg,n), γ1, . . . , γn ∈ H∗(S).

Let a = (a1, . . . , an) be a list of integers with
∑

i ai = 0. The moduli space
Mg,n(P

1, a)̃, defined in relative Gromov–Witten theory, parametrizes stable maps
froma curve of genus g toP1 with ramification profiles over 0 and∞ given respectively
by the positive and negative entries in a. The double ramification cycle

DRg(a) ∈ H2g(Mg,n)

is defined as the pushforward under the forgetful map Mg,n(P
1, a)̃ → Mg,n of the

virtual class on this moduli space (see [6]).
Let also z ∈ C and p = ez , and consider the odd (renormalized) Jacobi theta

function

�(z, τ ) = (p1/2 − p−1/2)
∏

m≥1

(1 − pqm)(1 − p−1qm)

(1 − qm)2
.

The following formula was found in the study of the quantum cohomology of the
Hilbert scheme of points of a K3 surface in [15], and related to K3 surfaces in [16].

Conjecture 1.1 ([15,16])There exist quasi-Jacobi formsϕm(z, τ ), ϕm,n(z, τ ) such that
for all primitive effective β ∈ H2(S,Z) we have

∞∑

g=0

〈
DRg(a); γ1, . . . , γn

〉S
g,β

(−1)g+nz2g−2+n = 1
∏

i a
deg(γi )
i

Coeff
q
1
2 β2

⎛

⎝
∑

{(a j ,b j )} j ,{c j } j

1

�2�

∏

j

(γa j , γb j )ϕa j ,b j ·
∏

j

(γc j , β)ϕc j

⎞

⎠ .
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Here, the sum on the right side is over all partitions of the set {(ai , γi )}ni=1 into parts of
size≤ 2. The parts of size 1 are labeled by (c j , γc j ), and the parts of size 2 are labeled
{(a j , γa j ), (b j , γb j )}. Moreover, deg(γ ) denotes half the cohomological degree of γ ,

i.e. γ ∈ H2 deg(γ )(S), and (−,−) is the Mukai pairing on H∗(S) defined by

(
(r1, D1, n1), (r2, D2, n2)

) = r1n2 + r2n1 − D1 · D2

where we write D1 · D2 = ∫
S D1 ∪ D2 for the intersection of divisors.

We refer to Sect. 2.3 for the definition of quasi-Jacobi forms. The left hand side
of the conjecture is a (virtual) count of curves on K3 surfaces, whose normalization
admits a map to P

1 with prescribed ramification over two points of the target and
with the ramification points incident to given cycles γi . If there are no marked points,
the double ramification cycle is the top Chern class λg of the Hodge bundle over the
moduli spae of curves,

DRg(∅) = (−1)gλg.

In this case the conjecture specializes to the Katz–Klemm–Vafa formula

∞∑

g=0

〈
λg

〉S
g,β z2g−2 = Coeff

q
1
2 β2

(
1

�(z, τ )2�(τ)

)
.

proven in [12].
While the functions ϕm, ϕm,n were conjectured to be quasi-Jacobi forms (of explicit

weight and index) they have been left indeterminate in [15,16]. The goal of this paper
is simply to give an explicit formula for these functions and study their properties.

1.2 A Kaneko–Zagier equation for Jacobi forms

Let Dτ = 1
2π i

d
dτ

= q d
dq and consider the ratio

F(z) := D2
τ�(z)

�(z)
= −

∑

n≥1

∑

d|n
(n/d)3(pd/2 − p−d/2)2qn,

where, as we will often do, have dropped τ from the argument.

We define formal series ϕm ∈ Q[p± 1
2 ][[q]] for all m ∈ Z by the differential

equation

D2
τ ϕm = m2Fϕm, (1)

together with the constant term

ϕm = (pm/2 − p−m/2) + O(q). (2)



64 Page 4 of 30 J.-W. van Ittersum et al.

Since the constant term of F in q vanishes, (1) determines the functions ϕm uniquely
from the initial data. By definition, we have ϕ−m = −ϕm .

Our first main result is the following characterization of the functions ϕm .

Theorem 1.2 For all m ≥ 0 we have

ϕm = Resx=0

(
�(x + z)

�(x)

)m

.

In particular, ϕm is a quasi-Jacobi form of weight −1 and index |m|/2 for every m.

Consider the ratio of theta functions

f (x) = �(x + z)

�(x)

whose appearance in mathematics goes back to work of Eisenstein [19]. Since its
inverse has Taylor expansion 1/ f (x) = �(z)−1x + O(x2), the function 1/ f (x) can
be formally inverted. By Lagrange inversion, Theorem 1.2 then precisely says that the
inverse series is the generating series of the ϕm :

y = 1

f (x)
⇐⇒ x =

∞∑

m=1

ϕm

m
ym . (3)

Let us explain the connection of the differential equation (1) to a well-known
differential equation for modular forms. Recall the Eisenstein series

Ek(τ ) = 1 − 2k

Bk

∑

n≥1

∑

d|n
dk−1qn,

where the weight k ≥ 2 is even and Bk are the Bernoulli numbers. Let

ϑk = Dτ − k

12
E2(τ )

be the Serre derivative which restricts to an operator Modk → Modk+2 on the space
of modular forms of weight k. The Kaneko–Zagier equation [9] is the differential
equation

ϑk+2ϑk fk = k(k + 2)

144
E4(τ ) fk . (4)

If k ≡ 0 or 4 mod 6 it has non-trivial solutions which are modular forms of weight k.
A direct calculation shows that a function fk is a solution to (4) if and only if gk+1 =
fk/η2k+2, with η(τ) = q1/24

∏
n≥1(1 − qn) the Dedekind function, is a solution of

D2
τ gm = m2 E4(τ )

144
gm .
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We observe that the differential equation (1) is a Jacobi-form analogue of the
Kaneko–Zagier equation. Even stronger, since (1) does not involve derivatives in the
elliptic variable, we can specialise it to z

2π i = a for any a ∈ Q and in this way obtain
an infinite family of Kaneko–Zagier type differential equations withmodular solutions
for a congruence subgroup.1 The inversion formula (3) has the classical analogue [9,
Thm. 5(iv)]

x =
∑

k≥1

fk−1

k
yk ⇐⇒ y =

(
℘′(x)
−2

)−1/3

,

where the role of f (x) is played by the formal cube root of the derivative ℘′(x) =
d
dx ℘(x) of the Weierstrass elliptic function ℘(x), and the solutions fk are normalized
accordingly.

We refer to Sect. 5 for a general construction of differential equations of Kaneko–
Zagier type.

1.3 Differential equation of the second kind

We are also interested in a second family of functions, defined in terms of the ϕm of
the previous section.

Define formal series ϕm,n ∈ Q[p±1/2][[q]] for all m, n ∈ Z by the differential
equation

Dτ ϕm,n = mnϕmϕn F + (Dτ ϕm)(Dτ ϕn) (5)

together with the condition that the constant term vanishes:

ϕm,n = O(q).

Since ϕm is odd in m, the definition implies the symmetries

∀m, n : ϕm,n = ϕn,m = ϕ−m,−n .

Moreover, ϕm,0 = 0 as ϕ0 = 0. Our second main result describes the modular prop-
erties of ϕm,n :

Theorem 1.3 For all m, n ∈ Z the difference

ϕm,n − |n|δm+n,0

is a quasi-Jacobi form of weight 0 and index 1
2 (|m| + |n|).

1 For any a ∈ Q the ratio �(x+a)
�(x) is a meromorphic Jacobi form of index 0 (of higher level). Hence all its

Taylor coefficients are modular forms.



64 Page 6 of 30 J.-W. van Ittersum et al.

If m �= −n the proof of Theorem 1.3 is easy. Indeed, in this case we have

ϕm,n = m

m + n
ϕmDτ (ϕn) + n

m + n
Dτ (ϕm)ϕn (6)

and since the algebra of quasi-Jacobi forms is closed under differentiation with respect
to both z and τ the result follows from Theorem 1.2. It hence remains to consider the
case m = −n. However, since the algebra of quasi-Jacobi forms is not closed under
integration, this case is not obvious at all.

A key feature of the functions ϕm is their polynomial dependence on m. Precisely,
their Taylor expansion in the elliptic variable is of the form

ϕm =
∑

k≥1

Pk(m)zk

where each Pk is a polynomial in m of degree ≤ k with coefficients quasi-modular
forms. This implies that the ϕm,n depend polynomially on m, n as well. Hence we are
allowed to take the limit of the formula (6). The result is

ϕn,−n = Dτ (ϕn)ϕ−n + n(Dτ (ϕ
′−n)ϕn − ϕ′−nDτ ϕn),

where ϕ′
u is the formal derivative of ϕu with respect to u. But, by inspection the

function ϕ′
n is usually not a quasi-Jacobi and hence from this point it is still unclear

why ϕn,−n should be quasi-Jacobi. Instead our proof of Theorem 1.3 relies on a subtle
interplay between holomorphic anomaly equations, which measure the defect of ϕm

and ϕm,n to be honest Jacobi forms, and the aforementioned polynomiality.
The holomorphic anomaly equations we derive are also of independent interest

since they determine the precise transformation behaviour of the functionsϕm andϕm,n

under the Jacobi group. As another indirect consequence of the proof of Theorem 1.3
we obtain a third, recursive characterization of the function ϕm :

Proposition 1.4 For all m, n ≥ 1 we have

ϕm+n = 1

m
Dz(ϕm)ϕn + 1

n
ϕmDz(ϕn) +

∑

i+ j=m

1

i
ϕi,nϕ j +

∑

i+ j=n

1

i
ϕi,mϕ j .

We finally relate the functions ϕm and ϕm,n to the geometry of K3 surfaces.

Conjecture 1.5 The functions ϕm and ϕm,n as defined above are the functions appear-
ing in Conjecture 1.1.

Besides plenty of evidence which is known for Conjecture 1.1, e.g. [18], there
are several qualitative features of the ϕ’s which correspond to similar features in
Gromov–Witten theory. The polynomial dependence is reflected in the polynomial
dependence of the double ramification cycle on the ramification profiles [6]. In their
Taylor expansions the z-coefficients of theϕ’s are quasi-modular forms. Thismatches a
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result of [12]. The quasi-Jacobi form property and the holomorphic anomaly equations
are expected from holomorphic-symplectic geometry [15] and the results of [17].

Conjecture 1.1 yields an explicit formula for the Gromov–Witten theory of K3×P
1

relative to two fibers over P1. In terms of this theory, efficient algorithms to determine
the Gromov–Witten invariants of all CHL Calabi–Yau threefolds are known [1]. This
leads to deep relations between counting on K3 surfaces and Conway moonshine. We
hope to come back to these questions in future work.

2 Preliminaries

2.1 Quasi-modular forms

For all even k > 0 consider the renormalized Eisenstein series

Gk(τ ) = − Bk

2 · k +
∑

n≥1

∑

d|n
dk−1qn .

The C-algebras Mod = ⊕kModk and QMod = ⊕kQModk of modular and quasi-
modular forms can be described by Eisenstein series:

Mod = C[G4,G6], QMod = C[G2,G4,G6].

The algebra QMod is acted on by both Dτ = q d
dq and the operator d

dG2
which takes

the formal derivative in G2 when a quasi-modular forms is written as a polynomial
in G2,G4,G6. Let also wt be the operator on QMod that acts on QModk by multipli-
cation by k. We have the sl2-commutation relation

[
d

dG2
, Dτ

]
= −2wt .

2.2 Theta functions

Let z ∈ C and p = ez . Let

ϑ1(z, τ ) =
∑

ν∈Z+ 1
2

(−1)�ν� pνqν2/2

be the odd Jacobi theta function.2 By the Jacobi triple product we have

�(z) = ϑ1(z, τ )/η3(τ ).

2 The Jacobi function ϑ1 defines the unique section on the elliptic curve Cw/(Z + τZ) which vanishes at
the origin. In our convention the variable w of the complex plane Cw is related to z by z = 2π iw. In other
words, the fundamental region of the curve is given by z

2π i ∈ {a + bτ | a, b ∈ [0, 1]}.
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The product formula for � yields also the expansion

�(z) = z exp

⎛

⎝−2
∑

k≥2

Gk
zk

k!

⎞

⎠ . (7)

2.3 Quasi-Jacobi forms

Jacobi forms are a generalization of classical modular forms which depend on an
elliptic parameter z ∈ C and a modular parameter τ ∈ H, see [4] for an introduction.
Quasi-Jacobi forms are constant terms of almost holomorphic Jacobi forms. Following
[11] and [14, Sec.1] we shortly recall the definition.

Consider the real-analytic functions

ν = 1

8π�(τ )
, α = �(z/2π i)

�(τ )
.

An almost holomorphic function on C × H is a function of the form

� =
∑

i, j≥0

ψi, j (z, τ )νiα j

such that each of the finitely many non-zero ψi, j is holomorphic and admits a
Fourier expansion of the form

∑
n≥0

∑
r∈Z c(n, r)qn pr in the region |q| < 1. An

almost holomorphic weak Jacobi form of weight k and index m ∈ Z is an almost
holomorphic function on C × H which satisfies the transformations laws of Jacobi
forms of this weight and index [4]. A quasi-Jacobi form of weight k and index m
is a function ψ(z, τ ) such that there exists an almost holomorphic weak Jacobi
form

∑
i, j ψi, jν

iα j with ψ0,0 = ψ .
In this paper we will also work with quasi-Jacobi forms of half-integral index

m
2 ∈ 1

2Z. These are defined identical as above except that we include (in the usual
way) a character in the required transformation law. The character we use for index
m/2 is defined by the transformation properties of �m(z) under the Jacobi group.3 In
particular, �(z) is a (quasi) Jacobi form of weight −1 and index 1/2; its square �(z)2

is a Jacobi form without character.
The algebra of quasi-Jacobi forms is bigraded by weight k and index m:

QJac =
⊕

k

⊕

m∈ 1
2Z

QJack,m .

In index 0 we recover the algebra of quasi-modular forms: QJack,0 = QModk .

3 This character is essentially uniquely determined by requiring that the square of a half-integral weight
Jacobi form is a Jacobi form without character, see for example the discussion in [5].
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Similar to the case of quasi-modular forms, the algebra of quasi-Jacobi forms can
be embedded in a polynomial algebra. Let Dz = d

dz = p d
dp and consider the series

A(z) = Dz�(z)

�(z)
= −1

2
−

∑

m �=0

pm

1 − qm

and the Weierstraß elliptic function

℘(z, τ ) = 1

12
+ p

(1 − p)2
+

∑

d≥1

∑

k|d
k(pk − 2 + p−k)qd .

We write ℘′(z, τ ) = Dz℘(z, τ ) for its derivative with respect to z. Since taking the
derivative with respect to z and τ preserves the algebra of quasi-Jacobi forms ([14]) it
is easy to see that all of these are (meromorphic) quasi-Jacobi forms.

Proposition 2.1 The algebra R = C[�,A,G2, ℘, ℘′,G4] is a free polynomial ring,
and QJac is equal to the subring of all polynomials which define holomorphic func-
tions C × H → H.

Proof It is immediate that if f ∈ R is holomorphic, then it is a quasi-Jacobi form.
Conversely, divide any quasi-Jacobi form of indexm/2 by�m . The result then follows
from [11, Sec. 2]. ��

Remark 1 The algebra R is the algebra of all meromorphic quasi-Jacobi forms with
the property that all poles are at the lattice points z = m + nτ with m, n ∈ Z. Indeed,
since �,A and G2 lie in R, it suffices to show that meromorphic Jacobi forms of
index 0 with the latter property are elements ofR. For such a Jacobi form there exists
a polynomial in ℘ and ℘′ with modular coefficients such that the sum is holomorphic
and elliptic, hence constant. Therefore, every suchmeromorphic Jacobi form lies inR.
�

The weight and index of the generators of R are given as follows:

Generator Weight Index
� −1 1/2
A 1 0
G2 2 0
℘ 2 0
℘′ 3 0
G4 4 0.

Consider the formal derivative operators d
dA and d

dG2
. Letwt and ind be the operators

which act on QJack,m by multiplication by the weight k and the index m respectively.
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By [14, (12)] we have the commutation relations:

[
d

dG2
, Dτ

]
= −2wt,

[
d

dA
, Dz

]
= 2ind

[
d

dG2
, Dz

]
= −2

d

d A
,

[
d

d A
, Dτ

]
= Dz .

(8)

The almost-holomorphic Jacobi forms completing A and G2 are given by

Â = A + α, Ĝ2 = G2 + ν. (9)

Moreover all other generators of R are (meromorphic) Jacobi forms. Hence the for-
mal derivatives d

dA and d
dG2

of a quasi-Jacobi form measure the dependence of its
completion on the non-holomorphic variables α and ν, or in other words the failure
of a quasi-Jacobi forms to be an honest Jacobi forms. For a quasi-Jacobi form we
call d

d Aψ its holomorphic anomaly. An equation of the form ( d
d Aψ = . . .) will be

called a holomorphic anomaly equation. Similar definitions apply to d
dG2

.
As explained in [14] knowing the holomorphic-anomaly equations of a quasi-Jacobi

form is equivalent to knowing their transformation properties unter the Jacobi group.
Concretely, we have the following (the case of half-integral index is similar):

Lemma 2.2 ([14]) Let ψ(z, τ ) ∈ QJack,m with m ∈ Z. Then

ψ

(
z

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)ke

(
cm(z/2π i)2

cτ + d

)
exp

(
− c d

dG2

4π i(cτ + d)
+ c z

2π i
d
d A

cτ + d

)
ψ(z, τ )

ψ(z + 2π i(λτ + μ), τ) = e
(
−mλ2τ − 2λm

z

2π i

)
exp

(
−λ

d

d A

)
ψ(z, τ ),

for all γ = (
a b
c d

) ∈ SL2(Z) and (λ, μ) ∈ Z
2, where we write e(x) for exp(2π i x).

2.4 Multivariate quasi-Jacobi forms

As in [14, Sec. 2] one can similarly define quasi-Jacobi forms of rank n in which the
dependence of the variable z ∈ C is generalized to a dependence on the vector

z = (z1, . . . , zn) ∈ C
n .

The index of quasi-Jacobi forms of rank n is given by a symmetric matrix

m =
⎛

⎜⎝
m11 · · · m1n
...

. . .
...

mn1 · · · nnn

⎞

⎟⎠ .
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Although a description of the algebra QJac(n) of rank n quasi-Jacobi forms in terms of
concrete polynomial rings is not available in general, using the expansions (9) shows
that we have an embedding

QJac(n) ⊂ MJac(n) [G2,A(z1), . . . ,A(zn)]

where we let MJac(n) denote the algebra of meromorphic-Jacobi forms of rank n. In
particular, the formal derivative operators

d

dA(zi )
,

d

dG2

are well-defined.4 By [14, (12)] the operators satisfy the commutation relations

[
d

dG2
, Dτ

]
= −2wt,

[
d

d A(zi )
, Dz j

]
= 2indi, j ,

[
d

dG2
, Dzi

]
= −2

d

dA(zi )
,

[
d

d A(zi )
, Dτ

]
= Dzi ,

(10)

where the operator indi, j multiplies a quasi-Jacobi form of index m by mi j .

2.5 Polynomiality

The following simple lemma about polynomials will be convenient for us later.

Lemma 2.3 Let f (u, v) be a polynomial in variables u, v and let F(u) be the unique
polynomial such that ∀n ≥ 1 : F(n) = ∑n−1

j=0 f ( j, n − j). Then

F(−n) = −
n∑

j=1

f (− j,−n + j).

Proof For all m ∈ Z, n > 0 define

G(m, n) =
n−1∑

j=0

f ( j,m − j).

This agrees with a unique polynomial P(m, n). Now extend G to all m, n ∈ Z by
setting G(m, 0) = 0 and

G(m, n) = −
−n∑

j=1

G(− j,m + j)

4 See also [14] for a direct definition via the almost-holomorphic completions.
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for all m ∈ Z, n < 0. We then have that G(m, n + 1) − G(m, n) = f (n,m − n)

is a polynomial for all m, n. But P(m, n + 1) − P(m, n) is also a polynomial. The
two polynomials agree for n > 0, so they agree for all n; since G and P also agree
for n > 0, this means that they must also agree for all n.

The lemma now follows, since it is just saying that F(−n) = P(−n,−n) =
G(−n,−n). ��

We also will find the following language convenient: we say that a set of power
series fm(z) ∈ R[[z]],m ∈ Z for some coefficient ring R is polynomial in m if there
exist polynomials Pk(u) ∈ R[u] such that

∀m ∈ Z : fm(z) =
∑

k≥0

Pk(m)zk .

In our case the coefficient ring Rwill usually be the ring of quasi-modular formsQMod.

3 Differential equation

In this section we study the function ϕm defined by the differential equation (1) and
the constant term ϕm = pm/2 − p−m/2 + O(q). We first prove the evaluation

ϕm = Resx=0

(
�(x + z)

�(x)

)m

which immediately implies that ϕm is a quasi-Jacobi form. We then study the Fourier
expansion of ϕm , discuss the dependence of ϕm on the parameter m, and derive a
holomorphic anomaly equation.

3.1 Proof of Theorem 1.2

Define functions ϕm , m ≥ 0 by the claim of the theorem i.e. let ϕm =
Resx=0

(
�(x+z)
�(x)

)m
. We need to check that these function satisfy the differential

equations (1) and have the right constant term (2). Checking the constant term is
straightforward and we omit the details (see also Sect. 3.2). To check the differential
equation we form the generating series g(y) = ∑

m≥1 y
mϕm/m. Let also Dy = y d

dy .
The differential equation (1) is then equivalent to

D2
τ g(y) = F(z, τ )D2

yg(y). (11)

Consider the function f (x) = �(x+z)
�(x) and apply the variable change

y = 1

f (x)
⇐⇒ x = g(y)
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where we have used Lagrange inversion to identify the inverse of 1/ f with the gener-
ating series g(y). Let f ′(x) := Dx f := d

dx f (x). By differentiating f (g(y)) = y and
applying the chain rule we find the transformations

Dyg(y) = − f

f ′ , Dτ g(y) = −Dτ f

f ′ , D2
yg(y) = − f

f ′ · f ′′ f − ( f ′)2

( f ′)2
,

D2
τ g(y) = − 1

( f ′)3
[
D2

τ ( f )( f
′)2 − 2 f ′ · Dτ ( f )Dτ ( f

′) + f ′′ · Dτ ( f )
2
]
.

Applying these and changing variables the differential equation (11) becomes

Dx ( f )
2D2

τ ( f ) − 2Dx ( f )Dx Dτ ( f )Dτ ( f ) + D2
x ( f )Dτ ( f )2 = F(z, τ ) · D2

x log( f ) · f 3.

(12)

The functions �(x + z) and �(x) are Jacobi forms of rank 2 in the elliptic vari-
ables (x, z) of index 1

2

(1 1
1 1

)
and

(1/2 0
0 0

)
respectively. Hence f (x) is a Jacobi form of

weight 0 and index

(
0 1/2
1/2 1/2

)
.

We need to show that the following function vanishes:

F(x, z) = Dx ( f )
2D2

τ ( f ) − 2Dx ( f )Dx Dτ ( f )Dτ ( f ) + D2
x ( f )Dτ ( f )

2

−F(z, τ ) · D2
x log( f ) · f 3.

As a polynomial in the derivatives of f , the function F is a rank 2 quasi-Jacobi form
of weight 6 and index 1

2

(0 3
3 3

)
. Using the commutation relations (10) a direct check

shows

d

dG2
F = d

d A(x)
F = 0.

In particular, by [14, Lem. 6] we have F(x + 2π iτ, z) = p−3F(x, z). Moreover,
by considering the Taylor expansion one checks (e.g. using a computer5) that F is
holomorphic at x = 0 and vanishes to order 3 at x = −z (use the variable change x̃ =
x + z). We conclude that the ratio F/ f 3 is a doubly periodic and holomorphic in x ,
so a constant in x . The constant is a quasi-Jacobi form in z and is easily checked to
vanish. This shows that the differential equation is satisfied. The claim that the ϕm are
quasi-Jacobi forms of the specified weight follows from Lemma 3.1 below. ��

Define the operator on the algebra of quasi-Jacobi forms by

D = Dz + 2G2
d

dA

5 The code for this computation as well as a parallel computation in Sect. 4.2 can be found on the webpage
of the second author. It also contains functions which express the ϕm , ϕmn in terms of the generators ofR.
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We conclude the following structure result.

Lemma 3.1 For every m ≥ 0 there exist modular forms hk ∈ Modm−k−1 such that

ϕm =
m−1∑

k=0

hk(τ ) · Dk(�(z)m).

Hence every ϕm is a quasi-Jacobi form of weight −1 and index |m|
2 , and d

dG2
ϕm = 0.

Proof of Corollary For any power series f (z) we have

eDzx f (z) = f (x + z).

Moreover, the Baker–Campbell–Hausdorf formula and the relations (8) yield

eDzxe2G2
d
dA x = exD−2x2G2 ind = e−2x2G2 indexD. (13)

We find that

�(x + z)m

�(x)m
= �(x)−meDzx

(
�(z)m

)

= �(x)−meDzxe2G2
d
dA x

(
�(z)m

)

(13)= �(x)−me−mx2G2exD
(
�(z)m

)

= x−m exp

(
2m

∑
k≥4

Gk
xk

k!
)
exD

(
�(z)m

)
(14)

where we used (7) in the last step. Taking the coefficient of x−1 yields the first claim.
The second claim follows from the commutation relation [ d

dG2
, D] = 0. ��

Remark 2 For all m ≥ 0 we have

ϕ−m = Resx=−z

(
�(x + z)

�(x)

)−m

Indeed, after the variable change x ′ = −(x + z) the right hand side becomes

−Resx ′=0

(
�(−x ′ − z)

�(−x ′)

)m

= −ϕm .

�
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3.2 Fourier expansion

By integrating the function

fm(x) =
(

�(x + z)

�(x)

)m

around the sides of a fundamental region and using fm(x + τ, z) = p−m fm(x, z) one
gets

ϕm = Resx=0 fm = (1 − p−m)Coeffσ 0 fm(x, z, τ )

where σ = ex is the Fourier variable associated to x .6

An application of the Jacobi triple product and computing the power bym by taking
first the log of each product term, multiplying it by m and then exponentiating again,
together with a bit of reordering the terms, then yields from this the expression

ϕm = (pm/2 − p−m/2)Coeffσ 0 exp

⎛

⎝
∑

k �=0

m

k
σ k 1 − pk

1 − qk

⎞

⎠

= (pm/2 − p−m/2)
∑

|a|=0

(
∏

i

1 − pai

1 − qai

)
ml(a)

z(a)

(15)

where the sum in the second equation is over all generalized partitions with non-zero
parts summing up to 0. Moreover, if we write a = (iai )i∈Z\{0} then z(a) = ∏

i i
ai ai !

is the standard automorphism factor. The first Fourier coefficients of ϕm are

ϕm = (sm − s−m)
(
1 − m2(s − s−1)2q + O(q2)

)

where we have written s = ez/2 so p = s2.

3.3 The solution�m as a function ofm

In this section we consider ϕm as a function of m viewed as a (formal) variable. To
distinguish with the case m ∈ Z we will replace m by a variable u.

We give three different formulas for ϕu . First, consider the expansion

F(s, q) =
∑

k≥1

Fk(s)q
k, Fk(s) = −

∑

d|k

( k
d

)3
(sd − s−d)2

where as before we have used s = ez/2 so p = s2. Then by an immediate check the
differential equation (1) for ϕm is equivalent to the following formula:

6 See also [17, App. A] for a similar argument.
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ϕu = (pu/2 − p−u/2)

⎛

⎝1 +
∑

r≥1

∑

k1,...,kr≥1

Fk1(s)Fk2 (s) · · · Fkr (s)
k21(k1 + k2)2 . . . (k1 + ... + kr )2

qk1+...+kr u2r

⎞

⎠ .

(16)

Second we can use the Fourier expansion of the ϕm as discussed in Sect. 3.2:

ϕu = (pu/2 − p−u/2)
∑

|a|=0

(
∏

i

1 − pai

1 − qai

)
ul(a)

z(a)

where we used that (15) makes sense for arbitrary u. We see that Theorem 1.2 is
equivalent to the following non-trivial identity:

∑

|a|=0

⎛

⎝
∏

i

1 − pai

1 − qai

⎞

⎠ ul(a)

z(a)
= 1 +

∑

r≥1
k1,...,kr≥1

Fk1(s)Fk2 (s) · · · Fkr (s)
k21(k1 + k2)2 . . . (k1 + ... + kr )2

qk1+...+kr u2r .

For the third formula, we use a Taylor expansion in u. For positive integers u one
can write the solution

Coeff x−1

(
�(x + z)

�(x)

)u

as

ϕu = Coeff x−1
(x + z)u

xu
exp

(
2u

∑
k≥2

Gk
xk − (x + z)k

k!
)

= Coeff x−1

∞∑

�=1

(
u

�

)( z
x

)�

exp

(
2u

∑
k≥2

Gk
xk − (x + z)k

k!
)

. (17)

The latter expression makes sense as an element of C[[z]] for all u ∈ C. For example,
the first terms read

ϕu = uz − G2u
3z3 +

((
1

3
G2

2 − 1

72
G4

)
u5 +

(
1

6
G2

2 − 5

72
G4

)
u3

)
z5 + O(z7).

The expansion (17) yields the following important structure result.

Proposition 3.2 For every k ≥ 1 there exist odd polynomials Pk(u) of degree≤ k with
coefficients in QModk−1 such that for all m ∈ Z

ϕm =
∑

odd k≥1

zk Pk(m).
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Moreover, P1(u) = u and if k ≥ 2, then u3 | Pk(u).

3.4 Anomaly equation

We consider the holomorphic anomaly of ϕm with respect to the variable z.

Proposition 3.3 For all m ≥ 1 one has

d

dA
ϕm = 1

2

∑

i+ j=m
i, j≥1

m2

i j
ϕiϕ j .

It follows that every zk coefficient of d
d Aϕm is polynomial inm in the range m ≥ 0.

However the dependence on m is only piecewise polynomial in general:

Corollary 3.4 The difference

ϕA
m = d

d A
ϕm − mzϕmδm<0

depends polynomially on m, i.e. there exist polynomials Qk(u) of degree ≤ k +1 with
coefficients in QModk−2 such that ϕA

m = ∑
k≥2 z

k Qk(m). Moreover, u2 | Qk for all k.

Proof of Corollary 3.4 We first rewrite the proposition as

d

d A
ϕm = m

m−1∑

j=1

ϕ j · ϕm− j

m − j

Hence for all m ≥ 0 we have d
d Aϕm = ∑

n Qn(m)zn where the polynomials Qn are
determined by

Qn(m) = m
∑

k+�=n
k,�≥1

m−1∑

j=1

Pk( j)
P�(m − j)

m − j

for all m ≥ 0. Here Pk(m) are the polynomials of Proposition 3.2.
For all m > 0 by Lemma 2.3 we have

Qn(−m) = −(−m)
∑

k+�=n
k,�≥1

m∑

j=1

Pk(− j)

(
P�(u)

u

) ∣∣∣
u=−m+ j

= −m
∑

k+�=n
k,�≥1

m−1∑

j=1

Pk( j)
P�(−m + j)

−m + j
− mPn−1(m),
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where we used the second part of Proposition 3.2 for the last equality. Summing up
we obtain as desired

ϕA−m =
∑

n

znQn(−m) = − d

d A
ϕm − mzϕm .

��
Proof of Proposition 3.3 We give first a proof via generating series. As in the proof of
Theorem 1.2 consider the generating series

g(y) =
∑

m≥1

ϕm

m
ym

and let Dy = y d
dy . We need to prove the equality

d

dA(z)
g(y) = g(y)Dyg(y).

Let f (x) = �(x+z)
�(x) so that f (g(y)) = 1

y . Then by [ d
dA , Dz] = 2 ind we have

d

dA(z)
f (x) = d

dA(z)

eDzx�(z)

�(x)
= [ d

dA(z) , Dz]xeDzx�(z)

�(x)
= x · f (x). (18)

Applying d
d A to f (g(y)) = 1/y we get ( d

d A f )(g(y)) + (Dx f )(g(y))
d
d A g(y) = 0,

and hence

d

dA(z)
g(y) = − g(y)

y · (Dx f )
.

Since we also have

Dy( f (g(y))) = (Dx f )(g(y))Dy(g(y)) = −1

y
, and hence

1

Dx f
= −y · Dyg(y)

the claim follows. ��
We give a more direct proof of Proposition 3.3 using the following combinatorial

Lemma whose proof follows directly from Lagrange inversion and is left to the reader.

Lemma 3.5 Let f (x) be a power series and k ∈ N. Then for all m ≥ 1 we have

1

m
· [ f (x)m]xm−k = 1

k

∑

n1+...+nk=m

k∏

i=1

1

ni
[ f (x)ni ]xni−1

where we write [−]xm for taking the coefficient of xm.
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Second proof of Proposition 3.3 Observe that by (18) we have

d

d A

[(
�(x + z)

�(x)

)m]

x−1
= m

[(
�(x + z)

�(x)

)m]

x−2
,

Applying Lemma 3.5 with k = 2 and f = x �(x+z)
�(x) yields the desired result. ��

4 Differential equation of the second kind

Recall the two defining properties of the series ϕm,n :

• the differential equation: Dτ ϕm,n = mnϕmϕn F + (Dτ ϕm)(Dτ ϕn)

• the vanishing of the constant term: ϕm,n = O(q).

The goal of this section is to first prove thatϕm,n are quasi-Jacobi forms (Theorem 1.3),
and then derive their holomorphic anomaly equations (Sect. 4.4).

4.1 Polynomiality

We first recall the following.

Proposition 4.1 If m �= −n then we have

ϕm,n = m

m + n
ϕmDτ (ϕn) + n

m + n
Dτ (ϕm)ϕn .

Proof The differential equation follows from the defining differential equation (1)
satisfied by ϕm . The vanishing of the constant term is observed directly. ��

By definition and the polynomiality of ϕm the series ϕm,n is a power series in z
and q with coefficients which are polynomials in m and n. We use Proposition 4.1 to
prove a stronger statement.

Proposition 4.2 There exist polynomials Pr (u, v) of degree at most r in variables u, v

with coefficients quasi-modular forms of weight r such that for all m, n ∈ Z

ϕm,n =
∑

r>0

zr Pr (m, n).

Moreover, the polynomials Pr (u, v) are divisible by both u2 and v2.

Proof By the defining differential equation (5) and the polynomiality of ϕm there exist
polynomials Pa,r (u, v) of degree r + 2 with rational coefficients such that

ϕm,n =
∑

r>0

zr
∑

a≥1

qa Pa,r (m, n)
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for all m, n ∈ Z. Here we have r > 0 since ϕm(z = 0) = 0 for all m.
On the other hand by Proposition 4.1 for all m, n ∈ Z with m �= −n we have

ϕm,n =
∑

r>0

zr
1

m + n

∑

k+�=r

(
nDτ (Pk(m))P�(n) + mPk(m)Dτ (P�(n))

)

where Pk(u) are the polynomials of Proposition 3.2. Since the inner sum vanishes
when settingm = −n and it is polynomial of degree at most r +1 inm, n, there exists
a polynomial Pr (u, v) of degree at most r with coefficients in QModr such that

ϕm,n =
∑

r>0

zr Pr (m, n)

whenever m �= −n.
The equality of polynomials

∑

a≥1

qa Pa,r (u, v) = Pr (u, v)

holds after evaluating (u, v) at (m, n) for all integers m �= −n. Hence the equality
holds as an equality of polynomials.

The last statement follows since nDτ (Pk(m))P�(n) +mPk(m)Dτ (P�(n)) is divis-
ible by both m2 and n2, hence the same holds for the term obtained by dividing
by m + n. ��
Example 4.3 The first terms in the Fourier and Taylor expansions of ϕm,n are

ϕm,n = −mn(sm − s−m)(sn − s−n)(s − s−1)2q + O(q2)

where s = ez/2, and

ϕu,v =
((

2G2
2 − 5

6
G4

)
u2v2

)
z4 +

((
− 4

3
G3

2 + 2

3
G2G4 − 7

720
G6

)
(u4v2 + u2v4)

+
(

− 2

3
G3

2 + 1

6
G2G4 + 7

720
G6

)
u3v3 +

(
− 2

3
G3

2 + 5

6
G2G4 − 7

144
G6

)
u2v2

)
z6 + O(z7).

4.2 Holomorphic anomaly equations

From Proposition 4.1 we can deduce for allm �= −n the following anomaly equation:

d

d A
ϕm,n = n

m + n

(
Dz(ϕm)ϕn + Dτ (

d

d A
ϕm)ϕn + Dτ (ϕm) · d

d A
ϕn

)

+ m

m + n

(
ϕmDz(ϕn) + (

d

d A
ϕm) · Dτ (ϕn) + ϕm · Dτ

d

d A
ϕn

)
(19)
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By the anomaly equation for ϕm this gives an expression for d
d Aϕm,n whenever m �=

−n.
In case m, n > 0 we can find a more efficient equation:

Proposition 4.4 For all m, n > 0,

d

d A
ϕm,n = m · n

m + n
ϕm+n +

m−1∑

j=1

m

j
ϕm− j,nϕ j +

n−1∑

j=1

n

j
ϕm,n− jϕ j (20)

Proof We prove that the right hand side in (20) is equal to the right hand side in (19).
By the anomaly equation for ϕm and comparing terms it is equivalent to prove the
following equation for all m, n ≥ 1:

ϕm+n = 1

m
Dz(ϕm)ϕn + 1

n
ϕmDz(ϕn) +

∑

i+ j=m

1

i
ϕi,nϕ j +

∑

i+ j=n

1

i
ϕi,mϕ j . (21)

We multiply both sides with xm yn and sum over all m, n ≥ 1. With g(x) =∑
m≥1 x

mϕm/m the equation becomes

yDx g(x) − xDyg(y)

x − y
= Dzg(x) · Dyg(y) + Dxg(x) · Dzg(y) + (

(Dx + Dy)
−1Dyh(x, y)

)
Dxg(x)

+ (
(Dx + Dy)

−1Dxh(x, y)
)
Dyg(y) (22)

where (Dx+Dy)
−1 acts term-wise bymultiplying the coefficient of xm yn by (m+n)−1

(this is well defined since both m, n are positive for all non-zero coefficients) and we
have used (Dx + Dy)

∑
m,n≥1

ϕm,n
m xm yn = Dyh(x, y) with

h(x, y) = Dxg(x) · Dτ g(y) + Dτ g(x) · Dyg(y).

Rewriting Dy = (Dx + Dy) − Dx we have

(Dx + Dy)
−1Dyh = h − (Dx + Dy)

−1Dxh.

Inserting this the (Dx + Dy)
−1 term factors out and we obtain that (22) is equivalent

to

Dxh = (Dx + Dy)

(
1

Dyg(y) − Dxg(x)

×
(
yDxg(x) − xDyg(y)

x − y
− Dzg(x) · Dyg(y) + Dxg(x) · Dzg(y)

))



64 Page 22 of 30 J.-W. van Ittersum et al.

Expanding and using that (Dx + Dy)(y/(x − y)) = 0 this is equivalent to

(
D2
x g(x) · Dyg(y) − Dxg(x) · D2

yg(y)
)

· (1 + Dzg(x) + Dzg(y) + h)

+(Dyg(y) − Dxg(x)) ·
(
Dz

(
Dxg(x) · Dyg(y)

) + Dxg(x)Dy(h) + Dyg(y)Dxh
)

= 0.

(23)

We consider again the function f (x) = �(x+z)
�(x) and apply the variable change

x = 1

f (x̃)
, y = 1

f (ỹ)
⇐⇒ x̃ = g(x), ỹ = g(y).

Let us denote f ′(x) = d
dx f (x). We then have the transformations

Dxg(x) = − f

f ′ Dzg(x) = − Dz f

f

D2
x g(x) = − f

f ′ · f ′′ f − ( f ′)2

( f ′)2
Dτ g(x) = − Dτ f

f ′

Dx Dτ g(x) = − f

f ′ · f ′′Dτ ( f ) − f ′Dτ ( f ′)
( f ′)2

, Dx Dzg(x) = − f

f ′ · f ′′Dz( f ) − f ′Dz( f ′)
( f ′)2

where on the right hand side we have omitted the argument x̃ in f and its derivatives.
After changing variables and clearing denominators we find that (23) is equivalent

to
(
f ′′(x) f (x) f ′(y)2 − f ′′(y) f (y) f ′(x)2

)
· C + (

f (x) f ′(y) − f ′(x) f (y)
) · D = 0

(24)

where we have written x, y for x̃, ỹ and

C = f ′(x) f ′(y) − Dz f (x) · f ′(y) − f ′(x)Dz f (y) + f (x)Dτ f (y) + Dτ f (x) · f (y)

D = (
f ′′(x)Dz f (x) − f ′(x)Dz f

′(x)
)
f ′(y)2

+ (
f ′′(y)Dz f (y) − f ′(y)Dz f

′(y)
)
f ′(x)2

− (
f ′′(x) f (x) − f ′(x)2

)
f ′(y)Dτ f (y) − (

f ′′(x)Dτ f (x) − f ′(x)Dτ f ′(x)
)
f (y) f ′(y)

− (
f ′′(y) f (y) − f ′(y)2

)
f ′(x)Dτ f (x) − (

f ′′(y)Dτ f (y) − f ′(y)Dτ f ′(y)
)
f (x) f ′(x).

Let F(x, y, z, τ ) be the left hand side of (24). We need to show that F = 0. We
will argue as in Sect. 3.1. Since it is a polynomial in derivatives of Jacobi forms the
functionF is a quasi-Jacobi form of the three elliptic variables x, y, z. It is of weight 6
and index

L =
⎛

⎝
0 0 3/2
0 0 3/2
3/2 3/2 3/2

⎞

⎠ .
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A quick check using the commutation relations (10) shows that in the algebra of such
quasi-Jacobi forms we have

d

dG2
F = d

d A(x)
F = d

d A(y)
F = 0.

By a direct check (e.g. using a computer) F has no poles at y = 0 and vanishes to
order 3 at y = −z. Hence the ratio

F(x, y)

f (x)3 f (y)3
,

is holomorphic in y. Since by [14, Lem. 6] it is also 2-periodic, we find that it is
constant in y. But F is symmetric in x and y so it is also constant in x . By checking
that the constant term vanishes we are done. ��
Remark 3 In the proof we established (21), which is precisely Proposition 1.4.

By Proposition 4.1 for all m, n > 0 the function ϕm,n is determined by ϕm and ϕn .
Hence (21) yields recursive formulas for ϕm , and hence provides an alternative def-
inition of the set of functions ϕm starting from the initial condition ϕ1 = �(z). For
example, the case (n, 1) yields

ϕn+1 = Dz(ϕ1)ϕn + 1

n
ϕ1Dz(ϕn) +

n−1∑

i=1

1

i
ϕi,1ϕn−i .

�

4.3 Proof of Theorem 1.3

We need to show that for all n ≥ 1 we have

ϕn,−n − n ∈ QJac0,n .

The idea of the proof is to consider the two expressions for d
d Aϕm,n for positive m, n

given by (19) and (20). These terms are equal for m > 0, and (with minor modifica-
tions) they have natural extensions to m ≤ 0. We will observe that these extensions
are both polynomial in m (when fixing n) up to the same non-polynomial correction
term. Hence they are equal for all m.

Concretely, let n > 0 be fixed and let R(m, n) be the right hand side of (19). Then
by Corollary 3.4 the sum of R(m, n) and

−mzδm<0

(
n

m + n
Dτ (ϕm)ϕn + m

m + n
ϕmDτ (ϕn)

)
= −mzδm<0ϕm,n

is polynomial in m. We write

R̃(m, n) = R(m, n) − mzϕm,nδm<0
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to denote this polynomial function.
We consider now the right hand side of (20) and we want to make sense of it for

negative m. For all m ≥ 0, with m �= n in the second line, define

S(m, n) := m · n
m + n

ϕm+n +
m−1∑

j=1

m

j
ϕm− j,nϕ j +

n−1∑

j=1

n

j
ϕm,n− jϕ j

S(−m, n) := −m · n
−m + n

ϕ−m+n +
m−1∑

j=1

m

j
ϕ−m+ j,nϕ j +

n−1∑

j=1

n

j
ϕ−m,n− jϕ j .

By a direct application of Lemma 2.3 the sum

S̃(m, n) = S(m, n) − mzϕm,nδm<0

is polynomial in m.
By Proposition 4.4 we have R(m, n) = S(m, n), hence R̃(m, n) = S̃(m, n) for all

m > 0. By polynomiality in m we get R̃(m, n) = S̃(m, n) for all m �= −n. Thus

∀m �= −n : R(m, n) = S(m, n). (25)

We specialize (25) to m = −n − 1. Since

S(−n − 1, n) = −(n + 1)nϕ1 + (n + 1)ϕ−n,nϕ1 +
n∑

j=2

n + 1

j
ϕ−(n+1)+ j,nϕ j

+
n−1∑

j=1

n

j
ϕ−(n+1),n− jϕ j

and ϕ1 = �(z), the Eq. (25) yields

ϕ−n,n − n = 1

(n + 1)�

⎛

⎝R(−n − 1, n) −
n∑

j=2

n + 1

j
ϕ−(n+1)+ j,nϕ j −

n−1∑

j=1

n

j
ϕ−(n+1),n− jϕ j

⎞

⎠ .

The term in the bracket on the right lies in QJac−1,n+1/2 by inspection. Moreover,
again by inspection it vanishes at z = 0. Hence it must be divisible in algebra of
quasi-Jacobi forms by �(z). This gives ϕ−n,n − n ∈ QJac0,n . ��
Remark 4 The proof yields more information. For m �= −n we have d

d Aϕm,n =
R(m, n) by (19). Using that R(m, n) = S(m, n) for all m �= −n we find the anomaly
equation

d

d A
ϕ−m,n = −m · n

−m + n
ϕ−m+n +

m−1∑

j=1

m

j
ϕ−m+ j,nϕ j +

n−1∑

j=1

n

j
ϕ−m,n− jϕ j
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where m, n > 0 and m �= −n.�

4.4 Holomorphic anomaly equations II

We finally derive the precise modular properties of the functions ϕm,n in terms of
holomorphic anomaly equations.

Proposition 4.5 For all m, n ∈ Z we have

(a)
d

dG2
ϕm,n = 2ϕmϕn.

(b)
d

d A
ϕm,n = m · n

m + n
ϕm+n +

∑

i+ j=m

|m|
j

ϕi,nϕ j +
∑

i+ j=n

|n|
j

ϕm,iϕ j

with the convention in (b) that the first term vanishes if m + n = 0 and that in a sum
with condition i + j = � (for � = m or � = n) we sum over all positive i, j if � is
positive, and over all negative i, j if � is negative.

Proof Part (a) follows from the defining differential equation (5) by applying d/dG2.
In part (b) by Proposition 4.4 and Remark 4 we only need to prove the case m = −n.
For that we restrict ourself to the region m < 0 and n > 0. Applying d/d A to (5)
yields

Dzϕm,n + Dτ

d

d A
ϕm,n = d

d A
(mnϕmϕn F + (Dτ ϕm)(Dτ ϕn)) .

The right-hand side and the first term on the left-hand side are polynomial in m and n
(in the considered region). Hence d

d Aϕm,n is polynomial inm, n up to a constant in q.7

Let T (u, v) be the polynomial series such that

T (m, n) = m · n
m + n

ϕm+n +
∑

i+ j=m

|m|
j

ϕi,nϕ j +
∑

i+ j=n

|n|
j

ϕm,iϕ j

for all m �= −n in the region. We already know T (m, n) = d
d Aϕm,n for all m �= −n

so by the polynomiality of d
d Aϕm,n we get for all m, n in the region

T (m, n) = d

d A
ϕm,n + cm,n(z)

for some cm,n(z) which does not depend on q. Specializing to m = −n we see

d

d A
ϕ−n,n + c−n,n(z) = T (−n, n) = −n2z +

∑

i+ j=−n

n

j
ϕi,nϕ j +

∑

i+ j=n

n

j
ϕ−n,iϕ j .

7 There is a small subtlety here since at first it only follows that d
d Aϕm,n is a power series in z, q whose

coefficients are polynomial in m, n. But then d
d Aϕm,n is a quasi-Jacobi form for every m, n so that this

actually has to be a power series in zwith coefficientswhich are polynomialswith coefficients quasi-modular
forms (of determined weight).
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But d
d Aϕ−n,n is homogeneous as a quasi-Jacobi form of weight−1 and index n. Hence

the constant terms in q on both sides must match up and so as desired

d

d A
ϕ−n,n =

∑

i+ j=−n

n

j
ϕi,nϕ j +

∑

i+ j=n

n

j
ϕ−n,iϕ j .

��
Remark 5 Once we know that ϕn,−n is quasi-Jacobi and know its A-derivative it is
not difficult to derive a recursive formula for it (ignoring that we already obtained
a formula in the proof of Theorem 1.3). Indeed, consider the defining differential
equation

Dτ ϕm,n = mnϕmϕn F + (Dτ ϕm)(Dτ ϕn).

Applying d
d A twice and using the commutation relations we get

(|m| + |n|)ϕm,n + 2Dz
d

d A
ϕm,n + Dτ

(
d

d A

)2

ϕm,n =
(

d

d A

)2 (
mnϕmϕn F + (Dτ ϕm)(Dτ ϕn)

)

Since ( d
d A )iϕm,n is determined recursively from functions indexed bym′, n′ withm′+

n′ < m + n this yields one more formula for ϕm,n .�

5 The classical Kaneko–Zagier equation

The differential equation introduced by Kaneko and Zagier [9] can be characterized
among quadratic differential equations as those for which the solution space is invari-
ant under themodular transformation for the full modular group, so that it is essentially
unique [7]. If one however considers congruence subgroups, further differential equa-
tions of the same type have been found by Kaneko and Koike [8]. In this section
we give a general construction which takes as input a meromorphic Jacobi form of
weight−1 and gives as output a differential equation of Kaneko–Zagier type. The two
Kaneko–Zagier equations above and our case studied in this paper are all given by this
construction.8

5.1 A general construction

A general recipe to construct Kaneko–Zagier type differential equations is as follows.
Let g be a meromorphic Jacobi form of weight −1. Define

E(τ ) = Dτ g(τ )

g(τ )
and H(τ ) = D2

τ g(τ )

g(τ )
.

8 A certain differential equation for index 1 Jacobi forms was studied by Kiyuna [10] and was called a
Kaneko–Zagier type equation. Howver, since it is of 4-th order it does not fit our framework.
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By construction E and H are meromorphic quasi-Jacobi forms. For all m ≥ 1 we
consider the differential equation

D2
τ gm = m2H(τ )gm .

To obtain the connection to the classical presentation, we set m = k + 1, and
consider

fk = gk+1/g
k+1

which is of weight k. The corresponding differential equation for fk reads

D2
τ fk + 2(k + 1)E(τ )Dτ fk + k(k + 1)(E(τ )2 − H(τ )) fk = 0.

For this choice of g (and hence of E), we define a modified Serre derivative

θg = Dτ + E wt .

The operator θg is a derivation vanishing on g. Moreover, the above differential equa-
tion can be rewritten as

θ2g fk = H wt(wt+2) fk . (26)

We give several examples:

(0) In this paper we considered the case g(z, τ ) = �(z, τ ) (which contains the cases
g(τ ) = �(a, τ ) for any a ∈ Q).

(1) For the classical Kaneko–Zagier equation we let

g(τ ) = 1

η(τ)2

and get H(τ ) = E4(τ )/144. The operator θg is the Serre derivative.
(2) For the differential equation studied in [8] we take

g(τ ) = 1

η(τ)η(2τ)

and get

E(τ ) = 1

24
(E2(τ ) + 2E2(2τ)) 26H(τ ) = 1

5
(E4(τ ) + 4E4(2τ)).

The operator θg matches the derivative operator of [8, Sec. 2]. Unpublished work
by Tomoaki Nakaya [13, Section 3.5] shows that in this case

fk = Resz=0

(
Dz

�(2z, 2τ)

�(z, τ )2

)−(k+1)/2
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is a solution of the differential equation (26) for all k ≥ 1.

5.2 Recursive construction of the solutions

Let fk and fl be two solutions of (26) of weight k and l respectively. We write

[ f , h] := kθg( f )h − l f θg(h)

= kDτ ( f )h − l f Dτ (h)

which specializes to the first Rankin-Cohen bracket on modular forms.

Proposition 5.1 We have

θg[ fk, fl ] = k − l

l + 2
[ fk, θg( fl)]

θ2g [ fk, fl ] = (k − l)(k − l − 2)H [ fk, fl ] + k(k − l) fk[ fl , H ].

Proof This follows from a direct computation. ��
Corollary 5.2 Suppose that [ fl , H ] = 0. Then

[ fk, fl ]g2l+4 and [ fkg2k+2, fl ]g−2k−2

are solutions of (26) of weight k − l − 2 and k + l + 2 respectively.

Hence if a function fl as in the corollary exists, then from any given solution we
can recursively write down solutions of (26) with weight in the same residue class
modulo l.

Example 5.3 For the classical Kaneko–Zagier equation we can take fl = E4. Then
indeed [ fl , H ] = 0, so that if fk is a solution we have that [ fk, E4]/� is a solution
of weight k − 6, and [ fkη−4k−4, E4]η4k+4 is a solution of weight k + 6. The first of
these equations can also be found in [7, Proposition 1(i)].

Example 5.4 For the Kaneko–Zagier equation in Example (2) we can take fl =
2E2(2τ) − E2(τ ). Then, indeed [ fl , H ] = 0, so solutions can be constructed 4-
periodically, compare also with [8].

Remark 6 However, in the differential equation of Example (0) considered in this
paper, it turns out that the recursive structure described in Corollary 5.2 does not
exist. To see this, suppose (for our general family of Kaneko-Zagier equations) that
there exists a solution fl and that moreover we have [ fl , H ] = 0. Then the condition
[ fl , H ] = 0 is equivalent to

θg fl = l

4

(
D3

τ g

D2
τ g

+ 3
Dτ g

g

)
fl .
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Applying θg to this equation and using the differential equation for the left hand side,
we obtain

16(l + 2)
D2

τ g

g
= 4

D4
τ g

D2
τ g

+ 12
D2

τ g

g
+ (l − 4)

(
D3

τ g

D2
τ g

)2

+ 2(3l + 4)
D3

τ g

D2
τ g

Dτ g

g

+3(3l + 4)

(
Dτ g

g

)2

.

For g = η−2 this equation is only satisfied if l = 4, and for g = (η(τ )η(2τ))−1 only
if l = 2. However, for g = �(z) this equation is never satisfied, so Corollary 5.2
cannot be applied.�
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