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Abstract
Let X/Fq be a smooth, geometrically connected variety. For X projective, we prove
a Lefschetz-style theorem for abelian schemes of GL2-type on X , modeled after a
theorem of Simpson. Inspired by work of Corlette-Simpson over C, we formulate a
conjecture that absolutely irreducible rank 2 local systems with infinite monodromy
on X come from families of abelian varieties.We have the following application of our
main result. If one assumes a strong form ofDeligne’s (p-adic) companions conjecture
from Weil II, then our conjecture for projective varieties reduces to the conjecture
for projective curves. We also answer affirmitavely a question of Grothendieck on
extending abelian schemes via their p-divisible groups.
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1 Introduction

The goal of this article is to prove the following Lefschetz-style theorem. If X/k is a
smooth variety over a perfect field, F-Isoc(X)Qp

denotes the category of F-isocrystals

on X with coefficients in Qp. On a smooth proper variety X/Fq , an F-isocrystal is a
p-adic analog of a lisse l-adic sheaf.

Theorem (8.11) Let X/Fq be a smooth projective variety. Then there exists an open
subset U ⊂ X, whose complement has codimension at least 2, such that the following
holds.

Let C ⊂ U be a smooth projective curve that is the complete intersection of smooth
ample divisors of X. Let πC : AC → C be an abelian scheme of GL2-type: for a
prime l �= p, R1(πC )∗Ql has irreducible summands that have rank 2 and determinant
Ql(−1). Then the following are equivalent.

• There exists an abelian scheme of GL2-type BU → U with BC → C isogenous to
AC → C.

• The F-isocrystal D(AC [p∞]) ⊗ Qp ∈ F-Isoc(C)Qp
extends to an F-isocrystal

E ∈ F-Isoc(X)Qp
.

Here, if G → S is a p-divisible group in characteristic p, then D(G) denotes the con-
travariant Dieudonné crystal attached toG. This theorem is modeled on the following,
which easily follows from a very special case of a corollary of Simpson.

Theorem 1.1 [57, Corollary 4.3] Let X/C be a smooth projective variety and C ⊂
X a smooth curve that is the complete intersection of smooth ample divisors. Let
πC : AC → C be an abelian scheme and set LC := R1(πan

C )∗C. Then the following
are equivalent.

• There exists an abelian scheme πX : AX → X extending AC → C.
• The local system LC extends to a local system LX on X.

Therefore, Theorem 8.11 is an analog of Theorem 1.1 over Fq for abelian schemes of
GL2-type. In contrast to Theorem 1.1, Theorem 8.11 has an intervening U ⊂ X and
also potentially an isogeny.

The authors conjecture the following. For the definition of l-adic companions, see
Remark 4.2.

Conjecture 1.2 (Conjecture R2) Let X/Fq be a smooth, geometrically connected,
quasi-projective variety, let l �= p be a prime, and let L be a lisse Ql -sheaf of rank 2
such that

• L has determinant Ql(−1) and
• L is irreducible with infinite geometric monodromy.

Then L comes from a family of abelian varieties: there exists a non-empty openU ⊂ X
together with an abelian scheme

π : AU → U
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such that

R1π∗Ql
∼=

⊕
(σ L|U )m

where σ L runs over the l-adic companions of L and m ∈ N.

In particular, we conjecture such L come from H1 of an abelian scheme on an open
U ⊂ X . The main evidence for Conjecture 1.2 comes from Drinfeld’s first work on
the Langlands correspondence.

Theorem 1.3 (Drinfeld) Let C/Fq be a smooth affine curve and let L be as in Con-
jecture 1.2. Suppose L has infinite (geometric) monodromy around some point at
∞ ∈ C\C. Then L comes from a family of abelian varieties in the following sense:
let E be the field generated by the Frobenius traces of L and suppose [E : Q] = g.
Then there exists an abelian scheme

π : AC → C

of dimension g and an isomorphism E ∼= EndC (A) ⊗ Q, realizing AC as a GL2-type
abelian scheme, such that L occurs as a summand of R1π∗Ql . Moreover, AC → C is
totally degenerate around ∞.

See [60, Proof of Proposition 19, Remark 20] for how to recover this result from
Drinfeld’s work. (This amounts to combining [20,Main Theorem, Remark 5] with [19,
Theorem 1].) For general smooth X/Fq , an overconvergent F-isocyrstal is a good
p-adic analog of a lisse l-adic sheaf. Conjecture 1.2 can then be formulated in the
l = p case, replacing L with E ∈ F-Isoc†(X)Qp

, an overconvergent F-isocrystal with

coefficients in Qp. If X is projective, then any F-isocrystal is automatically overcon-
vergent. Combined with a refined form of Deligne’s p-adic companions conjecture,
we obtain the following application to Conjecture 1.2.

Corollary (8.13)Let X/Fq bea smoothprojective varietywithdim(X) ≥ 2and let L be
a rank 2 lisseQl sheaf with cyclotomic determinant and infinite geometricmonodromy.
Then there exists an open subset U ⊂ X, whose complement has codimension at least
2, such that

• if C ⊂ U is a smooth proper curve that is the complete intersection of smooth
ample divisors;

• if LC comes from an abelian scheme on AC → C, in the sense of Conjecture 1.2;
and

• if all p-adic companions to L exist,

then LU comes from an abelian scheme BU → U, i.e., Conjecture 1.2 is true for
(X , L)

In other words, if one believes the p-adic companions conjecture, then Conjecture 1.2
for a projective variety reduces to the case of a single sufficiently generic curveC ⊂ X .
SeeDefinition4.5 for the definitionof a complete set of p-adic companions. In general,
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the existence of a complete set of p-adic companions is a strong form of Deligne’s
petits camarades cristallin conjecture: see Conjectures 4.8 and 4.9. When we place
certain conditions on the splitting of p in E , the field of traces of E , the existence of
a single p-adic companion guarantees the existence of all of them by Corollary 4.16.

We briefly describe the strategy. First, we construct a (non-canonical) p-divisible
group on U ⊂ X . Then, we use Serre-Tate theory to construct a formal (polarizable)
abelian scheme over the formal scheme X/C . Here the positivity of C ⊂ X is used.
Finally, using work of Grothendieck, Hartshorne, and Hironaka and the positivity of
C ⊂ X , we globalize the family. As a key step, we record an affirmative answer to a
question of Grothendieck [31, 4.9]:

Theorem (Corollary 6.12) Let X be a locally noetherian normal scheme and U ⊂ X
be an open dense subset whose complement has characteristic p. Let AU → U be an
abelian scheme. Then AU extends to an abelian scheme over X if and only if AU [p∞]
extends to a p-divisible group over X.

Combined with algebraization techniques, there is the following useful consequence,
which is a p-adic analog of Simpson’s Theorem 1.1.

Corollary (Corollary 8.6) Let X/Fq be a smooth projective variety and let C ⊂ X be a
smooth curve that is the complete intersection of smooth ample divisors. Let AC → C
be an abelian scheme. Suppose there exists a Zariski open neighborhood U ⊃ C of
X such that AC [p∞] extends to a Barsotti–Tate group GU on U. Then there exists a
unique abelian scheme AU → U, extending AC, such that AU [p∞] ∼= GU .

Remark 8.10 shows that hypothesis on the dimension is necessary. The proof of
Corollary 8.6 makes use of p-to-l companions. See Remark 8.8 and Corollary 8.9 for
what we know over general fields k of characteristic p. We now make some general
remarks on Conjecture 1.2.

Remark 1.4 Our motivation to formulate Conjecture 1.2 partly comes from the fol-
lowing celebrated theorem of Corlette-Simpson [11, Theorem 11.2]:

Theorem (Corlette-Simpson) Let X/C be a smooth, connected, quasi-projective vari-
ety and let L be a rank 2 C-local system on X such that

• L has trivial determinant,
• L has quasi-unipotent monodromy along the divisor at ∞,
• L has Zariski-dense monodromy inside of SL2(C), and
• L is rigid.

Then L comes from a family of abelian varieties: there exists an abelian scheme
π : AX → X such that

R1π∗C ∼=
⊕

σ∈�

(σ L)m

where� ⊂ Aut(C) is a finite subset of automorphisms ofC containing the identity, σ L
is the local system obtained by applying σ to the matrices in the associated SL2(C)

representation, and m ∈ N.
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When X is projective, L being rigid means it yields an isolated (though not nec-
essarily reduced) point in the character variety associated to π1(X). For general
quasi-projective X , the notion of rigidity involves a character variety that remem-
bers Jordan blocks of the various monodromies around ∞, see [11, Section 6] or [22,
Section 2] for a precise definition. Corlette-Simpson’s theorem verifies the rank 2 case
of a conjecture of Simpson that roughly states: rigid semi-simple C-local systems on
smooth complex varieties are motivic. (When X is proper, this is [56, Conjecture 4].)

Remark 1.5 It is conjectured that if X/Fq is an irreducible, smooth variety and L is
an irreducible lisse Ql -sheaf with trivial determinant, then L is “of geometric origin”
up to a Tate twist (Esnault-Kerz attribute this to Deligne [24, Conjecture 2.3], see also
[21, Question 1.4]). More precisely, given such an L , it is conjectured that there exists
an open dense subsetU ⊂ X , a smooth projective morphism π : YU → U , an integer
i , and a rational number j such that L|U is a sub-quotient (or even a summand) of
Riπ∗Ql( j).

Remark 1.6 Compared toCorlette–Simpson’s theorem, there are two fewer hypotheses
in Conjecture 1.2: there is no “quasi-unipotent monodromy at ∞” condition and there
is no rigidity condition. The former is automatic by Grothendieck’s quasi-unipotent
monodromy theorem [59, Appendix].

As for the latter: the local systems showingup inSimpson’swork are representations
of a geometric fundamental group, while the local systems occuring in Conjecture 1.2
are representations of an arithmetic fundamental group.Let X/Fq be a smooth variety.
Then it follows from [13] that there are only finitely many isomorphism classes of
irreducible lisse Ql -sheaves that have trivial determinant, bounded rank, and bounded
ramification [25, Theorem 1.1]. For this reason, the authors view such local systems
as morally rigid.

Remark 1.7 A further difference between Conjecture 1.2 and Corlette-Simpson’s the-
orem is the intervention of an open set U ⊂ X in the positive characteristic case.
If U ⊂ X is a Zariski open subset of a smooth and irreducible C-variety with com-
plement of codimension at least 2, then any map U → Ag ⊗ C extends (uniquely)
to a map Y → Ag ⊗ C [31, Corollaire 4.5]. This extension property is not true in
characteristic p; one may construct counterexamples using a family of supersingular
abelian surfaces over A

2\{(0, 0)} [31, Remarques 4.6]. On the other hand, we do not
know of a single example that requires the intervention of an open subset U � X in
Conjecture 1.2.

Remark 1.8 There is recentworkof Snowden–Tsimerman that characterizes those rank
2 Ql sheaves on a curve over a number field that come from a family of elliptic curves
[60]. This work was very inspiring for us, but the techniques used there are rather
different from those used here. In particular, they use Drinfeld’s result modulo p for
infinitely many p, together with a Hilbert scheme argument based on the boundedness
ofmaps between projective hyperbolic curves. Our techniques instead use deformation
theory and algebraization.

We briefly summarize the sections.
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• Section 3 sets out definitions and conventions for lisse l-adic sheaves and (over-
convergent) F-isocrystals. Following Kedlaya, if X/Fq is a smooth variety, we
define a coefficient object to be either a lisse l-adic sheaf or an overconvergent
F-isocrystal.

• Section 4 briefly describes the companions conjecture.
• Section 5 reviews what we need from the theory of Barsotti–Tate (a.k.a. p-
divisible) groups.

• Section 6 relates extending abelian schemeswith extending their p-divisible group.
The main result is Corollary 6.12.

• Section 7 recalls a result of Hartshorne that allows us to globalize formal maps.
• Section 8 puts all of the ingredients together and contains a proof of of Theo-
rem 8.11.

The authors hope this work helps further reveal the geometric content of p-adic
coefficient objects; more specifically that they are analogous to variations of Hodge
structures. Deligne’s Conjecture 4.8 was presumably formulated with the hope that
such local systems are of geometric origin; here, we deduce that certain local systems
are of geometric origin from the existence of p-adic companions.

2 Notation and conventions

• The field with p elements is denoted byFp andF denotes a fixed algebraic closure.
• A variety X/k is a geometrically integral scheme of finite type.
• If X is a scheme, then X◦ is the set of closed points.
• If k is a field, l denotes a prime different than char(k).
• If E is a number field, then λ denotes an arbitrary prime of E .
• An λ-adic local field is a finite extension of Qλ.
• If L/K is a finite extension of fields and C is a K -linear abelian category, then
CL is the base-changed category. If M/K is an algebraic extension, then CM is
the 2-colimit of the categories CL as M ranges through the finite extensions of K
contained in M : K ⊂ L ⊂ M .

• If G → S is a p-divisible (a.k.a. Barsotti–Tate) group, then D(G) denotes the
contravariant Dieudonné crystal.

• If X/k is a smooth scheme of finite type over a perfect field k, then F-Isoc†(X) is
the category of overconvergent F-isocrystals on X .

• If X is a noetherian scheme and Z � X is a non-empty closed subscheme, then
X/Z is the formal completion of X along Z .

3 Coefficient objects

For a more comprehensive introduction to the material of this section, see the recent
surveys of Kedlaya [41,42]; our notations are consistent with his (except for us l �= p
and λ denotes an arbitrary prime). Throughout this section, k denotes a perfect field,
W (k) the ring of Witt vectors, K (k) the field of fractions of W (k), and σ is the
canonical lift of absolute Frobenius on k.
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Let X/Fq be a normal variety and F a fixed algebraic closure of Fq . Denote by X
the base change X ×SpecFq SpecF. We have the following homotopy exact sequence

0 → π1(X) → π1(X) → Gal(F/Fq) → 0

(suppressing the implicit geometric point required to define π1). The profinite group
Gal(F/Fq) has a dense subgroup Z generated by the Frobenius. The inverse image of
this copy of Z in π1(X) is called theWeil Group W (X) [12, 1.1.7]. The Weil group is
given a topology where Z is discrete; this is not the subspace topology from π1(X).

Definition 3.1 [12, 1.1.12] Let X/Fq be a normal variety and K an l-adic local field.
A (lisse) Weil sheaf of rank r with coefficients in K is a continuous representation
W (X) → GLr (K ). A (lisse) étale sheaf of rank r with coefficients in K is a
continuous representationπ1(X) → GLr (K ).We denote the category ofWeil sheaves
with coefficients in K by Weil(X)K .

Every lisse étale sheaf yields a lisse Weil sheaf. Conversely, any lisse Weil sheaf
with finite determinant is the restriction to W (X) of an étale sheaf [12, 1.3.4].

Definition 3.2 Let C be a K -linear additive category, where K is a field [61, Tag
09MI]. Let L/K be a finite field extension. We define the base-changed category CL
as follows:

• Objects of CL are pairs (M, f ), where M is an object of C and f : L → EndCM
is a homomorphism of K -algebras. We call such an f an L-structure on M .

• Morphisms of CL are morphisms of C that are compatible with the L-structure.

Fact 3.3 Let C be a K -linear abelian category and let L/K be a finite field extension.
Then there are functors

I ndL
K : C � CL : ResLK

called induction and restriction. Restriction is right adjoint to induction. Both functors
send semi-simple objects to semi-simple objects. If C has the structure of a Tannakian
category, then so does CL . In this case, I ndL

K preserves rank and ResLK multiplies the
rank by [L : K ].
Proof The restriction functor is given by forgetting the L-structure. For a description
of induction and restriction functors, see [46, Section 3]. The fact about semi-simple
objects follows immediately from [46, Corollary 3.12]. For the fact that CL is Tan-
nakian, see [14].

Given an object M of C, we will sometimes write ML or M ⊗K L for I ndL
K M .

The category of Ql -Weil sheaves, Weil(X), is naturally an Ql -linear neutral
Tannakian category, and Weil(X)K ∼= (Weil(X))K , where the latter denotes the
“based-changed category” as above. We define Weil(X)Ql

as the 2-colimit of

Weil(X)K as K ⊂ Ql ranges through the finite extensions of Ql inside of Ql . Alter-
natively Weil(X)Ql

is the category of continuous, finite dimensional representations

of W (X) in Ql -vector spaces where Ql is equipped with the colimit topology.
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Definition 3.4 Let X/Fq be a smooth variety and let x ∈ X◦ be a closed point of X .
Given aWeil sheaf L on X with coefficients inQl , by restriction we get aWeil sheaf L
on x . Denote by Frx the geometric Frobenius at x . Then Frx ∈ W (x) and we define
Px (L, t), the characteristic polynomial of L at x , to be

Px (L, t) := det(1 − Frx t |Lx ).

Now, let X/k be a scheme of finite type over a perfect field. Berthelot has defined the
absolute crystalline site on X : for a reference, see [61, TAG 07I5]. (We implicitly take
the crystalline sitewith respect toW (k)without further comment; in otherwords, in the
formulation of the Stacks Project, S = SpecW (k) with the canonical divided power
structure.) Let Crys(X) be the category of crystals in finite locally free OX/W (k)-
modules. To make this more concrete, we introduce the following notation. A PD test
object is a triple

(R, I , (γi ))

where R is a W (k) algebra with I a nilpotent ideal such that Spec R/I “is” a Zariski
open of X , and (γi ) is a PD structure on I . Then a crystal in finite locally free modules
M on X is a rule with input a PD test object (R, I , (γi )) and output a finitely generated
projective R module

MR

that is functorial: the pullback maps with respect to morphisms of PD test-objects
are isomorphisms. In this formulation, the crystalline structure sheafOX/W (k) has the
following description: on input (R, I , (γi )), the sheaf OX/W (k) has as output the ring
R.

By functoriality of the crystalline topos, the absolute Frobenius Frob : X → X
gives a functor Frob∗ : Crys(X) → Crys(X).

Definition 3.5 [61, TAG 07N0] A (non-degenerate) F-crystal on X is a pair (M, F)

where M is a crystal in finite locally free modules over the crystalline site of X and
F : Frob∗M → M is an injective map of crystals.

We denote the category of F-crystals by FC(X); it is a Zp-linear category with an
internal ⊗ but without internal homs or duals in general. There is a object Zp(−1),
given by the pair (OX/W (k), p).We denote byZp(−n) the nth tensor power ofZp(−1).

Notation 3.6 [41, Definition 2.1] Let X/k be a scheme of finite type over a perfect
field. We denote by F-Isoc(X) the category of (convergent) F-isocrystals on X .

F-Isoc(X) is a Qp-linear Tannakian category. Denote by Qp(−n) the image of
Zp(−n) and by Qp(n) the dual of Qp(−n). There is a notion of the rank of an F-
isocrystal that satisfies that expected constraints given by ⊗ and ⊕. Unfortunately,
F-Isoc(X) is not simply the isogeny category of FC(X); however, it is the isogeny
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category of the category of F-crystals in coherent modules (rather than finite, locally
free modules). There is a natural functor FC(X) → F-Isoc(X) [41, 2.2].

For general smooth X/k over a perfect field, it seems that there are two p-adic
analogs of a lisse l-adic sheaf: a (convergent) F-isocrystal and an overconvergent F-
isocrystal. For our purposes (and following [10]), overconvergent F-isocrystals are a
better analog.

Notation 3.7 [41, Definition 2.7] Let X/k be a smooth variety over a perfect field. We
denote by F-Isoc†(X) the category of overconvergent F-isocrystals on X .

The category F-Isoc†(X) is a Qp-linear Tannakian category. There is a natural
forgetful functor

F-Isoc†(X) → F-Isoc(X)

which is fully faithful in general [40, Theorem 1.1] and an equivalence of categories
when X is proper.

Notation 3.8 For any finite extension L/Qp, we denote by F-Isoc†(X)L the base-
changed category a.k.a. overconvergent F-isocrystals with coefficients in L .

Definition 3.9 Let X/k be a smooth scheme over a perfect field. Let L be a p-adic
local field and let E be an object of F-Isoc†(X)L . We say E is effective if the object
ResL

Qp
E is in the essential image of the functor

FC(X) → F-Isoc†(X)

Being effective is equivalent to the existence of a “locally free lattice stable under
F”. See Lemma 5.8 for the basic result on effectivity.

Let k be a perfect field. Then the category of F-crystals on Spec(k) is equivalent
to the category of finite freeW (k)-modules M together with a σ -linear injective map

F : M → M .

(Morphisms in this category are defined to beW (k)-linear maps that commute with the
Fs.) Similarly, the category of F-isocrystals on Spec(k) is equivalent to the category
of finite dimensional K (k)-vector space V together with a σ -linear bijective map

F : V → V ,

where morphisms are defined in the obvious way. The rank of (V , F) is the rank of
V as a vector space. Let L/Qp be a finite extension. Then F-Isoc(k)L is equivalent to
the following category: objects are pairs (V , F) where V is a finite free K (k) ⊗Qp L
module and F is a σ ⊗ 1-linear bijective map

F : V → V
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and morphisms are maps of K (k)⊗Qp L-modules that commute with F [46, Proposi-
tion 5.12]. Note that K (k) ⊗Qp L is not necessarily a field. There is also a direct-sum
decomposition of abelian categories:

F-Isoc(k)L ∼=
⊕

λ∈Q≥0

F-Isoc(k)λL

which is inherited from the analogous decomposition of F-Isoc(k). Here, F-Isoc(k)λL
is the (thick) abelian sub-category with objects isoclinic of slope λ.

Notation 3.10 We denote by F-Isoc†(X)Qp
the 2-colimit of the base-changed cate-

gories over all finite extensions Qp ⊂ L ⊂ Qp, via the functors I ndL
Qp

. This is the

category of overconvergent F-isocrystals on X with coefficients in Qp.

Remark 3.11 When k is a perfect field, F-Isoc(k)Qp
has the following description.

Objects are pairs (V , F)where V is a finite free K (k)⊗Qp Qp-module and F : V → V

is a bijective,σ⊗1-linearmap.Morphisms are K (k)⊗QpQp-linearmaps that commute
with F .

Let L/Qp be an algebraic extension, let k ∼= Fpd and let (V , F) be an object of
F-Isoc(k)L . Then Fd acts as a linearmap on V .We let P((V , F), t), the characteristic
polynomial of Frobenius, be det(1 − (Fd)t |V ). By [46, Proposition 6.1]

P((V , F), t) ∈ L[t]

Definition 3.12 Let X/Fq be a smooth variety, let L/Qp be an algebraic extension,
and let E ∈ F-Isoc†(X)L . Let x ∈ X◦ with residue field Fpd . Define Px (E, t), the
characteristic polynomial of E at x , to be det(1 − (Fd)t |Ex ).
Notation 3.13 [42, Notation 1.1.1] Let X/Fq be a smooth connected variety. A coeffi-
cient object is an object either of Weil(X)Ql

or of F-Isoc†(X)Qp
. We informally call

the former the étale case and the latter the crystalline case.

Given an algebraic extension Ql ⊂ K ⊂ Ql , objects ofWeil(X)K may be consid-
ered as étale coefficient objects. Similarly, given an algebraic extension Qp ⊂ K ⊂
Qp, then objects of F-Isoc

†(X)K may be considered as crystalline coefficient objects
via the induction functor.

Definition 3.14 Let E be an étale (resp. crystalline) coefficient object. Let K be a
subfield of Ql (resp. of Qp) containing Ql (resp. containing Qp). The following three
equivalent phrases

• E has coefficients in K
• E has coefficient field K
• E is a K-coefficient object

mean that E may be descended toWeil(X)K (resp. F-Isoc†(X)K ).
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Note that E having coefficient field L does not preclude E from having coefficient
field K for some sub-field K ⊂ L .

Definition 3.15 [42, Definition 1.1.5] Let X/Fq be a smooth variety and let F be a
coefficient object on X with coefficients in Qλ. We say F is algebraic if Px (F , t) ∈
Q[t] ⊂ Qλ[t] for all x ∈ X◦. Let E ⊂ Qλ be a number field. We sayF is E-algebraic
if Px (F , t) ∈ E[t] for all x ∈ X◦.

Colloquially, semi-simple coefficient objects are determined by the characteristic
polynomials of Frobenius at all closed points. In the étale case, this is a consequence
of the Brauer-Nesbitt theorem and the Chebotarëv density theorem. In the crystalline
case, the argument is more subtle and is due to Tsuzuki [1, A.4.1]. See also a proof of
this fact in [37] which is closer in spirit to the original proof and uses a p-adic variant
of the Chebotarëv density theorem.

Theorem 3.16 [42, Theorem 3.3.1] Let X/Fq be a smooth variety. Let F be a semi-
simple coefficient object. Then F is determined, up to isomorphism, by Px (F , t) for
all x ∈ X◦.

4 Compatible systems and companions

Definition 4.1 Let X/Fq be a smooth variety. Let E and E ′ be algebraic coefficient
objects on X with coefficients in Qλ and Qλ′ respectively. Fix a field isomorphism
ι : Qλ → Qλ′ . We say E and E ′ are ι-companions if

ι(Px (E, t)) = Px (E ′, t)

for all x ∈ X◦. We say that E and E ′ are companions if there exists an isomorphism
ι : Qλ → Qλ′ that makes them ι-companions.

In other words, two coefficient objects are ι-companions if, under ι, the characteristic
polynomials of Frobenius match up.

Remark 4.2 For convenience, we spell out the notion of companions for lisse l-adic
sheaves. Let X/Fq be a smooth variety and let L and L ′ be lisse Ql and Ql ′ sheaves
respectively. (Here l may equal l ′.) We say they are companions if there exists a field
isomorphism ι : Ql → Ql ′ such that for every closed point x of X , there is an equality
of polynomials of Frobenius at x (see Definition 3.4):

ι(Px (L, t)) = Px (L
′, t) ∈ Ql ′ [t],

and furthermore this polynomial is in Q[t].
Remark 4.3 Note that the ι in Definition 4.1 and Remark 4.2 does not reference the
topology of Qp or Ql . In particular, ι need not be continuous and in fact cannot be
continuous if l �= p.
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Definition 4.4 Let X/Fq be a smooth variety and let E be a number field. Then an
E-compatible system is a system of lisse Eλ-sheaves (Fλ)λ�p over primes λ � p of E
such that for every x ∈ X◦

Px (Fλ, t) ∈ E[t] ⊂ Eλ[t]

and this polynomial is independent of λ.

Definition 4.5 Let X/Fq be a smooth variety and let λ be a rational prime. Let (Ev)v∈�

be a collection of Qλ coefficient objects on X , indexed by a finite set �. We say they
form a complete set of λ-adic companions if

• for every v ∈ � and for every ι ∈ AutQ(Qλ), there exists v′ ∈ � such that Ev and
Ev′ are ι-companions, and

• For every v, v′ ∈ �, Ev and Ev′ are ι-companions for some ι ∈ AutQ(Qλ).

The following definition of a complete E-compatible system involves all possible
ι-companions.

Definition 4.6 Let X/Fq be a smooth variety and let E be a number field. A complete
E-compatible system (Fλ) is an E-compatible system together with, for each prime
λ of E over p, an object

Fλ ∈ F-Isoc†(X)Eλ

such that the following two conditions hold.

(1) For every place λ of E and every x ∈ X◦, the polynomial Px (Fλ, t) ∈ E[t] ⊂
Eλ[t] is independent of λ.

(2) For a prime r of Q, let � denote the set of primes of E above r . Then (Fλ)λ∈�

form a complete set of r -adic companions for every r .

In particular, let (Fλ) be a complete E-compatible system and let L be a lisse Ql -
adic sheaf such that L is isomorphic an object of (Fλ). Let ι : Ql → Q̄λ′ . Then the
ι-companion to L exists and is isomorphic to an object in my list (Fλ). The most basic
example of an E-compatible system is the following.

Example 4.7 Let E/Q be a totally real number field of degree g and letM be a Hilbert
modular variety parametrizing principally polarized abelian g-folds with multiplica-
tion by a given orderO ⊂ E and some level structure. For most primes p of E ,M has
a smooth integral canonical model M̃ over Op; moreover there is a universal abelian
scheme Ã → M̃. Let π : A → M denote the special fiber of such a smooth canonical
model together with the induced abelian scheme. Then E ↪→ EndM (A) ⊗ Q and in
particular the local system R1π∗(Ql) admits an action by

E ⊗ Ql ∼=
∏

v|l
Ev
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Here v ranges over the primes of E over l. Let ev denote the idempotent projecting
E ⊗ Ql onto Ev . Then Lv := evR1π∗(Ql) is a rank 2 lisse Ql -sheaf with an action
of Ev , in other words a rank 2 lisse Ev-sheaf. It follows from the techniques of [55,
11.9,11.10] that the Lv are all companions. In fact, (Lv)v|l is a complete set of l-adic
companions. If [E : Q] > 1 and l splits non-trivially in E , then these will in general be
mutually non-isomorphic lisse l-adic sheaves. By ranging over all primes of Q (using
relative crystalline cohomology at p) we obtain a complete E-compatible system.

We recall a conjecture of Deligne from Weil II [12, Conjecture 1.2.10].

Conjecture 4.8 Let X/Fpd be a normal variety with a geometric point x → X. Let
l �= p be a prime. Let L be an absolutely irreducible l-adic local system with finite
determinant on X. The choice of x allows us to think of this as a representation
ρl : π1(X , x) → GL(n, Ql). Then

(1) ρl is pure of weight 0.
(2) There exists a number field E such that for all closed points x of X, the polynomial

Px (L, t) has all of its coefficients in E. In particular, the eigenvalues of ρl(Fx )
are all algebraic numbers.

(3) For each place λ � p, the roots α of Px (L, t) are λ-adic units in Eλ.
(4) For each λ|p, the λ-adic valuations of the roots α satisfy

| v(α)

v(Nx)
| ≤ n

2

where Nx is the size of the residue field of x.
(5) After possibly replacing E by a finite extension, for each λ � p there exists a λ-adic

local system ρλ : π1(X , x) → GL(n, Eλ) that is compatible with ρl .
(6) After possibly replacing E by a finite extension, for each λ|p, there exists a crys-

talline companion to ρl .

The following conjecture may be seen as a refinement to (2), (5), and (6) of Con-
jecture 4.8.

Conjecture 4.9 (Companions) Let X/Fq be a smooth variety. Let F be an irreducible
coefficient object on X with algebraic determinant. Then there exists a number field
E such that F fits into a complete E-compatible system.

The companions conjecture is surprising for the following reason: an l-adic local
system is simply a continuous homomorphism from π1(X) to GLn(Ql), and the
topologies on Ql and Ql ′ are completely different. Deligne likely made his conjecture
out of the hope that such local systems were of geometric origin. We summarize what
is known about Conjectures 4.8 and 4.9.

By work of Deligne, Drinfeld, and Lafforgue, if X is a curve all such local systems
are of geometric origin (in the sense of subquotients). Moreover, in this case Chin
has proved Part 5 of the conjecture [7, Theorem 4.1]. Abe has recently constructed a
sufficiently robust theory of p-adic cohomology to prove a p-adic Langlands corre-
spondence and hence answer affirmatively part 6 of Deligne’s conjecture when X is a
curve [1,2].
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Theorem 4.10 (Abe, Lafforgue) Let C/Fq be a smooth curve. Then both Deligne’s
conjecture and the companions conjecture are true for C.

In higher dimension,much is knownbutConjecture 4.9 remains open in general. See
[25] for a precise chronology of the following theorem, due to Deligne and Drinfeld.

Theorem 4.11 [13,21] Let X/Fq be a smooth variety. Let l �= p be a prime. Let L be
an absolutely irreducible l-adic local system with finite determinant on X. Then (1),
(2), (3), and (5) of Conjecture 4.8 are true.

Theorem 4.12 (Deligne, Drinfeld, Abe-Esnault, Kedlaya) Let X/Fq be a smooth vari-
ety and let F be a coefficient object that is absolutely irreducible and has finite
determinant. Then for any l �= p, all l-adic companions exist.

Proof This follows from Theorem 4.11 together with either [4, Theorem 4.2] or [42,
Theorem 0.4.1].

Remark 4.13 The “p-companions” part of the conjecture is not known if dimC > 1.
Given an irreducible lisse Ql sheaf L with trivial determinant and a (necessarily non-
continuous) isomorphism ι : Ql → Qp, it is completely unknown how to associate a
crystalline ι-companion to L .

We remark that Part (4) of the Conjecture 4.8 is not tight even for n = 2.

Theorem 4.14 (Abe-Lafforgue) Let X/Fq be a smooth variety and let E be an abso-
lutely irreducible rank 2 coefficient object on C with finite determinant. Then for all
x ∈ C◦, the eigenvalues α of Fx satisfy

| v(α)

v(Nx)
| ≤ 1

2

for any p-adic valuation v.

Proof Suppose X is a curve.ThenwhenE is an l-adic coefficient object, this is [47,The-
orem VII.6.(iv)]. For a crystalline coefficient object, we simply apply Theorem 4.10
to construct an l-adic coefficient object.

More generally, [21, Proposition 2.17] and [4, Theorem 0.1] function as “Lefschetz
theorems” (see [26]) and allow us to reduce to the case of curves.

Remark 4.15 A refined version of part (4) of Conjecture 4.8 has been resolved for
curves by Lafforgue [48, Corollaire 2.2] using automorphic forms. A p-adic variant
(which avoids automorphic techniques) was shown directly by Drinfeld–Kedlaya [18,
Theorem 1.1.5]. They prove that for an indecomposable crystalline coefficient object,
the generic consecutive slopes do not differ by more than 1, reminiscent of Griffith’s
transversality. Kramer–Miller has recently given another proof of the p-adic variant
[44].

Finally, we make the following simple observation: under strong assumptions on
the field of traces, the existence of companions with the same residue characteristic is
automatic.
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Corollary 4.16 Let X/Fq be a smooth variety, E a number field, and F be an irre-
ducible E-algebraic coefficient object with coefficients in Qp (resp. Ql ). If there is
only one prime in E lying above p (resp. l), then all p-adic (resp. l-adic) companions
exist.

Remark The hypothesis of Corollary 4.16 are certainly satisfied if p (resp. l) is either
totally inert or totally ramified in E .

Proof We assume F is crystalline; the argument in the étale case will be precisely
analogous. Suppose F ∈ F-Isoc†(X)K where K/Qp is a p-adic local field; we might
as well suppose K is Galois overQp. As there is a unique prime p above p in E , there is
a unique p-adic completion of E . We now explicitly construct all p-adic companions.
For every g ∈ Gal(K/Qp), consider the object gF : in terms of Definition 3.2, if
F = (M, f ), then gF := (M, f ◦ g−1). We claim this yields all p-adic companions.

Fix embeddings E ↪→ K ↪→ Qp. Then there is a natural map

Gal(K/Qp) → HomQ-alg(E, Qp)

given by precomposing with the fixed embeding. As there is a single p over p, this
map is surjective. The result follows from Theorem 3.16, and the fact that Px (gE, t) =
g Px (E, t) [46, Proposition 6.16].

Remark 4.17 In the crystalline setting of Corollary 4.16, the Newton polygons of all
p-adic companions ofF are the same at all closed points. This does not contradict the
example [45, Example 2.2]; in his example, p splits completely in the reflex field of
the Hilbert modular variety, and the reflex field is the same as the field generated by
the characteristic polynomial of Frobenius elements over all closed points.

5 Barsotti–Tate groups and Dieudonné crystals

In this section, again let X/k denote a finite type scheme over a perfect field.

Definition 5.1 A Dieudonné crystal on X is a triple (M, F, V ) where (M, F) is an
F-crystal (in finite locally free modules) on X and V : M → Frob∗M is a map of
crystals such that V ◦ F = p and F ◦ V = p. We denote the category of Dieudonné
Crystals on X by DC(X).

Remark 5.2 LetU/k be an locally complete intersection morphism over a perfect field
k. Then the natural forgetful functor DC(U ) → FC(U ) is fully faithful. This follows
from the fact that H0

cris(U ) is p-torsion free. This in turn follows from the fact that if
U = Spec(A) is affine, then the p-adic completion of a PD envelope of A isW (k)-flat
[17, Lemma 4.7].

Notation 5.3 [6, 1.4.1.3] Let BT (X) denote the category of Barsotti–Tate (“p-
divisible”) groups on X .
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For a thorough introduction to p-divisible groups and their contravariantDieudonné
theory, see [5,6,32]. In particular, there exist Dieudonné functors: given a BT group
G/X one can construct a Dieudonné crystal D(G) over X . According to our conven-
tions, D is the contravariant Dieudonné functor. Moreover, given a p-divisible group
G on X , there exists the (Serre) dual, which we denote by Gt (see [8, 10.7] or [6,
1.4.1.3]), whose constituent parts are obtained via Cartier duality of finite, locally free
group schemes.

Definition 5.4 [6, 3.3] LetG andH beBarsotti–Tate groups on X with the same height.
Then an isogeny is a homomorphism

φ : G → H

whose kernel is represented by a finite, locally free group scheme over X .

Definition 5.5 [6, 1.4.3] Let G be a Barsotti–Tate group on X . A quasi-polarization is
an isogeny

φ : G → Gt

that is skew-symmetric in the sense that φt = −φ under the natural isomorphism
G → (Gt )t .

Notation 5.6 Let G be a Barsotti–Tate group on X . We denote by QPol(G) the set of
quasi-polarizations of G.

The next theorem is a corollary of [15, Main Theorem 1].

Theorem 5.7 (de Jong) Let X/k be a smooth scheme over a perfect field of character-
istic p. Then the category BT (X) is anti-equivalent to DC(X) via D.

The following lemmapartially explains the relationship between slopes and effectivity.

Lemma 5.8 Let X/k be a smooth variety over a perfect field of characteristic p and
let E be an F-isocrystal on X. Then

• all of the slopes of E at all x ∈ |X | are non-negative if and only if there exists
a dense Zariski open U ⊂ X, with complement of codimension at least 2, such
that E |U is effective (i.e., there exists an F-crystal (M, F) in finite, locally free
modules on U such that (M, F) ⊗ Qp ∼= EU .

• Furthermore, all of the slopes of E at all points x ∈ |X | are between 0 and 1 if and
only if there exists a dense Zariski open U ′ ⊂ X, with complement of codimension
at least 2, such that EU ′ comes from a Dieudonné crystal.

Proof The “only if” of both statements follows from the following facts.

(1) If E is an F-isocrystal on X , then the Newton polygon is an upper semi-continuous
function with locally constant right endpoint (a theorem of Grothendieck, see e.g.
[38, Theorem 2.3.1]).
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(2) The locus of points where the slope polygon does not coincide with it’s generic
value is pure of codimension 1 [41, Theorem 3.12 (b)].

The “if” of the first statement is implicit in [38, Theorem 2.6.1]; see also [41,
Remark 2.3].

Finally, let (M, F) be an F-crystal in finite, locally free modules on U with all
Newton slopes ≤ 1. We explain the small modification to the proof of [38, Theorem
2.6.1] to find an open set U ′ ⊂ U , with complementary codimension at least 2, and
an isogenous F-crystal (M ′, F) (in finite, locally free modules) on U ′ that underlies
a Dieudonné crystal.

Set V := F−1 ◦ p. Then V does not necessarily stabilize the lattice M . However,
the pair (M, V ) has the structure of σ−1-F-isocrystal in the language of [38, p. 115].
(Fortunately, every result in Katz’s paper is written for σ a-F-crystals for all a �= 0,
not just the positive ones!) Consider the following (à priori infinite) sum, obviously
stabilized by V :

M̃ :=
∑

n≥0

V nM ⊂ E .

Then [38, Page 152] implies that M̃ is crystal in coherent modules on U . It follows
from the fact that FV = V F = p that M̃ is stabilized by F . Running the rest of
the argument of [38, Theorem 2.6.1], we obtain an open U ′ ⊂ U of complementary
codimension at least 2 and a crystal M′ ⊂ EU ′ in finite, locally free modules on
U ′ that is stabilized by F and V . (The argument amounts to taking the double dual,
which is automatically a reflexive sheaf, and noting that a reflexive sheaf on a regular
scheme is locally free away from a closed subset of codimension at least 3. See also
the following remark [38, Page 154].) Therefore, the triple (M′, F, V ) is a Dieudonné
crystal on U ′ as desired.

Remark 5.9 The F-crystal constructed in Lemma 5.8 is not unique.

Remark 5.10 It is not true that if (M, F) is an F-crystal with all Newton slopes in
[0, 1], then (M, F) underlies a Dieudonné crystal (equivalently, it is not true that
(M, F) has all Hodge slopes 0 or 1). Here is an example of an F-crystal over Fp

with Newton slopes all 1 but Hodge slopes 0 and 2: M = Z
2
p, and F is given by the

following matrix:

F :=
(
0 p2

1 0

)

The following notion of duality of Dieudonné crystals is designed to be compatible
with (Serre) duality of BT groups. In particular, the category DC(X) admits a natural
anti-involution.

Definition 5.11 [8, 2.10] LetM = (M, F, V ) be a Dieudonné crystal on X . Then the
dual M ∨ is a Dieudonné crystal on X whose underlying crystal is defined on divided
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power test rings (R, I , (γi )) as

M ∨(R, I , (γi )) = HomR(M(R), R)

The operators F and V are defined as follows: if (R, I , (γi )) is a PD test object and
f ∈ HomR(M(R), R), then

F( f )(m) = f (Vm)

V ( f )(m) = f (Fm)

It is an easy exercise to check that these rules render M ∨ a Dieudonné crystal.

Remark 5.12 If G → S is a BT group, then D(G)∨ ∼= D(Gt ) . [5, 5.3.3.1].

We record the following lemma, which is surely well-known, as we could not find a
reference. It compares the dual of a Dieudonné crystal with the dual of the associated
F-isocrystal.

Lemma 5.13 Let M = (M, F, V ) be a Dieudonné crystal on X. Then the following
two F-isocrystals on X are naturally isomorphic:

M ∨ ⊗ Q ∼= (M ⊗ Q)∗(−1)

Proof There is a natural perfect pairing to the Lefschetz F-crystal

M ⊗ M ∨ → Zp(−1)

as FV = p. There is also a perfect pairing

(M ⊗ Q) ⊗ (M ⊗ Q)∗ → Qp

to the “constant” F-isocrystal. Combining these two pairings shows the result.

6 A question of Grothendieck

In this section, we answer the question posed in [31, 4.9], see Corollary 6.12. The
argument is indeed similar to the arguments of [31, Section 4]; the primary new input
is [16, 2.5]. However, some complications arise due to the fact that reduced schemes
are not necessarily geometrically reduced over imperfect ground fields.

First, we record the following lemma, which is uniqueness of analytic continuation.

Lemma 6.1 Let X be an integral noetherian scheme and let Y be a separated scheme.
Let Z � X be a non-empty closed subscheme. Let u, v : X → Y be two morphisms
that agree when restricted to the formal scheme X/Z . Then u = v.
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Proof Amorphism X → Y is uniquely determined by its restriction to any non-empty
(dense) open U ⊂ X because X is reduced and Y is separated. Therefore, to check
the lemma we may restrict to any non-empty open subset U ⊂ X . Denote by Zn the
nth formal neighborhood of Z . Then the data of the map X/Z → X is equivalent to
the data of the maps Zn → X [61, Tag 0AI6]. We wish to prove that the set of closed
immersions {Zn → X}n≥0 are jointly schematically dense [30, Définition 11.10.2].

Pick an open affine Spec(R) ⊂ X that intersects Z non-trivially and let I be the
ideal of R corresponding to the scheme theoretical intersection of Z with Spec(R). As
R is a noetherian domain, Krull’s intersection theorem implies that the map of rings

R → lim
n
R/I n

is injective and criterion [30, 11.10.1(a)] then implies the desired schematic density.

The following definition will be of use to us.

Definition 6.2 An integral domain A is called a Krull domain if the following three
conditions hold.

(1) For each height one prime ideal p of A, the localization A(p) is a discrete valuation
ring.

(2) We have the following equality:

A = ∩pA(p)

where p runs through the height one prime ideals of A and the intersection takes
place in Frac(A).

(3) Any non-zero x ∈ A is contained in only finitely many height one prime ideals of
A.

An integral scheme X is called an integral Krull scheme if and only if for every open
affine Spec(R) ⊂ X , the ring R is a Krull domain.

A noetherian domain is Krull if and only if it is normal. The utility of the notion
of a Krull domain is the following: while the integral closure of a noetherian
domain need not be noetherian, it is always Krull by a theorem of Mori-Nagata [29,
Chapitre 0, 23.2.8 (iii)].

We now recall a well-known theorem of de Jong and Tate.

Theorem 6.3 (de Jong–Tate) Let X be an integral Krull scheme with generic point η.
Let G and H be p-divisible groups over X. Then the natural map

HomX (G, H) → Homη(Gη, Hη) (6.1)

is an isomorphism. Moreover, if X is noetherian and f ∈ HomX (G, H) is an isogeny
when restricted to η, then f is an isogeny.
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Proof We first prove that Eq. 6.1 is an isomorphism. We immediately reduce to the
case where X ∼= Spec(R). As R is a Krull domain,

R = ∩Rp

where p runs over all of the height 1 primes. By the other defining characteristic of
Krull domains, if p is a height 1 prime, then Rp is a discrete valuation ring. We are
therefore reduced to proving the lemma over a discrete valuation ring, which results
from [16, Corollary 1.2] when the generic fiber has characteristic p and [62, Theorem
4] when the generic fiber has characteristic 0.

Now, if X is noetherian and f : G → H is a homomorphism, the set of points where
it is an isogeny is open by [6, 3.3.8] and closed by the discussion after [6, 3.3.10]. The
result follows.

Definition 6.4 Let K/k be a field extension. We say that it is primary if k is separably
closed in K and regular if k is algebraically closed in K .

The following proposition directly imitates Conrad’s descent-theoretic proof of a
theorem of Chow [9, Theorem 3.19].

Proposition 6.5 Let K/k be a primary extension of fields. Let G and H be BT groups
on k. Then the natural injective map

Homk(G, H) → HomK (GK , HK )

is an isomorphism.

Proof As HomK (GK , HK ) is a finite free Zp-module, we immediately reduce to the
case that K/k is finitely generated. Let K ′ ∼= K ⊗k K . Then we have a diagram

k → K ⇒ K ′

where the double arrows refer to the maps K → K ⊗k K given by p1 : λ �→ λ⊗1 and
p2 : λ �→ 1⊗λ respectively. Let F ∈ HomK (GK , HK ). By Grothendieck’s faithfully
flat descent theory, to show that F is in the image of Homk(G, H), it is enough to prove
that p∗

1F = p∗
2F under the canonical identifications p∗

1G
∼= p∗

2G and p∗
1H

∼= p∗
2H

[9, Theorem3.1]. There is a distinguished diagonal point:� : K ′ � K , and restricting
to the diagonal point the two pullbacks agree F = �∗ p∗

1F = �∗ p∗
2F . If we prove

that the natural map

HomK ′(GK ′ , HK ′)
�∗→ HomK (GK , HK )

is injective, we would be done. As K/k is primary and finitely generated, it suffices
to treat the following two cases.

Case 1 Suppose K/k is a finite, purely inseparable extension of characteristic p. Then
K ′ is an Artin local ring. Moreover, the ideal I = ker(�) is nilpotent. As K ′
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is a ring which is killed by p and I is nilpotent, the desired injectivity follows
from a lemma of Drinfeld [39, Lemma 1.1.3(2)] in his proof of the Serre–Tate
theorem. Alternatively, it directly follows from [6, 1.4.4.3].

Case 2 Suppose K/k is a finitely generated regular extension. Then K ′ is a noetherian
integral domain. The desired injectivity follows from localizing and again
applying [6, 1.4.4.3].

We have the following useful corollary.

Corollary 6.6 Let X/k be a normal geometrically connected scheme of finite type. Let
G0 be a BT group over k and set G0,X to be the pullback to X. Then the following
pullback map is an isomorphism:

QPol(G0) → QPol(G0,X ).

Proof First of all, recall that a quasi-polarization is simply an anti-symmetric isogeny.
As X is normal, it follows that X/k is geometrically irreducible. Set K to the the
function field k(X) and G0,K to be the pullback of G0 to K . As X/k is geometrically
irreducible and of finite type, K/k is a finitely generated primary extension. By Propo-
sition 6.5, it follows that Homk(G0,Gt

0) → HomK (G0,K ,Gt
0,K ) is an isomorphism.

Therefore the restriction map QPol(G0) → QPol(G0,K ) is an isomorphism.
There is a restriction map QPol(G0,X ) → QPol(G0,K ) and it suffices to prove

that this map is an isomorphism. As X is noetherian and normal, this follows from
Theorem 6.3.

We now seek to prove a p-adic variant of [31, Proposition 4.4]: Lemma 6.9. We
first briefly recall the properties of the Chow K/k trace for a primary extension of
fields.

Definition 6.7 Let K/k be a finitely generated primary extension of fields and let A/K
be an abelian variety over K . The Chow K/k trace, denoted TrK/k(A) is the final
object in the category of pairs (B, f ) where B/k is an abelian variety over k equipped
with a K -map f : BK → A.

We have the following properties of the Chow trace, which follow from [9, Theo-
rem 6.2, Theorem 6.4(2)]:

(1) it exists and is functorial;
(2) if A is the base change of an abelian variety B/k, then TrK/k(A) ∼= B;
(3) the kernel of the universal map funiv : (TrK/k(A))K → A is finite.

Proposition 6.8 Let K/k be a finite, purely inseparable field extension. Let A/K be
an abelian variety such that A[p∞] is the pullback of a BT group G0 over k. Then A
is pulled back from an abelian variety B0 over k.

Proof Set B0 := TrK/k(A). By definition, there is a natural map B0,K → A and by [9,
Theorem 6.6] this map is an isogeny (as (K ⊗k K )red ∼= K , see the Terminology and
Notations of ibid.) with connected Cartier dual; in particular the kernel I has order a
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power of p. The induced isogeny of BT groups B0,K [p∞] → G0,K ∼= A[p∞] also
has kernel exactly I . Applying Proposition 6.5, we see that this isogeny descends to
an isogeny B0,K [p∞] → G0 over k. Call the kernel of this isogeny H ; then H is a
finite k-group scheme with HK ∼= I . Finally, B0/H is an abelian variety over k and
the induced map

(B0/H)K → A

is an isomorphism. (Indeed, as a byproduct of the proof we deduce that H is trivial.)

With Proposition 6.8 in hand, we are ready to prove the following important lemma.

Lemma 6.9 Let X/k be a normal, geometrically connected scheme of finite type over a
field of characteristic p and let π : A → X be an abelian scheme. Then the following
are equivalent

(1) The BT group A[p∞] is isomorphic to the pullback of a BT group G0 over k.
(2) There abelian scheme A is the pullback of an abelian scheme B0 over k.

Proof That (2) implies (1) is evident, so we prove the reverse implication. We will
explain a series of reductions. First of all, as X/k is normal and geometrically con-
nected, it is geometrically integral.Weclaim that that it is equivalent to prove the lemma
over the generic point η = Spec(k(X)). Indeed, suppose there exists an abelian variety
B0/k such that B0,η ∼= Aη. Then B0,X ∼= A by [27, Ch. I., Proposition 2.7].

The hypotheses on X/k imply that k(X)/k is a finitely generated primary extension.
Note that if (2) holds, then B0 ∼= Trk(X)/k Aη. Set B0 = Trk(X)/k Aη; then B0 is an
abelian variety over k equipped with a homomorphism (B0)η → Aη with finite kernel.
We will use functorial properties of the Chow trace to reduce to the case when k is
algebraically closed.

Let k′ be the algebraic closure of k in k(X). Then k′/k is a finite, purely inseparable
extension. If we prove the theorem for the geometrically integral scheme X/k′, then
by Proposition 6.8 we will have proven the theorem for X/k. Therefore we reduce to
the case that X/k is geometrically integral.

We now explain why we may reduce to the case k = k̄. As X/k is now supposed
to be geometrically integral, k(X)/k is a regular field extension and [9, Theorem 5.4]
implies that the construction of k(X)/k trace commutes with arbitrary field extensions
E/k. On the other hand, the k(X)-morphism B0,η → Aη is an isomorphism if and
only if the its base-change to k̄(X) is an isomorphism.

Next we explain why we may reduce to the case that A[l] → X is isomorphic to a
trivial étale cover (maintaining the assumption that k = k̄). Let Y → X be the finite,
connected Galois cover that trivializes A[l]. Suppose there exists an abelian variety
C0/k such that AY ∼= C0,Y as abelian schemes over Y . Let I := Isom(C0,X , A) be
the X -scheme of isomorphisms between C0,X and A. Our assumptions that I (Y ) is
non-empty and that there is an isomorphism A[p∞] ∼= G0,X ; our goal is to prove that
I (X) is non-empty.

Pick isomorphisms C0[p∞] ∼= G0 and A[p∞] ∼= G0,X once and for all. Then we
have a commutative square of sets, where the horizontal arrows are injective because
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the p-divisible group of an abelian scheme is relatively schematically dense:

I (X) AutX (G0,X )

I (Y ) AutY (G0,Y ).

By Proposition 6.5, the maps Autk(G0) → AutX (G0,X ) → AutY (G0,Y ) are all
isomorphisms: indeed, both k(Y )/k and k(X)/k are regular extensions. Let H =
Gal(Y/X). Then H acts naturally on G0,Y and hence acts on I (Y ) ↪→ AutY (G0,Y )

via conjugation. On the other hand, the action of H on AutY (G0,Y ) is trivial because
the fixed points are AutX (G0,X ); therefore the action of H on I (Y ) is trivial. Our
running assumption was that we had an element of I (Y ). Then Galois descent implies
that I (X) is non-empty, as desired.

We can find a polarization by [27, Remark 1.10(a)], so assume we have one of
degree d. By the above reductions, we may assume that k = k̄ and that there exists
an l ≥ 3 such that A[l] → X is isomorphic to a trivial étale cover. Let x ∈ X(k)
be a k-point and let C0 := Ax . Denote by C := (C0)X the constant abelian scheme
with fiber C0 and polarization induced from that of Ax . By assumption the BT groups
A[p∞] and C[p∞] are isomorphic. They are in fact isomorphic as quasi-polarized
BT groups by Corollary 6.6.

There are two induced moduli maps from X to the separated (fine) moduli scheme
Ag,d,l . Consider the restrictions of these moduli maps to the formal scheme X/x :
Serre-Tate theory [39, Theorem 1.2.1] ensures that the two formal moduli maps from
X/x to Ag,d,l agree. Then by Lemma 6.1 the two moduli maps agree on all of X ,
whence the conclusion.

We will use the following easy refinement.

Corollary 6.10 Let X/k be a normal, geometrically connected scheme of finite type
over a field of characteristic p. Let p � N and d be positive integers. Let A → X
be an abelian scheme equipped with a polarization λ of degree d and a full level N
structure �. Suppose A[p∞] is the pullback of a BT group G0 over k. Then (A, λ, �)

is the pullback of a polarized abelian variety with full level-N structure (A0, λ0, �0)

over k.

Proof ByProposition 6.9, there exists an abelian variety A0 over kwhose pullback to X
is isomorphic to A. Let K := k(X) and note again that K/k is a primary field extension.
The group scheme A0[N ] is étale, and a non-trivial étale group scheme cannot become
trivial after a primary field extension; therefore the full level-N structure descends.We
need to show the polarization descends to a polarization on A0. A theorem of Chow
[9, Theorem 3.19] implies that any homomorphism AK → At

K is the pullback of a
unique homomorphism λ0 : A0 → At

0. There exists an ample line bundle L on AK̄
such that λ comes fromL in the usual way. On the other hand, the Néron-Severi group
of A0,k̄ and the Néron–Severi group of AK̄ are isomorphic; hence one can find such a
line bundle L (in the same Néron-Severi class) that is defined over k̄. This implies that
λ0, as a symmetric isogeny, is in fact a polarization as in [27, Ch. I, Definition 1.6].
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Before we prove the main result of this section, we need one more auxiliary result
which provides an easy-to-check criterion that characterizes when amap from an open
dense subset U of a noetherian integral normal scheme X extends to all of X . The
proposition itself is an easy corollary of Zariski’s main theorem.

Proposition 6.11 Let X be a noetherian integral normal scheme and let M be a
reduced and separated scheme. Let U ⊂ X be a non-empty open subset and let
fU : U → M be a morphism. Let X ′ ⊂ X × M be the Zariski closure of the graph
�U of fU , equipped with induced reduced structure, and suppose X ′ → X is proper.
For each x ∈ X, let X ′

x denote the fiber of X
′ over x. Then the following are equivalent.

(1) There exists a (necessarily unique) extension f : X → M of f .
(2) For each x ∈ X\U, there exists a reduced scheme Ỹ togetherwith a finite, dominant

morphism Ỹ → (X ′
x )red such that for each irreducible component Ỹ j of Ỹ , the

composed map

Ỹ j → (X ′
x )red ↪→ X ′ → M

has image supported at a single point.

Proof As π : X ′ → X is proper and birational, it follows that X ′ is a noetherian,
integral scheme. Then, as X is normal, it follows from Zariski’s main theorem that for
every x ∈ X , the fiber Xx is geometrically connected. For x ∈ X\U , let k := k(x).
Then (X ′

x )red is proper over Spec(k). AsM is separated, the image of (X ′
x )red ↪→ M

is closed.
Zariski’s main theorem implies that the following three statements are equivalent.

• The map π is an isomorphism.
• The image of (X ′

x )red → M is a single point for all x ∈ X\U .
• The (automatically closed) image of (X ′

x )red → M is zero-dimensional for all
x ∈ X\U .

Now, (1) clearly implies (2). To prove the converse, note that each Ỹi is proper over
Spec(k); therefore the image of Ỹi → (X ′

x ) ↪→ M is closed. Therefore, if (2) holds,
then π is an isomorphism as desired.

Corollary 6.12 Let X be a locally noetherian normal scheme and U ⊂ X be an open
dense subset whose complement has characteristic p. Let AU → U be an abelian
scheme. Then AU extends to an abelian scheme over X if and only if AU [p∞] extends
to a p-divisible group over X.

Proof When X is the spectrum of a discrete valuation ring, this follows from
Grothendieck’s generalization of Néron-Ogg-Shafarevitch criterion in mixed char-
acteristic [34, Exposé IX, Theorem 5.10] and work of de Jong [16, 2.5] in equal
characteristic p. The rest of the argument closely follows [31, pages 73-76].

We review the reductions on [31, page 73]. First of all, if such an extension exists,
it is unique up to unique isomorphism by [31, 1.2]. Therefore, to prove the existence
of such an extension, it is harmless to replace X by a finite étale cover by descent
theory. As X is locally noetherian and normal, every connected component of X is
irreducible [61, Tag 0357]. Therefore, we may suppose that X is integral, AU → U
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has a polarization of degree d, and the l-torsion is of AU isomorphic to the trivial étale
cover ofU for some prime l ≥ 3. In particular, we have a map f : U → Ag,d,l , where
the latter fine moduli space is a separated scheme of finite type over Z[1/l].

Let X ′ ⊂ X ×Ag,d,l denote the closure of the graph of f , equipped with reduced,
induced scheme structure. Then X ′ is integral and the natural map X ′ → X is of finite
type. The valuative criterion of properness together with the case of discrete valuation
rings discussed above imply that the morphism π : X ′ → X is proper and birational.
Our goal is to show thatU → Ag,d,l extends to a morphism X → Ag,d,l . We will use
Proposition 6.11; the key is to find an appropriate Ỹ , the process of which will pass
through a scheme that is not à priori noetherian.

Let X ′′ → X denote the normalization of X ′. It is not à priori true that X ′′ → X is
finite (and X ′′ need not be noetherian). Nonetheless, as X ′ is integral and noetherian,
a theorem of Mori-Nagata implies that the fibers of X ′′ → X ′ have finite reduction in
the following sense: if F is the fiber over a point x ′ of X ′, then Fred → x ′ is finite [29,
Chapitre 0, 23.2.6, 23.2.7]. Moreover, X ′′ is automatically an integral Krull scheme
[29, Chapitre 0, 23.2.8(iii)]. Let BX ′ and BX ′′ be the abelian schemes on X ′ and X ′′
respectively, induced from the map X ′′ → X ′ → Ag,d,l .

For every point x ∈ X\U , set Z := (X ′
x )red, set Y := (X ′′

x )red, and set k := k(x);
by assumption char(k) = p and by Zariski’s main theorem, Z/k is geometrically
connected of finite type. By the above result of Mori-Nagata, Y/k is also of finite
type. Let G be the BT group that exists by assumption on X and let GX ′′ be the
pullback of G to X ′′. Then BX ′′ [p∞] and GX ′′ are isomorphic on U ⊂ X ′′. As X ′′ is
an integral Krull scheme, Theorem 6.3 implies that BX ′′ [p∞] ∼= GX ′′ on all of X ′′.
Therefore for every point x of X , the abelian scheme BY has constant BT group over
Y with respect to k. (We emphasize that we do not yet know that BX ′ [p∞] and GX ′
are isomorphic because the noetherian scheme X ′ is not necessarily normal and hence
not necessarily Krull; hence we do not yet know that BZ has constant BT group over
Z with respect to k.)

Write Z = ∪Zi to be the decomposition of Z into irreducible components. For
each i , set zi to be the generic point of Zi . Let yi be a point of Y that maps to zi ; note
that k(yi ) is a finite field extension of k(zi ). Let Yi be the Zariski closure of yi in Y
with reduced induced structure scheme structure (Yi is not necessarily normal). Let
Ỹi be the normalization of Yi . As Yi → Z is of finite type and Z/k is of finite type
over k, it follows from a theorem of E. Noether that Ỹi → Zi is finite [23, Corollary
13.13]. Set Ỹ := �i Ỹi ; then Ỹ → Z is finite and dominant.

Consider the map Ỹ → Z → Ag,d,l ; for each i the induced abelian scheme
BỸi

→ Ỹi has constant BT group on Ỹi (with respect to k) because the same is true

over Y . For each i , let k̃i be the algebraic closure of k in k(yi ). (The extension k̃i/k is
a finite extension.) Then Ỹi/k̃i is a normal, geometrically connected scheme of finite
type. We claim that the composite map

Ỹi → Zi → X ′ → Ag,d,l
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factors through the map Ỹi → Spec(k̃i ) and in particular has closed image supported
at a single point; indeed, this follows immediately from Corollary 6.10 and the fact
that Ag,d,l is a fine moduli space.

For each x ∈ X\U , the scheme Ỹ → Z satisfies the conditions of Proposition 6.11;
by applying the Proposition, we conclude.

7 Lefschetz theorems I

In this section, we collect together several Lefschetz theorems having to do with
morphisms of abelian varieties and p-divisible groups. We first state the simplest case
of a theorem of a Lefschetz theorem of Abe-Esnault, which will be useful for us to
prove Lemma 7.2, a Lefschetz theorem for homomorphisms of BT groups.

Theorem 7.1 (Abe-Esnault)Let X/k be a smooth projective variety over a perfect field
k of characteristic p with dim X ≥ 2 and let C ⊂ X be a smooth projective curve that
is the complete intersection of smooth ample divisors. Then for any E ∈ F-Isoc(X)Qp

,

the following restriction map is an isomorphism

H0(X , E) → H0(C, E)

Proof Note that E is automatically overconvergent as X is projective. This then follows
immediately from the arguments of [4, Corollary 2.4]. We make one further comment.
While the statements [4, Corollary 2.4, Proposition 2.2] are only stated forF, they only
require k be perfect as stated in [4, Remark 2.5]. Indeed, Abe and Esnault pointed out
via email that the part of [3] they cite for these arguments is Section 1, which only
requires k be perfect.

Lemma 7.2 Let X/k be a smooth projective variety over a field k of characteristic p
with dim X ≥ 2 and let U ⊂ S be a Zariski open subset. Let GU andHU be BT groups
on U. Let C ⊂ U be a smooth projective curve that is the complete intersection of
smooth ample divisors of X and denote by GC (resp.HC) the restriction of GU (resp.
HU ) to C. Then the following restriction map

Hom(GU ,HU ) → HomC (GC ,HC ) (7.1)

is injective with cokernel killed by a power of p.

Proof First of all, note that U ⊂ X has complementary codimension at least two.
Indeed, U contains C , which is a projective curve that is the smooth complete inter-
section of ample divisors of X ; therefore C intersects every irreducible divisor of X
non-trivially.

We now reduce to the case that k is perfect. Let k′/k be a field extension and let
U ′ := U ×k k′. By Theorem 6.3, the natural map

HomU ′(GU ′ ,HU ′) → Homk′(U )(Gk′(U ),Hk′(U ))
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is an isomorphism and similarly for D. Let l/k be the perfect closure; it is in particular
a primary extension. Therefore l(U )/k(U ) and l(D)/k(D) are also primary extensions
and hence Proposition 6.5 implies both sides of the equation are unchanged when we
replace k by l.

Consider the following diagram:

F-Isoc†(X)
∼→ F-Isoc(X) → F-Isoc(U )

The first arrow is an equivalence of categories because X is proper and the second
arrow an equivalence of categories by work of Kedlaya and Shiho [41, Theorem
5.1(c)] because the complement of U has codimension at least 2. Hence D(GU ) ⊗ Q

and D(HU ) ⊗ Q have canonical extensions to X , which we denote by E and F
respectively.

Both the left and the right hand side of Eq. 7.1 are torsion-free Zp-modules. We
have the following commutative diagram:

HomU (GU ,HU )
∼

res

HomU (D(HU ), D(GU ))

⊗Q

HomC (GC ,HC )

⊗Q

HomU (D(HU ) ⊗ Q, D(GU ) ⊗ Q)

HomC (D(HC ) ⊗ Q, D(GC ) ⊗ Q) HomX (F , E)

�

The lower right hand vertical arrow is an isomorphism, again by the above equivalence
of categories. Moreover we have the isomorphisms

D(GC ) ⊗ Q ∼= E |C , and D(HC ) ⊗ Q ∼= FC

Our goal is to prove that res, an application of the “restrict to C” functor, is injective
with cokernel killed by a power of p. As HomC (GC ,HC ) is a finite free Zp-module,
it is equivalent to prove that the induced map

HomU (GU ,HU ) ⊗ Q → HomC (D(HC ) ⊗ Q, D(GC ) ⊗ Q)

is an isomorphism of Qp-vector spaces. By chasing the diagram, this is equivalent to
the bottom horizontal arrow being an isomorphism. This arrow is an isomorphism due
to Theorem 7.1 (which, as stated, requires k to be perfect).

In a similar vein, we write down a Lefschetz theorem for homomorphisms of abelian
schemes.

Theorem 7.3 Let X/k be a smooth projective variety over a field k with dim X ≥ 2 and
let U ⊂ X be a Zariski open subset. Let AU → U and BU → U be abelian schemes
over U. Let C ⊂ U be a smooth projective curve that is the complete intersection of
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smooth, ample divisors of X, and denote by AC (resp. BC ) the restriction of AU (resp.
BU ) to C. Then the natural restriction map

HomU (AU , BU ) → HomC (AC , BC ) (7.2)

is an isomorphismwhen tensored withQ. If the cokernel is non-zero, then char(k) = p
and the cokernel is killed by a power of p.

Proof We first remark that the above map is well-known to be injective and does not
require any positivity property of D (one may immediately reduce to the case of a
discrete valuation ring).

We now reduce to the case when k is a finitely generated field. Both sides of
Eq. 7.2 are finitely generated Z-modules; hence we my replace k by a subfield finitely
generated over the prime field over which everything in Eq. 7.2 is defined without
changing either the LHS or the RHS. As C ⊂ U and C is the complete intersection of
smooth ample divisors of X , it follows that the complementary codimension of U in
X is at least 2. Note further that by Grothendieck’s Lefschetz theorem [33, Exposé X,
§2, Corollaire 2.6], Zariski-Nagata purity, and induction, the map π1(C) → π1(U ) is
surjective.

By [27, Ch. I, Prop. 2.7], the natural map

Hom(AU , BU ) → Homk(U )(Ak(U ), Bk(U )) (7.3)

is an isomorphism, and similarly for C . Now, as both sides of Eq. 7.2 are finite free
Z-modules, it suffices to examine its completion at all finite places. There are two
cases.

Case 1 char(k) = 0. Then “Tate’s isogeny theorem” is true for U and C ; that is, the
natural map

HomU (AU , BU ) ⊗ Zl → Homπ1(U )(Tl(AU ), Tl(BU ))

is an isomorphism for every l, and similarly for C ; this is a combination of
work of Faltings [28, Theorem 1, Page 211] and Equation 7.3. On the other
hand, as noted above, the restriction map π1(C) → π1(U ) is surjective;
therefore the natural map

Homπ1(U )(Tl(AU ), Tl(BU )) → Homπ1(C)(Tl(AC ), Tl(BC ))

is an isomorphism. Moreover, this is true for all l. Therefore Eq. 7.2 is an
isomorphism.

Case 2 char(k) = p. Then “Tate’s isogeny theorem”, in this case a theorem of Tate-
Zarhin-Mori [51, Ch. XII, Théorème 2.5(i), p. 244] together with 7.3, implies
that the argument of part (1) works as long as l �= p. Therefore Eq. 7.2 is
rationally an isomorphism and the cokernel is killed by a power of p.
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Remark 7.4 Daniel Litt indicated to us that there is a more elementary proof of Theo-
rem 7.3 (i.e. not using Faltings’ resolution of the Tate conjecture for divisors on abelian
varieties) when char(F) = 0 along the lines of his thesis. He also pointed out that,
when F ∼= C, the result follows from the theorem of the fixed part.

Example 7.5 Litt constructed an example when Eq. 7.2 is not an isomorphism in
characteristic p. Let E/F be a supersingular elliptic curve, so αp ⊂ E is a subgroup
scheme. Then E × E × E contains α3

p as a subgroup scheme. There is a injective
homomorphism

(αp)P2 ↪→ (α3
p)P2

given as follows: if [x : y : z] are the coordinates on P
2 and (α, β, γ ) are linear

coordinates on α3
p ⊂ A

3, then the image of αp is cut out by the equations:

[x : y : z] = [α : β : γ ]

Let A → P
2 be the quotient of the constant E × E × E family over P

2 by this varying
family of αp. This family admits a principal polarization and the induced image

P
2 → A3,1 ⊗ F (7.4)

is infinite, see the text after [49, page 59, 9.4.16]. Suppose there exists a line H ⊂ P
2,

an automorphism φ of P
2 that fixes H pointwise, and a point p ∈ P

2\H with the fibers
Ap and Aφ−1(p) non-isomorphic as unpolarized abelian threefolds. Let B := φ∗A, a
new family of abelian threefolds over P

2. Then A|H ∼= B|H but A � B as abelian
schemes over P

2.
We now explain why we can always find such a triple (H , φ, p). It suffices to find

two points p, q ∈ P
2 such that Ap � Aq ; we can then of course find an automorphism

that sends p to q and fixes a line. If B/k is an abelian variety over a field, then there
are only finitely many isomorphism classes of pairs (B, λ), where λ : B → Bt is a
principal polarization [52, Theorem 1.1]. (As usual, an isomorphism λ : B → Bt is
called a principal polarization if there exists an ample line bundle L on Bk̄ such that
the map λ : Bk̄ → Bt

k̄
:= Pic0(Bk̄) is the same as the map induced by

b �→ m∗
bL ⊗ L−1.

This map only depends on the Néron–Severi class of L .) Moreover, the image of the
map in Eq. 7.4 is infinite. Therefore we can find p, q ∈ P

2(F) such that Ap is not
isomorphic to Aq as unpolarized abelian varieties.

The primary application of 7.2 is to show that certain quasi-polarizations lift.

Corollary 7.6 Let X/k be a smooth projective variety over a field k of characteristic
p with dim X ≥ 2, let U ⊂ X be a Zariski open subset, and let C ⊂ U be a smooth
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complete curve that is the complete intersection of smooth ample divisors of X. Let
GU be a BT group on U. Then the natural map

QPol(GU ) → QPol(GC )

is injective and moreover for any φC ∈ QPol(GC ), there exists n ≥ 0 such that pnφC

is the in the image of the above map.

Proof We have a commutative square

QPol(GU ) HomU (GU ,Gt
U )

QPol(GC ) HomC (GC ,Gt
C )

where the vertical arrow on the right is injective with torsion cokernel by Lemma 7.2.
Now, QPol(GC ) are those isogenies in HomC (GC ,Gt

C ) that are anti-symmetric, i.e.
thoseφC such thatφt

C = −φC . Given φC ∈ QPol(GC ), we know there exists an n ≥ 0
such that pnφC is the image a unique ψ ∈ HomU (GU ,Gt

U ); to prove the corollary we
must check that ψ is an isogeny and anti-symmetric on all of U .

First of all, we remark that the transpose map commutes with the vertical right hand
arrow, namely the restriction to C . As the vertical right hand arrow is injective, the
skew-symmetry of pnφC implies that ψ is automatically skew-symmetric. The set of
points where ψ is an isogeny is open by [6, 3.3.8] and closed by the discussion after
[6, 3.3.10]. Therefore ψ is a quasi-polarization, as desired.

Corollary 7.7 Let X/k be a smooth projective variety over a field k of characteristic
p, let C ⊂ X be a smooth curve that is the complete intersection of smooth, ample
divisors of X, and let U ⊃ C be a Zariski open set of X. Let AC → C be an abelian
scheme and let GU be a BT group on U such that GC ∼= AC [p∞] as BT groups on C.
Then there exists a polarizable formal abelian scheme Â over the formal scheme X/C

such that Â[p∞] ∼= G|X/D . The formal abelian scheme Â is (uniquely) algebraizable.

Proof It follows from [27, page 6] that AC → C is globally projective. Let φC be
a polarization of AC ; abusing notation, we also let φC denote the induced quasi-
polarization on the BT group GC . By Corollary 7.6, there exists an n ≥ 0 such that the
quasi-polarization pnφC lifts to a quasi-polarization ψ of GU . Applying the Serre–
Tate theorem [39, Theorem 1.2.1], we therefore get a formal abelian scheme Â on
X/D; the fact that the quasi-polarization lifts implies that Â is polarizable and hence is
(uniquely) algebraizable by Grothendieck’s algebraization theorem [61, TAG 089a].

8 Lefschetz theorems II

Good references for this section are [33,35].
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Definition 8.1 [33, Exposé X, Section 2] We say a pair of a noetherian scheme X and
a non-empty closed subscheme Z satisfies the property Le f (X , Z) if for any vector
bundle E on a Zariski neighborhood U ⊃ Z , the following restriction map is an
isomorphism:

H0(U , E) ∼= H0(X/Z , E |X/Z )

Definition 8.2 [36, p.64] or [35, Ch V, § 1, p. 190] Let X be an integral noetherian
scheme and Z ⊂ X be a non-empty, closed subscheme. We say that Z is G3 in X if
the natural embedding

K (X) ↪→ K (X/Z )

from the ring of rational functions to the ring of formal rational functions is an iso-
morphism.

The following theorem is an easy consequence of [35, Ch V].

Theorem 8.3 Let X/k be a smooth projective variety. Let C ⊂ X be a smooth curve
which is the complete intersection of smooth, ample divisors. Let f̂ : X/C → M be a
morphism to a quasi-projective variety. Then there exists an open set W ⊃ C together
with a map f : W → M such that f̂ is the formal completion of f .

Proof It follows from [35, Ch V, Corollary 2.3, p. 202] that C is G3 in X . Recall that
topologically, X/C is homeomorphic toC ; when wemake set-theoretic arguments, we
pass freely between X/C and C . Embed M in P

m
k and L̂ := f̂ ∗OM (1) be the pullback

of the ample class to X/C . Then L̂ is globally generated. Pick regular sections (ŝi )mi=1

of H0(X/C , L̂) that define the map to P
m ; in particular, the ŝi globally generate. Let

Vi ⊂ X/C be the locus on which ŝi �= 0. Then s̃i yields a trivialization over Vi :

ŝi : OX/C |Vi → L̂Vi .

As the si globally generate L̂ , it follows that ∪i Vi = X/C .
With respect to the trivializations given by the ŝi , the line bundle L̂ is defined by

the transition functions φ̂i j := si
s j

on Vi j := Vi ∩ Vj . By definition, φ̂i j ∈ K (X/C ).
By the G3 property, there is a uniquemeromorphic function φi j ∈ K (X) that restricts
to φ̂i j on X/C . Call Di j the divisor of zeroes of φi j .

For each i ∈ {1, 2, . . . ,m}, there exists an open set Ui ⊂ X such that

• Ui ∩ X/C = Vi and
• Ui ∩ Di j = ∅ for j �= i .

Indeed, we can of course find an open set Ui ⊂ X with Ui ∩ X/C = Vi . Replace Ui

by the complement of ∪ j �=i Di j ∩Ui inUi ; in other words, remove all of the zeroes of
the φi j from Ui for j �= i . The ŝi are regular (and not merely meromorphic) sections;
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hence Di j ∩ X/C is a subset of the finite set of zeros of ŝi . Therefore Ui ∩ X/C = Vi .
Set

W := ∪iUi ⊃ X/C

and Ui j := Ui ∩Uj . Then on Ui j , the functions φi j are invertible. Moreover, the fact
that φ̂i j φ̂ jk = φ̂ik implies that φi jφ jk = φik by the injectivity of the map K (X) ↪→
K (X/C ). Therefore we obtain a line bundle LW on W algebraizing L̂ .

By Le f (X ,C) [35, Ch. V, Prop 2.1, p. 200], we deduce that after shrinking W
(while still containing C), we may ensure that H0(W , LW ) = H0(X/C , L̂). This
implies that the ŝi algebraize to sections si of H0(W , LW ). Further replace W by the
complement of the common locus of zeroes of the si .

Finally, we obtain amorphism f : W → P
m . As f |X/C lands inM and X is integral,

this implies that the image of g entirely lands in the Zariski closure M̄ of M ⊂ P
m

by schematic density of X/C inside of X . By further shrinking W , we obtain that the
map f̂ : X/C → M uniquely algebraizes to a map f : W → M , as desired.

Corollary 8.4 Let X/k be a smooth projective variety and let C ⊂ X be a smooth
curve that is the complete intersection of smooth ample divisors. Let Â → X/C be an
polarizable abelian scheme over the formal completion of X along C. If there exists
l > 2, prime to char(k), such that the l-torsion of Â|C → C is trivial, then there exists
a Zariski open subset of U ⊂ X containing C, and an abelian scheme AU → U that
extends Â → X/C .

Proof Note that by topological invariance of the étale site, if the l-torsion of Â|C is
trivial, then so is the l-torsion of Â. If l > 2, then the moduli space Ag,d,l exists as a
quasi-projective scheme over Spec(Z[1/l]). Apply Theorem 8.3 to the induced map
X/C → Ag,d,l .

Corollary 8.4 is not true if one does not assume that the l-torsion is trivial for the same
reason that Theorem 8.3 is not true with M a Deligne–Mumford stack. For example,
if C ⊂ P

2 is a smooth plane curve of positive genus, it is easy to see that there is a
non-trivial map P

2
/C → BZ/2Z that does not algebraize.

D. Litt explained the following lemma to the first author.

Lemma 8.5 Let X/k be a smooth projective variety with dim(X) ≥ 2 and let U ⊂ X
be an open subset. Let C ⊂ U be a smooth curve that is the complete complete
intersection of smooth ample divisors of X. Let GU and HU be finite flat group schemes
or Barsotti–Tate groups on U. Then the natural restriction map:

IsomU (GU , HU ) → IsomX/C (GU |X/C , HU |X/C ) (8.1)

is an isomorphism of sets. In particular, if GU |X/C and HU |X/C are isomorphic, then
GU and HU are isomorphic.

Proof As usual,U has complementary codimension at least 2. If we prove the lemma
for finite flat group schemes, then the result for BT groups immediately follows: a
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homomorphism of BT groups is simply a compatible sequence of homomorphisms of
n-trucated BT groups. Therefore we assumeGU and HU are finite flat group schemes,
in which case Equation 6.1 is clearly injective by the schematic density of X/C in X .
Our task is therefore to prove that Eq. 8.1 is surjective.

We remark that the Le f (X ,C) is satisfied by [35, Ch. V, Proposition 2.1]. By
definition, this means for any vector bundle E on a Zariski neighborhood V ⊃ D, the
natural restriction map on sections

H0(V , E) ∼= H0(X/C , E |X/C )

is an isomorphism. Now, finite flat group schemes are given by their associated (coher-
ent) sheaves of Hopf algebras. WriteOGU andOHU for the Hopf algebras of GU and
HU respectively. Then Le f (X ,C) implies that any isomorphism of formal vector
bundles

ϕ̂ : OGU |X/C → OHU |X/C

canonically lifts to an isomorphism ϕ : OGU → OHU of vector bundles on U . We
must show if ϕ̂ preserves the Hopf-algebra structure, then ϕ also preserves the Hopf-
algebra structure. As the Hopf-algebra structures on are given as morphisms of vector
bundles, the fact that ϕ̂ is an isomorphism of sheaves of Hopf algebras together with
Le f (X ,C) implies that ϕ is also an isomorphism of sheaves of Hopf algebras on U ,
as desired.

As a byproduct of the algebraization machinery, we have the following, which is a
cousin of Simpson’s Theorem 1.1.

Corollary 8.6 Let X/Fq be a smooth projective variety with dim X ≥ 2 and let U ⊂ X
be an open subset whose complement has codimension at least 2. Let C ⊂ U be a
smooth curve that is the complete intersection of smooth, ample divisors of X. Let
AC → C be an abelian scheme of dimension g. Then the following are equivalent.

• There exists a Barsotti–Tate group GU on U such that GC ∼= AC [p∞].
• There exists an abelian scheme AU → U extending AC.

Proof It suffices to prove the first statement implies the second. By Corollary 7.7,
there exists a (polarizable) formal abelian scheme Â over X/C extending AC . Picking
a polarization, this yields a map X/D → Ag,d .

By [41, Theorem 5.1], the restriction functor F-Isoc(X) → F-Isoc(U ) is an equiv-
alence of categories. Denote the canonical extension of D(GU ) ⊗ Q ∈ F-Isoc(U )

by E ∈ F-Isoc(X). Our assumption implies that EC ∼= D(AC [p∞]) ⊗ Q. Using the
equivalence of categories and [54, Theorem 1.2 and Proposition 4.9], it follows that
E is semi-simple.

As det(E |C ) ∼= Qp(−g) it follows that det(E) ∼= Qp(−g). Every irreducible sum-
mand Ei of E is algebraic because it is on C . We note that for c a closed point of C ,
we have Pc(E, t) ∈ Q[t].

Pick an isomorphism ι : Qp → Ql . By [4, Theorem 0.3] or [42, Theorem 0.4.1],
there is a unique semi-simple ι-companion to E , which is a lisse Ql sheaf L . The
l-adic sheaf L may be considered as a representation W (X , c̄) → GL2g(Ql). The
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map W (C, c̄) → W (X , c̄) is surjective by the usual Lefschetz theorems and the
representation W (C, c̄) → GL2g(Ql) conjugates into a representation W (C, c̄) →
GL2g(Zl) because LC is compatible with AC → C . Hence the representation L
conjugates into a Zl local system on X . Take a connected finite étale cover of X ′ of
X that trivializes the mod-l representation. Let C ′ and U ′ denote the inverse image to
X ′ of C and U respectively, and note that C ′ is still the smooth complete intersection
of smooth ample divisors inside of X ′. Then we obtain a map X ′

/C ′ → Ag,d,l , which
globalizes to an open neighborhood V ′ ⊂ X ′ of C ′ by Corollary 8.4. Lemma 8.5
implies that AV ′ [p∞] ∼= GV ′ because they agree on X ′

/C ′ . By Corollary 6.12, AV ′

extends to an abelian scheme AU ′ → U ′ with AU ′ [p∞] ∼= GU ′ .
Finally, note that the abelian scheme AU ′ → U ′, equipped with isomorphisms

AU ′ |C ′ ∼= AC ′ and AU ′ [p∞] ∼= GU ′ is unique up to unique isomorphism. Indeed, use
[31, Proposition 1.2 on p. 64]. Set S = X , let s be the generic point of X (which is
the unique associated point of S), let s′ be any point of C , and let S′ be Spec(ÔS,s′)
be the completion of the local ring at s′. Then S′ → Spec(OS,s′) is faithfully flat, and
the Serre–Tate theorem will imply the desired uniqueness.

Moreover, AU ′ → U ′ is projective. Therefore we may apply faithfully flat descent
to canonically descend to an abelian scheme AU → U , as desired. (This argument
appears in [31, p. 73, lines 7-12].)

Remark 8.7 We note that a slightly stronger variant of Corollary 8.6 is true when Fq

is replaced by a field k of characteristic 0. A Barsotti–Tate group in characteristic 0 is
étale and hence satisfies Zariski–Nagata purity. One uses Simpson’s Theorem 1.1 to
prove that there is a family AX ,C → XC extending AC,C → CC. Then one transports
the descent datum of AC,C to AX ,C using Theorem 7.3. Finally, applyingWeil descent
[63, Appendix A] shows that we may find an abelian scheme AX → X extending
AC → C , as desired.

Remark 8.8 We note that the key point where we use that the base field is Fq in
Corollary 8.6 is to prove that a specific connected finite étale cover of C extends to a
connected finite étale cover of X . We do this via l-adic companions.

The following is a version of Corollary 8.6 over general fields of characteristic p. Note
that, in contrast to Corollary 8.6, we assume that the subvariety has dimension at least
2.

Corollary 8.9 Let X/k be a smooth projective variety over a field of characteristic p
with dim X ≥ 3 and let U ⊂ X be an open subset whose complement has codimension
at least 3. Let Z ⊂ U be a smooth complete subvariety of dimension at least 2 that is
the complete intersection of smooth, ample divisors of X. Let AZ → Z be an abelian
scheme of dimension g. Then the following are equivalent.

• There exists a Barsotti–Tate group GU on U such that GZ ∼= AZ [p∞].
• There exists an abelian scheme AU → U extending AZ .

Proof First of all, we explain the dimension constraints. Let 2 ≤ d = dim(Z). Then
the existence of an open set U such that Z ⊂ U implies that the codimension of the
complement of U in X is at least d + 1 ≥ 3 because Z is proper and the complete
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intersection of ample divisors. Moreover, we claim that the maps π1(Z) → π1(U ) →
π1(X) are all isomorphisms. Indeed, by the classical Lefschetz theorems, π1(Z) →
π1(X) is an isomorphismbecausedim(Z) ≥ 2 [35,Ch. IV,Theorem1.5,Theorem2.1].
Moreover, the map π1(U ) → π1(X) is an isomorphism by Zariski-Nagata purity.
Therefore, a connected finite étale cover Z ′ → Z trivializing the l-torsion of AZ → Z
extends canonically to a connected finite étale cover X ′ → X . Then the exact proof
of Corollary 8.6 applies.

Remark 8.10 Corollary 8.6 is not true if one assumes that dim(X) = 1 and C is a
point. For example, let X be the good reduction modulo p of a moduli space of fake
elliptic curves, together with a universal family A → X of abelian surfaces with
quaternionic multiplication. There is a decomposition A[p∞] ∼= G ⊕ G, where G is
a height 2, dimension 1, everywhere versally deformed BT group G. Over any point
x ∈ X (F), there exists an elliptic curve E/F such that E[p∞] ∼= Gx . On the other
hand, the induced formal deformation of the elliptic curve E → x certainly does not
extend to a non-isotrivial elliptic curve over X .

We now have all of the ingredients to prove our main Lefschetz theorem.

Theorem 8.11 Let X/Fq be a smooth projective variety. Then there exists an open
subset U ⊂ X, whose complement has codimension at least 2, such that the following
holds.

Let C ⊂ U be a smooth projective curve that is the complete intersection of smooth
ample divisors of X. Let πC : AC → C be an abelian scheme of GL2-type: for a
prime l �= p, R1(πC )∗Ql has irreducible summands that have rank 2 and determinant
Ql(−1). Then the following are equivalent.

• There exists an abelian scheme of GL2-type BU → U with BC → C isogenous to
AC → C.

• The F-isocrystal D(AC [p∞]) ⊗ Qp ∈ F-Isoc(C)Qp
extends to an F-isocrystal

E ∈ F-Isoc(X)Qp
.

Proof We first construct U . It follows from [4, Corollary 4.3] that there are only
finitely many isomorphism classes of irreducible overconvergent F-isocrystals Fi on
X of rank 2 and with determinant Qp(−1). We may pick a p-adic local field K over
which each such Fi is defined. By the slope bounds of Theorem 4.14, the two slopes
of each such Fi differ by at most one. As the two slopes add to one, this implies
that the two slopes are in the interval [0, 1]. (This is the key place where we use the
assumption that the Fi have rank 2.) Then Lemma 5.8 implies that there is an open
subsetUi ⊂ X , whose complement has codimension at least 2 on which Fi underlies
a DieudonnéMi in finite, locally free modules withMi ⊗ Qp ∼= Fi |Ui (where on the
left hand side we forget V and on the right hand side we forget the K -structure). Let
U := ∩Ui . In particular every overconvergent F-isocrystal on X that is irreducible of
rank 2 and has determinant Qp(−1) underlies a Dieudonné crystal onU . This isU in
the first part of the theorem.

Thefirst condition implies the second:D(BU [p∞])⊗Qp ∈ F-Isoc†(U ), and there is
an equivalence of categories F-Isoc(X) → F-Isoc(U ) becauseU has complementary
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codimension at least 2 [41, Theorem5.1]. SetE to be the extension ofD(BU [p∞])⊗Qp
to F-Isoc(X)Qp

.
Now, let E be as in the theorem. We make three claims about E .

(1) For every closed point x of X , the polynomial Px (E, t) has coefficients in Q.
(2) The object E is semisimple and the irreducible summands of E have rank 2 and

determinant Qp(−1).
(3) The object E may be descended to F-Isoc(X); that is, it has coefficients in Qp.

To prove the first part, pick an isomorphism ι : Qp → Ql . By [4, Theorem 0.3]
or [42, Theorem 0.4.1], there is a unique semi-simple ι-companion to E , which is a
lisse Ql sheaf L . For c a closed point of C , the polynomial Pc(L, t) ∈ Q[t] by the
companion relation. Applying [24, Proposition 7.1] and induction, we deduce that for
all closed points x of X ,

Px (L, t) ∈ Q[t]

and hence Px (E, t) ∈ Q[t].
To prove the second part, first note that EC ∈ F-Isoc(X)Qp

has irreducible sum-

mands of rank 2 and determinant Qp(−1). This follows because D(AC [p∞]) ⊗ Qp

is isomorphic to Qp-rational crystalline cohomology, which is a companion to
R1(πC )∗Ql by [43]. Moreover, D(AC [p∞]) ⊗ Qp is semisimple by [54]. Then the
fact that R1(πC )∗Ql has irreducible summands of rank 2 with cyclotomic determinant
implies the same result for EC . Finally, as C is the smooth complete intersection of
smooth ample divisors, Theorem 7.1 implies that E is semisimple and the irreducible
summands of E have rank 2 and cyclotomic determinant.

To prove the third part, for every σ ∈ AutQp (Qp), as Px (E, t) ∈ Q[t] for all closed
points x of X , Theorem 3.16 implies that σ (E) ∼= E . To prove that E descends to
F-Isoc(X), we must construct isomorphisms cσ : σ (E) ∼= E that satisfy the cocycle
condition by [58, Lemma 4]. Now, the natural map

Hom(σE, E) → Hom(σEC , EC )

is an isomorphism by Theorem 7.1. Note that EC descends to F-Isoc(C): indeed,
D(AC [p∞]) ⊗ Q ∈ F-Isoc(C). Therefore, the descent data transports to the left and
hence E ∈ F-Isoc(X).

By construction ofU , the F-isocrystal E underlies a Dieudonné crystal (M, F, V )

on U whose associated F-isocrystal is isomorphic to EU . By Theorem 5.7, there is
an associated p-divisible group GU , with D(GU ) ∼= (M, F, V ). It then follows that
AC [p∞] is isogenous to GC : their Dieudonné crystals are isomorphic when viewed as
F-isocrystals. Let K ⊂ AC [p∞]be the kernel of one such isogeny.Then BC := AC/K
is an abelian scheme with BC [p∞] ∼= GC . Applying Corollary 8.6, we see there exists
an abelian scheme BU → U (of dimension g) as desired. As BU [p∞] and GU are
BT groups on U that are isomorphic on X/C , there are isomorphic by Lemma 8.5.
Therefore BU is compatible with EU , as desired.
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In the proof of Theorem 8.11, the key step where we use the fact that the irreducible
summands have rank 2 is to deduce that the Newton slopes of E are in the range [0, 1]
everywhere on X .

It is natural to wonder whether or not one can remove both the open subset and
the isogeny in Theorem 8.11, in further analogy with Theorem 1.1. Johan de Jong
suggested the following example, which shows that the answer is “no” for general
abelian varieties.

Example 8.12 Let E/Fq be a supersingular elliptic curve, so αp ×αp ⊂ E × E . Over
A
2\(0, 0), there is an injective homomorphism

ι : (αp)A2\(0,0) ↪→ (αp × αp)A2\(0,0) ⊂ (E × E)A2\(0,0)

given as follows: let (s, t) be linear coordinates on αp ×αp ⊂ A
2 and let (x, y) be the

coordinates onA
2\(0, 0). Then the above sub-group scheme is defined by the equation

[x : y] = [s : t].

Let A be the following (principally polarizable) supersingular abelian surface over
A
2\(0, 0):

A := (E × E)A2\(0,0)/ι(αp)

[50]. (The principal polarization might only exist after a finite field extension.) Let
L ⊂ A

2 be a line not passing through the origin. Consider the compactification
A
2\(0, 0) ⊂ P

2 and let L̄ be the closure of L in P
2. Then AL extends to a non-

constant supersingular abelian scheme AL̄ → L̄ and L̄ ⊂ P
2 is a smooth, ample

divisor. However, it is easy to see that AL̄ cannot extend to P
2. If it did, the family

would have to be supersingular as the geometric monodromy is trivial and there is
at least one supersingular fiber. Let A2,1 ⊗ F be the moduli of principally polarized
abelian surfaces over F. Then the supersingular locus of is a union of complete rational
curves [53, p. 177] and there are no morphisms P

2 → P
1.

Corollary 8.13 Let X/Fq be a smooth projective variety with dim(X) ≥ 2 and let L be
a rank 2 lisseQl sheaf with cyclotomic determinant and infinite geometricmonodromy.
Then there exists an open subset U ⊂ X, whose complement has codimension at least
2, such that

• if C ⊂ U is a smooth proper curve that is the complete intersection of smooth
ample divisors;

• if LC comes from an abelian scheme on AC → C, in the sense of Conjecture 1.2;
and

• if all p-adic companions to L exist,

then LU comes from an abelian scheme BU → U, i.e., Conjecture 1.2 is true for
(X , L)
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Proof By the usual Lefschetz theorems, W (C) → W (X) is surjective. Therefore if
two lisse Ql sheaves on X are isomorphic on C , then they are isomorphic. The U in
our theorem is the U guaranteed to exist by Theorem 8.11.

Every irreducible summand of (the semi-simple lisse sheaf) R1πC∗Ql is a com-
panion of LC by assumption, and hence has determinant Ql(−1). Therefore each of
the Ei has determinant Qp(−1). Consider D(AC [p∞]) ⊗ Qp ∈ F-Isoc(X)Qp

. This is
semisimple by [54]. There is a decomposition:

D(AC [p∞]) ⊗ Qp
∼=

⊕

i

(Ei |C )mi

for some integers mi ≥ 1 because the LHS is isomorphic to relative crystalline coho-
mology [43]. Set E := ⊕

i (Ei )mi and apply Theorem 8.11.
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