Selecta Mathematica (2021) 27:48 Selecta Mathematica
https://doi.org/10.1007/s00029-021-00664-z New Series

®

Check for
updates

Higher rank Clifford indices of curves on a K3 surface

Soheyla Feyzbakhsh' - Chunyi Li?

Accepted: 19 April 2021 / Published online: 14 June 2021
© The Author(s) 2021

Abstract

Let (X, H) be a polarized K3 surface with Pic(X) = ZH, and let C € |H| be a
smooth curve of genus g. We give an upper bound on the dimension of global sections
of a semistable vector bundle on C. This allows us to compute the higher rank Clifford
indices of C with high genus. In particular, when g > > 4, the rank r Clifford
index of C can be computed by the restriction of Lazarsfeld-Mukai bundles on X
corresponding to line bundles on the curve C. This is a generalization of the result by
Green and Lazarsfeld for curves on K3 surfaces to higher rank vector bundles. We also
apply the same method to the projective plane and show that the rank r Clifford index
of a degree d(> 5) smooth plane curve is d — 4, which is the same as the Clifford
index of the curve.
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1 Introduction

Let ¢ (r, d) be the set of semistable rank r-vector bundles of degree d on a smooth
curve C. For E € Uc(r, d), its Clifford index is defined as

, d 2,
CIff(E) = — — Zh%(C, E) + 2.
r r

By the higher rank Clifford Theorem [3, Theorem 2.1], when 0 < d < r(g — 1), the
index Cliff (E) is non-negative. The rank r Clifford index of C, first introduce in [15]
where it was denoted y/, is defined as:

Cliff, (C):= min{Cliff (E)|E € 8¢ (r,d), d < r(g — 1), h°(C, E) > 2r}.

Our main result is as follows.

Theorem 1.1 Let (X, H) be a smooth polarized K3 surface satisfying Assumption (*),
and let C be a smooth curve of genus g in the linear system |H|. Let E be a slope
semistable rank r-vector bundle of degree d on the curve C such thatd < r(g — 1).
Then we have the bound for the dimension of the global sections of E:

§ 2 T

d°+ —. (1

WC,E)y<r+—2
4r(g —1)? g

Whenr > 2 and g > r2, the rank r Clifford index of C

2 2
Cliff, (€)= (g = 1) = = EJ .

Assumption (*) H 2 divides H - D for all curve classes D on X.!

The upper bound for h°(C, E) in Theorem 1.1 is much stronger than the higher rank
Clifford Theorem, which says hO(C JE)Y <r+ %. The bound is not far from the sharp
bound, see Remark 3.5. For a smooth curve C of genus g, several upper bounds for
the dimension of global sections of vector bundles of low slope & = d/r have been
introduced in [3,22,23], which are also included in [17]. Sharp bounds for the case

U'n particular, X satisfies Assumption (*) if Pic(X) = ZH. By the surjectivity of the period map, there
are polarized K3 surfaces with higher Picard rank satisfying this assumption as well. To simplify the
presentation, we explain our entire argument in the case of Picard rank one and then explain in Sect. 4.2
why the argument works for all polarized K3 surfaces satisfying Assumption (*).
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g < 6.and u < 2 have been determined in [3,17-19,22,23]. The upper bound (1) is
in general stronger than the bounds in these previous papers unless g < 6 or u < 2.
For r = 2, the second statement of Theorem 1.1 gives

Cliff,(C) = Cliff (C) = {gT_lJ ,

so we re-obtain the result [1, Theorem 1.3]. Also for » > 3 and g # 10, we have
. . g—1
Cliff, (C) < CIliff (C) = — |

This indicates the failure of the Mercat’s conjecture in [24] for C which states the
higher ranks Clifford indices of the curve C are equal to Cliff (C). Meanwhile, when
r =3 and g = 10, we have Cliff3(C) = 4 = CIliff (C) for a general curve.

Whenr = 3 and g = 9, the fact that a general curve has Cliff3(C) = % was known
according to the results in [16]. When r = 3 and g = 11, our result implies that a
general curve has Cliff3(C) = %, which improves the result 13—1 < Cliff3(C) < 13—4 in
[14, Theorem 3.6]. ) )

Let A be a globally generated line bundle on the curve C C X, the Lazarsfeld—
Mukai bundle Ec 4 on X is defined via the exact sequence

0— E&, — HYC,A)®Ox = A — 0.

Inall cases in the second part of Theorem 1.1, there exists aline bundle A on the curve C
such that the rank r-Clifford index is computed by the restriction of the corresponding
Lazarsfeld-Mukai bundle on the K3 surface X. We expect this result holds without
the assumption on the Picard group of X. This can be viewed as a generalization for
the result of Green and Lazarsfeld [10] which says that for a curve C on a smooth K3
surface with Cliff (C) < L%J , the Clifford index can be computed by the restriction
of a line bundle on the K3 surface.

Our argument can be generalized to curves on other surfaces, especially when the
surface admits a stronger Bogomolov—Gieseker type inequality. Examples of such
surfaces include the projective plane, del Pezzo surfaces and quintic surfaces. We
explain more details for smooth plane curves in Sect. 5. In particular, we show that
the first part of the Mercat’s conjecture [24] holds for smooth plane curves:

Theorem 1.2 (Corollary 5.6) Let C be a degree [(> 5) smooth irreducible plane curve,
then

CIiff, (C) = [ — 4,

for any positive integer r.

The result Cliff,(C) = I — 4 for plane curves first appeared in [15, Proposition
8.1]. Further discussions for the rank 3 case appeared in [16]. In particular, the result
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Cliff3(C) = I — 4 was known for [ < 6. As Professor Peter Newstead pointed out,
it seems to us that all other Clifford indices for smooth plane curves have not been
known. In particular, Theorem 1.2 excludes the possibility that Cliff3(C) < — 4 in
the assumption in [16, Theorem 5.6].

Another concrete example for curves on degree four del Pezzo surfaces is computed
in [13]. The Clifford type inequality for such curves is the key ingredient in proving
the existence of Bridgeland stability conditions on smooth quintic threefolds.

1.1 Approach

The main tool in this paper is the notion of stability condition introduced by Bridge-
land [4]. In general, such a stability condition ¢ = (A, Z) is defined on a C-linear
triangulated category T, and is consisting of a heart structure A and a central charge
Z: K(T) — C, which is a group homomorphism from the Grothendieck group to
complex numbers. The space of stability conditions on 7 forms a complex manifold
which admits a wall and chamber decomposition for any fixed object E € T. In this
paper, the triangulated category T will always be the bounded derived category D?(X)
of coherent sheaves on a surface X. We will only make use of a real two-dimensional
subspace of stability conditions on D?(X).

Lett: C — X be the embedding of a smooth curve C into the surface X, and
let E be a semistable vector bundle on the curve C. In [8], a new upper bound for
the dimension of global sections of objects in D”(X) has been introduced. This states
the dimension of global sections of ¢, E can be bounded by the length of the Harder—
Narasimhan polygon at a limit point oy where Z(Ox) — 0. The Harder—Narasimhan
polygon geometrically represents the slopes and degrees of the Harder—Narasimhan
factors of ¢, E with respect to og. One of the key parts of the paper is to describe the
position of the wall for ¢, E that bounds the large volume limit chamber at where ¢, E is
stable. Describing the wall that bounds the large volume limit will enable us to control
the length of this Harder—Narasimhan polygon at o effectively and get the bound for
the dimension of global sections of the vector bundle E.

2 Review: stability conditions, wall-crossings

Let (X, H) be a smooth polarized K3 surface over C with Pic(X) = ZH. In this
section, we review the description of a slice of the space of stability conditions Stab(X)
on D’ (X) given in [5, Section 1-7].

Given an object E € Db(X), we write ch(E) = (k(E),chj(E),chy(E)) €
H*(X,Z) for its Chern characters. We write H;]g(X , Z) for its algebraic part, in
other words, the image of ch(—). The slope of a coherent sheaf £ € Coh X is defined
by

B(E) it k(E) > 0

E) — | HEk(E)
wi (E) {+oo if 1k(E) = 0.

This leads to the usual notion of u g-stability. For any 8 € R, we have the following
torsion pair in Coh X
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TP .= (E: E is pupy-semistable with ppy(E) > B,
FP .= (E: E is uy-semistable with uy (E) < B),

where (—) denotes the extension-closure. Following [5,11], this lets us define a new
heart of a bounded t-structure in D?(X) as follows:

Coh? X := (FP[11, TP)
- {E - HY(E) e 78, H(E) € TP, HI(E) = 0 fori # 0, —1} .

For any pair (8, a) € R?, we define the central charge Zg ,: K(X) — Cby

H chy(E) ) ®

Zg o(E) := —chy(E) + ark(E) +i<T — B1k(E)

Note that the function Zg 4, up to the action of GL*(2; R), is the same as the stability
function defined in [5, section 6]. The function Zg , factors via the Chern character

ch: K(X) > (X,7) =73, ch(E) = (1k(E), chi(E), cha(E)).  (3)

*
alg
The kernel of Zg, in H;‘lg(X ,R) under the basis {rk, chy, ch,} is spanned by
(1, BH, o).

Definition 2.1 Let y : R — R be a 1-periodic function such that for x € [—%, %] is
defined as

(1—x2) ifx#0

rei=n, ifx = 0.

LetT'(x) := Hszz — y(x). By abuse of notations, we also denote the graph of I" by

curve I' (see Fig. 1).

We first state Bridgeland’s result describing stability conditions on D? (X), and then
expand upon the statements.

Theorem 2.2 [5, Section 1] For any pair (B, o) € R? such that o > T'(B), the pair
0B = (Coh/S X, Zﬂ,a) defines a stability condition on D®(X). Moreover, the map
from Ty = {(B,a) € R x Rla > I'(B)} — Stab(X) is continuous.

We first explain the notion of og -stability and the associated Harder—Narasimhan
filtration. Consider the slope function

NZp o (E) [
— 57 if 3Zg o(E) >0
Voo Coh’ X — RU {400}, vgo(E) = SZg.a(E) B.a(E)
+00 if 3Zgo(E) =0.

This defines a notion of stability in Coh? X:an objectE € Coh” X is 0,o-(semi)stable
if and only if it is (semi)stable with respect to the slope function vg 4. Every object
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Fig.1 The Gamma curve H? 2
>
chy
rk
0.4H? curve
Il O Il
1 1 H ch;
H2rk

E € Coh? X admits a Harder-Narasimhan filtration which is a finite sequence of
objects in Coh? X,

O=FCFCcFhC---CF,=E

whose factors E; := F; /F, 1 are og o-semistable and vg o (E1) > vgo(E2) > -+ >
vg,« (Er). We denote vﬂ (E) :==vgo(E1) and v o(E) := vg o (E}). The second part
of Theorem 2.2 implies that the two- d1men510nal famlly of stability conditions og
satisfies wall-crossing as « and B vary. Consider the projection

pr: Hi (X, Z)\ {tk =0} - R?, pr(ch(E)):<Hch1(E> Chz(E)>

H?1k(E)’ 1k(E)

By abuse of notations, we use the same plane for the image of the projection pr and
the (B, «)-plane. Note that the point (3, Ol) is equal to the projection pr(ker Zg ) of
the kernel of the central charge Zg , in H}}, (X, Z). We will also write pr (E) instead

alg
of pr(ch(E)).

Remark 2.3 (a) For a stable object E with respect to any stability condition og 4, the
point pr(E)isnotin 'y = {(x,y) € R?: y > I'(x)}. To see this, note that

2 = hom(E, E) + hom(E, E[2]) > x(E, E)
= 21k(E) chy(E) — (ch|(E))* + 2(k(E))*.

Thus by Hodge index Theorem, we have

2 2 2
H_(Hchl(E)) _ chi(E)? _ cho(B) 1 @

2 \H2k(E)) = 2tk(E)2 = tk(E) T rk(E)?
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Fig.2 Describing walls via pr(H}
Ker Zﬂ,a c H*(X,R) y\\};

the chamber that F' is semis;;blé
N \*\\: m‘(F)
the stability condition o o4 N
By the definition of y and Assumption (*), we have
Hch|(E 1
H21k(E) k(E)?

Together with (4), we have

P (HehE)Y H? [ Hchi(E)\? o I chy(E)
<H2 rk(E)) =2 (H2 rk(E)) tk(E)2 = tk(E)

(b) The slope vg o (E) is just the slope of the line crossing points (8, o) and pr(E).

Proposition 2.4 [5, Proposition '9.3] Fix an object F € DY(X). There exists a collec-
tion of line segments (walls) Wi in Ty with the following properties:

o the extension of each line segment passes through pr(F) if tk(F) # 0, otherwise
it has slope chy(F)H?/H ch|(F);

e an endpoint of the segments is either on the curve I" or on the line segment through
(n, H72n2) to (n, 2.2 1) for some n € Z (see the remark below for more details);

o the og y-(semi)stability or instability of F does not change when og o changes
between two consecutive walls.

o the object F is strictly og o-semistable if (B, o) is contained in one of the walls.

o if I is og o-semistable in one of the adjacent chambers to a wall, then it is unstable
in the other adjacent chamber.

See Fig. 2 for a picture and [8] for more details.

Remark 2.5 In this paper, we will only apply Proposition 2.4 to an object F = (E
where E is a slope semistable vector bundle on a curve C € |H|. More precise
descriptions for the walls of ¢, E are as follows.

chy (i E)

o All walls of 1, E are parallel segments with the same slope chi (LB
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e . F is 0p 4-semistable for a > 0.

e There is at most one wall W intersecting the line {(0, y)|y > 0}. Indeed, if the wall
contains passes through (0, «g) for some g > 0, then the destabilizing subobject
in CohO(S) will destabilize ¢, E for every o < . So there is at most one g > 0
such that ¢, E is strictly semistable with respect to 0, -

e Suppose there is a wall W of 1, E intersecting the line {(0, y)|y > 0}. We will
see in Lemma 3.1 below that the x-coordinates 81 and 8, of the endpoints of W
satisfies 0 < B> — B1 < 1. In particular, both endpoints are on the curve I'.

e There are also several walls irrelevant to our study. For each negative integern < 0
small enough, there is a ‘tiny wall’ with its ‘right endpoint’ at (n, H72n2) and ‘left
endpoint’ on curve I". These walls will never intersect the line {(0, y)|y > 0}. So
they are irrelevant to the HN factors of ¢, E at all. They are the only reason why
we give several extra descriptions for the possible endpoints of walls.

3 Bounds for the dimension of global sections

In this section, we prove the first part of Theorem 1.1 which introduces a new upper
bound for the dimension of global sections of vector bundles on a curve over a K3
surface. We always assume X is a K3 surface with Pic(X) = ZH and C € |H|is a
smooth curve of genus g. We denote by 1: C — X the embedding of the curve C into
X.

3.1 The destabilizing wall for a stable vector bundle on the curve C

Let E be a slope semistable vector bundle on the curve C of rank r > 2 and degree
d € [0,7(g — 1)]. By [21, Theorem 3.11], the push-forward ¢, E is og o-semistable
for any B € R and « sufficiently large. By Proposition 2.4, the walls for (. E are
line segments of slope % + 1 — g. By Remark 2.5, there is at most one & > 0 such
that «, E is ‘destabilized’ at o o, in other words, t, E is strictly o -semistable and
not oy ,/-semistable for every 0 < o’ < «. Suppose this is the case, in other words
1« E becomes strictly semistable at the wall W which passes through og o for some
a > 0. Denote the x-coordinates of the endpoints of the wall W as 1 and 8, for some
B1 < 0 < B, (Fig. 3).

Lemma 3.1 Adopt notations as above, we have

d
—1+@§,31 and .32§m~

Proof Let0 — F» — 1,E — F; — 0in Coh® X be the destabilizing sequence at
the wall W, then there is an exact sequence in Coh X:
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chy
&k curve I’

2 2

(-1, 4 -1) (1,122 1)
slope= g +1-g
o . 55nax_6inin:1
\\{.\ -
(e ) = pr(B) /o .
‘ in [ e, gmax ;
-Loama ﬂxﬁ 1 B,
pr(Fy) = (df, —Ch2§F2)>

di di—a da—t do
T < <P <p< < 2.

S

Fig.3 Cartoon for the destabilizing wall W of (x E

0 —— H™'(F)) > Fy s 1 ,E — HO(F)) —> 0.
rank ) s 0 0
chy diH dryH rH aH

If s = 0, then since F and ¢, E have the same phase with respect to 0 q, it follows
that ch(14E) = (é ch(F3), so that F, cannot make a wall for ¢, E. Thus, we may

assume s > 0. Let T (F>) be the maximal torsion subsheaf of F> and ch| (T (F>)) =
tH. Since E is of rank r, to make the sequence exact at the term ¢, E, we must have

r —a < rank (L*T(Fz)) + rank (L*Fz/T(Fz)) =5+

Therefore,

Hch (F2/T(F)) Heh (H'(F)) d—t—di _r—a-—t <L 5
sH? sH? N s N s -

By Proposition 2.4, the object F is semistable of the same phase as ¢, E along the
line segment W, in particular if —1 < By, itis in the heart CohP1t€ X where e — 0.
Thus by definition of the tilting heart,

Hchi(H7Y(F) d
——p = <h (©6)
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By similar reasoning for F> /T (F>), it follows from the definition of the tilting heart
that

H chi (F2/T(F))
- =3 @

Therefore inequality (5) and definition of imply that

H chi(12/T(F))

0 <
<h = H?s

<148 <. 8)

In particular, 81 > —1, 2 < 1,and B — B1 < 1.
By the second property of Proposition 2.4, the slope of JV as a line in the projection
pr(Haﬁg(X, R)) is

L(f)—T(B) _H>cho(uE)  H* d
pr—Pi | HemE) 2 ©

It is not hard to see that S, (respectively B1) reaches its maximum By (respectively
minimum B{™") when B, — 81 = 1. Substitute this to (9), we get

max max H2 d
L™ — I —I)Z—T—F;. (10)

Since 0 < d < r(g — 1), slope of W is not positive, thus 0 < B3 < % and by
Definition (2.1),

max H2 maxy2 maxy2

(B, )=—2 By ) = —=(By™)),
H2 2 2
F(ﬁénax—l)z—2 By = D™ — (1 = (B3™))

Substituting back into the Eq. (10) gives g7"* = # and ﬂ{“i“ = # —1. O

We need the following description for the first wall in details.
Lemma 3.2 Adopt notations from Lemma 3.1.
(@) Ifr <s =r1k(F>) and ch|(F2/T(Fy)) = H, we have —1 + % < B1. Otherwise
-1+ % < Bi.
(b) When0 <d <min{2g —2+r,r(g — 1)} and g > r?, we have B < %

(c) When r = 3, we either have the Chern characters ch(F>) = (3, H, —) or 1 >
1

3
Proof Adopt the notations as in the proof of Lemma 3.1.
(a) By inequality (7), we know

Hch1(1;3§T(Fz)) > 38y = 0. (11
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Recall that w € N by Assumption (*).

o If s = tk(F) < r, then LMUHTUE) > L Thys (8) gives

1 H Chl(Fz/T(Fz))
r— 1 - H2s -

1+ B,

comparing the first and the last sentences implies the claim.
e If r <, inequality (6) gives

Hchy(H™'(F) _ Hchi(H™'(F)
H?r - H?Zs

<pi <0, (12)
Taking ch; from the destabilizing sequence gives

Hchi(H'(F)) H chi(F2/T (F2))
. CF H?
Hch((T(F2)) | Hchi(H(F1))
* H? * H? '

(13)

Since H(F,) isatorsion sheaf H chy (H°(Fy)) > 0. Alsoby (11), <t TU2) >

1.
1f LTI - 3 then At 1FD) > 1 4 3 and by (12)

_ —1
I _—r+2 _ Heh(H™'(F)
r—1-— r = H?r

-1+ =h

as claimed. If w =1, then %;I(F')) > —r + 1 and by (12)

—r+1 - Hchy(H™Y(F)))
ro H2r

< B

This finishes the proof of part (a).

(b)If r < s = rk(F,) and chy (F,/T (Fy)) = H, then by (11), g, < ZMUHTE) -
l and the claim follows. Thus we may assume otherwise, so part (a) gives B1 > 2;1

Whenr < 2,d <2(g—1) = H>.ByLemma3.1, 8, < ? < l . So the statement
holds.

We may assume r > 3. Suppose for a contradiction that 8, > % then by definition

I', the slope of the line connecting ( (= )) and (r T> F( )) is less than slope
of the line connecting (8, I'(B2)) and (81T (B1)), in other words,

= the slope of W = —— + —. 14
— 2 B2 — B P 2 14

r—

FO-r(E) ren-ren _ W d
1
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—%, the definition (2.1) of I" gives

P(NZH L L (2 _H22—r21+ 1
r)] 2 2 r2’ r—1) 2 \r—1 (r— 12’

Substitute them into the left hand side of (14):

. 1 1 1
Since 0 < = =< i,wehave—l <-l+:=

IA

H? . 2 1 2r — 1
7(_ tr +r(r—1)>_r(r—1)(r2—r—1)

_ H? N H? L1 H>  2r—1 a5)
2 rooor(r—1) r2—r—1)°
Since g > r2, we get g >rr=D+1+- 2’ ! T because r > 1+ - 2’ ! T forr > 3.
This implies
H>  2r—1
2 2
Therefore (15) gives
1 2
r(7) - F_l) +H2+1> H2+d
-2 47 = 4z
B 2

with the last inequality is given by the assumption d < H? + r. So this contradicts
14).
( ()c) By part (a), we may assume r = 3 < s = rk(F3) and ch|(F,/T(F>)) = H
Substituting » = 3 and ch; (F»/T (F2)) = H in (13) implies that —2 < %;](F”)
On the other hand, (12) gives H ch;(H~!(F;)) < 0. If chiy(H~Y(F))) = —H, or
chi(H~'(F))) = —2H and s > 4, then (12) gives —1 < B as claimed. Hence we
can assume ch; (H ™~ L(F1)) = —2H and s = 3. Thus (13) gives chy (T (F3)) = 0, so
chi(F,) = H as required. O

3.2 An upper bound on the dimension of global sections
We first recall the result in [8, Section 3]. Define the function Z: K (X) — C as

chi(F)-H

Z(F) = chy(F) +i e
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We also define the following non-standard norm on C:

x + iyl = \/x2 + (2H? + 4)y2.

The next proposition bounds the dimension of global sections of objects in terms of
the length of a polygon.

Proposition 3.3 [8, Proposition 3.4] Let F € Coh® X be an object which has no
subobject F' C F with ch|(F') = 0.

(a) There exists € > 0 such that the Harder—Narasimhan filtration of F is a fixed
sequence

0=EyCE C---CEy.1CE,=F,
for all stability conditions 00, where 0 < a < €.
(b) Let pi:=Z(E;) for0 <i <n, then
0 X( )
WX, F) <%=+~ ZLHM, 1l
where ||| pi pi—1|] is the integer part of the length of the line segment p; pi_1 and
x (F) is the Euler characteristic of F.

Proof In the notations of [8], H—zw2 — 1 is equal to our «, so part (a) follows from [8,
Proposition 3.3 (a)]. By [8, Lemma 3.2],

X(Ei/Ei_1) L Ipipicil
2 2

RO(EiJEi—y) < L

+

| x(Ei/Ei—D n LIpipi-1lll | pipi-1ll — LI pipi-1ll]
B 2 2 2

_ xEi/Ei)  Upipicill]
- 2 2

where the last inequality following from the following two cases:

(a) If both X(E,' / Ei_l) and ||| pi pi—11l] are even or odd, the claim is trivial because
I pipi-1ll = Ll pipi-1ll] < 1.

(b) Ifeither x (E;/Ei—1) or || pi pi—1l] is odd, then since § 4 12i2i=tI=Llzipictll
the claim follows.

Finally by summing up over all stable factors one gets

h°<F><Zh°<E JEi—1) < —Zx(E JEi-1)+ = Zanlp, i)

i=1
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Fig.4 The polygon P, g is chy(—).H
inside the triangle opg 0= 2(1.E) H?

: » chy(—)
M AGHE iummi_nu.
2 2 =
O
We denote by Pr the polygon with the extremal points {pg, p1, ..., pn} wWhich is

a convex polygon.
Let E be a slope semistable rank r-vector bundle on the curve C of degree d.
Proposition 3.3 implies that there exists € > 0 such that the Harder—Narasimhan
filtration of ¢, E with respect to the stability condition o9  for positive @ < € is a fixed
sequence

0=EoCE1C-~-CEn_1CEn=t*E.

Consider the triangle opg where o is the origin, ¢ = Z (i E), the slope of op is equal
to B2/ I'(B2) and the slope of pq is B1/ ['(B1), where the real numbers 81 and 3, are
defined as in Lemma 3.1 (Fig. 4).

Lemma 3.4 The polygon P, g is contained in the triangle opq.

Proof If 1. E is 0¢ 4-semistable where @ — O, then the polygon P, g is just the line
segment oq and the claim follows. Thus, we may assume ¢, E is not o ,-semistable
where o — 0. Since the polygon P, is convex, it suffices to show that

Hchy(E)) _TB) - T(B) _ HchaWE/Ey 1)
Hchi(E)) ~— B Bi T Hchi(E/En_1)

The phase of the subobject E; in the Harder—Narasimhan filtration is bigger than
phase of ¢, E at the stability condition o o where « — 0T Therefore there are stability
condition between large volume limit (o5 Where @ — 00) and the stability conditions
00, Where @ — 0 such that E1 and 1, E have the same phase. Proposition 2.4 implies
that these stability conditions are on a line segment L whose extension passes through
the point pr(E}). Note that rk(E}) 0 by the same argument as that in the beginning
of the proof of Lemma 3.1. The line L is lower than the wall W for ¢, E since otherwise
1+ E will already become strictly semistable on L, see Fig. 5.
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I
curve I’

cha
(e Tk

(B1,T(B1))

.- slope = —F(ﬁiz)

HZ2 chy(E)
H chy (Er)

_--slope =

H chy
B? H2 ]'k

Fig.5 Comparing slopes

Since El is Jo,a-semistalgle for some o > 0, the point pr(El) is not in '} by
Remark 2.3. Therefore, pr(E}) is on the dashed part of the line L and the first claim
follows. By a similar argument one can show the second claim for (. E/E,_1. O

We are now ready to prove the bound for the dimension of global sections of the
semistable vector bundle E.

Proof for the first part of Theorem 1.1 Consider the triangle op’q where the slope of op’
is

and the slope of p’q is

d_ _ d_ _
rH? 1 _ rH? 1

d - 2 2 2 ’
r (o —1) B (& -1) -1+ 2l

Lemma 3.1 implies that the triangle opgq is inside the triangle op’q, so by Lemma 3.4
the polygon P, g is also inside the triangle op’q. By a direct computation, one can

show that the point
o = g d
(H»?r " H?)

Now Proposition 3.3, part (b) gives
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IA

X(xE) 1 o
WX LE) < 522+ 23 llpipi-il
i=1

< (L*E)
- 2

1 1 d2g 2 d \?
E(V(l—g)‘i‘d)‘}‘z\/(m—r) +4g<m)

1 d2g 2 d \?
+§\/<r(g—l)—d+m—r> +4g<r—ﬁ>

1 d’g
_—(r(l—g)+d)+ ((H2)2 + )
2

1 d-g
<r(g—l)—d+(H2)2 —I—r—i—B), (16)

(||op I+ 1p'ql)

where the last equality holds for the non—negative solution § to the fOllOWng equation.
dzg
2
(r+8)*+2(r +9) <r(g— ) —d+ o )

d*g
— 2 _ —1) = —°
=rc=2r <r(g 1)—d+ (H2)2r>

This is equivalent to

d*g 4dr
82+2r8+25(r(g—1)—d+(H2)2 ) 4r2—g_1. (17)

Now we will show that § < Zg—r Since 0 < r(g — 1) — d, the function f(x):=x2 +

2rx + 2x (r(g -1 —d+ (H2)2 ) is increasing for x > 0. Moreover,

2r 42 4 4y dzg
f(—)=—+—+—<(g—l)—d+ )
g g2 g g (H*)?r

4 4 4r?  drd N d?
= 4r —_—— I ———
¢ g (@-D?

4d 2 d \?
=4 - d +<—r+_)
g g-—1
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Hence (17) shows f(8) < f (%’) which gives § < <& Applylng this back into (16)

implies
0 — _

WC,E) < 00— +d) 3 <(H2)2 /)

+

+

+)

1
— d
+ 5 (r(g 1) —d+—> (H2)2
8 2 r
SR S
"Tre-n g

m}

Remark 3.5 The bound for h1°(C, E) in Theorem 1.1 is not far from the sharp bound.
Let k be an integer in [1, 7], denote + = gcd(r, k). When d = 2k(g — 1) such that

g > (f)2 + 2, there exists a stable vector bundle F on X with Chern characters:

rok r o k? r
(k(F), chi(F), chy(F)) = (;, ;H, b + ;(g - 1)J — ;> .

When k = r, F is a line bundle, so the restriction F®|¢ is semistable.
When k < r, the rank of F is greater than 1. Since Pic(X) = Z.H, [9, Proposition
4.6] implies F|c is semistable if

tk(F)(tk(F) — DA(F) + rk(F)(rkl(F)_ 5 = 1, (18)
where
Ry CHOI DD Lt
We have
I P <5+ﬁ<g—1>—1—5)
2 rg—-D\r t

IA
—_
~I~
~
NI~
+
—_
N
—_
+
~ |~
|
N~
N——"

1
T () Gk(F)2 + 1) <1 k() — rk(F)) '

Thus (18) clearly holds and the restriction F®'|¢ is semistable with rank r, degree
2k(g — 1) and dimension of global sections

k2
hoC, F¥|c) = (X, F®) ZI\] + ;(g— 1)J +r
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If the | -| function can be dropped for free, the formula can be simplified as

2 2
- —k
8 d2+

U r

Corollary 3.6 Let (X, H) be a smooth polarized K3 surface satisfying Assumption (*),
and let C be a smooth curve of genus g in the linear system |H|. Let E be a slope
semistable rank r-vector bundle of degree d on the curve C such thatd <r(g — 1).

. 2
Then Cliff (E) > % — 2,26(;—51)2 — %. When g > 7, we have

2 /g =1
Cliff, (C) > 2\ /g —1—2— Y8
g

Proof The bound for Cliff(E) is by substituting the bounds of h°(C, E) into the
formula of Clifford index. By the first part of Theorem 1.1, if hO(C , E) > 2r, then

,
rd— —d*+ 2 =00, E) > 2r,
4r(g — 1) g
%
This implies %+1)2d2 > r% which is equivalent to d > —Zr(gg—l) . Consider the
2 2
function f(d) = ¢ — 2rzfg—fl)2 - %, it reaches the maximum when d = —’(g;) )

) 3
When g > 7, the value % is in the range of d € [w, r(g — 1)]. To know
at which boundary f (d) reaches its minimum, we compare the distances from the two

)
boundaries to %.

_ 12 _ 13
re—? =12 _
g g

= g-1-2/g—1>1g>7.

_r(g—=1?

Therefore, the function f(d) reaches its minimum at the left boundary. In particular,

3 3
2r(g — 1) 2r(g— 12 4r¥(g—13 2
CIiff, (C) > f rg—b2\ _2r(g—-D2 rz(g )2__
g gr 2reg(g— D= g
2/g —1
—2fg 128"
g

for any r. O
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4 Higher rank Clifford indices

In this section, we compute higher rank Clifford indices of curves over K3 surfaces
and prove the second part of Theorem 1.1.

4.1 Picard number one case

We assume X is a K3 surface with Pic(X) = ZH and C € |H| is a smooth curve of
genus g. Denote by ¢: C < X the embedding of the curve C into X. We first briefly
recall the result in [9], which constructs semistable vector bundles on C by restricting
vector bundles on X with low discriminant. By [2, Theorem 2.15], there exists a slope
stable sheaf £, on X with Chern character (r, H, | £ | — r). Define E, := E,|c.

Theorem 4.1 [9, Theorem 1.2] Assume g > max{r2, 6} and r > 2, then the sheaf E,
is a semistable vector bundle on C with h°(C, E,) > 2r and

CUff(E,) < 2(g — 1) — 2 FJ . (19)
r r r

Proof The stable sheaf Er is locally-free, otherwise, the double dual F = Erv Vs
slope stable with Chern characters (r, H, L%J — s) for some integer s < r — 1.
Yet —x(F, F) = H? —2r (L%J — s) — 2r% < —2. This contradicts [2, Theorem
2.15]. Thus by the assumption on r and g, [9, Theorem 1.2] implies that E, is slope
semistable on C and h0(C, E) > 2r. As deg(E,) = cl(E,)H = 2(g — 1), by adirect
computation, Cliff (E,) < 2(g — 1) — 2 [ £]. o

We now prove the Clifford index of E; is indeed the minimum of Clifford index
of any semistable vector bundle E with rank r, degree d and h°(E) > 2r. This will
involve several different cases.
Proof of the second part of Theorem 1.1 for r > 4. Let E be a semistable rank r-vector
bundle of degree d < r(g — 1) on the curve C. By Theorem 4.1, it suffices to show
that either h%(E) < 2r or Cliff (E) > 2(g — 1) — 2 [ £].
Step 1 We show CLff(E) > 2(g — 1) — 2| £ |if2g+2 <d <r(g— 1).

Denote t:=d — 2(g — 1). The first part of Theorem 1.1 implies that

2 2
CHff(E) = ~(g — 1) + EJ

2

t 2 <2+gil>

>-—=|r+—=—
ror 4r

g+§ +2+§L§J —:00).

Then Q(¢) is a quadratic function with respect to ¢ with negative leading coefficient.
Thus it suffices to show that Q(t = 5) > Oand Q(t = (r — 2)(g — 1)) > 0 which
can be easily checked by direct computations.

Step 2 We show Cliff (E) > 2(g — 1) — 2 | £ |if —2([&|—r) <d—2(g— 1) <4
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Hch)
HZ
Q@a g s mm e e e e ] T
L
slope of gp = T( L,)
4
********* 2
P
1 "ep
L Ch2
d—r(g—1) (0]

Fig.6 The polygon p,, g is inside the polygon op1 P'q

Applying Proposition 3.3 for the push-forward ¢, E implies that there exists € > 0
such that its Harder—Narasimhan filtration with respect to o9  for positive @ < € is a
fixed sequence

0=E()CE~1C~~~CE~”_1CE~”=L*E,

and

. I[(E)
CLff(E) > g +1— —, (20)
r

where [(E):= Z?:l LIl pipi—1ll] and p; = 7(&). Thus it is suffices to show that

I(E) 5g(r—2)+2L§J Fr42. @1

Since E is a sheaf supported in dimension > 1 and E; € 79, we get % is
a positive integer. We first treat with the case that % > 2. By Lemma 3.2,
B1 = —1 + 1/r. Applying the same argument as in Lemma 3.4 implies that the
polygon P,_g is contained in the triangle op’q where the slope of gp’ is 1“(_J+J:{;n and
the vertical coordinate of the point p’ is equal to 2, see Fig. 6.

Denote by p the point along the line p’q with the vertical coordinate equal to 1.

The coordinates of two points p’ and p are
/ r—2 - g
pP=(d-2¢-1)———(@g+r).2) and p=(d—-2(g-D+=—-r,1).
r r

Note that the length ||g p|| does not depend on d,

r

, r—2 . -2 g 2
lpgll=——Ipqll = —\/((r—Z)(g— D+ = —r) +4g(r—1D? (22
r—1 r—1 r
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r—2 g 2r
<—<(r—2)(g—1)+—+r+—> (23)
r—1 r g

The horizontal coordinate of p’ is negative and is bigger than —g + r + 2. Thus if
r > 4, we have

1 6
||0P/||S\/l6g+(g—r—2)2§g+r+___.
r 5

This implies [(E) < Lllop’ll + 1p'qll) < g(r —2)+2 | £ | +r +2, so inequality (21)
holds. ~
Now assume chj(£1) = H. By Lemma 3.2(b), we have 8, < % Therefore

chy(E)) < L%J = L§J — r. We consider three different cases:
CaseI|chy(E)| <[] -7

Case IT 1:= —~|_§J +r—£ <chy(E)<— 4] +r—1

Case IIl chy(E() < A

We first assume r > 5, then the point A= (A, 1) lies on the right hand side of the line
segment op’. In Case I, we have

lop1]| < \/4g + ([ﬂ . r)2 < L%J Fra, 24)

which implies ||lop1]|] < | £ | 4 r. For Case II, write s:= —cha(E)) — | £]+r, then
l1<s<4£and

HwnH=vug+(L§J+s—4)2<L§J+s+¢. (25)

Thus [[lopil] < [2] 4+ s +r — 1. Fors = £, we indeed have

||oi||=\/4g+(L§J+;;r—r)2<L%J—}-%—Fr—l. (26)

To provide an upper bound for the length || p1 p’||, we define the function

) 2
f(x):=\/4g + <ng + Léj _x— 2) . @7

Ifo<x < 2£, one can easily show that
r

2 r—22r
r—1 r—14g¢g

Feo<gm 2] - a s 45, 28)
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where § = 1 if x [o, %] and § = 2if x € (% ﬁ].
r re 2r
In Case I, we know the point p; lies on the right hand side of op’, so the length of
p1 p’ is maximum when the horizontal coordinate of p; is maximum. But the horizontal
coordinate of pj is less than or equal tod — 2(g — 1) + L%J — r because p; lies on

the left hand side of p, see Fig. 6, thus

Ip1p'Il < £(0). (29)

In Case II, the length of p;p’ is maximum when the horizontal coordinate of p’ is
minimum, i.e. d is minimum, hence

_2 - \?
T s\/4g + (—2 (|3]-r)-=—@+n- Chz(E1)> = /(). (0

Here s = —chy(E) — |_§J + r as before. Similarly, the length of Ap’ is maximum
when d is minimum, so

1Ap=r(3)- 31

Now we apply the above upper bounds to prove inequality (21). In Case I, inequal-
ities (23), (28) and (29) imply that

g
Ipp I+ 1Pl < g =2+ | £ | +3
Thus inequality (24) implies
’ / 8 §
IE) < Llopi ) + Lipip Il +1Pql) < [ 2]+ + g =2+ | ] +2,

so inequality (21) holds. Similarly, in Case II, inequalities (23), (28) and (30) imply
that

8
oI+ 1Pl < g =2+ | £ | s +4.
Therefore inequality (25) implies that

IE) < Llopill] + Lipip' Il +11p'qll)
<|El4s4r—1+ o-2g+] 2] 543,
r r

thus again inequality (21) holds. Finally in Case III, we have

L(E) < LloAll + 1kp" I + 1p'qll]-
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Summing up inequalities (23), (26), (28) and (31) show that inequality (21) is satisfied.

Finally, we consider the case r = 4. If |cha(E})| < | £ ]| — 4, then py lies to the
right of op” and the same argument as in the Case I above implies the claim. Otherwise,
€E) < Lokl + IAp'Il + 1 P'qll} where & = (1, 1) for A = — | £ | + 3. Note that X
lies to the right of op’. We know that the length of A p’ will be maximum when d is
minimum so

lloAll + 1l3.p'|| < \/4g +(- |5+ 3)2 + \/4g +([3]+5- 3)2

ey elg)-re3-

The second inequality follows from (28) for x = 1. Summing up the above inequality
with (23) proves our claim (21).

Step 3 We show ho(C,E) <2rifd < 2(g—1)—2 (I_f—’J — r).

By using the same notations as in Step 2, we first consider the case chi(E;) # H. By
Proposition 3.3, it suffices to show that

k(d):=d +r(1—g) + llop'll + I1p'qll < 4r. (32)

One can easily check that the function

) 2
k(d) =d +r(1 —g)+\/16g+ (d—2(g— - FT(ngr)) + /gl

is increasing with respect to d, so

k) <k =D =2(| %] =r)—1) <4

The last inequality comes from inequality (23) and some direct computations.

Thus we may assume chl(El) = H.If p; is to the left of the line segment op’,
then the total sum of || p; p;—1]| is also bounded by ||op’|| + || p'q|l. So we may always
assume the polygon op; p’q is convex.

Define #:= p(y) — cha(E1) — & + | & |, where px) =d —2(g — 1) + g/r —r is
the horizontal coordinate of the point p. We consider two different cases:
CaseIwhen0 <t < 3,

||0P1||=\/4g+(—d+2(g—1)—L§J+t+r)2

<—d+2(g—1)—ﬁj+t+3r (33)
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In particular, if t € [r% Zg_r) we can improve the bound by 1;

\/4g+(—d+2(g—1)—L§J+t+r)2<—d+2(g—1)—L§J+t+3r—l
(34)

Note that || p; p’|| = f(¢) as that defined in (27).
Thus combining inequality (28) for 7 € [0, zi] and inequality (23), we get
r

IE) < Uloptll] + [Ilp1p' Il + 1p"qll] < 4r+r(g—=1) —d—1.

Hence the claim follows by Proposition 3.3.
Case I Suppose 2g—r < t.If pj lies on the left hand side of op’, the polygon P, g is inside
the triangle op’q and the claim follows from (32). Otherwise, the polygon op;p’q is

convex and the summation of the length [lop1 || + || p1p’ll + | p’q|l is maximum when
t=4£.
r

Substituting 1 = 4 into the formulas of |lop; || and || p1 p’|l, we have:

llop |l =\/4g+<—d+2(g_1)_ L%J +2£r+r>2

<—d+2(g—1)—ﬁj+2§r+3r—2.

, g r—2 g g 2 r—22r
Ippl=r(£) <=+ |8 -£+ - T=Z o byes)
2r r r 2r r—1 r—1g¢g

Together with (23) for || p’q]l, it follows that

IE) < [llopt + PPl + IP'qll] < 4r +r(g—1) —d —1,

so the claim follows. O
Proof of the second part of Theorem 1.1 for r = 3. Let E be arank 3-semistable vector
bundle on the curve C of degree d. By Lemma 3.2, either §; > —% or ch(Fy) =
(3, H,-).

CaseIIf g > —%, since chy (14 E) < 0, the slope of the wall W for . E is negative.
Therefore, |82| < |B1] < % Lemma 3.4 implies that for each of the semistable factors
Ei / E i—1 in the Harder—Narasimhan filtration of ¢, E with respect to og o for positive
o < €, we have

_ram
=12

H?chy(Ei/Ei—1)
Hchi(E;/Ei—1)
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Therefore [(E) < LS\/4g +(8/2 - 2)2J = [3(g/2 +2)]. Note that g > 32 = 9,

Proposition 3.3 implies that

. WE) 1| 3g 2 2 g
Chff(E)zg+1—T_g—§bJ_1z§<g_1>_§m.

CaseILIf ch(F,) = (3, H, —), then f, < LRV < L Whend > 2(g— 1) —

2( L%J — 3), define s:= — Chz(El) — L%J + 3, then using the same argument as in
Step 2 forr > 4, ifchl(El) # H,thenfor g > 9and g # 11, we have

2
7
IE) = Llop" I + 1IP'qll] = |2 <§—1> +g + \/(d—§g+l)2—|—l6g
8 2 8
S _ _5)2 o
<2 <3 1) Yo+ J(g—52+16g 5g+2L3J+5, (35)

which shows inequality (21) holds for » = 3. The only remaining case that the last
inequality does not hold is when g = 11, but the formula (35) is less than or equal
to 22. Therefore, we may assume ch;(E;) = H. Now the arguments in Step 2,
Case I, I, and III in the proof of Theorem 1.1 for r > 4, are valid for r = 3, thus
Cliff3(E) > 3(g — 1) — 5 | £].

Whend < 2(g—1)=2(| §]=3).definc = iy —cha(E) =5 +| § | thenagain

the computations in Step 3, Case I, II are valid for » = 3, hence hO(F ) < 6. Therefore,
the second part of Theorem 1.1 for » = 3 and g > 9 follows by Theorem 4.1. O

Proof of the second part of Theorem 1.1 for r = 2 Let E be a semistable rank
2-vector bundle on the curve C. Assume there exists a wall W for (,E and 0 —
Fi - wE — F, — 0 is the destabilizing sequence as that in Lemma 3.1.
As H chi(F1), Hchj(F>) > 0, we may assume ch;(F;) = ch,(F2) = H. By
Lemma 3.2, we may assume ch(F;) = (2, H, s) and ch(F>) = (-2, H,2(1 — g) +
d — ). Since H chl(F,‘)/H2 = 1 is minimal, both objects F and F; are og o-stable
for any @ > 0. Therefore, F| and F, are the Harder—Narasimhan factors of ¢, E with
respect to 0, where 0 < o <« 1. By [2, Theorem 2.15],

3
—X(FZ,FZ)=H2+4(2(1—g)+d—s)—83—2=>s5d—78.

Since F destabilizes (4 E, we have

K chy (14 E) d 41
—_— = § > — — .
H2 ~ Hch (LE) 2~ ¢
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Combining the two inequalities, we get

d 3
§—g+l<s§d—7g — d>g+2.

Note thatd < 2g —2, we have s < § —2. We also have s > % —g+1>-5+2.
In particular, |s| < % — 2. Proposition 3.3 implies that

d 1
H(C.E)<—g+1+5+5 LJ4g+s2+J4g+(2(g— 1)—d+s)2J (36)
Note that
\/4g+s2+\/4g+(2(g—1)—d+s)2 (37)

P 2
5,/4g+(§—2) +\/4g+(2<g—1)—d+d—37g> —g+4.  (38)

As for the ‘<’, equality can hold only if |s| = %—Zands =d-— %g. Sinced > g+2,

we must haved =2(g — 1) ands =d — 37“’7. Since s is an integer, g must be even in
this case.
Hence when g is odd, we have L\/4g +24+V4g+Q2@g -1 —d+ s)2J <g+

3. Together with (36), we have /°(C, E) = — | 51 | +3+ 4.

When g is even, by (36) and (38), we directly have h%(C, E) < — | & | +3+ ¢
as well.
Hence when there exists a wall for ¢ E, we have

. d g+1 d g
cliff(B) > £+ |82 | 3% 40— g 1|8
1()—2+L J pte=¢s bJ

Now assume there is no wall W for 1, E and it is og o -semistable where « — 0. Denote
x=d—2(g—1)and p; = Z(+E), so |lop1|| = v/x2 + 16g. Proposition 3.3 implies

that
1
: _ 2| /2
Clff(E) > g+ 1 2{ X +16gJ.

Thus for —g +4 < x < 0, we have Cliff(E) > g — 1 — L%J If x < —g + 4, then
again Proposition 3.3 gives

16g

16
2h0(C, E) < x + /22 + 16g = g < -
VxZ+16g—x  J(g—4?2+16g+g—4

Therefore the second part of Theorem 1.1 for» = 2 follows by the fact that Cliff, (C) <
Cliff](C)zg—1—|_§J. O

8.
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4.2 Higher Picard number case

Theorem 1.1 still holds when the ample divisor H satisfies Assumption (*).
Assumption (*) H 2 divides H - D for all curve classes D on X.
We explain how to adapt all our arguments from Picard rank one to this more general
case.

Let Ay = 73 denote the image of the map

vu: K(X) — R, E > (k(E), H ch|(E), cha(E)).

Consider stability conditions for which the central charge factors via vy, and denote
the space of such stability conditions by Staby (X). The pair o o := (Coh? X, Zg 4)
defines a stability condition on D?(X) and there is a continuous map from 'y, —
Staby (X). The slope function vg o is defined in the same way. All the propositions
in Sect. 2 hold for the higher Picard rank case. The Chern characters in part (a) in
Lemma 3.2 should be modified to H - ch(F;) = H?. All the other statements do not
rely on the Picard rank.

5 Smooth plane curves

Our method to control the dimension of global sections of semistable vector bundles
(first part of Theorem 1.1) can be generalized to curves on more general surfaces,
especially for Fano surfaces. As a case study, we follow the argument for curves on
K3 surfaces to set up a bound for smooth projective plane curves and finally compute
their Clifford indices. We first review Bridgeland stability conditions on the projective
plane.

5.1 Review: space of geometric stability conditions on D (P?)

The space of geometric stability conditions on the projective plane P? is similar but
slightly different with that of a K3 surface with Picard number one. In the projective
plane case, the curve I' is replaced by the Le Potier curve (see [6,7,12,20]). Since the
definition of Le Potier curve is rather involved, we will only use a simpler version I’
which is enough for our purpose.

Definition 5.1 Let 7: R — R be a 1-periodic function. When x € [—1, 1],

2 =3x|+1  ifx#£0

7=, if x = 0.

Let I'(x) := %xz — 7(x). By abuse of notations, we also denote the graph of I" by the
curve I
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Forp e Rand @ > f‘(,B), we define the central charge Zg 4 : KP?) — Cas
Zgo(E) = —chy(E) + ark(E) +i(chi(E).H — Brk(E)). (39)

By [12, Proposition 1.10], we getaslice of stability conditions g o = (Cohﬁ P2, Z B.a)
parameterized by I'.. Results of stability condition and wall-crossings (Theorem 2.2,
Remark 2.3 and Proposition 2.4) all hold without any change. One should be cautious
that the end points of the first wall may not be on the curve I".

5.2 Upper bound on the dimension of global sections

Let C be a degree ! smooth irreducible curve in the projective plane P2. Denote
1: C < P? the embedding morphism and H:= Op2(1). We recollect lemmas from the
case of K3 surfaces. The next lemma generalizes [8, Lemma 3.2] to objects in Db (P?).

Lemma 5.2 Fix an object F € Coh® P which is 00, -semistable for any positive real
number a < 1 and ch(F) # 0. Then

= 1k(F) + 3 H chi(F) + cha(F)  when ;Eiﬁf;) > -3,
hom(Opa2, F) chy (F)2
< rk(F) ~ 2chh(F) when Chz(F) < 0.

Proof We first assume % > —%. The object Op2(—3)[1] € Coh" P? s 00.a-

semistable and vg o, (Op2(—3)[1]) = —% < Vg, (F), thus Hom(F, Op2(—=3)[i]) =0,
for i < 1. By Serre duality, we have Hom(Op2, F[2 —i]) = 0 for i < 1. Since both
F and Op: are in the heart Coh® P2, we have Hom(Op2, Fli]) = 0, fori < —1.
Therefore,

Hom(Op2, F) = x(Op2, F) = tk(F) + %H chy(F) 4 chy(F).

Now assume chy (F) < 0. Define the object K € D?(P?) as the canonical extension
0— F > K - Op[1]® (Ext!' (Op[1], F) —=)*0

in Coh¢ P? for sufficiently small e > 0. Wehavech(K) = (tk(F)—h, ch|(F), cho(F)),
where /1 denotes dim Ext! (Op2[1], F) = hom(Op2, F). The object K is semistable on
the wall that the objects F' and Op2[1] have the same phase, in particular, A(K) > O:

0 < (H chy(K))* — 2chy (K)(tk(F) — h)

(Hchi(K))? (H ch;(F))>
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Note that when HC}éfl(lf 1),) e (-1, —%), we always have

chy (F)?

3
rk(F) + EHChl(F) + cha(F) > 1k(F) — 2chy(F)

By the lemma, there is no o o-semistable object with ;};ﬁ(lf }) e (-1, —%).
Define the function L: (a,b) e H=R x R>0 — R>0 guch that

3
Shta if %el::[—1,+oo);
Laby=12 b
-z it 2 e Ji=(—00,—1].
2a By (o0, ~1l

Note that L(a, b) > 0 for any pair (a, b) € H.

Lemma 5.3 The function L satisfies the triangle inequality in H, in other words, for any
twovectors vy = (ay, by) and vy = (ap, b)) inH, we have L(vi+v3) < L(vi)+L(v2).
Moreover, L(kv) =kL(v) for any v € H and k > 0.

Proof The second claim follows clearly by definition. To prove the first claim, we
consider four different cases.

(a) If bothay /by and az /by arein [ = [—1, +00), then L(vy +v2) = L(vy) + L(v2).
(b) If both a1 /by and ay /by are in J = (—oo, —1], then

-1
0< () +62( L) - 2010, ).
al +ar al a

This implies

1 1 1 1 2b1b
a1 +ap al a1 +ap ar al +ap

= —2L(v; +v2) +2L(v1) + 2L(v2).

(c) Ifay /by € I,a2/by € J and (a1 +az) /(b1 + b2) € I, thensince ay /by < —1, we
have
b3

3
—b < £
3 2+tax < 20

which implies

3 3 b2
L(vi +v2) = z(bl +by)+ar+a < §b1 +a + —ﬁ = L(v1) + L(v2)
2
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(d) Ifa1/by € 1,a/by € J and (a; +az) /(b1 + b2) € J, then there is a non-negative
real number £ < 1 such that (a1 + kaz)/(b1 4+ kby) = —1, then case (c) implies
that

L(vy 4+ kvy) < L(vy) + kL(vy).
Therefore, case (b) gives
L(vi +v2) < L((1 = kb)va) 4+ L(vy + kvp) < (1 —k)L(v2) + kL(v2) + L(v1),

which proves the claim. O

Notation We will write P—)Q for the vector from P to Q.

Fix a semistable rank r-vector bundle E of degree d on the curve C. The same
argument as in [8, Proposition 3.4] implies that there exists € > 0 such that the
Harder—Narasimhan filtration of ¢, E is a fixed sequence

OIEOCEIC"'CEn—ICEnZL*E

for all stability conditions o9 ¢ Where 0 < & < €. Let P, g be the polygon with the
extremal points p;:= (chy(E;), chi(E;)) € R* fori = 0,...,n. Then Lemma 5.2
implies that

WX, E) < tk(E) + ) L(pipi-1)- (40)

i=1

Note that by definition, the curve with the equation y = x2/2 is above the curve I".
Also when 0 < x < 1, the function I'(x) < —%x. Therefore, any point (8, «) in the
gray area in Fig. 7 gives a Bridgeland stability condition o .

Lemma 5.4 (Lemma 3.4) For any semistable factor E;:= I;",-/I;"l-,l in the Harder—
Narasimhan filtration of 1.E, we have the slope Hd;fl(lfl’;l) € [% — %, %] When

d < rl, the slope is either in the range [% — %, —%] or [—%, ”7[ -+ %]

Proof Let0 — F, — 1,E — F; — 0 be the destabilizing sequence at the wall W
for (£ which passes a stability condition of form op . We have ch;((+E) = rlH
and chy (H°(F})) = alH for some integer a > 0. Denote tk(H-Y(F)) = tk(F) =
S, chl(H’](Fl)) = dH and ch|(F;) = dyH. Let T (F,) be the maximal torsion
subsheaf of F», then chy (T (F3)) = tlH for some integer ¢ > (. The same argument
as in the first part of Lemma 3.1 implies that

rl —al <sl+tl.
Therefore,

Hchy (F2/T(F))  Hchy (H'(F)) dy—tl—dy  rl—al —tl
sH? sH? o s o s

<l. @D
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Fig.7 First wall for ¢ E . s = £
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Now assume the wall )V intersects the parabola with the equation y = x2/2 at two
points (8}, B/2) and (B}, B;?/2) where B < 0 < Bj}. By applying the same argument
as in Lemma 3.1, the inequality (41) gives g5 — B] < L. Proposition 2.4 implies that
the slope of the wall W is

Y2 1B’ _ BB _ choE) _d—r% a1

B — B 2 Hchi(LE) 7l a2

d d

Therefore, ,35 < — and ﬂi > — —[. By a similar argument as in Lemma 3.4, one
r

can show that for each of the Harder—Narasimhan factors E;,

Bl _BE/2 _ cho(E)) _ B2 B
2 B T Hchi(E) ~ B 2"

Thus the first claim follows.

Now assume d < rl, so ,Bé < 1. If the wall WV intersects the line with the equation
x = latapoint (1, y) for —1/2 < y < 1/2, then the same argument as in Lemma 3.1
implies that

| < H chy (F2/T(F»))
- sH?

and inequality (41) implies that

- Hchy (H7'(F)) -

1-1< I = p1.

Therefore the wall WV is below the line L which has the same slope as VW and passes
2
through the point (1 — [, %). The line L intersects the line x = 1 at the point
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1,4d—1+ 2). Thus the same argument as that in Lemma 3.4 shows that each slope

I;}C’fl(fE)l) isintherange [— % d_j+ 2] If wehave y < —1/2, then the wall intersects

the line segment op which has slope —1 /2, see Fig. 7. Thus the same argument as in

Lemma 3.4 implies that I;hﬁ(fE)) < —i and the second claim follows. O

Theorem 5.5 Let C be a degree [(> 5) smooth irreducible curve on the projective
plane. Let E be a semistable vector bundle with rank r and degree d such that 0 <
d <rl(l —3)/2. Then

3 d .
dim H°(C, E) < r+<ﬂ+2r12>d ifd >rl
max{3r +d —rl,r+- rl+r 4y ifd <l

Proof When d > ri, Lemma 5.4 implies that the polygon P is inside the triangle
opq where p = (%, ‘71) andg = (—% +d, rl). Then Lemma 5.3 and convexity of
the polygon P, imply that

o — —
h%(C, E) = hom(Op2, 1,E) < Y L(pipi1) < L(0p) + L(jq)
i=1

_3d | d (rl —4)?
20 2r2 0 2 g4+ £
ri2
3d d°
“u Tyt

Whend < rl, if the range of the slopes in Lemma 5.4 is given by [ £ — £, —1], then

rdl rdl
we may let p be at (2r1272r172d’ rlzfrlfd)' Therefore,

2
rdl N (rl - rlziﬁ—d>
r2—rl—d = p2—2d — "4l

rdl n rl ; rdl
= ri —
ri2—ri—d ri?—d ri2—rl—d

rl+r

0 - =
h*(C, E) < L(op) + L(pg) =

Also if the range of the slopes in Lemma 5.4 is given by [ Tl, % -1+ %], then we
may let p be at (d —rl+ L 5 ) Therefore,

3 r2(1 —1)?
h(C.E) < L@op) + L(5q) = Srtd=ri+ s +(—)=3r+d—rl,
2 ri2=2rl+r

which completes the proof. O
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As an interesting consequence, part (i) of Mercat conjecture [24] holds for smooth
plane curves.

Corollary 5.6 Let C be a degree [(> 5) smooth irreducible plane curve, then
Cliff, (C) =1—-4

foranyr.

Proof Let E be a semistable vector bundle with rank r and degree [, when d > rl, by
Theorem 5.5

citte) > 4~ 2 (2 4+ L ) a > mi ¢ (3, 4,
i —— =+ — Ming—,; g—ri(i— ——— =+ —
r 20 " op2 )¢ = S AR T\ 2 T o

) 3 rl I(l1-3) 3 1-3
) BASECAN, —
i {l ! (21 2r12) T2 (21 + 41 ) i 3)}

:min{l—4,ﬂ} =1—4
4
When * +1 < d < rl and the upper bound for H%(C, E) is given by 3r +d — rl in

Theorem 5.5, then
. d 2 d
Cliff (E) > ——-Qr+d—rl)=1—44+1——>1—4.
r r r

When . l—r < d < rl and the upper bound for H%(C, E) is given by r + rl+’ ~d in
Theorem 5.5, then

d 20+1 d A+2 12-1 20+2
Cliff, (E) > ——L)d——(l + a- 12+1
p -

- 1—2-2.
=0T 2 12751 )>

When d < =L, by Theorem 5.5, dim H(C, E) < r + Hd < 2r. On the

1+1
other side, one may take E = O¢(1)?", then Cliff (E) = — 4. Therefore, we have
Cliff,. (C) =1 — 4. O
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