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Abstract
Let (X , H) be a polarized K3 surface with Pic(X) = ZH , and let C ∈ |H | be a
smooth curve of genus g. We give an upper bound on the dimension of global sections
of a semistable vector bundle onC . This allows us to compute the higher rank Clifford
indices of C with high genus. In particular, when g ≥ r2 ≥ 4, the rank r Clifford
index of C can be computed by the restriction of Lazarsfeld–Mukai bundles on X
corresponding to line bundles on the curve C . This is a generalization of the result by
Green and Lazarsfeld for curves on K3 surfaces to higher rank vector bundles.We also
apply the same method to the projective plane and show that the rank r Clifford index
of a degree d(≥ 5) smooth plane curve is d − 4, which is the same as the Clifford
index of the curve.
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1 Introduction

Let UC (r , d) be the set of semistable rank r -vector bundles of degree d on a smooth
curve C . For E ∈ UC (r , d), its Clifford index is defined as

Cliff(E) = d

r
− 2

r
h0(C, E) + 2.

By the higher rank Clifford Theorem [3, Theorem 2.1], when 0 ≤ d ≤ r(g − 1), the
index Cliff(E) is non-negative. The rank r Clifford index of C , first introduce in [15]
where it was denoted γ ′

r , is defined as:

Cliffr (C):=min{Cliff(E)|E ∈ UC (r , d), d ≤ r(g − 1), h0(C, E) ≥ 2r}.

Our main result is as follows.

Theorem 1.1 Let (X , H) be a smooth polarized K3 surface satisfying Assumption (*),
and let C be a smooth curve of genus g in the linear system |H |. Let E be a slope
semistable rank r-vector bundle of degree d on the curve C such that d ≤ r(g − 1).
Then we have the bound for the dimension of the global sections of E:

h0(C, E) < r + g

4r(g − 1)2
d2 + r

g
. (1)

When r ≥ 2 and g ≥ r2, the rank r Clifford index of C

Cliffr (C) = 2

r
(g − 1) − 2

r

⌊g
r

⌋
.

Assumption (*) H2 divides H · D for all curve classes D on X .1

The upper bound for h0(C, E) in Theorem 1.1 is much stronger than the higher rank
Clifford Theorem, which says h0(C, E) ≤ r + d

2 . The bound is not far from the sharp
bound, see Remark 3.5. For a smooth curve C of genus g, several upper bounds for
the dimension of global sections of vector bundles of low slope μ = d/r have been
introduced in [3,22,23], which are also included in [17]. Sharp bounds for the case

1 In particular, X satisfies Assumption (*) if Pic(X) = ZH . By the surjectivity of the period map, there
are polarized K3 surfaces with higher Picard rank satisfying this assumption as well. To simplify the
presentation, we explain our entire argument in the case of Picard rank one and then explain in Sect. 4.2
why the argument works for all polarized K3 surfaces satisfying Assumption (*).
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g ≤ 6 and μ < 2 have been determined in [3,17–19,22,23]. The upper bound (1) is
in general stronger than the bounds in these previous papers unless g ≤ 6 or μ ≤ 2.

For r = 2, the second statement of Theorem 1.1 gives

Cliff2(C) = Cliff(C) =
⌊
g − 1

2

⌋
,

so we re-obtain the result [1, Theorem 1.3]. Also for r ≥ 3 and g �= 10, we have

Cliffr (C) < Cliff(C) =
⌊
g − 1

2

⌋
.

This indicates the failure of the Mercat’s conjecture in [24] for C which states the
higher ranks Clifford indices of the curve C are equal to Cliff(C). Meanwhile, when
r = 3 and g = 10, we have Cliff3(C) = 4 = Cliff(C) for a general curve.

When r = 3 and g = 9, the fact that a general curve has Cliff3(C) = 10
3 was known

according to the results in [16]. When r = 3 and g = 11, our result implies that a
general curve has Cliff3(C) = 14

3 , which improves the result 11
3 ≤ Cliff3(C) ≤ 14

3 in
[14, Theorem 3.6].

Let A be a globally generated line bundle on the curve C ⊂ X , the Lazarsfeld–
Mukai bundle EC,A on X is defined via the exact sequence

0 → E∨
C,A → H0(C, A) ⊗OX

ev−→ A → 0.

In all cases in the secondpart of Theorem1.1, there exists a line bundle A on the curveC
such that the rank r -Clifford index is computed by the restriction of the corresponding
Lazarsfeld–Mukai bundle on the K3 surface X . We expect this result holds without
the assumption on the Picard group of X . This can be viewed as a generalization for
the result of Green and Lazarsfeld [10] which says that for a curve C on a smooth K3

surface with Cliff(C) <
⌊
g−1
2

⌋
, the Clifford index can be computed by the restriction

of a line bundle on the K3 surface.
Our argument can be generalized to curves on other surfaces, especially when the

surface admits a stronger Bogomolov–Gieseker type inequality. Examples of such
surfaces include the projective plane, del Pezzo surfaces and quintic surfaces. We
explain more details for smooth plane curves in Sect. 5. In particular, we show that
the first part of the Mercat’s conjecture [24] holds for smooth plane curves:

Theorem 1.2 (Corollary 5.6) Let C be a degree l(≥ 5) smooth irreducible plane curve,
then

Cliffr (C) = l − 4,

for any positive integer r .

The result Cliff2(C) = l − 4 for plane curves first appeared in [15, Proposition
8.1]. Further discussions for the rank 3 case appeared in [16]. In particular, the result
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Cliff3(C) = l − 4 was known for l ≤ 6. As Professor Peter Newstead pointed out,
it seems to us that all other Clifford indices for smooth plane curves have not been
known. In particular, Theorem 1.2 excludes the possibility that Cliff3(C) < l − 4 in
the assumption in [16, Theorem 5.6].

Another concrete example for curves on degree four del Pezzo surfaces is computed
in [13]. The Clifford type inequality for such curves is the key ingredient in proving
the existence of Bridgeland stability conditions on smooth quintic threefolds.

1.1 Approach

The main tool in this paper is the notion of stability condition introduced by Bridge-
land [4]. In general, such a stability condition σ = (A, Z) is defined on a C-linear
triangulated category T , and is consisting of a heart structure A and a central charge
Z : K (T ) → C, which is a group homomorphism from the Grothendieck group to
complex numbers. The space of stability conditions on T forms a complex manifold
which admits a wall and chamber decomposition for any fixed object E ∈ T . In this
paper, the triangulated category T will always be the bounded derived category Db(X)

of coherent sheaves on a surface X . We will only make use of a real two-dimensional
subspace of stability conditions on Db(X).

Let ι : C ↪→ X be the embedding of a smooth curve C into the surface X , and
let E be a semistable vector bundle on the curve C . In [8], a new upper bound for
the dimension of global sections of objects in Db(X) has been introduced. This states
the dimension of global sections of ι∗E can be bounded by the length of the Harder–
Narasimhan polygon at a limit point σ0 where Z(OX ) → 0. The Harder–Narasimhan
polygon geometrically represents the slopes and degrees of the Harder–Narasimhan
factors of ι∗E with respect to σ0. One of the key parts of the paper is to describe the
position of the wall for ι∗E that bounds the large volume limit chamber at where ι∗E is
stable. Describing the wall that bounds the large volume limit will enable us to control
the length of this Harder–Narasimhan polygon at σ0 effectively and get the bound for
the dimension of global sections of the vector bundle E .

2 Review: stability conditions, wall-crossings

Let (X , H) be a smooth polarized K3 surface over C with Pic(X) = ZH . In this
section, we review the description of a slice of the space of stability conditions Stab(X)

on Db(X) given in [5, Section 1-7].
Given an object E ∈ Db(X), we write ch(E) = (rk(E), ch1(E), ch2(E)) ∈

H∗(X ,Z) for its Chern characters. We write H∗
alg(X ,Z) for its algebraic part, in

other words, the image of ch(−). The slope of a coherent sheaf E ∈ Coh X is defined
by

μH (E) :=
{

H ·ch1(E)

H2 rk(E)
if rk(E) > 0

+∞ if rk(E) = 0.

This leads to the usual notion of μH -stability. For any β ∈ R, we have the following
torsion pair in Coh X
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T β := 〈E : E is μH -semistable with μH (E) > β〉,
Fβ := 〈E : E is μH -semistable withμH (E) ≤ β〉,

where 〈−〉 denotes the extension-closure. Following [5,11], this lets us define a new
heart of a bounded t-structure in Db(X) as follows:

Cohβ X := 〈Fβ [1], T β〉
=
{
E : H−1(E) ∈ Fβ,H0(E) ∈ T β,Hi (E) = 0 for i �= 0,−1

}
.

For any pair (β, α) ∈ R
2, we define the central charge Zβ,α : K (X) → C by

Zβ,α(E) := − ch2(E) + α rk(E) + i

(
H ch1(E)

H2 − β rk(E)

)
. (2)

Note that the function Zβ,α , up to the action of GL+(2;R), is the same as the stability
function defined in [5, section 6]. The function Zβ,α factors via the Chern character

ch : K (X) → H∗
alg(X ,Z) ∼= Z

3, ch(E) = ( rk(E), ch1(E), ch2(E)
)
. (3)

The kernel of Zβ,α in H∗
alg(X ,R) under the basis {rk, ch1, ch2} is spanned by

(1, βH , α).

Definition 2.1 Let γ : R → R be a 1-periodic function such that for x ∈ [− 1
2 ,

1
2 ] is

defined as

γ (x) :=
{

(1− x2) if x �= 0

0 if x = 0.

Let �(x) := H2

2 x2 − γ (x). By abuse of notations, we also denote the graph of � by
curve � (see Fig. 1).

We first state Bridgeland’s result describing stability conditions on Db(X), and then
expand upon the statements.

Theorem 2.2 [5, Section 1] For any pair (β, α) ∈ R
2 such that α > �(β), the pair

σβ,α := (
Cohβ X , Zβ,α

)
defines a stability condition on Db(X). Moreover, the map

from �+ := {(β, α) ∈ R× R|α > �(β)} → Stab(X) is continuous.

We first explain the notion of σβ,α-stability and the associated Harder–Narasimhan
filtration. Consider the slope function

νβ,α : Cohβ X → R ∪ {+∞}, νβ,α(E) :=
{
−�Zβ,α(E)

�Zβ,α(E)
if �Zβ,α(E) > 0

+∞ if �Zβ,α(E) = 0.

This defines a notion of stability inCohβ X : an object E ∈ Cohβ X isσβ,α-(semi)stable
if and only if it is (semi)stable with respect to the slope function νβ,α . Every object
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Fig. 1 The Gamma curve

E ∈ Cohβ X admits a Harder–Narasimhan filtration which is a finite sequence of
objects in Cohβ X ,

0 = F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk = E

whose factors Ei := Fi/Fi−1 are σβ,α-semistable and νβ,α(E1) > νβ,α(E2) > · · · >

νβ,α(Ek). We denote ν+β,α(E) := νβ,α(E1) and ν−β,α(E) := νβ,α(Ek). The second part
of Theorem 2.2 implies that the two-dimensional family of stability conditions σβ,α

satisfies wall-crossing as α and β vary. Consider the projection

pr : H∗
alg(X ,Z) \ {rk = 0} → R

2, pr(ch(E)) =
(
H ch1(E)

H2 rk(E)
,
ch2(E)

rk(E)

)
.

By abuse of notations, we use the same plane for the image of the projection pr and
the (β, α)-plane. Note that the point (β, α) is equal to the projection pr(ker Zβ,α) of
the kernel of the central charge Zβ,α in H∗

alg(X ,Z). We will also write pr(E) instead
of pr(ch(E)).

Remark 2.3 (a) For a stable object E with respect to any stability condition σβ,α , the
point pr(E) is not in �+ = {(x, y) ∈ R

2 : y > �(x)}. To see this, note that

2 = hom(E, E) + hom(E, E[2]) ≥ χ(E, E)

= 2 rk(E) ch2(E) − (ch1(E))2 + 2(rk(E))2.

Thus by Hodge index Theorem, we have

H2

2

(
H ch1(E)

H2 rk(E)

)2

≥ ch1(E)2

2 rk(E)2
≥ ch2(E)

rk(E)
+ 1− 1

rk(E)2
. (4)
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Fig. 2 Describing walls via
Ker Zβ,α ⊂ H∗(X ,R)

By the definition of γ and Assumption (*), we have

γ

(
H ch1(E)

H2 rk(E)

)
≤ 1− 1

rk(E)2
.

Together with (4), we have

�

(
H ch1(E)

H2 rk(E)

)
≥ H2

2

(
H ch1(E)

H2 rk(E)

)2

− 1+ 1

rk(E)2
≥ ch2(E)

rk(E)
.

(b) The slope νβ,α(E) is just the slope of the line crossing points (β, α) and pr(E).

Proposition 2.4 [5, Proposition 9.3] Fix an object F ∈ Db(X). There exists a collec-
tion of line segments (walls)W i

F in �+ with the following properties:

• the extension of each line segment passes through pr(F) if rk(F) �= 0; otherwise
it has slope ch2(F)H2/H ch1(F);

• an endpoint of the segments is either on the curve � or on the line segment through

(n, H2

2 n2) to (n, H2

2 n2−1) for some n ∈ Z (see the remark below formore details);
• the σβ,α-(semi)stability or instability of F does not change when σβ,α changes
between two consecutive walls.

• the object F is strictly σβ,α-semistable if (β, α) is contained in one of the walls.
• if F is σβ,α-semistable in one of the adjacent chambers to a wall, then it is unstable
in the other adjacent chamber.

See Fig. 2 for a picture and [8] for more details.

Remark 2.5 In this paper, we will only apply Proposition 2.4 to an object F = ι∗E
where E is a slope semistable vector bundle on a curve C ∈ |H |. More precise
descriptions for the walls of ι∗E are as follows.

• All walls of ι∗E are parallel segments with the same slope ch2(ι∗E)
H ch1(ι∗E)

.
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• ι∗E is σ0,a-semistable for a � 0.
• There is at most one wallW intersecting the line {(0, y)|y > 0}. Indeed, if the wall
contains passes through (0, α0) for some α0 > 0, then the destabilizing subobject
in Coh0(S) will destabilize ι∗E for every α < α0. So there is at most one α0 > 0
such that ι∗E is strictly semistable with respect to σ0,α0 .

• Suppose there is a wall W of ι∗E intersecting the line {(0, y)|y > 0}. We will
see in Lemma 3.1 below that the x-coordinates β1 and β2 of the endpoints of W
satisfies 0 < β2 − β1 < 1. In particular, both endpoints are on the curve �.

• There are also several walls irrelevant to our study. For each negative integer n < 0
small enough, there is a ‘tiny wall’ with its ‘right endpoint’ at (n, H2

2 n2) and ‘left
endpoint’ on curve �. These walls will never intersect the line {(0, y)|y > 0}. So
they are irrelevant to the HN factors of ι∗E at all. They are the only reason why
we give several extra descriptions for the possible endpoints of walls.

3 Bounds for the dimension of global sections

In this section, we prove the first part of Theorem 1.1 which introduces a new upper
bound for the dimension of global sections of vector bundles on a curve over a K3
surface. We always assume X is a K3 surface with Pic(X) = ZH and C ∈ |H | is a
smooth curve of genus g. We denote by ι:C ↪→ X the embedding of the curve C into
X .

3.1 The destabilizing wall for a stable vector bundle on the curve C

Let E be a slope semistable vector bundle on the curve C of rank r ≥ 2 and degree
d ∈ [0, r(g − 1)]. By [21, Theorem 3.11], the push-forward ι∗E is σβ,α-semistable
for any β ∈ R and α sufficiently large. By Proposition 2.4, the walls for ι∗E are
line segments of slope d

r + 1 − g. By Remark 2.5, there is at most one α > 0 such
that ι∗E is ‘destabilized’ at σ0,α , in other words, ι∗E is strictly σ0,α-semistable and
not σ0,α′ -semistable for every 0 < α′ < α. Suppose this is the case, in other words
ι∗E becomes strictly semistable at the wall W which passes through σ0,α for some
α > 0. Denote the x-coordinates of the endpoints of the wallW as β1 and β2 for some
β1 < 0 < β2 (Fig. 3).

Lemma 3.1 Adopt notations as above, we have

−1+ d

r H2 ≤ β1 and β2 ≤ d

r H2 .

Proof Let 0 → F2 → ι∗E → F1 → 0 in Coh0 X be the destabilizing sequence at
the wall W , then there is an exact sequence in Coh X :
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Fig. 3 Cartoon for the destabilizing wall W of ι∗E

0 H−1(F1) F2 ι∗E H0(F1) 0.

rank s s 0 0

ch1 d1H d2H rH aH

If s = 0, then since F2 and ι∗E have the same phase with respect to σ0,α , it follows

that ch(ι∗E) =
(

r
d2

)
ch(F2), so that F2 cannot make a wall for ι∗E . Thus, we may

assume s > 0. Let T (F2) be the maximal torsion subsheaf of F2 and ch1(T (F2)) =
t H . Since E is of rank r , to make the sequence exact at the term ι∗E , we must have

r − a ≤ rank
(
ι∗T (F2)

)+ rank
(
ι∗F2/T (F2)

) = s + t .

Therefore,

H ch1
(
F2/T (F2)

)

sH2 − H ch1
(
H−1(F1)

)

sH2 = d2 − t − d1
s

= r − a − t

s
≤ 1. (5)

By Proposition 2.4, the object F1 is semistable of the same phase as ι∗E along the
line segmentW , in particular if−1 < β1, it is in the heart Cohβ1+ε X where ε → 0+.
Thus by definition of the tilting heart,

H ch1(H−1(F1))

H2s
= d1

s
≤ β1. (6)
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By similar reasoning for F2/T (F2), it follows from the definition of the tilting heart
that

H ch1(F2/T (F2))

H2s
≥ β2. (7)

Therefore inequality (5) and definition of imply that

0 < β2 ≤ H ch1(F2/T (F2))

H2s
≤ 1+ β1 < 1. (8)

In particular, β1 > −1, β2 < 1, and β2 − β1 ≤ 1.
By the second property of Proposition 2.4, the slope ofW as a line in the projection

pr(H∗
alg(X ,R)) is

�(β2) − �(β1)

β2 − β1
= H2 ch2(ι∗E)

H ch1(ι∗E)
= −H2

2
+ d

r
. (9)

It is not hard to see that β2 (respectively β1) reaches its maximum βmax
2 (respectively

minimum βmin
1 ) when β2 − β1 = 1. Substitute this to (9), we get

�(βmax
2 ) − �(βmax

2 − 1) = −H2

2
+ d

r
. (10)

Since 0 ≤ d ≤ r(g − 1), slope of W is not positive, thus 0 < βmax
2 ≤ 1

2 and by
Definition (2.1),

�(βmax
2 ) = H2

2
(βmax

2 )2 − (1− (βmax
2 )2),

�(βmax
2 − 1) = H2

2
(βmax

2 − 1)2 − (1− (βmax
2 )2)

Substituting back into the Eq. (10) gives βmax
2 = d

r H2 and βmin
1 = d

r H2 − 1. ��
We need the following description for the first wall in details.

Lemma 3.2 Adopt notations from Lemma 3.1.

(a) If r ≤ s = rk(F2) and ch1(F2/T (F2)) = H, we have −1 + 1
r ≤ β1. Otherwise

−1+ 1
r−1 ≤ β1.

(b) When 0 ≤ d ≤ min{2g − 2+ r , r(g − 1)} and g ≥ r2, we have β2 ≤ 1
r .

(c) When r = 3, we either have the Chern characters ch(F2) = (3, H ,−) or β1 ≥
− 1

2 .

Proof Adopt the notations as in the proof of Lemma 3.1.
(a) By inequality (7), we know

H ch1(F2/T (F2))

H2 ≥ sβ2 > 0. (11)
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Recall that H ch1(F2/T (F2))
H2 ∈ N by Assumption (*).

• If s = rk(F2) < r , then H ch1(F2/T (F2))
H2s

≥ 1
r−1 . Thus (8) gives

1

r − 1
≤ H ch1(F2/T (F2))

H2s
≤ 1+ β1,

comparing the first and the last sentences implies the claim.
• If r ≤ s, inequality (6) gives

H ch1(H−1(F1))

H2r
≤ H ch1(H−1(F1))

H2s
≤ β1 < 0. (12)

Taking ch1 from the destabilizing sequence gives

H ch1(H−1(F1))

H2 = −r + H ch1(F2/T (F2))

H2

+H ch1(T (F2))

H2 + H ch1(H0(F1))

H2 . (13)

SinceH0(F2) is a torsion sheaf H ch1(H0(F1)) ≥ 0.Alsoby (11), H ch1(F2/T (F2))
H2 ≥

1.
If H ch1(F2/T (F2))

H2 ≥ 2, then H ch1(H−1(F1))
H2 ≥ −r + 2 and by (12)

−1+ 1

r − 1
≤ −r + 2

r
≤ H ch1(H−1(F1))

H2r
≤ β1

as claimed. If H ch1(F2/T (F2))
H2 = 1, then H ch1(H−1(F1))

H2 ≥ −r + 1 and by (12)

−r + 1

r
≤ H ch1(H−1(F1))

H2r
≤ β1

This finishes the proof of part (a).

(b) If r ≤ s = rk(F2) and ch1(F2/T (F2)) = H , then by (11), β2 ≤ H ch1(F2/T (F2))
H2s

≤
1
r and the claim follows. Thus we may assume otherwise, so part (a) gives β1 ≥ 2−r

r−1 .

When r ≤ 2, d ≤ 2(g−1) = H2. By Lemma 3.1, β2 ≤ d
r H2 ≤ 1

r . So the statement
holds.

We may assume r ≥ 3. Suppose for a contradiction that β2 > 1
r , then by definition

�, the slope of the line connecting
( 1
r , �( 1r )

)
and

(
2−r
r−1 , �( 2−r

r−1 )
)
is less than slope

of the line connecting (β2, �(β2)) and (β1�(β1)), in other words,

�
( 1
r

)− �
(
2−r
r−1

)

1
r − 2−r

r−1

<
� (β2) − � (β1)

β2 − β1
= the slope of W = −H2

2
+ d

r
. (14)
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Since 0 < 1
r−1 ≤ 1

2 , we have −1 < −1+ 1
r−1 ≤ − 1

2 , the definition (2.1) of � gives

�

(
1

r

)
= H2

2
.
1

r2
− 1+ 1

r2
, �

(
2− r

r − 1

)
= H2

2

(
2− r

r − 1

)2

− 1+ 1

(r − 1)2
.

Substitute them into the left hand side of (14):

�
( 1
r

)− �
(
2−r
r−1

)

1
r − 2−r

r−1

= H2

2

(
1

r
+ 2− r

r − 1

)
+

1
r2

− 1
(r−1)2

1
r − 2−r

r−1

= H2

2

(
−1+ 2

r
+ 1

r(r − 1)

)
− 2r − 1

r(r − 1)(r2 − r − 1)

= −H2

2
+ H2

r
+ 1

r(r − 1)

(
H2

2
− 2r − 1

r2 − r − 1

)
. (15)

Since g ≥ r2, we get g > r(r − 1) + 1+ 2r−1
r2−r−1

because r > 1+ 2r−1
r2−r−1

for r ≥ 3.
This implies

H2

2
− 2r − 1

r2 − r − 1
> r(r − 1).

Therefore (15) gives

�
( 1
r

)− �
(
2−r
r−1

)

1
r − 2−r

r−1

> −H2

2
+ H2

r
+ 1 ≥ −H2

2
+ d

r

with the last inequality is given by the assumption d ≤ H2 + r . So this contradicts
(14).

(c) By part (a), we may assume r = 3 ≤ s = rk(F2) and ch1(F2/T (F2)) = H .

Substituting r = 3 and ch1(F2/T (F2)) = H in (13) implies that−2 ≤ H ch1(H−1(F1))
H2 .

On the other hand, (12) gives H ch1(H−1(F1)) < 0. If ch1(H−1(F1)) = −H , or
ch1(H−1(F1)) = −2H and s ≥ 4, then (12) gives − 1

2 ≤ β1 as claimed. Hence we
can assume ch1(H−1(F1)) = −2H and s = 3. Thus (13) gives ch1(T (F2)) = 0, so
ch1(F2) = H as required. ��

3.2 An upper bound on the dimension of global sections

We first recall the result in [8, Section 3]. Define the function Z : K (X) → C as

Z(F) = ch2(F) + i
ch1(F) · H

H2 .
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We also define the following non-standard norm on C:

‖x + iy‖ =
√
x2 + (2H2 + 4)y2.

The next proposition bounds the dimension of global sections of objects in terms of
the length of a polygon.

Proposition 3.3 [8, Proposition 3.4] Let F ∈ Coh0 X be an object which has no
subobject F ′ ⊂ F with ch1(F ′) = 0.

(a) There exists ε > 0 such that the Harder–Narasimhan filtration of F is a fixed
sequence

0 = Ẽ0 ⊂ Ẽ1 ⊂ · · · ⊂ Ẽn−1 ⊂ Ẽn = F,

for all stability conditions σ0,α where 0 < α < ε.
(b) Let pi :=Z(Ẽi ) for 0 ≤ i ≤ n, then

h0(X , F) ≤ χ(F)

2
+ 1

2

n∑
i=1

�‖pi pi−1‖�

where �‖pi pi−1‖� is the integer part of the length of the line segment pi pi−1 and
χ(F) is the Euler characteristic of F.

Proof In the notations of [8], H2

2 w2 − 1 is equal to our α, so part (a) follows from [8,
Proposition 3.3 (a)]. By [8, Lemma 3.2],

h0(Ẽi/Ẽi−1) ≤
⌊

χ(Ẽi/Ẽi−1)

2
+ ‖pi pi−1‖

2

⌋

=
⌊

χ(Ẽi/Ẽi−1)

2
+ �‖pi pi−1‖�

2
+ ‖pi pi−1‖ − �‖pi pi−1‖�

2

⌋

≤ χ(Ẽi/Ẽi−1)

2
+ �‖pi pi−1‖�

2

where the last inequality following from the following two cases:

(a) If both χ(Ẽi/Ẽi−1) and �‖pi pi−1‖� are even or odd, the claim is trivial because
‖pi pi−1‖ − �‖pi pi−1‖� < 1.

(b) If either χ(Ẽi/Ẽi−1) or �‖pi pi−1‖� is odd, then since 1
2 + ‖pi pi−1‖−�‖pi pi−1‖�

2 < 1
the claim follows.

Finally by summing up over all stable factors one gets

h0(F) ≤
n∑

i=1

h0(Ẽi/Ẽi−1) ≤ 1

2

n∑
i=1

χ(Ẽi/Ẽi−1) + 1

2

n∑
i=1

�‖pi pi−1‖�
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Fig. 4 The polygon Pι∗E is
inside the triangle opq

= χ(F)

2
+ 1

2

n∑
i=1

�‖pi pi−1‖�.

��
We denote by PF the polygon with the extremal points {p0, p1, . . . , pn} which is

a convex polygon.
Let E be a slope semistable rank r -vector bundle on the curve C of degree d.
Proposition 3.3 implies that there exists ε > 0 such that the Harder–Narasimhan

filtration of ι∗E with respect to the stability condition σ0,α for positive α < ε is a fixed
sequence

0 = Ẽ0 ⊂ Ẽ1 ⊂ · · · ⊂ Ẽn−1 ⊂ Ẽn = ι∗E .

Consider the triangle opq where o is the origin, q = Z(ι∗E), the slope of op is equal
to β2/�(β2) and the slope of pq is β1/�(β1), where the real numbers β1 and β2 are
defined as in Lemma 3.1 (Fig. 4).

Lemma 3.4 The polygon Pι∗E is contained in the triangle opq.

Proof If ι∗E is σ0,α-semistable where α → 0+, then the polygon Pι∗E is just the line
segment oq and the claim follows. Thus, we may assume ι∗E is not σ0,α-semistable
where α → 0+. Since the polygon Pι∗E is convex, it suffices to show that

H2 ch2(Ẽ1)

H ch1(Ẽ1)
≤ �(β2)

β2
and

�(β1)

β1
≤ H2 ch2(ι∗E/Ẽn−1)

H ch1(ι∗E/Ẽn−1)
.

The phase of the subobject Ẽ1 in the Harder–Narasimhan filtration is bigger than
phase of ι∗E at the stability condition σ0,α whereα → 0+. Therefore there are stability
condition between large volume limit (σβ,α whereα → ∞) and the stability conditions
σ0,α where α → 0+ such that Ẽ1 and ι∗E have the same phase. Proposition 2.4 implies
that these stability conditions are on a line segment L whose extension passes through
the point pr(Ẽ1). Note that rk(Ẽ1) �= 0 by the same argument as that in the beginning
of the proof of Lemma 3.1. The line L is lower than the wallW for ι∗E since otherwise
ι∗E will already become strictly semistable on L , see Fig. 5.
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Fig. 5 Comparing slopes

Since Ẽ1 is σ0,α-semistable for some α > 0, the point pr(Ẽ1) is not in �+ by
Remark 2.3. Therefore, pr(Ẽ1) is on the dashed part of the line L and the first claim
follows. By a similar argument one can show the second claim for ι∗E/Ẽn−1. ��

We are now ready to prove the bound for the dimension of global sections of the
semistable vector bundle E .

Proof for the first part of Theorem 1.1 Consider the triangle op′q where the slope of op′
is

d
r H2

�
(

d
r H2

) =
d

r H2

d2

2r2H2 − 1+ d2

r2(H2)2

,

and the slope of p′q is

d
r H2 − 1

�
(

d
r H2 − 1

) =
d

r H2 − 1

H2

2

(
d

r H2 − 1
)2 − 1+ d2

r2(H2)2

.

Lemma 3.1 implies that the triangle opq is inside the triangle op′q, so by Lemma 3.4
the polygon Pι∗E is also inside the triangle op′q. By a direct computation, one can
show that the point

p′ =
(

d2g

(H2)2r
− r ,

d

H2

)
.

Now Proposition 3.3, part (b) gives
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h0(X , ι∗E) ≤ χ(ι∗E)

2
+ 1

2

n∑
i=1

‖pi pi−1‖

≤ χ(ι∗E)

2
+ 1

2

(‖op′‖ + ‖p′q‖)

= 1

2
(r(1− g) + d) + 1

2

√(
d2g

(H2)2r
− r

)2
+ 4g

(
d

H2

)2

+ 1

2

√(
r(g − 1) − d + d2g

(H2)2r
− r

)2
+ 4g

(
r − d

H2

)2

= 1

2
(r(1− g) + d) + 1

2

(
d2g

(H2)2r
+ r

)

+ 1

2

(
r(g − 1) − d + d2g

(H2)2r
+ r + δ

)
, (16)

where the last equality holds for the non-negative solution δ to the following equation.

(r + δ)2 + 2(r + δ)

(
r(g − 1) − d + d2g

(H2)2r

)

= r2 − 2r

(
r(g − 1) − d + d2g

(H2)2r

)

+ 4g

(
r − d

H2

)2

.

This is equivalent to

δ2 + 2rδ + 2δ

(
r(g − 1) − d + d2g

(H2)2r

)
= 4r2 − 4dr

g − 1
. (17)

Now we will show that δ < 2r
g . Since 0 ≤ r(g − 1) − d, the function f (x):=x2 +

2r x + 2x
(
r(g − 1) − d + d2g

(H2)2r

)
is increasing for x > 0. Moreover,

f

(
2r

g

)
= 4r2

g2
+ 4r2

g
+ 4r

g

(
r(g − 1) − d + d2g

(H2)2r

)

= 4r2 + 4r2

g2
− 4rd

g
+ d2

(g − 1)2

= 4r2 − 4dr

g − 1
+
(
2r

g
+ d

g − 1

)2

> 4r2 − 4dr

g − 1
.
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Hence (17) shows f (δ) < f
(
2r
g

)
which gives δ < 2r

g . Applying this back into (16)

implies

h0(C, E) <
1

2
(r(1− g) + d) + 1

2

(
d2g

(H2)2r
+ r

)

+ 1

2

(
r(g − 1) − d + d2g

(H2)2r
+ r + 2r

g

)

= r + g

4r(g − 1)2
d2 + r

g
.

��
Remark 3.5 The bound for h0(C, E) in Theorem 1.1 is not far from the sharp bound.
Let k be an integer in [1, r ], denote t = gcd(r , k). When d = 2k(g − 1) such that
g ≥ ( rt

)2 + 2, there exists a stable vector bundle F on X with Chern characters:

(rk(F), ch1(F), ch2(F)) =
(
r

t
,
k

t
H ,

⌊
t

r
+ k2

r t
(g − 1)

⌋
− r

t

)
.

When k = r , F is a line bundle, so the restriction F⊕t |C is semistable.
When k < r , the rank of F is greater than 1. Since Pic(X) = Z.H , [9, Proposition

4.6] implies F |C is semistable if

rk(F)(rk(F) − 1)̃(F) + 1

rk(F)(rk(F) − 1)
≤ 1, (18)

where

̃(F) = (ch1(F)H)2 − 2H2 rk(F) ch2(F)

(H2 rk(F))2
= k2

r2
− t

r(g − 1)
ch2(F).

We have

̃(F) <
k2

r2
− t

r(g − 1)

(
t

r
+ k2

r t
(g − 1) − 1− r

t

)

≤
t
r( r

t

)2 + 1

(
1+ r

t
− t

r

)

= 1

rk(F)(rk(F)2 + 1)

(
1+ rk(F) − 1

rk(F)

)
.

Thus (18) clearly holds and the restriction F⊕t |C is semistable with rank r , degree
2k(g − 1) and dimension of global sections

h0(C, F⊕t |C ) = h0(X , F⊕t ) = t

⌊
t

r
+ k2

r t
(g − 1)

⌋
+ r .
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If the �·� function can be dropped for free, the formula can be simplified as

r + g

4r(g − 1)2
d2 + t2 − k2

r
.

Corollary 3.6 Let (X , H) be a smooth polarized K3 surface satisfying Assumption (*),
and let C be a smooth curve of genus g in the linear system |H |. Let E be a slope
semistable rank r-vector bundle of degree d on the curve C such that d ≤ r(g − 1).

Then Cliff(E) > d
r − d2g

2r2(g−1)2
− 2

g . When g ≥ 7, we have

Cliffr (C) > 2
√
g − 1− 2− 2

√
g − 1

g
.

Proof The bound for Cliff(E) is by substituting the bounds of h0(C, E) into the
formula of Clifford index. By the first part of Theorem 1.1, if h0(C, E) ≥ 2r , then

r + g

4r(g − 1)2
d2 + r

g
> h0(C, E) ≥ 2r .

This implies g
4r(g−1)2

d2 > r g−1
g which is equivalent to d >

2r(g−1)
3
2

g . Consider the

function f (d) = d
r − d2g

2r2(g−1)2
− 2

g , it reaches the maximum when d = r(g−1)2

g .

When g ≥ 7, the value r(g−1)2

g is in the range of d ∈
[
2r(g−1)

3
2

g , r(g − 1)

]
. To know

at which boundary f (d) reaches its minimum, we compare the distances from the two

boundaries to r(g−1)2

g .

r(g − 1)2

g
− 2r(g − 1)

3
2

g
≥ r(g − 1) − r(g − 1)2

g

⇐⇒ g − 1− 2
√
g − 1 ≥ 1 ⇐⇒ g ≥ 7.

Therefore, the function f (d) reaches its minimum at the left boundary. In particular,

Cliffr (C) > f

(
2r(g − 1)

3
2

g

)
= 2r(g − 1)

3
2

gr
− 4r2(g − 1)3

2r2g(g − 1)2
− 2

g

= 2
√
g − 1− 2− 2

√
g − 1

g

for any r . ��
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4 Higher rank Clifford indices

In this section, we compute higher rank Clifford indices of curves over K3 surfaces
and prove the second part of Theorem 1.1.

4.1 Picard number one case

We assume X is a K3 surface with Pic(X) = ZH and C ∈ |H | is a smooth curve of
genus g. Denote by ι:C ↪→ X the embedding of the curve C into X . We first briefly
recall the result in [9], which constructs semistable vector bundles on C by restricting
vector bundles on X with low discriminant. By [2, Theorem 2.15], there exists a slope
stable sheaf Ẽr on X with Chern character (r , H ,

⌊ g
r

⌋− r). Define Er := Ẽr |C .
Theorem 4.1 [9, Theorem 1.2] Assume g ≥ max{r2, 6} and r ≥ 2, then the sheaf Er

is a semistable vector bundle on C with h0(C, Er ) ≥ 2r and

Cliff(Er ) ≤ 2

r
(g − 1) − 2

r

⌊g
r

⌋
. (19)

Proof The stable sheaf Ẽr is locally-free, otherwise, the double dual F = Ẽ∨∨
r is

slope stable with Chern characters (r , H ,
⌊ g
r

⌋ − s) for some integer s ≤ r − 1.
Yet −χ(F, F) = H2 − 2r

(⌊ g
r

⌋− s
) − 2r2 < −2. This contradicts [2, Theorem

2.15]. Thus by the assumption on r and g, [9, Theorem 1.2] implies that Er is slope
semistable on C and h0(C, E) ≥ 2r . As deg(Er ) = c1(Ẽr )H = 2(g− 1), by a direct
computation, Cliff(Er ) ≤ 2

r (g − 1) − 2
r

⌊ g
r

⌋
. ��

We now prove the Clifford index of Er is indeed the minimum of Clifford index
of any semistable vector bundle E with rank r , degree d and h0(E) ≥ 2r . This will
involve several different cases.
Proof of the second part of Theorem 1.1 for r ≥ 4. Let E be a semistable rank r -vector
bundle of degree d ≤ r(g − 1) on the curve C . By Theorem 4.1, it suffices to show
that either h0(E) < 2r or Cliff(E) ≥ 2

r (g − 1) − 2
r

⌊ g
r

⌋
.

Step 1We show Cliff(E) > 2
r (g − 1) − 2

r

⌊ g
r

⌋
if 2g + 2 < d ≤ r(g − 1).

Denote t := d − 2(g − 1). The first part of Theorem 1.1 implies that

Cliff(E) − 2

r
(g − 1) + 2

r

⌊g
r

⌋

>
t

r
− 2

r

⎛
⎜⎝r +

(
2+ t

g−1

)2

4r
g + r

g

⎞
⎟⎠+ 2+ 2

r

⌊g
r

⌋
=:Q(t).

Then Q(t) is a quadratic function with respect to t with negative leading coefficient.
Thus it suffices to show that Q(t = 5) > 0 and Q(t = (r − 2)(g − 1)) > 0 which
can be easily checked by direct computations.
Step 2We show Cliff(E) ≥ 2

r (g− 1)− 2
r

⌊ g
r

⌋
if−2

( ⌊ g
r

⌋− r
) ≤ d − 2(g− 1) ≤ 4.
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Fig. 6 The polygon pι∗E is inside the polygon op1 p′q

Applying Proposition 3.3 for the push-forward ι∗E implies that there exists ε > 0
such that its Harder–Narasimhan filtration with respect to σ0,α for positive α < ε is a
fixed sequence

0 = Ẽ0 ⊂ Ẽ1 ⊂ · · · ⊂ Ẽn−1 ⊂ Ẽn = ι∗E,

and

Cliff(E) ≥ g + 1− l(E)

r
, (20)

where l(E):= ∑n
i=1�‖pi pi−1‖� and pi = Z(Ẽi ). Thus it is suffices to show that

l(E) ≤ g(r − 2) + 2
⌊g
r

⌋
+ r + 2. (21)

Since Ẽ1 is a sheaf supported in dimension ≥ 1 and Ẽ1 ∈ T 0, we get H ch1(Ẽ1)

H2 is

a positive integer. We first treat with the case that H ch1(Ẽ1)

H2 ≥ 2. By Lemma 3.2,
β1 ≥ −1 + 1/r . Applying the same argument as in Lemma 3.4 implies that the
polygon Pι∗E is contained in the triangle op′q where the slope of qp′ is −1+1/r

�(−1+1/r) and
the vertical coordinate of the point p′ is equal to 2, see Fig. 6.

Denote by p̃ the point along the line p′q with the vertical coordinate equal to 1.
The coordinates of two points p′ and p̃ are

p′ =
(
d − 2(g − 1) − r − 2

r
(g + r), 2

)
and p̃ =

(
d − 2(g − 1) + g

r
− r , 1

)
.

Note that the length ‖q p̃‖ does not depend on d,

‖p′q‖ = r − 2

r − 1
‖ p̃q‖ = r − 2

r − 1

√(
(r − 2)(g − 1) + g

r
− r
)2 + 4g(r − 1)2 (22)
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<
r − 2

r − 1

(
(r − 2)(g − 1) + g

r
+ r + 2r

g

)
(23)

The horizontal coordinate of p′ is negative and is bigger than −g + r + 2. Thus if
r ≥ 4, we have

‖op′‖ ≤
√
16g + (g − r − 2)2 ≤ g + r + 1

r
− 6

5
.

This implies l(E) ≤ �‖op′‖+ ‖p′q‖� ≤ g(r − 2)+ 2
⌊ g
r

⌋+ r + 2, so inequality (21)
holds.

Now assume ch1(Ẽ1) = H . By Lemma 3.2(b), we have β2 ≤ 1
r . Therefore

ch2(Ẽ1) ≤ ��(β2)
β2

� = ⌊ gr
⌋− r . We consider three different cases:

Case I | ch2(Ẽ1)| ≤
⌊ g
r

⌋− r

Case II λ:= − ⌊ gr
⌋+ r − g

2r ≤ ch2(Ẽ1) ≤ − ⌊ gr
⌋+ r − 1

Case III ch2(Ẽ1) ≤ λ

We first assume r ≥ 5, then the point λ̃:= (λ, 1) lies on the right hand side of the line
segment op′. In Case I, we have

‖op1‖ ≤
√
4g +

(⌊g
r

⌋
− r
)2

<
⌊g
r

⌋
+ r + 1, (24)

which implies �‖op1‖� ≤
⌊ g
r

⌋+ r . For Case II, write s:= − ch2(Ẽ1)−
⌊ g
r

⌋+ r , then
1 ≤ s ≤ g

2r and

‖op1‖ =
√
4g +

(⌊g
r

⌋
+ s − r

)2
<
⌊g
r

⌋
+ s + r . (25)

Thus �‖op1‖� ≤
⌊ g
r

⌋+ s + r − 1. For s = g
2r , we indeed have

‖oλ̃‖ =
√
4g +

(⌊g
r

⌋
+ g

2r
− r

)2
<
⌊g
r

⌋
+ g

2r
+ r − 1. (26)

To provide an upper bound for the length ‖p1 p′‖, we define the function

f (x):=
√
4g +

(
g
r − 2

r
+
⌊g
r

⌋
− x − 2

)2

. (27)

If 0 ≤ x ≤ g

2r
, one can easily show that

f (x) < g
r − 2

r
+
⌊g
r

⌋
− x + 2

r − 1
− r − 2

r − 1

2r

g
+ δ, (28)
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where δ = 1 if x ∈
[
0,

g

r2

]
and δ = 2 if x ∈

(
g

r2
,
g

2r

]
.

In Case I, we know the point p1 lies on the right hand side of op′, so the length of
p1 p′ ismaximumwhen the horizontal coordinate of p1 ismaximum.But the horizontal
coordinate of p1 is less than or equal to d − 2(g − 1) + ⌊ gr

⌋ − r because p1 lies on
the left hand side of p̃, see Fig. 6, thus

‖p1 p′‖ ≤ f (0). (29)

In Case II, the length of p1 p′ is maximum when the horizontal coordinate of p′ is
minimum, i.e. d is minimum, hence

‖p1 p′‖ ≤
√
4g +

(
−2
(⌊g

r

⌋
− r
)
− r − 2

r
(g + r) − ch2(Ẽ1)

)2

= f (s). (30)

Here s = − ch2(Ẽ1) −
⌊ g
r

⌋ + r as before. Similarly, the length of λ̃p′ is maximum
when d is minimum, so

‖λ̃p′‖ ≤ f
( g

2r

)
. (31)

Now we apply the above upper bounds to prove inequality (21). In Case I, inequal-
ities (23), (28) and (29) imply that

‖p1 p′‖ + ‖p′q‖ < g(r − 2) +
⌊g
r

⌋
+ 3

Thus inequality (24) implies

l(E) ≤ �‖op1‖� + �‖p1 p′‖ + ‖p′q‖� ≤
⌊g
r

⌋
+ r + g(r − 2) +

⌊g
r

⌋
+ 2,

so inequality (21) holds. Similarly, in Case II, inequalities (23), (28) and (30) imply
that

‖p1 p′‖ + ‖p′q‖ < g(r − 2) +
⌊g
r

⌋
− s + 4.

Therefore inequality (25) implies that

l(E) ≤ �‖op1‖� + �‖p1 p′‖ + ‖p′q‖�
≤
⌊g
r

⌋
+ s + r − 1 + (r − 2)g +

⌊g
r

⌋
− s + 3,

thus again inequality (21) holds. Finally in Case III, we have

�(E) ≤ �‖oλ̃‖ + ‖λ̃p′‖ + ‖p′q‖�.
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Summing up inequalities (23), (26), (28) and (31) show that inequality (21) is satisfied.
Finally, we consider the case r = 4. If | ch2(Ẽ1)| ≤

⌊ g
4

⌋ − 4, then p1 lies to the
right of op′ and the same argument as in the Case I above implies the claim. Otherwise,
�(E) ≤ �‖oλ̃‖ + ‖λ̃p′‖ + ‖p′q‖� where λ̃ = (λ, 1) for λ = − ⌊ g4

⌋+ 3. Note that λ̃
lies to the right of op′. We know that the length of λ̃p′ will be maximum when d is
minimum so

‖oλ̃‖ + ‖λ̃p′‖ ≤
√
4g +

(
−
⌊g
4

⌋
+ 3
)2 +

√
4g +

(⌊g
4

⌋
+ g

2
− 3
)2

<
⌊g
4

⌋
+ 5 + g

1

2
+
⌊g
4

⌋
− 1+ 2

3
− 16

3g
+ 1.

The second inequality follows from (28) for x = 1. Summing up the above inequality
with (23) proves our claim (21).
Step 3We show h0(C, E) < 2r if d < 2(g − 1) − 2

(⌊ g
r

⌋− r
)
.

By using the same notations as in Step 2, we first consider the case ch1(Ẽ1) �= H . By
Proposition 3.3, it suffices to show that

k(d):= d + r(1− g) + ‖op′‖ + ‖p′q‖ < 4r . (32)

One can easily check that the function

k(d) = d + r(1− g) +
√
16g +

(
d − 2(g − 1) − r − 2

r
(g + r)

)2

+ ‖p′q‖

is increasing with respect to d, so

k(d) ≤ k
(
2(g − 1) − 2

( ⌊g
r

⌋
− r
)− 1

)
< 4r .

The last inequality comes from inequality (23) and some direct computations.
Thus we may assume ch1(Ẽ1) = H . If p1 is to the left of the line segment op′,

then the total sum of ‖pi pi−1‖ is also bounded by ‖op′‖ + ‖p′q‖. So we may always
assume the polygon op1 p′q is convex.

Define t := p̃(x) − ch2(Ẽ1) − g
r + ⌊ gr

⌋
, where p̃(x) = d − 2(g − 1) + g/r − r is

the horizontal coordinate of the point p̃. We consider two different cases:
Case I when 0 ≤ t <

g
2r ,

‖op1‖ =
√
4g + (− d + 2(g − 1) −

⌊g
r

⌋
+ t + r

)2

< −d + 2(g − 1) −
⌊g
r

⌋
+ t + 3r (33)
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In particular, if t ∈
[
g
r2

,
g
2r

)
, we can improve the bound by 1;

√
4g + (− d + 2(g − 1) −

⌊g
r

⌋
+ t + r

)2
< −d + 2(g − 1) −

⌊g
r

⌋
+ t + 3r − 1

(34)

Note that ‖p1 p′‖ = f (t) as that defined in (27).

Thus combining inequality (28) for t ∈ [0, g

2r
] and inequality (23), we get

l(E) ≤ �‖op1‖� +
⌊‖p1 p′‖ + ‖p′q‖⌋ ≤ 4r + r(g − 1) − d − 1.

Hence the claim follows by Proposition 3.3.
Case IISuppose g

2r ≤ t . If p1 lies on the left hand side of op′, the polygon Pι∗E is inside
the triangle op′q and the claim follows from (32). Otherwise, the polygon op1 p′q is
convex and the summation of the length ‖op1‖+ ‖p1 p′‖ + ‖p′q‖ is maximum when
t = g

2r .
Substituting t = g

2r into the formulas of ‖op1‖ and ‖p1 p′‖, we have:

‖op1‖ =
√
4g +

(
−d + 2(g − 1) −

⌊g
r

⌋
+ g

2r
+ r
)2

< −d + 2(g − 1) −
⌊g
r

⌋
+ g

2r
+ 3r − 2.

‖p1 p′‖ = f
( g

2r

)
< g

r − 2

r
+
⌊g
r

⌋
− g

2r
+ 2

r − 1
− r − 2

r − 1

2r

g
+ 2, by (28).

Together with (23) for ‖p′q‖, it follows that

l(E) ≤ ⌊‖op1‖ + ‖p1 p′‖ + ‖p′q‖⌋ ≤ 4r + r(g − 1) − d − 1,

so the claim follows. ��
Proof of the second part of Theorem 1.1 for r = 3. Let E be a rank 3-semistable vector
bundle on the curve C of degree d. By Lemma 3.2, either β1 ≥ − 1

2 or ch(F2) =
(3, H ,−).
Case I If β1 ≥ − 1

2 , since ch2(ι∗E) ≤ 0, the slope of the wall W for ι∗E is negative.
Therefore, |β2| < |β1| ≤ 1

2 . Lemma 3.4 implies that for each of the semistable factors
Ẽi/Ẽi−1 in the Harder–Narasimhan filtration of ι∗E with respect to σ0,α for positive
α < ε, we have

∣∣∣∣∣
H2 ch2(Ẽi/Ẽi−1)

H ch1(Ẽi/Ẽi−1)

∣∣∣∣∣ ≤
�(1/2)

1/2
.
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Therefore l(E) ≤
⌊
3
√
4g + (g/2− 2)2

⌋
= �3(g/2 + 2)�. Note that g ≥ 32 = 9,

Proposition 3.3 implies that

Cliff(E) ≥ g + 1− l(E)

3
= g − 1

3

⌊
3g

2

⌋
− 1 ≥ 2

3
(g − 1) − 2

3

⌊g
3

⌋
.

Case II If ch(F2) = (3, H ,−), then β2 ≤ ch1(F2/T (F2))·H
3H2 ≤ 1

3 . When d ≥ 2(g−1)−
2
( ⌊ g

3

⌋− 3
)
, define s:= − ch2(Ẽ1) −

⌊g
3

⌋
+ 3, then using the same argument as in

Step 2 for r ≥ 4, if ch1(Ẽ1) �= H , then for g ≥ 9 and g �= 11, we have

l(E) = �‖op′‖ + ‖p′q‖� =
⎢⎢⎢⎣2
√(

g

3
− 1

)2
+ g +

√
(d − 7

3
g + 1)2 + 16g

⎥⎥⎥⎦

≤
⎢⎢⎢⎣2
√(

g

3
− 1

)2

+ g +
√

(g − 5)2 + 16g

⎥⎥⎥⎦ ≤ g + 2
⌊g
3

⌋
+ 5, (35)

which shows inequality (21) holds for r = 3. The only remaining case that the last
inequality does not hold is when g = 11, but the formula (35) is less than or equal
to 22. Therefore, we may assume ch1(Ẽ1) = H . Now the arguments in Step 2,
Case I, II, and III in the proof of Theorem 1.1 for r ≥ 4, are valid for r = 3, thus
Cliff3(E) ≥ 2

3 (g − 1) − 2
3

⌊ g
3

⌋
.

When d < 2(g−1)−2
( ⌊ g

3

⌋−3
)
, define t = p̃(x)−ch2(Ẽ1)− g

3
+
⌊g
3

⌋
, then again

the computations in Step 3, Case I, II are valid for r = 3, hence h0(F) < 6. Therefore,
the second part of Theorem 1.1 for r = 3 and g ≥ 9 follows by Theorem 4.1. ��
Proof of the second part of Theorem 1.1 for r = 2 Let E be a semistable rank
2-vector bundle on the curve C . Assume there exists a wall W for ι∗E and 0 →
F1 → ι∗E → F2 → 0 is the destabilizing sequence as that in Lemma 3.1.
As H ch1(F1), H ch1(F2) > 0, we may assume ch1(F1) = cha(F2) = H . By
Lemma 3.2, we may assume ch(F1) = (2, H , s) and ch(F2) = (−2, H , 2(1 − g) +
d − s). Since H ch1(Fi )/H2 = 1 is minimal, both objects F1 and F2 are σ0,α-stable
for any α > 0. Therefore, F1 and F2 are the Harder–Narasimhan factors of ι∗E with
respect to σ0,α where 0 < α � 1. By [2, Theorem 2.15],

−χ(F2, F2) = H2 + 4(2(1− g) + d − s) − 8 ≥ −2 �⇒ s ≤ d − 3g

2
.

Since F1 destabilizes ι∗E , we have

s

H2 >
ch2(ι∗E)

H ch1(ι∗E)
�⇒ s >

d

2
− g + 1.
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Combining the two inequalities, we get

d

2
− g + 1 < s ≤ d − 3g

2
�⇒ d > g + 2.

Note that d ≤ 2g− 2, we have s ≤ g
2 − 2. We also have s > d

2 − g+ 1 > − g
2 + 2.

In particular, |s| ≤ g
2 − 2. Proposition 3.3 implies that

h0(C, E) ≤ −g + 1+ d

2
+ 1

2

⌊√
4g + s2 +

√
4g + (2(g − 1) − d + s)2

⌋
(36)

Note that
√
4g + s2 +

√
4g + (2(g − 1) − d + s)2 (37)

≤
√
4g +

(g
2
− 2
)2 +

√
4g +

(
2(g − 1) − d + d − 3g

2

)2

= g + 4. (38)

As for the ‘≤’, equality can hold only if |s| = g
2 −2 and s = d− 3g

2 . Since d > g+2,

we must have d = 2(g − 1) and s = d − 3g
2 . Since s is an integer, g must be even in

this case.
Hence when g is odd, we have

⌊√
4g + s2 +√4g + (2(g − 1) − d + s)2

⌋
≤ g+

3. Together with (36), we have h0(C, E) ≤ −
⌊
g+1
2

⌋
+ 3+ d

2 .

When g is even, by (36) and (38), we directly have h0(C, E) ≤ −
⌊
g+1
2

⌋
+ 3+ d

2
as well.

Hence when there exists a wall for ι∗E , we have

Cliff(E) ≥ d

2
+
⌊
g + 1

2

⌋
− 3− d

2
+ 2 = g − 1−

⌊g
2

⌋
.

Now assume there is nowallW for ι∗E and it is σ0,α-semistable where α → 0. Denote
x = d−2(g−1) and p1 = Z(ι∗E), so ‖op1‖ = √x2 + 16g. Proposition 3.3 implies
that

Cliff(E) ≥ g + 1− 1

2

⌊√
x2 + 16g

⌋
.

Thus for −g + 4 < x ≤ 0, we have Cliff(E) ≥ g − 1 − ⌊ g2
⌋
. If x ≤ −g + 4, then

again Proposition 3.3 gives

2h0(C, E) ≤ x +
√
x2 + 16g = 16g√

x2 + 16g − x
≤ 16g√

(g − 4)2 + 16g + g − 4
= 8.

Therefore the second part of Theorem1.1 for r = 2 follows by the fact thatCliff2(C) ≤
Cliff1(C) = g − 1− ⌊ g2

⌋
. ��
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4.2 Higher Picard number case

Theorem 1.1 still holds when the ample divisor H satisfies Assumption (*).
Assumption (*) H2 divides H · D for all curve classes D on X .
We explain how to adapt all our arguments from Picard rank one to this more general
case.

Let �H ∼= Z
3 denote the image of the map

vH : K (X) → R
3, E  → (rk(E), H ch1(E), ch2(E)) .

Consider stability conditions for which the central charge factors via vH , and denote
the space of such stability conditions by StabH (X). The pair σβ,α := (Cohβ X , Zβ,α

)
defines a stability condition on Db(X) and there is a continuous map from �+ →
StabH (X). The slope function νβ,α is defined in the same way. All the propositions
in Sect. 2 hold for the higher Picard rank case. The Chern characters in part (a) in
Lemma 3.2 should be modified to H · ch(F1) = H2. All the other statements do not
rely on the Picard rank.

5 Smooth plane curves

Our method to control the dimension of global sections of semistable vector bundles
(first part of Theorem 1.1) can be generalized to curves on more general surfaces,
especially for Fano surfaces. As a case study, we follow the argument for curves on
K3 surfaces to set up a bound for smooth projective plane curves and finally compute
their Clifford indices. We first review Bridgeland stability conditions on the projective
plane.

5.1 Review: space of geometric stability conditions onDb(P2)

The space of geometric stability conditions on the projective plane P2 is similar but
slightly different with that of a K3 surface with Picard number one. In the projective
plane case, the curve � is replaced by the Le Potier curve (see [6,7,12,20]). Since the
definition of Le Potier curve is rather involved, we will only use a simpler version �̃

which is enough for our purpose.

Definition 5.1 Let γ̃ :R → R be a 1-periodic function. When x ∈ [− 1
2 ,

1
2 ],

γ̃ (x) :=
{

1
2 x

2 − 3
2 |x | + 1 if x �= 0

0 if x = 0.

Let �̃(x) := 1
2 x

2 − γ̃ (x). By abuse of notations, we also denote the graph of �̃ by the
curve �̃.
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For β ∈ R and α > �̃(β), we define the central charge Zβ,α : K (P2) → C as

Zβ,α(E) := − ch2(E) + α rk(E) + i(ch1(E).H − β rk(E)). (39)

By [12, Proposition1.10],weget a slice of stability conditionsσβ,α = (Cohβ P2, Zβ,α)

parameterized by �̃+. Results of stability condition and wall-crossings (Theorem 2.2,
Remark 2.3 and Proposition 2.4) all hold without any change. One should be cautious
that the end points of the first wall may not be on the curve �̃.

5.2 Upper bound on the dimension of global sections

Let C be a degree l smooth irreducible curve in the projective plane P2. Denote
ι:C ↪→ P2 the embedding morphism and H :=OP2(1). We recollect lemmas from the
case of K3 surfaces. The next lemma generalizes [8, Lemma 3.2] to objects in Db(P2).

Lemma 5.2 Fix an object F ∈ Coh0 P2 which is σ0,α-semistable for any positive real
number α � 1 and ch1(F) �= 0. Then

hom(OP2 , F)

{= rk(F) + 3
2H ch1(F) + ch2(F) when ch2(F)

H ·ch1(F)
> − 3

2 ,

≤ rk(F) − ch1(F)2

2 ch2(F)
when ch2(F) < 0.

Proof We first assume ch2(F)
H ch1(F)

> − 3
2 . The object OP2(−3)[1] ∈ Coh0 P2 is σ0,α-

semistable and ν0,α(OP2(−3)[1]) = − 3
2 < ν0,α(F), thus Hom(F,OP2(−3)[i]) = 0,

for i ≤ 1. By Serre duality, we have Hom(OP2 , F[2 − i]) = 0 for i ≤ 1. Since both
F and OP2 are in the heart Coh0 P2, we have Hom(OP2 , F[i]) = 0, for i ≤ −1.
Therefore,

Hom(OP2 , F) = χ(OP2 , F) = rk(F) + 3

2
H ch1(F) + ch2(F).

Now assume ch2(F) < 0. Define the object K ∈ Db(P2) as the canonical extension

0 → F → K → OP2 [1] ⊗ (Ext1(OP2 [1], F) →)∗0

inCohε P2 for sufficiently small ε > 0.Wehave ch(K ) = (rk(F)−h, ch1(F), ch2(F)),
where h denotes dim Ext1(OP2 [1], F) = hom(OP2 , F). The object K is semistable on
the wall that the objects F and OP2 [1] have the same phase, in particular, (K ) ≥ 0:

0 ≤ (H ch1(K ))2 − 2 ch2(K )(rk(F) − h)

�⇒ h ≤ rk(F) − (H ch1(K ))2

2 ch2(K )
= rk(F) − (H ch1(F))2

2 ch2(F)
.

��
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Note that when ch2(F)
H ch1(F)

∈ (−1,− 1
2 ), we always have

rk(F) + 3

2
H ch1(F) + ch2(F) > rk(F) − ch1(F)2

2 ch2(F)
.

By the lemma, there is no σ0,α-semistable object with ch2(F)
H ch1(F)

∈ (−1,− 1
2 ).

Define the function L : (a, b) ∈ H = R× R
>0 → R

>0 such that

L(a, b) =

⎧⎪⎨
⎪⎩

3

2
b + a, if

a

b
∈ I := [−1,+∞);

− b2

2a
, if

a

b
∈ J := (−∞,−1].

Note that L(a, b) > 0 for any pair (a, b) ∈ H.

Lemma 5.3 The function L satisfies the triangle inequality inH, in otherwords, for any
two vectors v1 = (a1, b1)and v2 = (a2, b2) inH, we have L(v1+v2) ≤ L(v1)+L(v2).
Moreover, L(kv) =kL(v) for any v ∈ H and k > 0.

Proof The second claim follows clearly by definition. To prove the first claim, we
consider four different cases.

(a) If both a1/b1 and a2/b2 are in I = [−1,+∞), then L(v1+ v2) = L(v1)+ L(v2).
(b) If both a1/b1 and a2/b2 are in J = (−∞,−1], then

0 ≤ −1

a1 + a2

(
b21

(
a2
a1

)
+ b22

(
a1
a2

)
− 2b1b2

)
.

This implies

0 ≤ b21

(
1

a1 + a2
− 1

a1

)
+ b22

(
1

a1 + a2
− 1

a2

)
+ 2b1b2

a1 + a2
= −2L(v1 + v2) + 2L(v1) + 2L(v2).

(c) If a1/b1 ∈ I , a2/b2 ∈ J and (a1+ a2)/(b1+ b2) ∈ I , then since a2/b2 ≤ −1, we
have

3

2
b2 + a2 ≤ − b22

2a2

which implies

L(v1 + v2) = 3

2
(b1 + b2) + a1 + a2 ≤ 3

2
b1 + a1 +− b22

2a2
= L(v1) + L(v2)
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(d) If a1/b1 ∈ I , a2/b2 ∈ J and (a1+a2)/(b1+b2) ∈ J , then there is a non-negative
real number k < 1 such that (a1 + ka2)/(b1 + kb2) = −1, then case (c) implies
that

L(v1 + kv2) ≤ L(v1) + kL(v2).

Therefore, case (b) gives

L(v1 + v2) ≤ L
(
(1− k)v2

)+ L(v1 + kv2) ≤ (1− k)L(v2) + kL(v2) + L(v1),

which proves the claim. ��
Notation We will write

−→
PQ for the vector from P to Q.

Fix a semistable rank r -vector bundle E of degree d on the curve C . The same
argument as in [8, Proposition 3.4] implies that there exists ε > 0 such that the
Harder–Narasimhan filtration of ι∗E is a fixed sequence

0 = Ẽ0 ⊂ Ẽ1 ⊂ · · · ⊂ Ẽn−1 ⊂ Ẽn = ι∗E

for all stability conditions σ0,α where 0 < α < ε. Let Pι∗E be the polygon with the
extremal points pi :=

(
ch2(Ẽi ), ch1(Ẽi )

) ∈ R
2 for i = 0, . . . , n. Then Lemma 5.2

implies that

h0(X , ι∗E) ≤ rk(E) +
n∑

i=1

L(
−−−−→pi pi−1). (40)

Note that by definition, the curve with the equation y = x2/2 is above the curve �̃.
Also when 0 ≤ x < 1, the function �̃(x) ≤ − 1

2 x . Therefore, any point (β, α) in the
gray area in Fig. 7 gives a Bridgeland stability condition σβ,α .

Lemma 5.4 (Lemma 3.4) For any semistable factor Ei := Ẽi/Ẽi−1 in the Harder–
Narasimhan filtration of ι∗E, we have the slope ch2(Ei )

H ch1(Ei )
∈ [ d

2rl − l
2 ,

d
2rl

]
. When

d < rl, the slope is either in the range
[ d
2rl − l

2 ,− 1
2

]
or
[− l−1

2 , d
r − l + 1

2

]
.

Proof Let 0 → F2 → ι∗E → F1 → 0 be the destabilizing sequence at the wall W
for ι∗E which passes a stability condition of form σ0,α . We have ch1(ι∗E) = rlH
and ch1(H0(F1)) = alH for some integer a ≥ 0. Denote rk(H−1(F1)) = rk(F2) =
s, ch1(H−1(F1)) = d1H and ch1(F2) = d2H . Let T (F2) be the maximal torsion
subsheaf of F2, then ch1(T (F2)) = tlH for some integer t ≥ 0. The same argument
as in the first part of Lemma 3.1 implies that

rl − al ≤ sl + tl.

Therefore,

H ch1
(
F2/T (F2)

)

sH2 − H ch1
(
H−1(F1)

)

sH2 = d2 − tl − d1
s

= rl − al − tl

s
≤ l. (41)
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Fig. 7 First wall for ι∗E

Now assume the wall W intersects the parabola with the equation y = x2/2 at two
points (β ′

2, β
′2
2 /2) and (β ′

1, β
′2
1 /2)whereβ ′

1 < 0 < β ′
2.By applying the sameargument

as in Lemma 3.1, the inequality (41) gives β ′
2 − β ′

1 ≤ l. Proposition 2.4 implies that
the slope of the wall W is

1
2 (β

′
2)

2 − 1
2 (β

′
1)

2

β ′
2 − β ′

1
= β ′

2 + β ′
1

2
= ch2(ι∗E)

H ch1(ι∗E)
= d − r l

2

2

rl
= d

rl
− l

2
.

Therefore, β ′
2 ≤ d

rl
and β ′

1 ≥ d

rl
− l. By a similar argument as in Lemma 3.4, one

can show that for each of the Harder–Narasimhan factors Ei ,

β ′
1

2
= β ′2

1 /2

β ′
1

≤ ch2(Ei )

H ch1(Ei )
≤ β ′2

2 /2

β ′
2

= β ′
2

2
.

Thus the first claim follows.
Now assume d < rl, so β ′

2 < 1. If the wall W intersects the line with the equation
x = 1 at a point (1, y) for−1/2 < y < 1/2, then the same argument as in Lemma 3.1
implies that

1 ≤ H ch1
(
F2/T (F2)

)

sH2

and inequality (41) implies that

1− l ≤ H ch1
(
H−1(F1)

)

sH2 ≤ β1.

Therefore the wall W is below the line L which has the same slope as W and passes

through the point (1 − l, (l−1)2

2 ). The line L intersects the line x = 1 at the point
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(1, d
r − l + 1

2 ). Thus the same argument as that in Lemma 3.4 shows that each slope
ch2(Ei )
H ch1(Ei )

is in the range [− 1−l
2 , d

r −l+ 1
2 ]. Ifwe have y < −1/2, then thewall intersects

the line segment op which has slope −1/2, see Fig. 7. Thus the same argument as in
Lemma 3.4 implies that ch2(Ei )

H ch1(Ei )
≤ − 1

2 and the second claim follows. ��
Theorem 5.5 Let C be a degree l(≥ 5) smooth irreducible curve on the projective
plane. Let E be a semistable vector bundle with rank r and degree d such that 0 ≤
d ≤ rl(l − 3)/2. Then

dim H0(C, E) ≤
{
r +

(
3
2l + d

2rl2

)
d if d ≥ rl

max{3r + d − rl, r + rl+r
rl2−d

d} if d < rl

Proof When d ≥ rl, Lemma 5.4 implies that the polygon Pι∗E is inside the triangle
o p̃q where p̃ = ( d2

2rl2
, d
l ) and q = (− rl2

2 + d, rl). Then Lemma 5.3 and convexity of
the polygon Pι∗E imply that

h0(C, E) = hom(OP2 , ι∗E) ≤
n∑

i=1

L(
−−−−→pi pi−1) ≤ L(

−→
o p̃) + L(

−→̃
pq)

= 3d

2l
+ d2

2rl2
+ (rl − d

l )
2

rl2 − 2d + d2

rl2

= 3d

2l
+ d2

2rl2
+ r .

When d < rl, if the range of the slopes in Lemma 5.4 is given by
[ d
2rl − l

2 ,− 1
2

]
, then

we may let p̃ be at
( −rdl
2rl2−2rl−2d

, rdl
rl2−rl−d

)
. Therefore,

h0(C, E) ≤ L(
−→
o p̃) + L(

−→̃
pq) = rdl

rl2 − rl − d
+

(
rl − rdl

rl2−rl−d

)2

rl2 − 2d − rdl
rl2−rl−d

= rdl

rl2 − rl − d
+ rl

rl2 − d

(
rl − rdl

rl2 − rl − d

)

= r + d
rl + r

rl2 − d
.

Also if the range of the slopes in Lemma 5.4 is given by
[− l−1

2 , d
r − l + 1

2

]
, then we

may let p̃ be at
(
d − rl + r

2 , r
)
. Therefore,

h0(C, E) ≤ L(
−→
o p̃) + L(

−→̃
pq) = 3

2
r + d − rl + r

2
+ r2(l − 1)2

rl2 − 2rl + r
= 3r + d − rl,

which completes the proof. ��
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As an interesting consequence, part (i) of Mercat conjecture [24] holds for smooth
plane curves.

Corollary 5.6 Let C be a degree l(≥ 5) smooth irreducible plane curve, then

Cliffr (C) = l − 4,

for any r .

Proof Let E be a semistable vector bundle with rank r and degree l, when d ≥ rl, by
Theorem 5.5

Cliff(E) ≥ d

r
− 2

r

(
3

2l
+ d

2rl2

)
d ≥ mind=rl,d=rl(l−3)/2

{
d

r
− 2

r

(
3

2l
+ d

2rl2

)
d

}

= min

{
l − 2l

(
3

2l
+ rl

2rl2

)
,
l(l − 3)

2
−
(
3

2l
+ l − 3

4l

)
l(l − 3)

}

= min

{
l − 4,

l2 − 6l + 9

4

}
= l − 4.

When l2−l
l+1 r ≤ d < rl and the upper bound for H0(C, E) is given by 3r + d − rl in

Theorem 5.5, then

Cliffr (E) ≥ d

r
− 2

r
(2r + d − rl) = l − 4+ l − d

r
> l − 4.

When l2−l
l+1 r ≤ d < rl and the upper bound for H0(C, E) is given by r + rl+r

rl2−d
d in

Theorem 5.5, then

Cliffr (E) ≥ d

r
− 2(l + 1)

r(l2 − l)
d = d

r
(1− 2l + 2

l2 − l
) ≥ l2 − l

l + 1
(1− 2l + 2

l2 − l
) > l − 2− 2.

When d < l2−l
l+1 r , by Theorem 5.5, dim H0(C, E) < r + rl+r

rl2−rl
d < 2r . On the

other side, one may take E = OC (1)⊕r , then Cliff(E) = l − 4. Therefore, we have
Cliffr (C) = l − 4. ��
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