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Abstract
We study probability distributions arising from local obstructions to the existence of
p-adic points in families of varieties. In certain cases we show that an Erdős–Kac type
normal distribution law holds.
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1 Introduction

1.1 A central limit theorem for fibrations

Let V be a smooth projective variety over Q equipped with a dominant morphism
π : V → Pn with geometrically integral generic fibre. We view π as defining a family
of varieties given by the fibres of π .

A natural problem is to study the distribution of the varieties in the family with
a rational point. In the case of families of conics, this problem was studied by Serre
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[20]. He obtained precise upper bounds for the counting function

N (π, B) := �{x ∈ Pn(Q) : x ∈ π(V (Q)), H(x) ≤ B}

of the number of varieties in the family with a rational point. (Here H is the usual
naive height on Pn(Q)). For example, his results show that for families of conics if π

admits no section over Q then N (π, B) = o(Bn+1), i.e. 100% of the fibres of π have
no rational point. He did this by showing that 100% of the fibres fail to be p-adically
soluble for all primes p.

This subject has been studied in various settings by different authors; the reader is
referred to [13,14] for a history of the subject. The main result from [14] generalised
Serre’s result from families of conics to arbitrary families of varieties π : V → Pn

for any smooth projective variety V . Again the authors considered the closely related
problemof counting the number of varieties in the familywhich are everywhere locally
soluble. They proved an upper bound of the shape

�{x ∈ Pn(Q) : x ∈ π(V (AQ)), H(x) ≤ B} � Bn+1

(log B)�(π)
, (1.1)

for an explicit non-negative�(π) ∈ Q. (HereAQ denotes the adeles of Q.) Moreover,
they conjectured in [14, Conj. 1.6] that the upper bound (1.1) is sharp, under the
necessary assumptions that the set being counted is non-empty and that the fibre over
every codimension 1 point of Pn contains an irreducible component of multiplicity 1.
As it will occur frequently in our results, we recall the definition of �(π) here.

Definition 1.1 Let π : V → X be a dominant proper morphism of smooth irreducible
varieties over a field k of characteristic 0. For each (scheme-theoretic) point x ∈ X with
residue field κ(x), the absolute Galois group Gal(κ(x)/κ(x)) of the residue field acts
on the irreducible components of π−1(x)κ(x) := π−1(x)×κ(x) κ(x) of multiplicity 1.
We choose some finite group �x through which this action factors. Then we define

δx (π) =
�

{
γ ∈ �x : γ fixes an irreducible component

of π−1(x)κ(x) of multiplicity 1

}

��x

and �(π) =
∑

D∈X (1)

(1 − δD(π)),

where X (1) denotes the set of codimension 1 points of X .

These invariants are defined by group theoretic data which can often be calculated in
practice. In this paper we consider the following problem which is closely related to
Serre’s:

Given a family of varieties π : V → Pn and j ∈ Z≥0, what is the distribution of
varieties in the family which fail to have a p-adic point for exactly j primes p?

To study this problem, for x ∈ Pn(Q) we consider the function

ωπ(x) := �
{
primes p : π−1(x)(Qp) = ∅}. (1.2)
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Note that ωπ(x) need not be finite in general; however it is finite if π−1(x) is geomet-
rically integral, as follows from the Lang–Weil estimates [16] and Hensel’s lemma. If
the generic fibre of π is geometrically integral, then ωπ(x) is finite for all x outside
of some proper Zariski closed set. (In practice, we restrict to the smooth fibres of π .)
One can also consider variants of the function ωπ from (1.2), by considering real sol-
ubility or by dropping conditions at finitely many primes; we discuss this possibility
in Sect. 4.6.

As is clear from (1.1), if �(π) > 0 then the function ωπ(x) is almost always
positive. Our first result gives more specific information about the distribution of
ωπ(x), and is an analogue of the Erdős–Kac theorem [9] in our setting. Recall that
this states that the function

ω(m) := �{primes p : p | m} (1.3)

behaves likes a normal distribution with mean and variance log log n; more formally,
for every interval J ⊂ R one has

lim
x→∞

1

x
�
{
1 ≤ m ≤ x : ω(m) − log logm√

log logm
∈ J

}
= 1√

2π

∫
J
e− t2

2 dt .

This theorem is one of the foundational results in probabilistic number theory.
For our analogue, we need some notation. For each B ∈ R≥1 and A ⊆ Pn(Q) we

define

νB(A) := �
{
x ∈ Pn(Q) : H(x) ≤ B, x ∈ A

}
�{x ∈ Pn(Q) : H(x) ≤ B} . (1.4)

If limB→∞ νB(A) exists then its value is to be conceived as the “density” of A. Our
result is the following. (Here, and in what follows, we also commit the minor abuse
of implicitly excluding the finitely many rational points x with log H(x) ≤ 1.)

Theorem 1.2 Let V be a smooth projective variety over Q equipped with a dominant
morphism π : V → Pn with geometrically integral generic fibre and �(π) �= 0. Let
H be the usual naive height on Pn. Then for any interval J ⊂ R we have

lim
B→∞ νB

({
x ∈ Pn(Q) : ωπ(x) − �(π) log log H(x)√

�(π) log log H(x)
∈ J

})
= 1√

2π

∫
J
e− t2

2 dt .

Note that the probability distribution obtained only depends on the invariant �(π)

from Definition 1.1; the geometric properties of the smooth members of the family
are irrelevant. A measure-theoretic interpretation of Theorem 1.2 is as follows: It says
that

J → lim
B→∞ νB

(
x; ωπ(x) − �(π) log log H(x)√

�(π) log log H(x)
∈ J

)
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defines a probability measure on R which equals the standard Gaussian mea-
sure. Informally, it says ωπ(x) is normally distributed with mean and variance
�(π) log log H(x).

Theorem 1.2 is proved by studying the moments

Mr (π, B) :=
∑

x∈Pn(Q),H(x)≤B
π−1(x) smooth

(
ωπ(x) − �(π) log log B√

�(π) log log B

)r

, (r ∈ Z≥0). (1.5)

Theorem 1.3 Keep the assumptions of Theorem 1.2. Then for each r ∈ Z≥0 we have

Mr (π, B)

�{x ∈ Pn(Q) : H(x) ≤ B} = μr + Or

( log log log log B
(log log B)1/2

)
, where

μr :=
{

r !
2r/2(r/2)! , r even,

0, r odd.

Here μr is the r -th moment of the standard normal distribution. Our main tool in the
proof of Theorem 1.3 is the result of Granville and Soundararajan [11]. Theorem 1.2
is proved from Theorem 1.3 via a standard argument, which rests on the fact that the
normal distribution is determined by its moments

There are general conditions under which one can prove an Erdős–Kac law for cer-
tain additive functions defined on Zn+1, see [10, §12] for example. In principle, these
results could be extended to cover additive arithmetic functions restricted to values of
a general polynomial, i.e.

∑
p| f (x) h(p) for integer polynomials f and functions h of

certain growth over the primes; see the work of Xiong [25]. However, ωπ does not
admit any such interpretation, as the following example shows.

Example 1.4 Consider the following family of conics

ax2 + by2 = cz2 ⊂ P2 × P2,

equipped with the projection π to (a : b : c). Take (a, b, c) ∈ Z3 pairwise coprime,
square-free and all congruent to 1 mod 4. A Hilbert symbol calculation shows that

ωπ(a : b : c) =
(
1

2

∑
p|a

(
1 −

(bc
p

)))
+
(
1

2

∑
p|b

(
1 −

(ac
p

)))

+
(
1

2

∑
p|c

(
1 −

(−ab

p

)))
, (1.6)

where ( ·
p ) is the Legendre symbol (cf. [12, p. 13]). One cannot directly apply the

aforementioned general results here, since the function in (1.6) is not the restriction of
an additive function to the values of a polynomial. Nevertheless Theorem 1.2 implies
that the function ωπ has normal order 3

2 log log H(a : b : c) in this case.
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We also give an application of our results to a family of curves of genus 1.

Example 1.5 Let c, d ∈ Z be such that cd(c − d) �= 0 and let f (t) ∈ Z[t] be a
square-free polynomial of even degree. Consider the variety

W : x2 − cw2 = f (t)y2, x2 − dw2 = f (t)z2 ⊂ P2 × A1.

Let π : V → P1 be a non-singular compactification of the natural projectionW → P1

to the t-coordinate. The generic fibre of π is a smooth intersection of two quadrics
in P3, hence is a genus 1 curve. The singular fibres occur over the closed points
corresponding to the irreducible polynomials dividing f . Moreover, by [8, Prop. 4.1],
the fibre over every such closed point P is a double fibre, hence δP (π) = 0. Theorem
1.2 therefore implies thatωπ has normal order r( f ) log log H(1 : t) in this case, where
r( f ) is the number of irreducible polynomials dividing f .

This last example is particularly interesting, as the upper bound (1.1) is conjecturally
sharp only if the fibre over every codimension 1 point contains an irreducible com-
ponent of multiplicitly 1. No such assumptions are required in the statements of our
theorems.

The next example illustrates how to (essentially) recover the usual ω (1.3) as a
special case of our ωπ .

Example 1.6 Let V be a smooth projective variety over Q equipped with a dominant
morphism π : V → P1 such that:

(1) The fibre over (0 : 1) has multiplicity m > 1, i.e. we have π∗((0 : 1)) = mD for
some divisor D on V .

(2) All other fibres are geometrically integral.

Examples of such varieties are “unnodal Halphen surfaces of index m” [6, §2].
Let now (x0, x1) be a primitive integer vector and P = (x0 : x1) ∈ P1(Q). Then

our methods will yield the existence of some A > 0 such that for all primes p > A
we have

vp(x0) = 0 �⇒ π−1(P)(Qp) �= ∅, vp(x0) = 1 �⇒ π−1(P)(Qp) = ∅,

where vp denotes the p-adic valuation. Thus if x0 is square-free and p � x0 for all
p ≤ A, then ωπ(P) = ω(x0). (We shall see that small primes and primes of higher
multiplicity do not effect the overall probabilistic behaviour, so our results essentially
recover the usual Erdős–Kac theorem.)

1.2 The pseudo-split case

Our results from Sect. 1.1 only apply when �(π) �= 0. It turns out that a normal
distribution does not hold when �(π) = 0. We refer to the case �(π) = 0 as
the “pseudo-split case”. This is because the condition �(π) = 0 is equivalent to
the condition that the fibre over every codimension 1 point of Pn is pseudo-split,
in the sense of [15, Def. 1.3]. The pseudo-split case is interesting from an arithmetic
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perspective, as these are exactly the families of varieties forwhich a positive proportion
of the fibres can be everywhere locally soluble (see [14, Thm. 1.3]).

In the pseudo-split case there is a discrete probability distribution, in a sense that
is made precise in the following theorem. For j ∈ Z≥0 and B ≥ 1 we define

τπ ( j, B) := �{x ∈ Pn(Q) : H(x) ≤ B, π−1(x) smooth, ωπ(x) = j}
�{x ∈ Pn(Q) : H(x) ≤ B} . (1.7)

Theorem 1.7 Let V be a smooth projective variety over Q equipped with a dominant
morphism π : V → Pn with geometrically integral generic fibre and�(π) = 0. Then

τπ : Z → R, j → τπ ( j) := lim
B→∞ τπ ( j, B) (1.8)

is well-defined and defines a probability measure on Z. Moreover, for every j ∈ Z≥0
we have the following upper bound

τπ ( j) �π

1

(1 + j) j (log(2 + j)) j/2
, (1.9)

where the implied constant depends at most on π .

Oneway to interpret Theorem 1.7 is thatωπ(x) has a limit law. A limit law is originally
defined for functions defined in the integers (see [24, Def. 2.2, p. 427]), however,
the definition easily extends to functions defined in Pn(Q): We say that a function
f : Pn(Q) → R has a limit law with distribution function F if

lim
B→+∞ νB(x ∈ Pn(Q) : f (x) ≤ z) = F(z)

holds for a function F : R → [0, 1] which is non-decreasing, right-continuous and
satisfies F(−∞) = 0, F(+∞) = 1, for all z ∈ R for which F is continuous at z.
The function ωπ takes values in Z≥0 and for such functions f : Pn(Q) → Z≥0 the
definition of the limit law is equivalent to the existence of the limit

lim
B→+∞ νB(x ∈ Pn(Q) : f (x) = j)

for every fixed j ∈ Z≥0 and the property

∞∑
j=0

lim
B→+∞ νB(x ∈ Pn(Q) : f (x) = j) = 1.

These are the two properties that are verified in Theorem 1.7, in addition to a bound
in terms of j for the limits.

We illustrate Theorem 1.7 with some examples.
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Example 1.8 Let d, n > 1. Let π : V → PN−1
Q

be the family of all hypersurfaces

of degree d in Pn
Q
, where N = (n+d

d

)
. (Note that V is regular.) If (d, n) = (2, 2),

i.e. the family of all plane conics, then �(π) = 1/2 [20, Ex. 4] and Theorem 1.2
applies. If however (d, n) �= (2, 2), then the fibre over every codimension 1 point is
geometrically integral, thus�(π) = 0 and Theorem 1.7 applies. (See the proof of [19,
Thm. 3.6] for this fact.) We deduce that when (d, n) �= (2, 2), the probability that a
smooth hypersurface has no p-adic point for exactly j many primes p is well-defined
and exists.

A particularly interesting case is when n ≥ d2. Here the Ax–Kochen theorem [1]
implies that the map V (Qp) → PN−1(Qp) is surjective for all but finitely many
primes p. In particular, we have τπ ( j) = 0 for all but finitely many j ∈ Z.

An example where the measure τπ has infinite support is the following.

Example 1.9 Let

V :
3∑

i=0

yi x
3
i = 0 ⊂ P3 × P3

and let π : V → P3 be the projection onto the y-coordinate; here π is the family
of all diagonal cubic surfaces. In Sect. 4.2 we will show that there exists an absolute
constant c > 0 such that τπ ( j) > c(1 + j)−3 j for all j ∈ Z≥0. This shows that τπ

has infinite support in this case and that (1.9) cannot be significantly improved.

It turns out that one has the following characterisation for when the measure τπ has
finite support; it happens if and only if an Ax–Kochen-type property holds.

Theorem 1.10 Keep the assumptions of Theorem 1.7. Then the measure τπ has finite
support if and only if V (Qp) → Pn(Qp) is surjective for all but finitely many primes
p.

Families for which V (Qp) → Pn(Qp) is surjective for all but finitely many p
were studied in [15]. A geometric criterion for when this holds can be found in [15,
Thm. 1.4].

Ourmethods also allowus to prove the following local-global principle for existence
of varieties in the family which are non-locally soluble at exactly a given finite set of
places.

Theorem 1.11 Keep the assumptions of Theorem 1.7. Let S be a finite set of places of
Q. Assume that π(V (Qv)) �= Pn(Qv) for all v ∈ S and that π(V (Qv)) �= ∅ for all
v /∈ S. Then there exists x ∈ Pn(Q) such that π−1(x) is smooth and

π−1(x)(Qv) = ∅ ⇐⇒ v ∈ S.

Note that for conics Hilbert’s version of quadratic reciprocity implies that a conic
over Q fails to have a Qv-point at exactly a set of places S of even cardinality, despite
there being a conic Cv over every Qv with Cv(Qv) = ∅. Theorem 1.11 shows that for
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families of varietieswith�(π) = 0 there is no such reciprocity law. (This phenomenon
was first observed in the case of curves of genus at least 1 by Poonen and Stoll [18].)

One of the major differences between the case �(π) > 0 and �(π) = 0 is that the
function ωπ(x) becomes arbitrarily large on average only when �(π) > 0. To make
this precise we study the moments of ωπ . Define for r ∈ Z≥0 the function

Nr (π, B) :=
∑

x∈Pn(Q),H(x)≤B
π−1(x) smooth

ωπ(x)r . (1.10)

Note that an obvious consequence of Theorem 1.3 is that if �(π) > 0 then

Nr (π, B)B−n−1 >>π,r (log log B)r .

In contrast, if �(π) = 0 then for all r ≥ 0 the function Nr (π, B)B−n−1 remains
bounded as B → ∞; specifically we have the following counterpart of Theorem 1.3.

Theorem 1.12 Keep the assumptions of Theorem 1.7. Then for every r ∈ Z≥1 we have

lim
B→∞

Nr (π, B)

�{x ∈ Pn(Q), H(x) ≤ B} =
∞∑
j=0

jrτπ ( j). (1.11)

Note that, apart from very special cases, existence of moments does not automatically
imply existence of a limit law or vice versa.

1.3 Layout of the paper and proof ingredients

We begin in Sect. 2 with an elementary result on counting rational points in Pn(Q)

which lie in a given residue class.
We prove Theorem 1.3 in Sect. 3. For this we show in Proposition 3.9 that the

moments of a ‘truncated’ version of ωπ are approximated by the moments of the
standard normal distribution. The proof is based on equidistribution properties of the
fibers of π that are verified during the earlier stages in Sect. 3 and subsequently fed
into work of Granville and Soundararajan [11]. We finish the proof of Theorem 1.3
in Sect. 3.4 by showing that the moments of ωπ and the moments of the truncated
version of ωπ have the same asymptotic behaviour. Theorem 1.2 is then deduced from
Theorem 1.3 in Sect. 3.5.

In Sect. 4 we prove the results from Sect. 1.2. The most difficult part of the proof
of Theorem 1.7 is establishing the existence of the limit (1.8), which we achieve via
Bhargava’s effective version of the Ekedahl sieve [3]. Theorems 1.10 and 1.12 are
proved using similar methods and the results from Sect. 2. We finish Sect. 4 by briefly
explaining how our results generalise in a straightforward manner to minor variants
given by considering real solubility or by dropping conditions at finitely many primes.
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Notation For an integral homogeneous polynomial f , a point x ∈ Pn(Q) and Q ∈ N,
we say that “ f (x) ≡ 0 mod Q” if f (x) ≡ 0 mod Q for some primitive representative
x ∈ Zn+1 of x . We use the notation “Q | f (x)” analogously.

The quantities δx (π) and�(π) are introduced in Definition 1.1, the functionωπ(x)
is defined in (1.2) and the indicator function θp(x) is introduced in (3.2). The arith-
metic functions ω,μ, ϕ respectively denote the number of prime divisors, the Möbius
function and the Euler totient function, respectively.

2 Explicit equidistribution on projective space

2.1 Counting with congruences

We will be required to count rational points in projective space which satisfy imposed
congruence conditions. To state our result, we let

cn = lim
B→∞

�{x ∈ Pn(Q) : H(x) ≤ B}
Bn+1 = 2n

ζ(n + 1)
, (2.1)

where ζ(s) denotes the Riemann zeta function.

Proposition 2.1 Let B > 1, Q ∈ N and ϒ ⊆ Pn(Z/QZ). Then

�

{
x ∈ Pn(Q) : H(x) ≤ B,

x mod Q ∈ ϒ

}

= cn�ϒ

�Pn(Z/QZ)
Bn+1 + O

(
Q�ϒ

(
B + Bn

Qn
(log B)[1/n]

))
,

where [·] denotes the integer part.

Proof Let ϒ̂ = {x ∈ (Z/QZ)n+1 : x �≡ 0 mod p ∀p | Q, (x0 : · · · : xn) ∈ ϒ} be the
affine cone of ϒ . Applying Möbius inversion we see that the cardinality in question
is

1

2
�{x ∈ Zn+1 : max{|x0|, . . . , |xn |} ≤ B, gcd(x0, . . . , xn) = 1, x mod Q ∈ ϒ̂} + O(1)

= 1

2

∑
k≤B

gcd(k,Q)=1

μ(k)�{x ∈ Zn+1 : max{|x0|, . . . , |xn |} ≤ B/k, kx mod Q ∈ ϒ̂}+O(1)

= 1

2

∑
y∈ϒ̂

∑
k≤B

gcd(k,Q)=1

μ(k)�{x ∈ Zn+1 : max{|x0|, . . . , |xn |} ≤ B/k, x ≡ k−1y mod Q} + O(1)

= 1

2

∑
y∈ϒ̂

∑
k≤B

gcd(k,Q)=1

μ(k)

((
2B

kQ

)
+ O(1)

)n+1
+ O(1).
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Continuing, we use the estimate
∑

k>B k−n−1 � B−n to find that the main term is

2n�ϒ̂Bn+1

Qn+1

∑
k∈N

gcd(k,Q)=1

μ(k)

kn+1 + O

(
�ϒ̂B

Qn+1

)

= cn�ϒ̂

Qn+1
∏

p|Q(1 − 1/pn+1)
· Bn+1 + O

(
�ϒ̂B

Qn+1

)
.

Recall that

�Pn(Z/pkZ) = pn(k−1) · pn+1 − 1

p − 1
. (2.2)

From this it is easy to establish

Qn+1
∏
p|Q

(1 − 1/pn+1) = ϕ(Q)�Pn(Z/QZ),

whereϕ is Euler’s totient function.We obtain themain term as stated in our proposition
via �ϒ̂ = ϕ(Q)�ϒ . To deal with the error terms observe that

((
2B

kQ

)
+ O(1)

)n+1

−
(
2B

kQ

)n+1

�
∑

0≤�≤n

(
B

kQ

)�

� 1 +
(

B

kQ

)n

,

where the last inequality stems from
∑

0≤�≤n t
� ≤ (n + 1)(1 + tn), valid for every

t ≥ 0 and n ∈ N. We obtain the error term

∑
y∈ϒ̂

∑
k≤B

gcd(k,Q)=1

|μ(k)|
{((

2B

kQ

)
+ O(1)

)n+1

−
(
2B

kQ

)n+1 }

� �ϒ̂
{
B + (B/Q)n(log B)[1/n]}.

Using �ϒ̂ � Q�ϒ completes the proof. ��
Before continuing we record an elementary lemma here.

Lemma 2.2 For n, Q ∈ N we have

Qn ≤ �Pn(Z/QZ) ≤ 2ω(Q)Qn .

Proof It suffices to prove the result when Q = pk for some prime p. By (2.2) we have

pkn ≤ �Pn(Z/pkZ) = pn(k−1) · pn+1 − 1

p − 1
≤ pn(k−1) · (2pn) = 2pkn .

��
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2.2 Some probability measures

2.2.1 Measures on Pn(Qp)

Let p be a prime. The finite sets Pn(Z/pkZ) come with a natural uniform probability
measure. Taking the limit Pn(Zp) = limk→∞ Pn(Z/pkZ) we obtain a well-defined
probability measure ϑp on Pn(Zp) (this measure differs from Peyre’s local Tama-
gawa measure [17, §2.2] by a constant). These measures admit the following explicit
description. Let ϒ ⊂ Pn(Z/pkZ). Then

ϑp

(
{x ∈ Pn(Qp) : x mod pk ∈ ϒ}

)
= �ϒ

�Pn(Z/pkZ)
. (2.3)

These “residue disks” generate the σ -algebra on Pn(Zp), hence the measure ϑp is
uniquely determined by (2.3). Proposition 2.1 may be viewed as an effective version
of equidistribution of rational points on Pn with respect to the measures ϑp.

One relates the measure ϑp to the usual Haar measure on Zp via the following.

Lemma 2.3 Let μp denote the Haar probability measure on Zn+1
p . Let ϒ ⊂ Pn(Zp)

and let ϒ̂ ⊂ Qn+1
p be its affine cone. Then ϑp(ϒ) = μp(ϒ̂ ∩ Zn+1

p ).

Proof It suffices to prove the result for the residue disks

ϒ = {x ∈ Pn(Zp) : x ≡ (a0 : a1 : · · · : an) mod pk}

for some ai ∈ Zp; we have ϑp(ϒ) = 1/�Pn(Z/pkZ). Note that one of the ai may be
taken to be a unit; for simplicity we assume this is a0. A moment’s thought reveals
that

ϒ̂ ∩ Zn+1
p =

{
x ∈ Zn+1

p :
∣∣∣∣ xi
pvp(x0)

− ai x0
a0 pvp(x0)

∣∣∣∣
p

≤ p−k, i = 1, . . . , n

}
.

Thus, by (2.2) we find that

μp(ϒ̂ ∩ Zn+1
p )

=
∞∑

m=0

{x ∈ Zn+1
p : vp(x0) = m, |xi − ai x0/a0|p ≤ p−k−m, i = 1, . . . , n}

=
∞∑

m=0

1

pm

(
1 − 1

p

)(
1

pk+m

)n

= 1

pn(k−1)

(
p − 1

pn+1 − 1

)
= 1

�Pn(Z/pkZ)
.

��
2.2.2 Measure on Pn(R)

We let ϑ∞ be the pushforward of the usual probability measure on the n-sphere Sn

via the quotient map Sn → Pn(R).
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3 An Erdős–Kac theorem for fibrations

3.1 Set-up

We begin the proof of the results from Sect. 1.1. Let V be a smooth projective variety
over Q with a dominant morphism π : V → Pn

Q
with geometrically integral generic

fibre. (We assume �(π) > 0 from Sect. 3.3.) We choose a model for π , i.e. a proper
scheme V over Z together with a proper morphism π : V → Pn

Z
(also denoted π by

abuse of notation), which extends V → Pn
Q
. In what follows, all implied constants are

allowed to depend on π , the choice of model, and the A and f occurring in Lemma
3.2.

We begin by studying the basic properties of ωπ(x). We first show that it enjoys
analogous bounds to the usual ω.

Lemma 3.1 There exists D > 0 with the following property. Let x ∈ Pn(Q) be such
that π−1(x) is smooth. Then

ωπ(x) � log H(x)

log log H(x)
, max{p : π−1(x)(Qp) = ∅} � H(x)D.

Proof Let S ⊂ Pn
Q
denote the non-smooth locus of π ; this is a proper closed subset

of Pn
Q
. Let S be the closure of S in Pn

Z
and choose a finite collection of homogeneous

polynomials f1, . . . , fs which generate the ideal of S. Let D = maxi {deg fi }.
For all sufficiently large primes p, the fibre π−1(x mod p) is smooth if and only

if x mod p /∈ S, which happens if and only if p � fi (x) for some i . Moreover, by
the Lang–Weil estimates [16] and Hensel’s lemma, for all sufficiently large primes p
(independently of x) if π−1(x mod p) is smooth then π−1(x)(Qp) �= ∅. It follows
that

�{p : π−1(x)(Qp) = ∅} ≤ �{p : p | fi (x)∀ i ∈ {1, . . . , s}} + O(1).

Letting x be a primitive representative of x and using the bound ω(n) �
(log n)(log log n)−1, we obtain
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ωπ(x) ≤
r∑

i=1

ω( fi (x)) + O(1) � log(H(x)D)

log log(H(x)D)
,

max{p : π−1(x)(Qp) = ∅} � H(x)D .

��
To simplify notation it will be easier to work with some choice of polynomial which

vanishes on the singular locus, rather than the whole singular locus. The proof of the
following is a minor adaptation of the proof of Lemma 3.1 (just choose f = f1).

Lemma 3.2 Let f ∈ Z[x0, . . . , xn] be a homogeneous square-free polynomial such
that π is smooth away from the divisor f (x) = 0 ⊂ Pn

Q
. Then there exists A > 0 such

that for all primes p > A the following hold.

1. The restriction of π to Pn
Fp

is smooth away from the divisor f (x) = 0 ⊂ Pn
Fp
.

2. Let x ∈ Pn(Q). If π−1(x)(Qp) = ∅ then p | f (x).

In Sect. 3.2, we allow ourselves to increase A as necessary to take care of bad
behaviour at small primes.

3.2 Equidistribution properties in the fibres

The next step is to translate the condition π−1(x)(Qp) = ∅ into something amenable
to tools from analytic number theory. We do this by using the tools developed in [14].
The key result is [14, Thm. 2.8], which is a valuative criterion for non-existence of a
p-adic point in a fibre, for sufficiently large primes p. In the special case of the conic
bundle over Q

x2 + y2 = t z2 ⊂ P2 × A1,

the criterion [14, Thm. 2.8] says that if p ≡ 3 mod 4 and the p-adic valuation of t
is 1, then the fibre over t has no Qp-point, as is familiar from the theory of Hilbert
symbols.

We introduce the quantity which will arise in this analysis. For any prime p let

σp := �
{
x ∈ Pn(Fp) : π−1(x) is non-split

}
�Pn(Fp)

. (3.1)

(Here we use the term “non-split” in the sense of Skorobogatov [23, Def. 0.1].)

Lemma 3.3 Let A and f be as in Lemma 3.2 and p > A. Then

σp ≤ d

p
, where d = deg f .
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Proof A non-split fibre is necessarily singular. Hence by Lemma 3.2, for p > A we
have

�
{
x ∈ Pn(Fp) : π−1(x) is non-split

} ≤ �
{
x ∈ Pn(Fp) : f (x) = 0

}
.

Projecting to a suitable hyperplane, this is at most d�Pn−1(Fp). The result follows. ��
Wenowuse results from [14] to deduce an equidistribution result for θp . To simplify

notation, we denote the characteristic function of the p-adically insoluble fibres by

θp(x) :=
{
1, if π−1(x)(Qp) = ∅,

0, otherwise.
(3.2)

Our result is the following asymptotic upper and lower bounds. (Here cn is as in
(2.1).)

Proposition 3.4 Let d = deg f . Enlarging A if necessary, there exists α ≥ 0 with the
following property. Let Q ∈ N be square-free with p � Q for all p ≤ A. Then

±
∑

x∈Pn(Q)
H(x)≤B

π−1(x) smooth

∏
p|Q

θp(x)

≤ ±cn
(∏

p|Q
(σp ± α/p2)

)
Bn+1 + O

(
(4d)ω(Q)(Q2n+1B + QBn(log B)[1/n])

)
,

where the implied constant is independent of B and Q.

Proof Let p > A be a prime. Enlarging A if necessary, the Lang–Weil estimates and
Hensel’s lemma show that if π−1(x mod p) is split then π−1(x) has a Qp-point. Thus
the sum in the proposition is

≤ �{x ∈ Pn(Q) : H(x) ≤ B, π−1(x mod p) is non-split ∀p | Q}.

ApplyingProposition 2.1withϒ = {x ∈ Pn(Z/QZ): π−1(x mod p) is non-split∀p |
Q}, we infer that the above cardinality equals

cn B
n+1

∏
p|Q

�
{
x ∈ Pn(Fp) : π−1(x) is non-split

}
�Pn( Fp)

+O

(
Q�ϒ

(
B + Bn

Qn
(log B)[1/n]

))
.

One has �ϒ = �Pn(Z/QZ)
∏

p|Q σp, thus Lemmas 2.2 and 3.3 imply that �ϒ �
(2d)ω(Q)Qn−1, which is satisfactory for the upper bound in the proposition.

For the lower bound, we apply the sparsity result of [14, Thm. 2.8]. This gives a
square-free homogeneous polynomial g ∈ Z[x0, . . . , xn] which is coprime with f
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and contains the singular locus of f such that, enlarging A if necessary, the sum in
the proposition is

≥ �

{
x ∈ Pn(Q) : H(x) ≤ B, f (x) ≡ 0 mod p, f (x) �≡ 0 mod p2,

g(x) �≡ 0 mod p, π−1(x mod p) is non-split,∀p | Q
}

.

We now apply Proposition 2.1 with

ϒ ′ =
{
x ∈ Pn(Z/Q2Z) : f (x) ≡ 0 mod p, f (x) �≡ 0 mod p2,

g(x) �≡ 0 mod p, π−1(x mod p) is non-split, ∀p | Q
}

to see that the sum in the proposition is

≥ cn�ϒ ′

�Pn(Z/Q2Z)
Bn+1 + O

(
Q2�ϒ ′

(
B + Bn

Q2n (log B)[1/n]
))

. (3.3)

As g(x) = 0 contains the singular locus of f , we may apply [5, Prop. 2.3] to find that

�

{
x ∈ Pn(Z/p2Z) : f (x) ≡ 0 mod p, f (x) �≡ 0 mod p2,

g(x) �≡ 0 mod p, π−1(x mod p) is non-split

}

= �
{
x ∈ Pn(Fp) : f (x) = 0, g(x) �= 0, π−1(x) is non-split

}
(pn + O(pn−1))

= �{x ∈ Pn(Fp) : π−1(x) is non-split}pn + O(p2n−2).

Here the last line follows from the fact that if π−1(x) is non-split then necessarily
f (x) = 0 by Lemma 3.2, together with the fact that �{x ∈ Pn(Fp) : f (x) = g(x) =
0} � pn−2 as f and g share no common factor. Recalling that �Pn(Z/p2Z) =
pn�Pn(Fp) (2.2), shows that

∏
p|Q

(σp − α/p2) ≤ �ϒ ′

�Pn(Z/Q2Z)
≤
∏
p|Q

(σp + α/p2) (3.4)

for some α > 0. This yields the correct main term for the lower bound. For the error
term, enlarging A if necessary we have α/p2 < d/p for all p > A. Thus (3.4) and
Lemmas 2.2 and 3.3 give

�ϒ ′ ≤ �Pn(Z/Q2Z)
∏
p|Q

(σp + α/p2) ≤ (2ω(Q)Q2n) · (2d)ω(Q)/Q,

which yields the required error term in (3.3). ��

We now fix the choice of A. Note that as min{p : p | Q} → ∞, the lower bound
in Proposition 3.4 converges to the upper bound.



42 Page 16 of 40 D. Loughran, E. Sofos

Lemma 3.5 We have

∑
p≤B

�{x ∈ Pn(Fp) : π−1(x) is non-split} = �(π)
Bn

log(Bn)
+ O

(
Bn

(log B)2

)
.

Proof This follows from an easymodification of the proof of [14, Prop. 3.10]. (Loc. cit.
states an asymptotic formula without an error term; one obtains an error term via the
version of the Chebotarev density theorem given in [22, Thm. 9.11].) ��

We will also require the following.

Proposition 3.6 There exists a constant βπ such that

∑
p≤B

σp = �(π)(log log B) + βπ + O((log B)−1)

Proof The proof is a simple application of Lemma 3.5 and partial summation. First,
let ap := �{x ∈ Pn(Fp) : π−1(x) is non-split}, define S(B) :=∑2<p≤x ap and let

R(B) := S(B) − �(π)
Bn

log(Bn)
.

Lemma 3.5 is equivalent to the estimate R(B) � Bn

(log B)2
. By partial summation we

obtain

∑
2<p≤B

ap
pn

= S(B)

Bn
+ n

∫ t

2

(
�(π) un

log(un) + R(u)
)

un+1 du.

Lemma 3.5 directly gives S(B)/Bn � 1/ log B. We furthermore have
∫∞
2

|R(u)|
un+1 du <

∞ due to |R(B)| � Bn

(log B)2
. Hence, we may write

∫ t

2

R(u)

un+1 du =
∫ ∞

2

R(u)

un+1 du + O

(∫ ∞

t

|R(u)|
un+1 du

)

=
∫ ∞

2

R(u)

un+1 du + O

(∫ ∞

t

1

u(log u)2
du

)

=
∫ ∞

2

R(u)

un+1 du + O

(
1

log t

)
.

Recalling that
∫ t
2 (u log u)−1dt = log log t − log log 2 and letting

γπ := −�(π)(log log 2) + a2
2n

+
∫ ∞

2

R(u)

un+1 du
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we have proved

∑
p≤B

ap
pn

= �(π) log log B + γp + O

(
1

log B

)
. (3.5)

Using this in the simple form
∑

p≤B
ap
pn � log log B then by partial summation we

obtain

∑
p≤B

ap
pn+1 � log log B

B
+
∫ B

1

log log u

u2
du � 1.

We thus obtain that
∑

p
ap
pn+1 converges and that the tail is at most

∑
p>B

ap
pn+1 � log log B

B
+
∫ ∞

B

log log u

u2
du � log log B

B
. (3.6)

Let us now define the function εp for primes p via the equation

1

�Pn(Fp)
= 1

pn
+ εp

pn
.

Recalling (3.1) and making use of (3.5), we see that this gives

∑
p≤B

σp =
∑
p≤B

ap
pn

+
∑
p≤B

apεp
pn

= �(π) log log B + γp + O

(
1

log B

)
+
∑
p≤B

apεp
pn

.

At this point we use (2.2) to obtain

1

�Pn(Fp)
= p − 1

pn+1 − 1
= 1

pn
1

(1 + 1
p + · · · + 1

pn )
= 1

pn

(
1 + O

(
1

p

))
,

from which we get εp � 1/p. By (3.6) we see that
∑

p apεp p
−n converges and that

∑
p≤B

apεp
pn

=
∑
p

apεp
pn

+ O

(
log log B

B

)
.

Taking βπ := γπ +∑p apεp p
−n concludes the proof. ��
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3.3 Moments of a truncated version of!�

We assume from now on that �(π) > 0. In what follows t0, t1 : R → R are two
functions that satisfy

1 < t0(B) < t1(B) < B, lim
B→∞ t0(B) = lim

B→∞ t1(B) = ∞.

Both functions t0(B), t1(B) will be chosen optimally at a later stage. Define the func-
tion

ω�
π(x, B) :=

∑
t0(B)<p≤t1(B)

(θp(x) − σp), (3.7)

where σp is as in (3.1). We need to estimate asymptotically the moments of ωπ(x);

it turns out that it is easier to work with the ‘truncated’ version ω
�
π(x, B) of ωπ(x).

Introducing t1(B) deals with the dependence on Q in the error term of Proposition 3.4,
whilst t0(B) is used to control the error ±α/p2 in the leading constant in Proposi-
tion 3.4.

To study the degree to which ωπ(x) is affected by the primes in the interval
(t0(B), t1(B)] we begin by observing that Proposition 3.6 provides us with

∑
p≤t0(B)

σp � log log t0(B),
∑

t1(B)<p≤B

σp �
(
log

log B

log t1(B)

)
+ 1

log t1(B)
.

(3.8)

We define

M�
r (π, B) :=

∑
x∈Pn(Q),H(x)≤B

π−1(x) smooth

(
ω

�
π(x, B)√

�(π) log log B

)r

, (r ∈ Z≥0). (3.9)

Note that M�
r (π, B) depends on t0(B) and t1(B) due to the presence of ω

�
π (x, B).

The estimates in Proposition 3.6 and (3.8) yield

∑
t0(B)<p≤t1(B)

σp = �(π) log log B + O
((

log
log B

log t1(B)

)
+ log log t0(B)

)
.

(3.10)

Furthermore, we have σp − σ 2
p = σp + O(p−2) due to Lemma 3.3. This shows that

∑
t0(B)<p≤t1(B)

(σp − σ 2
p) = �(π) log log B + O

((
log

log B

log t1(B)

)
+ log log t0(B)

)
.

(3.11)
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Lemma 3.7 Let ψ ∈ {−1, 1}. In the situation of Proposition 3.4 we have

∏
p|Q

(σp + ψα/p2) =
∏
p|Q

σp + O

(
(2αd)ω(Q)

Qmin{p : p | Q}

)
.

Proof We prove the inequality for one choice of sign, namely ψ = 1, the other choice
being similar. Denoting Q = p1 · · · pk with pi < pi+1, we have by Lemma 3.3 that

(∏
p|Q

(σp + α/p2)
)

−
(∏

p|Q
σp

)
=

∑
S�{1,...,k}

(∏
i∈S

σpi

)(∏
i /∈S

α

p2i

)

≤
∑

S�{1,...,k}

(∏
i∈S

d

pi

)(∏
i /∈S

α

p2i

)
≤ (αd)k

∑
S�{1,...,k}

(∏
i∈S

1

pi

)(∏
i /∈S

1

p2i

)

= (αd)k

Q

∑
S�{1,...,k}

(∏
i /∈S

1

pi

)
≤ (2αd)k

Qp1
.

��
Before proceeding we recall [11, Prop. 3].

Lemma 3.8 (Granville–Soundararajan) Let P be a finite set of primes and let A :=
{a1, . . . , ay} be a multiset of y natural numbers. For Q ∈ N define

AQ := �{m ≤ y : Q | am}.

Let h be a real-valued, non-negative multiplicative function such that for square-free
Q we have 0 ≤ h(Q) ≤ Q. For any r ∈ N we let

Cr = �(r + 1)/(2r/2�(1 + r/2)) and EP (A, h, r) :=
∑

Q∈N,μ(Q)2=1
p|Q⇒p∈P
ω(Q)≤r

∣∣∣∣AQ − h(Q)

Q
y

∣∣∣∣.

Defining

μP (h) :=
∑
p∈P

h(p)

p
and σP (h) :=

(∑
p∈P

h(p)

p

(
1 − h(p)

p

))1/2

,

we have uniformly for all r ≤ σP (h)2/3 that

∑
a∈A

(
�{p ∈ P : p | a} − μP (h)

)r

= Cr yσP (h)r + O(Cr yσP (h)r−2r3 + μP (h)rEP (A, h, r)) (3.12)
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if r is even, and

∑
a∈A

(
�{p ∈ P : p | a} − μP (h)

)r � Cr yσP (h)r−1r3/2 + μP (h)rEP (A, h, r)

(3.13)

if r is odd.

We apply this result to study the moments of ω
�
π(x, B).

Proposition 3.9 Fix a positive integer r and let t0(B) and t1(B) be given by

t0(B) := (log log B)2r and t1(B) = B
1

5r(n+1) . (3.14)

Then we have

M�
r (π, B)

cn Bn+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μr + Or

(
log log log log B

log log B

)
, if r is even, (3.15)

Or

(
1

(log log B)
1
2

)
, if r is odd. (3.16)

Proof We apply Lemma 3.8 with

A :=
{
ax :=

∏
p prime

π−1(x)(Qp)=∅

p:x ∈ Pn(Q), H(x) ≤ B, π−1(x) smooth
}
.

Lemma 3.1 ensures that ax is well-defined. The key property of ax is that for any
square-free Q we have

Q | ax ⇐⇒ (p | Q ⇒ π−1(x)(Qp) = ∅).

Therefore, if we let

P := {p ∈ (t0, t1] : p prime}, h(Q) := Q
∏
p|Q

σp,

y := �{x ∈ Pn(Q) : H(x) ≤ B, π−1(x) smooth},

then

AQ − h(Q)

Q
y =

( ∑
x∈Pn(Q)
H(x)≤B

π−1(x) smooth

∏
p|Q

θp(x)

)
−
(∏

p|Q
σp

)
y.
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Note that y = cn Bn+1 + O(Bn(log B)[1/n]); indeed

�{x ∈ Pn(Q) : H(x) ≤ B, π−1(x) singular}
≤ �{x ∈ Pn(Q) : H(x) ≤ B, f (x) = 0} � Bn

by Lemma 3.2 and [21, Thm. 13.4]. To study EP (A, h, r) we use this and Lemma 3.3
to show that if Q is square-free and is divided only by primes p > A, then

AQ − h(Q)

Q
y =

( ∑
x∈Pn(Q)
H(x)≤B

π−1(x) smooth

∏
p|Q

θp(x)

)
−
(∏

p|Q
σp

)
cn B

n+1

+O

(
dω(Q) B

n(log B)[1/n]

Q

)
.

We can now employ Proposition 3.4 and Lemma 3.7 to see that

∑
x∈Pn(Q)
H(x)≤B

π−1(x) smooth

∏
p|Q

θp(x) −
(∏

p|Q
σp

)
cn B

n+1

� Bn+1(2αd)ω(Q)

Qmin{p : p | Q} + (4d)ω(Q)(Q2n+1B + QBn(log B)[1/n]).

Noting that Aω(Q)/Q � Q−0.9 � Q0.9 � (4d)ω(Q)Q we deduce that

∣∣∣∣AQ − h(Q)

Q
y

∣∣∣∣� Bn+1(2αd)ω(Q)

Qmin{p : p | Q} + (4d)ω(Q)(Q2n+1B + QBn(log B)[1/n]).

For any square-free Q that is divisible by at most r primes, all lying in (t0, t1], we
have Q ≤ tr1 . Therefore, in the notation of Lemma 3.8 we have

EP (A, h, r) �r Bn+1

⎛
⎜⎜⎜⎜⎜⎝

∑
Q∈N,μ(Q)2=1
p|Q⇒p∈P
ω(Q)≤r

1

Qmin{p : p | Q}

⎞
⎟⎟⎟⎟⎟⎠

+(tr(2n+1)
1 B + tr1 B

n(log B)[1/n])tr1 ,

where we used the estimate

∑
Q∈N,μ(Q)2=1

ω(Q)≤r ,p|Q⇒p∈P

1 ≤ �{Q ∈ N : Q ≤ tr1 } = tr1 .
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Writing Q = p1 · · · pr with pi < pi+1 we have

∑
Q∈N,μ(Q)2=1

ω(Q)≤r ,p|Q⇒p∈P

1

Qmin{p : p | Q}

=
∑

t0<pr≤t1

1

pr

∑
t0<pr−1<pr

1

pr−1
· · ·

∑
t0<p2<p3

1

p2

∑
t0<p1<p2

1

p21
,

which can be seen to be � (log log t1)r−1

t0
due to

∑
p≤t1 p

−1 � log log t1 and∑
p>t0 p

−2 � t−1
0 . Using assumption (3.14) we obtain

EP (A, h, r) �r
Bn+1(log log B)r−1

t0
+ (tr(2n+1)

1 B + tr1 B
n(log B)[1/n])tr1

�r Bn+1(log log B)−r−1 + Bn+1/2

�r Bn+1(log log B)−r−1.

Define

μ̂(B) :=
∑

t0<p≤t1

σp and σ̂ (B) :=
( ∑
t0<p≤t1

(σp − σ 2
p)

)1/2

.

Note that by (3.10)–(3.11) and (3.14) we have

μ̂(B) = �(π) log log B + O(log log log log B). (3.17)

Furthermore, Lemma 3.3 shows that
∑

p σ 2
p = O(1), hence

σ̂ (B)2 = μ̂(B) + Or (1).

By (3.17) we get σ̂ (B) = (�(π) log log B)1/2(1 + Or ((log log log log B)/

log log B))1/2, hence using the estimate (1 + ε)1/2 = 1 + O(ε) that is valid for
all 0 < ε < 1, we obtain

σ̂ (B) = (�(π) log log B)1/2 + Or

(
log log log log B

(log log B)1/2

)
. (3.18)

We therefore see that the error term in (3.12) is

�r Bn+1(log log B)r/2−1 + Bn+1(log log B)−1 �r Bn+1(log log B)r/2−1.



An Erdős–Kac law for local solubility in families... Page 23 of 40 42

Noting that

∑
a∈A

(
�{p ∈ P : p | a} − μP (h)

)r =
∑

x∈Pn(Q),H(x)≤B
π−1(x) smooth

ω�
π(x, B)r

establishes

M�
r (π, B)

cn Bn+1 = μr
σ̂ (B)r

(�(π) log log B)r/2
+ Or

( 1

log log B

)
.

The proof of (3.15) can now be concluded by using (3.18) to verify

σ̂ (B)r

(�(π) log log B)r/2
=
(
1 + Or

(
log log log log B

log log B

))r/2

= 1 + Or

(
log log log log B

log log B

)
.

The proof of (3.16) can be performed in an entirely analogous manner by using (3.13).
��

3.4 Proof of Theorem 1.3

We first require the following preparatory lemma.

Lemma 3.10 Let y(B), z(B) be two functions satisfying

z(B) > 1, lim
B→∞ y(B) = ∞ and lim

B→∞
log y(B)

log B
= 0.

Let m ∈ Z≥0 and let F ∈ Z[x0, . . . , xn] be a primitive homogeneous polynomial.
Then

∑
x∈Pn(Q)
H(x)≤B
F(x) �=0

(
z(B) +

∑
p|F(x)
p≤y(B)

1
)m �F,m Bn+1(z(B) + log log y(B))m .

Proof It suffices to show that for every r ∈ Z ∩ [0,m] we have
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∑
x∈Pn(Q),H(x)≤B

F(x) �=0

⎛
⎜⎜⎝
∑
p|F(x)
p≤y(B)

1

⎞
⎟⎟⎠

r

�F,r Bn+1(log log y(B))r , (3.19)

as the result will then easily follow from the binomial theorem. We have

∑
x∈Pn(Q),H(x)≤B

F(x) �=0

⎛
⎜⎜⎝
∑
p|F(x)
p≤y(B)

1

⎞
⎟⎟⎠

r

≤
∑

p1,...,pr≤y(B)

∑
x∈Pn(Q),H(x)≤B
1≤i≤r⇒pi |F(x)

1.

Letting Q be the least commonmultiple of the primes p1, . . . , pr we see thatω(Q) ≤ r
and μ(Q)2 = 1. Furthermore, for every Q ∈ N having these two properties there are
at most rr vectors (p1, . . . , pr ) with every prime pi satisfying pi ≤ y(B) and with
Q being the least common multiple of the pi . This is because for each 1 ≤ i ≤ r the
prime pi must divide Q, so the number of available pi is at most ω(Q) ≤ r . This
shows that

∑
p1,...,pr≤y(B)

∑
x∈Pn(Q),H(x)≤B
1≤i≤r⇒pi |F(x)

1 �r

∑
Q∈N

ω(Q)≤r

μ(Q)2
∑

x∈Pn(Q),H(x)≤B
Q|F(x)

p|Q⇒p≤y(B)

1.

Letting

ϒ = {x ∈ Pn(Z/QZ) : F(x) ≡ 0 mod Q}

wemay obtain the following via Lemma 2.2 and following similar steps as in the proof
of Lemma 3.3,

�ϒ =
∏
p|Q

�{x ∈ Pn(Fp) : F(x) = 0} ≤
∏
p|Q

(deg F · �Pn−1(Fp))

≤ Qn−1(2 deg F)ω(Q) �r Qn−1.

Noting that the assumption log y(B) = o(log B) shows that y(B) �ε Bε for every
ε > 0. Hence, we have Q ≤ y(B)r �ε Bε and invoking Proposition 2.1 with (2.2)
we obtain

∑
x∈Pn(Q),H(x)≤B

Q|F(x)

1 �ε,r
Qn−1

�Pn(Z/QZ)
Bn+1 + Qn

(
B + Bn

Qn
(log B)[1/n]

)

�ε,r
1

Q
Bn+1 + Bn+ 1

10 ,
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thus

∑
Q∈N,ω(Q)≤r
p|Q⇒p≤y(B)

μ(Q)2
∑

x∈Pn(Q),H(x)≤B
Q|F(x)

1

�ε,r Bn+1

⎛
⎜⎜⎝

∑
Q∈N,ω(Q)≤r
p|Q⇒p≤y(B)

μ(Q)2

Q

⎞
⎟⎟⎠+ Bn+ 1

10

⎛
⎜⎜⎝

∑
Q∈N,ω(Q)≤r
p|Q⇒p≤y(B)

μ(Q)2

⎞
⎟⎟⎠ .

The last sum over Q is at most y(B)r �ε Bε , while the previous satisfies

∑
Q∈N,ω(Q)≤r
p|Q⇒p≤y(B)

μ(Q)2

Q
≤
⎛
⎝ ∑

p≤y(B)

1

p

⎞
⎠

r

�r (log log y(B))r .

This verifies (3.19) and thus concludes the proof. ��

We begin the proof of Theorem 1.3 by noting that

Mr (π, B) =
∑

x∈Pn(Q),H(x)≤B
f (x) �=0

(
ωπ(x) − �(π) log log B√

�(π) log log B

)r

+ Or (B
n(log B)r ).

(3.20)

This is because by Lemma 3.1 we have

∑
x∈Pn(Q),H(x)≤B

π−1(x) smooth
f (x)=0

(
ωπ(x) − �(π) log log B√

�(π) log log B

)r

�r

∑
x∈Pn(Q)
H(x)≤B
f (x)=0

(log B)r � Bn(log B)r .

We continue the proof of Theorem 1.3 by applying Proposition 3.9. For every x in the
sum on the right side of (3.20), Lemma 3.1 shows that

ωπ(x) − �(π) log log B

= ω�
π(x, B) +

∑
p≤t0(B)

θp(x) +
∑

t1(B)<p�BD

θp(x)

+
({ ∑

t0(B)<p≤t1(B)

σp

}
− �(π) log log B

)
.
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Owing to (3.17) the last term is �C,ε1 log log log log B. Using Lemma 3.2 and the
trivial bound 0 ≤ θp(x) ≤ 1 we see that

∑
p≤t0(B)

θp(x) =
∑
p≤A

θp(x) +
∑
p| f (x)

A<p≤t0(B)

θp(x) � 1 +
∑
p| f (x)
p≤t0(B)

1.

Observe that

m ∈ Z\{0}, z ∈ R>1 ⇒ �{p > z : p | m} ≤ log |m|
log z

(3.21)

because z�{p>z:p|m} ≤∏p|m p ≤ m. Hence, whenever x ∈ Pn(Q) is such that H(x) ≤
B and f (x) �= 0 we deduce by Lemma 3.2 that

∑
p>t1(B)

θp(x) =
∑
p| f (x)
p>t1(B)

θp(x) ≤
∑
p| f (x)
p>t1(B)

1 ≤ log | f (x)|
log t1(B)

� log B

log t1(B)
�ε1 1,

where we used the fact that log f (x) � log H(x). We are thus led to the conclusion
that for any x on the right side of (3.20) we have

ωπ(x) − �(π) log log B = ω�
π(x, B) + Eπ (x, B),

for some function Eπ (x, B) satisfying

|Eπ (x, B)| �C,ε1 log log log log B +
∑

p| f (x),p≤t0(B)

1. (3.22)

Therefore, we obtain for r �= 0 that

(ωπ(x) − �(π) log log B)r = ω�
π(x, B)r +

r−1∑
k=0

(
r

k

)
ω�

π (x, B)k Eπ (x, B)r−k .

This allows the comparison with the “truncated moment” (3.9), to find via (3.20) that

∣∣Mr (π, B) − M�
r (π, B)

∣∣
�r

Bn

(log B)−r
+

r−1∑
k=0

∑
x∈Pn(Q),H(x)≤B

f (x) �=0

ω
�
π (x, B)k Eπ (x, B)r−k

(log log B)r/2
.
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By Cauchy’s inequality we see that the last sum is

�r
1

(log log B)r/2

r−1∑
k=0

⎛
⎜⎜⎝

∑
x∈Pn(Q),H(x)≤B

f (x) �=0

ω�
π(x, B)2k

⎞
⎟⎟⎠

1/2

×

⎛
⎜⎜⎝

∑
x∈Pn(Q),H(x)≤B

f (x) �=0

Eπ (x, B)2(r−k)

⎞
⎟⎟⎠

1/2

.

We apply Proposition 3.9 with r = 2k to obtain

∣∣Mr (π, B) − M�
r (π, B)

∣∣
�r

Bn

(log B)−r
+

r−1∑
k=0

B(n+1)/2

(log log B)(r−k)/2

( ∑
x∈Pn(Q)
H(x)≤B
f (x) �=0

Eπ (x, B)2(r−k)
)1/2

.

Recalling (3.22) and applying Lemma 3.10 with

m = 2(r − k), z(B) := log log log log B and y(B) := t0(B),

we see that, in light of z(B) + log log y(B) �r log log log log B, one has

Mr (π, B) − M�
r (π, B)

Bn+1 �r
(log B)r

B
+ log log log log B

(log log B)1/2
.

We conclude that

Mr (π, B) = M�
r (π, B) + Or

(
Bn+1 log log log log B

(log log B)1/2

)
.

An application of Proposition 3.9 completes the proof of Theorem 1.3. ��

3.5 Proof of Theorem 1.2

Lemma 3.11 There exists a set S ⊂ {x ∈ Pn(Q) : H(x) ≤ B} with

�{x ∈ Pn(Q) : H(x) ≤ B, x /∈ S} = O
( Bn+1

(log log log B)2

)
(3.23)
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and such that for all x ∈ S we have

ωπ(x) − �(π) log log B√
�(π) log log B

= ωπ(x) − �(π) log log H(x)√
�(π) log log H(x)

+ O
( 1√

log B

)
. (3.24)

Proof Denote �(B) = log log log B and define

S :=

⎧⎪⎨
⎪⎩ x ∈ Pn(Q) :

B
log B < H(x) ≤ B, π−1(x) smooth,∣∣∣∣ωπ (x)−�(π) log log B√

�(π) log log B

∣∣∣∣ ≤ �(B)

⎫⎪⎬
⎪⎭ .

The cardinality of those x ∈ Pn(Q) with H(x) ≤ B, π−1(x) smooth and

∣∣∣∣ωπ(x) − �(π) log log B√
�(π) log log B

∣∣∣∣ > �(B)

is at most

∑
x∈Pn(Q),H(x)≤B

π−1(x) smooth

(
ωπ(x) − �(π) log log B

�(B)
√

�(π) log log B

)2

= cn Bn+1

�(B)2
(1 + o(1)) � Bn+1

�(B)2
,

where the case r = 2 of Theorem 1.3 has been used. This provides us with

�S = cn B
n+1 + O

( Bn+1

�(B)2

)
.

Now note that for all x ∈ Pn(Q) with B/ log B < H(x) ≤ B we have

log log H(x) = log log B + O
( log log B

log B

)
,

therefore (log log H(x)/ log log B)1/2 = 1 + O(1/ log B). Thus, for each such x we
get

ωπ(x) − �(π) log log B√
�(π) log log B

= ωπ(x) − �(π) log log B√
�(π) log log H(x)

+O

( |ωπ(x) − �(π) log log B|
log B

√
log log B

)
.

We deduce that if x ∈ S then this is
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ωπ(x) − �(π) log log B√
�(π) log log H(x)

+ O

(
�(B)

log B

)
= ωπ(x) − �(π) log log H(x)√

�(π) log log H(x)

+O

(√
log log B

log B
+ �(B)

log B

)
,

which is sufficient for our lemma. ��

We are now in place to prove Theorem 1.2. For z ∈ R we denote the distribution
function of the standard normal distribution by

�(z) := 1√
2π

∫ z

−∞
e− t2

2 dt .

Recall the definition of the probability measure νB in (1.4) and note that the set Pn(Q)

becomes a probability space once equipped with the measure νB . (The measure νB is
supported on the rational points of height at most B.) For any B ∈ R≥3 we consider
the random variable XB defined on Pn(Q) as follows,

XB(x) :=
{ωπ (x)−�(π) log log B√

�(π) log log B
, π−1(x) smooth,

0, otherwise.

For r ∈ Z≥0 the r -th moment of XB is by definition equal to

∫ +∞

−∞
XrBdνB =

∑
x∈Pn(Q)

π−1(x) smooth

(ωπ(x) − �(π) log log B√
�(π) log log B

)r νB({x})
�{x ∈ Pn(Q) : H(x) ≤ B}

and recalling (1.5) we see that this coincides withMr (π, B)/�{x ∈ Pn(Q) : H(x) ≤
B}. Theorem 1.3 shows that

lim
B→+∞

∫ +∞

−∞
XrBdνB

exists and is equal to the r -th moment of the standard normal distribution. By [4, Th.
30.2] we get that XB converges in law to the standard normal distribution, i.e. for every
y ∈ R we have

lim
B→+∞ νB

({
x ∈ Pn(Q) : XB ≤ y

}) = �(y). (3.25)

Next, for every fixed ε > 0, z ∈ R and all sufficiently large B we see that the error
term in (3.24) has modulus at most ε, therefore (3.24) gives



42 Page 30 of 40 D. Loughran, E. Sofos

νB ({x ∈ S : XB(x) ≤ z − ε}) ≤ νB

({
x ∈ S : ωπ(x) − �(π) log log H(x)√

�(π) log log H(x)
≤ z

})

(3.26)

and

νB ({x ∈ S : XB(x) ≤ z + ε}) ≥ νB

({
x ∈ S : ωπ(x) − �(π) log log H(x)√

�(π) log log H(x)
≤ z

})

(3.27)

for all sufficiently large B. Observe that the setS in Lemma 3.11 satisfies the following
as B → +∞ due to (3.23),

νB(S) = 1 + O
( 1

(log log log B)2

)
= 1 + o(1). (3.28)

In light of (3.25) this means that limB→+∞ νB ({x ∈ S : XB ≤ y}) = �(y), which,
when applied to y = z−ε and y = z+ε and combined with (3.26) and (3.27), yields

lim inf
B→+∞ νB

({
x ∈ S : ωπ(x) − �(π) log log H(x)√

�(π) log log H(x)
≤ z

})
≥ �(z − ε)

and

lim sup
B→+∞

νB

({
x ∈ S : ωπ(x) − �(π) log log H(x)√

�(π) log log H(x)
≤ z

})
≤ �(z + ε).

Letting ε → 0 and using the fact that � is continuous we obtain

lim
B→+∞ νB

({
x ∈ S : ωπ(x) − �(π) log log H(x)√

�(π) log log H(x)
≤ z

})
= �(z),

which, by (3.28) implies that

lim
B→+∞ νB

({
x ∈ Pn(Q) : ωπ(x) − �(π) log log H(x)√

�(π) log log H(x)
≤ z

})
= �(z).

Since this holds for every fixed z ∈ R it gives Theorem 1.2 as an immediate conse-
quence. ��
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4 The pseudo-split case

4.1 Proof of Theorem 1.7

We let π : V → Pn be as in Theorem 1.7 and choose a model for π as in Sect. 3.1.

4.1.1 Existence of the limit

We first prove the existence of (1.8) using the versions of the sieve of Ekedahl given
in [14, §4.1], [2, §3] and [3, §3]. We begin with a strengthening of Lemma 3.2. (Here
it is crucial that �(π) = 0.)

Lemma 4.1 There exists a closed subset Z ⊂ Pn
Z
of codimension at least 2 and a

constant A > 0 with the following property. Let p > A be a prime and x ∈ Pn(Zp)

such that π−1(x)(Zp) = ∅. Then x mod p ∈ Z(Fp).

Proof This is a special case of [14, Prop. 4.1]. ��
Lemma 4.2 Let A be as in Lemma 4.1 Then for every B, M > 1 we have

�

{
x ∈ Pn(Q) : H(x) ≤ B, π−1(x) smooth,

∃p > M s.t. π−1(x)(Qp) = ∅
}

� Bn+1

M logM
+ Bn,

where the implied constant depends at most on A and π .

Proof This follows immediately from Lemma 4.1 and Bhargava’s effective version of
the Ekedahl sieve [3, Thm. 3.3]. ��
We now prove a strengthening of Proposition 3.4 in the case �(π) = 0. The crucial
point about the next proposition is that it gives an asymptotic formula for a counting
problemwhich has local conditions imposed at every place v, whereas Proposition 3.4
only imposes conditions at finitelymany primes. In what follows we use the measures
ϑv from Sect. 2.2.

Proposition 4.3 Let S be a finite set of places of Q. Then

lim
B→∞

�

{
x ∈ Pn(Q) : H(x) ≤ B, π−1(x) smooth,

v ∈ S⇔π−1(x)(Qv) = ∅
}

�{x ∈ Pn(Q) : H(x) ≤ B}
= ∏

v∈S ϑv(P
n(Qv)\π(V (Qv))

∏
v /∈S ϑv(π(V (Qv)),

where the right hand side is a convergent Euler product.
Moreover, let Q ∈ N be square-free. Then there exists K0 > 0 such that

�

{
x ∈ Pn(Q) : H(x) ≤ B, π−1(x) smooth,

π−1(x)(Qp) = ∅∀ p | Q
}

� Kω(Q)
0

(
Bn+1

Q2 + BQn−1 + Bn log B

Q

)
. (4.1)



42 Page 32 of 40 D. Loughran, E. Sofos

Proof The asymptotic formula is proved using an adaptation of [2, Thm. 3.8], via the
version of the sieve of Ekedahl given in [2, Prop. 3.4]. That the condition (3.5) from
[2, Prop 3.4] is satisfied follows from Lemma 4.1 and [2, Lem. 3.5]. If π(V (Qv)) �= ∅
then [2, Lem. 3.9] implies that π(V (Qv)) is measurable, has positive measure and has
boundary of measure 0. Moreover π(V (Qv)) ⊂ Pn(Qv) is closed as π is proper. It
follows that Pn(Qv)\π(V (Qv)) is measurable, has boundary of measure 0, and has
positivemeasure if non-empty. Therefore themeasurability hypotheses in [2, Prop. 3.4]
are all satisfied. Applying [2, Prop. 3.4] gives the asymptotic formula. (Note that [2,
Lem. 4.8] works with the Haar measure on Qn+1

v , whereas in the statement we use the
measure ϑv . One easily obtains our statement using Lemma 2.3.)

Next, by theLang–Weil estimates there exists K0 > 0 such that �Z(Fp) ≤ K0 pn−2

for all p. Therefore we have �Z(Z/QZ) ≤ Kω(Q)
0 Qn−2. Lemma 4.1 and Proposi-

tion 2.1 now show that the left side of (4.1) is

� �

{
x ∈ Pn(Q) : H(x) ≤ B, π−1(x) smooth,

p | Q ⇒ x mod p ∈ Z(Fp)

}

� �Z(Z/QZ)

�Pn(Z/QZ)
Bn+1 + Q�Z(Z/QZ)

(
B + Bn

Qn
log B

)

� Kω(Q)
0 Q−2Bn+1 + Kω(Q)

0 Qn−1B + Kω(Q)
0 Q−1Bn log B.

��
We now show the existence of the limit (1.8). In fact, we prove the following explicit
formula. (Recall the definition of τπ (B, j) from (1.7).)

Proposition 4.4 We have

τπ ( j) := lim
B→∞ τπ (B, j)

=
∑

p1<p2<···<p j

∏
p|p1···p j

ϑp(P
n(Qp)\π(V (Qp))

∏
p�p1···p j

ϑp(π(V (Qp)),

where the sum and products are convergent.

Proof If Q ∈ [1, B1/3) is a square-free integer then one can immediately see from (4.1)
that

�

{
x ∈ Pn(Q) : H(x) ≤ B, π−1(x) smooth,

p | Q ⇒ π−1(x)(Qp) = ∅
}

� Kω(Q)
0

Q2 Bn+1. (4.2)

Combining the upper bound and the asymptotic provided by Proposition 4.3 one sees
that for every square-free Q �= 0 we have

∏
p|Q

ϑp(P
n(Qp) \ π(V (Qp))

∏
p�Q

ϑp(π(V (Qp)) � Kω(Q)
0

Q2 , (4.3)
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with an implied constant independent of Q. Fix any M > 1. By Lemma 4.2 we see
that

τπ (B, j) =
�

{
x ∈ Pn(Q) : H(x) ≤ B, π−1(x) smooth, ωπ(x) = j,

π−1(x)(Qp) = ∅ ⇒ p ≤ M

}

�{x ∈ Pn(Q) : H(x) ≤ B}
+O

(
1

M logM
+ 1

B

)
,

with an implied constant that is independent of j, M and B. We infer that τπ (B, j)
equals

∑
p1<p2<···<p j≤M

�

{
x ∈ Pn(Q) : H(x) ≤ B, π−1(x) smooth,

π−1(x)(Qp) = ∅⇔ p | p1 · · · p j

}

�{x ∈ Pn(Q) : H(x) ≤ B}

+O

(
1

M logM
+ 1

B

)
.

Fixing the value of M and taking the limit as B → ∞, we see from Proposition 4.3
that

lim sup
B→∞

∣∣∣∣τπ (B, j) −
∑

p1<···<p j≤M

∏
p|p1···p j

ϑp(P
n(Qp)\π(V (Qp))

∏
p�p1···p j

ϑp(π(V (Qp))

∣∣∣∣� 1

M
.

(4.4)

Note that the infinite series

∑
p1<p2<···<p j

∏
p|p1···p j

ϑp(P
n(Qp)\π(V (Qp))

∏
p�p1···p j

ϑp(π(V (Qp))

converges owing to the bound

∏
p|p1···p j

ϑp(P
n(Qp) \ π(V (Qp))

∏
p�p1···p j

ϑp(π(V (Qp))

� K j
0

(p1 · · · p j )2
, (4.5)

that follows from (4.3). Taking M to be arbitrarily large in (4.4) proves the result. ��
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4.1.2 Probability measure

We now show that (1.8) indeed defines a probability measure onZ. To do so, it suffices
to show that

∑
j∈Z

τπ ( j) = 1. (4.6)

Partitioning all possible values for ωπ(x) we have

�{x ∈ Pn(Q) : H(x) ≤ B, π−1(x) smooth}
=

∞∑
j=0

�

{
x ∈ Pn(Q) : H(x) ≤ B, ωπ(x) = j,

π−1(x) smooth

}
.

Fix j0 ∈ N and note that if ωπ(x) > j0 then the largest prime p such that
π−1(x)(Qp) = ∅ exceeds the j0-th largest prime, therefore it is at least j0. This
shows that

∑
j> j0

�

{
x ∈ Pn(Q) : H(x) ≤ B, ωπ (x) = j,

π−1(x) smooth

}

≤�

{
x ∈ Pn(Q) : H(x) ≤ B, π−1(x) smooth,

∃p > j0 s.t. π−1(x)(Qp) = ∅
}

which is O(Bn+1 j−1
0 + Bn) by Lemma 4.2. Dividing by �{x ∈ Pn(Q) : H(x) ≤ B}

gives

�{x ∈ Pn(Q) : H(x) ≤ B, π−1(x) smooth}
�{x ∈ Pn(Q) : H(x) ≤ B} =

∑
0≤ j≤ j0

τπ (B, j) + O

(
1

j0
+ 1

B

)
,

with an implied constant that is independent of j0. Letting B → ∞ we obtain

∑
0≤ j≤ j0

τπ ( j) = 1 + O

(
1

j0

)
.

Letting j0 → ∞ we infer that the sum over j converges to 1, thus verifying (4.6).

4.1.3 Upper bounds

We now prove (1.9). Combining (4.5) and Proposition 4.4 shows that

τπ ( j) = lim
B→∞ τπ ( j, B) �π K j

0

∑
p1<...<p j

1

p21 · · · p2j
.
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Let us denote the primes in ascending order as q1 = 2, q2 = 3, etc. Writing

K j
0

∑
p1<...<p j

1

p21 · · · p2j
=
∑
p1≥2

K0

p21

∑
p2>p1

K0

p22
· · ·

∑
p j>p j−1

K0

p2j
,

we observe that the sum over p2 contains all primes p ≥ q2, the sum over p3 contains
all primes p ≥ q3 and so on. Therefore, one has

τπ ( j) �
j∏

i=1

(∑
p≥qi

K0

p2

)
.

By the prime number theorem and partial summation we see that
∑

p≥z p
−2 ≤

c0/(z log z) for some absolute c0 > 1, thus τπ ( j)
∏ j

i=1(qi log qi ) � (c0K0)
j . Using

qi ∼ i log i and the prime number theorem with partial summation we obtain

log

⎛
⎝ j∏

i=1

qi log qi

⎞
⎠ =

∑
p≤q j

log p +
∑
p≤q j

log log p

= q j + O

(
q j

log q j

)
+ q j log log q j

log q j
+ O

(
q j log log q j

(log q j )2

)

= j log j + j log log j + o( j log log j)

≥ j log j + 3

4
j log log j,

for all sufficiently large j . We deduce that for all large j one has

τπ ( j) ≤ (c0K0)
j

j∏
i=1

1

qi log qi
≤ (c0K0)

j

j j (log j)
3 j
4

≤ 1

j j (log j) j/2
,

from which (1.9) follows. This completes the proof of Theorem 1.7. ��

4.2 The family of diagonal cubic surfaces

We now return to Example 1.9, and prove the claim that there exists an absolute
constant c > 0 such that τπ ( j) > c(1 + j)−3 j .

Let y = (y0 : y1 : y2 : y3) ∈ P3(Zp) where (y0, . . . , y3) is primitive. By the
criterion in [7, p.28], if a prime p ≡ 1 mod 3 satisfies p � y0y1, p‖y2, p‖y3 and
neither −y1/y0 nor −y3/y2 are cubes, then π−1(y) has no p-adic point. It is easy to
see that there exists an absolute constant K1 > 0 such that the measure of this with
respect to ϑp is at least K1 p−2. Hence, denoting by qi the i-th largest prime being
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1 mod 3, Proposition 4.4 gives

τπ ( j) ≥ K2

j∏
i=1

K1

q2i
,

for some constant K2 > 0 (the product in Proposition 4.4 being convergent). By the
prime number theorem for arithmetic progressions we have qi ∼ 2i log i , hence

log τπ ( j)−1 ≤ − log K2 − j(log K1) + 2
∑

p≤(2 j log j)(1+o(1))
p≡1 mod 3

log p = (2 j log j)(1 + o(1)) ≤ 3 j log j

for all sufficiently large j . This proves the claim. ��

4.3 Proof of Theorem 1.10

The implication ⇐ is clear. For the other, assume that V (Qp) → Pn(Qp) is not
surjective for infinitely many primes p. Let S be a finite set of such primes and let
xp ∈ Pn(Qp)\π(V (Qp)) for p ∈ S. By Proposition 2.1, a positive proportion of
x ∈ Pn(Qp) are arbitrarily close to the xp for all p ∈ S. Moreover, as π is proper the
set π(V (Qp)) is closed with respect to the p-adic topology. It follows that provided
the x are sufficiently close to the xp we have π−1(x)(Qp) = ∅ for all p ∈ S. Hence
for such x we have ωπ(x) ≥ �S. As S can be chosen sufficiently large, the result
follows. ��

4.4 Proof of Theorem 1.11

As shown in the proof of Proposition 4.3, the sets π(V (Qv)) and Pn(Qv)\π(V (Qv))

are measurable with respect to ϑv , and have positive measure if non-empty. The result
now follows as the Euler product in Proposition 4.3 is convergent. ��

4.5 Proof of Theorem 1.12

Let Nr (π, B) be as in (1.10). We begin with the following.

Lemma 4.5 For every r ∈ Z≥0 we have Nr (π, B) �r Bn+1.

Proof Recall f and A from Lemma 3.2. By Lemma 3.1 we have

Nr (π, B) =
∑

x∈Pn(Q),H(x)≤B
f (x) �=0

ωπ(x)r + O
(
Bn(log B)r

)
,
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where we have used the evident bound �{x ∈ Pn(Q) : H(x) ≤ B, f (x) = 0} � Bn .
For any ε > 0 and any x with f (x) �= 0 we have via (3.21) that

�{p > Bε : π−1(x)(Qp) = ∅} ≤ �{p > Bε : p divides f (x)} ≤ log | f (x)|
log(Bε)

.

As H(x) ≤ B implies | f (x)| � Bdeg( f ), we thus find that

ωπ(x) = Oε(1) +
∑

A<p≤Bε

θp(x).

Let us now define ε(r) := (3r)−1. Then

Nr (π, B) =
∑

x∈Pn(Q),H(x)≤B
f (x) �=0

⎛
⎝Or (1) +

∑
A<p≤Bε(r)

θp(x)

⎞
⎠

r

�r

r∑
m=0

∑
x∈Pn(Q),H(x)≤B

f (x) �=0

⎛
⎝ ∑

A<p≤Bε(r)

θp(x)

⎞
⎠

m

.

To prove the lemma it therefore suffices to show that

∑
x∈Pn(Q),H(x)≤B

f (x) �=0

⎛
⎝ ∑

A<p≤Bε(r)

θp(x)

⎞
⎠

m

�m Bn+1.

Using the multinomial theorem the sum over x above equals

∑
(mp)p∈(A,Bε(r)]∑
p∈(A,Bε(r)] mp=m

m!∏
p∈(A,Bε(r)] mp!

∑
x∈Pn(Q),H(x)≤B

f (x) �=0

∏
p∈(A,Bε(r)]

mp �=0

θp(x).

Letting k be the number of p ∈ (A, Bε(r)] with mp �= 0, shows that the last quantity
is

�m

m∑
k=1

∑
A<p1<p2<···<pk≤Bε(r)

∑
x∈Pn(Q),H(x)≤B

f (x) �=0

k∏
i=1

θpi (x).
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By (4.2) and the fact that k ≤ m ≤ r and ε(r) ≤ (3m)−1 we see that the inner sum
over x is � Bn+1∏k

i=1(K0 p
−2
i ). We obtain that

∑
A<p1<p2<···<pk≤Bε(r)

∑
x∈Pn(Q),H(x)≤B

f (x) �=0

k∏
i=1

θpi (x)

� Bn+1
∑

A<p1<p2<···<pk≤Bε(r)

k∏
i=1

(K0 p
−2
i ) � Bn+1,

thus concluding our proof. ��
Now observe that

Nr (π, B)

�{x ∈ Pn(Q) : H(x) ≤ B} =
∞∑
j=0

jrτπ (B, j). (4.7)

However, for any M > 1 we may use the inequality 1{ωπ (x)>M}(x) ≤ ωπ(x)/M to
find that

∑
j>M

jrτπ (B, j) =

∑
x∈Pn(Q),H(x)≤B

π−1(x) smooth

ωπ(x)r1{ωπ (x)>M}(x)

�{x ∈ Pn(Q) : H(x) ≤ B} � Nr+1(π, B)

MBn+1 .

(4.8)

We now infer from (4.7), (4.8) and Lemma 4.5 that

∣∣∣∣∣∣
Nr (π, B)

�{x ∈ Pn(Q) : H(x) ≤ B} −
∑

0≤ j≤M

jrτπ (B, j)

∣∣∣∣∣∣�r
1

M
, (4.9)

where the implied constant is independent of B and M . Fixing M and taking B → ∞
we are led to the conclusion that

lim sup
B→∞

∣∣∣∣∣∣
Nr (π, B)

�{x ∈ Pn(Q) : H(x) ≤ B} −
∑

0≤ j≤M

jrτπ ( j)

∣∣∣∣∣∣�
1

M
.

By (1.9) the sum over j is convergent as M → ∞, which completes the proof. ��

4.6 Generalisations

One can consider variants of the function ωπ from (1.2), by considering real solubility
or by dropping conditions at finitely many primes. Namely, let S be a finite set of
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places of Q. Then we define

ωπ,S(x) := �
{
places v /∈ S : π−1(x)(Qv) = ∅}.

We have considered the case ωπ = ωπ,∞(x) for simplicity of exposition, but a minor
variant of our arguments yields the following generalisation of Theorem 1.7 (the
important point being that the asymptotic in Proposition 4.3 applies to arbitrary S).

Theorem 4.6 Let V be a smooth projective variety over Q equipped with a dominant
morphism π : V → Pn with geometrically integral generic fibre and �(π) = 0. Let
S be a finite set of places of Q and j ∈ Z. Then the limit

lim
B→∞

�{x ∈ Pn(Q) : H(x) ≤ B, π−1(x) smooth, ωπ,S(x) = j}
�{x ∈ Pn(Q) : H(x) ≤ B}

exists and defines a probability measure on Z.

The analogues of the other results from Sect. 1.2 also hold for the modified ωπ,S .
Also of course the analogue of Theorem 1.2 and the other results in Sect. 1.1 trivially
hold with ωπ replaced by ωπ,S , since ωπ,S = ωπ + O(1).
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25. Xiong,M.: The Erdős–Kac theorem for polynomials of several variables. Proc. Am.Math. Soc. 137(8),
2601–2608 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1705.10740

	An Erdős–Kac law for local solubility in families of varieties
	Abstract
	1 Introduction
	2 Explicit equidistribution on projective space
	3 An Erdős–Kac theorem for fibrations
	4 The pseudo-split case
	Acknowledgements
	References




