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Abstract
We investigate the topological nilpotence degree, in the sense of Henn–Lannes–
Schwartz, of a connected Noetherian unstable algebra R. When R is the mod p
cohomology ring of a compact Lie group, Kuhn showed how this invariant is con-
trolled by centralizers of elementary abelian p-subgroups. By replacing centralizers
of elementary abelian p-subgroups with components of Lannes’ T -functor, and uti-
lizing the techniques of unstable algebras over the Steenrod algebra, we are able to
generalize Kuhn’s result to a large class of connected Noetherian unstable algebras.
We show how this generalizes Kuhn’s result to more general classes of groups, such as
groups of finite virtual cohomological dimension, profinite groups, and Kac–Moody
groups. In fact, our results apply much more generally, for example, we establish
results for p-local compact groups in the sense of Broto–Levi–Oliver, for connected
H -spaces with Noetherian mod p cohomology, and for the Borel equivariant coho-
mology of a compact Lie group acting on a manifold. Along the way we establish
several results of independent interest. For example, we formulate and prove a version
of Carlson’s depth conjecture in the case of a Noetherian unstable algebra of minimal
depth.
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1 Introduction

1.1 Motivation and overview

WhenG is a compact Lie group, or even just a finite group, themod p cohomology ring
H∗
G :=H∗(BG; Fp) can be extremely complicated. Nonetheless, the global structure

of the ring is better understood. This has its origin in Quillen’s work on equivariant
cohomology [52,53]. Quillen introduced the category AG of elementary abelian p-
subgroups ofG, withmorphisms those group homomorphisms induced by conjugation
in G. He then proved that the restriction maps induced a morphism

q1 : H∗
G lim←−

E∈AG

H∗
E ,

which is an F-isomorphism, that is, each element in the kernel of q1 is nilpotent, and
for each element y in the inverse limit, there exists an integer n with y p

n
in the image

of q1. Using this, Quillen showed that the Krull dimension of H∗
G is the maximal rank

of an elementary abelian p-subgroup of G.
The cohomology H∗

G has an action of the Steenrod algebra A, and is in fact an
unstableA-module (see Sect. 2.2). Quillen’s theorem can be restated internally in the
category of unstable modules over the Steenrod algebra. In fact, Henn et al. [34] do
muchmore than this. The category of unstable modulesU has a filtration (the nilpotent
filtration)
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U ⊇ Nil1 ⊇ Nil2 ⊇ · · ·

first introducedbySchwartz [56]. In general, the categoryNiln is the smallest localizing
subcategory of U containing all n-fold suspensions of unstable modules (we refer the
reader to Sect. 2.3 for more details, and further characterizations of Niln).

Using the general theory of localization in abelian categories, for any unstable
module M over the Steenrod algebra there is an associated localization functor
λn : M → LnM which is localization away from Niln . Quillen’s map is precisely
localization away from Nil1 for M = H∗

G . Henn, Lannes, and Schwartz introduced
the following invariant, which we call the topological nilpotence degree of M .

Definition 1.1 Let M be an unstable module, then the topological nilpotence degree
of M is

d0(M) = inf{k ∈ N|λk+1M is a monomorphism}.

For example, d0(H∗
G) = 0 when the cohomology is detected by elementary abelian

subgroups, for example, in the case of the mod 2 cohomology of symmetric groups.
We note that if R is a Noetherian unstable algebra, then Henn, Lannes, and Schwartz
prove that d0(R) is a finite number.

In [34] Henn, Lannes, and Schwartz gave a rough upper bound for d0(H∗
G(X)), the

mod p Borel-equivariant cohomology of a compact Lie group G acting on a manifold
X . More recently, the case where X is a point has been considered by Kuhn, who
proved the following result [36,37]. In this, if G is a compact Lie group with maximal
central elementary abelian p-subgroup C(G), we let e(G) denote the top degree of
a generator (with respect to a minimal generating set) of the finitely generated H∗

G-
module H∗

C(G), i.e., the top degree of Fp ⊗H∗
G
H∗
C(G).

Theorem 1.2 (Kuhn) Let G be a compact Lie group, then

d0(H
∗
G) ≤ max

E<G
{e(CG(E)) − dim(CG(E))}.

The theorem is actually a combination of several results. Kuhn first defines the
central essential ideal, CEss(G), of a compact Lie group as the kernel of the map

H∗
G

∏

C(G)�E

H∗
CG (E),

Here the product is taken over those elementary abelian p-subgroups E ofG for which
C(G) is strictly contained in E , and the map is the map induced by the inclusions
CG(E) ≤ G. He then shows that

d0(H
∗
G) = max{d0(CEss(CG(E))) | E < G} (1.3)

and
d0(CEss(G)) ≤ e(G) − dim(G). (1.4)
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for any compact Lie group G. Combining these two results gives Theorem 1.2.
We make the following remarks about this theorem.

(1) As noted by Kuhn, it suffices in Theorem 1.2 to only consider those E which
contain C(G).

(2) By [37, Theorem 2.30] the central essential ideal CEss(G) is non-zero if and only
the cohomology H∗

G has depth equal to the rank c(G) of the maximal central
elementary abelian p-group C(G).

(3) The appearance of − dim(G) in the theorem comes from Symonds’ theorem [58]
that the Castelnuovo–Mumford regularity Reg(H∗

G) (see Sect. 4.3) is less than or
equal to − dim(G).

Using these three remarks, one could restate Kuhn’s theorem in the following way:

d0(H
∗
G) ≤ max

C(G)≤E<G
depth(H∗

CG (E)
)=c(CG (E))

{e(CG(E)) + Reg(H∗
CG (E))}.

We state it in this way, as this is closer to the generalization we prove below.

1.2 Unstable algebras and the topological nilpotence degree

In the previous section we saw that the topological nilpotence degree of H∗
G can

be bounded by invariants coming from the cohomology of elementary abelian p-
subgroups of G. In order to generalize this to an arbitrary unstable Noetherian algebra
R we need to explain what plays the role of the centralizer of R. For this, we use
Lannes’ T -functor [39].

We recall in Sect. 2.2 that for any pair (E, f ) such that E is an elementary abelian
group and f is a finite morphism R → H∗

E of unstable algebras, we can produce a
new unstable algebra TE (R; f ), along with a canonical map ρ = ρR,(E, f ) : R →
TE (R; f ). If R = H∗

G , and E < G is an elementary abelian p-subgroup, then
the fundamental computation of Lannes is that TE (H∗

G; res∗G,E ) ∼= H∗
CG (E), where

res∗G,E : H∗
G → H∗

E is the induced map, and ρ : H∗
G → H∗

CG (E) is simply the map
induced by the inclusion CG(E) → G. Inspired, by this Dwyer and Wilkerson [22]
used the components of the T -functor to define centrality in a Noetherian unstable
algebra. In particular, we say that (E, f ) is central if ρR,(E, f ) : R → TE (R; f ) is an
isomorphism.

Pairs (E, f ) (not necessarily central) as considered above naturally assemble into a
categoryAR , known asRector’s category (see Sect. 2.1). This category has the property
that every endomorphism is an isomorphism, and as such the set of isomorphism
classes of objects forms a poset, where

[(E, f )] ≤ [(V , g)] if and only if HomAR ((E, f ), (V , g)) 
= ∅

Using work of Dwyer and Wilkerson, we prove the following result.
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Theorem A (Theorem 3.13) Let R be a connected Noetherian unstable algebra, then
there exists a unique (up to isomorphism) maximal central element (C, g) ∈ AR with
respect to the above poset structure.

If R = H∗
G for a finite p-group G with group-theoretic center C(G), then C =

C(G), however this does not hold in general for a compact Lie group. Instead, there
is a monomorphism C(G) → C , which need not be an isomorphism in general, see
Example 3.15 for an example due to Mislin. We refer to a choice of representative
for the central element as the center of R, and write (E, f ) ⊆ (V , g) if [(E, f )] ≤
[(V , g)].

We now have the following dictionary between the usual group-theoretic notions
and their analogs in the theory of unstable algebras.

Group theory Unstable algebra

Group cohomology H∗
G Noetherian unstable algebra R

Quillen category AG Rector’s category AR
Cohomology of the centralizer H∗

CG (E)
Component of Lannes T -functor TE (R; f )

Maximal central elementary abelian p-subgroup, C(G) < G Center of R, (C, g) ∈ AR

Inspired by Kuhn’s work, the following is the main result of this paper, and is a
generalization of Theorem 1.2 to certain Noetherian connected unstable algebras. We
note that the technical hypothesis mentioned in the theorem is always satisfied if p = 2
or if R is concentrated in even degrees. Here, if R is an unstable algebra with center
(C, g) we let c(R) denote the rank of the C , and let e(R) denote the top degree of
Fp ⊗R TE (R; f ).

Theorem B (Theorem 5.1) Let R be a connected Noetherian unstable algebra with
center (C, g), and suppose that TE (R; f ) satisfies the assumptions of Hypothesis 4.20
for all (C, g) ⊆ (E, f ), then

d0(R) ≤ max
(C,g)⊆(E, f )∈AR

depth(TE (R; f ))=c(TE (R; f ))
{e(TE (R; f )) + Reg(TE (R; f ))}.

1.3 The central essential ideal of a Noetherian unstable algebra

The proof of Theorem B is given by proving the analogs of (1.3) and (1.4) for an
arbitrary connected Noetherian unstable algebra. To do this, we first define the central
essential ideal of a Noetherian unstable algebra R with center (C, g) as the unstable
algebra fitting in the left exact sequence

0 → CEss(R) → R →
∏

(C,g)�(E, f )

TE (R; f )

where the product is taken over the maps ρR,(E, f ). This does not depend on the choice
of representative for the center of R.
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For G a finite group, Kuhn has proved that the Krull dimension of CEss(G) is at
most the rank of C . The proof uses a result about transfers due to Carlson [16] that
is not available for a general unstable algebra. We instead use U-technology to prove
the following result, which is crucial in the sequel.

Theorem C (Theorem 4.3) Let R be a connected Noetherian unstable algebra with
center (C, g), then the Krull dimension of CEss(R) is at most the rank of C.

This theorem is used crucially in the next result, with is the analog of (1.4). If R is
a Noetherian unstable algebra with center (C, g), then the image of g : R → H∗

C is
either a polynomial algebra (when p = 2) or a polynomial tensor an exterior algebra
(when p > 2). In particular, there always exists a subalgebra B ⊂ R such that
B → Im(g) is an isomorphism. Borrowing terminology from Kuhn, we call such a B
a Duflot algebra. The technical hypothesis Hypothesis 4.20 mentioned previously is
that the Duflot algebra is polynomial which, as noted, is automatic if p = 2 of if R is
concentrated in even degrees. Our analog of (1.4) is the following.

Theorem D (Theorems 4.24 and 4.25) Let R be a connected Noetherian unstable
algebraat the prime p with center (C, g) satisfyingHypothesis4.20, then ifCEss(R) 
=
0 we have

d0(CEss(R)) ≤ e(R) + Reg(R).

Moreover, CEss(R) 
= 0 if and only if depth(R) = rank(C). In this case, CEss(R) is
a Cohen–Macaulay R-module of dimension rank(C).

The statement that if depth(R) = rank(C), then CEss(R) 
= 0 can be considered
a form of Carlson’s depth conjecture (see [19, Question 12.5.7]) in the case of a
Noetherian unstable algebra of minimal depth, see also the discussion in Sect. 4.3.
Indeed, we always have depth(R) ≥ rank(C) by the author’s generalized version of
Duflot’s theorem [29], see also Corollary B.7 in this paper (Carlson considers the case
R = H∗

G for G a finite group).
The proof of Theorem B then follows the same strategy as Kuhn; we show in

Proposition 5.17 that for any connected Noetherian unstable algebra R with center
(C, g) we have

d0(R) ≤ max
(C,g)⊆(E, f )∈AR

{d0(CEss(TE (R; f )))}.

Combining this with the bound coming from Theorem D then gives the result.

1.4 The topological nilpotence degree for themod p cohomology of groups

The components of Lannes T -functor have been computed for the mod p cohomol-
ogy of a large number of classes of groups, not just for compact Lie groups. In all
these cases, Rector’s category AH∗

G
can be identified with Quillen’s category AG with

objects the elementary abelian p-subgroups of G, and central elements in AH∗
G
cor-

respond to elementary abelian p-subgroups E < G for which CG(E) → E is a mod
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p cohomology isomorphism. Borrowing terminology from Mislin [45], we call such
subgroups cohomologically p-central. Our results imply that there is (up to isomor-
phism) a unique maximal cohomologically p-central subgroup Cp(G), whose rank
may be greater than the rank of the usual group-theoretic center of G.

Theorem B then gives rise to the following computation of the topological nilpo-
tence degree of the mod p cohomology of these groups.

Theorem E (Theorem 6.7) Assume we are in one of the following cases:

(1) G is a compact Lie group.
(2) G is a discrete group for which there exists a mod p acyclic G-CW complex with

finitely many G-cells and finite isotropy groups.
(3) G is a profinite group such that the continuous mod p cohomology H∗

G is finitely
generated as an Fp-algebra.

(4) G is a group of finite virtual cohomological dimension such that H∗
G is finite

generated as an Fp-algebra.
(5) G is a Kac–Moody group.

Then, for any prime p we have

d0(H
∗
G) ≤ max

Cp(G)≤E∈AG
depth(H∗

CG (E)
)=c(CG (E))

{e(H∗
CG (E)) + Reg(H∗

CG (E))}

where c(CG(E)) is the rank of the maximal cohomologically p-central subgroup of
G.

Of course, by including additional summands, one can rewrite this as

d0(H
∗
G) ≤ max

E<G
{e(H∗

CG (E)) + Reg(H∗
CG (E)))}

to give a result analogous to Theorem 1.2.
We have similar results in the case of the mod p cohomology of p-local compact

groups [10], see Sect. 6.2.

Example 1.5 In Example 6.10, we compute that 1 ≤ d0(H∗
GL2(Z3)

) ≤ 2 when p = 3.
Similarly, in Example 6.11 we compute that d0(H∗

S2
) = 2 at the prime 3, where S2 is

the Morava stabilizer group which features prominently in the chromatic approach to
stable homotopy theory. ��

Finally, in an appendix, we show that a slight variation of our methods shows the
following.

Theorem F (Theorem A.2) Let G be a compact Lie group, X a manifold, and suppose
that the Duflot algebra for H∗

CG (E)(X
E ) is polynomial for all C(G; X) ≤ E, then

d0(H
∗
G(X)) ≤ max

C(G,X)≤E<G
{e(CG(E), XE ) + dim(XE ) − dim(CG(E))}
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Notation

The following is some of the notation used in this paper.

U The category of unstable modules over the Steenrod algebra (Sect. 2.1)
K The category of unstable algebras over the Steenrod algebra (Sect. 2.1)
R Generic unstable algebra (Sect. 2.1)
E Elementary abelian p-group
AR Rector’s category associated to a Noetherian unstable algebra R (Sect. 2.1)
(E, f ) Element of Rector’s category AR (Sect. 2.1)
TE Lannes’ T -functor (Sect. 2.2)
d0M Topological nilpotence degree of an unstable module (Sect. 2.3)
CEss(R) The central essential ideal of a Noetherian unstable algebra (Sect. 4.1)
PCM The module of primitives for a comodule (Sect. 4.2)
QBM The space of indecomposables for a B-module M (Sect. 4.2)
Reg(M) The regularity of a module M (Sect. 4.3)
F Fusion system associated to a discrete p-toral group S (Sect. 6.2)
Fe Full subcategory of F consisting of fully centralized

elementary abelian p-subgroups of S (Sect. 6.2)
Hi
m(M) The local cohomology of a module M (Appendix B)

Conventions

We will always write H∗
G(X) for the mod p G-equivariant cohomology of a space X .

In particular, taking X to be a point, then H∗
G denotes the group cohomology of G.

For a space X we will always write H∗(X) for the mod p cohomology of X ; thus
H∗
G = H∗(BG). If R is an augmented Fp-algebra we will write εR : R → Fp for the

canonical map; in the case of R = H∗(X), we will often abbreviate this to εX , or even
εG if X = BG .

2 Noetherian unstable modules, unstable algebras, and Lannes’
T-functor

We being with a review of the theory of unstable modules, unstable algebras, and
Lannes’ T -functor.We introduce the fundamental categoryAR , also known asRector’s
category, of a Noetherian unstable algebra R. Finally, we review Schwartz’s nilpotent
filtration of the category of unstable modules.

2.1 Unstable modules, unstable algebras and Rector’s category

Much of this section is well-known, and a useful reference is [57]. We first start with
the definition of the categories of unstable modules and unstable algebras over the
mod p Steenrod algebra. We let A denote the mod p Steenrod algebra, for which we
assume the reader is familiar with.
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Definition 2.1 An unstableA-moduleM is a gradedA-module such that for all x ∈ M

(1) Sqi x = 0 for i > |x |, if p = 2;
(2) βe Pi x = 0 for all 2i + e > |x |, if p is odd and e ∈ {0, 1}.
We let U ⊂ ModA denote the full subcategory of graded A-modules whose objects
are unstable A-modules.

We observe that if M ∈ U , then M is trivial in negative degrees. If M0 ∼= Fp,
then we say the M is connected. The category of unstable modules has a suspension
functor � : U → U : given an A-module M , we define (�M)n ∼= Mn−1, with A-
module structure given by θ(�m) = (−1)|θ |�θ(m) for all m ∈ M, θ ∈ A.

The mod p cohomology of a space H∗(X) is always an unstable module. In fact, it
also has an algebra structure satisfying certain properties, which leads to the following
definition.

Definition 2.2 An unstableA-algebra R is an unstableA-module, together with maps
μ : R ⊗ R → R and η : Fp → R which determine a commutative, unital, Fp-algebra
structure on R and such that the Cartan formula holds (equivalently, φ is A-linear)
and

Sqn x = x2 if p = 2 and n = |x |,
Pnx = x p if p > 2 and 2n = |x |. (2.3)

We let K denote the category of unstable algebras over A. This is the category with
objects unstable algebras, and morphisms degree preserving maps which are both
A-linear and maps of graded algebras.

Finally, we say that R is a Noetherian unstable algebra if R is finitely generated as
an algebra.

Example 2.4 The mod-p cohomology of an elementary abelian p-group E of rank
n is of fundamental importance in the theory of unstable algebras over the Steenrod
algebra. We recall that

H∗
E

∼= F2[x1, . . . , xn]

with |xi | = 1 when p = 2, and

H∗
E

∼= Fp[β(y1), . . . , β(yn)] ⊗ 
Fp (y1, . . . , yn)

where |yi | = 1 andβ denotes theBockstein homomorphism associated to the sequence
0 → Z/p → Z/p2 → Z/p → 0. In particular, H∗

E is a Gorenstein ring of dimension
n. Its importance comes from the fact that it is an injective object in the category U ,
see [15,43,44].

Finally, we note that the group homomorphism E×E → E given bymultiplication
induces a homomorphism H∗

E → H∗
E×E

∼= H∗
E ⊗ H∗

E , making H∗
E into a primitively

generated Hopf algebra. ��



17 Page 10 of 56 D. Heard

Given an unstable algebra R, we can also define a category R − U , whose objects
are unstable A-modules M together with A-linear structure maps R ⊗ M → M
which make M into an R-module, and whose morphisms are theA-linear maps which
are also R-linear. The full subcategory of R − U consisting of the finitely generated
R-modules will be denoted R f g − U .
Example 2.5 Let G be a compact Lie group and X a manifold, then the Borel equiv-
ariant cohomology H∗

G(X) is an object of R f g − U for R = H∗
G , see [52,53].

The following categories, first studied by Rector [54], will play a crucial role in the
sequel.

Definition 2.6 Let R be a Noetherian unstable algebra, then the category VR is the
category with objects (E, f )where E is an elementary abelian p-group, and f : R →
H∗
E is a homomorphism of unstable algebras. A morphism α : (E, f ) → (V , g) is a

morphism α∗ : H∗
V → H∗

E of unstable algebras (equivalently, a group homomorphism
α : E → V ) such that the diagram

R

H∗
E H∗

V

f g

α∗

commutes.
Rector’s categoryAR is the full subcategory ofVR consisting of those (E, f )where

f : R → H∗
E is a finite morphism, i.e., H∗

E is a finitely generated R-module via f .

We observe that if α : (E, f ) → (V , g) is a morphism inAR , then α∗ : H∗
E → H∗

V
necessarily arises form a monomorphism E → V of elementary abelian p-groups.
We have the following properties of AR , where we recall that a Noetherian unstable
algebra always has finite Krull dimension.

Proposition 2.7 Let R be a Noetherian unstable algebra of Krull dimension d.

(1) The category AR has a finite skeleton.
(2) For each (E, f ) ∈ AR we have rank(E) ≤ d. In fact,

d = max{rank(E) | (E, f ) ∈ AR}.

Proof Part (1) is due to Rector [54, Proposition 2.3(1)], while (2) is an algebraic
consequence of Rector’s F-isomorphism theorem [54, Theorem 1.4], as extended to
the case p > 2 by Broto and Zarati [13]. ��
Remark 2.8 Given a pair (E, f ) ∈ VR , choosing an element e ∈ E is equivalent to
giving a homomorphism χe : Z/p → E with χe(1) = e. Let fe : R → H∗

Z/p denote

the composite R
f−→ H∗

E

χ∗
e−→ H∗

Z/p. Then, the kernel of f , denoted ker( f ), is the
set consisting of all e ∈ E with the property that fe is trivial above dimension 0 [22,
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Definition 4.3]. By [22, Proposition 4.4], the pair (E, f ) ∈ AR (that is, the morphism
f : R → H∗

E is finite) if and only if ker( f ) = {0}.
Moreover, if R is connected and Noetherian, then for any pair (E, f ) ∈ VR , ker( f )

is a subgroup of E , and f : R → H∗
E extends uniquely to a map f̃ : R → H∗

E/ ker( f )

such that the pair (E/ ker( f ), f̃ ) is inAR [22, Proposition 4.8]. Here, ‘extends’ means
that the evident diagram

R

H∗
E H∗

E/ ker( f )

f f̃

commutes. This construction is functorial; the assignment (E, f ) �→ (E/ ker( f ), f̃ )
defines a functor rec : VR → AR , see [30, Section 4.6] for further discussion.

Remark 2.9 An extension of the work of Rector to the case of unstable algebras of
finite transcendence degree d is given by Henn et al. in [33, Part II]. Let Vd = (Z/p)d ,
considered as a profinite right End Vd -set i.e., a profinite set with a continuous right
action of the monoid End Vd . LetPS −End Vd denote the category whose objects are
profinite right End Vd -sets, and whosemorphisms are maps of profinite sets respecting
theEnd Vd -action, and letKd denote the categoryof unstable algebras of transcendence
degree d. In [33, Theorem II.2.4] Henn, Lannes, and Schwartz prove that the functor

sd : Kd → (PS − End Vd)
op, R �→ HomK(R, H∗

Vd )

induces an equivalence of categoriesKd/Nil1 → (PS−End Vd)op, where the inverse
equivalence is induced by the functor

bd : (PS − End Vd)
op → Kd , S �→ HomPS−End Vd (S, H∗

Vd ).

Here, the category K/Nil1 is the quotient category of K given by inverting all the F-
isomorphisms. In particular, the natural map R → (bd ◦ sd)(R) is an F-isomorphism
for all unstable algebras R ∈ Kd .

Moreover, if S is a Noetherian End Vd -set in the sense of [33, Definition 5.8], then
bd(S) is a Noetherian unstable algebra, and conversely if R is a Noetherian unstable
algebra, then sd(R) is a Noetherian End Vd -set [33, Theorem 7.1]. Moreover, to such
an S, one can associate a category R(S) which, in the case where S = sd(R) for
a Noetherian unstable algebra R, is Rector’s category AR , see the remark on page
1097 of [33]. Finally, Henn, Lannes, and Schwartz define the notion of the kernel of
an element of an End Vd -set, see [33, Section 5.2]. If R is a connected Noetherian
unstable algebra, and (E, f ) ∈ AR , then f is an element of sd(R), and the kernel
ker( f ) agrees with that considered in Remark 2.8.
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2.2 Lannes’T-functor

In this section we review Lannes’ T -functor, and some standard properties of it. This
section overlaps with [29, Section 2].

We recall that Lannes’ T -functor TE is left adjoint to − ⊗ H∗
E on the category of

unstable modules, i.e., there is an isomorphism

HomU (TEM, N ) ∼= HomU (M, H∗
E ⊗ N ),

for M, N ∈ U . Although it is relativity elementary to see that such a functor exists
(for example, by the adjoint functor theorem), the following results of Lannes [39] are
far more surprising.

Theorem 2.10 (Lannes) The functor TE : U → U is exact, and commutes with tensor
products. Moreover, it restricts to a functor TE : K → K.

For any unstable algebra R, we write T 0
E R for the Fp-vector space of degree 0

elements of TE R. By (2.3) this is a p-Boolean algebra, i.e., a commutative, unital,
Fp-algebra in which x p = x for any element x .

Given a K-morphism f : R → H∗
E , the adjoint is a map TE R → Fp. Since Fp is

concentrated in degree 0, we get a map T 0
E R → Fp. We can then define

TE (R; f ) = TE R ⊗T 0
E R

Fp( f ),

where Fp( f ) denotes Fp with the T 0
E R-module structure coming from the above map.

If R is Noetherian, then the T -functor decomposes as a finite direct sum of unstable
algebras (see for example the discussion around (2.6) of [29])

TE (R) =
⊕

f ∈HomK(R,H∗
E )

TE (R; f ).

The components TE (R; f ) are better behaved than TE (R) itself, in the sense that if R
is connected, then so are the TE (R; f ). If M ∈ R − U , then we also define

TE (M; f ) = TEM ⊗T 0
E R

Fp( f ).

The following is [22, Lemma 3.1].

Lemma 2.11 Let (E, f ) ∈ VR, then the set HomK(TE (R; f ), S) is naturally isomor-
phic to the set of K-maps g : R → H∗

E ⊗ S making the diagram

R H∗
E ⊗ S

H∗
E ⊗ Fp H∗

E ⊗ S0

g

f 1⊗εS

1⊗ξS
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commute, where εS : S → S0 is projection onto the degree 0 component, and
ξS : Fp → S0 is the unit inclusion.

Given a morphism φ : TE (R; f ) → S in K as in the previous lemma, we write φ#

for the corresponding map R → H∗
E ⊗ S, and call this the adjoint of φ. Likewise,

given a map g : R → H∗
E ⊗ S satisfying the conditions of the lemma, we call the

corresponding map TE (R; f ) → H∗
E the adjoint of g.

We will need the following maps, where εE : H∗
E → Fp is the canonical map.

Definition 2.12 Let R be a unstable algebra, and (E, f ) ∈ VR . We define maps:

(1) ηR,(E, f ) : R → H∗
E ⊗ TE (R; f ) as the adjoint of id : TE (R; f ) → TE (R; f ).

(2) ρR,(E, f ) : R → TE (R; f ) as the composite map (εE ⊗ 1) ◦ ηR,(E, f ).
(3) κR,(E, f ) : TE (R; f ) → H∗

E ⊗ TE (R; f ) as the adjoint to the composite

R
ηR,(E, f )−−−−→ H∗

E ⊗ TE (R; f )
�⊗1−−→ H∗

E ⊗ H∗
E ⊗ TE (R; f ).

As shown in [34, Section 1.13] for each E , the map κR,(E, f ) gives TE (R; f ) the
structure of a H∗

E -comodule.

Note that any map g : TE (R; f ) → S can be written as TE (R; f )
id−→ TE (R; f )

g−→
S, and taking adjoints we see that g# : R → H∗

E ⊗ S is isomorphic to the composite
(1 ⊗ g) ◦ ηR,(E, f ). This gives the following, which is the component-wise version of
[29, Lemma 2.3].

Lemma 2.13 For any map g : TE (R; f ) → S the diagram

R TE (R; f )

H∗
E ⊗ S S,

ρR,(E, f )

g# g

εE⊗1

commutes.

Proof As noted, g# factors as the composite (1 ⊗ g) ◦ ηR,(E, f ). It follows that

(εE ⊗ 1) ◦ g# ∼= (εE ⊗ 1) ◦ (1 ⊗ g) ◦ ηR,(E, f )

∼= g ◦ (εE ⊗ 1) ◦ ηR,(E, f )

∼= g ◦ ρR,(E, f )

as required. ��
The next result follows immediately from Lemma 2.13 and the definitions of the

maps involved.

Corollary 2.14 We have κR,(E, f ) ◦ ρR,(E, f ) ∼= ηR,(E, f ).
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The assignment (E, f ) �→ TE (M; f ) extends to a functor VR → R − U ; in fact,
if R is Noetherian, and M ∈ R f g −U , then using [30, Corollary 1.12] we even obtain
a functor AR → R f g − U . Given a morphism α : (E, f ) → (V , g) ∈ AR , we will
write Tα(g) : TE (R; f ) → TV (R; g) for the induced map. By naturality, we deduce
the following.

Lemma 2.15 For any morphism α : (E, f ) → (V , g) ∈ AR, there is a commutative
diagram

R H∗
E ⊗ TE (R; f )

H∗
V ⊗ TV (R; g) H∗

E ⊗ TV (R; g)

ηR,(E, f )

ηR,(V ,g) 1⊗Tα(g)

α∗⊗1

Finally, we have the useful result [34, Lemma 4.8].

Lemma 2.16 (Henn–Lannes–Schwartz) Let R be a Noetherian unstable algebra, M ∈
R f g − U , and α : E → E ′ an epimorphism. Then for each f ∈ HomK(R, H∗

E ′) the
map α induces an isomorphism

TE (M;α∗ f ) �−→ TE ′(M; f ).

Finally, it is worth pointing out the following result, which is a consequence of [39,
Proposition 2.1.3].

Lemma 2.17 If R is an unstable algebra concentrated in even degrees, then so are
TE (R) and TE (R; f ) for any (E, f ) ∈ AR.

Example 2.18 A fundamental computation is that of TE (H∗
G) where G is a compact

Lie group, due to Lannes [38,39]. More specifically, let E < G be an elementary
abelian p-subgroup, with induced map res∗G,E : H∗

G → H∗
E . The multiplication map

E × CE (G) → G induces a morphism H∗
G → H∗

E ⊗ H∗
CE (G). The adjoint to this

gives rise to an isomorphism

TE (H∗
G; res∗G,E ) ∼= H∗

CG (E).

Moreover, the maps ηH∗
G ,(E,res∗G,E ), ρH∗

G ,(E,res∗G,E ) and κH∗
G ,(E,res∗G,E ) are the maps

induced on cohomology by the obvious maps

E × CG(E) → G

CG(E) → G

E × CG(E) → CG(E).

Note that the claims of Corollary 2.14 and Lemma 2.16 are clear in this case.
It follows that TE (R; f ) plays the role of the ‘centralizer’ of the pair (E, f ) ∈ AR .

We investigate this analogy further in the following sections. ��
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2.3 The nilpotent filtration of an unstable algebra

In this section, we review Schwartz’s nilpotent filtration of the category of unstable
modules over the Steenrod algebra, and the associated localization functors of Henn,
Lannes, and Schwartz. We recall that in the previous section we introduced the cate-
gories U and K of unstable modules and unstable algebras over the Steenrod algebra
respectively. As noted in the introduction, Schwartz [56] introduced a natural filtration
on U , known as the nilpotent filtration. We take the following from [34].

Definition 2.19 Let M, N be unstable modules.

(1) M is called n-nilpotent if and only if every finitely generated submodule admits
a filtration such that each filtration quotient is an n-fold suspension.

(2) The categoryNiln is the full subcategory ofU that contains alln-nilpotentmodules.
(3) N is called Niln-reduced if and only if HomU (M, N ) = 0 for all M ∈ Niln ,

and Niln-closed if and only if ExtiU (M, N ) = 0 for i = 0, 1 and all n-nilpotent
modules M .

Further equivalent conditions for n-nilpotent modules, and more information about
the nilpotent filtration can be found in [57, Chapter 6], or the fundamental paper of
Henn et al. [34].

The nilpotent filtration leads to the following definition [34, Def. 3.5].

Definition 2.20 Let M be an unstable A-module, then the topological nilpotence
degree of M is

d0M := inf{k ∈ N|M is Nilk+1 -reduced}.

We note that if R is Noetherian, and M ∈ R f g − U , then d0(M) is finite [34,
Theorem 4.3]. In particular, d0(R) itself is finite.

There are a number of alternative characterizations of the number d0. For example,
the subcategories Niln are localizing, and the general theory of localization in abelian
categories implies there exists a functor Ln : U → U , and a natural transformation
λn : 1U → Ln such that LnM is Niln-closed, and λn has n-nilpotent kernel and
cokernel. In this case, we have

d0M = inf{k ∈ N|λk+1M is a monomorphism}.

Further equivalent characterizations can be found in [36, Definition 3.11]. One par-
ticular result of interest for us is the following, which is a direct consequence of [34,
Theorem 4.9].

Proposition 2.21 Let R be a Noetherian unstable algebra, and M ∈ R f g − U , then
for n ≥ d0(M) there is a monomorphism in R f g − U:

φM : M
∏

(E, f )∈AR

H∗
E ⊗ TE (M; f )≤n .
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induced by the product of the maps ηM,(E, f ).

Here we write K≤n for the quotient of a graded module K by all elements of degree
greater than n. Note that if K is an unstable module, then so is the quotient K≤n .

We also have the following properties of d0, which are a combination of [34,
Proposition 3.6] and [36, Proposition 3.12].

Proposition 2.22 Let M be an unstable module.

(1) If M is concentrated in finitely many degrees, then d0(M) ≤ n, where n is the top
degree in which M is non-zero.

(2) Let 0 → M ′ → M → M ′′ be an exact sequence in U , then d0M ′ ≤ d0M.
(3) Let 0 → M ′ → M → M ′′ → 0 be an exact sequence in U , then d0(M) ≤

max{d0(M ′), d0(M ′′)}.
(4) d0(M ⊗ M ′) = d0(M) + d0(M ′).
(5) d0(TEM) = d0(M).
(6) If M 
= 0, then d0(�nM) = d0(M) + n.

The topological nilpotence degree of a Noetherian unstable algebra R is related to
algebraic nilpotence in the following way, compare [37, Corollary 2.6].

Lemma 2.23 Let R be a connected Noetherian unstable algebra, and define t to be
d0(R) for p = 2, or d0(R) + dim(R) for p odd. Then t is the maximal integer d such
that rad(R)d 
= 0. In particular, for s > t , the product of any s nilpotent elements in
R is zero.

Proof Let dalg(R) be the maximal d such that rad(R)d 
= 0, so that our claim is
dalg(R) ≤ t . It is clear that

dalg(H∗
E ⊗ TE (R; f )≤d) ≤

{
dalg(TE (R; f )≤d) if p = 2

dalg(TE (R; f )≤d) + rank(E) if p > 2.

It then follows from Proposition 2.21 that

dalg(R) ≤
⎧
⎨

⎩

max
(E, f )∈AR

{dalg(TE (R; f )≤d0(R))} ≤ d0(R) if p = 2

max
(E, f )∈AR

{dalg(TE (R; f )≤d0(R)) + rank(E)} ≤ d0(R) + dim(R) if p > 2.

Here we have used that rank(E) ≤ dim(R) for each (E, f ) ∈ AR , see Proposi-
tion 2.7(2). It follows that dalg(R) ≤ t as claimed. ��
Remark 2.24 (The case of an odd prime) The cohomology of elementary abelian p-
groups (Example 2.4) shows already one significant difference between working at
p = 2 or working at an odd prime, namely the presence of the exterior classes. Many
of the fundamental results of unstable algebras therefore have slightly different forms
in the case of odd primes. One way to deal with these problems is to work with the
full subcategory U ′ ⊆ U consisting of unstable modules which are non-trivial only
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in even degrees. There is an obvious forgetful functor O : U ′ → U which has a right
adjoint Õ : U → U ′, see [43] for example, which is the largest submodule of M that
is concentrated in even degrees, or even more explicitly

ÕM =
⋂

θ∈A
ker(βθ : Mev → M).

Similarly, we have the category K′ of unstable algebras concentrated in even degrees.
At certain points it will be convenient for us to assume that our unstable algebra comes
from K′ (considered naturally as an object in K) when p is odd.

3 The center of a Noetherian unstable algebra

In this section, following Dwyer andWilkerson, we study central objects of a Noethe-
rian unstable algebra with respect to the objects of AR . The main new result, given
here as Theorem 3.13, is that up to isomorphism there is a maximal such element with
respect to a natural poset structure on AR . We also prove that for each central object
(E, f ) ∈ AR , the unstable algebra R naturally obtains the structure of a H∗

E -comodule,
which will be crucial for the calculation of d0(R).

3.1 Central objects of a Noetherian unstable algebra

Throughout this section we assume that R is a connected Noetherian unstable algebra.
It would suffice to assume that the module of indecomposables Q(R) is locally finite,
i.e., every element of Q(R) is contained in a finite A-submodule, however we have
no need for this greater generality.

We observe from Example 2.18 that if E ≤ G is a central elementary
abelian p-subgroup of a compact Lie group, then the map ρH∗

G ,(E,res∗G,E ) : H∗
G →

TE (H∗
G; res∗G,E ) is an isomorphism. Based on this is natural to make the following

definition.

Definition 3.1 (Dwyer–Wilkerson) Let R be a connected Noetherian unstable alge-
bra, then a pair (E, f ) ∈ AR is called central if ρR,(E, f ) : R → TE (R; f ) is an
isomorphism.

As noted, given a central elementary abelian p-subgroup E of a compact Lie group
G, the pair (E, res∗G,E ) is then central inside AH∗

G
. We will see later the converse is

true if G is a finite p-group, but not in general.
A useful criteria for recognizing central objects is given in [22, Proposition 3.4].

Proposition 3.2 (Dwyer–Wilkerson) A pair (E, f ) ∈ AR is central if and only if there
exists aK-map R → H∗

E⊗R which,when composedwith the projections H∗
E⊗R → R

and H∗
E ⊗ R → H∗

E gives, respectively, the identity map of R and the map f .

We now prove some basic facts about central objects, all of which are analogous to
standard statements about central subgroups of groups. We begin with the following
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result, which is an algebraic analog of the fact that if E is an elementary abelian
p-subgroup of a group G, then E is always a central subgroup of CG(E).

Proposition 3.3 Given (E, f ) ∈ AR, there is aK-map h : TE (R; f ) → H∗
E factoring

the map f : R → H∗
E . Moreover, the pair (E, h) is central in ATE (R; f ).

Proof We define the map h as the composite

TE (R; f )
κR,(E, f )

H∗
E ⊗ TE (R; f )

1⊗εTE (R; f )
H∗
E

To see that this factors the map f , note that

f ∼= (1 ⊗ εTE (R; f )) ◦ ηR,(E, f )

∼= (1 ⊗ εTE (R; f )) ◦ κR,(E, f ) ◦ ρR,(E, f )

= h ◦ ρR,(E, f ),

wherewe have usedLemma2.14. Finally, because f andρR,(E, f ) are finitemorphisms
(the latter by [30, Corollary 1.12], for example), so is h. The composite (εE ⊗ 1) ◦
κR,(E, f ) : TE (R; f ) → TE (R; f ) is the identity, and therefore (E, h) ∈ ATE (R; f ) is
central by Proposition 3.2. ��
Remark 3.4 The morphism h : TE (R; f ) → H∗

E is in fact a morphism of H∗
E -

comodules. In fact, unwinding the definitions of the maps involved, this is nothing
other than the statement of coassociativity for the H∗

E -comodule TE (R; f ).

We have the following behavior with respect to tensor products.

Lemma 3.5 Suppose R1 and R2 are Noetherian connected unstable algebras, and
(Ei , fi ) ∈ ARi is central for i = 1, 2, then (E1 ⊕ E2, f ) is central in AR1⊗R2 , where

f : R1 ⊗ R2 → H∗
E1⊕E2

is the composite R1 ⊗ R2
f1⊗ f2−−−→ H∗

E1
⊗ H∗

E2
∼= H∗

E1⊕E2
.

Proof This is an almost immediate consequence of the fact that the T -functor com-
mutes with tensor-products; there is a natural isomorphism TE1⊕E2(R1 ⊗ R2; f ) ∼=
TE1(R1; f1)⊗TE (R2; f2), and under this isomorphism ρR1⊗R2,(E1⊕E2, f ) corresponds
to ρR1,(E1, f1) ⊗ ρR2,(E2, f2). Alternatively, if φi : R → H∗

Ei
⊗ Ri is the K-map arising

via Proposition 3.2, then theK-map φ1⊗φ2 : R1⊗ R2 → H∗
E1⊕E2

⊗ R1⊗ R2 satisfies
the conditions of Proposition 3.2, and shows that (E1 ⊕ E2, f ) is central. ��

The next two lemmas are due to Dwyer–Wilkerson [22, Lemma 4.5 and Lemma
4.6]; the first is an immediate consequence of Proposition 3.2.

Lemma 3.6 (Dwyer–Wilkerson)Let (C, g)be inAR, andassume that (C, g) is central.

If C ′ is a subgroup of C, then (C ′, g′) is central where g : R
g−→ H∗

C
ι∗−→ H∗

C ′ , and
ι : C ′ → C is the inclusion.
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Remark 3.7 Let (E, f ) ∈ VR and (C, g) ∈ AR with (C, g) central. Observe that, by
adjunction, a map R → H∗

E ⊗ H∗
C can be specified by giving a K-map TC (R; g) →

H∗
E , or equivalently, using that (C, g) is central, a K-map R → H∗

E . We denote by
f � g : R → H∗

E ⊗ H∗
C the map corresponding to f , so that (E ⊕ C, f � g) ∈ VR .

Dwyer and Wilkerson show the following.

Lemma 3.8 (Dwyer–Wilkerson) Let (E, f ) ∈ VR and (C, g) ∈ AR with (C, g) cen-
tral. Then (E ⊕C, f � g) is the unique pair in VR which restricts to f (resp. g) along
the summand inclusion E → E ⊕ C (resp. C → E ⊕ C).

We observe that it is not necessarily the case that (E ⊕ C, f � g) ∈ AR , i.e., the
map f � g : R → H∗

E⊕C is not necessarily finite. As discussed in Remark 2.8, there

is a functor rec : VR → AR , given by (V , j) �→ (V / ker( j), j̃) and applying this to
the construction in Lemma 3.8 leads to the following definition.

Definition 3.9 Let (E, f ) and (C, g) be objects of AR , and assume that (C, g) is
central, then we let (E ◦ C, σ ( f , g)):= rec(E ⊕ C, f � g) be the object in AR cor-
responding to (E ⊕ C, f � g) ∈ VR , i.e., E ◦ C = E ⊕ C/ ker( f � g).

As a diagram, we can represent this as

H∗
E R H∗

C

H∗
E◦C

H∗
E⊕C

gf

σ( f ,g)

q∗

where q∗ is induced by q : E ⊕C → E ◦C , and the composite q∗ ◦σ( f , g) ∼= f �g.
Note that the natural maps E → E ◦ C , and C → E ◦ C , induce maps TE (R; f ) →
TE◦C (R; σ( f , g)) and TC (R; f ) → TE◦C (R; σ( f , g)).

3.2 The poset of central objects

Observe that the categoryAR has the property that every endomorphism is an isomor-
phism. Such a category is called an E I -category (see [42]), and the set of isomorphism
classes of objects is partially ordered by the relation

[(E, f )] ≤ [(V , g)] if HomAR ((E, f ), (V , g)) 
= ∅.

Recall that this implies that there exists a monomorphism ι : E ↪→ V such that the
diagram

R

H∗
E H∗

V

f g

ι∗



17 Page 20 of 56 D. Heard

We will write (E, f ) ⊆ (V , g) if [(E, f )] ≤ (V , g)].
Consider the full subcategory Acentral

R ⊂ AR consisting of the central objects. This
inherits the partial order from AR . We shall show that, with respect to this partial
order, Acentral

R has, up to isomorphism, a unique maximal element, i.e., there is, up to
isomorphism, a unique maximal central object in AR . To do this, we briefly recall the
definition of an under category.

Definition 3.10 Given (E, f ) ∈ AR , the under category (E, f ) ↓ AR is the category
with objects pairs (α, (V , g)) where α : (E, f ) → (V , g) is a morphism in AR , and
a morphism (α, (V , g)) → (α′, (W , h)) is a morphism f : (V , g) → (W , h) in AR

such that the diagram

(E, f )

(V , g) (W , h)

α α′

f

commutes.

A crucial observation is the following, which is shown in the proof of Proposition
4.10 of [22].

Proposition 3.11 (Dwyer–Wilkerson) Let (C, g) be central, then for any (E, f ) ∈ AR

the assignment (E, f ) �→ (E ◦C, σ ( f , g)) defines a functor σ : AR → (C, g) ↓ AR.
Moreover, the natural map

ι : TE (R; f ) → TE◦C (R; σ( f , g))

induced by E → E ◦ C is an isomorphism.

Corollary 3.12 If (C, g) and (E, f ) are central in AR, then so is (E ◦ C, σ ( f , g)).

Proof By the previous proposition ι : TE (R; f ) → TE◦C (R; σ( f , g)) is an iso-
morphism. Centrality of TE (R; f ) implies that ρR,(E, f ) : R → TE (R; f ) is an
isomorphism, and hence so is the composite ι ◦ ρR,(E, f ). Observe that ρR,σ ( f ,g) ∼=
ι ◦ ρR,(E, f ). This is clear because the map {e} → E ◦ C factors through {e} →
E . It follows that ρR,σ ( f ,g)) : R → TE◦C (R; σ( f , g)) is an isomorphism, and
(E ◦ C, σ ( f , g)) ∈ AR is central. ��
Theorem 3.13 With respect to the poset structure above, there exists a unique (up to
isomorphism) maximal central element (C, g) ∈ AR.

Proof By Proposition 2.7(1) there are only finitely many isomorphism classes of
objects in AR and hence Acentral

R . It follows that there exist maximal isomorphism
classes of central objects. We now show that there is a unique such isomorphism
class. To that end, suppose we are given two central objects (E, f ) and (V , g) in
AR . By Proposition 3.11 the pair (E ◦ V , σ ( f , g)) ∈ (E, f ) ↓ AR and by symmetry
(E ◦V , σ ( f , g)) ∈ (V , g) ↓ AR . In particular, we have (E, f ) ⊆ (E ◦V , σ ( f , g)) ⊇
(V , g). Moreover, by Corollary 3.12 (E ◦ V , σ ( f , g)) is central in AR . This implies
the result. ��
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Definition 3.14 Let R be a Noetherian unstable algebra, then the center (C, g) ∈ AR

is a choice of representative for the isomorphism class of the maximal central object
with respect to the poset structure on AR . We say that rank of the center is the rank of
the elementary abelian p-group C .

Example 3.15 (Mislin) The following example, due to Mislin [45], shows that if R =
H∗
G for a compact Lie group, then the center of H∗

G need not agree with the maximal
central elementary abelian p-subgroup ofG. LetG = �3 andwork at the prime 2, then
the inclusion C2 → �3 of a 2-Sylow subgroup induces an isomorphism H∗

�3
∼= H∗

C2
.

Moreover, we have TC2(H
∗
�3

; res∗�3,C2
) ∼= H∗

C�3 (C2)
∼= H∗

C2
. In particular, the map

H∗
�3

→ TC2(H
∗
�3

; res∗�3,C2
) is an isomorphism. This shows that the pair (C2, res∗�3,C2

)

is central in H∗
�3
. In fact, (C2, res∗�3,C2

) is the center of H∗
�3
. Note that �3 actually

has 3 conjugate elementary abelian subgroups of order 2, and that�3 has trivial group
theoretic center.

Mislin shows more generally that, at the prime p, the center of H∗
G is equal to the

maximal elementary abelian p-subgroup of the center of G/Op′(G), where Op′(G)

denote the largest p′-normal subgroup of G for p′ a prime not equal to p. Thus, if G
is a finite p-group, then the center of H∗

G is equal to the maximal central elementary
abelian p-subgroup of G, but not in general. In particular, if G is a finite p-group,
then the center of H∗

G is always non-trivial. ��
Example 3.16 (Modular invariant theory) Let V be a finite-dimensional Fp-vector
space, G a finite group such that p divides the order of G, and ρ : G → GLn(V ) a
faithful modular representation. We let F[V ] denote the graded algebra of polynomial
functions on V with generators in degree 2, which is a gradedFp-algebra with a unique
action of the Steenrod algebra. These operations commute with the action of G, and
define an action on F[V ]G , see [25, Section 5] or [49, Chapter 8] for more details.
Moreover, F[V ]G is a finitely-generated Fp-algebra, see for example, [49, Corollary
2.1.5]. In other words, F[V ]G defines a connected Noetherian unstable algebra.

Let i : U ↪→ V be the inclusion of an Fp-linear subspace U , then we can define a

morphism fU : F[V ]G ↪→ F[V ] i∗−→ F[U ] → H∗
U , which is a K-map. In fact every

morphism in AF[V ]G arises this way; Rector’s category AF[V ]G is equivalent to the
category of pairs (U , fU ) such that H∗

U is a finite F[V ]G-module via fU . This can be
deduced from the proof of Theorem 1.1 of [25]. Moreover, Dwyer andWilkerson also
prove that

TU (F[V ]G; fU ) ∼= F[V ]GU

where GU ≤ G is the pointwise stabilizer of U , i.e., GU = {g ∈ G | g · u = u}.
Let VG = {v ∈ V | g · v = v} denote the G-invariant subspace VG ⊆ V . It

follows from the discussion above that the center of F[V ]G is (VG, fV G ). Note that
because the representation is faithful, we have dimFp (V

G) < dimFp (V ), giving an
upper bound for the rank of the center. Moreover, if G is a p-group, then VG 
= 0, so
that the center is non-trivial in this case. This is a direct analogue of the fact that (non-
trivial) p-groups have non-trivial centers, and hence, in light of the previous example,
that the unstable algebra H∗

G always has non-trivial center when G is a p-group. ��
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Example 3.17 (Noetherian H -spaces) Suppose X is a connectedH -spacewithNoethe-
rian mod p-cohomology. The mod p cohomology is given by

H∗(X) ∼= F2[x1, . . . , xr ] ⊗ F2[y1, . . . , ys]
(y2

a1
1 , . . . , y2ass )

, (3.18)

when p = 2 see, for example, [1, Equation (5)] and

H∗(X; Fp) ∼= Fp[y1, . . . , ys]
(y21 , . . . , y

2
s )

⊗Fp[β y1, . . . , β yk, xk+1, . . . , xn]⊗ Fp[z1, . . . , zt ]
(z p

a1

1 , . . . , z p
at

t )
,

(3.19)
when p is odd, where β is the Bockstein [18, Corollary 2.7]. Note that in both cases
the generators cannot take arbitrary degrees, see [1, Theorem 1.6] when p = 2 and
[18, Proposition 2.8] when p is odd.

We claim that the center of H∗(X) has rank equal to the Krull dimension of H∗(X)

(note that this is the maximal possible rank by Proposition 2.7). Indeed, in both cases
there exists a map of Hopf algebras f : H∗(X) → H∗

E where E is elementary abelian
of rank equal to the Krull dimension of H∗(X) - when p = 2 this is [1, Theorem 2.2]
and when p is odd this is [18, Theorem 2.6]. This map is in fact the localization away
from Nil1 of H∗(X) and hence these morphisms are finite [34, Corollary 4.10]. That
they are central then follows from [21, Theorem 3.2 and Lemma 4.5], see also the
proof of Theorem 2.3 of [1]. ��

We now show that the center is well-behaved under tensor products of unstable
algebras.

Lemma 3.20 Suppose R1 and R2 are Noetherian connected unstable algebras with
center (Ci , gi ) ∈ ARi for i = 1, 2, then (C1 ⊕ C2, g) is the center of AR1⊗R2 , where

g : R1 ⊗ R2 → H∗
C1⊕C2

is the composite C1 ⊗ C2
f1⊗ f2−−−→ H∗

C1
⊗ H∗

C2
∼= H∗

C1⊕C2
.

Proof By Lemma 3.5 (C1 ⊕ C2, g) ∈ AR1⊗R2 is central, so it remains to show that
it is maximal. Suppose then that (C1 ⊕ C2, g) � (V , j) for some (V , j) ∈ AR1⊗R2 .

In particular, we have a monomorphism α : C1 ⊕ C2 → V . The composition C1
ι1

↪−→
C1 ⊕ C2

α−→ V is a monomorphism, and so we may identify C1 with ι1α(C1) ⊂
V and choose a complement V1 of C1, and similar for C2. We can then produce
(Vi , ji ) ∈ ARi for i = 1, 2 such that (C1, g1) ⊆ (V1, j1) and (C2, g2) ⊆ (V2, j2).
From centrality of (V , j) we easily see that (Vi , ji ) ∈ ARi is central. We now observe
that either (C1, g1) � (V1, j1) or (C2, g2) � (V2, j2) for otherwise we could not have
(C1 ⊕ C2, g) � (V , j). This contradicts the assumption that (Ci , gi ) is the center of
Ri , and so (C1 ⊕ C2, g) is maximal, and hence is the center of AR1⊗R2 . ��
Example 3.21 We now consider three unstable algebras which we shall see have trivial
center, as suggested by the referee.

(1) Consider the square-zero extension R = F2[x] ⊕ �F2 where |x | = 1, or equiv-
alently R = H∗

Z/2 ⊕ �F2. Let f : R → H∗
Z/2 denote the projection map. Since

TZ/2(−; f ) is exact, we must compute TZ/2(F2[x]; f ) and TZ/2(�F2; f ). Both
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are well-known from Lannes’ computations: TZ/2(F2[x], f ) ∼= F2[x], while
TZ/2(�F2; f ) ∼= �TZ/2(F2; f ) is trivial. In this case, the map ρR,(Z/2, f ) : R →
TZ/2(R; f ) is not an isomorphism, so (Z/2, f ) ∈ AR is not central. This is in fact
the only non-trivial element in AR , so we conclude that the center is trivial.
An alternative way to see that the center must be trivial is to note that the depth
(see Appendix B) of R is 0. By Corollary B.7 the depth of R is always at least the
rank of the center; in particular, if depth(R) = 0, then the center must be trivial.

(2) Let R denote the sub-algebra of F2[x] omitting the class of degree 1. In this case,
the category AR contains only the trivial subgroup (because R has no class in
degree 1), and therefore R has trivial center.

(3) Let F2[x] denote the augmentation ideal of F2[x], then consider the unstable

algebra R = F2⊕F2[x]⊕2
. There are twomaps R → H∗

Z/2 given by the projection

ontoF2[x] and the inclusionmap. A similar argument to (1) shows that thesemaps
cannot be central, and so R has trivial center.

3.3 Hopf algebras and comodules

One of the key properties of H∗
G used by Kuhn is that for a central elementary abelian

subgroup C , H∗
G is a H∗

C -comodule, and moreover the restriction map H∗
G → H∗

C is
a morphism of H∗

C -comodules. A similar result occurs for general unstable algebras.

Proposition 3.22 Let R be a connected Noetherian unstable algebra and (V , j) ∈
Acentral
R , then R is a H∗

V -comodule, and j : R → H∗
V is a morphism of H∗

V -comodules.
In particular, the image of j is a sub-Hopf algebra of H∗

V .

Proof We recall that κR,(V , j) : TV (R; j) → H∗
V ⊗ TV (R; j) makes TV (R; j) into a

H∗
V -comodule; since ρR,(V , j) is central, it follows that R is also a H∗

V -comodule.
That j : R → H∗

V is a morphism of H∗
V -comodules follows from a diagram chase.

Indeed, the diagram

R H∗
V ⊗ R H∗

V

H∗
V ⊗ R H∗

V ⊗ H∗
V ⊗ R H∗

V ⊗ H∗
V .

�R,(V , j)

�R,(V , j)

1⊗εR

�⊗1 �

1⊗�R,(V , j) 1⊗1⊗εR

commutes, and the top composite is j , while the bottom composite is 1 ⊗ j . Here
�R,(V , j) denotes the comodule structure map.

To see that the image K of j is a sub-Hopf algebra of H∗
V follows as in the proof

of Theorem 1.2 of [3]. We recall their argument here: The map j is a morphism of
H∗
V -comodule algebras, and therefore K is a sub-comodule algebra of H∗

V . Because
H∗
V is a commutative Hopf algebra, the restriction of the diagonal in H∗

V to K has
image in K ⊗ K , and hence K is a sub-Hopf algebra of H∗

V . ��
We have the following corollary which, as noted in [3, Remark 1.3], follows from

the Borel structure theorem [46, Theorem 7.11].
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Corollary 3.23 There is a basis x1, . . . , xc for H1
V such that

K =
{

F2[x2 j1
1 , . . . , x2

jc
c ] if p = 2

Fp[y p
j1

1 , . . . , y p
jb

b , yb+1, . . . , yc] ⊗ 
(xb+1, . . . , xc) if p is odd,
(3.24)

for some natural numbers j1 ≥ j2 ≥ · · · , and where yi = βxi for β the Bockstein
homomorphism.

Now suppose we are given (V , j) in Acentral
R and a non-trivial homomorphism

α : (V , j) → (E, f ) in AR ; in particular, there is a monomorphism α : V ↪→ E , and
(E, f ) need not be central. As discussed previously, TV (R; j) is a H∗

V -comodule via
κR,(V , j) and TE (R; f ) is a H∗

E -comodule via κR,(E, f ). Moreover, if we compose with
the coalgebra morphism α∗ : H∗

E → H∗
V , then TE (R; f ) becomes a H∗

V -comodule
via α∗ ◦ κR,(E, f ), and moreover Tα( f ) : TV (R; j) → TE (R; f ) is a morphism of
H∗
V -comodules, see the discussion (before passing to components) on the bottom of

page 30 of [34]. In particular, the following diagram commutes:

TV (R; j) TE (R; f )

H∗
V ⊗ TV (R; j) H∗

V ⊗ TE (R; f )

Tα( f )

κR,(V , j) α∗◦κE,(R, f )

1⊗Tα( f )

This leads to the following result.

Lemma 3.25 Suppose R is a connectedNoetherian unstable algebra, (V , j) is central,
and that (V , j) ⊆ (E, f ) (so that there is a non-trivial homomorphism α : (V , j) →
(E, f ) in AR). With the comodule structures as described above, ρR,(E, f ) : R →
TE (R, f ) is a morphism of H∗

V -comodules.

Proof By definition of the comodule structures, we must show that the diagram

R TE (R; f )

TV (R; j) TE (R; f )

H∗
V ⊗ TV (R; g) H∗

V ⊗ TE (R; f )

H∗
V ⊗ R H∗

V ⊗ TE (R; f )

ρR,(C,g) ∼=

ρR,(E, f )

Tα( f )

κR,(V , j) α∗◦κR,(E, f )

1⊗Tα( f )

1⊗ρR,(V , j) ∼=

1⊗ρR,(E, f )
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commutes. To see that the top and bottom square commute, we use Lemmas 2.13 and
2.15 and the definition of Tα( f ) to see that there are isomorphisms

Tα( f ) ◦ ρR,(V , j) ∼= (εV ⊗ 1) ◦ (1 ⊗ Tα( f )) ◦ ηR,(V , j)

∼= (εV ⊗ 1) ◦ (α∗ ⊗ 1) ◦ ηR,(E, f )

∼= (εE ⊗ 1) ◦ ηR,(E, f ) = ρR,(E, f ).

Finally, the middle square commutes by the fact that Tα( f ) is a morphism of H∗
V -

comodules. Thus, the diagram commutes as claimed. ��
We also require the following technical lemma. We are grateful to the referee for

simplifying the proof. We recall our usual notation: if (E, f ) ∈ AR , then there exists
h : TE (R; f ) → H∗

E with (E, h) ∈ Acentral
TE (R; f ) (Proposition 3.3).

Lemma 3.26 Let R be a Noetherian unstable algebra and suppose (E, f ) ∈ AR.
Suppose furthermore that (E, h) ⊆ (V , j̃) for (V , j̃) ∈ ATE (R; f ). Then, j̃# : R →
H∗
E ⊗ H∗

V
∼= H∗

E⊕V is equivalent to the composite

R
ρR,(E, f )−−−−→ TE (R; f )

j̃−→ H∗
V

μ∗
−→ H∗

E⊕V

where the last map is induced by μ : E ⊕ V → V sending (e, v) �→ ι(e) + v, where
ι : E → V denotes the inclusion.

Proof Because (E, h) ∈ Acentral
TE (R; f ) we can apply Lemma 3.8 to define ( j̃ ⊕

h) : TE (R; f ) → H∗
E⊕V . Moreover, the explicit construction given in Remark 3.7,

along with the uniqueness part of Lemma 3.8, show that the following diagram com-
mutes:

R

TE (R; F) H∗
E⊕V

H∗
V

ρR,(E, f )
j̃#

j̃

j̃⊕h

μ∗

Therefore j̃# = ( j̃ ⊕ h) ◦ ρE,(E, f ) = μ∗ ◦ j̃ ◦ ρR,(E, f ), as claimed. ��
This technical lemma is used in the following, which is a T -functor version of the

observation that if G is a group and E and V are elementary abelian p-subgroups of
G, withZ(CG(E)) < V < CG(E), then CCG (E)(V ) ∼= CG(V ), whereZ(−) denotes
the maximal central elementary abelian p-subgroup of a group.

Proposition 3.27 With assumptions as in the previous lemma, we have

TV (TE (R; f ); j̃) ∼= TV (R; j)
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where j = ρR,(E, f ) ◦ j̃ .

Remark 3.28 The situation of the proposition is displayed in the following diagram:

H∗
E H∗

V
ι∗

TE (R; f )

h
j̃

R
ρR,(E, f )

j

Proof Applying [22, Proposition 3.3] and Lemma 3.26 there are isomorphisms

TV (TE (R; f ); j̃) ∼= TE⊕V (R; j̃#) ∼= TE⊕V (R;μ∗ ◦ j).

Since μ is an epimorphism we have

TE⊕V (R;μ∗ ◦ j) ∼= TV (R; j)

by Lemma 2.16. Combining these isomorphisms gives the result. ��

3.4 Central elements and the nilpotence degree

The goal of this subsection is to improve the result Proposition 2.21 in the caseM = R;
more specifically, to prove that we only need to consider those (E, f ) ∈ AR for which
(C, g) ⊆ (E, f ). The proof will be based on the corresponding result for finite groups,
due to Kuhn [36, Theorem 4.4].

To begin, we recall that given a category C the twisted arrow category C# is the
category whose objects are the morphisms of C, and a morphism from f : C → D
to f ′ : C ′ → D′ is a pair of morphisms u : C → C ′, v : D′ → D in C such that the
following diagram commutes:

C
f

u

D

C ′
f ′ D′.

v

The work of Henn et al. [34] discussed briefly in Sect. 2.3, can be rephrased in terms
of the twisted arrow category of AR . In particular, following the discussion in [34,
(1.17.4)] the fundamental result [34, Theorem 4.9] can equivalently be given as the
statement that for R aNoetherian unstable algebra andM ∈ R−U there is amorphism

M → lim
α:(E, f )→(E ′, f ′)

[
Eq

{
H∗
E ⊗ (TE ′ (M; f ′))≤n

μ(α)−−−−⇒
ν(α)

H∗
E ⊗ (H∗

E ⊗ (TE ′ (M; f ′)))≤n

}]

(3.29)
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which is localization away from Niln . Here the limit is taken over the twisted arrow
categoryA#

R , and Eq denotes the equalizer. Themapsμ(α) and ν(α) are defined in [34,
(1.16.2)]; it will not prove important in what follows to have an explicit description
of them, so we omit it.

Now let R be a connected Noetherian unstable algebra with center (C, g) and
recall that Dwyer–Wilkerson have constructed a functor σ : AR → (C, g) ↓ AR , see
Proposition 3.11. Generalizing a result of Kuhn about finite groups [36, Theorem 4.4],
we now show the following.

Theorem 3.30 In the case M = R of (3.29), the limit can be taken over the category
((C, g) ↓ AR)#.

Proof The proof will be the essentially the same as Kuhn’s, just translated into the
language of unstable algebras. To that end, let α : (E, f ) → (E ′, f ′) be a morphism
in AR , and let αC denote the composite morphism in AR

αC : (E, f )
α−→ (E ′, f ′) → (C ◦ E ′, σ ( f ′, g)).

Let us now define morphisms fα : αC → α and gα : αC → σ(α) in A#
R via the

following commutative diagram in AR :

(E, f ) (E, f ) (C ◦ E, σ ( f , g))

(E ′, f ′) (C ◦ E ′, σ ( f ′, g))) (C ◦ E ′, σ ( f ′, g))
α αC σ(α)

Now [36, Lemma 4.5] goes through with an essentially unchanged proof: for any
contravariant functor F : AR → ModFp such that for all α : (E, f ) → (E ′, f ′),
F( fα) : F(α) → F(αC ) is an isomorphism, the canonical map

� : lim
α∈A#

R

F(α) → lim
α∈((C,g)↓AR)#

F(α)

is an isomorphism. This applies in particular to F(α) = H∗
E and F(α) = TE ′(R; f ′);

the first is clear, and the latter follows from Proposition 3.11. As with [36, Theorem
4.4] this completes the proof, as the limit in (3.29) is built from these two examples
by constructions that preserve isomorphisms. ��

Using [34, (1.17.4)] again, we can improve on their Theorem 4.9.

Theorem 3.31 Let R be a connected Noetherian unstable algebra with center (C, g),
then the morphism

R → Eq

⎧
⎨

⎩
∏

(E, f )

H∗
E ⊗ (TE (R; f ))≤n

ν−−⇒
μ

∏

α:(E ′, f ′)→(E ′′, f ′′)
H∗
E ′ ⊗ (H∗

E ′ ⊗ TE ′′ (R; f ′′)))≤n

⎫
⎬

⎭
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induced by the maps ηR,(E, f ) is localization away from Niln (the products in this
formula are taken over all objects of (C, g) ↓ AR resp. over all morphisms of (C, g) ↓
AR).

Finally, we have the following important corollary, which is the promised improve-
ment of Proposition 2.21.

Corollary 3.32 Let R be a connected Noetherian unstable algebra with center (C, g),
then for n ≥ d0(R) there is a monomorphism in R f g − U

φ′
R : R

∏

(C,g)⊆(E, f )∈AR

H∗
E ⊗ TE (R; f )≤n .

induced by the product of the maps ηR,(E, f ).

4 The topological nilpotence degree of the central essential ideal

In this section we introduce the central essential ideal CEss(R) of a connected Noethe-
rian algebra R, following the definition of Kuhn for compact Lie groups. We give an
upper bound for d0(CEss(R)), and prove that CEss(R) is non-zero if and only if the
depth of R is equal to the rank of the center of R (Definition 3.14).

4.1 The central essential ideal

We recall that in [37] Kuhn defines the central essential ideal for a compact Lie group
G to be the kernel of the map

H∗
G

∏

C(G)�E

H∗
CG (E),

where the product is taken over those elementary abelian p-subgroups of G strictly
containing the maximal central subgroup C(G). The analog for a general unstable
algebra R replaces H∗

G with R and H∗
CG (E) with components of the T -functor.

Definition 4.1 Let R be a connected Noetherian unstable algebra with center (C, g) ∈
AR , then the central essential ideal CEss(R) is defined by

0 CEss(R) R
∏

ρR,(E, f ) ∏

(C,g)�(E, f )∈AR

TE (R, f ).

Note that CEss(R) is independent of the choice of representative for the center. More-
over, by replacingAR by a choice of skeleton if necessary, we can assume this product
is finite (see Proposition 2.7).
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Lemma 4.2 CEss(R) is a sub-H∗
C-comodule of R.

Proof This is a consequence of Lemma 3.25. ��
The main result of this section is the following. We refer the reader to Appendix

B for a brief discussion on the basic commutative algebra needed in this section, in
particular, for the definition of the depth and dimension of an R-module.

Theorem 4.3 Let R be a connected Noetherian unstable algebra with center (C, g) ∈
AR. Let c(R) be the rank of C, then the Krull dimension of the R-module CEss(R) is
at most c(R).

The proof will require some preliminary results.We recall the following definitions,
due to Henn [30] and Powell [51].

Definition 4.4 Let R be a Noetherian unstable algebra, and M ∈ R − U .
(1) (Henn) The T -support of M is

T − supp(M) = {(E, f ) ∈ AR | TE (M; f ) 
= 0}.

(2) (Powell) The R − U transcendence degree of M is

TrDegR−U (M) = sup{rank(E) | (E, f ) ∈ T − supp(M)}.

The following result justifies the terminology of the R − U transcendence degree,
see [51, Proposition 7.2.6].

Proposition 4.5 (Powell) Let M ∈ R f g − U , then

TrDegR−U (M) = dimR(M).

The proof relies on the existence of Brown–Gitler modules JR(n) in the category
R −U (see [30, Section 1.5]), which represent the functor M �→ (Mn)∗, where ()∗ is
the vector space dual. Given (E, f ) ∈ AR , we define an injective object I(E, f )(n) in
R−U as H∗

E ⊗ JTE (R; f )(n) [30, Proposition 1.6]. In fact, if R is a Noetherian unstable
algebra, then I(E, f )(n) is even injective in R f g − U . From the definitions (see also
[51, Lemma 6.1.7]) we have

HomR−U (M, I(E, f )(n)) ∼= (TE (M; f )n)∗. (4.6)

We now present the proof of Proposition 4.5.

Proof (Powell) Since Powell’s work is not published, we sketch Powell’s proof here.
To that end, let R = R/AnnR(M), which is a Noetherian unstable algebra (note
that the annihilator ideal is closed under the action of the Steenrod algebra) such that
α : R → R is a morphism of unstable algebras, and letM ∈ R f g−U denote the object
obtained by inducing M along the morphism α, so that M ∼= α∗M . Standard base



17 Page 30 of 56 D. Heard

change results about Lannes’ T -functor show that TrDegR−U (M) = TrDegR−U (M)

see [51, Proposition 7.2.2(1)] (if the reader prefers a published reference, this is also
easily deduced from the formulas on page 1756 of [48]).

Now dimR(M) = dim(R) = max{rank(E) | (E, f ) ∈ AR} ≥ TrDegR−U (M) by
Proposition 2.7, which gives one inequality.

For the reverse inequality, we recall that the Dickson invariants are defined by

Dn = (H∗
(Z/2)n )

GLn(Z/2) for p = 2

and

Dn = (Pn)
GLn(Z/p) for p > 2

where Pn is the subalgebra of H∗
(Z/p)n generated by βH1

(Z/p)n . As is well known, Dn ∼=
Fp[c1, . . . , cn]. Then, for s another non-negative integer, one lets Dn,s denote the
subalgebra of Dn whose elements are the ps -th powers of elements Dn , which naturally
obtains an action of the Steenrod algebra. Specifically, Dn,s ∼= Fp[cp

s

1 , . . . , cp
s

n ].
Suppose now that dim(R) = n, then by [14, Appendix A] there exists a natural
number s and a monomorphism of unstable algebras ι : Dn,s → R for which R is
a finitely-generated Dn,s-module. We let ωι denote the image of the top Dickson

invariant cp
s

n . Because M is Noetherian, the localization M[ω−1
ι ] is non-trivial.

By [30, Theorem 1.9] there exists an embedding in R − U

M ↪→
⊕

i∈I
I(Ei , fi )(ai )

where each component is non-trivial, and (Ei , fi ) ∈ AR , so that, in particular by
Proposition 2.7(2), rank(Ei ) ≤ n. Using exactness of localizations, there exists an
i ∈ I for which I(Ei , fi )(ai )[ω−1

ι ] 
= 0. By [51, Lemma 7.1.4] we have rank(Ei ) = n.
By (4.6) TEi (M; fi ) 
= 0, and hence T − supp(M) ≥ n = dimR(M). In particular,
TrDegR−U (M) ≥ dimR(M), as required. ��

Wewill need the following computation,which is an almost immediate consequence
of [30, Lemma 3.6]. The proof is given in [29, Proposition 3.14].

Proposition 4.7 Let R be a Noetherian unstable algebra and M ∈ R f g − U , then

TrDegR−U (H∗
E ⊗ TE (M; f )≤n) ≤ rank(E).

Finally, we also need the following result, also due to Powell [51, Proposition 7.3.1].
The proof is also given in [29, Proposition 3.17].

Proposition 4.8 (Powell) Let M be non-trivial and M ↪→ N a monomorphism in
R f g − U , then

TrDegR−U (M) ≥ depthR(N ).
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With these preparations, we can now prove Theorem 4.3.

Proof of Theorem 4.3 If CEss(R) = 0 then the result is clear, thus we can assume that
CEss(R) 
= 0. By Proposition 3.32 we can find n large enough so that

λ : R
∏

(C,g)⊆(E, f )

H∗
E ⊗ TE (R; f )≤n

is a monomorphism in R f g − U . We factor λ as a product λ = λ>c × λ′ where

λ>c : R
∏

(C,g)�(E, f )

H∗
E ⊗ TE (R; f )≤n

and

λ′ : R H∗
C ⊗ TC (R; g)≤n

Recall that ηR,(E, f ) ∼= κR,(E, f ) ◦ ρR,(E, f ) so that we can factor λ>c:

R
∏

(C,g)�(E, f ) H
∗
E ⊗ TE (R; f )≤n

∏
(C,g)�(E, f ) TE (R; f )

λ>c

ρ>c

where ρ>c is the product of the maps ρR;(E, f ) for (C, g) � (E, f ). In particular,
CEss(R) = ker(ρ>c). The factorization shows that CEss(R) is contained in the kernel
of λ>c, and since λ is injective, we deduce that the restriction of λ′ to CEss(R) ⊂ R is
injective. We deduce thatTrDegR−U (CEss(R)) ≤ TrDegR−U (H∗

C ⊗TC (R; f )<n) ≤
c(R), where the last inequality uses Proposition 4.7. By Proposition 4.5 we have
TrDegR(CEss(R)) = dimR(CEss(R)) ≤ c(R), as claimed. ��

For the following, we recall that if R is a connected Noetherian unstable algebra
with center (C, g) then the depth of R is always at least equal to the rank of C , see
Corollary B.7.

Corollary 4.9 Let R be a connected Noetherian algebra with center (C, g) and let
c(R) = rank(C). If CEss(R) 
= 0, then depth(R) = c(R), and dimR(CEss(R)) =
c(R).

Proof Assume that CEss(R) 
= 0, then by Corollary B.7, the previous result, and
Proposition 4.8 we have

c(R) ≤ depth(R) ≤ TrDegR−U (CEss(R)) ≤ c(R).

Thus, depth(R) = TrDegR−U (CEss(R)) = dimR(CEss(R)) = c(R). ��
We will prove the converse in Theorem 4.25.
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4.2 Primitives and indecomposables

Let R be a connected Noetherian unstable algebra with center (C, g).1 Since (C, g) ∈
AR the morphism g is finite, and so the following is well defined.

Definition 4.10 Let e(R) denote the maximum degree of a generator (with respect to a
minimal generating set) for H∗

C as a R-module, or equivalently the top nonzero degree
of the finite dimensional Hopf algebra H∗

C ⊗R Fp.

We recall from Proposition 3.22 and Corollary 3.23 that g : R → H∗
C is a morphism

of H∗
C -comodules, and that there is a basis x1, . . . , xc for H1

C such that

Im(g) =
{

F2[x2 j1
1 , . . . , x2

jc
c ] if p = 2

Fp[y p
j1

1 , . . . , y p
jb

b , yb+1, . . . , yc] ⊗ 
(xb+1, . . . , xc) if p is odd,
(4.11)

for some natural numbers j1 ≥ j2 ≥ · · · , and where yi = βxi for β the Bockstein
homomorphism. We then have

e(R) =
c∑

i=1

(ai − 1).

where

ai =

⎧
⎪⎨

⎪⎩

2 ji p = 2

2p ji p odd, and 1 ≤ i ≤ b

1 otherwise.

In order to proceed, we need onemore definition, due to Kuhn [37, Definition 2.15].

Definition 4.12 ADuflot algebra of R is a subalgebra B ⊆ R thatmaps isomorphically
to K = Im(R → H∗

C ).

Since the image K is a free graded-commutative algebra over Fp, such Duflot
algebras always exist (as the natural epimorphism R → K always splits).

Given a Noetherian unstable algebra R, we fix a Duflot algebra B ⊆ R.

Definition 4.13 If M is a graded B-module, then the space of indecomposables is

QBM
def= M ⊗B Fp = M/B>0M .

We let eindec(M) be its largest nonzero degree, or −∞ if M = 0.

As shown in Lemma 4.2, CEss(R) is a sub H∗
C -comodule of R. Moreover, it is

an unstable module, as it is the kernel of a morphism of unstable modules, and the
comodule structure map is a morphism of unstable modules. Comodules with this
additional structure are called unstable H∗

C -comodules in [37].

1 We allow the case where the center is trivial. In this case a H∗
C -comodule is simply an Fp-module.
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Definition 4.14 Let M be an unstable H∗
C -comodule, then the modules of primitives

is

PCM = {x ∈ M : �M = 1 ⊗ x} = Eq{M �M−−−−⇒
i

H∗
C ⊗ M},

where �M : M → H∗
C ⊗ M is the comodule structure map and i(x) = 1 ⊗ x

We let eprim(CEss(R)) denote the supremum of the degrees in which PC (CEss(R))

is non-zero, with the convention that this is −∞ if CEss(R) = 0.

Remark 4.15 If R has trivial center, then the constructions still make sense, where
e(R) = 0, and QB CEss(R) ∼= PC CEss(R) ∼= CEss(R).

Remark 4.16 Note that QBM will not necessarily be an unstable module because B is
not necessarily closed under Steenrod operations. On the other hand PCM is always
an unstable module.

The following lemma is proved by Totaro for Chow rings of finite p-groups [59,
Lemma 12.10]–the proof goes through essentially without change here.

Lemma 4.17 Let R be a Noetherian unstable algebra, with center (C, g). Let M be a
non-negatively graded R-module that is also a H∗

C-comodule, such that the morphism
R⊗ M → M is a morphism of H∗

C-comodules. Let B ⊆ R be a Duflot algebra. Then,

(1) M is a free B-module
(2) The composite PCM ↪→ M � QBM is injective.

Proof We follow Totaro [59, Lemma 12.10]. To that end, let L = ker(g : R → H∗
C ),

and letMi = Li M ⊂ M for i ≥ 0, where Li denotes theFp-linear span of all products
of i elements of the ideal L . This gives a filtration of M by R-modules.

By Proposition 3.22 g : R → H∗
C is a morphism of H∗

C -comodules, and hence L is
a sub-H∗

C -comodule of R. Let�M : M → H∗
C ⊗M denote the H∗

C -comodule structure
map for M , and �R the corresponding comodule structure map for R. By assumption
there is a commutative diagram

R ⊗ M M

(H∗
C ⊗ R) ⊗ (H∗

C ⊗ M) H∗
C ⊗ M

�R⊗�M �M

Since L is a sub-H∗
C -comodule, this diagram implies that LM ⊂ M is a H∗

C -comodule.
By induction we see that Mi is a sub-H∗

C -comodule for all i ≥ 0.
For each i ≥ 0 it follows that gri M = Mi/Mi+1 is a H∗

C -comodule. It is also a

module over K = Im(R
g−→ H∗

C ), whichwe have seen is a sub-Hopf algebra of H∗
C . By

assumption, the H∗
C -comodule structure and the R-module structure are compatible.

Applying a lemma of Kuhn [36, Lemma 5.2] we deduce that gri M is a free B-module,
and the composite PC (gri M) ↪→ gri M � QB(gri M) is injective, for each i ≥ 0.
The filtration of M given by the Mi is separated, and so the fact that each gri M is a
free B-module implies that M is also a free B-module. ��
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Theorem 4.18 Let R be a connected Noetherian unstable algebra with center (C, g),
and fix a Duflot algebra B of R.

(1) CEss(R) is a finitely-generated free B-module, i.e., a Cohen–Macaulay module.
(2) The composite PC CEss(R) ↪→ CEss(R) � QB CEss(R) is monic.
(3) There is an exact sequence

0 QB CEss(R) QBR
∏

(C,g)�(E, f )

QBTE (R, f )

Proof Everything in (1) and (2) except for the claim that CEss(R) is finitely-generated
is a consequence of the previous lemma with M = CEss(R). Now, B has Krull
dimension equal to the rank of C , namely c(R). Since we know CEss(R) is a free
B-module, it suffices to check that the Krull dimension of CEss(R) is at most c(R),
which is Theorem 4.3.

For (3), consider the left exact sequence

0 CEss(R) R
∏

(C,g)�(E, f )

TE (R, f )
∏

ρR,(E, f )

Note that these are R-modules and H∗
C -comodules in a compatible way.We can apply

Lemma 4.17 to the images and cokernels of these maps to deduce that they are free
B-modules. It follows that the maps split, and we have an exact sequence as claimed.

��
Corollary 4.19 If CEss(R) 
= 0, then we have d0(CEss(R)) = eprim(CEss(R)). In
general, eprim(CEss(R)) ≤ eindec(CEss(R)) < ∞.

Proof The stated inequality is an immediate consequence of Theorem 4.18(2) applied
to M = CEss(R).

For the first claimwe use [37, Lemma 2.11] in which Kuhn proves that any unstable
H∗
C -comodule with PCM finite-dimensional has the property that d0M = eprim(M)

(under our conventions this is only true if M 
= 0). Using Theorem 4.18(2) again, we
see that if QA CEss(R) is finite-dimensional, then so is PC CEss(R). But it is clear that
if CEss(R) is a finitely-generated B-module, then QB CEss(R) is finite-dimensional,
and this is a consequence of Theorem 4.18(1). The first part of the corollary then
follows by applying Kuhn’s lemma to M = CEss(R). ��

4.3 Regularity and eindec(CEss(R))

We now give the following version of [37, Proposition 2.27]. This proposition is the
first point of the paper we need to make some assumptions on the Duflot algebra. In
particular, we make the following hypothesis, which is in effect for the rest of this
section.
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Hypothesis 4.20 R is a connected Noetherian unstable algebra whose Duflot algebra
B is polynomial.

Remark 4.21 This always holds if p = 2, or if R is concentrated in even degrees (i.e.,
R is naturally an element of U ′, see Remark 2.24).

For the following, we let m = R>0 denote the maximal homogeneous ideal of R,
and let

H0
m(M) = {x ∈ M | there exists n ∈ N with mnx = 0}.

denote the m-torsion functor for an R-module M (see Appendix B). This has right
derived functors, Hi

m(M), the i-th local cohomology of M . We note that since R
and M are graded, so are these local cohomology modules, although we will usually
suppress the internal grading.

Proposition 4.22 Let R be a connected Noetherian unstable algebra with Duflot alge-
bra B, then

QB CEss(R) = H0
m(QB CEss(R)) = H0

m(QBR).

Proof The first equality follows because QB CEss(R) is finite-dimensional. For the
second, consider the left exact sequence of Theorem 4.18(3):

0 QB CEss(R) QBR
∏

(C,g)�(E, f )

QBTE (R, f )

This gives a left exact sequence

0 H0
mQB CEss(R) H0

mQBR
∏

(C,g)�(E, f )

H0
mQBTE (R, f )

Thus we must show that whenever (C, g) � (E, f ), we have H0
mQBTE (R, f ) = 0.

Fix such a pair (E, f ).
By assumption, the Duflot algebra B is polynomial, say B ∼= Fp[ f1, . . . , fc], and

moreover by Lemma 4.17 H∗
E is a free B-module, so that the sequence f1, . . . , fc is

regular by Lemma B.3. The cohomology H∗
E is Cohen–Macaulay, and hence QBH∗

E
is also Cohen–Macaulay, of Krull dimension r − c, where r is the p-rank of E (as the
quotient of a Cohen–Macaulay ring by a regular sequence is still Cohen–Macaulay,
see [4, Theorem 2.1.3]). We note that r > c by the assumption that (C, g) � (E, f ).
It follows that depth(QBH∗

E ) = r − c > 0.
Because H∗

E is a finitely generated R-module via f so is the quotient ring QBH∗
E .

It follows from Lemma B.5 that

r − c = depth(QBH
∗
E ) = depthR(QBH

∗
E ).
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In particular, by Lemma B.3 there exists elements yi ∈ m = R>0 such that
QBH∗

E is a finitely generated free module over the graded polynomial subring
S ∼= k[y1, . . . , yr−c] ⊆ R.

Since S has dimension r − c > 0, we can find a non-zero element � with pos-
itive degree which is a non-zero divisor on QBH∗

E . It follows that the sequence
f1, . . . , fc, � ∈ R restricts to a regular sequence in H∗

E . By Proposition 3.3 there
exists a h : TE (R; f ) → H∗

E such that (E, h) is central in TE (R, f ), and so The-
orem B.6 applies to show that the sequence f1, . . . , fc, � is regular in TE (R; f ). It
follows that � ∈ m restricts to a non-zero divisor on QBTE (R; f ), and so by [12,
Lemma 2.1.1(i)] H0

mQBTE (R; f ) = 0 , as required. ��
Remark 4.23 The proof actually shows that, even whenHypothesis 4.20 does not hold,
we still have QB CEss(R) = H0

m(QB CEss(R)) ⊆ H0
m(QBR).

Given an R-module M , we let ai (R, M) be the maximum degree of a non-zero
element of Hi

m(M) (with the convention that this is ∞ if unbounded, or −∞ if
Hi
m(M) = 0). The Castelnuovo–Mumford regularity of M is defined as

Reg(R, M) = sup
i

{ai (R, M) + i},

see [58] for the basic properties of regularity. If R = M , then we write Reg(R) and
ai (R). The main result of this section is the following. We remind the reader we work
under Hypothesis 4.20.

Theorem 4.24 Let R bea connectedNoetherianunstable algebra, then eindec(CEss(R)) ≤
e(R) + Reg(R), and hence if CEss(R) 
= 0, we have

d0(CEss(R)) ≤ e(R) + Reg(R).

More specifically, we have

eindec(CEss(R)) = e(R) + ac(R)(R) + c(R) ≤ e(R) + Reg(R).

Proof We first show that eindec(CEss(R)) = e(R) + ac(R)(R) + c(R). This is the
claim that the top non-zero degree of QB CEss(R) is e(R) + ac(R)(R) + c(R). By
Proposition 4.22 it is equivalent to show that the top non-zero degree of H0

m(QBR) is
e(R) + ac(R)(R) + c(R).

Now, by definition Hc(R),e
m (R) = 0 for all e > ac(R)(R) and H

c(R),ac(R)(R)
m (R) 
= 0

(here we are explicitly writing the internal degree of the local cohomology module). If
we choose algebra generators z1, . . . , zc for the Duflot algebra, then |z1| + · · · |zc| =
c(R)+e(R), QB R = R/(z1, . . . , zc) and the long exact sequence in local cohomology
shows that H0,e(R)+c(R)+e

m (QBR) = 0 for all e > aC(R)(R) and

H
0,e(R)+c(R)+ac(R)(R)
m (QBR) = H

c(R),ac(R)(R)
m (R) 
= 0,
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compare [37, Corollary 2.25 and Proposition 2.26]. In particular, eindec(CEss(R)) =
e(R)+ ac(R)(R)+ c(R), as claimed. The subsidiary claim about d0(CEss(R)) is then
a consequence of Corollary 4.19. ��

We now turn to a form of Carlson’s depth conjecture [16] or [19, Question 12.5.7].
We recall that, for a finite group G, Carlson has conjectured that if the product of
restriction maps

H∗
G −→

∏

rank(E)=s

H∗
CG (E)

is injective, then depth(H∗
G) ≥ s. This is Carlson’s depth conjecture. It is a theorem

of Duflot [20] that the depth of H∗
G is always equal to at least the p-rank of the center

of a Sylow p-subgroup of G. If equality holds, we will say that H∗
G has minimal

depth. Suppose that G is a p-group and H∗
G has minimal depth, then Carlson’s depth

conjecture is that CEss(H∗
G) 
= 0, and has been proven in this case by Green [28] and

Kuhn [36, Theorem 2.13].
In [29] the author generalized Duflot’s result on depth for connected Noetherian

unstable algebras; the depth is always at least c(R), the rank of the center of R (see
Corollary B.7), and we say that R has minimal depth if depth(R) = c(R). One can
then ask that if R has minimal depth, then is CEss(R) 
= 0? (note that we have already
proved the converse of this inCorollary 4.9). This is part of the content of the following.

Theorem 4.25 The central essential ideal CEss(R) is non-zero if and only if the depth
of R is minimal, i.e., depth(R) = c(R). Moreover, in this case CEss(R) is a Cohen–
Macaulay R-module of dimension c(R).

Proof The only if direction is Corollary 4.9, so we prove the converse. To this end,
suppose that depth(R) = c(R), so that Hc(R)

m (R) 
= 0 by Proposition B.4. By Theo-
rem 4.24 we have eindec(CEss(R)) ≥ 0, and hence CEss(R) 
= 0.

For the second claim, observe that we have

c(R) ≤ depthR(CEss(R)) ≤ dimR(CEss(R)) = c(R)

by Corollary 4.9 and Theorem 4.18. ��

5 The topological nilpotence degree of a Noetherian unstable algebra

In this section we introduce the p-central defect of a Noetherian unstable algebra,
which is the analog of p-centrality for finite groups. For unstable algebras of p-central
defect 0, we have an immediate estimate for d0(R). In general, we use an inductive
argument to prove the following, the main result of the paper.

Theorem 5.1 Let R be a connected Noetherian unstable algebra with center (C, g),
and suppose that TE (R; f ) satisfies the assumptions of Hypothesis 4.20 for all
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(C, g) ⊆ (E, f ), then

d0(R) ≤ max
(C,g)⊆(E, f )∈AR

depth(TE (R; f ))=c(TE (R; f ))
{e(TE (R; f )) + Reg(TE (R; f ))}.

The proof will be given in Sect. 5.2.

5.1 The p-central defect of a Noetherian unstable algebra

Definition 5.2 Let R be a connected Noetherian unstable algebra with center (C, g).
Let c(R) be the rank of C , and

p(R) = max{rank(E) | (E, f ) ∈ AR}.

The p-central defect of R is p(R) − c(R).

Lemma 5.3 We have

c(R) ≤ depth(R) ≤ dim(R) = p(R)

If particular, the p-central defect is always greater than or equal to zero, and if it is
zero, then depth(R) = dim(R) = c(R), so that R is a Cohen–Macaulay ring.

Proof We have c(R) ≤ depth(R) by the author’s generalization of Duflot’s theorem
(Corollary B.7), the inclusion depth(R) ≤ dim(R) always holds, and dim(R) = p(R)

by Proposition 2.7(2). The result of the lemma is then clear. ��
Remark 5.4 The Cohen–Macaulay defect of R is defined as dim(R) = p(R) −
depth(R). By Duflot’s depth theorem (Corollary B.7) depth(R) ≥ c(R), so that the
Cohen–Macaulay defect is always less than or equal to the p-central defect of R.

Lemma 5.5 Let R be a connected Noetherian unstable algebra with center (C, g). If
(C, g) ⊆ (E, f ), then the p-central defect of TE (R; f ) is less than or equal to R,
with equality if and only if (C, g) � (E, f ).

Proof We first claim that p(TE (R; f )) ≤ p(R). Indeed, if (V , g̃) ∈ ATE (R; f ), then
we can precompose with ρR,(E, f ) : R → TE (R; f ) to get a pair (V , g) ∈ AR for
g = g̃ ◦ ρR,(E, f ). On the other hand, we recall there exists h : TE (R; f ) → H∗

E such
that (E, h) is central in ATE (R; f ), see Proposition 3.3. Thus, c(R) ≤ c(TE (R; f )),
with equality if and only if (E, f ) is central in AR , in which case (E, f ) � (C, g).
Combining these two inequalities we see that

p(TE (R; f )) − c(TE (R; f )) ≤ p(R) − c(R),

hence the result. ��
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Algebras of p-central defect 0 have several nice properties, as we now explain. We
note that in this case the product in the definition of CEss(R) is taken oven the empty
set, and hence this product trivial algebra, so that in this case CEss(R) ∼= R.

The following characterization of unstable algebras of p-central defect 0 was sug-
gested by the referee.

Lemma 5.6 Let R be a connected Noetherian unstable algebra with center (C, g),
then R has p-central defect 0 if and only if there is an equivalence of categories
AR � AH∗

C
.

Proof If R has p-central defect greater than 0, then there exists a pair (E, f ) ∈ AR

with (C, g) � (E, f ), and such an (E, f ) cannot be equivalent to an object AH∗
C
as

rank(C) � rank(E). Now suppose that R has p-central defect equal to zero, and let
(E, f ) ∈ AR . Note that (E, f ) ⊆ (C, g) as (C, g) is the uniquemaximal object ofAR .
In particular, there is a morphism α : H∗

C → H∗
E , and clearly the pair (E, α) defines an

object of AH∗
C
. This defines a functor F : AR → AH∗

C
. Conversely, if (V , j) ∈ AH∗

C
,

then (V , j ◦ g) ∈ AR , and it is easy to see that this is functorial, and provides an
inverse to F . ��
Example 5.7 Let G be a p-group, then we will see in Theorem 6.3 that AH∗

G
is equiv-

alent to the category AG whose objects are the elementary abelian p-subgroups of G.
Moreover, the center of H∗

G is just the group-theoretic center ofG. It follows thatG has
p-central defect 0 if and only if the maximal central elementary abelian p-subgroup is
maximal among all elementary abelian p-subgroups of G. Such groups are known as
p-central groups. For example, G = Q8 (the quaternion group of order 8) is 2-central,
while D8 (the dihedral group of order 8) is not 2-central; in our terminology, H∗

Q8
has

2-central defect 0, and H∗
D8

has 2-central defect 1. In terms of the previous lemma,
the elementary abelian subgroup lattices of Q8 and D8 are given respectively (up to
conjugacy) by

C1

C2

Q8

C1

C2C2 C2

C2
2 C2

2

D8

In both cases, the center is isomorphic to C2, however AH∗
Q8

� AH∗
C2

while AH∗
D8


�
AH∗

C2
.

Example 5.8 Let S3〈3〉 denote the 3-connected cover of S3, thenAH∗(S3〈3〉) has a single
non-trivial object (Z/p, f ) which is also central, see [29, Example 3.7] for the map
f . Thus, this has p-central defect 0.
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For algebras of p-central defect 0, we have an immediate estimate for d0(R).

Proposition 5.9 Suppose that R 
= 0 has p-central defect 0 and that Hypothesis 4.20
holds, then depth(R) = c(R) and

d0(R) ≤ e(R) + Reg(R).

Proof By Remark 5.3 we have depth(R) = c(R), and then the estimate for d0(R) is
an immediate consequence of the fact that R ∼= CEss(R), and Theorem 4.24. ��

We note the following behavior of the p-central defect under tensor products. We
once again thank the referee for the proof that the Krull dimension is additive.

Lemma 5.10 Let R1 and R2 be connected Noetherian unstable algebras, then the
p-central defect of R1 ⊗ R2 is equal to the sum of the p-central defects of R1 and R2.

Proof Using Lemma 3.20 we reduce to the claim that p(R1 ⊗ R2) = p(R1)+ p(R2).
This follows directly fromwork of Powell [50, Theorem 3 and Theorem 4], along with
Proposition 2.7(2). As noted by the referee, we can also prove this directly. Firstly, if
(E1, f1) ∈ AR1 and (E2, f2) ∈ AR2 , then (E1 ⊗ E2, f1 ⊗ f2) ∈ AR1⊗R2 . It follows
that p(R1 ⊗ R2) ≥ p(R1) + p(R2).

For the converse, suppose we are given f : R1 → H∗
V ∈ VR1 and g : R2 → H∗

V ∈
VR2 , so that f̃ : R1 → H∗

V / ker( f ) ∈ AR and g̃ : R2 → H∗
V / ker(g) ∈ AR . There is a

commutative diagram of the form

R1 ⊕ R2 H∗
V / ker( f ) ⊕ H∗

V / ker(g) H∗
V ⊕ H∗

V

H∗
V /(ker( f )∩ker(g)) H∗

V

f̃ ⊕g̃

μ

The composite f
∐

g : R1 ⊕ R2 → H∗
V gives an element of VR1⊕R2 , and the com-

mutative diagram shows that ker( f
∐

g) = ker( f )∩ ker(g). In particular, the rank of
V /(ker( f )∩ker(g)) is atmost the sumof the ranks of V / ker( f ) and V / ker(g), so that
p(R1 ⊗ R2) ≤ p(R1)⊕ p(R2). Together, we see that p(R1 ⊗ R2) = p(R1)+ p(R2),
as claimed. ��

We can therefore construct unstable algebras of arbitrarily high p-central defect.
For example, H∗

D×n
8

has 2-central defect of exactly n.

The unstable algebra H∗(S3〈3〉) considered above is the cohomology of a H -space.
More generally, if X is a connected Noetherian H -space, we recall from Example 3.17
that the mod 2 cohomology satisfies

H∗(X) ∼= F2[x1, . . . , xr ] ⊗ F2[y1, . . . , ys]
(y2

a1
1 , . . . , y2ass )

. (5.11)



The topological nilpotence degree of a Noetherian unstable algebra Page 41 of 56 17

while

H∗(X; Fp) ∼= Fp[y1, . . . , ys]
(y21 , . . . , y

2
s )

⊗Fp[β y1, . . . , β yk, xk+1, . . . , xn]⊗ Fp[z1, . . . , zt ]
(z p

a1

1 , . . . , z p
at

t )
,

(5.12)
when p is odd.

Both these rings areGorenstein because they are Cohen–Macaulay, and the quotient
by (x1, . . . , xr ) for p = 2 (or (β y1, . . . , xn) for p odd) is a Poincaré duality algebra
of formal dimension

∑s
i=1(|yi |2as−1

) for p = 2 (or
∑s

i=1 |yi | +∑t
i=1 |zi |pat−1

) for p
odd), see Proposition I.1.4 and the remark on the same page of [47].

Definition 5.13 Let X be a connected H -space with Noetherian mod 2 cohomology
given as in (5.11), then the Poincaré dimension of H∗(X) is

∑s
i=1(|yi |2

as−1
).

Proposition 5.14 Let X be a connected Noetherian H-space with cohomology as in
(5.11).

If p = 2, then the following hold:

(1) (Broto–Crespo) There exists a central elementary abelian 2-subgroup E of rank r
and a central morphism f : H∗(X) → H∗

E . Moreover, there is a basis u1, . . . , ur
of H1

E such that f (xi ) = u2
βi

i for βi ≥ 0 and i = 1, . . . , r .
(2) H∗(X) has 2-central defect 0.

If p is odd, then the following hold:

(1) (Crespo) There exists a central elementary abelian p-subgroup E of rank n and
a central morphism f : H∗(X) → H∗

E . Moreover, there is a basis u1, . . . , un of
H1
E such that

f (y j ) =
{
u j 1 ≤ j ≤ r r ≤ k

0 i > k

and

f (xi ) = (βui )
pai .

(2) H∗(X) has p-central defect 0.

Proof Let p = 2, then the existence of the map f and the description of the image is
[1, Theorem 2.2] (where the map f is denoted μX ). That f is central has already been
discussed in Example 3.17. Finally, H∗(X) has p-central defect 0 because H∗(X) has
dimension r .

For p odd, the same argument works using [18, Theorem 2.6 and Corollary 2.7]
(where the map f is denoted �). ��
Theorem 5.15 Suppose X is a connected H-spacewithNoetherianmodp cohomology.
If X satisfies Hypothesis 4.20 and has Poincaré dimension d, then d0(H∗(X)) ≤ d.
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Proof We first consider the case p = 2. Because H∗(X) is Gorenstein, its local
cohomology is concentrated in a single degree, namely in degree c(H∗(X)). From the
definitions, this implies that Reg(H∗(X)) = d +∑r

i=1(1−|xi |). Because H∗(X) has
2-central defect 0, we can then use Corollary 5.9 to see that

d0(H
∗(X)) ≤ e(H∗(X)) + d +

r∑

i=1

(1 − |xi |).

From the description of the image in the previous proposition, we have Im( f ) ∼=
Fp[u2β1

1 , . . . , u2
βr

r ], and so

e(H∗(X)) =
r∑

i=i

(2βi − 1) =
r∑

i=1

(|xi | − 1).

Thus,

d0(H
∗(X)) ≤

r∑

i=1

(|xi | − 1) + d +
r∑

i=1

(1 − |xi |) = d,

as claimed.
The argument for p odd is very similar. First we note that because Hypothesis 4.20

holds, wemust have that k = 0 in (5.12).We have Reg(H∗(X)) = d+∑n
i=1(1−|xi |),

and by the assumption we can apply Corollary 5.9 to see that

d0(H
∗(X)) ≤ e(H∗(X)) + d +

n∑

i=1

(1 − |xi |).

The Duflot algebra is then of the form Im( f ) ∼= Fp[(βu1)pa1 , . . . , (βun)pan ], and

e(H∗(X)) =
n∑

i=1

(2pai − 1) =
n∑

i=1

(|xi | − 1).

Thus, as above,

d0(H
∗(X)) ≤

n∑

i=1

(|xi | − 1) + d +
n∑

i=1

(1 − |xn|) = d,

as claimed. ��
Remark 5.16 If p is odd, then we note that Proposition 5.14 shows that H∗(X) does
not always satisfy the assumptions of Hypothesis 4.20.
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5.2 The topological nilpotence degree of an unstable algebra

In this section we prove our main result (Theorem 5.1), which gives an estimate for
d0(R). We begin with the following.

Proposition 5.17 For any connectedNoetherian unstable algebra R with center (C, g)
we have

d0(R) ≤ max
(C,g)⊆(E, f )∈AR

{d0(CEss(TE (R; f )))}.

Proof Suppose that R has p-central defect d. The proof will be by induction on d. If
d = 0, then the statement of the proposition is clear (in fact, in this case the inequality
is even an equality). Inductively, we assume that the proposition holds for all connected
Noetherian unstable algebras of p-central defect 0 ≤ k < d.

Choose a pair (E, f ) with (C, g) � (E, f ), and let (CE , g̃E ) denote the center
of TE (R; f ). By Proposition 3.3 there exists h : TE (R; f ) → H∗

E such that (E, h) is
central in ATE (R; f ) and the following diagram commutes:

R TE (R; f )

H∗
E

ρR,(E, f )

f h

By centrality, we have (E, h) ⊆ (CE , g̃E ), and hence (by composingwith ρR,(E, f ))
we have (C, g) � (E, f ) ⊆ (CE , gE ), where gE = ρR,(E, f ) ◦ g̃E . By Lemma 5.5
the p-central defect of TE (R; f ) is less than that of R, and in particular, the inductive
hypothesis applies to show that

d0(TE (R; f )) ≤ max{d0(CEss(TV (TE (R; f ); j̃))) | (CE , g̃E ) ⊆ (V , j̃) ∈ ATE (R; f )}.
(5.18)

Let j = ρR,(E, f )◦ j̃ , then the assumptions of Lemma 3.27 are satisfied (since (E, h) ⊆
(CE , g̃E ) ⊆ (V , j̃)), and show that

TV (TE (R; f ); j̃) ∼= TV (R; j),

where (R, j) ∈ AR . By (5.18) we then have

d0(TE (R; f )) ≤ max{d0(CEss(TV (R; j))) | (CE , gE ) ⊆ (V , j) ∈ AR}.

From the definition of the central essential ideal and Proposition 2.22, we have

d0(R) ≤ max{d0(CEss(R)), d0(TE (R; f )) | (C, g) � (E, f )}.

Combining the previous two equations and observing that (C, g) � (CE , gE ) gives
the desired result. ��
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We now prove Theorem 5.1. For this we need to assume that TE (R; f ) satisfies
the assumptions of Hypothesis 4.20 for all (C, g) ⊆ (E, f ). We note that this is
automatic if p = 2, or if R is concentrated in even degrees, as then so is TE (R; f ) by
Lemma 2.17.

Proof of Theorem 5.1 Combine Theorems 4.24 and 4.25 and Proposition 5.17. ��

6 Computations of the topological nilpotence degree

We finish with examples from group theory, and homotopical group theory, giving
results analogous to Kuhn’s in the case of compact Lie groups.

6.1 Group theory

We now focus on unstable algebras of the form R = H∗
G where G is a group. In this

case, Rector’s category will take a particularly nice form. We will need the following
definition.

Definition 6.1 The Quillen category associated to a group G at the prime p is the
categoryAG with objects elementary abelian p-subgroups E ≤ G andwithmorphisms
E → V those monomorphisms induced by conjugation in G.

While most of the groups we study should be familiar to the reader, we first explain
the class of groups considered by Broto and Kitchloo [6].

Definition 6.2 (Broto–Kitchloo) Let X be a class of compactly generated Hausdorff
topological groups, and let K1(X ) be the new class of groups, such that a compactly
generated Hausdorff topological group G belongs toK1(X ) if and only if there exists
a finite G-CW complex X with the following two properties:

(1) The isotropy subgroups of X belong to the class X .
(2) For every finite p-subgroup π < G, the fixed point space Xπ is p-acyclic.

If X is the class of compact Lie groups, then Kac–Moody groups are an example
of a group in K1(X ), see [6, Section 5].

With this we get the following, which is a compendium of results of Quillen [52,53],
Rector [54], Lannes [38,39] Henn [31] and Broto–Kitchloo [6], see [29, Theorem 4.1
and Theorem 4.8] for the precise details.

Theorem 6.3 Assume we are in one of the following cases:

(1) G is a compact Lie group.
(2) G is a discrete group for which there exists a mod p acyclic G-CW complex with

finitely many G-cells and finite isotropy groups.
(3) G is a profinite group such that the continuous mod p cohomology H∗

G is Noethe-
rian.

(4) G is a group of finite virtual cohomological dimension such that H∗
G is finite

generated as an Fp-algebra.
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(5) G is in K1X where X is the class of compact Lie groups (for example, a Kac–
Moody group).

Then the following hold:

(1) The mod p cohomology H∗
G is a Noetherian unstable algebra, and there is an

equivalence of categories AG � AH∗
G
given by associating to E ≤ G the pair

(E, res∗G,E ) where res∗G,E is the restriction homomorphism H∗
G → H∗

E .
(2) There are isomorphisms

TE (H∗
G; res∗G,E ) ∼= H∗

CG (E).

Definition 6.4 (Mislin [45]) An elementary abelian subgroup E < G is said to be
cohomologically p-central if CG(E) → G is a mod p cohomology equivalence, i.e.,
H∗
G → H∗

CG (E) is an isomorphism.

Under the equivalence of categories AG � AH∗
G
, these are precisely the central

elements as considered throughout this paper (compare Example 2.18 for the case
of compact Lie groups). We use the terminology cohomological p-central so as to
not conflict with the usual group theoretic notion of central elementary abelian p-
subgroup. The two are related in the following way, where we let Cp(G) denote
the maximal cohomologically p-central subgroup of G (which is only unique up to
conjugacy, see Theorem 3.13), and Z(G)[p] the maximal central elementary abelian
p-subgroup in the usual sense.

Lemma 6.5 (Mislin) If E < G is a central elementary abelian p-subgroup, then
CG(E) is cohomologically p-central. Moreover, there is an injective homomorphism
φ : Z(G)[p] ↪→ Cp(G).

Proof The first claim is clear because in this case CG(E) ∼= G. The injective homo-
morphism φ is constructed exactly as by Mislin [45]. We recall his argument now. Let
x ∈ Z(G)[p] be represented by a map φ̃(x) : Z/p → G, and write f for the induced
map f : H∗

G → H∗
Z/p. The pair (Z/p, f ) is central, because H∗

G → TZ/p(H∗
G; f )

corresponds to the map induced by CG(〈x〉) → G. We then set φ(x) = f . This is
clearly injective, because if φ(x) = φ(y), then x and y are conjugate in G, and hence
equal, as they are central. ��
Remark 6.6 IfG is a finite p-group, then themain result of [45] implies that Z(G)[p] ∼=
Cp(G), however in general φ is not surjective. A counterexample is given by the
group �3 at p = 2, as in Example 3.15. This means that the definition of CEss(H∗

G)

does not necessarily agree with Kuhn’s definition of CEss(G). For example, we have
CEss(H∗

�3
) ∼= H∗

�3
(i.e., CEss(�3) has p-central defect 0), while CEss(�3) is trivial,

as it is the kernel of the restriction map H∗
�3

→ H∗
C2
. Of course, in any case one gets

the same result, namely that d0(H∗
�3

) = 0.

Theorem 6.7 Let G be one of the groups considered in Theorem 6.3, then for any
prime p we have

d0(H
∗
G) ≤ max

Cp(G)≤E∈AG
depth(H∗

CG (E)
)=c(CG (E))

{e(H∗
CG (E)) + Reg(H∗

CG (E))}
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where c(CG(E)) is the rank of the maximal central cohomologically p-central sub-
group of G.

Moreover, if G is a compact Lie group, then Reg(H∗
CG (E)) ≤ − dim(CG(E)), with

equality if π0(CG(E)) is a finite p-group.

Proof This will be a consequence of Theorems 5.1 and 6.3, but we first explain why
we are able to prove this without assuming anything about the Duflot algebra, using an
observation of Nick Kuhn.2 The point is that for a groupwe can always assume that the
Duflot algebra is polynomial (this has already been observed by Kuhn in the case of
compact Lie groups, see [37, Page 160]). Indeed, since the action of G on Fp is trivial
H1
G

∼= HomZ(G, Z/p) (these homomorphisms need be continuous in the case G is a
profinite group). In particular, elements in the image of res∗G,Cp(G) : H1

G → H1
Cp(G)

are exactly homomorphisms from Cp(G) → Z/p that factor through G. Recall that
the image of H∗

G → HCp(G) is the form

Fp[y p
j1

1 , . . . , y p
jb

b , yb+1, . . . , yc] ⊗ 
(xb+1, . . . , xc)

Using the observation above it is not hard to see that c − b is the rank of the largest
subgroup of C splitting off G as a direct summand (compare the discussion on page
158 of [37]). Write G = L × E where E = (Z/p)d , then one sees that d0(H∗

L×E ) ∼=
d0(H∗

L) and similar for eprim and eindec. Thus, we can assume reduce to the case of
the group L , which necessarily has polynomial Duflot algebra. Thus, in this case
Theorem 5.1 is valid for all primes p.

Finally, the regularity statement is due to Symonds. [58]. ��
Remark 6.8 It is not true that there is always an equality Reg(H∗

G) = − dim(G) for a
compact Lie group. For example, if G = O(2) and p is odd, then Reg(H∗

O(2)) = −3
(apply [58, Lemma 1.4(2)], noting that H∗

O(2)
∼= Fp[x4]), while − dim(O(2)) = −1.

Remark 6.9 Of course, one can restate this theorem as

d0(H
∗
G) ≤ max

E<G∈AG
{e(H∗

CG (E)) + Reg(H∗
CG (E))}

to obtain a result that is analogous to that obtained by Kuhn in the case of compact
Lie groups.

Example 6.10 Consider the profinite groupGL2(Z3). This admits a splittingGL2(Z3) ∼=
Z3 ×GL1

2(Z3) where GL1
2(Z/3) is the subgroup of GL2(Z/3) which is the preimage

of Z/2 ⊂ Z
×
3 under the determinant map. Moreover, H∗

GL1
2(Z3)

∼= (H∗
SL2(Z3)

)Z/2. Both

of these facts can be found in the proof of Proposition 5.5 of [31]. By Proposition 2.22
we obtain

d0(H
∗
GL2(Z3)

) = d0(H
∗
Z3

) + d0(H
∗
GL1

2(Z3)
) and d0(H

∗
GL1

2(Z3)
) ≤ d0(H

∗
SL2(Z3)

)

2 We thank Nick Kuhn for a helpful email explaining this.
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Because H∗
Z3

∼= 
F3(e) with |e| = 1 we can apply Proposition 2.22 again to obtain
d0(H∗

Z3
) = 1.

In order to compute d0(H∗
SL2(Z3)

), we observe that this has a single elementary
abelian subgroup Z/3 whose centralizer in SL2(Z3) is isomorphic toZ/2×Z/3×Z3,
so that H∗

CZ/3(SL2(Z3))
∼= F3[y] ⊗ 
F3(x, e), with |y| = 2 and |x | = |e| = 1, see

the discussion after Proposition 5.5 (as well as Theorem 5.2) of [31]. It follows that
H∗
SL2(Z3)

has trivial 3-cohomological center, and hence that CEss(H∗
SL2(Z3)

) is the
kernel of the restriction map

H∗
SL2(Z3)

H∗
CZ/3(SL2(Z3))

∼= F3[y] ⊗ 
F3(x, e).

By [31, Proposition 5.6] we deduce that CEss(H∗
SL2(Z3)

) is trivial. Since we work at
p = 3, we have H∗

CZ/3(SL2(Z3))
∼= H∗

Z/3×Z3
. This has depth 1, and c(Z/3 × Z3) = 1.

Moreover, it is of 3-central defect 0, so that CEss(H∗
Z/3×Z3

) ∼= H∗
Z/3×Z3

. We deduce
that

d0(H
∗
SL2(Z3)

) = d0(H
∗
Z/3×Z3

)) = d0(H
∗
Z/3) + d0(H

∗
Z3

) = 0 + 1 = 1.

Putting these observations together, we conclude that

1 ≤ d0(H
∗
GL2(Z3)

) ≤ 2.

Example 6.11 Consider the 2ndMorava stabilizer group S2 at the prime 3. This admits
a decomposition S2 ∼= S12 × Z3 and so

d0(H
∗
S2) = d0(H

∗
S12

) + d0(H
∗
Z3

) = d0(H
∗
S12

) + 1.

The group S12 has two conjugacy classes of elementary abelian 3-subgroups Ei for
i = 1, 2 with CS12

(Ei ) ∼= Z/3 × Z3 in both cases. We note that both S12 and CS12
(Ei )

are 3-adic Lie groups. We also observe that H∗
S12

has trivial 3-cohomological center,

and hence CEss(H∗
S12

) is the kernel of the product of restriction maps

H∗
S12

∏
i H

∗
C
S12

(Ei )
∼= ∏2

i=1 F3[yi ] ⊗ 
F3 [xi , ei ].

By [31, Proposition 4.3] we deduce that CEss(H∗
S12

) is trivial. One then deduces from

Proposition 2.22 that d0(H∗
S12

) ≤ d0(H∗
C
S12

(E1)
) (of course, one can use either E1 or

E2 here). However, the T -functor computations show that H∗
C
S12

(E1)
is a summand

of TE1(H
∗
S12

) and so d0(H∗
S12

) ≥ d0(H∗
C
S12

(E1)
). Thus, d0(H∗

S12
) = d0(H∗

C
S12

(E1)
) =

d0(H∗
Z/3×Z3

) = 1. We deduce that d0(H∗
S2

) = 2.
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6.2 Homotopical groups

We now move onto the case of homotopical groups, namely the p-local finite and
compact groups of Broto, Levi, and Oliver [8,10]. Once we have set up the right lan-
guage, the results take essentially the same form as for ordinary groups. The canonical
references for both p-local finite and compact groups are the aforementioned papers
of Broto, Levi, and Oliver, however the reader may also find the survey article [9]
valuable.

To begin, we recall the definition of the fusion system Fp(G) associated to a finite
group G. This is a category whose objects are the p-subgroups of G, and where

HomFp(G) = HomG(P, Q):={α ∈ Hom(P, Q) | α = cx , for some x ∈ G}.

i.e., α is a homomorphism induced by conjugation in G. To this one can associate
another category, the centric linking system Lc

p(G). Then, by [7, Proposition 1.1]
there is a homotopy equivalence |Lc

p(G)|∧p � BG∧
p .

The idea of p-local finite groups is to begin with a finite p-group S, and try and
mimic the constructions above. Thus, a fusion system F associated to S is a category
whose objects are subgroups of S, and whose morphism sets HomF (P, Q) satisfy the
following conditions:

(1) HomS(P, Q) ⊆ HomF (P, Q) ⊆ Inj(P, Q) for all P, Q ≤ S.
(2) Every morphism in F factors as an isomorphism in F followed by an inclusion.

This is not quite enough; Broto, Levi, and Oliver additionally require that the fusion
system is saturated, see [8, Definition 1.2]. A centric linking systemL associated toF
is another category whose objects are a certain subset of S. The centric linking system
contains the additional data to associate a classifying space to the fusion system F .

A p-local finite group is a triple G = (S,F ,L) where S is a finite p-group, F is
a saturated fusion system over S, and L is a centric linking system associated to F .
The classifying space of G is defined as BG = |L|∧p , the p-completed nerve of the
category L. We write H∗

G :=H∗(BG) for the mod p cohomology of G.
If instead of a finite p-group we begin with a discrete p-toral group S - that is

a group that contains a normal subgroup T ∼= (Z/p∞)r , and such that T has finite
index in S - then we can define saturated fusion systems F over S, and centric linking
systems over F , see [10]. A p-local compact group is a triple G = (S,F ,L) where
S is a discrete p-toral group, F is a saturated fusion system over S, and L is a centric
linking system associated to F . In fact, it was later shown that every saturated fusion
system over a discrete p-toral group has an associated centric linking system which is
unique up to isomorphism [17,40]. Thus, we often define our p-local compact groups
as simply a pair G = (S,F).

Example 6.12 Here we list some examples of p-local compact groups.

(1) If G is a compact Lie group, with p-toral subgroup S, then there exists a p-local
compact group G = (S,FS(G)) along with an equivalence of classifying spaces
BG∧

p � BG [10, Theorem 9.10]. ��
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(2) Suppose that X is a p compact group, that is a triple (X , BX , e)where X is a space
with H∗(X; Fp) finite, BX is a pointed p-complete space, and e : X → �(BX)

is an equivalence [24]. There is a notion of a Sylow subgroup f : S → X , and
moreover, there exists a p-local compact groupG = (S,FS, f (X))with BG � BX
[10, Theorem 10.7]. More generally, the p-completion of any finite loop space
gives rise to a p-local compact group [11].

Remark 6.13 Because, up to p-completion, every compact Lie group can be modeled
by a p-local compact group, this section recovers the result for compact Lie groups
in the previous section. This follows because the classifying space of a compact Lie
group is always p-good (see [5, Proposition VII.5.1]) and so H∗

G
∼= H∗(BG∧

p ).

One has an immediate upper bound for d0(H∗
G) coming from the group S in the

case of p-local finite groups.

Proposition 6.14 Let G = (S,F) be a p-local finite group, then d0(H∗
G) ≤ d0(H∗

S ).

Proof By [8, Proposition 5.5] H∗
G is a direct summand of H∗

S as an unstable algebra,
and so Proposition 2.22 furnishes the result. ��

Even for finite groups, it is known that this inclusion is strict in general. For example,
Henn–Lannes–Schwartz [34, Section II.4.7] give the example G = GL2(F3) and
S = SD16, then d0(H∗

G) = 0, but d0(H∗
S ) = 2.

We now identify Rector’s category AH∗
G and present the relevant T -functor cal-

culations. We let Fe be the full subcategory of F whose objects are elementary
abelian p-subgroups E ≤ S which are fully-centralized in F in the sense of
[10, Definition 2.2]. This assumption ensures that the centralizer p-compact group
CG(E) = (CS(E),CF (E)) exists [26, Section 1.2], where CF (E) is the fusion sys-
tem over CS(E) with objects Q ≤ CS(E) and morphisms

HomCF (E)(Q, Q′) = {ψ ∈ HomF (Q, Q′) | ∃φ ∈ HomF (QE, Q′E), φ|Q = ψ, φ|E = idE }.

Moreover, we note that any elementary abelian p-subgroup E ≤ S is isomorphic in
F to one that is fully F-centralized.

For the following, we note that there is a canonical map θ : BS → BG. Then, for
any E ≤ S, there is a map jE : H∗

G → H∗
E given as the composite H∗

G
θ∗−→ H∗

S → H∗
E .

Proposition 6.15 Let G = (S,F) be a p-local compact group, then H∗
G is a finitely-

generated Fp-algebra, and there is an equivalence of categories

AH∗
G � Fe

given by associating to a fully centralized subgroup E ≤ S the pair (E, jE ).

Proof The finite generation is [2, Corollary 4.26], while the identification of AHG∗ is
[29, Proposition 4.18]. ��
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Let E < S be an elementary abelian p-subgroup, then the map CS(E) × E → S
induces H∗

S → H∗
E ⊗ H∗

CS(E). The adjoint induces a map φE : TE (H∗
S ; res∗S,E ) →

H∗
CS(E). The following is shown by Gonzalez [26, Lemma 5.1].

Lemma 6.16 For any E ∈ Fe there is an isomorphism

TE (H∗
G; jE )

∼=−→ H∗
CG(E)

which is the restriction of the homomorphism φE .

For E ∈ Fe a special case of [26, Theorem 5.4] identifies BCG(E) with
Map(BE, BG)Bι where ι : E → S, and so H∗

CG(E)
∼= H∗(Map(BE, BG)Bι). Under

this, the map ρH∗
G ,(E, jE ) : H∗

G → TE (H∗
G; jE ) can be identified with the map induced

by the evaluation map Map(BE, BG)Bι → BG.

Definition 6.17 Let G = (S,F) be a p-local compact group, then E ∈ Fe is called
central if Map(BE, BG)Bι → BG is a homotopy equivalence.

This does not conflict with the notion of centrality used previously in this paper, by
the following lemma.

Lemma 6.18 E ∈ Fe is central if and only if ρ = ρH∗
G ,(E, jE ) : H∗

G → TE (H∗
G; jE ) ∼=

H∗
CG(E) is an equivalence. In other words, E ∈ Fe is central if and only if (E, jE ) ∈

AH∗
G is central.

Proof If E ∈ Fe is central then this is clear from the discussion before the definition of
centrality. For the converse, suppose that ρ is an equivalence. Because the classifying
space of a p-local compact group is p-good (combine [10, Proposition 4.4] and [5,
Proposition I.5.2]), the map Map(BE, BG)Bι → BG is a homotopy equivalence. ��
Remark 6.19 By [10, Theorem 7.4] if E ∈ Fe is central, then the p-local compact
groups G and CG(E) are isomorphic in the sense discussed on [10, pp. 374-375].
In particular, there are isomorphisms of groups and categories α : S → CS(E) and
αF : F → CF (E) which are compatible in a certain sense.

Note that we have a natural definition of p-centrality for a p-local compact group.
For the following, we let C(G) denote the maximal central elementary abelian p-
subgroup E ∈ Fe, which exists by Theorem 3.13 and the previous lemma.

Definition 6.20 Let G = (S,F) be a p-local compact group, then G is p-central if the
p-rank of Fe (i.e., the rank of a maximal elementary abelian p-group in Fe) is equal
to the rank of C(G).

Lemma 6.21 G is p-central if and only if H∗
G has p-central defect 0.

Proof This follows immediately from the definition and Lemma 6.18. ��
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Theorem 6.22 Let G = (S,F) be a p-local compact group and assume that H∗
CG(E)

satisifies Hypothesis 4.20 for all E ∈ Fe, then

d0(H
∗
G) ≤ max

C(G)≤E∈F e

depth(H∗
CG (E)

)=c(CG(E))

{e(H∗
CG(E)) + Reg(H∗

CG(E))}

If S is a finite p-group (i.e., G is a p-local finite group), then Reg(H∗
CG(E)) = 0.

Proof CombineTheorem5.1with Proposition 6.15 andLemma6.16. The computation
of the regularity is due to Symonds [58, Proposition 6.1] andKessar–Linckelmann [35,
Theorem 0.4]. ��
Remark 6.23 Currently, there is only a single example of an exotic family of 2-local
finite groups, namely the Solomon 2-local compact groups Sol(q) for q an odd prime
power, where S is a Sylow 2-subgroup of Spin7(q) [41]. Grbić [27, Proposition 2]
has shown that H∗

Sol(q) has H∗
DI (4) as a split summand in the category of unstable

algebras, where DI (4) is the exotic 2-compact group of Dwyer and Wilkerson [23].
By Proposition 2.22 we have d0(H∗

Sol(q)) ≤ d0(H∗
DI (4)). Because H∗

DI (4) realizes
the mod 4 Dickson invariants, there is an inclusion H∗

DI (4) → H∗
(Z/2)4

of unstable

algebras, so that d0(H∗
DI (4)) = 0.

d0(H
∗
Sol(q)) = 0.

Unfortunately, the relevant calculations for the centralizer 2-local finite groups are not
known, so we cannot compare this to the estimate from Theorem 6.22.

At odd primes, the p-local finite groups with S = p1+2+ , the extraspecial groups of
order p3 and exponent p, have been calculated by Ruiz and Viruel [55]. In particular,
at p = 7, they construct three new, exotic, examples of p-local finite groups. By
Proposition 6.14 we have d0(H∗

G) ≤ d0(H∗
S ) for any of these three groups. By [59,

Theorem 13.21] we can deduce that d0(H∗
G) ≤ 4.
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Appendix A: Borel equivariant cohomology

We recall from Sect. 2.3 that the work of Henn–Lannes–Schwartz shows that if R is
a Noetherian unstable algebra, and M ∈ R f g − U , then d0(M) is finite, and that

φM : M →
∏

(E, f )∈AR

H∗
E ⊗ TE (M; f )≤n

is injective for n ≥ d0(M). In this work, we have focused on the case where M = R.
In this appendix, we specialize to the case where R = H∗

G for a compact Lie group
G, and M = H∗

G(X) for X a manifold. As in Example 2.5 M ∈ R f g − U by Quillen
[52,53]. In this case, using [38] (see also [32, Theorem 2.6]) the previous equation
takes the form

H∗
G(X) →

∏

E≤G

H∗
E ⊗ H≤n

CG (E)(X
E ), (A.1)

see [34, Theorem 5.5].
It is worth explain how the maps in this theorem arise (following the discussion

on [34, p. 48]). The canonical homomorphism E ×CG(E) → CG(E) induces a map
BE × (ECG(E) ×CG (E) XE ) → ECG(E) ×CG (E) XE . We then define cE as the
composite of the previous map with the map ECG(E)×CG (E) XE → EG×G X . The
induced maps

c∗
E : H∗

G(X) → H∗
E ⊗ H∗

CG (E)(X
E )

induce the homomorphism in (A.1) as E runs over the elementary abelian p-subgroups
of G.

We will show that slight adaptations of our techniques hold in this case. The obser-
vation we use here is that we have a good notion of centrality in this case. Indeed,
suppose that E, V are central subgroups of G acting trivially on X . Then the subgroup
E ◦ V generated by E and V is still central, and also acts trivially on X . Thus, there
is a maximal central subgroup of G that acts trivially on X . Throughout this section,
we let C = C(G, X) denote this maximal central subgroup, and let e(G, X) denote
the top degree of a generator of the finitely generated H∗

G-module H∗
C .

We observe (see [3]) that H∗
G(X) is a H∗

C -comodule and that the image of the
restriction map H∗

G(X) → H∗
C is a sub-Hopf algebra of H∗

C . Applying the Borel
structure theorem, we can identify the image of this exactly as in Corollary 3.23.

The central essential ideal is defined in the obvious way, namely as the kernel

0 CEss(G, X) H∗
G(X)

∏

C(G,X)�E

H∗
CG (E)(X

E ),

One deduces, as in Theorem 4.3 that the Krull dimension of CEss(G, X) is at most
the rank of C . The regularity of H∗

G(X) is also known in this case; it is a theorem of
Symonds [58, Theorem 0.1] that Reg(H∗

G(X)) ≤ dim(X) − dim(G).
The same argument as in the body of the paper then gives the following result.
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Theorem A.2 Let G be a compact Lie group, X amanifold, and suppose that theDuflot
algebra for H∗

CG (E)(X
E ) is polynomial for all C(G; X) ≤ E, then

d0(H
∗
G(X)) ≤ max

C(G,X)≤E<G
{e(CG(E), XE ) + dim(XE ) − dim(CG(E))}

Appendix B: Depth and dimension

In this appendix we briefly recall the notions of depth and dimension of graded-
commutative connected Noetherian k-algebras for k a field. Given such a k-algebra
we write R j for the degree j part of R. Hence, R connected means that R0 ∼= Fp

and Ri = 0 for i < 0. We let m = R>0 denote the maximal homogeneous ideal
of R. With these assumptions, the commutative algebra of R is much like that of a
local ring. We will follow the convention that, unless noted otherwise, everything is
taken in the graded sense and ideals and elements of R-modules are always taken to
be homogeneous.

Definition B.1 The Krull dimension of R, denoted dim(R) is the supremum of lengths
of strictly increasing chains of prime ideals. For an R-module M , the dimension
of M , dimR(M) is defined as the dimension of R/AnnR(M), where AnnR(M) =⋂

m∈M AnnR(m) and

AnnR(m) = {r ∈ R | rm = 0}.

Definition B.2 Let M be an R-module, then an M-regular sequence is a sequence
y1, . . . , ym in m such that yi is a non-zero divisor on M/(yi , . . . , yi−1) for i =
1, . . . ,m. If M is finitely generated over R then the depth of M , denoted depthR(M)

is the supremum of the length of all M -regular sequences in m.

We have the following useful characterization of M-regular sequences, see [19,
Proposition 12.2.1].

Lemma B.3 Let M be a finitely-generated R-module. A sequence y1, . . . , ym ∈ m of
homogeneous elements of m is an M-regular sequence if and only if y1, . . . , ym are
algebraically independent in R and M is a free module over the polynomial subring
k[y1, . . . , ym] ⊆ R.

We recall that the m-torsion in M is

H0
m(M) = {x ∈ M | there exists n ∈ N with mnx = 0}.

This functor is left exact, and we let Hi
m(M) denote the higher derived functors,

which are the local cohomology modules of M . Depth and dimension are related to
local cohomology in the following way, see [12, Corollary 6.2.8].

Proposition B.4 Suppose that R is Noetherian and connected, and let M be a finitely
generated R-module.
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(1) The depth of M is the smallest i for which Hi
m(M) 
= 0.

(2) The dimension of M is the largest i for which Hi
m(M) 
= 0.

The characterization of depth in terms of local cohomology, and the independence
theorem for local cohomology (see [12, Theorem 14.1.7]) give the following.

Lemma B.5 Let R and R′ be connectedNoetherian unstable algebras, and f : R → R′
a finite homomorphism. Let M be a finitely-generated R′-module, then

depthR(M) = depthR′(M)

where M is an R-module by restriction of scalars. In particular,

depthR(R′) = depth(R′).

Finally, we will need the following version of a group theoretic theorem of Carlson
[19], which is proved by the author in [29, Theorem 3.5].

Theorem B.6 Let R be a connected Noetherian unstable algebra, and suppose
(E, f ) ∈ AR is central. If x1, . . . , xn is a sequence of homogeneous elements in R
such that the restrictions of x1, . . . , xn form a regular sequence in H∗

E , then x1, . . . , xn
is a regular sequence in R.

An easy consequence is the following, see [29, Corollary 3.6], which was originally
proved in the case R = H∗

G for G a finite group by Duflot [20].

Corollary B.7 Let R be a Noetherian unstable algebra with center (C, g), then

depth(R) ≥ rank(C).

We will say that R has minimal depth if depth(R) = rank(C).
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