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Abstract
This paper establishes a new combinatorial framework for the study of coarse median
spaces, bridging the worlds of asymptotic geometry, algebra and combinatorics. We
introduce a simple and entirely algebraic notion of coarsemedian algebrawhich simul-
taneously generalises the concepts of bounded geometry coarse median spaces and
classical discrete median algebras. We study the coarse median universe from the per-
spective of intervals, with a particular focus on cardinality as a proxy for distance.
In particular we prove that the metric on a quasi-geodesic coarse median space of
bounded geometry can be constructed up to quasi-isometry using only the coarse
median operator. Finally we develop a concept of rank for coarse median algebras
in terms of the geometry of intervals and show that the notion of finite rank coarse
median algebra provides a natural higher dimensional analogue of Gromov’s concept
of δ-hyperbolicity.
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1 Introduction

Gromov’s notion of a CAT(0) cube complex has played a significant role in major
results in topology, geometry and group theory. Its power stems from the beautiful
interplay between the non-positively curved geometry of the space and the median
algebra structure supported on the vertices as outlined by Roller [15]. Coarse median
spaces as introduced by Bowditch [6] provide a geometric coarsening of CAT(0) cube
complexeswhich additionally includes δ-hyperbolic spaces, mapping class groups and
hierarchically hyperbolic groups [3,4].

The interaction between the geometry and combinatorics of a CAT(0) cube complex
is mediated by the fact that the edge metric can be computed entirely in terms of the
median. In contrast, for a coarse median space the metric is an essential part of the
data, as evidenced by the fact that almost any ternary algebra can bemade into a coarse
median space by equipping it with a boundedmetric. This prompts the question towhat
extent there could be a combinatorial characterisation of coarse medians mirroring the
notion of a median algebra. We will provide the missing combinatorial framework by
defining coarse median algebras.

1.1 Bowditch’s definition of coarse median space

Definition 1.1 (Bowditch [6]) A coarse median space is a triple (X , d, 〈 〉), where
(X , d) is a metric space and 〈 〉 is a ternary operator on X satisfying the following:

(M1) For all a, b ∈ X , 〈a, a, b〉 = a;
(M2) For all a, b, c ∈ X , 〈a, b, c〉 = 〈a, c, b〉 = 〈b, a, c〉;
(B1) There are constants k, h(0) such that for all a, b, c, a′, b′, c′ ∈ X we have

d(〈a, b, c〉 ,
〈
a′, b′, c′〉) ≤ k

(
d(a, a′) + d(b, b′) + d(c, c′)

) + h(0);
(B2) There is a function h : N → R

+ with the following property. Suppose that
A ⊆ X with 1 ≤ |A| ≤ p < ∞, then there is a finite median algebra (�, 〈 〉�)

and maps π : A → � and λ : � → X such that for all x, y, z ∈ � we have

d (λ(〈x, y, z〉�), 〈λ(x), λ(y), λ(z)〉) ≤ h(p),

and for all a ∈ A we have

d(a, λπ(a)) ≤ h(p).

Themetric plays the crucial role ofmeasuring and controlling the extent towhich the
ternary operator (referred to as the coarse median) approximates a classical median
operator. Our observation is that the additional metric data can be replaced by the
structure of the intervals in the space which are intrinsic to the median operator: the
cardinality of intervals serves as a proxy for distance.1

1 This is perhaps counterintuitive: firstly because interval cardinality is far frombeing ametric, and secondly
because even in a geodesic coarse median space the geodesic between two points can lie well outside the
corresponding interval (see [14, Theorem 5.1]).
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Fig. 1 An illustration of the meaning of condition (M3)′

1.2 Coarsemedian algebras

We now define the new notion of coarse median algebra as the algebraic parallel of
coarse median spaces.

Recall that a ternary algebra is a set X equipped with a function 〈 〉 : X3 → X
where 〈x, y, z〉 denotes the value at (x, y, z).
Definition 1.2 Let (X , 〈 〉) be a ternary algebra. For any a, b ∈ X , the interval [a, b]
is the set {〈a, x, b〉 | x ∈ X}. We say that (X , 〈 〉) has finite intervals if for every
a, b ∈ X the interval [a, b] is a finite set.

A discrete median algebra, which is familiar to geometric group theorists as the
vertex set of a CAT(0) cube complex, is simply a median algebra with finite intervals
(see for example, [15]).

Definition 1.3 A coarse median algebra is a ternary algebra (X , 〈 〉) with finite inter-
vals such that:

(M1) For all a, b ∈ X , 〈a, a, b〉 = a;
(M2) For all a, b, c ∈ X , 〈a, b, c〉 = 〈a, c, b〉 = 〈b, a, c〉;
(M3)′ There exists a constant K ≥ 0 such that for all a, b, c, d, e ∈ X the cardinality

of the interval [〈a, b, 〈c, d, e〉〉 , 〈〈a, b, c〉 , 〈a, b, d〉 , e〉] is at most K (Fig. 1).

Putting K = 1 in the definition reduces (M3)′ to the classical 5-point condition
〈a, b, 〈c, d, e〉〉 = 〈〈a, b, c〉 , 〈a, b, d〉 , e〉 defining amedian algebra, so Definition 1.3
generalises the notion of discrete median algebra.

1.3 The inducedmetric

At first sight the data defining a coarse median algebra appears to carry a lot less
information than Bowditch’s coarse median spaces. However as we will see in Sect. 5,
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the finite intervals condition will allow us to define a metric d〈 〉 on the ternary algebra
purely in terms of the operator 〈 〉. Moreover any bounded geometry2 coarse median
space is a coarse median algebra. Indeed generalising the notion of bounded valency
for a graph (see Definition 6.1), we have the following equivalence.

Theorem 1.4 Let (X , 〈 〉) be a bounded valency ternary algebra. The following are
equivalent:

(1) (X , 〈 〉) is a coarse median algebra;
(2) (X , d〈 〉, 〈 〉) is a coarse median space;
(3) There exists a metric d such that (X , d, 〈 〉) is a bounded geometry coarse

median space.

As an application of these ideas we show that for any bounded geometry quasi-
geodesic coarse median space, the metric is uniquely determined by the coarse median
operator up to quasi-isometry.

Theorem 1.5 Foraboundedgeometry quasi-geodesic coarsemedian space (X , d, 〈 〉),
the metric d is unique up to quasi-isometry.

Indeed within this equivalence class of metrics there is a canonical representative
d〈 〉 defined purely in terms of the coarse median operator 〈 〉 (see Theorem 5.6).

This theorem fails without the quasi-geodesic condition as shown by Example 5.7,
but the failure in this example is suggestive. It is interesting to speculate to what extent
the non-uniqueness could be described.

1.4 Rank

As well as providing a relatively simple characterisation of a coarse median operator,
our combinatorial approach introduces a new perspective on the notion of rank in
the coarse median world. We provide three new ways to characterise rank each of
which is a higher rank analogue of one of the classical characterisations of Gromov’s
δ-hyperbolicity:

The thin (n + 1)-cubes condition reduces, in the case of n = 1, to the existence of
a non-decreasing function ϕ such that for all a, b, c and p we have

min{d(p, 〈a, b, p〉), d(p, 〈b, c, p〉)} ≤ ϕ(d(p, 〈a, c, p〉)).

For geodesic coarse median spaces, this is a characterisation of hyperbolicity (see
Sect. 4.1).

The above inequality has the virtue that it is quasi-isometry invariant: the disad-
vantage of Gromov’s 4-point condition, when applied to non-geodesic spaces, is that
it is not. The class of quasi-geodesic coarse median spaces satisfying our variant of
the 4-point condition is closed under quasi-isometry, so we propose the class of rank
1 coarse median algebras as a more robust generalisation of hyperbolicity beyond the
(quasi)-geodesic world.

2 Throughout the paper, we only consider the notion of bounded geometry in the setting of discrete metric
spaces. See Definition 2.1(3).
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Hyperbolic spaces Coarse median spaces/algebras of
rank n

Approximating finite subsets by trees Approximating finite subsets by
CAT(0) cube complexes of
dimension n [6]

Gromov’s inner product (“thin squares”) condition Thin (n + 1)-cubes condition:
Theorem 4.1 (3) and Lemma 6.9

Slim triangle condition (n + 1)-Multi-median condition:
Theorem 4.1 (2)

Pencils of quasi-geodesics grow linearly Interval growth is o(n + 1):
Theorem 4.15

1.5 Outline of the paper

Thepaper is organised as follows. InSect. 2,we recall backgrounddefinitions including
coarse median spaces, their ranks and Špakula and Wright’s notion of iterated coarse
median operators from [14,17].

In Sect. 3, by analogy with Sholander’s results for median algebras and interval
structures [16], we give a characterisation of coarse median spaces entirely in terms
of their intervals.

In Sect. 4, we introduce and study characterisations of rank in the context of coarse
interval structures and show that the correspondences from Sect. 3 preserve rank for
coarse median spaces.

In Sect. 5, we study the intrinsic metric on a ternary algebra and show that it is
unique up to quasi-isometry for any quasi-geodesic coarse median space of bounded
geometry. Motivated by this in Sect. 6, we study the geometry of coarse median
algebras. We establish that these simultaneously generalise the notions of:

(1) Classical discrete median algebras.
(2) Geodesic hyperbolic spaces of bounded geometry.
(3) Bounded geometry coarse median spaces.

The correspondences established in this paper can also be couched as correspon-
dences between (or equivalences of) suitable categories. In the “Appendix”we examine
the notion of morphisms and the definitions of the functors required by that approach.

2 Preliminaries

We follow the conventions established in [14].

2.1 Metrics and geodesics

Definition 2.1 Let (X , d) be a metric space.

(1) A subset A ⊆ X is bounded, if its diameter diam (A) := sup{d(x, y) : x, y ∈
A} is finite; A is a net in X if there exists some constant C > 0 such that for
any x ∈ X , there exists some a ∈ A such that d(a, x) ≤ C .
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(2) Themetric space (X , d) is said to be uniformly discrete if there exists a constant
C > 0 such that for any x �= y ∈ X , d(x, y) > C .

(3) The metric space (X , d) is said to have bounded geometry if, for any r > 0,
there exists some constant n ∈ N such that � B(x, r) ≤ n for any x ∈ X .

(4) Points x, y ∈ X are said to be s-close (with respect to themetric d) if d(x, y) ≤
s. If x is s-close to y, we write x ∼s y. Maps f , g : X → Y are said to be
s-close, written f ∼s g, if f (x) ∼s g(x) for all x ∈ X .

Definition 2.2 Let (X , d), (Y , d ′) be metric spaces and L,C > 0 be constants.

(1) An (L,C)-large scale Lipschitz map from (X , d) to (Y , d ′) is amap f : X → Y
such that for any x, x ′ ∈ X , d ′( f (x), f (x ′)) ≤ Ld(x, x ′) + C .

(2) An (L,C)-quasi-isometric embedding from (X , d) to (Y , d ′) is a map f : X →
Y such that for any x, x ′ ∈ X , L−1d(x, x ′) − C ≤ d ′( f (x), f (x ′)) ≤
Ld(x, x ′) + C .

(3) An (L,C)-quasi-isometry from (X , d) to (Y , d ′) is an (L,C)-large scale Lips-
chitzmap f : X → Y such that there exists another (L,C)-large scaleLipschitz
map g : Y → X with f ◦ g ∼C IdY and g ◦ f ∼C IdX .

(4) (X , d) is said to be (L,C)-quasi-geodesic if for any two points x, y ∈ X there
exists an (L,C)-quasi-isometric embedding of the interval [0, d(x, y)] into X
taking the endpoints to x, y respectively. If we do not care about the constant C
we say that (X , d) is L-quasi-geodesic. If (X , d) is (1, 0)-quasi-geodesic then
we say that X is geodesic.

We will take the liberty of omitting the parameters L,C where their values are not
germane to the discussion.

Definition 2.3 Let (X , d), (Y , d ′) be metric spaces, ρ : R+ → R
+ a proper function

and C > 0 a constant.

(1) A ρ-bornologous map from (X , d) to (Y , d ′) is a function f : X → Y such
that for all x, x ′ ∈ X , d ′( f (x), f (x ′)) ≤ ρ(d(x, x ′)).

(2) f is proper if given any bounded subset B ⊆ Y , f −1(B) is bounded.
(3) A ρ-coarse map from (X , d) to (Y , d ′) is a proper ρ-bornologous map.
(4) A (ρ,C)-coarse equivalence from (X , d) to (Y , d ′) is a ρ-coarsemap f : X →

Y such that there exists another ρ-coarse map g : Y → X with f ◦ g ∼C IdY
and g ◦ f ∼C IdX . In this case, g is called a (ρ,C)-coarse inverse of f .

When the parameters ρ,C are not germane to the discussion we omit them.

2.2 Median algebras

As discussed in [1] there are a number of equivalent formulations of the axioms for
median algebras. We will use the following formulation from [5]:

Definition 2.4 Let X be a set and 〈 〉 a ternary operation on X . Then 〈 〉 is a median
operator and the pair (X , 〈 〉) is a median algebra if the following are satisfied:

(M1) Localisation: 〈a, a, b〉 = a for all a, b ∈ X .
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(M2) Symmetry: 〈a1, a2, a3〉 = 〈aσ(1), aσ(2), aσ(3)〉 for all a1, a2, a3 ∈ X and per-
mutation σ of {1, 2, 3};

(M3) The 5-point condition: 〈a, b, 〈c, d, e〉〉 = 〈〈a, b, c〉 , 〈a, b, d〉 , e〉 for all
a, b, c, d, e ∈ X .

Axiom (M3) is equivalent to the 4-point condition given in [12], see also [2]:

〈〈a, b, c〉 , b, d〉 = 〈a, b, 〈c, b, d〉〉 . (1)

This can be viewed as an associativity axiom: For each b ∈ X the binary operator

(a, c) 
→ a ∗b c := 〈a, b, c〉

is associative. Note that this binary operator is also commutative by (M2).

Example 2.5 An important example is furnished by themedian n-cube, denoted by I n ,
which is the n-dimensional vector space over Z2 with the median operator 〈 〉n given
by majority vote on each coordinate. More generally as remarked in the introduction,
a discrete median algebra is one in which the intervals {〈a, x, b〉 | x ∈ X} are finite.
These algebras are precisely the ones that arise as the vertex sets of CAT(0) cube
complexes.

2.3 Coarsemedian spaces

In [14] we showed how to replace Bowditch’s original definition of a coarse median
space (Definition 1.1), involving n-point approximations for all n, in terms of a 4-point
condition mirroring the classical 4-point condition for median algebras. This may also
be viewed as an analogue of Gromov’s 4-point condition for hyperbolicity.

Proposition 2.6 [14, Theorem 3.1] A triple (X , d, 〈 〉) is a coarse median space if the
pair (X , d) is a metric space and 〈 〉 is a ternary operator satisfying axioms (M1),
(M2) together with the following:

(C1) Affine control: There exists an affine function ρ : [0,+∞) → [0,+∞) such
that for all a, a′, b, c ∈ X, we have

d(〈a, b, c〉 ,
〈
a′, b, c

〉
) ≤ ρ(d(a, a′));

(C2) Coarse 4-point condition: There exists a constant κ4 > 0 such that for any
a, b, c, d ∈ X, we have

〈〈a, b, c〉 , b, d〉 ∼κ4 〈a, b, 〈c, b, d〉〉 .

In the same way that axiom (M3) for a median algebra is equivalent to the 4-point
condition (1), Bowditch’s condition (B2) for a coarse median space ensures that there
exists a constant κ5 > 0 such that for any five points a, b, c, d, e ∈ X we have

〈a, b, 〈c, d, e〉〉 ∼κ5 〈〈a, b, c〉 , 〈a, b, d〉 , e〉 . (2)
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By Proposition 2.6, the constant κ5 depends only on the parameters ρ and κ4. However
it is convenient to carry it with us in calculations. With this in mind we make the
following definition.

Definition 2.7 Wedefine the notion ofparameters for a coarsemedian space (X , d, 〈 〉)
to be any 3-tuple (ρ, κ4, κ5) of constants satisfying the axioms in Definition 2.8
togetherwith estimate (2).Writing the control functionρ in the formofρ(t) = Kt+H0
for some positive constants K and H0, we also refer to the 4-tuple (K , H0, κ4, κ5) as
parameters of (X , d, 〈 〉).

As remarked by Bowditch [6] (in the discussion following Lemma 8.1 there), one
can relax axioms (M1) and (M2) without loss to the following:

(C0) Coarse localisation and coarse symmetry: There is a constant κ0 > 0 such that
for all points a1, a2, a3 in X , 〈a1, a1, a2〉 ∼κ0 a1 and 〈aσ(1), aσ(2), aσ(3)〉 ∼κ0〈a1, a2, a3〉 for any permutation σ of {1, 2, 3}.

Any such ternary operator can be replaced by an operator satisfying the localisation
and symmetry conditions (M1) and (M2) of Definition 2.4 at the cost of moving the
values 〈a, b, c〉 only a uniformly bounded distance. These axioms are more robust
under coarse constructions so we make the following definition:

Definition 2.8 A coarsemedian structure on ametric space (X , d) is a triple (X , d, 〈 〉)
satisfying axioms (C0), (C1) and (C2). Parameters for the structure are given by the
function ρ from (C1) together with the constants κ0, κ4, κ5.

Remark 2.9 The discussion above can be summarised as the assertion that any coarse
median structure (X , d, 〈 〉) can be replaced by a coarse median space (X , d, 〈 〉′) such
that the maps 〈 〉 and 〈 〉′ are uniformly close. Abusing terminology, we say that the
space is uniformly close to the structure.

2.4 Rank for a coarse median space

As in the case of median algebras, there is a notion of rank for a coarse median space.
In terms of Bowditch’s original definition of coarse medians, the rank is simply the
least upper bound on the ranks of the required approximating median algebras given
by condition (B2).

Using the formulation of coarse median given in Definition 2.8 (which only indi-
rectly implies the existenceof approximations for all finite subsets bymedian algebras),
a characterisation of ranks in terms of suitable embeddings of cubes is more useful.

Definition 2.10 For a ternary algebra (X , 〈 〉X ) and a coarsemedian space (Y , dY , 〈 〉Y ),
a map f : X → Y is said to be aC-quasi-morphism for someC > 0, if for a, b, c ∈ X
we have 〈 f (a), f (b), f (c)〉Y ∼C f (〈a, b, c〉X ).

Proposition 2.11 [14, Theorem 4.11] Let (X , d, 〈 〉) be a coarse median space and
n ∈ N. Then the following conditions are equivalent.

(1) rank X ≤ n;
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(2) For any λ > 0 there exists a constant C = C(λ) such that for any a, b ∈ X
and e1, . . . , en+1 ∈ [a, b] with 〈ei , a, e j 〉 ∼λ a for all i �= j , one of the points
ei is C-close to a;

(3) For any L > 0 there exists a constant C = C(L) such that for any L-quasi-
morphism σ from the median cube I n+1 to X, the image σ(ēi ) of one of the
cube vertices ēi adjacent to the origin 0̄ is C-close to the image σ(0̄).

We note that while part (3) of this theorem is slightly different from that stated
in [14, Theorem 4.11], the given proof establishes this version too.

We also need the following notion of coarse median isomorphisms when we char-
acterise rank via interval growths in Sect. 4.

Definition 2.12 Let (X , dX ), (Y , dY ) be metric spaces and 〈 〉X , 〈 〉Y be coarse medi-
ans on them, respectively. A map f : X → Y is called a (ρ,C)-coarse median
isomorphism for some proper function ρ : R+ → R

+ and constant C > 0, if f is
a (ρ,C)-coarse equivalence as well as a C-quasi-morphism.

There is a categorical explanation of this terminology given in Appendix A.1.
We will show in Remark A.5 that for a (ρ+,C)-coarse median isomorphism f , any
(ρ+,C)-coarse inverse g is aC ′-quasi-morphism with the constantC ′ depending only
on ρ+,C and parameters of X ,Y . In this case, we will also refer to g as an inverse of
f .

2.5 Iterated coarse medians

We recall the following definition from [17]:

Definition 2.13 Let (X , d, 〈 〉) be a coarse median space and b ∈ X . For x1 ∈ X ,
define:

〈x1; b〉 := x1.

For k ≥ 1 and x1, . . . , xk+1 ∈ X , define the coarse iterated median

〈x1, . . . , xk+1; b〉 := 〈〈x1, . . . , xk; b〉 , xk+1, b〉 .

Note that this definition “agrees” with the original coarse median operator 〈 〉 in the
sense that for any a, b, c in X , we have 〈a, b, c〉 = 〈a, b; c〉.

It was established in [17, Section 5] that in a median algebra, the iterated median
m := 〈x1, . . . , xk+1; b〉 is characterised by the fact that the interval [m, b] is the
intersection of the intervals [xi , b] for i = 1, . . . , k + 1.

Fixing a pointb and (as inSect. 2.2)writing the coarsemedian 〈x1, x2, b〉 as x1 ∗b x2,
the iterated median 〈x1, . . . , xk; b〉 can be written as ((x1 ∗b x2) ∗b x3) ∗b · · · ∗b xk . In
this notation the four point condition is, precisely the statement that (x1 ∗b x2) ∗b x3
is uniformly close to the product x1 ∗b(x2 ∗b x3). This along with the commutativity
of the operation ∗b allows the rearrangement of iterated medians. See Lemma 2.15
below.

In [14, Lemmas 2.16–2.19] we established the following estimates:
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Lemma 2.14 Let (X , d, 〈 〉) be a coarse median space with parameters (ρ, κ4, κ5).
Then there exist non-decreasing functions ρn, Hn : R

+ → R
+ and constants Cn, Dn

depending only on ρ, κ4, κ5 such that for any a, a0, a1, . . . , an and b, b0, b1, . . . , bn ∈
X we have:

(1) d(〈a1, . . . , an; a0〉 , 〈b1, . . . , bn; b0〉) ≤ ρn(
∑n

k=0 d(ak, bk)).
(2) Let (�, 〈 〉�) be a median algebra and σ : � → X an L-quasi-morphism. For

any x1, . . . , xn, b ∈ �, we have

σ(〈x1, . . . , xn; b〉�) ∼Hn(L) 〈σ(x1), . . . , σ (xn); σ(b)〉.

(3) 〈a, b, 〈a1, . . . , an−1; an〉〉 ∼Cn 〈〈a, b, a1〉 , . . . , 〈a, b, an−1〉 ; an〉.
(4) 〈a, b, 〈a1, . . . , an−1; an〉〉 ∼Dn 〈〈a, b, a1〉 , . . . , 〈a, b, an−1〉 ; 〈a, b, an〉〉.
Here we provide additional estimates that will give us the control we need later to

analyse the structure of coarse cubes in Sect. 4.3.

Lemma 2.15 Let (X , d, 〈 〉) be a coarse median space with parameters (ρ, κ4, κ5).
Then for any n ∈ N, there exists a constant Gn depending only on ρ, κ4, κ5 such that
for any a1, . . . , an, b ∈ X and any permutation σ ∈ Sn, we have

〈aσ(1), . . . , aσ(n); b〉 ∼Gn 〈a1, . . . , an; b〉 .

Proof We proceed by induction on n. When n = 1 or 2, we may take G1 = G2 = 0
by definition and axiom (M2).

Now assume that the result holds for 1, 2, . . . , n − 1 and we consider the case of
n. As usual it is sufficient to prove the lemma when σ is a transposition of the form
(1 j). If j < n then by definition, we have

〈a1, . . . , an; b〉 = 〈〈a1, . . . , a j ; b〉, a j+1, . . . , an; b〉.

Inductively 〈a1, . . . , a j ; b〉 ∼G j 〈a j , a2, . . . , a j−1, a1; b〉 and the result follows by
Lemma 2.14 (1). It remains to check the case σ = (1n). By the inductive step, we
have

〈an, a2, . . . , an−1, a1; b〉 = 〈〈an, a2, . . . , an−1; b〉 , a1, b〉
∼ρ(Gn−1) 〈〈a2, . . . , an−1, an; b〉 , a1, b〉 = 〈〈〈a2, . . . , an−1; b〉 , an, b〉 , a1, b〉
∼κ4 〈〈〈a2, . . . , an−1; b〉 , a1, b〉 , an, b〉 = 〈〈a2, . . . , an−1, a1; b〉 , an, b〉
∼ρ(Gn−1) 〈〈a1, a2, . . . , an−1; b〉 , an, b〉 = 〈a1, a2, . . . , an; b〉 .

Hence for the transposition (1n), we have

〈an, a2, . . . , an−1, a1; b〉 ∼2ρ(Gn−1)+κ4 〈a1, a2, . . . , an; b〉 .

This completes the proof. ��
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Lemma 2.16 Let (X , d, 〈 〉) be a coarse median space with parameters (ρ, κ4, κ5).
Then for any n, there exists a constant En depending only on ρ, κ4, κ5 such that for
any 1 ≤ k ≤ n and a1, . . . , an, b ∈ X, we have

〈a1, . . . , ak; 〈a1, . . . , an; b〉〉 ∼En 〈a1, . . . , ak; b〉 . (3)

Proof Fix an n. By Axiom (B2), there exists a constant hn+1 > 0 such that for any
a1, . . . , an, b ∈ X there exist a finite median algebra (�, 〈 〉�), points ā1, . . . , ān, b̄ ∈
� and an hn+1-quasi-morphism λ : � → X satisfying λ(āi ) ∼hn+1 ai for i = 1, . . . , n
and λ(b̄) ∼hn+1 b. From parts (1) and (2) of Lemma 2.14 with the control functions
Hn and ρn therein, we have

〈a1, . . . , an; b〉 ∼ρn((n+1)hn+1) 〈λ(ā1), . . . , λ(ān); λ(b̄)〉 ∼Hn(hn+1) λ(〈ā1, . . . , ān; b̄〉�).

Similarly for any 1 ≤ k ≤ n, we have

〈a1, . . . , ak; b〉 ∼ρn((n+1)hn+1)+Hn(hn+1) λ(〈ā1, . . . , āk; b̄〉�)

and putting K = ρn(nhn+1 + ρn((n + 1)hn+1) + Hn(hn+1)), we get

〈a1, . . . , ak; 〈a1, . . . , an; b〉〉 ∼K 〈λ(ā1), . . . , λ(āk); λ(〈ā1, . . . , ān; b̄〉�)〉
∼Hn(hn+1) λ(〈ā1, . . . , āk; 〈ā1, . . . , ān; b̄〉�〉�).

It follows directly from [17, Lemma 5.3] that in the actual median algebra (�, 〈 〉�),
the iterated median 〈ā1, . . . , ān; b̄〉� is nothing but the projection of b̄ onto the convex
hull of ā1, . . . , ān . Hence we have

〈ā1, . . . , āk; b̄〉� = 〈ā1, . . . , āk; 〈ā1, . . . , ān; b̄〉�〉�.

Combining the above together and taking En := ρn(nhn+1 + ρn((n + 1)hn+1) +
Hn(hn+1)) + ρn((n + 1)hn+1) + 2Hn(hn+1), Equality (3) holds. ��

3 Coarse interval structures

Sholander studied the relation between intervals and median operators, and we will
generalise this approach to the coarse context.

Classically Sholander defined the interval between two points a and b in a median
algebra (X , 〈 〉) to be the set {c : 〈a, c, b〉 = c}. This (in the context ofmedian algebras)
agrees with our definition of interval (Definition 1.2) since for any c = 〈a, x, b〉 ∈
[a, b], we have

〈a, c, b〉 = 〈c, a, b〉 = 〈〈x, a, b〉 , a, b〉 = 〈x, 〈a, b, a〉 , b〉 = 〈x, a, b〉 = c.

Of course the two definitions of interval do not necessarily coincide in the coarse
context.
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Theorem 3.1 [16] For every median algebra (X , 〈 〉), the binary operation [·, ·] :
X × X → P(X) defined by (a, b) 
→ [a, b] has the following properties:

• [a, a] = {a}.
• if c ∈ [a, b] then [a, c] ⊆ [b, a].
• [a, b] ∩ [b, c] ∩ [c, a] has cardinality 1.

Conversely, every operation X2 → P(X) with the preceding properties induces a
ternary operator 〈 〉′ whereby 〈a, b, c〉′ is the unique point in [a, b] ∩ [b, c] ∩ [c, a]
such that (X , 〈 〉′) is a median algebra.

As remarked by the referee, it requires a little work to extract the proof of the
converse statement from Sholander, however we are fortunate that this is explained in
some detail in [8, Section 2]. Here we will provide a coarse analogue of Sholander’s
theorem. We start by considering the properties of intervals in a coarse median space.

Proposition 3.2 Let (X , d, 〈 〉) be a coarse median space with parameters ρ, κ4 and
κ5. Then the map [·, ·] : X2 → P(X) defined by (a, b) 
→ [a, b] = {〈a, x, b〉 | x ∈ X}
satisfies:

(I1). For all a, b ∈ X , [a, a] = {a}, [a, b] = [b, a].
(I2). There exists a non-decreasing functionφ : R+ → R

+ such that for any a, b ∈ X
and c ∈ NR([a, b]), we have [a, c] ⊆ Nφ(R)([a, b]);

(I3). There exists a non-decreasing functionψ : R+ → R
+ such that for any a, b, c ∈

X, we have [a, b] ∩ [b, c] ∩ [c, a] �= ∅ and

diam (NR([a, b]) ∩ NR([b, c]) ∩ NR([c, a])) ≤ ψ(R).

Proof Property (I1) follows directly from axioms (M1) and (M2) for a coarse median
space. Now we consider (I2). Since c ∈ NR([a, b]), there exists x ∈ X such that
c ∼R 〈a, b, x〉. Then it follows from axioms (C1), (C2) and (M2) that for any y ∈ X
we have

〈a, c, y〉 ∼ρ(R) 〈a, 〈a, b, x〉 , y〉 ∼κ4 〈a, b, 〈a, x, y〉〉,

which implies 〈a, c, y〉 ∈ Nρ(R)+κ4([a, b]). So we can take φ(R) = ρ(R) + κ4, and
(I2) holds. For (I3), we know that 〈a, b, c〉 ∈ [a, b] ∩ [b, c] ∩ [c, a] so the intersection
is non-empty. Furthermore given a point z ∈ NR([a, b]) ∩ NR([b, c]) ∩ NR([c, a])
there exists w ∈ X such that z ∼R 〈a, b, w〉. So by (C1) and (C2), we have

〈a, b, z〉 ∼ρ(R) 〈a, b, 〈a, b, w〉〉 ∼κ4 〈〈a, b, a〉 , b, w〉 = 〈a, b, w〉 ∼R z.

Similarly for b, c and for c, a. Hence we obtain that

〈a, b, z〉 ∼κ ′ z, 〈b, c, z〉 ∼κ ′ z, 〈c, a, z〉 ∼κ ′ z,

where κ ′ := ρ(R) + R + κ4 = φ(R) + R. Combining with (C1) and (2), we obtain

z ∼κ ′ 〈c, a, z〉 ∼ρ(κ ′) 〈c, a, 〈b, c, z〉〉 ∼κ4 〈〈c, a, b〉 , c, z〉
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= 〈〈a, b, c〉 , c, z〉 ∼ρ(κ ′) 〈〈a, b, c〉 , c, 〈a, b, z〉〉 ∼κ5 〈a, b, 〈c, c, z〉〉
= 〈a, b, c〉 .

The above estimate implies that the diameter ofNR([a, b])∩NR([b, c])∩NR([c, a])
is bounded by

ψ(R) = 4ρ(κ ′) + 2κ ′ + 4κ4 = 4ρ(ρ(R) + R + κ4) + 2ρ(R) + 2R + 6κ4.

��
With this in mind, we define the concept of a coarse interval space as follows.

Definition 3.3 Let (X , d)be ametric space and [·, ·] : X2 → P(X)be amap satisfying
(I1)∼(I3) in Proposition 3.2. Then I = (X , d, [·, ·]) is called a coarse interval space.
The functions φ,ψ in the conditions are called parameters for I. As with the notion
of a coarse median space, the parameters are not uniquely defined and are not part of
the data. It is only their existence that is required.

Note that conditions (I1) and (I3) together imply that any interval [a, b]must contain
a, since the intersection [a, a] ∩ [a, b] ∩ [b, a] is simultaneously non-empty and
contained in [a, a] := {a}. Since [a, b] = [b, a] by (I1) as well, it must also contain
b.

Given a coarse median space (X , d, 〈 〉), the triple (X , d, [·, ·]) given by [a, b] :=
{〈a, x, b〉 : x ∈ X} is said to be the coarse interval space induced by (X , d, 〈 〉).

On the other hand, supposewe are given a coarse interval space (X , d, [·, ·]). Axiom
(I3) implies that for any a, b, c ∈ X we can always choose a point in [a, b] ∩ [b, c] ∩
[c, a], denoted by 〈a, b, c〉, which is invariant under any permutation of {a, b, c} (i.e.,
the choice satisfies axiom (M2)), while (I1) and (I3) together ensure that we can only
choose a for the triple a, a, b ensuring that it also satisfies (M1). Making such a choice
for all a, b, c gives us a ternary operator 〈 〉 on X which we will refer to as the induced
(ternary) operator. By axiom (I3), 〈 〉 is uniquely determined up to bounded error.

Our proof that the induced ternary operator is a coarse median operator on X is
inspired by Sholander’s argument in [16], though more care needs to be taken with
the estimates introduced by the coarse conditions. For clarity we divide the proof into
several lemmas.

Lemma 3.4 Let (X , d, [·, ·]) be a coarse interval space and 〈 〉 be the induced operator.
Given parameters φ,ψ for the space, then for any a, a′, b, c ∈ X, we have

d(〈a, b, c〉 ,
〈
a′, b, c

〉
) ≤ ψ(φ(d(a, a′))).

In particular, axiom (C1) holds for (X , d, 〈 〉) with ρ = ψ ◦ φ.

Proof Set R = d(a, a′), then a′ ∈ NR([a, b]) and a′ ∈ NR([c, a]). By (I1) and (I2),
we have

[a′, b] ⊆ Nφ(R)([a, b]) and [c, a′] ⊆ Nφ(R)([c, a]).
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Hence

〈
a′, b, c

〉 ∈ [a′, b] ∩ [b, c] ∩ [c, a′] ⊆ Nφ(R)([a, b]) ∩ Nφ(R)([b, c]) ∩ Nφ(R)([c, a]).

Combined with (I3), we obtain that
〈
a′, b, c

〉
∼ψ(φ(R)) 〈a, b, c〉. ��

Convention Following this lemma, given parameters φ,ψ we will fix the function
ρ := 3ψ ◦ φ so that d(〈a, b, c〉 ,

〈
a′, b′, c′〉) ≤ ρ(d(a, a′) + d(b, b′) + d(c, c′)).

We now turn our attention to axiom (C2). Fix a coarse interval space (X , d, [·, ·])
with parameters φ,ψ and the induced operator 〈 〉. We begin with the following ele-
mentary lemma, which can be deduced directly from the definition.

Lemma 3.5 If c ∼R 〈a, b, c〉, then c ∈ NR([a, b]); conversely, if c ∈ NR([a, b]) then
c ∼ψ(R) 〈a, b, c〉 for any a, b, c ∈ X.

The following estimates are a little less obvious.

Lemma 3.6 Let b ∈ NR1([a, c]) and c ∈ NR2([a, d]). Then c ∈ Nh(R1,R2)([b, d])
where h(R1, R2) = ψ(R2) + ψ(φ(R1 + φ(R2))).

Proof Since b ∈ NR1([a, c]), axioms (I1) and (I2) imply that [b, c] ⊆ Nφ(R1)([a, c]).
Since c ∈ NR2([a, d]), again by (I2) we have [a, c] ⊆ Nφ(R2)([a, d]). Hence b ∈
NR1([a, c]) ⊆ NR1+φ(R2)([a, d]), and consequently [b, d] ⊆ Nφ(R1+φ(R2))([a, d])
by axioms (I1) and (I2). Combining them together with axiom (I3), we have

〈b, c, d〉 ∈ [b, c] ∩ [c, d] ∩ [d, b] ⊆ Nφ(R1)([a, c]) ∩ [c, d] ∩ Nφ(R1+φ(R2))([a, d]),

which implies 〈b, c, d〉 ∼ψ(φ(R1+φ(R2))) 〈a, c, d〉 ∼ψ(R2) c (we use Lemma 3.5 in the
second estimate since c ∈ NR2([a, d])). So the conclusion holds. ��
Corollary 3.7 Suppose the Hausdorff distance dH ([a, b], [a, c]) ≤ R, then d(b, c) ≤
h(R, R).

Proof By assumption, b ∈ NR([a, c]) and c ∈ NR([a, b]). Now putting d := b and
applying Lemma 3.6, we have c ∈ Nh(R,R)([b, b]). Since [b, b] = {b} by axiom (I1),
we have d(b, c) ≤ h(R, R). ��
Lemma 3.8 For any a, b, c, d ∈ X, we have 〈a, 〈a, c, d〉 , 〈b, c, d〉〉 ∼κ ′′ 〈a, c, d〉,
where κ ′′ = ψ(φ(0) + ψφ2(0)). Here we use the notation φ2(0) := φ ◦ φ(0).

Proof Setting x = 〈b, c, d〉, we consider m = 〈a, 〈a, x, c〉 , d〉 ∈ [a, 〈a, x, c〉] ⊆
Nφ(0)([a, x]). Taking y = 〈a, x, c〉 = 〈a, 〈b, c, d〉 , c〉 ∈ [a, c], we have [a, y] ⊆
Nφ(0)([a, c]) by (I2), which implies m ∈ Nφ(0)([a, c]). Again by (I2), y ∈
[c, 〈b, c, d〉] ⊆ Nφ(0)([c, d]), so m ∈ [y, d] ⊆ Nφ2(0)([c, d]). Combining them
together, we have

m ∈ Nφ(0)([a, c]) ∩ Nφ2(0)([c, d]) ∩ [a, d],

which implies 〈a, c, d〉 ∼ψ(φ2(0)) m by (I3). Hence 〈a, c, d〉 ∈ Nφ(0)+ψφ2(0)([a, x]).
Finally, by Lemma 3.5, we have 〈a, 〈a, c, d〉 , x〉 ∼ψ(φ(0)+ψφ2(0)) 〈a, c, d〉. ��
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From now on, let us fix the constant κ ′′ = ψ(φ(0) + ψφ2(0)).

Lemma 3.9 For any R1, R2 > 0, there exists a constant λ(R1, R2) > 0 such that for
any b ∈ NR1([a, c]) ∩ NR2([a, d]) and x ∈ [c, d] we have b ∈ Nλ(R1,R2)([a, x]). In
particular, taking x = 〈a, c, d〉 we have:

NR1([a, c]) ∩ NR2([a, d]) ⊆ Nλ(R1,R2)([a, 〈a, c, d〉]).

Proof Since b ∈ NR1([a, c]), it follows from Lemmas 3.4 and 3.8 that

〈d, 〈a, c, d〉 , b〉 ∼ρ(ψ(R1)) 〈d, 〈a, c, d〉 , 〈a, b, c〉〉 ∼κ ′′ 〈a, c, d〉 .

This implies 〈a, c, d〉 ∈ Nρ(ψ(R1))+κ ′′([b, d]). Together with b ∈ NR2([a, d]) and
Lemma 3.6, we have b ∈ Nh(ρ(ψ(R1))+κ ′′,R2)([a, 〈a, c, d〉]). On the other hand, since
x ∈ [c, d], it follows from Lemmas 3.4, 3.5 and 3.8 that

〈a, 〈a, c, d〉 , x〉 ∼ρ(ψ(0)) 〈a, 〈a, c, d〉 , 〈x, c, d〉〉 ∼κ ′′ 〈a, c, d〉 .

This implies 〈a, c, d〉 ∈ Nρ(ψ(0))+κ ′′([a, x]), hence
[a, 〈a, c, d〉] ⊆ Nφ(ρ(ψ(0))+κ ′′)([a, x]). Combining them together, we have

b ∈ Nh(ρ(ψ(R1))+κ ′′,R2)+φ(ρ(ψ(0))+κ ′′)([a, x]).

Now taking

λ(R1, R2) = h(ρ(ψ(R1)) + κ ′′, R2) + φ(ρ(ψ(0)) + κ ′′),

the lemma holds. ��
Finally we are in the position to prove the following theorem.

Theorem 3.10 Let (X , d, [·, ·]) be a coarse interval space with the induced operator
〈 〉, then (X , d, 〈 〉) is a coarse median space.

Proof It only remains to verify (C2). In other words, we need to find a constant κ such
that for any a, b, c, d ∈ X , we have

〈〈a, b, c〉 , b, d〉 ∼κ 〈a, b, 〈c, b, d〉〉 .

By axiom (I2) and Lemma 3.9, we have:

[b, 〈〈a, b, c〉 , b, d〉] ⊆ Nφ(0)([b, 〈a, b, c〉]) ∩ Nφ(0)([b, d])
⊆ Nφ2(0)([b, a]) ∩ Nφ2(0)([b, c]) ∩ Nφ(0)([b, d])
⊆ Nφ2(0)([b, a]) ∩ Nλ(φ2(0),φ(0))([b, 〈b, c, d〉])
⊆ Nλ(φ2(0),λ(φ2(0),φ(0)))([b, 〈a, b, 〈b, c, d〉〉]).
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Similarly we have

[b, 〈a, b, 〈b, c, d〉〉] ⊆ Nλ(φ2(0),λ(φ2(0),φ(0)))([b, 〈〈a, b, c〉 , b, d〉]).

The above two estimates imply:

dH ([b, 〈〈a, b, c〉 , b, d〉], [b, 〈a, b, 〈c, b, d〉〉]) ≤ λ(φ2(0), λ(φ2(0), φ(0))).

Finally it follows from Corollary 3.7 that

〈〈a, b, c〉 , b, d〉 ∼κ 〈a, b, 〈c, b, d〉〉

for κ = h(λ(φ2(0), λ(φ2(0), φ(0))), λ(φ2(0), λ(φ2(0), φ(0)))). ��
Analogous to relaxing axioms (M1) and (M2) for a coarsemedian operator to axiom

(C0), we consider the following notion of a coarse interval structure.

Definition 3.11 A coarse interval structure on a metric space (X , d) is a triple I =
(X , d, [·, ·]), where [·, ·] is a map from X2 to P(X) such that there exists a constant
κ0 > 0 for which the following conditions hold:

(I1)′. For all a, b ∈ X , dH ([a, a], {a}) ≤ κ0 and dH ([a, b], [b, a]) ≤ κ0;
(I2). There exists a non-decreasing function φ : R

+ → R
+ such that for any a, b ∈

X and c ∈ NR([a, b]), we have [a, c] ⊆ Nφ(R)([a, b]);
(I3)′. There exists a non-decreasing function ψ : [κ0,+∞) → R

+ such that for any
a, b, c ∈ X and R ≥ κ0, we have Nκ0([a, b]) ∩ Nκ0([b, c]) ∩ Nκ0([c, a]) �= ∅
and diam (NR([a, b]) ∩ NR([b, c]) ∩ NR([c, a])) ≤ ψ(R).

The constant κ0 and functions φ,ψ in the conditions are called parameters for I.
Remark 3.12 By (I1)′, for any point a the interval [a, a] lies in B(a, κ0). By (I3)′, the
intersectionNκ0([a, a])∩Nκ0([a, b])must be non-empty for all b. AsNκ0([a, a]) lies
in B(a, 2κ0), it follows that a must lie in N3κ0([a, b]). Similarly b ∈ N3κ0([a, b]).

Recall that every coarsemedian is uniformly close to some coarsemedian satisfying
axioms (M1) and (M2). Similarlywewill show that a coarse interval structure is always
“close” to another satisfying (I1)–(I3) in the following sense.

Definition 3.13 Let (X , d, [·, ·]) and (X , d, [·, ·]′) be coarse interval structures.We say
they are uniformly close if there exists a constantC > 0 such that dH ([x, y], [x, y]′) ≤
C for any x, y ∈ X .

Lemma 3.14 Let (X , d, [·, ·]) be a coarse interval structure. Then there exists a map
[·, ·]′ which is uniformly close to [·, ·] and such that (X , d, [·, ·]′) is a coarse interval
space.

Proof We define ‘fattened’ intervals:

[a, b]′ := Nκ0([a, b]) ∪ Nκ0([b, a]) ∪ {a, b}
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for a �= b, and define [a, a]′ := {a}. It is easy to see from (I1)′ that [a, a]′ = {a} is κ0-
close to [a, a] and thatNκ0([a, b])∪Nκ0([b, a]) is 2κ0-close to [a, b]. ByRemark 3.12,
the points a, b are 3κ0-close to [a, b], hence [a, b]′ is 3κ0-close to [a, b].

By construction, [·, ·]′ satisfies (I1) and clearly it still satisfies (I2). The fat-
tening of the intervals together with (I3)′ ensures that [a, b]′ ∩ [b, c]′ ∩ [c, a]′
is non-empty for a, b, c distinct. Now taking repeated points, [a, b]′ ∩ [b, b]′ ∩
[b, a]′ = {b} by construction. Hence [a, b]′ ∩ [b, c]′ ∩ [c, a]′ is non-empty in all
cases. The above analysis shows that the R-neighbourhood of the interval [a, b]′
is contained in the (R + 3κ0)-neighbourhood of the interval [a, b], so the inter-
section NR([a, b]′) ∩ NR([b, c]′) ∩ NR([c, a]′) is contained in the intersection
NR+3κ0([a, b])∩NR+3κ0([b, c])∩NR+3κ0([c, a]). It therefore has diameter bounded
by ψ(R + 3κ0) by (I3)′. This establishes (I3). ��

Adapting the arguments we made above, we have the following correspondence
between coarse median structures and coarse interval structures.

Theorem 3.15 (1) Given a coarse median structure (X , d, 〈 〉), the map (a, b) 
→
[a, b] provided by Definition 1.2 gives an induced coarse interval structure
(X , d, [·, ·]).
(2) Let (X , d, [·, ·]) be a coarse interval structure with parameters κ0, φ, ψ . For
any a, b, c ∈ X, choose a point inNκ0([a, b])∩Nκ0([b, c])∩Nκ0([c, a]), denoted
by 〈a, b, c〉. Making such a choice gives an induced coarse median structure
(X , d, 〈 〉).
(3) Furthermore the above two procedures are inverse to each other up to uniform
bounds:

• For a coarsemedian structure (X , d, 〈 〉)with induced coarse interval structure
(X , d, [·, ·]), any induced coarse median structure (X , d, 〈 〉′) is uniformly
close to (X , d, 〈 〉);

• For a coarse interval structure (X , d, [·, ·]) with any induced coarse median
structure (X , d, 〈 〉), the induced coarse interval structure is uniformly close
to (X , d, [·, ·]).

Proof (1). By Remark 2.9, (X , d, 〈 〉) is uniformly close to a coarse median space
(X , d, 〈 〉′). Now Proposition 3.2 shows that the map X2 → P(X) given by
[a, b]′ = {〈a, c, b〉′ : c ∈ X} gives a coarse interval space (X , d, [·, ·]′). Since
〈 〉 and 〈 〉′ are uniformly close, [·, ·] and [·, ·]′ are uniformly close as well. Hence
(X , d, [·, ·]) is a coarse interval structure.

(2). From Lemma 3.14, (X , d, [·, ·]) is uniformly close to some coarse interval
space (X , d, [·, ·]′). We now apply Theorem 3.10 to construct an induced coarse
median space (X , d, 〈 〉′). Since [·, ·] and [·, ·]′ are uniformly close, 〈 〉 and 〈 〉′ are
uniformly close as well. Hence (X , d, 〈 〉) is a coarse median structure.

(3). First we start with the coarse median structure (X , d, 〈 〉) with parame-
ters ρ, κ0, κ4, κ5 and induced coarse interval structure (X , d, [·, ·]) with some
parameters κ0

′, φ, ψ . Let (X , d, 〈 〉′) be any induced coarse median structure of
(X , d, [·, ·]). By definition for any x, y, z ∈ X , 〈x, y, z〉′ is somepoint chosen from
the intersectionNκ0 ′([x, y])∩Nκ0 ′([y, z])∩Nκ0 ′([z, x]), a fortiori it is in the inter-
sectionNκ0 ′′([x, y])∩Nκ0 ′′([y, z])∩Nκ0 ′′([z, x])where κ0

′′ = max{κ0, κ0′}. The
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latter contains 〈x, y, z〉 and is uniformly bounded with diameter at most ψ(κ0
′′).

Hence 〈 〉 and 〈 〉′ are uniformly close.
Conversely given a coarse interval structure (X , d, [·, ·]) with parameters κ0, φ, ψ

and any induced coarse median structure (X , d, 〈 〉), we consider the induced
coarse interval structure (X , d, [·, ·]′) of (X , d, 〈 〉). By definition for any x, y, z ∈
X , 〈x, z, y〉 is some point chosen fromNκ0([x, z])∩Nκ0([z, y])∩Nκ0([y, x]). Hence〈x, z, y〉 ∈ Nκ0([y, x]) ⊆ N2κ0([x, y]), which implies [x, y]′ ⊆ N2κ0([x, y]). On the
other hand for any z ∈ [x, y], Remark 3.12 implies z ∈ Nκ0([y, x]) ∩ N3κ0([z, y]) ∩
N3κ0([x, z]). It follows that both z and 〈x, z, y〉 lie in Nκ0([y, x]) ∩ N3κ0([z, y]) ∩
N3κ0([x, z]). So by axiom (I3)′, we have z ∼K 〈x, z, y〉 ∈ [x, y]′ for K = ψ(3κ0).
Hence [x, y] ⊆ NK ([x, y]′), which implies dH ([x, y], [x, y]′) ≤ max{2κ0, K } for
any x, y ∈ X . Therefore [·, ·] and [·, ·]′ are uniformly close. ��

4 Rank, generalised hyperbolicity and interval growth

4.1 Generalised hyperbolicity for higher rank coarsemedian spaces

Herewewill provide the following characterisations of rank for a coarsemedian space.

Theorem 4.1 Let (X , d, 〈 〉) be a coarse median space and n ∈ N \ {0}, then the
following are equivalent:

(1) rank X ≤ n;
(2) Multi-median condition: There exists a non-decreasing function ψ such that

for any λ > 0 and any x1, . . . , xn+1, q ∈ X, we have

⋂

i �= j

Nλ([xi , x j ]) ⊆
n+1⋃

i=1

Nψ(λ)([xi , q]);

(3) Thin (n+1)-cubes condition: There exists a non-decreasing function ϕ, such
that

min{d(p, 〈xi , p, q〉) : i = 1, . . . , n + 1} ≤ ϕ(max{d(p, 〈xi , x j , p〉) : i �= j})

for any x1, . . . , xn+1 and p, q ∈ X.

As Bowditch showed in [6], a geodesic coarse median space has rank 1 if and
only if it is hyperbolic, and it is instructive to consider conditions (2) and (3) above
in that context. Here condition (2) reduces to a version of the generalised slim tri-
angles condition abstracted from classical hyperbolic geometry, while condition (3)
reduces to the Gromov inequality (see Eq. 5 below) motivated by the geometry of
trees. From this perspective, Theorem 4.1 provides higher rank analogues of these two
characterisations.

To be more precise, recall that in [14, Theorem 4.4] we established the following
result in the special case where b is required to range over those points in the interval
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[a, c]. To deduce the more general result stated here, one only needs to consider the
effect of replacing the general point b by the coarse median 〈a, b, c〉 and then use the
fact that the intervals [a, 〈a, b, c〉] and [〈a, b, c〉 , c] both lie in a uniformly bounded
neighbourhood of the interval [a, c]:
Theorem 4.2 [14]For a coarse median space (X , d, 〈 〉), the following are equivalent:

(1) rank X ≤ 1;
(2) There exists a constant δ > 0 such that for any a, b, c ∈ X, we have

[a, c] ⊆ Nδ([a, b]) ∪ Nδ([b, c]).

We also showed in [14, Theorem 4.2] that the intervals in a rank 1 geodesic coarse
median space are uniformly close to geodesics, so Theorem 4.2 is a version of the slim
triangles condition for hyperbolicity. Clearly Theorem 4.1 generalises this, providing
a higher rank analogue of the slim triangles condition which holds even in the non-
geodesic context.

Remark 4.3 The closeness of geodesics and intervals is a unique (and not a priori
obvious) feature of the rank 1 case. Combining this fact with Proposition 3.2, we
deduce that any geodesic metric space admits at most one coarse median of rank one
up to uniform bound. As Zeidler showed in [18, Example 2.2.8], this is not true for
higher rank cases (indeed, even in rank 2). The classical median on the Euclidean
plane (corresponding to the Cartesian coordinates) is given by taking the interval from
the origin to the point (x, y) to be the rectilinear area with diagonal between these
points and extending this by the translation action to an interval structure on the plane,
equipped with its usual metric. Rotating the frame by an angle of π/4 one obtains
a new interval structure but of course the metric does not change. To see that the
new median is not equivalent to the standard one, one observes that while the points
(n, 0), (0, 0), (0, n) have standard median (0, 0) their median in the new structure is
( n√

2
, n√

2
) which diverges to infinity.

Turning now to Gromov’s inner product, we recall the definition. Fixing a base
point p in a metric space (X , d), and for a, b ∈ X , we set

(a|b)p := 1

2
[d(a, p) + d(b, p) − d(a, b)].

Theorem 4.4 [10] A geodesic metric space (X , d) is Gromov hyperbolic if and only
if there exists some constant δ > 0 such that the following inequality holds for any
a, b, c, p ∈ X:

min{(a|b)p, (b|c)p} ≤ (a|c)p + δ. (4)

Note that the Gromov product is determined by the properties (z|y)x + (z|x)y =
d(x, y) and symmetry: (z|y)x = (y|z)x for all x, y, z.

If iy is the intermediate point on a geodesic from x to z such that d(x, iy) = (y|z)x
and d(z, iy) = d(x, z) − d(x, iy) = (y|x)z , then we have

(y|x)iy = 1/2(d(y, iy) + d(x, iy) − d(y, x))
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= 1/2(d(y, iy) + (z|y)x − d(y, x))

= 1/2(d(y, iy) − (z|x)y).

Since this is symmetric in x, z for such points, we obtain (y|x)iy = (y|z)iy .
Lemma 4.5 A geodesic space X is hyperbolic if and only if there exists δ > 0 such
that for all x, y, z ∈ X and p on a geodesic from x to z, we have

min{(y|x)p, (y|z)p} ≤ δ.

Proof The condition is a special case of Gromov’s 4-point condition, so is implied by
hyperbolicity.

Now we consider the converse. For any x, y, z ∈ X , let ix , iy, iz be intermediate
points on geodesics from y to z, x to z and x to y respectively such that d(x, iy) =
d(x, iz) = (y|z)x , etc.

As noted above (y|x)iy = (y|z)iy , so by hypothesis both of these are at most δ.
Thus we have

d(x, ix ) + d(ix , y) ≤ d(x, y) + 2δ,

meaning intuitively that ix is ‘almost’ on a geodesic from x to y.
On the other hand, d(x, iz) + d(iz, y) = d(x, y) and d(iz, y) = (x |z)y = d(ix , y).

So we have d(x, ix ) ≤ d(x, iz) + 2δ. We will show a fellow travelling result that
bounds d(ix , iz).

Since iz is on the geodesic from x to y, our hypothesis implies one of
(ix |x)iz , (ix |y)iz is at most δ. In other words, for some u ∈ {x, y} we have

d(ix , iz) + d(u, iz) ≤ d(ix , u) + 2δ.

When u = y we have d(ix , u) = d(u, iz), while u = x implies d(ix , u) ≤ d(u, iz) +
2δ. Hence in either case, we have d(ix , iy) ≤ 4δ.

Interchanging the roles of x, y, z we see that {ix , iy, iz} has diameter at most 4δ,
which implies hyperbolicity by [9, III.H.1.17(3)]. ��

We note that neither the Gromov 4-point condition nor our special case of this is
quasi-isometry invariant, however we can give a quasi-isometrically invariant form in
terms of medians as follows. To allow for this coarsening we consider the following
condition: there exists a non-decreasing function ϕ such that for any x, y, z; p ∈ X ,
we have

min{(y|x)p, (y|z)p} ≤ ϕ((x |z)p). (5)

This is a priori weaker than the Gromov 4-point condition, but stronger than the
hypothesis in Lemma 4.5 (taking δ = ϕ(0)), so in the geodesic case inequality (5)
characterises hyperbolicity.

Now for a rank 1 geodesic coarse median space (X , d, 〈 〉), there exists a constant
C > 0 such that for any a, b, p ∈ X , (a|b)p ∼C d(p, 〈a, b, p〉). This follows directly
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from the fact that intervals and geodesics are uniformly close to each other [14, The-
orem 4.2]. Hence in this situation, the coarse inequality (5) above can be rewritten to
give the following characterisation of hyperbolicity:

min{d(p, 〈a, b, p〉), d(p, 〈b, c, p〉)} ≤ ϕ(d(p, 〈a, c, p〉)). (6)

This inequality has the virtue that it is quasi-isometry invariant. Hence the class of
quasi-geodesic coarse median spaces satisfying this variant of the 4-point condition is
closed under quasi-isometry, providing a natural generalisation of geodesic hyperbolic
spaces.

Equation (6) is the rank 1 case of Theorem 4.1 (3), so this theorem provides a higher
rank generalisation of the Gromov inner product characterisation of hyperbolicity. We
now turn to the proof of the theorem.

Proof of Theorem 4.1 Assume (ρ, κ4, κ5) are parameters of (X , d, 〈 〉).
(3) ⇒ (2): For any p ∈ ⋂

i �= j Nλ([xi , x j ]) and i �= j , there exists p′ ∈ [xi , x j ]
such that p ∼λ p′. So we have

〈xi , p, x j 〉 ∼ρ(λ) 〈xi , p′, x j 〉 ∼κ4 p′
∼λ p.

Hence from condition (3), there exists some i = 1, . . . , n + 1 such that

d(p, 〈xi , p, q〉) ≤ ϕ(ρ(λ) + λ + κ4).

Taking ψ(λ) = ϕ(ρ(λ) + λ + κ4), we have p ∈ Nψ(λ)([xi , q]) as required.
(2) ⇒ (3): For any p, q and x1, . . . , xn+1 ∈ X , take ξ = max{d(p, 〈xi , x j , p〉) :

i �= j}. Then p ∼ξ 〈xi , x j , p〉 ∈ [xi , x j ]. By condition 2), there exists some i =
1, . . . , n + 1 such that p ∈ Nψ(ξ)([xi , q]), i.e., there exists some p′ ∈ [xi , q] such
that p ∼ψ(ξ) p′. Hence

〈xi , p, q〉 ∼ρ(ψ(ξ))

〈
xi , p

′, q
〉
∼κ4 p′

∼ψ(ξ) p.

Taking ϕ(ξ) = ρ(ψ(ξ)) + ψ(ξ) + κ4, we are done.
(1) ⇒ (3): Since the rank is at most n, Theorem 2.11 implies that for any λ > 0

there exists a constant C = C(λ) such that for any a, b ∈ X and e1, . . . , en+1 ∈
[a, b] with 〈ei , a, e j 〉 ∼λ a (i �= j), one of the points ei ’s is C-close to a. Set
ξ = max{d(p, 〈xi , x j , p〉) : i �= j}, then by the coarse 4-point axiom (C2) we have:

〈〈xi , p, q〉, p, 〈x j , p, q〉〉∼κ5〈〈xi , x j , p〉, p, q〉 ∼ρ(ξ) 〈p, p, q〉 = p

for any i �= j . Therefore we have

min{d(p, 〈xi , p, q〉) : i = 1, . . . , n + 1} ≤ C(ρ(ξ) + κ5).

Taking ϕ(ξ) = C(ρ(ξ) + κ5), we are done.
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(3) ⇒ (1): Assume e1, . . . , en+1 ∈ [a, b] with 〈ei , a, e j 〉 ∼λ a. Condition 3)
implies that

min{d(a, 〈ei , a, b〉) : i = 1, . . . , n + 1} ≤ ϕ(λ).

Since ei ∈ [a, b], we have 〈ei , a, b〉 ∼κ4 ei . Hence

min{d(a, ei ) : i = 1, . . . , n + 1} ≤ ϕ(λ) + κ4.

Taking C(λ) = ϕ(λ) + κ4, (X , d, 〈 〉) has rank at most n by Theorem 2.11. ��
This suggests a natural notion of rank for coarse interval spaces as follows.

Definition 4.6 Let (X , d, [·, ·]) be a coarse interval structure. We say that the rank of
(X , d, [·, ·]) is at most n if there exists a non-decreasing function ψ such that

⋂

i �= j

Nλ([xi , x j ]) ⊆
n+1⋃

i=1

Nψ(λ)([xi , q])

for any λ > 0 and x1, . . . , xn+1, q ∈ X .

Note that in the higher rank case (n ≥ 2), the intersection on the left must be
uniformly bounded by axiom (I3) and can be thought of as a generalised centroid of
the points x1, . . . , xn+1. So the axiom asserts that the generalised centroid must be
close to at least one of those coarse intervals.

With this definition and combining Theorem 3.15, we obtain the following:

Corollary 4.7 Forametric space, any coarsemedianof rankn induces a coarse interval
structure of rank n and vice versa.

4.2 Cubes in coarse median spaces

In this subsection we will provide a structure theorem which describes a coarse cube
in a coarse median space as a product of coarse intervals. It will play a key role in our
characterisation of finite rank coarse median spaces in terms of the growth of coarse
intervals.

Recall that median cubes are the fundamental building blocks for median algebras.
Equipping themedian n-cube (I n, 〈 〉n)with the �1-metric d�1 makes it a coarsemedian
space (I n, d�1 , 〈 〉n).
Definition 4.8 An L-coarse cube of rank n in a coarse median structure (X , d, 〈 〉) is
an L-quasi-morphism c from (I n, 〈 〉n) to (X , d, 〈 〉). An edge in an L-coarse cube c
is a set of points {c(ā), c(b̄)} in the image such that ā, b̄ are adjacent vertices in the
median cube. Two edges in an L-coarse cube c are said to be parallel if there exist
parallel edges in the median cube which map to them under c.
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Wewill denote the origin of the median n-cube by 0̄, the vertex diagonally opposite
to 0̄ by 1̄ and the vertices adjacent to 0̄ by ē1, . . . , ēn . Given an L-coarse cube c, where
there is no risk of confusion we will denote the images of the vertices 0̄, 1̄, ē1, . . . , ēn
under the map c by 0, 1, e1, . . . , en respectively. The convention that elements of the
median cube are barred while their images are not corresponds to the view that the
median cube is an approximation (in the sense of Bowditch, see Definition 1.1) to the
finite set of vertices 0, 1, e1, . . . , en .

Note that in Definition 4.8 we do not impose any control on the distances between
the points of the image, since we wish to allow cubes of arbitrarily large diameter. By
analogy with Zeidler’s result in [18], we have the following lemma, which controls
the relationship between lengths of parallel edges in a coarse cube.

Lemma 4.9 Given an edge e of length d in an L-coarse cube c, all edges parallel to e
in c have length bounded by ρ(d) + 2L, where ρ is a control function parameter for
the coarse median.

The proof is similar to that of [18, Lemma 2.4.5] and is therefore omitted. Given that
there is control between the lengths of parallel edges but no control on the lengths of
“perpendicular” edges, it may be helpful to think of a coarse cube as a coarse cuboid.

Definition 4.10 Given an interval [a, b] in a coarse median structure (X , d, 〈 〉), we
may define a new ternary operator on [a, b] by 〈x, y, z〉a,b := 〈a, 〈x, y, z〉, b〉. By
[14, Lemma 2.22], the triple ([a, b], d|[a,b], 〈 〉a,b) is a coarse median structure and
〈 〉 ∼C 〈 〉a,b, where C is independent of a, b.

Given an L-coarse cube f : I n → X , define the following coarse median spaces:

A := ([0, 1], d, 〈 〉0,1); B := ([0, e1] × · · · × [0, en], d�1 , 〈 〉�1)

where d�1 denotes the �1-product of the induced metrics on the intervals [0, ei ] and
〈 〉�1 is defined by 〈 〉�1 = 〈 〉0,e1 × · · · × 〈 〉0,en . Also define maps as follows:

� : A → B, x 
→ (〈0, x, e1〉 , . . . , 〈0, x, en〉);
� : B → A, (x1, . . . , xn) 
→ 〈〈x1, . . . , xn; 1〉 , 0, 1〉 .

Theorem 4.11 Let (X , d, 〈 〉) be a coarse median space and f : I n → X be an L-
coarse cube of rank n in X. Then the map � : A → B defined above provides a
(ρ+,C)-coarse median isomorphism with inverse �, where ρ+(t) = Kt + H0 and
K , H0,C depend only on n, L and parameters of (X , d, 〈 〉).
Proof Assume ρ, κ4, κ5 are parameters of (X , d, 〈 〉). First we show that �,� are
bornologous. By axiom (C1), for any x, y ∈ [0, 1] we have:

d�1(�(x),�(y)) =
n∑

k=1

d(〈0, x, ek〉 , 〈0, y, ek〉) ≤
n∑

k=1

ρ(d(x, y)) = nρ(d(x, y)),
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which implies � is (nρ)-bornologous. On the other hand, for any �x = (x1, . . . , xn)
and �y = (y1, . . . , yn) ∈ [0, e1] × · · · × [0, en], axiom (C1) implies:

d(�(�x),�(�y)) = d(〈〈x1, . . . , xn; 1〉 , 0, 1〉 , 〈〈y1, . . . , yn; 1〉, 0, 1〉)
≤ ρ(d(〈x1, . . . , xn; 1〉 , 〈y1, . . . , yn; 1〉))

≤ ρ ◦ ρn

(
n∑

k=1

d(xk, yk)

)

.

Here the last inequality follows from the control over iterated coarse medians provided
by Lemma 2.14(1). This implies � is (ρ ◦ ρn)-bornologous. Since ρ and ρn are both
affine so is the function ρ+ := nρ + ρ ◦ ρn .

Next we show that � is a quasi-morphism. For x, y, z ∈ [0, 1], 〈x, 0, 1〉 ∼κ4 x and
〈y, 0, 1〉 ∼κ4 y. So by axiom (C1) and the estimate (2), we have

〈〈x, y, z〉, 0, 1〉 ∼κ5 〈〈x, 0, 1〉, 〈y, 0, 1〉, z〉 ∼ρ(2κ4) 〈x, y, z〉.

Applying the same argument again, denoting the projection from [0, e1]×· · ·×[0, en]
onto the i-th coordinate by pri , we have:

pri ◦ �(〈x, y, z〉0,1)
= 〈0, 〈〈x, y, z〉, 0, 1〉, ei 〉 ∼ρ(ρ(2κ4)+κ5) 〈0, 〈x, y, z〉, ei 〉
∼κ4 〈0, 〈0, 〈x, y, z〉, ei 〉, ei 〉 ∼ρ(κ5) 〈0, 〈〈0, x, ei 〉, 〈0, y, ei 〉, z〉, ei 〉
∼κ5 〈〈0, x, ei 〉, 〈0, 〈0, y, ei 〉, ei 〉, 〈0, z, ei 〉〉
∼ρ(κ4) 〈〈0, 〈0, x, ei 〉, ei 〉, 〈0, 〈0, y, ei 〉, ei 〉, 〈0, z, ei 〉〉
∼κ5 〈0, 〈〈0, x, ei 〉, 〈0, y, ei 〉, 〈0, z, ei 〉〉, ei 〉 = pri (〈�(x),�(y),�(z)〉�1).

Hence � is a C ′-quasi-morphism for C ′ = n[ρ(ρ(2κ4)+ κ5)+ρ(κ4)+ρ(κ5)+ κ4 +
2κ5].

Note that in the canonical cube I n , the iterated median 〈ē1, . . . , ēn; 1̄〉n = 1̄. It
follows that by Lemma 2.14(2), there exists a constant Hn(L) such that

〈e1, . . . , en; 1〉 = 〈 f (ē1), . . . , f (ēn); f (1̄)〉 ∼Hn(L) f (〈ē1, . . . , ēn; 1̄〉n) = f (1̄) = 1.

Now by Lemma 2.14(3), there is a constant Cn such that for any x ∈ [0, 1] we have

� ◦ �(x) = 〈〈〈0, x, e1〉 , . . . , 〈0, x, en〉 ; 1〉 , 0, 1〉
∼ρ(Cn) 〈〈0, x, 〈e1, . . . , en; 1〉〉 , 0, 1〉 ∼ρ2(Hn(L)) 〈〈0, x, 1〉 , 0, 1〉

∼κ4 〈x, 0, 1〉 ∼κ4 x .

Hence � ◦ � is C ′′-close to the identity on A for C ′′ := ρ2(Hn(L)) + ρ(Cn) + 2κ4.
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Since f is an L-coarse median morphism, we have 〈0, 1, ei 〉 ∼L ei and
〈0, ei , e j 〉 ∼L 0 for i �= j . For any �x = (x1, . . . , xn) ∈ [0, e1] × · · · × [0, en],
we have:

pri ◦ � ◦ �(�x) = 〈0, 〈〈x1, . . . , xn; 1〉 , 0, 1〉 , ei 〉 ∼κ4 〈0, 〈x1, . . . , xn; 1〉 , 〈0, 1, ei 〉〉
∼ρ(L) 〈0, 〈x1, . . . , xn; 1〉 , ei 〉 ∼Cn 〈〈0, ei , x1〉 , . . . , 〈0, ei , xn〉 ; 1〉 ,

where the final estimate follows from Lemma 2.14(3). Since xi ∈ [0, ei ], we have
〈0, xi , ei 〉 ∼κ4 xi ; while for j �= i , we have

〈0, ei , x j 〉 ∼ρ(κ4) 〈0, ei , 〈0, x j , e j 〉〉 ∼κ4 〈0, 〈ei , 0, e j 〉, x j 〉 ∼ρ(L) 0.

Hence applying Lemma 2.14(1) we obtain that

〈〈0, ei , x1〉 , . . . , 〈0, ei , xn〉 ; 1〉 ∼C ′′′ 〈0, . . . , 0︸ ︷︷ ︸
i−1

, xi , 0, . . . , 0︸ ︷︷ ︸
n−i

; 1〉 = 〈xi , 0, . . . , 0︸ ︷︷ ︸
m

; 1〉,

where if i = 1 then trivially m = n − 1 and otherwise m = n − i + 1. Here
C ′′′ := ρn((n − 1)(ρ(κ4) + κ4 + ρ(L)) + κ4). Since all of these iterated medians lie
in [0, 1], the cost of removing the last zero is κ4. Hence at worst (removing (n − 2)
zeros) we have:

〈xi , 0, . . . , 0︸ ︷︷ ︸
n−1

; 1〉 ∼(n−2)κ4 〈xi , 0, 1〉 ∼ρ(L) 〈0, 〈0, xi , ei 〉 , 1〉

∼κ4 〈0, 〈0, ei , 1〉 , xi 〉 ∼ρ(L) 〈0, ei , xi 〉 ∼κ4 xi .

Combining them together we obtain that�◦� is [n(3ρ(L)+ (n+1)κ4+Cn +C ′′′)]-
close to the identity on B.

To sum up, taking

C = max{C ′,C ′′, n(3ρ(L) + (n + 1)κ4 + Cn + C ′′′)},

we have proved that both� and� are ρ+-bornologous,� is aC-quasi-morphism and
� ◦ � ∼C idB, � ◦ � ∼C idA. Hence by definition, � is a (ρ+,C)-coarse median
isomorphism with inverse �. ��

The above theorem suggests that we may regard the space A as a coarse cube (or,
at least, cuboid) in our coarse median space. We now consider a natural family of
subspaces, regarded as subcubes of A. Given points xi ∈ [0, ei ] and taking x :=
�((x1, . . . , xn)) in [0, 1], we consider the following coarse median spaces:

A′ := ([0, x], d, 〈 〉0,x ); B′ := ([0, x1] × · · · × [0, xn], d�1 , 〈 〉′
�1

)
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where d�1 denotes the �1-product of the induced metrics on the intervals [0, xi ] and
〈 〉′

�1
is defined by 〈 〉′

�1
= 〈 〉0,x1 × · · · × 〈 〉0,xn . Also define maps as follows:

�′ : A′ → B′, y 
→ (〈0, y, x1〉 , . . . , 〈0, y, xn〉);
� ′ : B′ → A′, (y1, . . . , yn) 
→ 〈〈y1, . . . , yn; x〉 , 0, x〉 .

Corollary 4.12 Let (X , d, 〈 〉) be a coarse median space and f : I n → X be an L-
coarse cube of rank n in X. Then the map �′ : A′ → B′ defined above provides a
(ρ′+,C ′)-coarse median isomorphism with inverse � ′, where ρ′+(t) = K ′t + H ′

0 and
K ′, H ′

0,C
′ depend only on n, L and parameters of (X , d, 〈 〉).

Proof It follows from the same arguments in the first part of the proof of Theorem 4.11
that �′, � ′ are ρ+-bornologous and �′ is a C-coarse median morphism for the same
constants ρ+,C as in Theorem 4.11. It suffices to prove that � ′ ◦ �′ and �′ ◦ � ′ are
close to the corresponding identities.

• Recall that for � and �, the map � ◦ � is C-close to the identity. So we have

(x1, . . . , xn) ∼C � ◦ �((x1, . . . , xn)) = �(x) = (〈0, x, e1〉 , . . . , 〈0, x, en〉),

which implies that xi ∼C 〈0, x, ei 〉 for each i . As shown in the proof of Theorem 4.11,
we have 〈e1, . . . , en; 1〉 ∼Hn(L) 1. Combining them together with parts (1), (2) and
(4) of Lemma 2.14, we obtain that

〈x1, . . . , xn; x〉 ∼ρn(nC+κ4) 〈〈0, x, e1〉 , . . . , 〈0, x, en〉 ; 〈0, x, 1〉〉
∼Dn 〈0, x, 〈e1, . . . , en; 1〉〉 ∼ρ(Hn(L)) 〈0, x, 1〉 ∼κ4 x,

i.e., 〈x1, . . . , xn; x〉 ∼αn(L) x for αn(L) := ρ(Hn(L))+ρn(nC+κ4)+Dn +κ4. Now
for any y ∈ [0, x], we have:

� ′ ◦ �′(y) = 〈〈〈0, y, x1〉 , . . . , 〈0, y, xn〉 ; x〉 , 0, x〉
∼ρ(Cn) 〈〈0, y, 〈x1, . . . , xn; x〉〉 , 0, x〉 ∼ρ2(αn(L)) 〈〈0, y, x〉 , 0, x〉 ∼2κ4 y.

Hence � ′ ◦ �′ is C ′′-close to IdA′ for C ′′ := ρ2(αn(L)) + ρ(Cn) + 2κ4.
• For the other direction, xi ∼C 〈0, x, ei 〉 implies:

〈0, xi , x〉 ∼ρ(C) 〈0, 〈0, x, ei 〉 , x〉 ∼κ4 〈0, x, ei 〉 ∼C xi .

Hence for any �y = (y1, . . . , yn) ∈ [0, x1] × · · · × [0, xn], we have

pri ◦ �′ ◦ � ′(�y) = 〈0, 〈〈y1, . . . , yn; x〉 , 0, x〉 , xi 〉
∼κ4 〈0, 〈y1, . . . , yn; x〉 , 〈0, x, xi 〉〉
∼ρ(ρ(C)+C+κ4) 〈0, 〈y1, . . . , yn; x〉 , xi 〉
∼Cn 〈〈0, xi , y1〉 , . . . , 〈0, xi , yn〉 ; x〉 ,

where the final estimate follows from Lemma 2.14(3).
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On the other hand, since 〈ei , 0, e j 〉 ∼L 0 for i �= j , we have

〈xi , 0, e j 〉 ∼ρ(κ4) 〈〈0, xi , ei 〉, 0, e j 〉 ∼κ4 〈0, xi , 〈ei , 0, e j 〉〉 ∼ρ(L) 〈0, xi , 0〉 = 0.

This implies that

〈xi , 0, x j 〉 ∼ρ(κ4) 〈xi , 0, 〈0, x j , e j 〉〉 ∼κ4 〈0, x j , 〈xi , 0, e j 〉〉 ∼ρ(ρ(L)+ρ(κ4)+κ4) 〈0, x j , 0〉 = 0.

In other words, 〈xi , 0, x j 〉 ∼βn(L) 0 for βn(L) := ρ(ρ(L)+ρ(κ4)+κ4)+ρ(κ4)+κ4.
Notice that 〈0, yi , xi 〉 ∼κ4 yi , so for j �= i we have

〈0, xi , y j 〉 ∼ρ(κ4) 〈0, xi , 〈0, y j , x j 〉〉 ∼κ4 〈0, 〈xi , 0, x j 〉, y j 〉 ∼ρ(βn(L)) 0.

Now using the same arguments as in the proof of Theorem 4.11, we obtain that for
the constant

C ′′′ := ρn((n − 1)ρ(βn(L)) + (n − 1)ρ(κ4) + nκ4),

we have

〈〈0, xi , y1〉 , . . . , 〈0, xi , yn〉 ; x〉 ∼C ′′′ 〈0, . . . , 0, yi , 0, . . . , 0; x〉 ∼(n−2)κ4 〈0, yi , x〉
∼ρ(κ4) 〈0, 〈0, yi , xi 〉 , x〉 ∼κ4 〈0, 〈0, xi , x〉 , yi 〉 ∼ρ(ρ(C)+C+κ4) 〈0, xi , yi 〉 ∼κ4 yi .

Therefore �′ ◦ � ′ is D′-close to IdB′ for

D′ := n[C ′′′ + 2ρ(ρ(C) + C + κ4) + ρ(κ4) + (n + 1)κ4 + Cn].

Finally setting ρ′+ = ρ+ and C ′ = max{C,C ′′, nD′}, we finish the proof. ��

4.3 Rank and coarse interval growth

In this subsection, we will give a characterisation of rank in terms of interval growth
as a converse to a result of Bowditch from [7].

First we notice that the cardinality of intervals can always be bounded in terms of
the distance between its endpoints in the context of bounded geometry coarse median
spaces.

Lemma 4.13 Let (X , d, 〈 〉) be a coarse median space with parameters (ρ, κ4, κ5).
If a, b ∈ X with d(a, b) ≤ r , then [a, b] ⊆ B(a, ρ(r)). If in addition (X , d) has
bounded geometry, then there exists a constant C(r) such that �[a, b] ≤ C(r).

Proof For any c ∈ [a, b], there exists some x ∈ X such that c = 〈a, b, x〉. Now by
axiom (C1), we have

c = 〈a, b, x〉 ∼ρ(r) 〈a, a, x〉 = a,
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which implies c ∈ B(a, ρ(r)). The second statement follows directly by the definition
of bounded geometry. ��

For the remainder of this section, we will specialise to the context of uniformly
discrete quasi-geodesic coarse median spaces with bounded geometry. Recall that for
a metric space (X , d) and C > 0, the Rips complex is the simplicial complex, in
which σ = [x0, x1, . . . , xn] is an n-simplex for x0, x1, . . . , xn ∈ X if and only if
d(xi , x j ) ≤ C .

Bowditch proved in [7] that for a uniformly discrete coarsemedian space of bounded
geometry and finite rank, there is a polynomial bound on growth within intervals. Now
given an interval [a, b] in such a space X with parameters (K , H0, κ4, κ5), any point
x ∈ [a, b] can be written in the form x = 〈a, y, b〉. Hence

x = 〈a, y, b〉 ∼Kd(a,b)+H0 〈a, y, a〉 = a,

which implies that diam ([a, b]) ≤ 2Kd(a, b)+2H0. Taking the subset Q = [a, b] ⊆
[a, b]κ4 (where [a, b]κ4 is Bowditch’s definition of coarse interval), we obtain the
following as a corollary to Bowditch’s result [7, Proposition 9.8].

Proposition 4.14 Let (X , d, 〈 〉) be a uniformly discrete quasi-geodesic coarsemedian
space with bounded geometry and rank at most n. Then there is a function p : N → N

with p(r) = o(rn+ε) for all ε > 0, such that �[a, b] ≤ p(d(a, b)) for any a, b ∈ X.

Proof Bowditch proved this result in the context that X is a connected bounded valency
graph with edge-path metric. We replace our metric d with the edge-path metric
provided by the Rips complex. Since the metric space (X , d) is quasi-geodesic and
has bounded geometry, taking the Rips parameter sufficiently large ensures that this
metric provides X with the structure of a connected bounded valency graph as required.
Furthermore this new metric d ′ is quasi-isometric to d, again using the fact that the
space is quasi-geodesic. Applying Bowditch’s result, �[a, b] is o(rn+ε) where r =
d ′(a, b). Since d is O(d ′) the result follows. ��

We now provide a converse to Bowditch’s theorem, showing that this growth con-
dition indeed characterises the rank.

Theorem 4.15 Let (X , d, 〈 〉) be a uniformly discrete, quasi-geodesic coarse median
spacewith bounded geometry and n be a natural number. The following are equivalent:

(1) (X , d, 〈 〉) has rank at most n.
(2) there is a function p : R

+ → R
+ with p(r) = o(rn+ε) for all ε > 0, such that

� [a, b] ≤ p(d(a, b)) for any a, b ∈ X.

(3) there is a function p : R
+ → R

+ with p(r)/rn+1 r→∞−→ 0, such that � [a, b] ≤
p(d(a, b)) for any a, b ∈ X.

Proof of Theorem 4.15 (1) ⇒ (2) is given by Proposition 4.14, while (2) ⇒ (3) a
fortiori. For (3) ⇒ (1), suppose X is (α, β)-quasi-geodesic, (K , H0, κ4, κ5) are
parameters of X and rank X > n (note that we do not assume X has finite rank). By
Theorem 2.11, there exists a constant L0 > 0, such that for any C > 0, there exists
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an L0-coarse cube σ : I n+1 → X with d(σ (ēi ), σ (0̄)) > C for all i . After setting
0 := σ(0̄), 1 := σ(1̄) and ei := σ(ēi ) for each i , we have d(ei , 0) > C .

Now choose a discrete (α, β)-quasi-geodesic 0 = p0, . . . pk = ei and construct
q j = 〈0, p j , ei 〉 to get a sequence of points in [0, ei ] with d(q j , q j−1) ≤ G where
G = K (α+β)+H0 is independent ofC . Sinced(0, q0) = 0 andd(0, qk) > C ,wemay
choose the first j such that d(0, q j ) ≥ C and for this j we also have d(0, q j ) < C+G.
Setting xi := q j ∈ [0, ei ], we have C ≤ d(0, xi ) < C + G.

Choose a discrete (α, β)-quasi-geodesic z0, z1, . . . , zk ∈ X connecting 0 and
x1. Projecting zi into [0, x1], we obtain a sequence 0 = y0, y1, . . . , yk = x1 with
d(yi , yi−1) ≤ G, where yi = 〈0, zi , x1〉. We will inductively “de-loop” this sequence
to define a subsequence y j0 , . . . , y jl such that the points in it are distinct, but still
satisfy d(y jp , y jp−1) ≤ G. Let j0 be the maximal index such that y j0 = y0. Then
for l > 0, set jp to be the maximal index such that y jp = y jp−1+1 to obtain the
required sequence. This process allows us to assume that we have picked the sequence
0 = y0, y1, . . . , yl = x1 to be distinct while ensuring that d(yi , yi−1) ≤ G for each i .
Now we have:

C ≤ d(0, x1) ≤
l∑

i=1

d(yi , yi−1) ≤ l · G,

which implies �[0, x1] ≥ l ≥ CG−1. Similar estimate holds for each [0, xi ]. Hence
we obtain that for the constant γ := G−(n+1),

�([0, x1] × · · · × [0, xn+1]) ≥ γCn+1.

Now set x := 〈0, 〈x1, . . . , xn+1; 1〉 , 1〉. By Corollary 4.12, there exists:

• a constant λ0 := max{K ′, H ′
0,C

′}, depending only on n, L0 and parameters of
the space;

• a (λ0t + λ0, λ0)-coarse median isomorphism

� ′ : [0, x1] × · · · × [0, xn+1] → [0, x].

In particular for any �z, �y ∈ [0, x1] × · · · × [0, xn+1] we have:

λ−1
0 d�1(�z, �y) − λ0 ≤ d(� ′(�z),� ′(�y)) ≤ λ0d�1(�z, �y) + λ0. (7)

Since X has bounded geometry, there exists a constant N depending only on λ0 such
that �� ′−1({y}) ≤ N for any y ∈ [0, x]. In other words, � ′ may collapse at most N
points to a single point. Hence �� ′(A) ≥ 1

N �A for any A ⊆ [0, x1] × · · · × [0, xn+1].
In particular, we have

�[0, x] ≥ �� ′([0, x1]× · · ·× [0, xn+1]) ≥ 1

N
�([0, x1]× · · ·× [0, xn+1]) ≥ γ

N
Cn+1.

(8)
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Nowwewould like to estimate the distance d(0, x) and show that it is approximately
linear in C . First notice that � ′(�0) = 0 and by definition we have

� ′(�x) = 〈〈x1, . . . , xn+1; x〉 , 0, x〉 = 〈x1, . . . , xn+1, 0; x〉
= 〈x1, . . . , xn+1, 0; 〈x1, . . . , xn+1, 0; 1〉〉

∼En 〈x1, . . . , xn+1, 0; 1〉 = x

where the estimate in the third line follows from Lemma 2.16 and the constant En

depends only on n, λ0 and κ4. Combining with (7), we have:

d(0, x) ≤ d(� ′(�0),� ′(�x)) + En ≤ λ0d�1 (
�0, �x) + λ0 + En = λ0

n+1∑

i=1

d(0, xi ) + λ0 + En

≤ λ0(n + 1)(C + G) + λ0 + En .

After rearranging, we get

C ≥ d(0, x) − λ0(nG + G + 1) − En

λ0(n + 1)
.

Combining with (8), we obtain:

�[0, x] ≥ γ

N

(
d(0, x) − λ0(nG + G + 1) − En

λ0(n + 1)

)n+1

.

On the other hand, (7) implies that

d(0, x) ≥ d(� ′(�0),� ′(�x)) − En ≥ λ−1
0 d�1(

�0, �x) − λ0 − En

≥ λ−1
0 (n + 1)C − λ0 − En .

So d(0, x) → ∞ as C → ∞.
Therefore for any C > 0 we have constructed an interval [0, x] such that the

distance d(0, x) goes to infinity as C → ∞, and the cardinality �[0, x] is bounded
below by a polynomial of degree n + 1 in d(0, x) with positive leading coefficient

γ

N (λ0(n+1))n+1 . This contradicts the existence of the function p. ��

Theorem 4.15 allows us to characterise the rank of a coarse interval space purely
in terms of the growth of intervals:

Corollary 4.16 A uniformly discrete, bounded geometry, quasi-geodesic coarse inter-
val space (X , d, [·, ·]) has rank at most n if and only if there is a function p : R+ → R

+
with limr→∞ p(r)/rn+1 = 0, such that �[a, b] ≤ p(d(a, b)) for any a, b ∈ X.
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5 Intervals andmetrics for ternary algebras

Bowditch observed that perturbing the metric for a coarse median space up to quasi-
isometry respects the coarse median axioms. It is not, however, a priori obvious the
extent to which the metric is determined by the coarse median operator. We will now
show that for a quasi-geodesic coarse median space (X , d, 〈 〉) of bounded geometry
the metric is determined uniquely up to quasi-isometry by 〈 〉. This motivates our
definition of coarse median algebra, as given in the introduction.

To establish the uniqueness of the metric, we will construct a canonical metric
defined purely in terms of the intervals associated to the coarse median operator. The
construction may be of independent interest since it can be defined for any ternary
operator satisfying some weakening of axioms (M1) and (M2), and therefore in the
context of a more general notion of interval structure. (The following reversal axiom
can in fact be weakened to the existence of bijections between the corresponding
intervals [a, b] and [b, a].)

5.1 Abstract ternary algebras and inducedmetrics

Consider a ternary algebra (X , 〈 〉) satisfying the following axioms:

(T1) Majority vote: 〈a, a, x〉 = 〈a, x, a〉 = a for all a, x ∈ X ;
(T2) Reversal: 〈a, x, b〉 = 〈b, x, a〉 for all a, x, b ∈ X .

Classically it is natural to think of the ternary operator 〈 〉 as furnishing a notion of
betweenness, whereby c lies between a, b if and only if 〈a, c, b〉 = c. This definition
is not well adapted to the coarse world, where statements are typically true up to
controlled distortion. Regarding the operation x 
→ 〈a, x, b〉 instead as providing
a projection onto the interval [a, b] = {〈a, x, b〉 | x ∈ X} is better suited to this
environment.

Axiom (T1) ensures that the interval [a, a] is the singleton {a} while axiom (T2)
ensures that [a, b] = [b, a]. These axioms together are a slight weakening of axioms
(M1) and (M2) for a (coarse) median algebra.

Example 5.1 Let � be a connected graph and for any a, b, x ∈ V (�) choose a vertex,
denoted 〈a, x, b〉, which lies on an edge geodesic from a to b and minimises distance
to x among all such choices. Clearly we can do so to satisfy axiom (T2), while axiom
(T1) is immediate. With this definition of the ternary operator, the interval [a, b] is
exactly the set of vertices on edge geodesics from a to b.

We will use cardinalities of intervals to measure distances. In order to ensure that
these distances are finite, we need to impose a condition that points can be joined by
chains of finite intervals.

Definition 5.2 A ternary algebra (X , 〈 〉) is said to satisfy the finite interval chain
condition, if for any a, b ∈ X there exists a sequence a = x0, x1, . . . , xn := b in X
such that the cardinality of each interval [xi , xi+1] is finite for i = 0, 1, . . . , n − 1.
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Definition 5.3 Given a ternary algebra (X , 〈 〉) satisfying the finite interval chain con-
dition, we define the induced function d〈 〉 on X × X as follows: for any a, b ∈ X ,

d〈 〉(a, b) = min

{
n∑

i=1

(�[xi−1, xi ] − 1) : a = x0, . . . , xn = b, xi ∈ X , n ∈ N

}

.

It is routine to check that d〈 〉 satisfies the triangle inequality. The imposition of
axioms (T1) and (T2) ensure that the function d〈 〉 also satisfies the obvious symmetry,
reflexivity and positivity conditions so that d〈 〉 is a metric in this case. When (T1) and
(T2) are satisfied we will refer to d〈 〉 as the induced metric.

Example 5.4 Let (X , 〈 〉) be a discrete median algebra and let Z be its geometric
realisation as a CAT(0) cube complex. Then the induced metric d〈 〉 is the edge-path
metric on the vertices of Z .

Example 5.5 Let � be a connected graph and 〈 〉 the projection operator defined in
Example 5.1. Then the induced metric d〈 〉 is the edge-path metric on the vertices of
�.

5.2 Uniqueness of coarse medianmetrics

It is easy to show that one can change the metric of a coarse median space arbitrarily
within its quasi-isometry class. It is a remarkable fact, as we will now show, that
the quasi-isometry class of the metric is determined uniquely by the coarse median
operator. Indeed the induced metric is the unique coarse median metric up to quasi-
isometry:

Theorem 5.6 Foraboundedgeometry quasi-geodesic coarsemedian space (X , d, 〈 〉),
the metric d is quasi-isometric to the induced metric d〈 〉.

As an immediate corollary we have the following:
Theorem 1.5. For a bounded geometry quasi-geodesic coarse median space
(X , d, 〈 〉), the metric d is unique up to quasi-isometry.

Proof of Theorem 5.6 Let (X , d, 〈 〉) be an (L,C)-quasi-geodesic coarse median space
with bounded geometry and parameters (K , H0, κ4, κ5).

First we will show that d can be controlled by d〈 〉. Given a, b ∈ X , let a =
a0, . . . , an = b be a sequence of points such that

d〈 〉(a, b) =
n∑

i=1

(�[ai−1, ai ] − 1).

Fix i and choose an (L,C)-quasi-geodesic γi with respect to the metric d connecting
ai−1 and ai . If ni = �d(ai−1, ai )�, the integer part of d(ai−1, ai ), and

x0 = γi (0) = ai−1, x1 = γi (1), . . . , xni = γi (ni ), xni+1 = γi (d(ai−1, ai )) = ai ,
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then d(xi−1, xi ) ≤ L + C . Letting y j = 〈ai−1, ai , x j 〉 ∈ [ai−1, ai ], axiom (C1)
ensures that d(y j−1, y j ) ≤ K (L + C) + H0. We set C ′ := K (L + C) + H0.

As in the proof of Theorem 4.15 we can “de-loop” the sequence y0, y1, . . . , yni+1
to a subsequence y j0 , . . . , y jl in [ai−1, ai ] with the property that the points in it are
distinct, but still satisfy d(y jk , y jk−1) ≤ C ′. Hence we have

d(ai−1, ai ) ≤
l∑

k=1

d(y jk−1 , y jk ) ≤ l · C ′ ≤ (�[ai−1, ai ] − 1) · C ′.

The same estimate holds for other i as well. Therefore we obtain that

d(a, b) ≤
n∑

i=1

d(ai−1, ai ) ≤ C ′ ·
n∑

i=1

(�[ai−1, ai ] − 1) = C ′ · d〈 〉(a, b).

Second we will show that d〈 〉 can be controlled by d. For any a, b ∈ X choose
an (L,C)-quasi-geodesic γ with respect to the metric d connecting them, and take
ai = γ (i) for i = 0, 1, . . . , n − 1 = �d(a, b)� and an = γ (d(a, b)), which implies
d(ai−1, ai ) ≤ L+C . By Lemma 4.13 there exists a constantC ′′ (depending on L+C)
such that the intervals [ai−1, ai ] all have cardinality at most C ′′. Hence we have

d〈 〉(a, b) ≤
n∑

i=1

(�[ai−1, ai ] − 1) <

n∑

i=1

C ′′ ≤ C ′′ · (d(a, b) + 1).

In conclusion we have shown that for any a, b ∈ X ,

1

C ′ · d(a, b) ≤ d〈 〉(a, b) < C ′′ · d(a, b) + C ′′.

This completes the proof. ��
Without the assumption that (X , d) is quasi-geodesic, Theorem 1.5 fails. Indeed

(X , d) can have bounded geometry and (X , d〈 〉) have balls of infinite cardinality as
the following example shows:

Example 5.7 Let F∞ be the free group on countably many generators {gi }. The Cayley
graph of F∞ is a tree and therefore the group admits amedian 〈 〉. Note that the induced
metric d〈 〉 is the edge-path metric on the Cayley graph.With this metric F∞ is a coarse
median spacewhich does not have bounded geometry since each of the intervals [e, gi ]
has cardinality 2. However, for d a proper left invariant metric on F∞ (e.g., setting
d(gi , e) = i), the space (F∞, d, 〈 〉) is again a coarse median space. With this metric
the space has bounded geometry. Hence 〈 〉 admits two coarse median metrics which
are not quasi-isometric.

Remark 5.8 If we just focus on uniformly discrete metrics, then it is clear that “quasi-
isometry” can be replaced by “bi-Lipschitz equivalence” in Theorem 1.5.
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6 Coarsemedian algebras

We have seen that intervals play a key role in determining the structure and geometry
of a coarse median space. In particular, as shown in Theorem 1.5, for a quasi-geodesic
coarse median space of bounded geometry the metric is determined by the interval
structure and is therefore redundant in the description. This leads us to the following
purely algebraic notion of coarse median algebra.

Definition 1.3. A coarse median algebra is a ternary algebra (X , 〈 〉) with finite inter-
vals such that:

(M1) For all a, b ∈ X , 〈a, a, b〉 = a;
(M2) For all a, b, c ∈ X , 〈a, b, c〉 = 〈a, c, b〉 = 〈b, a, c〉;
(M3)′ There exists a constant K ≥ 0 such that for all a, b, c, d, e ∈ X the cardinality

of the interval [〈a, b, 〈c, d, e〉〉 , 〈〈a, b, c〉 , 〈a, b, d〉 , e〉] is at most K .

As remarked in the introduction if we take K = 1 then this reduces to the classical
definition of a discrete median algebra.

6.1 Bounded geometry for a ternary algebra

Definition 6.1 A ternary algebra (X , 〈 〉) is said to have bounded valency if there is a
function φ : R

+ → R
+ such that for all x ∈ X , we have

�{y ∈ X | �[x, y] ≤ R} ≤ φ(R).

The terminology is motivated by the example of a median graph, where bounded
valency in our sense agrees with its classical meaning.

Lemma 6.2 Let (X , 〈 〉) be a ternary algebra satisfying (T1) and (T2) together with the
finite interval chain condition. Then it has bounded valency if and only if the induced
metric d〈 〉 has bounded geometry.

Proof Fix x ∈ X and R > 1. Since d〈 〉(x, y) ≤ �[x, y] − 1, we have

{y ∈ X | �[x, y] ≤ R} ⊆ BR−1(x).

Hence bounded geometry of d〈 〉 implies bounded valency. On the other hand, suppose
X has bounded valency with parameter φ. For any y ∈ BR(x) there is an interval chain
x = x0, . . . , xn = y with n ≤ R and such that each interval [xi , xi+1] has at most
R + 1 points. It follows that given xi the number of possible choices for xi+1 is at
most φ(R + 1), so BR(x) has cardinality at most φ(R + 1)R . ��
Theorem 1.4. Let (X , 〈 〉) be a bounded valency ternary algebra. The following are
equivalent:

(1) (X , 〈 〉) is a coarse median algebra;
(2) (X , d〈 〉, 〈 〉) is a coarse median space;
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(3) There exists a metric d such that (X , d, 〈 〉) is a bounded geometry coarse
median space.

Proof (1) ⇒ (2): Suppose (X , 〈 〉) is a bounded valency coarse median algebra. We
impose the induced metric d〈 〉, which has bounded geometry by Lemma 6.2. Axiom
(M3)′ gives us an upper bound on the distance between the two iterated medians,
〈a, b, 〈x, y, z〉〉 and 〈〈a, b, x〉 , 〈a, b, y〉 , z〉, which specialises to the 4-point axiom
(C2) by setting y = b. It only remains to establish axiom (C1).

To do so, we choose a finite interval chain a = x0, . . . , xn = a′ which realises the
distance d〈 〉(a, a′). For each i , let yi = 〈xi , b, c〉 and consider the interval chain y0 =
〈a, b, c〉 , . . . , yn = 〈

a′, b, c
〉
which gives an upper bound for d〈 〉(〈a, b, c〉 ,

〈
a′, b, c

〉
).

For each point

〈z, yi , yi+1〉 = 〈z, 〈xi , b, c〉 , 〈xi+1, b, c〉〉

in the interval [yi , yi+1], the interval from 〈z, yi , yi+1〉 to 〈〈z, xi , xi+1〉 , b, c〉 has
cardinality at most K by axiom (M3)′. Clearly the set {〈〈z, xi , xi+1〉 , b, c〉 | z ∈ X}
has cardinality bounded by the cardinality of [xi , xi+1]. So by bounded valency, the
interval [yi , yi+1] has cardinality bounded by φ(K ) · �[xi , xi+1]. It follows that

d〈 〉(〈a, b, c〉 ,
〈
a′, b, c

〉
)≤

n−1∑

i=0

(�[yi , yi+1] − 1) ≤ φ(K )

n−1∑

i=0

�[xi , xi+1]

≤ 2φ(K )

n−1∑

i=0

(�[xi , xi+1] − 1) = 2φ(K )d〈 〉(a, a′).

Therefore (X , d〈 〉, 〈 〉) is a coarse median space.
(2) ⇒ (3): This is trivial.
(3) ⇒ (1): Suppose there exists a bounded geometry metric d on X such that

(X , d, 〈 〉) is a coarse median space. As remarked after Definition 2.6, the five point
condition in Eq. (2) holds up to some constant κ5

′. Hence Lemma 4.13 implies that
(M3)′ holds for the constant κ5 = C(κ5

′) where C is the function provided therein.
Therefore (X , 〈 〉) is a coarse median algebra. ��

Remark 6.3 While it is tempting to conflate the ideas of bounded geometry and
bounded valency in this context, some care should be taken in the general world
of coarse median spaces. In this context the metric is only loosely associated with
the median structure as illustrated by Example 5.7: the free group F∞, equipped
with a proper left invariant metric and its natural median, is a coarse median space
which has bounded geometry but not bounded valency. Of course this example is not
quasi-geodesic and as we saw in Theorem 1.5 we have much better control in the
quasi-geodesic world.
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6.2 Quasi-geodesic ternary algebras

Definition 6.4 A ternary algebra (X , 〈 〉) satisfying (T1) and (T2) is said to be quasi-
geodesic if there exist constants L,C > 0 such that for any a, b ∈ X , there exist
a = y0, . . . , yn = b with �[y j , y j+1] ≤ C + 1 and n ≤ L�[a, b].

Note that the finite interval chain condition is subsumed in this definition so does
not need to be imposed separately.

This definition has a natural interpretation in the terms of the following analogue
of the classical Rips Complex.

Definition 6.5 For (X , 〈 〉) a ternary algebra, let PC (X , 〈 〉) denote the simplicial com-
plex in which σ = [x0, x1, . . . , xn] is an n-simplex for x0, x1, . . . , xn ∈ X if and only
if �[xi , x j ] ≤ C + 1.

Recall for comparison that if (X , d) is a metric space then for C > 0 the Rips
complex is the simplicial complex, in which σ = [x0, x1, . . . , xn] is an n-simplex for
x0, x1, . . . , xn ∈ X if and only if d(xi , x j ) ≤ C .

When the complex PC (X , 〈 〉) is connected, its vertex set X inherits the edge-path
metric which is of course a geodesic metric, denoted dPC .

Proposition 6.6 Let (X , 〈 〉) be a ternary algebra satisfying conditions (T1) and (T2)
together with the finite interval chain condition. Let d〈 〉 denote the induced metric .
Then the following are equivalent:

(1) The metric d〈 〉 is quasi-geodesic.
(2) The ternary algebra (X , 〈 〉) is quasi-geodesic.
(3) There exists C > 0 such that the complex PC (X , 〈 〉) is connected and d〈 〉 is

bi-Lipschitz to the edge-path metric dPC on the complex.

Proof (1) ⇒ (2): Assume d〈 〉 is (L ′,C ′)-quasi-geodesic and a �= b ∈ X . Let γ :
[0,m] → X be an (L ′,C ′)-quasi-isometric embedding with γ (0) = a and γ (m) = b.
Without loss of generality we may take m to be an integer. Let xi = γ (i) and note
that d〈 〉(xi , xi+1) ≤ C := L ′ + C ′. On the other hand 1

L ′m − C ′ ≤ d〈 〉(a, b) so
m ≤ L ′d〈 〉(a, b) + L ′C ≤ L ′′d〈 〉(a, b), where L ′′ = L ′ + L ′C ′.

Now fix i and take a chain y0i , . . . y
ni
i realising the distance from xi to xi+1, i.e.,

d〈 〉(xi , xi+1) =
ni−1∑

j=0

(�[y j
i , y j+1

i ] − 1).

Since d〈 〉(xi , xi+1) ≤ C it follows that each set [y j
i , y j+1

i ] has cardinality at most
C + 1.

Furthermore, without loss of generality, we may assume that y j
i �= y j+1

i for each j ,
which implies ni ≤ d〈 〉(xi , xi+1) ≤ C . Concatenating these chains gives the required
chain from a to b. Putting L = CL ′′, the number of terms is:

m−1∑

i=0

ni ≤ Cm ≤ CL ′′d〈 〉(a, b) < L�[a, b].
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(2) ⇒ (3): Assuming (X , 〈 〉) is (L,C)-quasi-geodesic, the Rips complex
PC (X , 〈 〉) is connected. If dPC (a, b) = n then there exist x0 = a, x1, . . . , xn = b
with each interval [xi−1, xi ] having cardinality at most C + 1, and hence

d〈 〉(a, b) ≤ nC = CdPC (a, b).

Now we fix a, b ∈ X and choose mutually different points a = z0, z1, . . . , zk−1,

zk = b in X such that

d〈 〉(a, b) =
k−1∑

i=0

(�[zi , zi+1] − 1).

For each i = 0, 1, . . . , k−1, applying condition (2) to zi , zi+1 produces a number ki ∈
N and points zi = w0

i , w
1
i , . . . , w

ki−1
i , w

ki
i = zi+1 in X with �[w j

i , w
j+1
i ] ≤ C + 1

and ki ≤ L�[zi , zi+1]. Since �[zi , zi+1] ≥ 2, we have �[zi , zi+1] ≤ 2(�[zi , zi+1]−1).
Hence

p :=
k−1∑

i=0

ki ≤ L
k−1∑

i=0

�[zi , zi+1] ≤ 2L
k−1∑

i=0

(�[zi , zi+1] − 1) = 2Ld〈 〉(a, b).

Concatenating these chains provides a chain a = w0, w1, . . . , wp = b with
�[wi , wi+1] ≤ C + 1 and p ≤ 2Ld〈 〉(a, b), which gives an upper bound

dPC (a, b) ≤ p ≤ 2Ld〈 〉(a, b).

(3) ⇒ (1): As dPC is geodesic it follows that d〈 〉 is quasi-geodesic. ��
Combining Theorem 1.4 with Proposition 6.6 and Theorem 1.5, we obtain:

Theorem 6.7 A ternary algebra is a bounded valency quasi-geodesic coarse median
algebra if and only if it admits a bounded geometry, quasi-geodesic coarse median
metric. Such a metric, when it exists, is unique up to quasi-isometry.

Proof For a bounded valency quasi-geodesic coarse median algebra (X , 〈 〉), The-
orem 1.4 implies that the triple (X , d〈 〉, 〈 〉) is a coarse median space of bounded
geometry, where d〈 〉 is the induced metric. Now Proposition 6.6 implies that d〈 〉 is
quasi-geodesic.

Conversely, for a boundedgeometryquasi-geodesic coarsemedianmetric (X , d, 〈 〉),
Theorem 1.5 implies that d is quasi-isometric to the induced metric d〈 〉. Hence
Lemma 6.2 implies that (X , 〈 〉) has bounded valency and Proposition 6.6 implies
that (X , 〈 〉) is quasi-geodesic. ��

6.3 The rank of a coarse median algebra

Motivated by Theorem 4.1, we make the following definition.
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Definition 6.8 Acoarsemedian algebra (X , 〈 〉) is said to have rank at most n if there is
a non-decreasing functionϕ : R

+ → R
+ such that for any x1, . . . , xn+1 and p, q ∈ X ,

we have

min{�[p, 〈xi , p, q〉] : i = 1, . . . , n + 1} ≤ ϕ(max{�[p, 〈xi , x j , p〉] : i �= j}).

Lemma 6.9 The rank of a bounded valency coarse median algebra (X , 〈 〉) agrees
with the rank of the corresponding coarse median space (X , d〈 〉, 〈 〉) provided by
Theorem 1.4.

Proof Lemma 4.13 provides a non-decreasing function C : R
+ → R

+ such that

d〈 〉(a, b) < �[a, b] ≤ C(d〈 〉(a, b)).

If the coarse median algebra (X , 〈 〉) has rank at most n, then by definition there
exists a non-decreasing ϕ : R

+ → R
+ such that for any x1, . . . , xn+1 and p, q ∈ X ,

min{d〈 〉(p, 〈xi , p, q〉) : i = 1, . . . , n + 1}
< min{�[p, 〈xi , p, q〉] : i = 1, . . . , n + 1}
≤ ϕ(max{�[p, 〈xi , x j , p〉] : i �= j})
≤ ϕ(max{C(d〈 〉(p, 〈xi , x j , p〉)) : i �= j})
= ϕ ◦ C(max{d〈 〉(p, 〈xi , x j , p〉) : i �= j}).

So by Theorem 4.1 the coarse median space (X , d〈 〉, 〈 〉) has rank at most n.
Conversely if the coarse median space (X , d〈 〉, 〈 〉) has rank at most n, then by The-

orem 4.1 there exists a non-decreasing ϕ : R
+ → R

+ such that for any x1, . . . , xn+1
and p, q ∈ X ,

min{�[p, 〈xi , p, q〉] : i = 1, . . . , n + 1}
≤ min{C(d〈 〉(p, 〈xi , p, q〉)) : i = 1, . . . , n + 1}
= C(min{d〈 〉(p, 〈xi , p, q〉) : i = 1, . . . , n + 1})
≤ C ◦ ϕ(max{d〈 〉(p, 〈xi , x j , p〉) : i �= j})
≤ C ◦ ϕ(max{�[p, 〈xi , x j , p〉] : i �= j}).

So the coarse median algebra (X , 〈 〉) also has rank at most n. ��
It is interesting to consider this in the context of spaces of rank 1 where we obtain a

correspondence between quasi-geodesic, bounded valency coarse median algebras of
rank 1 and bounded geometry geodesic hyperbolic spaces up to quasi-isometry. One
direction is provided by [6, Lemma 3.1] and Theorem 1.4. For the converse we have:

Theorem 6.10 Let (X , 〈 〉) be a bounded valency, quasi-geodesic coarse median alge-
bra of rank 1. Then there exists a metric d such that (X , d) is a geodesic hyperbolic
metric space and its natural coarse median is uniformly close to 〈 〉.
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Proof By Proposition 6.6 there exists C > 0 such that the complex PC (X , 〈 〉) is
connected and d〈 〉 is bi-Lipschitz to the edge-path metric dPC on the complex. We
take d = dPC . Since this is geodesic [14, Theorem 4.2] shows that (quasi)-geodesics in
PC (X , 〈 〉) are close to intervals, and hence by Theorem 4.2 the slim triangle condition
holds.

The natural coarse median of three points a, b, c in this hyperbolic space is chosen
from the intersection of δ-neighbourhoods of the geodesics �ab, �bc, �ca and is therefore
in the intersection of K -neighbourhoods of the intervals [a, b], [b, c], [c, a] for some
fixed K . This is a (uniformly) bounded set containing the original median, hence the
new and original medians are uniformly close. ��
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Appendix A: A categorical viewpoint

To amplify and clarify the claim that coarse median spaces, coarse interval spaces and
coarse median algebras are in some sense the same we will define suitable categories
and show that they are equivalent.

A.1 The coarse median (space) category

Definition A.1 Let (X , dX , 〈 〉X ) and (Y , dY , 〈 〉Y ) be coarse median structures (see
Definition 2.8). A map f : X → Y is a (ρ+,C)-coarse median map if it is a C-quasi-
morphism as well as a ρ+-coarse map. As usual, we omit mentioning parameters
unless we are keeping track of the values.

Remark A.2 Note that without the assumption of coarseness for the map in this defini-
tion, it is not the case that coarse median maps compose to give coarse median maps.
The issue is that while the coarse median of the three points f g(a), f g(b), f g(c)
is necessarily close to the image under f of the coarse median of g(a), g(b), g(c),
without requiring f to be coarse we cannot control the distance between this image
and the image under f g of the coarse median 〈a, b, c〉.

Given a set X and a metric space (Y , dY ) and functions f , g : X → Y we will
write f ∼ g if f is s-close to g for some s ≥ 0. This is an equivalence relation and
the equivalence class of f is denoted by [ f ]. Applying this to coarse median maps
〈 〉, 〈 〉′ on X recovers the notion of uniform closeness discussed in Section 2.

http://creativecommons.org/licenses/by/4.0/
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Definition A.3 The coarse median category, denoted CM, is defined as follows:

• The objects are coarse median structures (X , dX , 〈 〉X );
• Given two objects X = (X , dX , 〈 〉X ) and Y = (Y , dY , 〈 〉Y ) the morphism set is

MorCM(X ,Y) := { coarse median maps from X to Y }/ ∼;

• Compositions are induced by compositions of maps.

The coarse median space category, denoted CMS, is the full subcategory whose
objects are coarsemedian spaces, i.e., thosewhose coarsemedian additionally satisfies
axioms (M1) and (M2).

The objects of CM are those satisfying Bowditch’s original definition [6, Section
8]. We now characterise categorical isomorphisms in a more practical way.

Lemma A.4 Let X ,Y be objects in CM and [ f ] ∈ MorCM(X ,Y). Then [ f ] is an
isomorphism in the category CM if and only if f is a coarse equivalence.

Proof Let X = (X , dX , 〈 〉X ) and Y = (Y , dY , 〈 〉Y ). Suppose [ f ] is an isomorphism
in the category CM, i.e., there exists another coarse median map g : Y → X such
that [ f ][g] = [IdY ] and [g][ f ] = [IdX ]. Hence clearly, f is a coarse equivalence.

On the other hand, suppose f : X → Y is a (ρ+,C)-coarsemedianmap as well as a
(ρ+,C)-coarse equivalence. In other words, there exists a ρ+-coarse map g : Y → X
such that f g and g f are C-close to the identities. It suffices to show that g is a coarse
median map. For any x, y, z ∈ Y , f g ∼C IdY implies that there exist a, b, c ∈ X
such that f (a) ∼C x, f (b) ∼C y and f (c) ∼C z. Since g is ρ+-bornologous, we
have g f (a) ∼ρ+(C) g(x), g f (b) ∼ρ+(C) g(y) and g f (c) ∼ρ+(C) g(z). Let ρX , ρY be
the uniform bornology parameters of X ,Y provided by (C1). Then we have

〈g(x), g(y), g(z)〉X ∼ρX (3ρ+(C)) 〈g f (a), g f (b), g f (c)〉X ∼ρX (3C) 〈a, b, c〉X .

We also have

g(〈x, y, z〉Y ) ∼ρ+(ρY (3C)) g(〈 f (a), f (b), f (c)〉Y ) ∼ρ+(C) g f (〈a, b, c〉X ) ∼C 〈a, b, c〉X .

Combining these, we have

〈g(x), g(y), g(z)〉X ∼C ′ g(〈x, y, z〉Y )

for C ′ = ρX (3ρ+(C)) + ρX (3C) + ρ+(ρY (3C)) + ρ+(C) + C . ��
Remark A.5 Recall fromDefinition 2.12 that a (ρ+,C)-coarse median isomorphism f
is a (ρ+,C)-coarsemedianmap and a (ρ+,C)-coarse equivalence. Hence the previous
lemma states that such an f is a (ρ+,C)-coarse median isomorphism if and only if
it represents a categorical isomorphism. Any (ρ+,C)-coarse inverse g for f is a
(ρ+,C ′)-coarse median isomorphism with the constant C ′ depending only on ρ+,C
and parameters of X ,Y . And in this case, [g] is a categorical inverse of [ f ].
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We now discuss the relationship between the categories of coarse median spaces
CMS and coarse median structures CM.

Proposition A.6 The inclusion functor ιM : CMS ↪→ CM gives an equivalence of
categories.

Proof As CMS is a full subcategory of CM, it suffices to show that each object in
CM is isomorphic to an object of CMS (see for example [13, Theorem 1, Section
IV.4] or [11, Proposition 1.3, Chapter 1]). For (X , d, 〈 〉) an object in CM, as remarked
before Definition 2.8, 〈 〉 is uniformly close to another coarse median 〈 〉′ satisfying
(M1) and (M2). The identity map IdX is then a coarse median map from (X , d, 〈 〉′)
to (X , d, 〈 〉) which provides the required isomorphism in CM. ��

A.2 The coarse interval (space) category

We will define the coarse interval category and the coarse interval space category in
this subsection. As we did in the coarse median case, let us start with morphisms.

Definition A.7 Let (X , dX , [·, ·]X ) and (Y , dY , [·, ·]Y ) be coarse interval structures
(see Definition 3.11). A map f : X → Y is said to be a (ρ+,C)-coarse interval map
if f is a ρ+-coarse map and for any a, b ∈ X , f ([a, b]) ⊆ NC ([ f (a), f (b)]). As
usual, we omit parameters unless they are required.

Given coarse interval maps f , g from X to Y , we introduce the notation f ∼ g
if f is s-close to g for some s. This is an equivalence relation and we denote the
equivalence class of f by [ f ].
Definition A.8 The coarse interval category, denoted CI, is defined as follows:

• The objects are coarse interval structures (X , dX , [·, ·]X );
• Given two objects: X = (X , dX , [·, ·]X ) and Y = (Y , dY , [·, ·]Y ), the morphism
set is

MorCI(X ,Y) := { coarse interval maps from X to Y }/ ∼;

• Compositions are induced by compositions of maps.

The coarse interval space category, denotedCIS , is the full subcategorywhose objects
are coarse interval spaces, i.e., those satisfying the stronger axioms (I1)–(I3).

As in LemmaA.4, we can characterise categorical isomorphisms in amore practical
way. Let us start with the following observation.

Lemma A.9 Let (X , dX , [·, ·]X ), (Y , dY , [·, ·]Y ) be coarse interval structures and f :
X → Y be a coarse interval map as well as a coarse equivalence. Then there exists
some constant D > 0 such that for any a, b ∈ X,

dH ( f ([a, b]), [ f (a), f (b)]) ≤ D.
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Proof Suppose f is a (ρ+,C)-coarse interval map with C ≥ 3κ0 where κ0 is the
parameter of [·, ·]Y given in axioms (I1)′ and (I3)′ and g : Y → X is a ρ+-bornologous
map such that f ◦g ∼C IdY and g◦ f ∼C IdX . For z ∈ [ f (a), f (b)] and for c = g(z),
we have f (c) ∼C z. Hence by Remark 3.12 as C ≥ 3κ0, we have

f (c) ∈ NC ([ f (a), f (b)]) ∩ NC ([ f (b), f (c)]) ∩ NC ([ f (c), f (a)]).

On the other hand, since f is a (ρ+,C)-coarse interval map, we have

f ([a, b] ∩ [b, c] ∩ [c, a]) ⊆ f ([a, b]) ∩ f ([b, c]) ∩ f ([c, a])
⊆ NC ([ f (a), f (b)]) ∩ NC ([ f (b), f (c)]) ∩ NC ([ f (c), f (a)]).

This has diameter at most C ′ for some constant C ′ by axiom (I3)′. Hence there exists
c′ ∈ [a, b] such that f (c) ∼C ′ f (c′) which implies that z ∼C f (c) ∼C ′ f (c′), i.e.,
z ∈ NC+C ′( f ([a, b])). Taking D = C+C ′ wehave dH ( f ([a, b]), [ f (a), f (b)]) ≤ D
as required. ��

Now we give a characterisation of categorical isomorphism in CI and CIS.
Lemma A.10 Let (X , dX , [·, ·]X ) and (Y , dY , [·, ·]Y ) be two coarse interval structures
and f : X → Y be a coarse interval map. Then [ f ] is an isomorphism in CI if and
only if f is a coarse equivalence. The same holds in CIS by restricting to this full
subcategory.

Proof Suppose [ f ] is an isomorphism in CI, i.e., there exists another coarse interval
map g : Y → X such that [ f ][g] = [IdY ] and [g][ f ] = [IdX ]. Hence clearly, f is a
coarse equivalence.

On the other hand, suppose f is a (ρ+,C)-interval morphism and g : Y → X is
ρ+-coarse such that f g ∼C IdY and g f ∼C IdX . It suffices to show that there exists
some constantC ′ > 0 such that for any z, w ∈ Y , g([z, w]) ⊆ NC ′(g(z), g(w)). Since
f g ∼C IdY , we have z ∼C f (z′) and w ∼C f (w′) for z′ = g(z) and w′ = g(w).
By axioms (I1)′ and (I2), there exists some constant K > 0 such that [z, w] ⊆
NK ([ f (z′), f (w′)]. Hence

g([z, w]) ⊆ g(NK ([ f (z′), f (w′)])) ⊆ Nρ+(K )(g([ f (z′), f (w′)])).

By Lemma A.9, there exists a constant D > 0 such that [ f (z′), f (w′)] ⊆
ND( f [z′, w′]), which implies that

g([z, w]) ⊆ Nρ+(K )(g([ f (z′), f (w′)])) ⊆ Nρ+(K )(g(ND( f ([z′, w′]))))
⊆ Nρ+(K )+ρ+(D)(g f ([z′, w′])) ⊆ NC ′([z′, w′]) = NC ′([g(z), g(w)]),

where C ′ = ρ+(K ) + ρ+(D) + C depends only on ρ+,C and parameters of [·, ·]X
and [·, ·]Y . ��
Proposition A.11 The inclusion functor ιI : CIS ↪→ CI gives an equivalence of
categories.
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Proof This follows from Lemma 3.14. The argument is similar to the proof of Propo-
sition A.6, hence omitted. ��

A.3 Equivalence of the coarsemedian and coarse interval categories

Now we construct functors connecting categories CM and CI (also CMS and CIS),
and show that these functors give equivalences of categories. Theorem 3.15 (1) offers
a functor from CM to CI as follows:

Lemma A.12 Let (X , dX , 〈 〉X ) and (Y , dY , 〈 〉Y ) be objects in the category CM
and f : X → Y be a (ρ+,C)-coarse median map. Suppose (X , dX , [·, ·]X ) and
(Y , dY , [·, ·]Y ) are the induced coarse interval structures. Then f is a (ρ+,C)-coarse
interval map from (X , dX , [·, ·]X ) to (Y , dY , [·, ·]Y ).

Proof For any x, y, z ∈ X we have f (〈x, y, z〉X ) ∼C 〈 f (x), f (y), f (z)〉Y . Hence
for 〈x, y, z〉X ∈ [x, y] we have f (〈x, y, z〉X ) ∈ NC ([ f (x), f (y)]). So f ([x, y]) ⊆
NC ([ f (x), f (y)]) which completes the proof. ��
Definition A.13 We define a functor F : CM → CI by setting F(X , dX , 〈 〉X ) to be
the induced coarse interval structure (X , dX , [·, ·]X ) and defining F[ f ] = [ f ] on
morphisms. This is well defined by Lemma A.12 and also restricts to give a functor
FS : CMS → CIS by Proposition 3.2.

Now we consider the opposite direction. Theorem 3.15 (2) provides a functor from
CI to CM as follows:

Lemma A.14 Let (X , dX , [·, ·]X ) and (Y , dY , [·, ·]Y ) be objects in the category CI
and let f : X → Y be a (ρ+,C)-coarse interval map. Suppose (X , dX , 〈 〉X ) and
(Y , dY , 〈 〉Y ) are any induced coarse median structures. Then f is a (ρ+, ψ(ρ+(κ0)+
C))-coarse median map from (X , dX , 〈 〉X ) to (Y , dY , 〈 〉Y ), where κ0 is the param-
eter in axiom (I1)′ for (X , dX , [·, ·]X ) and ψ is the parameter in axiom (I3)′ for
(Y , dY , [·, ·]Y ).

Proof By definition f ([x, y]) ⊆ NC ([ f (x), f (y)]) for any x, y ∈ X . Now we have:

f (〈a, b, c〉X ) ∈ f (Nκ0([a, b]) ∩ Nκ0([b, c]) ∩ Nκ0([c, a]))
⊆ Nρ+(κ0)( f ([a, b])) ∩ Nρ+(κ0)( f ([b, c])) ∩ Nρ+(κ0)( f ([c, a]))
⊆ NC ′([ f (a), f (b)]) ∩ NC ′([ f (b), f (c)]) ∩ NC ′([ f (c), f (a)])
⊆ Bψ(C ′)(〈 f (a), f (b), f (c)〉Y )

for C ′ = ρ+(κ0) + C and any a, b, c ∈ X . Hence we have

f (〈a, b, c〉X ) ∼ψ(C ′) 〈 f (a), f (b), f (c)〉Y ,

which implies that f is a (ρ+, ψ(ρ+(κ0) + C))-coarse median map. ��
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Definition A.15 We define a functor G : CI → CM by setting G(X , dX , [·, ·]X ) =
(X , dX , 〈 〉X ), where 〈 〉X is some (chosen) induced coarse median on X . The choice
here is well defined up to equivalence of coarse medians and we define G[ f ] = [ f ]
on morphisms. This definition makes sense by Theorem 3.15 and Lemma A.14 and
restricts to give a functor GS : CIS → CMS by Theorem 3.10.

Theorem A.16 The functors F and G from Definitions A.13, A.15 provide an equiv-
alence of categories between coarse median structures CM and coarse interval
structures CI. This equivalence restricts to give an equivalence of categories between
coarse median spaces CMS and coarse interval spaces CIS.

Proof We are required to show that G ◦ F is naturally isomorphic to IdCM and that
F ◦ G is naturally isomorphic to IdCI .

(1). First consider G ◦ F . Given a metric space (X , dX ) with a coarse median 〈 〉X ,
by definition F(X , dX , 〈 〉X ) is the induced coarse interval structure (X , dX , [·, ·]X ).
Now apply G to the triple (X , dX , [·, ·]X ) and denote the chosen induced operator by
〈 〉′X . It follows directly from Theorem 3.15(3) that 〈 〉′X and 〈 〉X are uniformly close.
Hence the identity IdX : (X , dX , 〈 〉X ) → (X , dX , 〈 〉′X ) gives an isomorphism in the
category CM. Furthermore, for any coarse median structure (Y , dY , 〈 〉Y ) and coarse
median map f : X → Y , the following diagram commutes since G, F do not change
the morphisms:

(X , dX , 〈 〉X )
[IdX ]

IdCM([ f ])

G ◦ F(X , dX , 〈 〉X ) = (X , dX , 〈 〉′X )

G ◦ F([ f ])

(Y , dY , 〈 〉Y )
[IdY ]

G ◦ F(Y , dY , 〈 〉Y ) = (Y , dY , 〈 〉′Y ).

Hence the natural transformation (X , dX , 〈 〉X ) 
→ [IdX ] gives a natural isomorphism
from IdCM to G ◦ F . This restricts to give a natural isomorphism from IdCMS to
GS ◦ FS .

(2). Next consider F ◦ G. Given a coarse interval structure (X , dX , [·, ·]X ), we
have G(X , dX , [·, ·]X ) = (X , dX , 〈 〉X ) where 〈 〉X is the chosen induced coarse
median operator on X . Apply F to the coarse median structure (X , dX , 〈 〉X ) and
denote the induced interval structure by (X , dX , [·, ·]′X ). It follows directly from
Theorem 3.15(3) that [·, ·]X and [·, ·]′X are uniformly close. Therefore, the identity
IdX : (X , dX , [·, ·]X ) → (X , dX , [·, ·]′X ) gives an isomorphism in the category CI.
Furthermore, for any other coarse interval structure (Y , dY , [·, ·]Y ) and coarse interval
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map f : X → Y , the following diagram again clearly commutes:

(X , dX , [·, ·]X )
[IdX ]

IdCI([ f ])

F ◦ G(X , dX , [·, ·]X ) = (X , dX , [·, ·]′X )

F ◦ G([ f ])

(Y , dY , [·, ·]Y )
[IdY ]

F ◦ G(Y , dY , [·, ·]Y ) = (Y , dY , [·, ·]′Y ).

Hence the natural transformation (X , dX , [·, ·]X ) 
→ [IdX ] gives a natural isomor-
phism from IdCI to F ◦ G. As usual this restricts to give a natural isomorphism from
IdCIS to FS ◦ GS . ��

Combining Propositions A.6, A.11, Theorem A.16 and Corollary 4.7, we obtain
the following.

Theorem A.17 Consider the following diagram:

CM
F

CI
G

CMS

ιM
FS

CIS.

ιI

GS

We have:

• F ◦ ιM = ιI ◦ FS ;
• ιM ◦ GS = G ◦ ιI ;
• ιM gives an equivalence of categories between CMS and CM;
• ιI gives an equivalence of categories between CIS and CI;
• (F,G) gives an equivalence of categories between CM and CI;
• (FS ,GS) gives an equivalence of categories between CMS and CIS.

Furthermoreall of these functors preserve rank in the sense of coarsemedian structures
and coarse interval structures.

Remark A.18 We finally note that one can restrict the allowed metric spaces to
quasi-geodesic spaces. In this case the above equivalences of categories restrict to
equivalences between the full subcategories of quasi-geodesic coarse median spaces
and quasi-geodesic coarse interval spaces.
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A.4 Comparing the categories of coarse median algebras and coarsemedian
spaces

In the spirit of Sect. A.1, we now consider the category of bounded valency coarse
median algebras. By analogywith the notion of coarsemedianmap, we define a coarse
median algebra homomorphism from (X , 〈 〉X ) to (Y , 〈 〉Y ) to be a function f : X → Y
such that

(1) there exist a constant C such that that for all a, b, c ∈ X ,

�[〈 f (a), f (b), f (c)〉Y , f (〈a, b, c〉X )]Y ≤ C;

(2) there exists a non-decreasing function ρ : R
+ → R

+ such that for all a, b ∈ X ,

�[ f (a), f (b)] ≤ ρ(�[a, b]);

(3) f is finite-to-1.

Where we need to keep track of C, ρ we will refer to f as a (C, ρ)-coarse median
algebra homomorphism.

Note that the requirement of “finite-to-1” is analogous to properness in the definition
of coarsemap.WhenC can be taken to be 1 then 〈 f (a), f (b), f (c)〉Y = f (〈a, b, c〉X )

and f is a homomorphism of ternary algebras. In particular if X and Y are median
algebras andC = 1 then f is a homomorphism of median algebras and the second and
third conditions require that f is also a coarse map in the geometric sense. From the
algebraic point of view one would not expect the latter conditions to be required, how-
ever without them the composition of coarse median algebra homomorphisms would
not in general yield another coarse median algebra homomorphism (cf. Remark A.2).

Lemma A.19 Let f : (X , 〈 〉X ) → (Y , 〈 〉Y ) and g : (Y , 〈 〉Y ) → (Z , 〈 〉Z ) be coarse
median algebra homomorphisms between bounded valency coarse median algebras
(X , 〈 〉X ), (Y , 〈 〉Y ) and (Z , 〈 〉Z ). Then the composition g f : (X , 〈 〉X ) → (Z , 〈 〉Z )

is a coarse median algebra homomorphism as well.

Proof Let f be a (C f , ρ f )-coarse median algebra homomorphism and g a (Cg, ρg)-
coarse median algebra homomorphism. Since (Z , 〈 〉Z ) has bounded valency,
Lemma 6.2 and Theorem 1.4 imply that the induced metric d〈 〉Y has bounded geom-
etry and (Z , d〈 〉Z , 〈 〉Z ) is a coarse median space. From Lemma 4.13 there exists a
non-decreasing function φZ : R+ → R

+ such that for any u, v ∈ Z we have

d〈 〉Z (u, v) < �[u, v]Z ≤ φZ (d〈 〉Z (u, v)).

Now for any a, b, c ∈ X we have:

d〈 〉Z (g(〈 f (a), f (b), f (c)〉Y ), g f (〈a, b, c〉X ))

≤ �[g(〈 f (a), f (b), f (c)〉Y ), g f (〈a, b, c〉X )]Z
≤ ρg(�[〈 f (a), f (b), f (c)〉Y , f (〈a, b, c〉X )]Y ) ≤ ρg(C f ),
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and

d〈 〉Z (g(〈 f (a), f (b), f (c)〉Y ), 〈g f (a), g f (b), g f (c)〉Z )

≤ �[g(〈 f (a), f (b), f (c)〉Y ), 〈g f (a), g f (b), g f (c)〉Z ]Z
≤ Cg.

Hence

�[g f (〈a, b, c〉X ), 〈g f (a), g f (b), g f (c)〉Z ]Z
≤ φZ (d〈 〉Z (g f (〈a, b, c〉X ), 〈g f (a), g f (b), g f (c)〉Z ))

≤ φZ (ρg(C f ) + Cg).

Thus condition (1) holds for g f . As for condition (2), we have

�[g f (a), g f (b)]Z ≤ ρg(�[ f (a), f (b)]Y ) ≤ ρgρ f ([a, b]X ).

Finally, since f , g are finite-to-1, their composition g f is finite-to-1 as well so g f is
a coarse median algebra homomorphism. ��

Two coarsemedian algebra homomorphisms f , g are said to be equivalent, denoted
by f ∼ g, if there is a constant D such that for all x ∈ X , �[ f (x), g(x)]Y ≤ D. Now
Lemma A.19 allows us to make the following definition:

Definition A.20 The bounded valency coarse median algebra category, denoted by
BCMA, is defined as follows:

• The objects are coarse median algebras (X , 〈 〉X ) of bounded valency;
• Given two objects: X = (X , 〈 〉X ) and Y = (Y , 〈 〉Y ), the morphism set is

{ coarse median algebra homomorphisms from X to Y }/ ∼;

• Compositions are induced by compositions of homomorphisms.

LetBCMS denote the full subcategory of CMS whose objects are bounded geom-
etry coarse median spaces. We will construct a functor H :BCMA → BCMS given
by equipping each coarse median algebra (X , 〈 〉X ) with its induced metric.

Lemma A.21 Defining H([ f ]) = [ f ] makes this a functor.
Proof We first show that for bounded valency coarse median algebras
(X , 〈 〉X ), (Y , 〈 〉Y ) and a (C f , ρ f )-coarse median algebra homomorphism f : X →
Y , f is also a coarse median map between (X , d〈 〉X , 〈 〉X ) and (Y , d〈 〉Y , 〈 〉Y ).

Clearly for any a, b, c ∈ X , the distance between 〈 f (a), f (b), f (c)〉Y and
f (〈a, b, c〉X ) is bounded by the cardinality of the associated interval, which is
uniformly bounded by C f . Hence f is a C f -quasi-morphism. As in the proof of
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Fig. 2 The tree T with the
subspace X identified by the
solid vertices

Lemma A.19, (X , 〈 〉X ) having bounded valency implies that there exists a non-
decreasing function φX : R

+ → R
+ such that for any u, v ∈ X , we have

d〈 〉X (u, v) < �[u, v]X ≤ φX (d〈 〉X (u, v)).

This implies

d〈 〉Y ( f (u), f (v)) ≤ �[ f (u), f (v)]Y ≤ ρ f ([u, v]X ) ≤ ρ f ◦ φX (d(u, v)).

Hence f is ρ f ◦ φX -bornologous. Bounded geometry and the fact that f is finite-to-1
imply that f is proper. Therefore, f is a coarse median map.

Now suppose that g : X → Y is a coarse median algebra homomorphism which is
equivalent to f . Now consider d〈 〉Y ( f (x), g(x)) ≤ �[ f (x), g(x)]Y . By assumption
the latter is bounded hence f is close to g. ��

While the forgetful map which converts a bounded valency, bounded geometry
coarse median space to the underlying coarse median algebra is a left inverse to H ,
this is not in general functorial.

Example A.22 Consider the tree T obtained from Z by adding a spike of length |n|
to each integer n. All edges are taken to have length 1. As a tree this is naturally a
discrete median space and can be viewed as a coarse median space with its natural path
metric. Now take the subspace X consisting of the original points of Z, together with
the leaves of the tree, and equip this with the subspace metric (see Fig. 2). This is a
median subalgebra and the inclusion is a morphism of coarse median spaces. However
it is not a morphism of coarse median algebras, since taking a to be the leaf on the
spike based at the integer b the interval [a, b]X has cardinality 2, while its image in T
has cardinality |b| + 1 contravening the second condition. Once again this illustrates
that it is possible to endow a coarse median algebra with a metric which does not fully
respect the algebraic structure. However restricting to the quasi-geodesic world, or
more generally, imposing the induced metric prevents these problems and makes the
forgetful map functorial.

Just as CAT(0) cube complexes can be studied combinatorially as median algebras,
we can apply Theorem 6.7 to obtain the following theorem showing that coarsemedian
spaces can be studied as coarse median algebras.
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Theorem A.23 The forgetful functor, together with the “induced metric” functor pro-
vide an equivalence of categories from bounded geometry quasi-geodesic coarse
median spaces to bounded valency quasi-geodesic coarse median algebras, and this
equivalence preserves rank.

Proof First let us show that the forgetful map is indeed a functor in this case.
Let (X , 〈 〉X , dX ) and (Y , 〈 〉Y , dY ) be two bounded geometry quasi-geodesic coarse
median spaces, and f : X → Y be a coarse median map. Theorem 6.7 implies that
(X , 〈 〉X ) and (Y , 〈 〉Y ) are bounded valency quasi-geodesic coarse median algebras
and for some L ′,C ′ > 0 the induced metrics d〈 〉X , d〈 〉Y are (L ′,C ′)-quasi-isometric
to dX , dY , respectively.

Since f is a quasi-morphism there exists C > 0 such that for any a, b, c ∈ X

〈 f (a), f (b), f (c)〉Y ∼C f (〈a, b, c〉X ) .

Since (Y , dY ) has bounded valency, Lemma 4.13 provides a non-decreasing function
φY : R

+ → R
+ such that for any u, v ∈ Y , we have �[u, v]Y ≤ φY (dY (u, v)). Thus

we obtain:

�[〈 f (a), f (b), f (c)〉Y , f (〈a, b, c〉X )] ≤ φY (C).

On the other hand, assume that f is ρ f -coarse, then we have:

�[ f (a), f (b)]Y ≤ φY (dY ( f (a), f (b))) ≤ φY ◦ ρ f (dX (a, b))

≤ φY ◦ ρ f (L
′d〈 〉X (a, b) + C ′) ≤ φY ◦ ρ f (L

′�[a, b]X + C ′).

Note that we use the fact that dX and d〈 〉X are (L ′,C ′)-quasi-isometric in the third
inequality,which fails inExampleA.22, and this is the only placeweneed the condition
of quasi-geodesity. Finally properness and bounded geometry imply that f is finite-
to-1. In conclusion, we have shown that f is a coarse median algebra homomorphism
which implies that the forgetful map is indeed a functor.

The rest of the statement follows directly from Theorem 6.7 and Lemma 6.9. ��
Finally we note that while the definition of a coarse median space requires affine

control (in axiom (C1)) the morphisms in the category CMS are only required to be
coarse, not large-scale Lipschitz. As mentioned in [14], this suggests a generalisation
of the notion of coarse median to allow bornologous control: replace the affine control
axiom (C1) with the requirement that the map a 
→ 〈a, b, c〉 is bornologous uniformly
in b, c. Many of the results of this paper should carry over to this context.

However this does not greatly extend the class of examples for the following reasons.
Firstly in the quasi-geodesic case this is not a generalisation as bornologous control
implies affine control. More generally suppose that (X , d, 〈 〉) is a triple satisfying the
generalised bornologous version of (C1) along with (M1), (M2) and (C2). If this has
bounded geometry then the proof of Theorem 1.4 (3) �⇒ (1) remains valid to show
that (X , 〈 〉) is a coarse median algebra. If moreover we have bounded valency then by
Theorem 1.4, (X , d〈 〉, 〈 〉) is a coarse median space in the usual (affine) sense. Thus,
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in the context of bounded geometry bounded valency spaces, the metric can always
be adjusted to ensure affine control.
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