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Abstract
We prove LeBrun–Salamon conjecture in the following situation: if X is a contact
Fano manifold of dimension 2n + 1 whose group of automorphisms is reductive of
rank ≥ max(2, (n − 3)/2) then X is the adjoint variety of a simple group. The rank
assumption is fulfilled not only by the three series of classical linear groups but also
by almost all the exceptional ones.

Mathematics Subject Classification Primary 14L30; Secondary 14M17 · 14M25

1 Introduction

A fundamental result of Riemannian geometry is the classification of manifolds with
a metric according to their holonomy groups, by De Rham and Berger [2]. One
of the classes of Riemannian manifolds in this classification are quaternion-Kähler
manifolds which are of (real) dimension 4n, with n ≥ 2, and holonomy group
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Sp(n)Sp(1) = [Sp(n) × Sp(1)]/Z2 ⊂ SO(4n, R). Salamon proved that the twistor
space of a compact positive quaternion-Kähler manifold is a (complex) contact Fano
manifold of (complex) dimension 2n + 1 and admits a Kähler–Einstein metric [23]; a
converse statement holds by a result of LeBrun [18]. A celebrated LeBrun–Salamon
conjecture, [19], asserts that every compact positive quaternion-Kähler manifold is
symmetric or, equivalently, every contact Fano manifold with Kähler–Einstein metric
is a homogeneous space. In fact, quaternion-Kähler symmetric spaces are known as
Wolf spaces and, equivalently, homogeneous complex contact manifolds are known
to be the closed orbits in the projectivizations of adjoint representations of simple
algebraic groups; we call them adjoint varieties.

In the absence of a proof of LeBrun–Salamon conjecture in its full generality,
low-dimensional cases have been verified for n ≤ 4. That is, the conjecture was
proved for positive quaternion-Kähler manifolds of (real) dimension ≤ 16 and for
contact Fano manifolds with a Kähler–Einstein metric of dimension ≤ 9, see [6]
and references therein. Also, the conjecture is known for contact Fano manifolds X
(even without assuming that they admit a Kähler–Einstein metric) if the first Chern
class of the quotient L = T X/F of the contact distribution F ↪→ T X does not
generate the second cohomology H2(X , Z), [16]. In fact, if the class is divisible in
H2(X , Z) then X is known to be the projective space P

2n+1, hence the closed orbit
in the adjoint representation of Sp(2n + 2, C). On the other hand, if the rank of the
second cohomology is ≥ 2, then X is the (naive) projectivization of the cotangent
bundle on P

n+1, hence the closed orbit in the adjoint representation of SL(n + 2, C).
LeBrun–Salamon conjecturewas proved in some caseswith additional assumptions

on group actions. Bielawski [4] and Fang, [8,9], considered quaternion-Kähler mani-
folds with an action of a (real) torus. It is known, [20], that the automorphisms group
of a Fano manifold with a Kähler–Einstein metric is reductive, which is an equivalent
of a real compact group in the complex case. Thus the automorphisms of such a variety
contain an algebraic torus; the rank of a maximal subtorus is, by definition, the rank
of the reductive group. The results of Fang imply that contact Fano manifolds with
Kähler–Einstein metric admitting an action of an algebraic torus of rank r ≥ n/2+ 3
are adjoint varieties of the simple groups Sp(2n + 2, C) and SL(n + 2, C), which are
of rank n + 1. We note that the condition r ≥ n/2 + 3 is not fulfilled for the group
SO(n + 4, C) which is of rank �n/2� + 2.

The main theorem of the present paper, Theorem 6.1, improves previous results so
that not only it covers the adjoint varieties of all the classical series of linear groups
but also almost all the exceptional ones. That is, if X is a contact Fano manifold of
dimension 2n+1 whose group of automorphisms is of rank≥ max(2, (n−3)/2) then
X is the adjoint variety of one of the classical linear groups SL(n + 2, C), i.e., type
A, Sp(2n + 2, C), i.e., type C, SO(n + 4, C), i.e., type B or D, or a simple group of
type G2,F4,E6,E7 (Fig. 1).

Although motivated by a problem from Riemannian geometry, the present paper
depends solely on methods from algebraic geometry. Thus our language and formu-
lation of results is provided in terms specific for algebraic group actions, especially
algebraic torus actions, and complex birational geometry. In fact, Theorem 6.1 fol-
lows from Theorem 5.1, which is the technical core of the present paper. Theorem 5.1
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Fig. 1 Comparing rank and dimension of adjoint varieties for simple groups. The line below is the bound
of Theorem 6.1; the line above indicates previously known bounds

asserts that a contact Fano manifold is the adjoint variety of one of the simple groups
if the group of its automorphisms is reductive of rank ≥ 2 and, in addition, the action
of its Cartan torus has only isolated extremal fixed points. The arguments in the proof
of this result are about the action of a suitably chosen two dimensional subtorus in
the Cartan torus in question. This downgrading of the torus action and suitable results
about adjunction theory for varieties with a C

∗-action, [22], and about the birational
geometry of small bandwidth C

∗-actions, [21], enable to identify the variety as the
adjoint variety of a simple group.

The paper is organized as follows. Section 2 contains general results about algebraic
groups and their actions, while Sect. 3 concentrates on homogeneous manifolds. In
particular, we deal with adjoint varieties of simple algebraic groups. As the main
result of the present paper covers the case of adjoint varieties of most exceptional
algebraic groups, a significant part of its contents concerns properties specific for
these groups, see e.g. [14,17]. However, in our approach, the classical linear group
series SO(n + 4, C), that is the groups of type B and D, are treated on equal terms
with exceptional groups. This is because the Picard groups of their adjoint varieties
are generated by the class of the quotient L = T X/F , contrary to the other two types
of classical linear groups. This allows us to restate geometrical properties of adjoint
varieties related to the so-called Freudenthal magic square in a context appropriate for
our purposes.

Section 4 summarizes specific results concerning torus actions on contact mani-
folds, as in [6, Sect. 5], while Sect. 5 contains the proof of Theorem 5.1, the main
technical result of the paper. For clarity, the proof is divided into five steps; a short
guide through the proof is provided after the formulation of the theorem. Finally,
Sect. 6 contains the proof of Theorem 6.1.

2 Preliminaries

This section contains some background material and language we will use later on.
Let us start by introducing some general notation.
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Notation and conventions Throughout this paper all the varieties will be algebraic,
projective and defined over the field of complex numbers, mostly smooth (in this case
we will also refer to them as projective manifolds). Given a vector bundle E on a
variety X , we will denote by P(E) the quotient of the complement of the zero section
of E by the action of homotheties. The Lie groups SL(n, C),SO(n, C), . . . will be
denoted by SL(n),SO(n), . . . and considered with their structure of algebraic groups.
Given a semisimple groupG, a rational homogeneous G-variety is a projective variety
of the form G/P; a subgroup P ⊂ G for which G/P is projective is called parabolic.
Such a variety is completely determined by combinatorial data: the Dynkin diagram
D of G and a subset I of the set D of nodes in D (of cardinality equal to the Picard
number of G/P). More concretely, up to conjugacy, the parabolic subgroup P can
always be written as BW (D\I )B, where B ⊂ G is a Borel subgroup, and W (D\I )
is the subgroup of the Weyl group W of G generated by the reflections associated to
the nodes of D\I . We will then write (see [21, Sect. 2.4] for details and examples):

D(I ) := G/BW (D\I )B.

2.1 Torus actions on smooth projective varieties

We will briefly recall here some general facts on torus actions on smooth complex
projective varieties. We refer the interested reader to [6] for a complete account on the
concepts and tools that we introduce here.

Throughout the section we will denote by (X , L) a polarized pair, consisting of
a smooth complex projective variety X and an ample line bundle L on X , and by
H 	 (C∗)r an r -dimensional complex torus, acting effectively on X . The lattice of
weights of H will be denoted by M(H) := Hom(H , C

∗).
The set of points of X fixed by the action of H , denoted by XH , is a union of

smooth closed irreducible subvarieties, indexed by a finite set Y:

XH =
⊔

Y∈Y
Y .

Given a linearization of the action of H on the line bundle L , μL : H × L → L ,
the weight of the action of H on the fiber Lx on a fixed point x depends only on the
fixed point component Y containing x , and we denote it, abusing notation, by μL(Y ).

The polytope of fixed points�(X , L, H , μL ) (respectively, the polytope of sections
�(X , L, H , μL )) is defined as the convex hull in M(H) ⊗ R of the weights of the
action of H on L (respectively, of the weights of the action of H on H0(X , L)). We
refer to [6, Sect. 2.1] for details. A fixed point component Y ∈ Y for which μL(Y ) is
a vertex of �(X , L, H , μL ) will be called an extremal fixed point component.

Wewill sometimes consider the restriction of the action of H on (X , L) to a subtorus
H ′ ⊂ H , a process that we call downgrading.We denote by ı : H ′ → H the inclusion,
by ı∗ : M(H) → M(H ′) the inducedmap between the lattices of weights, byY ′ the set
of fixed point components of the induced action of H ′ on X , and byμ′

L : Y ′ → M(H ′)
the map associating to every H ′-fixed point component Y the H ′-weight of L on every
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point of Y . The following straightforward lemma describes how the weights of the
action behave with respect to the downgrading:

Lemma 2.1 With the above notation:

(i) every Y ∈ Y is contained in a unique fixed point component Y ′ ∈ Y ′, and
μ′
L(Y ′) = ı∗μL(Y );

(ii) every Y ′ ∈ Y ′ is invariant by H, and contains at least a fixed point component
Y ∈ Y;

(iii) given Y ′ ∈ Y ′, the torus H/H ′ acts on Y ′ with fixed point locus (Y ′)H/H ′ =
XH ∩ Y ′ = Y ′H ;

(iv) �(X , L, H ′, μ′
L) = ı∗�(X , L, H , μL );

(v) for every Y ′ ∈ Y ′, �(Y ′, L, H/H ′, μL) ⊆ �(X , L, H , μL ) ∩ (ı∗)−1μ′
L(Y ′).

Given a fixed point component Y ∈ Y , the action of H on the normal bundleNY |X
of Y in X provides a splitting of this bundle into eigen-subbundles:

NY |X =
⊕

i

N−νi (Y )(Y ),

whose corresponding weights, denoted by −νi (Y ), are nontrivial. Denoting by ri the
rank ofN−νi (Y )(Y ), the set of the elements νi (Y ), counted ri -times, will be called the
compass of the action of H on Y . We will write it as

C(Y , X , H) = {
ν1(Y )r1 , ν2(Y )r2 , . . .

}
.

In order to make our exposition self-contained, we will recall from [6] two state-
ments regarding compasses thatwewill use later on; the first one describes the behavior
of the compass with respect to downgrading:

Lemma 2.2 [6, Lemma2.13]Let H beanalgebraic torus acting ona smooth projective
variety X, and H ′ ⊂ H a subtorus. Let ı∗ : M(H) → M(H ′) be the projection
between the corresponding lattices of weights. Take fixed point components Y ′ ⊂ XH ′

and Y ⊂ Y ′ ∩ XH . Then:

(i) C(Y ′, X , H ′) = ı∗(C(Y , X , H));
(ii) C(Y ,Y ′, H/H ′) = C(Y , X , H)∩ker ı∗, andNY |Y ′ = ⊕

ν∈C(Y ,Y ′,H/H ′) N−ν(Y ).

Another important property of the compass is that its elements at a given fixed point
x ∈ XH are vectors pointing from μL(x) towards the weight μL(x ′) of another fixed
point x ′ ∈ XH . More precisely:

Lemma 2.3 [6, Corollary 2.14] Let H be an algebraic torus acting on a smooth pro-
jective variety X, let L be a line bundle on X, and let μL be a linearization of the
action. Take Y ⊂ XH , and ν ∈ C(Y , X , H). Then there exists Y ′ ⊂ XH and λ ∈ Q>0
such that μL(Y ′) = μL(Y ) + λν.

The above invariants of H -actions were introduced in [6] with the motivation that,
in the case in which H ⊂ G is the maximal torus of a semisimple group, they can
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be used to characterize G-representations and rational homogeneous G-varieties. In
particular, in this paper we will make use of the following statement, which has been
proved in [6, Propositions 2.23, 2.24] under the additional assumption that all the fixed
point components are isolated points; the proof follows the same line of argumentation.

Proposition 2.4 Let (X , L) and (X ′, L ′) be two polarized pairs. Let H be a complex
torus acting on both pairs and denote by Y and Y ′ the set of irreducible fixed compo-
nents of X H and X ′H , respectively. Assume that there exists a bijection ψ : Y → Y ′
such that, for every Y ∈ Y:

(A1) Y 	 ψ(Y );
(A2) μL(Y ) = μL ′(ψ(Y )), and L |Y 	 L ′

|ψ(Y );

(A3) C(Y , X , H) = C(ψ(Y ), X ′, H), and N−ν(Y ) 	 N−ν(ψ(Y )) for every ν ∈
C(Y , X , H).

Then:

(C1) If Hi (X , L) = Hi (X ′, L ′) = 0 for i > 0, then H0(X , L) is H-equivariantly
isomorphic to H0(X ′, L ′).

(C2) If the actions of H on X and X ′ are restrictions of the actions of a semisimple
group G containing H as a maximal torus, and if X ′ is a rational homogeneous
G-variety, then (X , L) 	 (X ′, L ′).

Proof Note that conditions (A2), (A3) are equivalent to require that L |Y is H -
equivariantly isomorphic to L ′

|ψ(Y ) and that NY |X is H -equivariantly isomorphic to
Nψ(Y )|X ′ , respectively. This implies an equality of H -equivariant Euler characteris-
tics χH (X , L) = χH (X ′, L ′) (see [6, Theorem A.1]); together with the hypothesis
on the vanishing of the cohomology, this tells us that H0(X , L), H0(X ′, L ′) are equal
as elements of the representation ring of H .

For the second part, a similar argument provides isomorphisms of H -modules:
H0(X , L⊗m) 	 H0(X ′, L ′⊗m), for m � 0. By standard Representation Theory (cf
[10, Theorem 14.18]), since these spaces are G-modules, they are isomorphic also
as G-modules. Then for m � 0, the natural morphism φ : X → P(H0(X , L⊗m)∨)

will be a G-equivariant embedding so that the image of X will be invariant by G. In
particular, it will contain the unique closed orbit of the action, which is isomorphic
to X ′. Since condition (A3) implies that dim X = dim X ′ we conclude that (X , L) 	
(X ′, L ′). ��

2.2 Actions ofC
∗ on smooth projective varieties

The case of actions of the torus C
∗, that has been extensively studied in the literature

(see [7] and references therein), will be particularly useful for our purposes. We intro-
duce here some notation and basic facts we will use when dealing with this type of
actions.

We first choose an isomorphism M(C∗) 	 Z. Given a C
∗-action on a smooth

projective variety X , for every fixed point component Y ∈ Y the normal bundle of Y
in X splits into two subbundles, on which C

∗ acts with positive and negative weights,
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respectively:

NY |X 	 N+(Y ) ⊕ N−(Y ). (1)

We denote by ν±(Y ) = rankN±(Y ) the ranks of these subbundles. Then the following
result, due to Białynicki-Birula (cf. [3], [7, Theorem 4.4]), allows us to compute the
homology groups of X :

Theorem 2.5 In the situation described above there is a decomposition:

Hm(X , Z) =
⊕

Y∈Y
Hm−2ν+(Y )(Y , Z) =

⊕

Y∈Y
Hm−2ν−(Y )(Y , Z), for every m.

Given a polarized pair (X , L) admitting aC
∗-action, we identify the weightsμL(Y )

with the corresponding integers. The minimum and maximum value of μL , denoted
by μmin and μmax, are achieved in two unique fixed point components, that we call
the sink and the source of the action; the rest of the fixed point components will be
called inner. The bandwidth of the action of H on (X , L) is defined as the difference
|μ| = μmax − μmin. Moreover, we say that the action of H on X is equalized at Y if
H acts on NY |X with weights ±1, and we call the action equalized if it is equalized
at every fixed point component Y ∈ Y . Note that if the action is equalized at the sink
and the source and has bandwidth two and three, then using [22, Lemma 3.1] easily
follows that the action is equalized (cf. [21, Corollary 2.14] for the case of bandwidth
two).
When the bandwidth of a C

∗-action on a pair is small, one expects to have reasonably
short lists of examples, under certain assumptions. We refer to [21] for an account
on this matter. In this paper we will make use of the following two results, regarding
equalized actions of bandwidth two and three. The first tells us that under some con-
ditions an action of bandwidth two is determined by its local behaviour at the sink and
the source:

Theorem 2.6 [21, Corollary 5.12] Let (X , L) be a polarized pair supporting a C
∗-

action of bandwidth two, equalized at the sink Y−1 and the source Y1, which are both
positive dimensional. Assume moreover that ρX = 1, that there exists an inner fixed
point component, and that the vector bundles N∨

Y±1/X
⊗ L are semiample. Then X is

uniquely determined by (Y±1,NY±1/X ).

We will also make use of the following complete classification of equalized band-
width 3 actions with isolated extremal fixed points:

Theorem 2.7 [22, Theorem 4.5], [21, Theorem 6.8] Let (X , L) be a polarized pair,
where X is a projective manifold of dimension n ≥ 3 with a linearized action of C

∗ of
bandwidth three, such that its sink and source are isolated points. Assume in addition
that the action is equalized at the sink and the source, and denote by Yi the union of the
inner fixed point components of weight i , i = 1, 2. Then one of the following holds:

(1) X = P(V∨), with V = OP1(1)
n−1 ⊕ OP1(3), or OP1(1)

n−2 ⊕ OP1(2)
2, and

L = OP(V∨)(1). Moreover (Yi , L |Yi ) 	 (Pn−2,OPn−2(1)).
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(2) X = P
1 × Q

n−1, L = O(1, 1), each Yi is the disjoint union of a smooth quadric
Q

n−3 and a point, and L |Qn−3 	 OQn−3(1).
(3) X is one of the following rational homogeneous varieties:

C3(3), A5(3), D6(6), E7(7),

L is the ample generator of Pic(X) and the varieties Yi are, respectively

A2(2), A2(2) × A2(1), A5(2), E6(1).

The restriction of L to Yi is the ample generator of Pic(Yi ), except in the case
Yi 	 A2(2) 	 P

2, in which L |Yi 	 OP2(2).

3 Torus actions on adjoint varieties

In this sectionwewill describe torus actions on rational homogeneous varieties, paying
special attention to the case of adjoint varieties, whose characterization is the goal of
this paper. We will start by briefly recalling the action of the maximal tori of their
defining semisimple groups, then we will focus on some particular downgradings of
these actions, that we will use later in the proof of Theorem 5.1.

3.1 The action of amaximal torus

LetG be a semisimple algebraic group, B ⊂ G a Borel subgroup, and H ⊂ B a Cartan
subgroup.We denote by
 the root system ofG with respect to H , byW = NG(H)/H
the Weyl group of G, by D = {α1, . . . , αr } the base of positive simple roots of 


induced by B ⊃ H , by 
+ the set of positive roots determined by B, and by D the
Dynkin diagram of G.

The following well known statement (see [7, Sect. 3.4]) describes the set of H -fixed
point of every rational homogeneous variety G/P , with P ⊃ B; we include its proof
for lack of references:

Lemma 3.1 The set of fixed points of G/P by the action of H is:

(G/P)H = {wP, w ∈ W }.

Proof Let B be a Borel subgroup of G, with H ⊂ B ⊂ P , and let us compute first
(G/B)H . A point gB is fixed by H if and only if gBg−1 ⊃ H . Following [12, Sect. 27],
this holds if and only if gBg−1 can be written as wBw−1, for some w ∈ NG(H),
and this Borel subgroup depends only on the class of w modulo H . We conclude that
(G/B)H = {wB| w ∈ W }.

Now, given P ⊃ B, we note first that the natural projection πP : G/B → G/P is
H -equivariant, hence πP ((G/B)H ) ⊂ (G/P)H ; the converse follows from the fact
that πP is projective, therefore the inverse image of a fixed point of G/P , which is
H -invariant, contains a fixed point. ��
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Remark 3.2 Thefirst part of the above proof shows that (G/B)H is bijective to theWeyl
group of G, W := NG(H)/H . Moreover, if P = BW (D\I )B, where W (D\I ) ⊂ W
is the subgroup generated by the reflections corresponding to a subset D\I ⊂ D, then
(G/P)H is bijective to the quotient W/W (D\I ).

We describe now the compasses of the H -action at fixed points wP , w ∈ W .

Lemma 3.3 If P = BW (D\I )B, denoting by 
+(D\I ) the set of positive roots of 

that are linear combinations of elements α j , j ∈ D\I , then:

C(wP,G/P, H) 	 w(
+\
+(D\I )).

Proof As above, we choose for every w ∈ W a preimage in NG(H), and denote it by
w. Being g and p respectively the Lie algebra ofG and P , we may write isomorphisms
of H -modules:

TG/P,wP 	 Adw(TG/P,P ) 	 Adw(g/p) 	 g/Adw(p),

Then we use the Cartan decomposition to split g/p as a direct sum of H -eigenspaces

p = h ⊕
⊕

α∈
+
gα ⊕

⊕

α∈
+(D\I )
g−α, g/p =

⊕

α∈
+\
+(D\I )
g−α,

and conclude by noting that Adw(gα) = gw(α) for all α ∈ 
. ��
Let us finally consider the case in which g is simple (abusing notation, we will say

in this case that the semisimple group G is simple), and let XG be the corresponding
adjoint variety of G, that is the closed orbit of the action of G in the projectivization of
the adjoint representation ofG, XG ↪→ P(g). The following result, in which β denotes
the highest weight of the adjoint representation, and v ∈ gβ is a nonzero eigenvector,
is a consequence of Lemma 3.1.

Corollary 3.4 The set of fixed points of XG by the action of H ⊂ G is:

X H
G = {w[v], w ∈ W },

where μL(w[v]) = w(β), for every w ∈ W. Moreover XH
G is bijective to the set of

long roots of G.

Proof By [10, Claim 23.52] we know that XG is the G-orbit of the class of a highest
weight vector [v] of the adjoint representation; that is v is a nonzero element of gβ ,
with β the longest positive root of G with respect to a base of simple roots. Then
Lemma 3.1 gives us the description of XH

G . The second part follows from the fact that
Adw(v) ∈ gw(β) for every w ∈ W . We conclude by noting that W acts transitively on
the set of long roots of G (cf. [13, Lemma C]). ��
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3.2 Some special downgradings of ranks one and two

In this section we keep the same notations introduced above, and assume that G is
simple. Let us denote by �(G) ⊂ M(H) ⊗ R the root polytope of G, that is the
polytope generated by the roots of G. We will now define some special downgradings
of the action of H on XG , that we will use later on.

Lemma 3.5 Let G be a simple group of type Br , r ≥ 3, Dr , r ≥ 4, Er , r = 6, 7, 8, F4,
or G2, and let α, α′ be two long roots of G forming an angle of 2π/3 radiants. Then
there exists a subgroup S2 ⊂ G isomorphic to SL(3), inducing a projection of root
polytopes ı∗ : �(G) → �(S2) such that {ı∗(α), ı∗(α′)} is a base of positive simple
roots of S2, and such that (ı∗)−1(β) consists of one point for every vertex β of the
hexagon �(S2).

Proof In the case G2 it is known, by Borel–de Siebenthal theory [5], that the set of
long roots of G2 is a closed root subsystem of the root system of G2 determining a
subgroup S2 ⊂ G2 isomorphic to SL(3). Note that S2 and G2 have the same maximal
torus H and the same root polytope.

In all the remaining cases we may always choose the long roots α, α′ forming an
angle of 2π/3 among the elements of the base D = {α1, . . . , αr } of simple roots of
G (see Remark 3.6 below); let us denote them by αi , α j .

We consider the subgroup W ′ ⊂ W of the Weyl group W of G generated by
the reflections ri , r j (corresponding to αi and α j ), and the parabolic subgroup P =
BW ′B ⊂ G.We then consider a Levi decomposition of P , P = U�L , whereU is the
unipotent radical of P , L is reductive, and the commutator S2 = [L, L] ⊂ L ⊂ P ⊂
G, which is semisimple. The maximal torus of S2 is H2 := H ∩ S2. By construction,
denoting by h, s2, h2 the Lie algebras of H , S2 and H2, by ı∗ : M(H) ⊗Z R →
M(H2) ⊗Z R the linear map induced by the inclusion H2 ↪→ H , and by gβ ⊂ g the
eigenspace associated to a root β of G, we may write:

s2 = h2 ⊕
⊕

β∈
∩(Zαi+Zα j )

gβ.

Then the root system of S2 is 
S2 = ı∗{±αi ,±α j ,±(αi + α j )} ⊂ M(H2) ⊗Z R, and
s2 is isomorphic to sl3. In particular, the subgroup S2 ⊂ G is isomorphic either to
SL(3) or to PGL(3), and dim H2 = 2.

Note that ı∗ is an orthogonal projection and sends the lattice M(H) to M(H2).
Moreover, since all the roots in 
 ∩ (Zαi + Zα j ) are long, then ı∗ sends any root
of G which is not in 
 ∩ (Zαi + Zα j ) to the interior of �(S2). This shows that
�(G) → �(S2) has one point fibers over the vertices of the hexagon �(S2).

Finallywe note that in all the cases there exists a root ofG not in
∩(Zαi+Zα j ) and
not orthogonal to the subspace generated byαi , α j , hence its projection toM(H2)⊗ZR

is a nonzero lattice point in the interior of �(S2). This shows that M(H2) contains
properly the root lattice of S2, so necessarily S2 	 SL(3). ��
Remark 3.6 In the setting of Lemma 3.5, for the cases different from G2 we may use
the following particular choice of the pairs (i, j) defining S2 ⊂ G:
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g Br Dr E6 E7 E8 F4

(i, j) (1, 2) (1, 2) (4, 2) (3, 1) (7, 8) (2, 1)

Fig. 2 Lattice points in the polytopes �(S2) and �(S1)

Here we are following the standard reference [13, p. 58] for the numbering of nodes
of the corresponding Dynkin diagrams.

Notation 3.7 Let us now describe the downgradings of the action of H ⊂ G on the
adjoint variety XG that we are going to consider in this paper.

(S2) With the notation of Lemma 3.5, we will consider a subgroup S2 ⊂ G, iso-
morphic to SL(3), a maximal torus H2 ⊂ S2 (obtained by intersecting the
maximal torus H ⊂ G with S2) given by the choice of two long roots α, α′ as
in Remark 3.6, for the cases different from G2. In Fig. 2 we represented the
points of M(H2) ∩ �(S2), which are the possible images of the roots of G via
ı∗.

(S1) Given a root α ∈ 
S2 we may find a unique subgroup S1 ⊂ S2 isomorphic to
SL(2) whose Lie algebra contains the eigenspace gα . We denote the maximal
torus of S1 by H1 = H2 ∩ S1, and consider the projection π∗ : M(H2) →
M(H1) associated to the inclusion π : H1 ↪→ H2; it sends �(S2) to �(S1) =
[−2, 2], and by choosing an appropriate isomorphism M(H1) 	 Z we may
write π∗(α) = 2 (see Fig. 2).

Let us denote the corresponding lattices of weights byM := M(H),M2 := M(H2),
M1 := M(H1), and by ı∗ : M → M2, π∗ : M2 → M1 the induced projections. The
adjoint actions of H2 and H1 on g provide gradings of g with respect to M2 and M1:

g =
⊕

m∈M2

g2m =
⊕

m∈M2

⎛

⎜⎜⎝
⊕

γ∈
∪{0}
ı∗(γ )=m

gγ

⎞

⎟⎟⎠ , g =
⊕

m∈M1

g1m =
⊕

m∈M1

⎛

⎜⎜⎝
⊕

γ∈
∪{0}
(ı◦π)∗(γ )=m

gγ

⎞

⎟⎟⎠

where we recall that 
 ⊂ M is the root system of G. By our choice of S1 ⊂ S2 ⊂ G
we have that, for i = 1, 2, dim(gim) = 1 wheneverm is a root of Si : these are precisely
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the vertices of the root polytope�(Si ). The rest of values ofm ∈ Mi for which gim �= 0
correspond to inner points of �(Si ).

Furthermore, the vector spaces gim are representations of the subalgebra gi0 ⊂ g of

elements of Mi -degree 0 and of its semisimple part gi,ss0 , i = 1, 2. With the choice
of the projection ı : M → M2 presented in Remark 3.6, one obtains the following
description of those subalgebras:

g Br Dr E6 E7 E8 F4 G2

(i, j) (1, 2) (1, 2) (2, 4) (1, 3) (7, 8) (1, 2)

g
1,ss
0 A1 × Br−2 A1 × Dr−2 A5 D6 E7 C3 A1

g
2,ss
0 Br−3 Dr−3 A2 × A2 A5 E6 A2 0

3.3 Freudenthal varieties

Wewill now consider the adjoint variety XG and compute the fixed point components
of the actions of the tori H2 and H1 introduced above (see Notation 3.7). In the cases in
which G is exceptional, the varieties that we will obtain are essentially those obtained
in the Freudenthalmagic square studied byLandsberg andManivel in [17], see Table 1.
In particular we will see that certain fixed point components for the torus H1 coincide
with the varieties of type (2) and (3) obtained in the classification of C

∗-actions of
equalized bandwidth three actions with isolated sink and source (cf. Theorem 2.7).
These varieties appear in the literature as Freudenthal varieties (cf. [14,17]); in our
setting they will be used to recognize adjoint varieties among contact manifolds by
means of equivariant K-theory, as we will see in Sect. 5.

We start by noting that

XH2
G =

⊔

m∈�(S2)∩M2

Ym, XH1
G =

⊔

m∈�(S1)∩M1

Zm,

where:

Ym := XG ∩ P(g2m), m ∈ �(S2) ∩ M2,

Zm := XG ∩ P(g1m), m ∈ �(S1) ∩ M1.

By construction, Ym is an isolated point when m is a vertex of �(S2), and the
same holds for the vertices of �(S1). We will now study the fixed point components
corresponding to inner lattices points.

Let us first describe, for i = 1, 2, a subgroup Gi,ss
0 ⊂ G, i = 1, 2, whose Lie

algebra is gi,ss0 . We will consider only the case i = 2, being i = 1 analogous; we
follow the lines of argumentation of [24, Sect. 2.3.1]. We consider a Z-basis {μ1, μ2}
of M∨

2 and, for each j = 1, 2, the derivation Dj : g → g defined by Dj (x) = μ j (m)x
for every x ∈ g2m , and for every m ∈ M2. Since g is semisimple, each Dj is an inner
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derivation and there exists ξ j ∈ g20 such that Dj = adξ j . Then g20 can be described as
{x ∈ g| [x, ξ j ] = 0 for j = 1, 2}, or as the Lie algebra of the subgroup:

G2
0 := {g ∈ G| Adg(ξ j ) = ξ j for j = 1, 2}◦ ⊂ G.

Then we may define G2,ss
0 as the commutator [G2

0,G
2
0].

Lemma 3.8 For every m ∈ M2 ∩ �(S2) (resp. m ∈ M1 ∩ �(S1)) the subvariety
Ym ⊂ XG (resp. Zm) is a finite union of G2,ss

0 -(resp. G1,ss
0 -) homogeneous varieties.

Proof This is an adaptation of [24, Theorem 2.6] to our setting. We will show that Ym
is a finite union of closed G2

0-orbits, from which the statement follows; the case of Zm

is analogous. By construction, the varieties Ym are G2
0-invariant, so they are unions of

G2
0-orbits, and we only need to check that all these orbits are closed. To this end, we

note first that for every x ∈ Ym we have:

TXG ,x ∩ TP(g2m ),x = TOx ,x , (2)

where Ox denotes theG2
0-orbit of x . This follows by quotienting by 〈x〉 the equalities:

adx (g) ∩ g2m = adx

⎛

⎝
⊕

k∈�(S2)∩M2

g2k

⎞

⎠ ∩ g2m =
⊕

k

adx (g
2
k) ∩ g2m = adx (g

2
0).

Now if an orbit O were not closed, its boundary would contain an orbit O ′ of smaller
dimension, and by the equality (2) one has that TXG ∩ TP(gm ) would have fibers of
smaller dimension on the points of O ′, contradicting semicontinuity. ��

Given a fixed point component � of XHi
G , i = 1, 2, of weight m, we may consider

the action of the torus H/Hi on it. By Lemma 2.1 this action has only isolated fixed
points whoseweights are the long roots ofG ofM(Hi )-degree equal tom. In particular,
this shows that � is the Gi,ss

0 -orbit of the class of an element x ∈ gα , where gα ⊂ gim
and α is a long root of G. For instance, if G is of type F4 such a root does not exist in
g20, so Y0 is empty in this case. Moreover, this implies that the fixed point components

of XHi
G are the minimal orbits of the irreducible representations of Gi,ss

0 with highest
weights equal to one of the long roots of G. This allows us to study case by case the
fixed locus of XG under the action of Hi .

Table 1 contains the description of the varieties Ym , Zm , form = 0 and for nonzero
inner points m ∈ �(Si ) ∩ Mi :

4 Contact manifolds with a compatible torus action

In this section we collect some basic background on contact manifolds and torus
actions on them (cf. [16], [6, §4.1]).
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Table 1 Inner fixed point components corresponding to inner lattice points 0,m ∈ �(Si ) ∩ Mi , m �= 0

g XG Zm Z0 Ym Y0

Br Br (2) A1(1)×Br−2(1) A1(1) � Br−2(2) � � Br−3(1) Br−3(2)

Dr Dr (2) A1(1)×Dr−2(1) A1(1) � Dr−2(2) � � Dr−3(1) Dr−3(2)

E6 E6(2) A5(3) A5(1, 5) A2(2) × A2(1) A2(1, 2)�A2(1, 2)

E7 E7(1) D6(6) D6(2) A5(4) A5(1, 5)

E8 E8(8) E7(7) E7(1) E6(6) E6(2)

F4 F4(1) C3(3) C3(1) v2(A2(2)) ∅
G2 G2(2) v3(A1(1)) ∅ � ∅
In the cases B and D the index r is, respectively, bigger than or equal to 3 and 4. The symbol vn indicates
the nth Veronese embedding

4.1 Contact manifolds

A contact manifold is a smooth projective variety X of dimension 2n + 1 together
with a line bundle L (for short, we will say that the pair (X , L) is a contact manifold)
fitting in an exact sequence of vector bundles:

0 → F −→ TX
σ−→ L → 0 (3)

such that the corresponding O’Neill tensor induces a skew-symmetric isomorphism

F
	−→ F∨ ⊗ L. (4)

Thedistribution F ⊂ TX , the line bundle L and themorphismσ are called, respectively,
the contact distribution, the contact line bundle and the contact form of (X , L). Note
that, combining (3) and (4) we may write

ωX = L−(n+1), det(F) = Ln . (5)

Remark 4.1 If a contact manifold X is a Fano manifold, it is known (cf. [16, Propo-
sition 2.13]) that either Pic(X) 	 Z, or X 	 P(�Pn+1). Note also that Eq. (5) tells
us that X is Fano if and only if L is ample. In the case in which X 	 P(�Pn+1), we
have that L = OP(�

Pn+1 )(1); if Pic(X) 	 Z, then L is the ample generator of Pic(X),

except for the case X 	 P
2n+1, where L 	 OP2n+1(2).

The followingLemmaallowsus to identifyH0(X , L)with the adjoint representation
of the group of automorphisms of a Fano contact manifold X different from P

2n+1

and P(�Pn+1); we denote by CAut(X) ⊂ Aut(X) the group of automorphisms of a
contact manifold X preserving the contact structure.

Lemma 4.2 Let (X , L) be a contact Fano manifold with dim X = 2n+1, and Pic X =
ZL. Then CAut(X) = Aut(X). In particular Aut(X) extends to an action on L
so that the contact map σ is Aut(X)-equivariant, and we have Aut(X)-equivariant
isomorphisms Lie(Aut(X)) 	 H0(X , TX ) 	 H0(X , L).
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Proof Since X �	 P
2n+1 by Remark 4.1, applying [15, Sect. 2.3], we know that X is

covered by a complete unsplit family of rational curves of degree 1 with respect to L ,
called contact lines. By [15, Theorem 4.4, Corollary 4.5], the VMRT of this family
spansP(F), and so the contact structure F is unique. In particular every automorphism
of X preserves F , henceAut(X) = CAut(X). The second part of the statement follows
by [1, Proposition 1.1]. ��

Let us recall that a smooth subvariety Y of a contact manifold X as above is called
isotropic if TY ⊂ F|Y . By definition, an isotropic subvariety of X has dimension atmost
n; an isotropic subvariety of dimension exactly n is called a Legendrian subvariety of
X . For a Legendrian subvariety Y ⊂ X we have a commutative diagram with short
exact rows and columns:

TY TY 0

F|Y (TX )|Y L |Y

�Y± ⊗ L |Y NY |X L |Y

The lower row of the diagram can be interpreted as follows:

Proposition 4.3 Let (X , L) be a contact manifold with Pic X = ZL, and let Y be a
Legendrian subvariety. Then the normal bundle NY |X is isomorphic to the nontrivial
extension of �Y ⊗ L |Y by L |Y corresponding to the Atiyah extension class c1(L |Y ) ∈
H1(Y ,�Y ).

Proof The argument presented here belongs to an unpublishedmanuscript of the fourth
author with J. Buczyński, based on [16, Sect. 2]. Let us denote byL andLY the Atiyah
extensions corresponding to the line bundles L and L |Y on X and Y , respectively; they
fit into the following commutative diagram of vector bundles on Y with exact rows
and columns:

N ∨
Y |X N ∨

Y |X 0

�X |Y L|Y OY

�Y LY OY

Weuse now the fact thatL∨ admits a nondegenerate skew-symmetric formL∨⊗L∨ →
L induced by the contact form in X (cf. [16, Sect. 2.2]). Moreover, the fact that Y ⊂ X
is Legendrian (Corollary 4.10) implies that the subbundleN ∨

Y |X ⊂ L|Y is Lagrangian
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with respect to it. Hence the inner vertical exact sequence in the above diagram twisted
with L |Y and its dual fit in the following commutative diagram with exact rows:

N ∨
Y |X ⊗ L |Y L|Y ⊗ L |Y

	

L ⊗ L |Y

L∨ L∨|Y NY |X

In particular, we get the isomorphismNY |X 	 L⊗ L |Y . Twisting with L |Y the second
row of the above diagram we conclude. ��

4.2 Compatible torus actions on contact manifolds

We will now consider contact manifolds (X , L) for which there exists an action of a
torus H such that the contact form σ is equivariant; we will say that such an action is
compatible with the contact structure. In particular we will have an H -action on F ,
and the isomorphism (4) will be H -equivariant.

The largest compatible torus action on a contact manifold (X , L) is the one inwhich
H is a maximal torus of the identity component CAut(X)◦ of the group of contact
automorphisms of X . In the case inwhich this group is reductive (for instance if X is the
twistor space of a compact quaternion-Kähler manifold), we have a precise description
of the polytope of sections of this action, as a direct application of Lemma 4.2:

Corollary 4.4 Under the assumptions of Lemma 4.2, assume that CAut(X)◦ is reduc-
tive and let H ⊂ CAut(X)◦ be a maximal torus. Then �(X , L, H) is equal to the
polytope �(CAut(X)◦) generated by the roots of CAut(X)◦.

Let us now discuss some properties of the fixed point components of a compatible
action of a complex torus H on a contact manifold (X , L), the weight map μL :
XH → M(H), and the compass at every component. The compatibility property tells
us that, for every component Y , the weight −μL(Y ) belongs to C(Y , X , H). The rest
of the elements of this compass are weights of the action of H on F|Y , which satisfy
the following symmetry property (cf. [6, Lemma 4.1]), that follows from the fact that
the contact isomorphism F 	 F∨ ⊗ L is H -equivariant.

Lemma 4.5 Let (X , L) be a contact manifold admitting a compatible action of a torus
H, and let Y ⊂ XH be a fixed point component. For every weight m of the action of
H on F|Y there exists another one m′ such that m + m′ = μL(Y ).

Considering the restriction of the action to an extremal fixed point component, we
obtain the following result, that was stated in [6, Corollary 4.3]:

Lemma 4.6 Let (X , L) be a contact manifold supporting a nontrivial compatible
action of a torus H. If Y is an H-fixed point component such that μL(Y ) �= 0,
then Y ⊂ X is an isotropic subvariety and the restriction of the contact structure F|Y
contains TY ⊕ (�Y ⊗ L) as a direct summand. Moreover the weight −μL(Y ) appears
with multiplicity dim Y + 1 in the compass C(Y , X , H).
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Proof Denote by d := μL(Y ) ∈ M(H) the weight of L at every point of Y . Since
d �= 0 and TY is at every point the eigenspace of TX |Y associated to the weight zero,
it follows that TY is contained in the kernel of σ|Y : TX |Y → L |Y , that is F|Y . On the
other hand, applying Lemma 4.5 to the weights of TY ⊂ F|Y , we conclude that F|Y
contains an H -invariant vector subbundle F ′ of rank equal to dim Y , whose weights
are all equal to d, so that F ′ ⊕ TY is a subbundle of TX |Y . The proof is finished
observing that F ′ is mapped isomorphically onto �Y ⊗ L via the composition of the
isomorphism (4) with the induced projection F∨ ⊗ L → �Y ⊗ L . For the second part
note that, from the above arguments, the summand of weight d in TX |Y is an extension
of F ′ 	 �Y ⊗ L and L |Y . ��

We now focus on the case H = C
∗. The next statement shows that the central

components of a compatible C
∗-action on (X , L) inherit its contact structure:

Lemma 4.7 Let (X , L) be a contact manifold supporting a nontrivial compatible C
∗-

action. Then, for any irreducible component Y0 such that μL(Y0) = 0, the eigen-
subbundle of weight zero (F|Y0)0 ⊂ F|Y0 defines a contact form on Y0. Moreover, the
ranks ν+(Y0), ν−(Y0) of the positive and negative parts of NY0|X are equal and, in
particular, dim Y0 = dim X − 2ν+(Y0).

Proof Since TY0 is the part of weight zero of TX |Y0 , we have a weight decomposition
(see Eq. (1) in Sect. 2.2):

TX |Y0 = N−(Y0) ⊕ TY0 ⊕ N+(Y0),

and the induced map σ|TY0 : TY0 → L |Y0 is surjective. Thus we have a decomposition
of the contact distribution along Y0:

F|Y0 	 N−(Y0) ⊕ (F|Y0 ∩ TY0) ⊕ N+(Y0).

In particular, the contact isomorphism F|Y0 	 F∨|Y0 ⊗ L |Y0 restricts to an isomorphism
F|Y0 ∩ TY0 	 (F|Y0 ∩ TY0)

∨ ⊗ L |Y0 ; this shows that (F|Y0)0 = F|Y0 ∩ TY0 is a contact
distribution on Y0. The equality ν+(Y0) = ν−(Y0) follows from the fact that the
contact isomorphism sends N−(Y0) isomorphically to N+(Y0)∨ ⊗ L |Y0 . ��

Furthermore, Eq. (5) immediately provides the following:

Corollary 4.8 Let (X , L) be a Fano contact manifold supporting a nontrivial C
∗-

action compatible with its contact structure. If Y0 is an irreducible component such
that μL(Y0) = 0, then (Y0, L |Y0) is a Fano contact manifold.

Wefinish this Sectionwith two statements on contact varieties admitting a nontrivial
compatible C

∗-action of bandwidth 2, that will be used in Sect. 5.

Lemma 4.9 Let (X , L) be a contact manifold supporting a nontrivial compatible C
∗-

action of bandwidth two. Then the weights on the sink and the source of the action of
C

∗ on L are equal respectively to −1 and 1.
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Proof Let us denote by Y− the sink of the C
∗-action on L , and by Y+ the source.

Denote by d± the weights of L on Y±. At every point of Y−, the weights of the action
on (TX )|Y− are all non positive, therefore, by (5), d− < 0. In a similar way we can
prove that d+ > 0. By the assumption on the bandwidth we have d+ = d− + 2, and
the result follows. ��

Combining Lemma 4.6 and Lemma 4.9, we get the following:

Corollary 4.10 Let (X , L) be a contact manifold of dimension 2n + 1, supporting a
nontrivial compatibleC

∗-action of bandwidth two. Then the extremal fixed components
Y± are Legendrian subvarieties of X, F|Y± is isomorphic to TY± ⊕ (�Y± ⊗ L) and, in
particular, dim Y± = n.

Proof Let us deal with Y−, being the case of Y+ completely analogous. Since the
weights of the action on F|Y− are all non positive and, by Lemma 4.5, symmetric with
respect to −1/2, it follows that the only weights are 0 and −1, appearing both with
multiplicity n. We then conclude arguing as in Lemma 4.6. ��

5 Actions on contact manifolds with isolated extremal fixed points

Throughout this section, given a contactmanifold (X , L), wewill denote byCAut(X)◦
the identity component of the group of contact automorphisms of X . For a simple
algebraic group G we denote by XG the closed orbit in the adjoint representation of
G and by LG the pull-back of O(1) via the embedding XG ↪→ P(g) where g is the
Lie algebra of G. The goal of this section is to prove the following:

Theorem 5.1 Let (X , L) be a contact Fano manifold with dim X = 2n + 1, and
Pic X = ZL. Suppose that G = CAut(X)◦ is reductive of rank r ≥ 2, and that the
action of the maximal torus H ⊂ G on X has isolated points as extremal fixed point
components. Then G is simple of one of the following types:

Br (r ≥ 3), Dr (r ≥ 4), Er (r = 6, 7, 8), F4, G2,

and (X , L) = (XG , LG).

Remark 5.2 Note that the statement is known for n ≤ 4 without any assumptions on
the rank of G and on XH (see [6, Sect. 1.1] and the references therein). In the proof
of the Theorem we will then assume that n ≥ 5. Note also that for the cases n = 5, 6,
the statement has been proved in [22, Theorem 6.2] without the assumption on the
extremal fixed points.

Outline andmethods of the proof of Theorem 5.1.We achieve the proof of Theorem
5.1 in five steps. In Step I we prove the simplicity of G. To this end, in Lemma 5.3 we
first observe that the polytope of sections and of fixed points coincide and that they
are also equal to �(G). Then in Corollary 5.4 we deduce the simplicity of G, so that
we know all the possibilities for �(X , L, H), and we eliminate the cases in which G
is of type C or of type Ar with r ≥ 3 (see Lemma 5.6). Step II and III contain the key
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point which allows us to extend the previous results of [6,22] to any dimension of the
contact variety. In these steps we will make use of classification results of bandwith
three and two varieties which have been recently obtained in [21]. These varieties
arise as submanifolds of X (see Propositions 5.16 and 5.18 ) and play a central role to
determine the combinatorial data which will be needed. In Step II we use Lemma 3.5
to reduce the action of G on (X , L) to the action of a subgroup S2 ⊂ G isomorphic to
SL(3). Then we focus on the induced action of a rank two torus H2 ⊂ S2 on (X , L),
and in Step III we describe all the fixed point components and compasses with respect
to the action of this smaller torus. As a consequence, in Step IV, we prove that such
combinatorial data coincide with the fixed point components and compasses of the
action of H2 on the corresponding adjoint variety (XG , LG) (cf. Corollaries 5.21 and
5.23 ). All the information collected in these steps about the H2-action allows us to
conclude in Step V that the fixed point components and the compasses of the action
of the maximal torus H on (X , L) and on (XG , LG) are the same (see Lemmas 5.24
and 5.25 ). Applying Proposition 2.4 we obtain that (X , L) 	 (XG , LG) as stated.

5.1 Step I: Simplicity and type of the automorphism group

The following statement, whose hypotheses are obviously fulfilled under the assump-
tions of Theorem 5.1, provides the equality of the polytopes of fixed points and of
sections of the action of the maximal torus H ⊂ G = CAut(X)◦ on (X , L).

Lemma 5.3 Let X be a contact Fano manifold with dim X = 2n+1 and Pic X = ZL,
and H be a maximal torus of G = CAut(X)◦. Assume that for every extremal fixed
point component Y ⊂ XH we have H0(Y , L |Y ) �= 0. Then

�(X , L, H) = �(X , L, H) = �(G).

Proof The equality �(X , L, H) = �(G) follows by Corollary 4.4; we will prove now
that �(X , L, H) = �(X , L, H). The inclusion �(X , L, H) ⊆ �(X , L, H) in the
case in which L is ample is a general fact (cf. [6, Lemma 2.4(2)]). To prove the other
inclusion, we proceed as in the proof of [6, Corollary 3.8]. Let us take an extremal fixed
point component Y , with weight μL(Y ) ∈ �(X , L, H); by hypothesis H0(Y , L |Y ) �=
0. Applying [6, Lemma 3.6] the H -equivariant map H0(X , L) → H0(Y , L |Y ) is
surjective and gives an isomorphism of H0(Y , L |Y ) with the eigenspace of H0(X , L)

corresponding to the eigenvalue μL(Y ), hence we deduce that μL(Y ) ∈ �(X , L, H).
��

Applying the machinery developed in [6] we achieve the goal of this step:

Corollary 5.4 Under the assumptions of Theorem 5.1, G is simple.

Proof Since H0(Y , L |Y ) 	 C for every extremal fixed point component Y ⊂ XH ,
Lemma 5.3 provides the equality �(X , L, H) = �(X , L, H). Hence G is a semisim-
ple group by [6, Lemma 4.6], and arguing as in the proof of [6, Proposition 4.8] we
deduce the simplicity of G. ��
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Remark 5.5 If G ′ is a simply connected covering of G, and H ′ ⊂ G ′ is a maximal
torus dominating H , we have equalities

M(H ′) ⊗Z R = M(H) ⊗Z R,

�(X , L, H ′) = �(X , L, H) = �(X , L, H) = �(X , L, H ′),

therefore we will assume from now on that G is simply connected.

Lemma 5.6 Under the assumptions of Theorem 5.1, the group G cannot be of type C
or of type Ar with r ≥ 3.

Proof UsingRemark 5.5, Corollary 5.4, andLemmas 4.2, 5.3, one has that [6,Assump-
tions 5.1, 5.2] are satisfied, so the result follows from [6, Proposition 5.9 and Lemma
5.10]. ��

5.2 Step II: Downgradings to subtori of rank two and one

In this subsection we consider the restrictions of the action of G on (X , L) to a
subgroup S2 ⊂ G isomorphic to SL(3) satisfying the requirements of Lemma 3.5,
and then to certain subgroups of S2 isomorphic to SL(2) as described in Sect. 3.2 (see
Notation 3.7). We will consider one of these subgroups for each of the roots of S2, so
we will start by introducing some notation (see Fig. 3).

Notation 5.7 Denoting by α0, . . . , α5, α6 := α0 ∈ M(H2) the roots of S2 ordered
counterclockwise, and setting βi = (αi + αi+1)/3, i = 0, . . . , 5, the lattice M(H2)

is generated by α0 and β0. In the sequel, the indices of α’s and β’s are between
0 and 5 and by convention they are taken modulo 6. For every i = 0, . . . , 5, let
Hi
1 ⊂ H2 be the 1-dimensional subtorus corresponding to the orthogonal projection

π∗
i : M(H2) → M(Hi

1) 	 Z sending βi to zero. As in Sect. 3.2, each projection
determines a subgroup Si1 ⊂ S2 isomorphic to SL(2), whose Lie algebra contains
gαi−1 . The lattice points contained in the root polytope �(S2) are precisely the points
of the set

Hex := {0, αi , βi | i = 0, . . . , 5},

and the lattice points in the root polytope �(Si1) are the integers {−2,−1, 0, 1, 2}.
In Step IIIwewill describe completely the possible isomorphism classes of the fixed

point components of the action of H2. Herewewill only introduce some notation about
them, and their most basic properties. We note first that the weights of the induced
action of H2 and Hi

1 on L are elements of Hex and of the set {−2,−1, 0, 1, 2},
respectively. In fact, by Lemma 5.3 and Lemma 2.1:

Lemma 5.8 The polytope of fixed points �(X , L, H2) is equal to �(S2).

Remark 5.9 Using Lemma 3.5 the inverse image in �(G) of every vertex of �(S2)
(resp. �(S1)) is unique. Then the basic properties of downgradings (see Lemma 2.1
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Fig. 3 H2-weights and downgrading to H1
1

(iii,v)) tell us that the extremal fixed components of the action of H2 (resp. H1) on X
are isolated points.

Notation 5.10 In the sequel, the extremal H2-fixed points associated to the weights
αi will be denoted by yi , the fixed point components associated to weights βi will be
denoted by Yβi ,k , and the fixed point components associated to the weight zero will
be denoted by Y0,k (for k in a finite set of indices). Moreover we set Yβi := ⊔

k Yβi ,k ,
for i = 0, . . . , 5, Y0 := ⊔

k Y0,k .

Notation 5.11 For every i = 0, . . . , 5, the irreducible fixed point components of the
Hi
1-action will be denoted by

Zi−2 = {yi+2}, Zi
−1,k, Zi

0,k, Zi
1,k, Zi

2 = {yi−1},

where the first subindex indicates the Hi
1-weight of L , and k belongs to a finite set of

indices for every weight. The next statement shows that the components of weights±1
are unique, so we will simply write Zi±1 := Zi

±1,k . In particular Z
i
1 will contain all the

irreducible H2-fixed components of weights αi , βi−1, βi−2, αi−2. Moreover for every
component Yβi ,k there exists a unique Hi

1-fixed component of weight zero containing
it; however, it is not true a priori that given a Hi

1-fixed component of weight zero Zi
0,k

there exists an H2-fixed component of weight βi contained in it. In any case, we may
adjust the indices k so that we may write Yβi ,k ⊂ Zi

0,k .

Lemma 5.12 For every i = 0, . . . , 5 there exists a unique irreducible fixed point
component Zi

1 of the action of Hi
1 on (X , L) associated to the weight 1.

Proof We will do the proof in the case i = 1. We note first that, arguing as in
Remark 5.9, y0 is the only isolated H1

1 -fixed point associated to the weight 2. Then
applying Theorem 2.5, the dimension of H2(X , Z) equals the number of irreducible
H1
1 -fixed point components associated to theweight 1. Since Pic(X) 	 Z, we conclude

that there is a unique irreducible component Z1
1 of this kind. ��

We end this step by studying the induced action of H2/Hi
1 on Zi

1 and Zi
0,k :
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Lemma 5.13 For every i, k, being Zi
0,k an Hi

1-fixed component containing an H2-

fixed component Yβi ,k , the torus H2/Hi
1 acts on (Zi

1, L |Zi
1
) and (Zi

0,k, L |Zi
0,k

) with

bandwidth equal to three and two, respectively.

Proof As inNotation 5.11, the extremal fixed points of the H2/Hi
1-action haveweights

αi and αi−2, thus the bandwidth of the action is three. In the case of Zi
0,k we note first

that Yβi ,k ⊂ Zi
0,k is, by construction, an extremal fixed point of the H2/Hi

1-action on

Zi
0,k . Applying Lemma 4.6 it follows that −βi appears with multiplicity dim Yβi ,k +

1 ≥ 1 in C(Yβi ,k, X , H2) ∩ ker(π∗
i ) = C(Yβi ,k, Z

i
0,k, H2/Hi

1) (see Lemma 2.2), so

Yβi ,k � Zi
0,k . Then the other extremal component of the H2/Hi

1-action on Zi
0,k must

be an H2-fixed component of weight either zero or −βi = βi+3. The first case is
not possible by Lemma 4.7, so we conclude that the other extremal component is
associated to the weight βi+3, and that the bandwidth of the action is two. ��

5.3 Step III: Computing the fixed components and compasses of the action of H2

We start with a statement collecting properties of compasses at extremal fixed point
components. Keeping in mind that �(X , H2, L) = �(S2) (cf. Lemma 5.8), the result
follows by applying [6, Corollary 5.6] to our case.

Lemma 5.14 Let α ∈ �(S2) be a vertex, yα ∈ XH2 be the corresponding fixed point,
δ be an edge of �(S2) containing α, and write δ ∩ M(H2) = {α, α′}. Then:
(1) The compass C(yα, X , H2) contains α′ − α with multiplicity one.
(2) C(yα, X , H2) contains −α with multiplicity one.
(3) Let τ ∈ M(H2) ⊗Z R be the convex cone generated by the shift �(S2) − α. Then

C(yα, X , H2) ⊆ τ ∩ (α − τ) ∩ M(H2).

Proof It is enough to note that the action of S2 on (X , L) satisfies [6, Assumptions
5.1], so that the proof follows from [6, Corollary 5.6]; in fact the only nontrivial
assumptions to be checked in that list are (4) and (5), and they hold by Lemma 5.8
and Remark 5.9, respectively. ��

The following lemma, that describes the compass of the H2-action on X at an
extremal fixed point, is a generalization of [6, Lemma 5.15], where the statement has
been proved for n = 3, 4.

Proposition 5.15 Let us consider the action of H2 on (X , L). The compasses at the
fixed point components which are associated to weights different from zero are:

C(yi , X , H2) = {αi+1 − αi , αi−1 − αi ,−αi , (βi − αi )
n−1, (βi−1 − αi )

n−1}
C(Yβi ,k, X , H2) = {(βi−1 − βi )

n−2−dim Yβi ,k , (βi+1 − βi )
n−2−dim Yβi ,k , βi−2 − βi ,

αi+1 − βi , βi+2 − βi , αi − βi ,−β
dim Yβi ,k+1
i }
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Fig. 4 Compasses at fixed
components y0 and Yβ2

Proof By Lemma 5.14 (1,2) the elements αi+1 − αi , αi−1 − αi ,−αi belong to the
compass C(yi , X , H2) with multiplicity one. Using item (3) of the same Lemma,
βi − αi , βi−1 − αi are the only other possible elements in the compass, and by
Lemma 4.5 they occur with equal multiplicity. The extremal fixed components are
points (Remark 5.9), hence the number of elements in C(yi , X , H2) is equal to dim X .
The multiplicity of βi − αi , βi−1 − αi in the compass must then be equal to n − 1 and
the first claim follows.

We now describe the compass at a component Yβi ,k . To this end, consider the one
dimensional subtorus Hi

1. Taking the component Zi+1
1 containing it (see Lemma 5.12),

and applying Lemma 2.2 we get:

π∗
i (C(Yβi ,k, X , H2)) = C(Zi+1

1 , X , Hi
1) = π∗

i (C(yi+1, X , H2)) = {−2,−1n, 1}

where the last equality is gotten using the first part of this statement. ByLemma 2.3, the
only element of C(Yβi ,k, X , H2) that can be projected to 1 is αi −βi , then this element
has multiplicity one in C(Yβi ,k, X , H2). The same method with a different choice of
the one dimensional subtorus shows that also αi+1 − βi occurs with multiplicity one.
Using the symmetry given by Lemma 4.5 we obtain that βi+2 − βi , βi−2 − βi have
multiplicity one as well. Moreover, applying Lemma 4.6 we know that the element
−βi occurs with multiplicity dim Yβi ,k + 1.

Finally, since the number of elements of C(Yβi ,k, X , H2), counted with multiplicity,
must be equal to dim X − dim Yβi ,k , and using again Lemma 4.5, it follows that the
elements βi−1 −βi and βi+1 −βi have both multiplicity equal to n− 2− dim Yβi ,k . ��

Now we determine the fixed point components of the H2 action on (X , L), by
analyzing first in detail the bandwidth three varieties Zi

1 (see Lemma 5.12).

Proposition 5.16 Let Yβi−1 ⊂ Zi
1 be as in Notation 5.11 and 5.10. Then dim Zi

1 =
n − 1, the pair (Zi

1, Yβi−1) is one of the following:

(1) (P1 × B(n−1)/2(1), � � B(n−3)/2(1)),
(2) (P1 × Dn/2(1), � � D(n−2)/2(1)),
(3) (C3(3),A2(2)),
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(4) (A5(3),A2(2) × A2(1)),
(5) (D6(6),A5(4)),
(6) (E7(7),E6(6)),

and the restriction of L to every positive dimensional component Yβi−1,k ⊆ Yβi−1 is
the ample generator of Pic(Yβi+1,k), except in case (3), where L |Yβi−1,k 	 OP2(2).

Proof As observed in Lemma 5.13, we have a bandwidth three action of H2/Hi
1 	 C

∗
on Zi

1; we claim first that this action is equalized. In fact, given any fixed point com-
ponent Y ⊂ Zi

1, one has C(Y , Zi
1, H2/Hi

1) = C(Y , X , H2) ∩ ker π∗
i by Lemma 2.2.

Using the description of C(Y , X , H2) given in Proposition 5.15 for every fixed com-
ponent Y ⊂ Zi

1, this shows that the only possible elements of C(Y , Zi
1, H2/Hi

1) are
±1. Note also that Zi

1 has isolated extremal fixed points yi , yi−2, hence dim Zi
1 is

equal to the number of elements of C(yi , X , H2)∩ ker π∗
i , which is n− 1 by the same

Proposition.
Since for the proof of Theorem 5.1 we have assumed that n ≥ 5 (see Remark 5.2),

we may apply Theorem 2.7 to (Zi
1, L |Zi

1
) to obtain the description of the fixed point

components Yβi−1,k and of L |Yβi−1,k . The fact that Z
i
1 cannot be of type (1) in Theo-

rem 2.7 when dim Zi
1 ≥ 3 has been proved in [22, Corollary 6.7]. ��

Remark 5.17 Theorem 2.7 tells us also that Yβi−1 	 Yβi−2 , for every i . Then, since
two consecutive components Zi

1, Z
i+1
1 contain Yβi−1 (cf. Notation 5.10) and the iso-

morphism class of Yβi−1 determines Zi
1 and Zi+1

1 , it follows that the varieties Zi
1 are

isomorphic for all i , and the same holds for the varieties Yβi . Note also that the list
of pairs (Zi

1,Yβi−1) of Proposition 5.16 coincides with the list of pairs (Zi
1,Yβi−1)

obtained for adjoint varieties (see Table 1).

Proposition 5.18 Let Yβi ,k ⊂ Zi
0,k , Y0 be as in Notations 5.11 and 5.10. Then the

triple (Zi
0,k,Yβi ,k, Z

i
0,k ∩ Y0) is one of the following:

(0) (P1, �,∅);
(1) (B(n−1)/2(2),B(n−3)/2(1),B(n−3)/2(2));
(2) (Dn/2(2),D(n−2)/2(1),D(n−2)/2(2));
(3) (C3(1),A2(2),∅);
(4) (A5(1, 5),A2(2) × A2(1),A2(1, 2) � A2(1, 2));
(5) (D6(2),A5(4),A5(1, 5));
(6) (E7(1),E6(6),E6(2)).

Moreover, every positive dimensional component Y0,r ⊆ Zi
0,k∩Y0 is a contactmanifold

with contact line bundle L |Y0,r .

Proof Note that, as observed in Lemma 5.13 the action of H2/Hi
1 	 C

∗ on
(Zi

0,k, L |Zi
0,k

) has bandwidth two. By Proposition 5.15 and Lemma 2.2 (ii) this action

is equalized at the sink and the source, hence it is equalized by [21, Lemma 5.8].
Moreover, by Corollary 4.8, Zi

0,k and subsequently every positive dimensional irre-

ducible component of Zi
0,k ∩Y0 is a contact manifold whose contact line bundle is the

restriction of L .
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By Remark 5.17 and Corollary 4.10 the extremal components Yβi ,k,Yβi+3,k of the
H2/Hi

1 action on Zi
0,k are isomorphic to each other, and isomorphic to one of the

connected components Y of the varieties Yβi appearing in Proposition 5.16. Moreover,
again by Corollary 4.10, we get dim Zi

0,k = 2 dim Y + 1.

When Y is a point one has dim Zi
0,k = 1, and we obviously have Zi

0,k 	 P
1. If

Y 	 A2(2) we have dim Zi
0,k = 5, and L |A2(2) 	 OP2(2) by Proposition 5.16; using

[21, Lemma 2.9 (i)], L is then the second power of the ample generator of Pic(Zi
0,k),

therefore the index of Zi
0,k is six and so Z

i
0,k 	 P

5.Note that aC
∗-action onP

5 with two

fixed disjoint P2’s does not have other fixed point components. If Y 	 A2(2)×A2(1)
then dim Zi

0,k = 9, and the Picard number of Zi
0,k must be larger than one (see [21,

Lemma 2.9(1)]). Then we conclude that Zi
0,k 	 A5(1, 5) (see Remark 4.1). In this

case the bandwidth two C
∗-action has been described in [21, Example 5.18], where it

is shown that the central component is A2(1, 2) � A2(1, 2).
In all the other cases, since the normal bundlesNYβi ,k |Zi

0,k
,NYβi+3,k |Zi

0,k
are uniquely

determined by Y and L , and their duals twisted with L are globally generated (Propo-
sition 4.3), we can use Theorem 2.6 to conclude that the variety Zi

0,k is also determined

by these data. In particular all the Zi
0,k are isomorphic to the corresponding H2-fixed

components obtained in the case in which X is an adjoint variety (see Table 1), so we
obtain the list of triples in the statement. ��
Remark 5.19 Note that the case (0) of Proposition 5.18 appears when X contains
fixed components of the types (1,2) of the list of Proposition 5.16. In any case, the
isomorphism class of the components Zi

1 contained in X determines the possible
classes of the components Zi

0,k containing Yβi ,k .

Proposition 5.20 Let Y0,k ⊂ XH2 be as in Notation 5.10. Then there exist Hi
1-fixed

components Zi
0,k , i = 1, 2, 3, containing Y0,k as an H2/Hi

1-fixed component of weight
zero, and

C(Y0,k, X , H2) = {
β

(2n+1−dim Y0,k)/6
i , i = 0, . . . , 5

}
.

Proof Applying [6, Corollary 2.14] we know that each element in the compass
C(Y0,k, X , H2) is proportional either to a root αi or βi . We first show that no ele-
ment of C(Y0,k, X , H2) can be proportional to a root αi . By contradiction, assume
for instance that λα0 ∈ C(Y0,k, X , H2), λ ∈ Q>0. Consider a subtorus H ′

1 ⊂ H2
corresponding to the projection π ′∗ : M(H2) → M(H ′

1), sending α0 to 0, and a vari-
ety Z ′ ⊂ XH ′

1 which contains Y0,k (see Lemma 2.1). Since we have assumed that
λα0 ∈ C(Y0,k, X , H2), using Lemma 2.2 (ii) we also have λα0 ∈ C(Y0,k, Z ′, H2/H ′

1).
It follows that Z ′

� Y0,k , and that Z ′ contains an H2-fixed point component of weight
α0. By Lemma 4.5, it contains also a fixed point component of weight α3, and using
Lemma 2.1 (iii) these two components are the isolated points y0 and y3. Applying
Corollary 4.8, Z ′ is a contact manifold, on which the extremal H2/H ′

1-fixed com-
ponents y0, y3 are Legendrian (Corollary 4.10), therefore Z ′ ∼= P

1 and Y0,k = ∅, a
contradiction.
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Fig. 5 Compass at a fixed
component Y0,k

At this point, by [6, Corollary 2.14], the only possible elements in C(Y0,k, X , H2)

are proportional to the weights βi ’s and, since Y0,k �= X , we have at least one element,
say β ′

1 = λ1β1, λ1 ∈ Q>0. Using Lemma 4.5 we deduce that also β ′
4 := −β ′

1 ∈
C(Y0,k, X , H2), with the same multiplicity as β ′

1. We take now the subtorus H1
1 ⊂ H2

corresponding to the the orthogonal projection π∗
1 : M(H2) → M(H1) sending β1 to

zero (see Fig. 3). By Lemma 2.2 (i), the existence of β ′
i in the compass of Y0,k tells

us that there exists a component Z1
0,k containing it and, as in the previous paragraph,

one may show that Z1
0,k contains two H2-fixed point components corresponding to

the weights β1 and β4; note that since Z1
0,k contains Y0,k these components cannot be

isolated points. The possibilities for these extremal fixed point components are listed
in Proposition 5.18; each of them determines Z1

0,k and, subsequently the multiplicities

mult(β ′
i ) of the elements β ′

1, β
′
4 as elements of the compass C(Y0,k, Z1

0,k, H2/H1) =
C(Y0,k, X , H2)∩ker(π∗

1 ) (cf. Lemma 2.2 (ii)). By Proposition 5.18 this leaves us with
the following possibilities:

Z1
0,k Y0,k mult(β ′

1) dim X dim Y0,k codim(Y0,k , X)

B(n−1)/2(2) B(n−3)/2(2) 2 2n + 1 2n − 11 12
Dn/2(2) D(n−2)/2(2) 2 2n + 1 2n − 11 12
A5(1, 5) A2(1, 2) 3 21 3 18
D6(2) A5(1, 5) 4 33 9 24
E7(1) E6(2) 6 57 21 36

Note that, each possible Z1
0,k determines the isomorphism class of the fixed com-

ponents Zi
1, by Propositions 5.18 and 5.16 ; in particular this determines the value of

n − 1 = dim Zi
1 and consequently the dimension on X , that we have written in the

fourth column of the table.
By repeating the same argument we can show that every element β ′

i = λiβi (λi ∈
Q>0) in the compass has the same multiplicity of β ′

1 and β ′
4. Since the number of

element in the compass, counted with multiplicity, equals dim X − dim Y0,k and this
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number in all the cases is six times the multiplicity of β ′
1 we can conclude that all the

β ′
i ’s appear in the compass, with multiplicity (dim X − dim Y0,r )/6.
Our arguments above also show that Y0,k is contained in three fixed point compo-

nents Zi
0,k , i = 1, 2, 3. Finally using the description of the compass at components of

type Yβi ,k ⊂ Zi
0,k (Proposition 5.15) and Lemma 2.2, we may write

π∗
i C(Y0,k, X , H2) = C(Zi

0,k, X , Hi
1) = π∗

i C(Yβi ,k, X , H2) = {(±1)n−1−dim Yβi ,k },

which suffices to show that λi = 1 so that β ′
i = βi , for all i . ��

5.4 Step IV: The actions of H2 on X and XG have the same combinatorial data

The results in the previous Section allow to state the following:

Corollary 5.21 Under the assumptions of Theorem 5.1, there exists a simple group G ′
and a bijection ψ : XH2 → XH2

G ′ such that for every Y ∈ XH2 :

Y 	 ψ(Y ), μL(Y ) = μLG′ (ψ(Y )), C(Y , X , H2) = C(ψ(Y ), XG ′ , H2).

Proof Given a pair (X , L) as in Theorem 5.1, we consider the downgradings Hi
1 ⊂

H2 ⊂ H , i = 0, . . . , 5, of the action of a maximal torus H ⊂ G presented in Step II.
From Remark 5.17 the Hi

1-fixed point components Zi
1 are isomorphic for all i , and the

same holds for all the H2
1 -fixed point varieties Yβi . Subsequently, all the varieties Z

i
0,k ,

and all the inner fixed point components Y0,k are determined (Proposition 5.18 and
Remark 5.19). This shows that there exists a bijection ψ among the set of components
of XH2 and the set of fixed point components of XH2

G ′ for a certain simple group G ′
(cf. Table 1), and a torus of dimension two in G ′ that we identify with H2 (chosen
as in Step II). Now we note that, by Proposition 5.20, the above data determine the
compass at every component Y0,k , so that C(Y0,k, X , H2) = C(ψ(Y0,k), XG ′ , H2).
In particular 2n + 1 = dim X = dim XG ′ and, applying Proposition 5.15 to (X , L)

and to (XG ′ , LG ′), the compasses C(Y , X , H2), C(ψ(Y ), XG ′ , H2) are equal for every
H2-fixed point component Y in X . ��

We will show now that XG ′ is the adjoint variety of the group G. We will make use
of the following technical lemma:

Lemma 5.22 Let G �= G ′ be two semisimple groups with Lie algebras g, g′ of typeA2,
B, D, E, F4, G2. If their Dynkin diagrams are different, then g, g′ are not isomorphic
as M(H2)-graded vector spaces.

Proof The dimensions of the Lie algebras appearing in the statement are:

g a2 bn dm e6 e7 e8 f4 g2

dim(g) 8 2n2 + n 2m2 − m 78 133 248 52 14
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Note that given two positive integers n,m, 2n2 + n = 2m2 − m implies that
n = (2m − 1)/2, a contradiction. Moreover, one may easily check that the only
case in which bn or dm have the same dimension of another Lie algebra of the list is
dim(b6) = dim(e6) = 78. In this case, we may study explicitly the projections ı∗,
described in Lemma 3.5, to conclude that dim(b6)0 = 24, dim(e6)0 = 18. ��
Corollary 5.23 The Lie algebras g and g′ of the groups G and G ′ are isomorphic and,
in particular, XG 	 XG ′ .

Proof Wewill show that the assumptions of Proposition 2.4 are fulfilled for the actions
of H2 on (X , L) and (XG ′ , LG ′), so that H0(X , L) and H0(XG ′ , LG ′) are isomorphic
as H2-moduli. Since H0(X , L) is isomorphic to g as an H2-module, and the same
holds for XG ′ , it follows that g 	 g′ as H2-modules. In this way we conclude that they
are also isomorphic as Lie algebras by Lemma 5.22.

By Corollary 5.21 we are left to check that L |Y and N−ν(Y ) are isomorphic to
their counterparts in XG ′ , for every component Y ⊂ XH2 and every ν ∈ C(Y , X , H).
Since every Y is contained in an Hi

1-fixed point component Z (by Lemma 2.1), and
the restriction of L on these components is determined by the isomorphism class of
Z (see Propositions 5.16, 5.18 and 5.20 ), the first assumption is fulfilled.

Now we check the equality of the graded parts of the normal bundlesN−ν(Y ). By
Propositions 5.15, 5.20 and Lemma 2.2, the bundlesN−ν(Y ) are M(H2/Hi

1)-graded
parts of the normal bundle of Y on the Hi

1-fixed point component containing it (hence
they coincide with their counterparts in XG ′ ), for every ν ∈ C(Y , X , H2) different
from the following cases (see Figs. 4, 5):

(Y , ν) = (yαi ,−αi ), (yαi , αi±1 − αi ), (Yβi ,k, βi±2 − βi ), i = 0, . . . , 5.

In the first two cases, since yαi is an isolated point, there is nothing to prove. In
the latter we simply note that the contact isomorphism restricts to an isomorphism
N−(βi±2−βi )(Yβi ,k) 	 L |Yβi ,k

⊗ N∨, where N denotes the negative part (with respect

to H2/H
i+1
1 ) of the normal bundle NYβi ,k |Zi+1

1
. This completes the proof. ��

5.5 StepV: Conclusion

In this final stepwewill conclude the proof ofTheorem5.1 by applyingProposition 2.4,
part (C2). In order to do so we need to study the fixed point components of the action
on (X , L) of the maximal torus H of G = CAut◦(X), the normal bundles of these
components, the restrictions of L , and compare these data with those obtained for
(XG, LG) (see Sect. 3).

We start by comparing XH and XH
G , and the weights of L and LG .

Lemma 5.24 Under the assumptions of Theorem 5.1, dim X = dim XG. Moreover,
the H-action on X has only isolated fixed points, X H is in 1-to-1 correspondence with
XH
G , and the corresponding weights of the action on L are the vertices of the root

polytope �(G).
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Proof By Corollary 5.4 we know that G is a simple group. Using Corollaries 5.21 and
5.23 , we have that XH2 and XH2

G are in 1-to-1 correspondence, and that the compasses
at two corresponding components are the same. By Remark 5.9, the extremal fixed
points of X and XG are isolated, hence the cardinalities of the compasses at these
points equal the dimensions of the varieties in question, and we get dim X = dim XG .

We nowconsider the downgrading of the actions of H2 on X and XG to a general one
dimensional subtorus H1 ⊂ H2. Applying [7, Lemma 4.1] we obtain that XH1 = XH2

and XH1
G = XH2

G , and we get a bijection among XH1 and XH1
G . By the properties of

downgrading (Lemma 2.2 (i)), the compasses of the action of H1 on X and XG on
corresponding components are equal, and so, by Theorem 2.5, the singular homology
groups of X and XG are equal as well. In particular, X has no odd degree homology,
and the Euler characteristics of X and XG are equal.

On the other hand, again by Theorem 2.5, the Euler characteristic of XG is equal
to the cardinality of XH

G , which is bijective via the weight map μLG to the set of long
roots of G (Corollary 3.4), that is to the set of vertices of the root polytope �(G).
Since by Lemma 5.3 one has �(G) = �(X , L, H) and, by hypothesis, the vertices
of �(X , L, H) are the weights of a set of isolated fixed points of X , it follows that
the action of H on X cannot have other fixed point components (because they would
contribute to the Euler characteristic of X ). This concludes the proof. ��

Since by the above lemma XH consists of isolated points, in order to apply Propo-
sition 2.4 we need only to prove that the compasses of the action of H on X are the
same as the ones of the corresponding adjoint variety XG . By abuse, we will denote
corresponding fixed points in X and XG by the same letter.

Lemma 5.25 Under the assumptions of Theorem 5.1, for every fixed point y ∈ XH

the compass C(y, X , H) is equal to C(y, XG , H).

Proof We will make use of our description of the compasses of the H2-action on X
(Propositions 5.15 and 5.20 ), and of the Hi

1-fixed point components Zi
0,k , Z

i
1, being H

i
1

the subtorus of H2 corresponding to the orthogonal projection π∗
i : M(H2) → M(Hi

1)

sending βi to 0 (see Figs. 3, 4, 5, and Notation 5.11).
As we already observed (see the proof of Corollary 5.21, and Corollary 5.23), for

every i and every index k the subvarieties Zi
0,k , Z

i
1 are the same for X and XG .

Given an H -fixed point y ∈ X , we will distinguish three cases, according to the
value of ı∗(μL(y)), being ı∗ : M(H) → M(H2) the projection.

Assume that ı∗(μL(y)) is an extremal fixed point of �(S2), say α0. By Lemma 4.6
the element −μL(y) appears with multiplicity one in the H -compass at y. Using
Lemma 5.14, C(y, X , H) contains two elements with multiplicity one projecting to
α1 − α0 and α5 − α0 via ı∗; by Lemma 2.3, these elements are necessarily μL(y1) −
μL(y) and μL(y5) − μL(y), where y1, y5 ∈ XH are the only fixed points satisfying
that ı∗μL(y1) = α1, ı∗μL(y5) = α5. The remaining 2(n − 1) elements are:

(1) n − 1 elements in C(y, X , H) ∩ ker(π∗
5 ◦ ı∗) = C(y, Z5−1, H/H5

1 );
(2) n − 1 elements in C(y, X , H) ∩ ker(π∗

0 ◦ ı∗) = C(y, Z0
1, H/H0

1 ).

Since the varieties Z5−1, Z
0
1 are the same for X and for XG , these elements of the

compass are the same in both cases, and we get C(y, X , H) = C(y, XG , H).
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If ı∗(μL(y)) is an inner point of �(S2) different from zero, say β2, then, denoting
by Yβ2,k the unique H2-fixed component containing the point y, C(y, X , H) consists
of 2n + 1 elements, 2n − 1 of which can be described as follows:

(1) n − 1 elements in C(y, X , H) ∩ ker(π∗
1 ◦ ı∗) = C(y, Z1−1, H/H1

1 );
(2) n − 1 − dim Yβ2,k elements in C(y, Z0−1, H/H0

1 )\C(y, Z1−1, H/H1
1 ); note that

C(y, Z0−1, H/H0
1 ) ∩ C(y, Z1−1, H/H1

1 ) = C(y,Yβ2,k, H/H2);
(3) dim Yβ2,k + 1 elements in C(y, Z2

0,k, H/H2
1 ).

Since the varieties Z0−1, Z
1−1 and Z2

0,k are the same for X and for XG , these elements
of the compass are the same in both cases. Among the elements in the compasses
C(y, Z1−1, H/H1

1 ) and C(y, Z0−1, H/H0
1 ) we have two distinguished ones, appearing

with multiplicity one, that project via ı∗ onto α2 − β2 and α3 − β2, respectively; call
them v2 and v3. By Lemma 2.3, they are necessarily the vectors v2 = μL(y2)−μL(y),
v3 = μL(y3) − μL(y), where y2, y3 ∈ XH are the only fixed points satisfying that
ı∗μL(y2) = α2, ı∗μL(y3) = α3. Then we can apply Lemma 4.5 to v2 and v3 to
find the last two elements of the compass at y: −μL(y2), −μL(y3). We conclude that
C(y, X , H) = C(y, XG , H).

Finally, in the case of a fixed point y such that ı∗(μL(y)) = 0, the argument is
analogous: the compass C(y, X , H)will be the union of the compasses of the varieties
Zi
0,k containing y, which are the same for X and for XG . ��

6 High rank torus actions on contact manifolds

As explained in the Introduction, we use Theorem 5.1 to improve Fang’s theorems ([8,
9]). In the languageof projective geometry those results canbe read as characterizations
of (some) adjoint varieties as contact Fano manifolds whose groups of automorphisms
have rank bigger than a certain bound. We reduce that bound so that it can be used to
characterize most adjoint varieties (see Fig. 1):

Theorem 6.1 Let (X , L) be a contact Fanomanifold of dimension 2n+1with Pic X =
ZL. Suppose that the identity component G of the group of contact automorphisms of
X is reductive of rank r ≥ max(2, (n − 3)/2). Then (X , L) = (XG, LG), and G is
simple of one of the following types: Br (r ≥ 3), Dr (r ≥ 4), E6, E7, F4, G2.

Remark 6.2 Note that the adjoint variety of type E8 does not satisfy the assumptions,
as in this case dim XG = 57, n = 28, r = 8. By Remark 5.2 we may assume n ≥ 5.
On the other hand the hypothesis r ≥ 2 is needed only for the cases n = 5, 6, in which
the statement has been proved in [22, Theorem 6.2]. Without loss of generality, we
may then assume that n ≥ 7.

The Theorem will follow from Theorem 5.1 by showing that the extremal fixed
points of the action of a maximal torus H ⊂ G are isolated. In order to do that, we
will use some preliminary results.

Lemma 6.3 Let X be a projective manifold of dimension d ≥ 2 with Pic X 	 Z.
If there exists an action of C

∗ with a fixed point component of codimension 1 then
X 	 P

d and the fixed point component in question is a hyperplane.
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Proof Let D denote the codimension one fixed component. The action of C
∗ deter-

mines a non-zero vector field which vanishes at the fixed points of the action, hence it
gives a nonzero section in H0(X , TX ⊗OX (−D)). Since D is effective and Pic X 	 Z,
then D is ample and the result follows by [25, Theorem 1]. ��

Following [6, Corollary 3.8] the next Lemma allows us to produce sections of L on
X by extending them from the extremal fixed point components of the action of H ,
and to prove the equality of the polytopes �(X , L, H) and �(X , L, H):

Lemma 6.4 Let (X , L) be a contact Fano manifold of dimension 2n+ 1 with Pic X =
ZL. Suppose that the identity component of the group of contact automorphisms G
is reductive with maximal torus H of rank r ≥ (n − 3)/2 > 0. Then, for every
extremal fixed point component Y of positive dimension we have dimH0(Y , L |Y ) > 1.
Furthermore, �(X , L, H) = �(X , L, H) = �(G).

Proof As in the proof of [6, Proposition 3.9] we consider a full flag of faces of
�(X , L, H) containing the vertex determined by theweight of L|Y . QuotientingM(H)

by the sublattices generated by the lattice points contained in these faces, we obtain a
sequence of subtori:

H =: H0
� H1

� · · · � Hr−1,

where Hi is of dimension r − i , and a sequence of smooth irreducible subvarieties
Y =: Y 0

� Y 1
� · · · � Yr−1 satisfying that Y i is a fixed point component for the

action of Hi ; note that this sequence is strictly increasing by Lemma 2.1. Since each
Y i is invariant by H j , for j ≤ i , then we have an action of Hi−1/Hi 	 C

∗ on Y i ,
with Y i−1 as a fixed point component.

In particular Yr−1 is associated to a facet of �(X , L, H), so it is an extremal fixed
point component for the action of Hr−1 	 C

∗, and the weight of the action of Hr−1

on L at the fixed component Yr−1 is different from zero. Applying Lemma 4.6, we
conclude that Yr−1 is an isotropic submanifold of X ; therefore dim Yr−1 ≤ n.

Assumefirst that, for some i , we have dim Y i−dim Y i−1 = 1. Then, byLemma6.3,
one has Y i 	 P

m for some m. So Y 0 is a positive dimensional subvariety of P
m and

clearly dimH0(Y 0, L|Y 0) > 1.
Assume now that dim Y i − dim Y i−1 ≥ 2 for every i . Then

n − dim Y 0 ≥ dim Yr−1 − dim Y 0 =
r−1∑

i=1

(dim Y i − dim Y i−1) ≥ 2(r − 1),

which yields, by our assumption on r , that dim Y 0 ≤ 5; by [21, Lemma 2.9 (1)] Y 0 is a
Fanomanifoldwith Picard number 1 and [22, Lemma6.3] (see also [11, Corollary 1.3])
gives dimH0(Y 0, L|Y 0) > 1.

For the second part of the statement, we note that H0(Y , L |Y ) �= 0 holds trivially for
every zero dimensional extremal fixed point component, hence the conclusion follows
by Lemma 5.3. ��

With all the above materials at hand we may finally prove our main statement.
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Proof of Theorem 6.1 In view of Remark 6.2, we assume that n ≥ 7, so that the rank
of G is bigger than or equal to (n − 3)/2. By Lemma 6.4 one has �(X , L, H) =
�(X , L, H) = �(G). Moreover, because of Lemma 4.2 we deduce that the multi-
plicities of the weights at the vertices of �(X , L, H) are the same as for the adjoint
representation, thus equal to 1, that is H0(Y , L |Y ) = 1 for every extremal fixed point
component. By Lemma 6.4 the extremal fixed components must be isolated points,
and we may conclude applying Theorem 5.1. ��
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