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Abstract
In this work, we establish a categorification of the classical Dold-Kan correspondence
in the form of an equivalence between suitably defined ∞-categories of simplicial
stable ∞-categories and connective chain complexes of stable ∞-categories. The
result may be regarded as a contribution to the foundations of an emerging subject that
could be termed categorified homological algebra.
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1 Introduction

A central tool in classical homological algebra is the construction of a chain complex
from a simplicial abelian group via the formula

d =
n

∑

i=0

(−1)i di .

The fact that a large number of interesting complexes arise via this procedure is not
a coincidence—the classical Dold-Kan correspondence [6,10] states that the passage
to normalized chains establishes an equivalence of categories:

Theorem (Dold, Kan). The normalized chains functor C provides an equivalence

C : Ab�
�←→ Ch≥0(Ab) : N

between the category Ab� of simplicial abelian groups and the category Ch≥0(Ab)
of connective chain complexes with inverse given explicitly by the Dold-Kan nerve N.

In this work, we establish a categorification of the classical Dold-Kan correspon-
dence where the category Ab of abelian groups gets replaced by the (∞, 2)-category
St of stable ∞-categories.

Theorem The categorified normalized chains functor C furnishes an equivalence

C : St´ �←→ Ch≥0(St) : N

between the ∞-category St´ of 2-simplicial stable ∞-categories and the ∞-category
Ch≥0(St) of connective chain complexes of stable ∞-categories with explicit inverse
given by the categorified Dold-Kan nerve N.

We refer the reader to Sects. 3.1 and 3.2 for an explication of the terminology and
a precise statement of the theorem. A key ingredient of the proof is an explicit con-
struction of the categorified Dold-Kan nerve N. Its classical counterpart N associates
to a chain complex B• of abelian groups the simplicial abelian group N(B•) which
can be described as follows: the group of n-simplices is given by collections {xσ },
parametrized by monotone maps σ : [k] ↪→ [n], of elements xσ ∈ Bk subject to the
equations

d(xσ ) =
k

∑

i=0

(−1)i xσ◦∂i .

Example A 2-simplex in N(B•) consists of

• elements x012 ∈ B2, x01, x02, x12 ∈ B1, and x0, x1, x2 ∈ B0,
• satisfying the equations
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(1) d(x012) = x12 − x02 + x01,
(2) d(xi j ) = x j − xi .

As a foretaste, we provide an informal description of the data comprising a 2-simplex
in the categorified Dold-Kan nerve N(B•) associated to a complex

B0
d←− B1

d←− B2
d←− · · ·

of stable ∞-categories:

• objects X012 ∈ B2, X01, X02, X12 ∈ B1, and X0, X1, X2 ∈ B0,
• a chain of morphisms X0 → X1 → X2 in B0,
• a 3-term complex

X01 X02

0 X12

in B1,
• together with coherent data that exhibits

(1) d(X012) as the totalization of the complex X01 → X02 → X12,
(2) d(Xi j ) as the cofiber of Xi → X j .

Note that the data of a 2-simplex in N(B•) defines, upon passage to classes in the
respective Grothendieck groups, a 2-simplex in N(K0(B•)). This observation gen-
eralizes to simplices in all dimensions and is a justification for the use of the term
categorification.

The categorified Dold-Kan nerveN unifies various known constructions from alge-
braic K -theory:

(I) Let B be a stable ∞-category and let B[1] denote the chain complex

0 ←− B ←− 0 ←− 0 ←− . . .

concentrated in degree 1. Then N(B[1]) is an ∞-categorical version of Wald-
hausen’s S•-construction (cf. [17]). Waldhausen’s S•-construction is usually
considered as a simplicial object in the category Cat (or Cat∞). While the addi-
tional 2-functoriality present in our treatment does not seem to appear explicitly
in the literature, it does feature implicitly, yet crucially, in Waldhausen’s proof of
the additivity theorem [17] and itsmodification for stable∞-categories presented
in [15]. This observation will be explored in detail elsewhere.

(II) Let f : B1 → B0 be an exact functor of stable ∞-categories. Then applying N

to the complex

B0
f←− B1 ←− 0 ←− 0 ←− . . .
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concentrated in degrees {0, 1} yields an ∞-categorical version of Waldhausen’s
relative S•-construction. Besides its appearance in Waldhausen’s own work, this
construction also features prominently in [5] where it provides a local description
of perverse schobers (cf. [11]).

(III) Let B be a stable ∞-category and let B[2] denote the chain complex

0 ←− 0 ←− B ←− 0 ←− . . .

concentrated in degree 2. Then N(B[2]) is an ∞-categorical version of
Hesselholt-Madsen’s S2,1• -construction. As explained in [8], a duality on the
category B furnishes N(B[2]) with the structure of a real object which can then
be utilized to upgrade the K -theory spectrum ofB to a genuineZ/(2)-equivariant
spectrum.

(IV) Let B be a stable ∞-category and let B[k] denote the chain complex with B

concentrated in degree k. Then N(B[k]) is an ∞-categorical version of the k-
dimensional S〈k〉• -construction introduced for abelian categories in [16]. These
higher-dimensional Waldhausen constructions have an interesting interpretation
in the context of higher algebraic K -theory: Let us denote byA� theKan complex
obtained from an ∞-category A by discarding noninvertible morphisms. Then,
for every k ≥ 1, there is a canonical weak equivalence of spaces

�k |N(B[k])�| � K (B) (1.1)

which exhibits |N(B[k])�| as a k-fold delooping of the K -theory space of B. In
fact, the sequence of spaces {|N(B[k])�|}k≥1 can be augmented to a spectrum
which models the connective algebraic K -theory spectrum of B. Interpreting
the simplicial object N(B([k])) as a categorification of the Eilenberg-MacLane
space N(B[k]), we observe that (1.1) may be regarded as a categorification of the
description of the Eilenberg-MacLane spectrum associated to an abelian group
B in terms of the sequence {N(B[k])}k≥1. A more detailed study of the S〈k〉• -
constructions in the context of stable ∞-categories are the subject of [3] where
we explore relations to higher Auslander-Reiten theory as introduced by Iyama
[9].

The kth cohomology group of a topological space X with coefficients in an
abelian group B can be described as homotopy classes of maps from X to K (B, k).
The interpretation of the 2-simplicial stable ∞-category N(B[k]) as a categorified
Eilenberg-MacLane space predicts the existence of a categorified notion of coho-
mology. This circle of ideas will be explored in future work with a view towards
applications to topological Fukaya categories. For k = 1, the results of [4,7] can
be interpreted as describing the topological Fukaya category of a marked Riemann
surface as a categorified relative 1st cohomology group.
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2 The classical Dold-Kan correspondence

Let Ab denote the category of abelian groups. The Dold-Kan correspondence estab-
lishes an equivalence between the category Ab� of simplicial abelian groups and the
category Ch≥0(Ab) of connective chain complexes of abelian groups. We present a
particular proof of this result which is designed so that the proof of our main result,
provided in Sect. 3, can be regarded as a step-by-step categorification of the arguments
involved.

Let A• be a simplicial abelian group. The associated chain complex (A•, d) with
differential d = ∑n

i=0(−1)i di admits two subcomplexes (A•, d) and (D•, d) where,
for n ≥ 0, we have

An :=
n

⋂

i=1

ker(di ) ⊂ An,

and Dn ⊂ An is the subgroup generated by the degenerate n-simplices. For each
element j = ( j1, . . . , jn) of the cube {0, 1}n , we consider

f j : [n] → [n], i �→ i − 1 + ji ,

setting j0 = 1, and introduce the map

π : An → An, a �→
∑

j∈{0,1}n
(−1)n−| j | f ∗

j a (2.1)

where | j | = ∑

i ji .

Proposition 2.2 Let n ≥ 0, and let Dn ⊂ An be the subgroup generated by the
degenerate simplices. Then the map π : An → An is a retraction onto An with kernel
Dn. In particular, it induces an isomorphism

An/Dn ∼= An .

Proof To show that im(π) ⊂ An , we observe that, for 0 < i ≤ n, the facemap di maps
the two faces of the cube { f ∗

j a} that are orthogonal to the i th coordinate direction to the
same (n− 1)-dimensional cubes in An−1. Since the contributions of these faces in the
formula for π appear with opposite signs, we obtain, for every a ∈ An , diπ(a) = 0.
A similar argument shows that Dn ⊂ ker(π): for a = si a′, we have π(a) = 0 since
the opposing faces orthogonal to the i th coordinate direction of the cube { f ∗

j a} cancel
in formula (2.1). We show that π is a retraction. Let a ∈ An . For j �= (1, . . . , 1), the
map f j factors through some face map ∂i : [n − 1] → [n], i > 0, so that f ∗

j a = 0.

Since f(1,...,1) = id, we have π(a) = a so that π is a retraction. Finally, by formula
(2.1) and f(1,...,1)(a) = a, we may write, for every a ∈ An , π(a) = a+r with r ∈ Dn ,
which implies that An = An + Dn . In combination with the statements established
above, we obtain An = An ⊕ Dn so that Dn = ker(π). ��
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Corollary 2.3 We have an isomorphism of complexes

(A•, d) ∼= (A•, d0) ⊕ (D•, d)

where the projection onto the first summand is given by π .

Proof Immediate from Proposition 2.2. ��
We consider the functor

C : Ab� −→ Ch≥0(Ab), A• �→ (A•, d0)

referring to C(A•) as the normalized chain complex associated to A•. The functor C
is part of an adjunction

C : Ab� ←→ Ch≥0(Ab) : N

where the right adjoint N is, for formal reasons, given as follows: For a chain complex
B•, we have

N(B•)n = HomCh≥0(Ab)(C(Z�n), B•)

where C(Z�n) denotes the normalized chain complex of the n-simplex. More explic-
itly, ann-simplex inN(B•) is givenby a collection {bσ }whereσ runs over all inclusions
σ : [m] ↪→ [n] and bσ ∈ Bm subject to the equations

dbσ =
m

∑

i=0

(−1)i bσ◦∂i .

Theorem 2.4 The adjunction

C : Ab� ←→ Ch≥0(Ab) : N

is a pair of inverse equivalences.

Proof We analyze the counit of the adjunction C(N(B•)) → B•. An n-simplex in
N(B•) is given by a collection {bσ } and the counit maps this collection to bid ∈ Bn .
The condition that {bσ } be a normalized chain translates to the requirement that bσ = 0
for all σ that factor through one of the face maps ∂i , i > 0. But this implies that the
only possibly nonzero elements are bid and b∂0 . Further, the element b∂0 is determined
as the image of bid under d. Therefore, the counit is an isomorphism.

The unit u : A• → N(C(A•)) is given by associating to a in An the n-simplex in
N((A•, d)) given by the collection {aσ } with aσ = σ ∗a and then postcomposing with
the map

N(π) : N((A•, d)) −→ N((A•, d0)).
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By an argument similar as for the counit, it is immediate that C(u) is an isomorphism.
We conclude the proof in virtue of Proposition 2.5 below. ��
Proposition 2.5 The normalized chains functor C is conservative: a morphism f :
A• → A′• of simplicial abelian groups is an isomorphism if and only if C( f ) is an
isomorphism of chain complexes.

Proof Given a simplicial abelian group A•, we denote by P(A•) the simplicial abelian
group obtained by pullback of A• along the functor

� → �, [n] �→ [n] ∗ [0]

so that P(A•)n = An+1. The collection of omitted face maps

dn : An → An−1

defines a map of simplicial abelian groups d : P(A•) → A•. We denote the kernel of d
by �(A•). Similarly, we define for a connective chain complex B• the chain complex
�(B•) as the shift

B1 ← B2 ← B3 ← . . . ,

ommitting B0. It is immediate from the definitions that we have a natural isomorphism

C(�(A•)) ∼= �(C(A•)) (2.6)

induced by the termwise identification

n
⋂

i=1

ker(ker(dn+1)
di−→ ker(dn)) ∼=

n+1
⋂

i=1

ker(di ).

We show by induction on n ≥ 0 that, for every map f : A• → A′• such that C( f ) is
an isomorphism of chain complexes, the map fn : An → A′

n is an isomorphism. For
n = 0, the claim is apparent. Assume the induction hypothesis holds for a fixed n ≥ 0
and all maps of simplicial abelian groups. For a given map f : A• → A′•, consider
the diagram of simplicial abelian groups

�(A•)

f

P(A•)

P( f )

A•
f

�(A′•) P(A′•) A′•

where the horizontal sequences are short exact. Then the induction hypothesis implies
that f n and fn are isomorphisms so that P( f )n = fn+1 is an isomorphism as well. ��
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3 The categorified Dold-Kan correspondence

In this section, we prove the main result of this work: a categorification of the Dold-
Kan correspondence relating simplicial objects and connective chain complexes with
values in the category of stable ∞-categories. We begin by defining these notions in
detail.

3.1 Basic definitions

3.1.1 Model for (∞, 2)-categories

Let Set� denote the category of simplicial sets. Following [12], we define an ∞-
category to be a simplicial set satisfying the inner horn filling conditions. We define
Cat∞ to be the full subcategory of Set� spanned by the ∞-categories. Note that we
really treat Cat∞ as an ordinary 1-category (and later as an enriched category) and
not as an ∞-category. ∞-categories are the fibrant objects of a model structure on the
category of marked simplicial sets Set+� with marked edges given by the equivalences.
As explained in [13], the category of Set+�-enriched categories carries amodel structure
which can be regarded as a model for the theory of (∞, 2)-categories. The (∞, 2)-
categorical structures that appear in this work will be organized within this model and
related to other models via the theory developed in [13]. The fibrant objects within
this model structure can be identified with the Cat∞-enriched categories.

3.1.2 Stable∞-categories

The simplicial set of functors between a pair of ∞-categories forms another ∞-
category so that Cat∞ becomes a Cat∞-enriched categorywith respect to the Cartesian
monoidal structure. Marking equivalences in the various functor ∞-categories, Cat∞
becomes a fibrant object in the model category of Set+�-enriched categories from
Sect. 3.1.1. We may therefore interpret Cat∞ as a specific model for the (∞, 2)-
category of ∞-categories. We further denote by St ⊂ Cat∞ the Cat∞-enriched
subcategory with stable ∞-categories as objects and functor ∞-categories spanned
by the exact functors in the sense of [14, Chapter 1].

3.1.3 The simplex 2-category

By a 2-category, we mean a category enriched in categories. A 2-category defines a
Set+�-enriched category by passing to nerves of the enriched mapping categories and
marking equivalences. We will typically leave this passage implicit so that, referring
to 3.1.1, we may consider any 2-category as an (∞, 2)-category. We denote by C at
the 2-category of small categories and by ´ ⊂ C at the full 2-subcategory spanned by
the standard ordinals {[n]}, considered as categories.
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3.1.4 Localization

We will construct ∞-categories via localization: Given a small category C and a set
of morphisms W , there is an associated ∞-category LW C, equipped with a functor
N(C) → LW C universal among all functors that send W to equivalences (cf. [14,
1.3.4]).

3.1.5 2-simplicial stable∞-categories

We denote by St´ the category of Cat∞-enriched functors from the opposite 2-
simplex category ´(op,−) to St . Here, the superscript (op,−) signifies that we reverse
the direction of the 1-morphisms but not the 2-morphisms (cf. Sect. 3.3.2 for more
details). This category comes equipped with a collection of weak equivalences given
by those Cat∞-enriched natural transformations that are levelwise equivalences of
stable ∞-categories. Via localization, we obtain a corresponding ∞-category L(St´)

of 2-simplicial stable ∞-categories.

Remark 3.1 Let A• ∈ St´, and let n ≥ 1. The functor of 1-categories �op → St∞
underlying A• provides us with exact functors

An−1
... An .

s0

sn−1

d0

dn

The additional data captured by the 2-functoriality of A• contains unit and counit
transformations which exhibit a sequence of adjunctions

d0 � s0 � d1 � · · · � sn−1 � dn .

For example, for n = 1, the units and (resp. counits) of the adjunctions d0 � s0 and
s0 � d1 are induced by the 2-morphisms in ´

id[1] ⇒ ∂0σ0 (resp. σ0∂0 = id[0])

and

id[0] = σ0∂1 (resp. ∂1σ0 ⇒ id[1]),

respectively. Here, ∂0, ∂1 denote the face maps and σ0 the degeneracy map and we
further note that the orders of composition get swapped due to the contravariance of
A• with respect to 1-morphisms.
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3.1.6 Connective chain complexes of stable∞-categories

We denote byN the poset of nonnegative integers, considered as a category.We denote
by Fun(Nop, St) the category of (strict) functors from the opposite category of N to
the category St of stable ∞-categories. We introduce the full subcategory

Ch≥0(St) ⊂ Fun(Nop, St)

given by those diagrams

B0
d←− B1

d←− B2
d←− · · ·

of stable ∞-categories that satisfy the following condition: for every i ≥ 0, the
functor d2 : Bi+2 → Bi is a zero object of the ∞-category Funex(Bi+2,Bi ) of exact
functors. The category Ch≥0(St) comes equipped with a class of weak equivalences
given by those natural transformations that are levelwise equivalences. We refer to
the corresponding localization L Ch≥0(St) as the ∞-category of connective chain
complexes of stable ∞-categories.

Remark 3.2 At first sight, our definition of a complex of stable∞-categoriesmay seem
too naive. For example, the analogous definition of a connective complex of objects
in a stable ∞-category A as a functor

X : N(Nop) −→ A

satisfying the condition d2 � 0 really is too naive. The reason is that, for every i ≥ 0,
there is a potentially nontrivial space of paths in the Kan complex MapA(Xi+2, Xi )

from d2 to 0. Following general principles, the condition d2 � 0 should be replaced by
the choice of a path in MapA(Xi+2, Xi ) between d2 and 0. Further, these choices are
supposed to be part of a coherent system of trivializations dn � 0, n ≥ 2, correspond-
ing to trivializations of higher Massey products. This coherence data is important: it
is, for example, needed to form the totalization of a complex. One way to codify all
this data is to remember the complex in terms of the filtered object formed by the
totalizations of its various truncations. This is the point of view taken in [14, Chapter
1] where a connective complex of objects in a stable ∞-category corresponds to a
functor

Y : N(N) −→ A (3.3)

without any further conditions. The actual terms of the complex captured by such a
datum are then given as shifts of the cofibers of the maps Yi → Yi+1. One concrete
justification for this being a reasonable notion of a complex is provided by a Dold-
Kan correspondence relating simplicial objects and connective chain complexes with
values in a given stable ∞-category ([14, 1.2.4]).

In contrast, given a chain complex of stable∞-categories in our sense, the space of
identifications d2 � 0 is contractible, since it is the space of equivalences between d2

and the zero object 0 in the ∞-category Funex(Bi+2,Bi ). Therefore, in this context,
there is no analog of the coherent system of trivializations captured by (3.3).
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3.2 Statement of the theorem

Using the terminology introduced in Sect. 3.1, we may formulate the main theorem.

Theorem 3.4 There exist functors

C : St´ −→ Ch≥0(St) (3.5)

and
N : Ch≥0(St) −→ St´ (3.6)

which induce a pair of inverse equivalences

C : L St´
�←→ LCh≥0(St) : N

of ∞-categories.

Remark 3.7 The classical Dold-Kan correspondence generalizes to categories that are
additive and idempotent complete. While the (∞, 2)-category St does not have direct
analogs of these two properties, it does admit certain categorified variants:

(i) Given two functors f and g between stable ∞-categories A and A′, equipped
with a natural transformation η : f ⇒ g, we may form the cone of η as a
replacement for the difference of two maps.

(ii) Given an idempotent e : A → A that arises from a fully faithful embedding
i : A′ ⊂ A with right adjoint q : A → A′ as e = i ◦ q, then there is a
canonical natural transformation e ⇒ idA whose cone will be a projector onto
the subcategory ker(q) ⊂ A. Together, the subcategories ker(q) and A′ form a
semiorthogonal decomposition of A (cf. [2]).

Our proof of Theorem 3.4 relies on a systematic utilization of these features of St .
Abelian categories form a pleasant class of categories for which the Dold-Kan corre-
spondence holds. It is an interesting task to introduce a suitable categorified axiomatic
framework of “2-abelian” (∞, 2)-categories. One basic requirement would be that the
proof of the categorified Dold-Kan correspondence generalizes to this context.

Before we construct the functors in Theorem 3.4 and provide its proof, we need
some preliminaries on Grothendieck constructions.

3.3 Grothendieck constructions

Let C be a category and let Grp denote the category of small groupoids. Recall that,
given a functor

F : Cop −→ Grp,

the classical Grothendieck construction of F is the category χ(F) defined as follows:

• objects are pairs (c, x) where c ∈ C and x ∈ F(c),
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• a morphism from (c, x) to (c′, x ′) consists of a morphism f : c → c′ inC together
with a morphism x → F( f )(x ′) in F(c).

The construction provides a functor

χ : Fun(Cop,Grp) −→ Fib/C

into the category Fib/C of categories fibered in groupoids over C . The functor χ has
a left adjoint 
 given by


(D → C)(c) = D ×C Cc/

and a right adjoint � provided by

�(D → C)(c) = FunC (C/c, D).

Upon localizing the categories Fun(Cop,Grp) and Fib/C along natural equivalences
and equivalences, respectively, the functor χ becomes an equivalence with inverse
provided by both 
 and �. As a central tool in his approach to higher category theory,
Lurie has introduced various generalizations of the adjunction


 : Fib/C ←→ Fun(Cop,Grp) : χ

in the context of Quillen’s theory of model categories. In this work, wewill use various
explicit versions of theseGrothendieck constructions and a description of their inverses
in terms of generalizations of the right adjoint functor �. In this section, we survey
the theory in the form it will be applied below.

3.3.1 The (∞, 1)-categorical Grothendieck construction

Let C be an ordinary category and let

F : Cop −→ Cat∞

be a functor into the category Cat∞ of ∞-categories, considered as a full subcategory
of the category Set� of simplicial sets.

Definition 3.8 We define a simplicial set χ(F) as follows: An n-simplex of χ(F)

consists of

(1) an n-simplex σ : [n] → C of the nerve of C ,
(2) for every I ⊂ [n], a functor

�I −→ F(σ (min(I )))
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such that, for every I ⊂ J ⊂ [n], the diagram

�I F(σ (min(I ))

�J F(σ (min(J ))

commutes.

The simplicial set χ(F) comes equipped with an apparent forgetful map χ(F) →
N(C). We consider χ(F) as an object of Set+�/N(C)

marking the Cartesian edges, and
refer to it as the Grothendieck construction of F .

As a consequence of results in [12], the Grothendieck construction induces an
equivalence of ∞-categories

χ : L Fun(Cop,Cat∞)
�−→ L(Set+�/N(C)

)◦

obtained by localizing along levelwise and fiberwise categorical equivalences. The
right-hand symbol ◦ signifies that we restrict to the full subcategory of Cartesian
fibrations with Cartesian edges marked.

We will use an explicit model for an inverse equivalence to χ which we now
construct. For an object c ∈ C , we denote by C/c the overcategory of c. Keeping
track of the forgetful functor C/c → C , the various overcategories organize to define
a functor

C −→ Set+�/N(C)
, c �→ N(C/c)

#.

Given an object X ∈ Set+�/N(C)
, we thus obtain a functor

�(X) : Cop −→ Cat∞, c �→ Map�

N(C)(N(C/c)
#, X).

Here, and in what follows, we adopt the notation for marked simplicial sets from [12]:
Given a simplicial set K , we denote by K  (resp. K �) the marked simplicial sets with
all (resp. degenerate) edges marked.

Proposition 3.9 There is a natural transformation

η : id −→ � ◦ χ (3.10)

which is a levelwise weak equivalence. In particular, upon localization, the functor �

defines an inverse to χ .

Proof For a functor F : Cop −→ Cat∞ and c ∈ C , we provide a map of simplicial
sets

ηF (c) : F(c) −→ �(χ(F))(c) (3.11)
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which, by adjunction, can be identified with a map

F(c) × N(C/c) −→ χ(F)

of simplicial sets over N(C). We define this map by associating to an n-simplex
(x, c0 → c1 → · · · → cn → c) of F(c) × N(C/c) the n-simplex of χ(F) that is
given by

(1) the n-simplex σ = c0 → · · · → cn in N(C)

(2) for I ⊂ [n], the I -simplex of F(σ (min(I ))) obtained as the composite

�I → �n x→ F(c) → F(σ (min(I ))).

This association is natural in c and provides the value of the transformation η at F .
To show that η is a weak equivalence, we need to show that, for every F : Cop →

Cat∞ and for every c ∈ C , the map ηF (c) from (3.11) is an equivalence of ∞-
categories. To this end, we note that there is a natural evaluation map

evc : Map�

N(C)(N(C/c)
#, χ(F)) → F(c)

obtained by pullback along the map �0 → N(C/c) corresponding to the vertex id :
c → c. The composite evc ◦ηF (c) equals the identity. The map evc is an equivalence
by [12, 4.3.2.15], since the requirement to map all edges in N(C/c) to Cartesian edges
is equivalent to being a relative right Kan extension along�0 → N(C/c).We conclude
in virtue of the two-out-of-three property of equivalences of ∞-categories. ��

3.3.2 2-Categorical terminology

Let C be a 2-category. We denote the category of morphisms between objects x and y
by C(x, y). We denote by C(op,−) the 2-category with

C(op,−)(c, c′) = C(c′, c)

and by C(−,op) the 2-category with

C(−,op)(c, c′) = C(c, c′)op

and further C(op,op) = (C(op,−))(−,op).

Example 3.12 The 2-category C at of small categories admits a self-duality

C at
�−→ C at(−,op),C �→ Cop .

We introduce 2-categorical versions of undercategories and overcategories. Since
there is potential confusion with the orientation of the 2-morphisms, we provide
explicit descriptions of both. For an object c in a 2-category C, we define the lax
undercategory Cc/ with
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• objects given by 1-morphisms c → x ,
• a 1-morphism from ϕ : c → x toψ : c → y consists of a 2-commutative triangle

x y

c

f

ψϕ

where f is a 1-morphism in C,
• a 2-morphism γ from f to g is given by a 2-commutative diagram

x y

c.

g

f

ψϕ

For every object c in C, we define the lax overcategory C/c with

• objects given by 1-morphisms x → c,
• a 1-morphism from ϕ : x → c toψ : y → c consists of a 2-commutative triangle

x y

c

f

ϕ ψ

where f is a 1-morphism in C,
• a 2-morphism γ from f to g is given by a 2-commutative diagram

x y

c.

g

f

ϕ ψ

For a 2-category C, we define its homotopy category |C|1 to be the category with

• the same objects as C,
• for objects c, c′ ∈ C, the set

|C|1(c, c′) = π0|C(c, c′)|,

of morphisms, where | − | denotes the geometric realization.
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3.3.3 The (∞, 2)-categorical Grothendieck construction

In this section, we introduce a combinatorial variant of the unstraightening functor for
(∞, 2)-categories introduced in [13]. It can be applied to any strict 2-functor

C −→ Cat∞

where C is a 2-category. It is a lax analog of the relative nerve construction, provided
in [12] as a combinatorial alternative to the straightening construction applicable to
strict functors C → Cat∞ where C is an ordinary category.

For every nonempty finite linearly ordered set I , we define a 2-category OI as
follows:

• The set of objects of OI is I ,
• The categoryOI (i, j) ofmorphisms between objects i and j is the poset consisting
of those subsets S ⊂ I satisfying min S = i and max S = j .

• The composition law is given by the formula

OI (i, j) × OI ( j, k) −→ OI (i, k), (S, S′) �→ S ∪ S′.

The various 2-categories O[n], n ≥ 0, assemble to a functor

� −→ Cat2 (3.13)

into the category Cat2 of 2-categories.

Definition 3.14 LetC be a 2-category.We define the nerve Nsc(C) ofC to be the scaled
simplicial set with

Nsc(C)n = Fun(O[n],C)

with functoriality in n provided by (3.13). The thin 2-simplices are the ones that
correspond to invertible natural transformations.

For n ≥ 0, and ∅ �= I ⊂ [n], we define the category

G(I ) = |
(

(OI )(−,op)
)

min(I )/
|1

where |−|1 denotes the homotopy category as introduced inSect. 3.3.2. For∅ �= I ⊂ J ,
we have a pullback functor

OI (min(I ),min(J ))op × G(J ) −→ G(I ). (3.15)

Definition 3.16 Let

F : C(op,op) −→ Cat∞
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be a Cat∞-enriched functor where we interpret C(op,op) as Cat∞-enriched via passage
to nerves of the morphism categories. We introduce a simplicial set ffl(F), called the
lax Grothendieck construction of F as follows: An n-simplex in ffl(F) consists of

(1) a functor σ : On → C of 2-categories,
(2) for every ∅ �= I ⊂ [n], a functor N(G(I )) → F(σ (min(I ))) so that, for every

∅ �= J ⊂ I ⊂ [n], the diagram

N(OI (min(I ),min(J ))op) × N(G(J )) N(G(I ))

N(C(σ (min(I )), σ (min(J )))op) × F(σ (min(J ))) F(σ (min(I )))

commutes where the top row is obtained from (3.15) by passing to nerves.

By construction, the lax Grothendieck construction comes equipped with a forgetful
functor π : ffl(F) → Nsc(C). We further introduce a marking on ffl(F) consisting of
the π -Cartesian edges so that we have ffl(F) ∈ Set+�/Nsc(C)

.

We summarize some basic properties which are proven in [1] where the functor ffl
is called the relative 2-nerve.

Proposition 3.17 Let C be a 2-category, and let

F : C(op,op) −→ Cat∞

be a Cat∞-enriched functor. Then

(1) The lax Grothendieck construction π : ffl(F) → Nsc(C) is a locally Cartesian
fibration which is Cartesian over every thin 2-simplex of Nsc(C).

(2) For every Cat-enriched functor D→ C, we have

ffl(F) ×Nsc(C) N
sc(D) ∼= ffl(F |D).

(3) Suppose that C is a 2-category with discrete morphism categories which we may
therefore identify with a 1-category. Then restriction along the functor

G(I ) → I , (min(I ) → j) �→ j

induces a map
χ(F) −→ ffl(F) (3.18)

between the ordinary and lax Grothendieck constructions which is a fiberwise
equivalence of Cartesian fibrations.

Let C be a 2-category and c an object of C. Consider the lax overcategory
C/c as defined in Sect. 3.3.2. The forgetful functor C/c → C induces a map
Nsc(C/c) → Nsc(C) of simplicial sets. We further introduce a marking on Nsc(C/c)

given by those edges where the corresponding 2-morphism is an isomorphism. Thus,
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we have Nsc(C/c) ∈ Set+�/Nsc(C)
. The functoriality of this construction in c is captured

by a Cat∞-enriched functor

C(−,op) −→ Set+�/Nsc(C)
, c �→ Nsc(C/c) (3.19)

We now define for X ∈ Set+�/Nsc(C)
and c ∈ C, the marked simplicial set

`(X)(c) = Map#Nsc(C)(N(C/c), X).

Pulling back (3.19), this construction is functorial in c and defines a functor

`(X) : C(op,op) −→ Set+�.

The additional functoriality in X provides

` : Set+�/Nsc(C)
−→ FunSet+�

(Cop,Set+�), X �→ `(X).

Proposition 3.20 There is a natural weak equivalence

η : id �−→ ` ◦ ffl

of endofunctors of Fun(C(op,op),Cat∞).

Proof The argument is similar to the proof of Proposition 3.9: For every F : C(op,op) →
Cat∞, there is an explicit natural map

ηF : F −→ ` ◦ ffl(F)

constructed as follows: For every c ∈ C, we have to provide a map of simplicial sets

F(c) × Nsc(C/c) −→ ffl(F)

over Nsc(C). Let (σ, τ ) be an n-simplex of F(c) × Nsc(C/c), and denote by α the
n-simplex in Nsc(C) obtained by postcomposing τ with the map Nsc(C/c) → Nsc(C).
Note that for I ⊂ [n], we have an induced functor of categories

(OI )(−,op)
min(I )/ −→ C(α(min(I )), c)op, (min(I ) → j) �→ α(min(I )) → c

given by postcomposition with the given map α( j) → c. Further, the Cat∞-enriched
functor F provides a map

N(C(α(min(I )), c)op) × F(c) −→ F(α(min(I )))

evaluation at σ then provides a map

N((OI )(−,op)
min(I )/) −→ F(α(min(I )))
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via pullback of the image of σ in F(α(min(I ))) along the map [k] → I ⊂ [n]
corresponding to a k-simplex in N((OI )(−,op)

min(I )/). The collection of these maps for the
various nonempty subsets I ⊂ [n] defines the desired n-simplex in ffl(F).

To see that the resulting map F −→ ` ◦ ffl(F) is a weak equivalence, we argue as
follows. For every object c ∈ C, we consider the evaluation map

ev(c) : ` ◦ ffl(F)(c) = Map#Nsc(C)(N(C/c), ffl(F)) −→ ffl(F)c

given by pullback along {c id→ c} → N(C/c). By the argument of [13, 4.1.8], the
opposite of this map is PNsc(C)op -anodyne, so that ev(c) is an equivalence of ∞-
categories. Further, the composite ev(c)◦ηF (c) is themapχ(F)c → ffl(F)c induced by
(3.18) applied to the restriction F |{c} along {c} ⊂ C (noting that χ(F)c = χ(F |{c})
and ffl(F)c = ffl(F |{c})). Hence, by Proposition 3.17(3), it is an equivalence of ∞-
categories. We conclude by two-out-of-three. ��

3.4 The categorified normalized chains functor C

We provide the definition of the functor C from Theorem 3.4 whose construction is
a mutatis mutandis modification of the normalized chains functor appearing in the
classical Dold-Kan correspondence.

Definition 3.21 Given a 2-simplicial stable ∞-category A•, we define, for n ≥ 0, the
stable ∞-category

An ⊂ An

as the full subcategory spanned by those vertices a ofAn such that, for every 1 ≤ i ≤ n,
the object di (a) is a zero object in An−1. As a result of the relations among the face
maps in �, the various functors d0 : An → An−1, n > 0, restrict to define a chain
complex

A0
d0←− A1

d0←− A2
d0←− · · ·

of stable ∞-categories. We denote this chain complex by C(A•) and refer to it as the
categorified normalized chain complex associated to A•.

A morphism A• → B• in St´ induces a strictly commutative diagram

A0 A1 A2 · · ·

B0 B1 B2 · · ·

d0 d0 d0

d0 d0 d0

so that the construction A• �→ C(A•) extends to define a functor

C : St´ −→ Ch≥0(St), A• �→ (A•, d0).
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Further, given a weak equivalence A• → B•, we obtain, for every n, an exact
equivalence An → Bn which further induces an exact equivalence on subcategories
An → Bn . We conclude that C preserves weak equivalences.

3.5 The categorified Dold-Kan nerveN

We provide a definition of the functor N from Theorem 3.4. It can be regarded as a
categorification of the classical Dold-Kan nerve appearing in Sect. 2.

Let n ≥ 0. We denote by N/[n] the following lax version of the comma category of
[n] ∈ ´ with respect to the embedding N→ ´(−,op):

• The objects of N/[n] are given by morphisms ϕ : [m] → [n] in ´.
• A morphism from ϕ : [m] → [n] to ϕ′ : [m′] → [n] consists of a 2-commutative
triangle

[m] [m′]

[n]

f

ϕ ϕ′η

where f is the image of a morphism in N, i.e., an iteration of face maps ∂0.

We equip the category N/[n] with the forgetful functor to N and thus obtain a Cat-
enriched functor

´(−,op) −→ Cat/N, [n] �→ N/[n]. (3.22)

Remark 3.23 The category N/[n] is in fact a poset.

Definition 3.24 Let k ≥ 0. We define corresponding cubes in the poset N/[n] by
specifying the images of the vertices:

(1) f : [1]k → N/[k] with f ( j1, . . . , jk) given by

[k] → [k], i �→ i − 1 + ji ,

where we set j0 = 1,
(2) b : [1]k → N/[k] with b( j1, . . . , jk) given by

[k − 1] → [k], i �→ i + ji+1

so that b = ∂∗
0 f ,

(3) and q : [1]k+1 → N/[k] with

q( j0, . . . , jk) =
{

b( j1, . . . , jk) if j0 = 0,

f ( j1, . . . , jk) if j0 = 1.
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Example 3.25 For k = 2, the cube q may be depicted as

01 02

001 002

11 12

011 012.

Here, and in what follows, we have highlighted the nondegenerate simplices by
boldfaced letters. Below, this will help recognize the indices of nonzero objects (which
correspond precisely to nondegenerate simplices).

Definition 3.26 Let B• : Nop → St be a chain complex of stable ∞-categories with
corresponding Grothendieck construction (Sect. 3.3.1)

π : χ(B•) −→ N(N).

We define, for every n ≥ 0, the ∞-category

N(B•)n ⊂ MapN(N)(N(N/[n]), χ(B•))

as the full subcategory spanned by the diagrams

A : N(N/[n]) −→ χ(B•)

that satisfy the following conditions:

N1 For every k ≥ 1 and every degenerate k-simplex τ : [k] → [n] of�n , the object
Aτ is a zero object in the ∞-category Bk .

N2 For every k ≥ 1 and every nondegenerate k-simplex σ : [k] → [n], the corre-
sponding cube

A|q∗σ : (�1)k+1 −→ χ(B•),

obtained by restricting A to the pullback of σ along the canonical cube from
Definition 3.24, is a π -limit diagram with limit vertex (0, 0, . . . , 0).

It follows from [12, 5.1.2.2] that the ∞-category MapN(N)(N(N/[n]), χ(B•)) and,
since limits commutewith limits, the subcategoryN(B•)n is stable aswell. The various
stable∞-categoriesN(B•)n assemble to define a 2-simplicial stable∞-category with
2-functoriality determined by (3.22). We refer to

N(B•) ∈ St´

as the categorified Dold-Kan nerve of B•.
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To gain familiarity with the categorified Dold-Kan nerve, we provide an explicit
description of the low-dimensional simplices ofN(A•) for a given chain complex B•
of stable ∞-categories:

(0) We have N(B•)0 ∼= B0.
(1) The ∞-category of 1-simplices of N(B•) is equivalent to the ∞-category of

diagrams of the form

A0 A1

A00 A01

in χ(B•) where

(a) {Ai } are objects of B0, {Ai j } are objects of B1,
(b) A00 is a zero object in B1,
(c) the square

A0 A1

d(A00) d(A01)

in B0 induced by A is biCartesian so that it exhibits the object d(A01) as the
cofiber of the map A0 → A1.

(2) The ∞-category N(B•)2 is equivalent to the ∞-category of diagrams in χ(B•)
of the form

A0 A1 A2

A00 A01 A02

A001 A002

A11 A12

A011 A012

with

(a) {Ai } objects of B0, {Ai j } objects of B1, {Ai jk} objects of B2,
(b) A00 and A11 are zero objects in B1, A001, A011, and A002 are zero objects in

B2,
(c) the diagram A exhibits the objects d(A01), d(A02), and d(A12) as cofibers of

the morphisms A0 → A1, A0 → A2, and A1 → A2, respectively, as detailed
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in (1). In particular, by the octahedral lemma, the square

d(A01) d(A02)

d(A11) d(A12)

is biCartesian.
(d) The cube

A01 A02

d(A001) d(A002)

A11 A12

d(A011) d(A012)

in B1 induced by the diagram A is biCartesian so that it exhibits the object
d(A012) as a totalization of the 3-term complex A01 → A02 → A12.

(n) Similarly, the higher-dimensional simplices of N(B•) consist of collections of
diagrams inBk parametrized by the various posets of k-simplices of �n , together
with additional compatibility data that, for every nondegenerate k-simplex σ in
�n , exhibits the object d(Aσ ) as the totalization of a (k + 1)-term complex with
underlying sequence of maps

A∂kσ → A∂k−1σ → · · · → A∂0σ .

Our next goal is to study special cases of the categorified Dold-Kan nerve and
exhibit how they relate to previously studied constructions.

Example 3.27 Let

B• = B0
d←− B1 ←− 0 ←− . . .

be a 2-term chain complex of stable ∞-categories concentrated in degrees 0, 1. Then
the ∞-category of n-simplices of N(B•) consists of diagrams
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A0 A1 A2 . . . An

A00 A01 A02 . . . A0n

A11 A12
. . .

...

A22
. . .

...

Ann

in χ(B•) where
• {Ai } are objects of B0, {Ai j } are objects of B1,
• the objects {Aii } are zero objects in B1,
• for every 0 ≤ i < j ≤ n, the diagram

Ai A j

d(Aii ) d(Ai j )

in B0 induced by A is biCartesian,
• for every 0 ≤ i < j < k ≤ n, the diagram

Ai j Aik

A j j A jk

in B0 induced by A is biCartesian.

In this special case, the categorified Dold-Kan nerve N(B•) can thus be regarded as
an ∞-categorical variant of Waldhausen’s relative S•-construction associated to the
functor d : B1 → B0 of stable ∞-categories. In particular, for B0 = 0, we recover
Waldhausen’s S•-construction of the stable ∞-catgeory B1.

Example 3.28 Let B be a stable ∞-category, k ≥ 0, and let B[k] denote the chain
complex of stable ∞-categories that hasB in degree k and the zero category �0 in all
other degrees. We describe the categorified Dold-Kan nerve N(B[k]). Consider the
cube

b : [1]k+1 −→ Fun([k], [k + 1])

from Definition 3.24. In dimensions 1, 2, and 3, the respective cubes can be depicted
as follows:
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0 1

01 02

11 12

012 013

112 113

022 023

122 123

The n-simplices of N(B[k]) are then given by diagrams

A : N(Fun([k], [n])) −→ B

subject to the following conditions:

(1) For every degenerate k-simplex τ : [k] → [n], the object Aτ is a zero object in
B.

(2) For every nondegenerate (k + 1)-simplex σ : [k + 1] → [n], the cube (σ ◦ b)∗A
is an exact cube in B.

As already explained in Example 3.27, N(B[1]) is an ∞-categorical variant of
Waldhausen’s S•-construction. The simplicial object N(B[2]) can be regarded as an
∞-categorical version of the S2,1• -construction due to Hesselholt-Madsen [8]. For
k ≥ 3, the simplicial object underlying N(B[k]) is an ∞-categorical version of the
k-dimensional S〈k〉• -construction as recently introduced and studied for abelian cate-
gories in [16].

4 Proof of Theorem 3.4

Our strategy for the proof of Theorem 3.4 is to produce a step-by-step categorification
of the proof of the classical Dold-Kan correspondence presented in Sect. 2.

4.1 The equivalence C ◦ N � id

Proposition 4.1 There is a natural weak equivalence

C ◦ N
�−→ � ◦ χ

where (�, χ) denote the functors comprising the Grothendieck construction from
Sect. 3.3.1.

Proof Let B• be a chain complex of stable ∞-categories. For n ≥ 0, the ∞-category
C(N(B•))n consists of diagrams

A : N(N/[n]) −→ χ(B•)
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subject to the conditions spelled out in Definition 3.26 and additionally satisfying, for
every 1 ≤ i ≤ n,

di (A) � 0.

These conditions imply that the only nonzero objects in the diagram comprising A
are the ones parametrized by the n-simplex id : [n] → [n] and the (n − 1)-simplex
∂0 : [n − 1] → [n]. In particular, restriction along the functor

N(N/n) → N(N/[n]),

where N/n denotes the overcategory 0 → 1 → · · · → n of n in the poset N, induces
an equivalence C(N(B•))n � �(χ(B•))n . Since this map is functorial in n and B•,
we obtain a natural weak equivalence

C ◦ N
�−→ � ◦ χ.

��
Corollary 4.2 There is a natural equivalence C ◦ N � id as endofunctors of the ∞-
category LCh≥0(St) of connective chain complexes of stable ∞-categories.

Proof Immediate from Proposition 4.1 and Proposition 3.9. ��

4.2 The equivalenceN ◦ C � id

We proceed by showing N ◦ C � id. To this end, we produce a zigzag diagram

id
η−→ ` ◦ ffl α←− F

β−→ ˜N ◦ C
θ←− N ◦ C (4.3)

of endofunctors of St´ and show that all maps in the diagram are weak equivalences.
The resulting equivalence id � N◦C of endofunctors of the∞-categorical localization
L St´ can be interpreted as a categorification of the unit transformation u : id → N ◦C
constructed in the proof of Theorem 2.4.

4.2.1 The lax version ˜N ofN

In the definition of the categorified Dold-Kan nerve of a connective chain complexB•
of stable ∞-categories, we have used the Grothendieck construction π : χ(B•) →
N(N). We denote by ˜N(B•) the mutatis mutandis definition obtained by using the lax
Grothendieck construction π : ffl(B•) → N(N) instead, where we interpret N as a
2-category with discrete morphism categories.

Proposition 4.4 There is a weak equivalence

θ : N �−→ ˜N
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of functors Ch≥0(St) → St´.

Proof This is an immediate consequence Proposition 3.17(3). ��

4.2.2 The functorF

To simplify notation, we introduce ´′ = ´(−,op). For n ≥ 0, we introduce the pushout

Mn = Nsc(´′
/[n])

∐

N(N/[n])
�1 × N(N/[n])

along the inclusion {0} × id : N(N/[n]) ⊂ �1 × N(N/[n]). We further denote the
inclusions

Nsc(´′
/[n])

r−→ Mn
s←− N(N/[n])

where s = {1} × id. We introduce a functor

F : St´ −→ St´

as follows: Given a 2-simplicial stable ∞-category A•, we define

F(A•)n ⊂ MapNsc(´′)(Mn, ffl(A•))

to be the full subcategory spanned by the diagrams

X : Mn −→ ffl(A•)

satisfying the following conditions:

(F1) The functor r∗X : Nsc(´′
/[n]) −→ ffl(A•) maps edges corresponding to strictly

commutative triangles to π -Cartesian edges in ffl(A•).
(F2) The functor s∗X maps every vertex of N(N/[n]) corresponding to a degenerate

simplex τ : [k] → [n] to a zero object in the fiber π−1([k]).
(F3) For every nondegenerate simplex σ : [k] ↪→ [n], the composite

�1 × (�1)k
id× f ∗σ−→ �1 × N(N/[n])

X−→ ffl(A•)

is a biCartesian cube in the fiber π−1([k]) where f denotes the cube from
Definition 3.24.

Proposition 4.5 Restriction along r : N(´′
/[n]) ⊂ Mn defines a functor

r∗ : F −→ ` ◦ ffl

which is a weak equivalence.
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Proof Let A• ∈ St´, let π : ffl(A•|N) → N(N) denote the lax Grothendieck con-
struction, and let n ≥ 0. Let K ⊂ �1 × N(N/[n]) be the full subcategory spanned by
the vertices of {0} ×N(N/[n]) and those vertices of {1} ×N(N/[n]) that correspond to
degenerate simplices [k] → [n] of �n . We then have the following statements which
are direct consequences of the pointwise formula for relative Kan extensions (cf. [12,
4.3.2.2]):

(1) For a functor

Y : K −→ ffl(A•|N),

over N(N), the following conditions are equivalent:

(a) For every degenerate simplex [k] → [n], the functor Y maps the correspond-
ing vertex of {1} × N(N/[n]) to a zero object in the fiber π−1([k]).

(b) Y is a π -right Kan extension of its restriction Y |{0} × N(N/[n]).

(2) For a functor

Z : �1 × N(N/[n]) → ffl(A•|N),

over N(N), the following conditions are equivalent:

(a) For every nondegenerate simplex σ : [k] ↪→ [n], the composite

�1 × (�1)k
id×(σ◦ f )−→ �1 × N(N/[n])

Z−→ ffl(A•)

is a biCartesian cube in the fiber π−1([k]).
(b) Z is a π -left Kan extension of its restriction Z |K .

Now let S ⊂ MapN(N)(�
1 ×N(N/[n]), ffl(A•|N)) denote the full subcategory spanned

by those vertices that satisfy conditions (F2) and (F3). Then, by [12, 4.3.1.15] and (1),
(2), the restriction map

S → MapN(N)(�
0 × N(N/[n]), ffl(A•|N))

is a trivial Kan fibration. Let M ⊂ MapNsc(´′)(N(´′
/[n]), ffl(A•)) denote the full sub-

category spanned by the vertices that satisfy condition (F1). By definition, we have
M = (` ◦ ffl(A•))n . Then we have a pullback diagram of simplicial sets

F(A•)n S

M MapN(N)(�
0 × N(N/[n]), ffl(A•|N))

so that F(A•)n → (` ◦ ffl(A•))n is a trivial Kan fibration and hence an equivalence
of ∞-categories. ��
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Proposition 4.6 Restriction along s : N(N/[n]) ↪→ Mn defines a natural transforma-
tion

s∗ : F −→ ˜N ◦ C

of endofunctors of St´ which is a pointwise weak equivalence.

Proof Let A• ∈ St´ and n ≥ 0. Let X ∈ F(A•)n and let

A : N(N/[n]) −→ ffl(A•)

be its restriction along s. We show the following:

(1) For 0 < i ≤ k, let

∂∗
i : ffl(A•)k → ffl(A•)k−1

denote a functor obtained by lifting the morphism ∂i : [k − 1] → [k] of ´′
with respect to the locally Cartesian fibration ffl(A•) → N(´′). Then, for every
σ : [k] → [n], we have ∂∗

i (Aσ ) � 0.
(2) For every k ≥ 0 and every nondegenerate (k + 1)-simplex σ : [k + 1] → [n], the

corresponding cube

A|q∗σ : (�1)k+2 −→ ffl(A•)|N(N),

obtained by restricting A to the pullback of σ along the cube fromDefinition 3.24,
is a π -limit diagram with limit vertex (0, 0, . . . , 0).

To verify (1), we first note that, by definition, for every degenerate simplex [k] → [n],
the corresponding object Aτ is a zero object so that there is nothing to show. The value
of A at a nondegenerate simplex σ : [k] ↪→ [n] is given by the totalization of the cube
X | f ∗σ . Due to condition (F1), this cube has the property that every edge parallel to the
i th coordinate axis of the cube gets mapped under ∂∗

i to an equivalence in ffl(A•)k−1.
Since totalization commutes with the functor ∂∗

i , it follows that the totalization of
X | f ∗σ is zero by Lemma 4.7 showing (1).

We prove (2). Letπ : ffl(A•)|N(N) → N(N) denote theCartesian fibration obtained
by restricting ffl(A•). We first show the following claim:

(I) For every nondegenerate simplex σ : [k] ↪→ [n], the cube X |�1 × q∗σ is a
π -limit cube.

Note that (F3) implies that the front face X |�1 × f ∗σ of this cube is biCartesian
in the fiber ffl(A•)[k] so that it suffices to show that the back face C :=X |�1 × b∗σ
is biCartesian in the fiber ffl(A•)[k−1]. Again by property (F3), the face F :=X |�1 ×
f ∗(σ ◦ ∂0) of C is biCartesian in ffl(A•)[k−1]. We need to show that the face of C
opposite to F is biCartesian as well. To see this, we argue as follows: Consider the
restriction R of X to the inclusion �1 × N(Fun([k − 1], [n])) ⊂ �1 × N(´′

/[n]). Let
K ⊂ �1×N(Fun([k−1], [n])) denote the nerve of the poset spanned by {0}×Fun([k−
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1], [n]) together with all elements of {1}×Fun([k−1], [n])whose second component
is a degenerate simplex. Then property (F3), applied to the simplices σ ◦ ∂i , i > 0,
implies that X |R is a left Kan extension of X |K where we consider both functors
with values in the fiber ffl(A•)[k−1]. Now let K ′ ⊂ R denote the nerve of the subposet
spanned by all elements except {1} × σ ◦ ∂1. The fact that X |R is a left Kan extension
of X |K ′ translates via the pointwise formula for Kan extensions to the statement that
the face of C opposite of F is biCartesian, proving the claim (I).

Now (I) implies our desired statement as follows: The cube A|q∗σ is the face of
the larger cube X |�1 × q∗σ obtained by restriction along {1} × q∗σ . Since this cube
is a π -limit cube, it suffices to show that the cube X |{0} × q∗σ is a π -limit. But this
is clear, since all edges of the arrow X |{0} × b∗σ → X |{0} × f ∗σ (which comprises
the cube X |{0} × q∗σ ) are π -Cartesian.

By Proposition 4.9 below, to show that s∗ is a weak equivalence, it suffices to
verify that C(s∗) is a weak equivalence. This is easily seen by direct inspection:
Namely, unravelling the definitions, the ∞-category C(F(A•))n is equivalent to the
∞-category of diagrams in ffl(A•) of the form

Aid A′
id

A∂0 A′
∂0

�

∗
�

∗

where the horizontal arrows are equivalences and the vertical arrows are π -Cartesian
covers of ∂0. Similarly, the ∞-category C(˜N(C(A•))n is equivalent to the ∞-category
of diagrams in ffl(A•) of the form

A′
id

A′
∂0

∗

with vertical arrow π -Cartesian. The functor C(s∗)n is simply the forgetful functor
which is thus clearly an equivalence. ��

Lemma 4.7 LetA be a stable ∞-category and let C : (�1)k → A be a cube inA. Let
B and F denote the restrictions of the cube C to {0} × (�1)k−1 and {1} × (�1)k−1,
respectively. Then the following are equivalent:

(1) tot(C) and tot(B) are zero objects in A.
(2) tot(C) and tot(F) are zero objects in A.
(3) tot(F) and tot(B) are zero objects in A.



A categorified Dold-Kan correspondence Page 31 of 35 14

Proof This follows immediately from the fact that there exists an exact triangle

tot(B) tot(F)

0 tot(C)

in A. ��
Collecting all results of this section, we obtain the following main result:

Theorem 4.8 There is a natural equivalence

id
�−→ N ◦ C

of endofunctors of the ∞-category L St´ of 2-simplicial stable ∞-categories.

Proof The various results of this section imply the existence of a diagram of natural
weak equivalences

id −→ ` ◦ ffl←− F −→ ˜N ◦ C ←− N ◦ C

which leads to the desired conclusion after localization. ��

4.2.3 The functor C is conservative

The following proposition is used in final argument of the proof of Proposition 4.5:

Proposition 4.9 The categorified normalized chains functor

C : St´ −→ Ch≥0(St)

is conservative: a morphism f in St´ is a weak equivalence if and only if C( f ) is a
weak equivalence.

Proof Theproof is a step-by-step categorification of the proof of Proposition 2.5.Given
a 2-simplicial stable ∞-categoryA•, we introduce its path object P(A•), which is the
2-simplicial object obtained by pullback along the 2-functor

α : ´ −→ ´, [n] �→ [n] ∗ [0].

The values of the path object are given by P(A•)n = An+1. The various omitted
face maps dn : An → An−1 define a natural map of 2-simplicial stable ∞-categories
d : P(A•) → A• which can be describedmore formally as the pullback along a natural
transformation id ⇒ α. For every n ≥ 0, we denote by �(A•)n the full subcategory
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ofAn+1 spanned by the objects X such that dn+1(X) is a zero object inAn . We obtain
a 2-simplicial stable ∞-category �(A•) which is part of a sequence

�(A•) ↪→ P(A•)
d−→ A•

in St´, functorial in A•, with composite equivalent to the zero map.
For a connective chain complex B• of stable ∞-categories, we define �(B•) as

the shifted chain complex

B1 ←− B2 ←− · · ·

omitting B0. It is immediate from the definitions that we have an equality

C ◦ � = � ◦ C (4.10)

of functors from St´ to Ch≥0(St).
We now proceed by showing the following statement by induction on n:

(I) Let n ≥ 0. Then, for everymap f : A• → A′• of 2-simplicial stable∞-categories,
such that C( f ) is a weak equivalence, the map fn : An → A′

n is an equivalence
of stable ∞-categories.

The statement is obvious for n = 0, since C( f )0 = f0. Assume that (I) holds for a
fixed n ≥ 0. Given a map A• → A′•, we consider the commutative diagram

�(A•) P(A•) A•

�(A′•) P(A′•) A′•

�( f ) P( f ) f

in St´. Evaluating the diagram at [n] ∈ ´, we obtain the diagram

�(A•)n An+1 An

�(A′•)n A′
n+1 A′

n

�( f )n

dn+1

fn+1 fn
dn+1

(4.11)

of stable ∞-categories. By induction hypothesis, the functor fn is an equivalence.
Further, by (4.10), we have that C(�( f )) = �(C( f )) is a weak equivalence so that,
again by induction hypothesis, the functor�( f )n is an equivalence. Note that the right
square in (4.11) can be completed to a commutative diagram

An+1 An

A′
n+1 A′

n

dn

dn+1fn+1 fn

sn

dn

dn+1

sn

(4.12)
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where dn and sn denote the respective face and degeneracy maps and we leave the
2-categorical data implicit. We deduce that fn+1 is an equivalence by Lemma 4.13.
This concludes the proof of (I) and the lemma. ��
Lemma 4.13 Consider a diagram

X A

X′ A′

q

pf g

s

q ′

p′
s′

(4.14)

of stable ∞-categories with sp = sq = idA, s′ p′ = s′q ′ = idA′ so that these
identities are counits and units, respectively, of adjunctions

p � s � q

and

p′ � s′ � q ′.

Set B = ker(q) and B′ = ker(q ′). Suppose that the induced functors f : A → A′
and g : B → B′ are equivalences. Then the functor g is an equivalence.

Proof Consider the relative nerve π : Ns(�
1) −→ �1 of the functor �1 → Cat∞

determined by s : A → X (cf. [12, 3.2.5.12]). Since s has the right adjoint q, the
coCartesian fibration π is Cartesian as well so that we have an equivalence X �
Map#

�1(�
1,Ns(�

1))with the∞-category of Cartesian sections of Ns(�
1). The latter

∞-category can be identified with the full subcategory of Fun(�1,X) spanned by
the counit edges, i.e., edges equivalent to s(q(X)) → X . Here, an edge e is a counit
edge if and only if q(e) is an equivalence in A. But this is in turn equivalent to the
statement that the cofiber of e lies in B = ker(q). Consider the ∞-category X(B,A)

of diagrams

A X 0

0 B A′

in Xwhere A ∈ A, B ∈ B, and both squares are biCartesian (which implies A′ ∈ A).
The above discussion implies that the evaluation map at X establishes an equivalence
of ∞-categories X(B,A) � X. Let MapX(B,A) ⊂ Fun(�1,X) denote the full
subcategory spanned by those edges e in X so that d1(e) is a vertex in B and d0(e) is
a vertex in A. Clearly, projection onto the bottom right edge provides an equivalence

X(B,A)
�→ MapX(B,A).
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We now construct an ∞-category Y equipped with a map θ : Y → �1 as follows:
an n-simplex in Y consists of

(i) a map f : [n] → [1] in �,
(ii) an n-simplex σ : �n → X such that σ |� f −1(0) ⊂ B and σ |� f −1(1) ⊂ A.

Note that MapX(B,A) can be identified with the ∞-category of sections of θ . The
assumption that p is a left adjoint to s implies that the map θ is a coCartesian fibration
where a section e is a coCartesian edge if and only if p(e) is an equivalence in A.

We have thus produced a diagram of equivalences of ∞-categories

X X(B,A) MapX(B,A) Map#
�1((�

1)�,Y)

The diagram (4.14) induces a map t : Y → Y′ that preserves coCartesian edges and
is a fiberwise equivalence. By [12, 3.3.1.5], it follows that t itself is an equivalence.
We conclude by noting the commutative diagram

X X(B,A) MapX(B,A) Map#
�1((�

1)�,Y)

X′ X′(B′,A′) MapX′(B′,A′) Map#
�1((�

1)�,Y′).

f t

where all horizontal arrows are equivalences and, since t is an equivalence, the right-
most vertical map is an equivalence. By the two-out-of-three property the leftmost
arrow f is an equivalence as well. ��
Remark 4.15 The equivalence

X � Map#
�1((�

1)�,Y) (4.16)

appearing in the proof of Lemma 4.13 admits the following interpretation: the stable
∞-category X comes equipped with a semiorthogonal decomposition X = 〈B,A〉
satisfying a certain admissibility condition. In this situation, the equivalence (4.16)
shows that the ∞-category X can be recovered from the two components B and A of
the decomposition together with the gluing functor p : B → A, using the terminology
of [2].
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