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Abstract
We provide a semiorthogonal decomposition for the derived category of fibrations
of quintic del Pezzo surfaces with rational Gorenstein singularities. There are three
components, two of which are equivalent to the derived categories of the base and the
remaining non-trivial component is equivalent to the derived category of a flat andfinite
of degree 5 scheme over the base.We introduce twomethods for the construction of the
decomposition. One is the moduli space approach following the work of Kuznetsov on
the sextic del Pezzo fibrations and the components are given by the derived categories
of fine relative moduli spaces. The other approach is that one can realize the fibration
as a linear section of a Grassmannian bundle and apply homological projective duality.

Keywords Quintic del Pezzo surface · Derived categories · Semiorthogonal
decompositions
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1 Introduction

In this paper, we study the structure of the bounded derived category of coherent
sheaves of fibrations of quintic del Pezzo surfaceswith rationalGorenstein singularities
(equivalently, the minimal resolution of the surface is crepant). The aim is to find a
semiorthogonal decomposition for the derived category. The paper is inspired by and
follows the strategy of the work of Kuznetsov on fibrations of sextic del Pezzo surfaces
[23].

Other families of del Pezzo surfaces that have been investigated are the cases of
degree 9 [5], of degree 8 and 4 [4,21] (note that a rational Gorenstein quartic del
Pezzo surface over any field is a complete intersection of two quadrics in P

4 [14,
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Theorem 4.4(i)] and rational Gorenstein singularity implies smoothness in degree 9).
A rational Gorenstein del Pezzo surface of degree 7 is the blow-up of P2 or a nodal
quadric [25, Theorem 29.4] [8, Proposition 8.1]. Hence, the case of degree 7 can be
reduced to higher degrees. Our work on the quintic case will complete the picture of
del Pezzo fibrations of degree at least 4.

Let X → S be a flat family of del Pezzo surfaces over a smooth variety S.
In aforementioned examples (degree 4, 6, 8, 9), there is an S-linear semiorthogonal
decomposition of the type

Db(X ) = 〈A1, . . . ,Ad〉

where d = 3 for degree 6, 8, 9 and d = 2 for degree 4. The subcategory Ai is
equivalent to the derived category of an algebraic variety Db(Zi ) or an Azumaya
variety Db(Zi , Bi ) where Zi is flat over S and in the cases of degree 6, 8, 9, also finite
over S. Here Bi is a sheaf of Azumaya algebras over Zi and Db(Zi , Bi ) is the derived
category of coherent sheaves of modules over Bi or equivalently the derived category
of βi -twisted (βi represents the Brauer class of the algebra Bi ) coherent sheaves on
Zi .

When X is a del Pezzo surface X over a field k, that is, S = Spec(k). It is expected
that if X is rational, then all subcategoriesAi should be equivalent to Db(Zi ), i.e. the
Azumaya algebras Bi that appear will be trivial. It is true, for example, when X is a
smooth del Pezzo surface over a field of degree at least 5, see [3]. Because a quintic
del Pezzo surface with rational Gorenstein singularities over a field is always rational
(see [30] for the smooth case and [8, Theorem 9.1(b)] for the singular case), one could
anticipate that no nontrivial Azumaya algebras would appear in the semiorthogonal
decomposition of the quintic del Pezzo fibration and the main result of the paper
confirms the anticipation.

Theorem 1.1 Let f : X → S be a flat morphism where each fiber of f is a quintic
del Pezzo surface with rational Gorenstein singularities. Then there is an S-linear
semiorthogonal decomposition

Db(X ) = 〈Db(S), Db(S), Db(Z)〉 (1.1)

where g : Z → S is flat and finite of degree 5.
The projection functors of the decomposition have finite cohomological amplitudes

and the decomposition is compatible with base change in the sense that for any mor-
phism h : T → S, the quintic del Pezzo fibration f ′ : XT = X ×S T → T has an
T -linear semiorthogonal decomposition

Db(XT ) = 〈Db(T ), Db(T ), Db(Z ×S T )〉.

In particular, if T is a geometric point of S, the components of the decomposition can
be described explicitly by Theorem 3.5.

WhenX is a quintic del Pezzo surface X with rational Gorenstein singularities over
an algebraically closed field, the semiorthogonal decomposition of Db(X) is obtained
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by applying [18]. More concretely, we consider the minimal resolution ˜X of X and
use a semiorthogonal decomposition of Db(˜X) that is compatible with the contraction
π : ˜X → X . In such a way, the decomposition of Db(X) can be derived from that of
Db(˜X) via π∗. It turns out that the description only depends on the singular type of
X . Section 3 presents the process and the result is given in Theorem 3.5.

Moreover, the embedding functors of the components of the above decomposition
are given by Fourier-Mukai functors with kernelsOX , a rank 2 vector bundle F and a
rank 5 vector bundleQ on X respectively. In Sect. 4, we give amoduli space interpreta-
tion for this decomposition. Namely, the interesting components are equivalent to the
derived categories of the fine moduli spacesMd(X) of semistable sheaves with given
Hilbert polynomials hd(t), d ∈ {2, 3} (see (4.1) for definitions) and the kernels of the
embedding functors are isomorphic to the respective universal families (Theorem 4.5).

To produce a semiorthogonal decomposition for the fibration f : X → S, we
consider the relative moduli spaces Md(X /S) of semistable sheaves with the same
Hilbert polynomials hd(t) and show that they are also fine moduli spaces (Proposi-
tion 7.3). Comparing with the case of a single quintic del Pezzo surface, we deduce
that the derived categories of these fine relative moduli spaces give the components
of (1.1) and the universal families are the kernels of the embedding functors. It is
explained in Sect. 7.1.

Essentially, to prove that the relative moduli spacesMd(X /S) are fine, one needs
to show that the moduli spaces Md(X) of a quintic del Pezzo surface X over an
arbitrary field k are fine, namely the vector bundles F,Q on X ×k ks (base changed
to the separable closure ks) descend to X . The case for Q follows easily from an
arithmetic reason (values of the Hilbert polynomial) and the case for F requires the
geometry of X (e.g., X has a rational point). Sections 5 and 6 study the properties of
F and deduce that it is globally generated and descends to X .

Alternatively, we produce a semiorthogonal decomposition of the fibration using
the theory of Homological Projective Duality (HPD). In Sect. 7.2, we provide two
constructions for the fibration f : X → S to be a linear section of a Grassmannian
bundle. The first construction uses the universal family E2 of the relative moduli space
M2(X /S) which induces a morphism from X to the Grassmannian bundle over S.
With this construction, HPD produces a semiorthogonal decomposition of Db(X )

which is the same as the one obtained from the moduli space approach, see Theo-
rem 7.4. The second construction uses a vector bundle related to the normal bundle
of the anticanonical embedding. In Sect. 7.2.3, we prove that these two construc-
tions are isomorphic in characteristic 0. Consequently, we obtain a relation between
the universal family E2 and the normal bundle of the anticanonical embedding, see
Theorem 7.12.

Finally, in order to apply HPD, we need a Lefschetz type semiorthogonal decom-
position for Db(Gr(2, 5)). It was only known in characteristic 0. In the appendix, we
verify that it still holds in large characteristic (Proposition A.3) and it is achieved by
performing mutations to the Kapranov’s collection.

For the convenience of the reader, in Sect. 2, we include basic facts about quintic
del Pezzo surfaces with rational Gorenstein singularities as well as notions and results
of derived categories related to the base change of semiorthogonal decompositions.
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Notations

Denote by D(Y ), D−(Y ), D+(Y ), Db(Y ) the unbounded, bounded above, bounded
below and bounded derived categories of quasi-coherent sheaves on the scheme Y
with coherent cohomology. Given G ∈ D(Y ), denote the p-th sheaf cohomology of
G by Hp(G). For p, q ∈ Z, p ≤ q, write D[p,q](Y ) = {G ∈ D(Y ) |Hi (G) =
0, i /∈ [p, q]}. For a triangulated subcategory T of Db(Y ), denote its right orthogonal
(resp. its left orthogonal) by T⊥ = {G ∈ Db(Y ) |RHom(A,G) = 0,∀A ∈ T } (resp.
⊥T = {G ∈ Db(Y ) |RHom(G, A) = 0,∀A ∈ T }).

For a morphism f : Y → W , denote by f ∗, f∗ the derived pull-back and push-
forward. The usual pull-back and push-forward of morphisms will be denoted by
L0 f ∗, R0 f∗.

2 Preliminaries

2.1 Quintic del Pezzo surfaces

Assume k is an algebraically closed field.
We recall some basic properties of quintic del Pezzo surfaces. For more details,

see [10, § 8.5] [25, § 25–26]. Let X be a quintic del Pezzo surface over k with
rational Gorenstein singularities (over algebraically closed fields, rational Gorenstein
singularity is equivalent to du Val, ADE singularity or rational double point). Let
π : ˜X → X be its minimal resolution. Then π is crepant (π∗KX = K

˜X ), ˜X is a weak
del Pezzo surface (−K

˜X is nef and big) and we have

˜X = X5 → X4 → · · · → X1 = P
2

where Xi+1 → Xi is the blow-up of Xi at the point xi . Let h be the hyperplane class
on P2 as well as its pull-back to Xi , i ≥ 2. Denote by ei , 1 ≤ i ≤ 4 the classes of pull-
backs of exceptional divisors Ei over xi to X j , j ≥ i . Then Pic(˜X) = Zh⊕⊕4

i=1 Zei .
The canonical divisor K

˜X = −3h+∑4
i=1 ei and h

2 = 1, e2i = −1, h.ei = 0, ei .e j =
0 for i = j . The orthogonal complement R = K ⊥̃

X
⊂ Pic˜X ⊗Z R equipped with the

scalar product (intersection product but with the opposite sign) is the root system A4.
The simple roots are e1 − e2, e2 − e3, e3 − e4, h − e1 − e2 − e3 and the Weyl group
is the permutation group S5.

The possible configurations of the points xi are (the notation x > y represents that
x is an infinitely near point over y):

(I) x1, x2, x3, x4 are proper points of P2;
(II) x2 > x1, x3, x4;
(III) x2 > x1, x4 > x3;
(IV) x3 > x2 > x1, x4;
(V) x4 > x3 > x2 > x1.
Write �i jl ∈ |h − ei − e j − el | and �i j ∈ |ei − e j | for members in respective

classes. The singular types of X and the corresponding sets� of (−2)-curves (effective
(−2)-classes) on ˜X are:
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(I.1) smooth; (I.2) A1 with �123;
(II.1) A1 with �12; (II.2) A1 + A1 with �12,�123; (II.3) A2 with �12,�134;
(III.1) A1 + A1 with �12,�34; (III.2) A1 + A2 with �12,�34,�123;
(IV.1) A2 with �12,�23; (IV.2) A1 + A2 with �123,�12,�23; (IV.3) A3 with

�12,�23,�124;
(V.1) A3 with �12,�23,�34; (V.2) A4 with �12,�23,�34,�123.

2.2 Derived categories

For the homological background, one can refer to [24, §2]. All schemes are noetherian.
We recall the notions of Tor-/Ext-/cohomological amplitudes. Let f : Y → W

be a proper morphism of separated schemes. The right adjoint f ! of f∗ exists [27].
An object G ∈ D(Y ) has finite Tor-amplitude over W if there exist p, q ∈ Z

such that G ⊗OY f ∗H ∈ D[a+p,b+q](Y ) for any H ∈ D[a,b](W ). An object
G ∈ D(Y ) has finite Ext-amplitude over W if there exist p, q ∈ Z such that
RHomOY (G, f !H) ∈ D[a+p,b+q](Y ) for any H ∈ D[a,b](W ). Given schemes Y ,W ,
let T ⊂ D(Y ) be a triangulated subcategory. A triangulated functor � : T → D(W )

has finite cohomological amplitude if for any a, b ∈ Z, there exist p, q ∈ Z not
depending on a, b such that �(T ∩ D[a,b](Y )) ⊂ D[a+p,b+q](W ).

Let Y ,W be proper schemes. Let K ∈ D−(Y × W ) and p : Y × W → Y , q :
Y ×W → W be projections. Define functors �K = q∗(p∗ −⊗OY×W K ) : D−(Y ) →
D−(W ) and �!

K = p∗RHomOY×W (K , q !−) : D+(W ) → D+(Y ).

Lemma 2.1 [24, Lemma 2.4][22, Lemma 2.10] If K has finite Tor-amplitude over Y
and finite Ext-amplitude over W , then

(i) �K takes Db(Y ) to Db(W ), �!
K takes Db(W ) to Db(Y ) and �! is the right

adjoint of �K ;
(ii) �K ,�!

K have finite cohomological amplitudes.

Lemma 2.2 Assume Db(Y ) = 〈T1, . . . , Tn〉 is a semiorthogonal decomposition of
a scheme Y by right admissible subcategories Ti , that is, the embedding functors
βi : Ti ↪→ Db(Y ) have right adjoint functors, which we denote by β !

i : Db(Y ) → Ti .
If for i ≥ 2, β !

i have finite cohomological amplitudes, then so are projection functors
γ j : Db(Y ) → Db(Y ) to the j-th component Tj for all j .

Proof Denote the embedding 〈T1, . . . , Ti 〉 ↪→ Db(Y ) by αi and its left adjoint by α∗
i .

Then γi = βi ◦ β !
i |〈T1,...,Ti 〉 ◦ α∗

i = βi ◦ β !
i ◦ αi ◦ α∗

i . In particular, γn = βn ◦ β !
n and

γ1 = α1 ◦α∗
1 . The semiorthogonal decomposition provides the exact triangles for each

G ∈ Db(Y ):

γnG → G → αn−1α
∗
n−1G,

γn−1G → αn−1α
∗
n−1G → αn−2α

∗
n−2G, etc.

Recursively, we deduce αi ◦ α∗
i and thus γi have finite cohomological amplitudes. ��

Wegive a special version of the base change of semiorthogonal decompositions, which
follows from Theorem 5.6,6.4 in [22].
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Proposition 2.3 Let f : Y → S, f1 : Y1 → S, . . . , fn : Yn → S be flat projective
morphisms. Assume Ki ∈ D−(Y ×S Yi ) have finite Tor-amplitudes over Y and finite
Ext-amplitudes over Yi for all i . Let g : T → S be any base change. Denote base
change along g by subscript T , i.e. KiT ∈ D−(YT ×T YiT ). If there is an S-linear
semiorthogonal decomposition

Db(Y ) = 〈�K1(D
b(Y1)), . . . , �Kn (D

b(Yn))〉, (2.1)

then the projection functors of (2.1) have finite cohomological amplitudes and there
is a T -linear semiorthogonal decomposition

Db(YT ) = 〈�K1T (Db(Y1T )), . . . , �KnT (Db(YnT ))〉.

Proof We only need to check the projection functors of (2.1) have finite cohomolog-
ical amplitudes. This follows from �!

Ki
having finite cohomological amplitudes by

previous lemmas. ��

3 Derived category of a quintic del Pezzo surface

Assume k is an algebraically closed field. We adopt the same notation as Sect. 2.1.
To find a semiorthogonal decomposition of Db(X), we will apply the method in

[18], which is a generalization of [23, §3]. In order to utilize the method, we will
first verify that the decomposition of Db(˜X) given in [19, Proposition 4.2] when X is
smooth (thus ˜X = X ) also works for any weak del Pezzo surface and then check that
the decomposition is compatible with the contraction π .

Since X2 is the blow-up of P2 at a point, we have a semiorthogonal decomposition

Db(X2) = 〈Oe1(−1),OX2(−h),OX2 ,OX2(h)〉
= 〈OX2(−h),OX2(e1 − h),OX2 ,OX2(h)〉

where the right mutation of the pair (Oe1(−1),OX2(−h)) produces the second equal-
ity. Repeating the process, we obtain

Db(˜X)

= 〈O
˜X (−h),O

˜X (e4 − h),O
˜X (e3 − h),O

˜X (e2 − h),O
˜X (e1 − h),O

˜X ,O
˜X (h)〉

= 〈O
˜X (e4 − h),O

˜X (e3 − h),O
˜X (e2 − h),O

˜X (e1 − h),O
˜X ,O

˜X (h),O(−K
˜X − h)〉

where the second equality is achieved by mutating O
˜X (−h) from the leftmost to the

rightmost position and the effect of the mutation is tensoring by O
˜X (−K

˜X )[−2].
Next, in the order of i = 4 to 1, mutateO

˜X (ei − h) to the rightmost position. Finally,
mutate O

˜X (−K
˜X − h) to the left side of O

˜X (h). Therefore, we obtain the following
semiorthogonal decomposition

Db(˜X) = 〈 ˜A1, ˜A2, ˜A3〉. (3.1)
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Here ˜A1 = 〈O
˜X 〉, ˜A2 = 〈˜F〉 where ˜F is the unique nontrivial extension of

0 → O
˜X (−K

˜X − h) → ˜F → O
˜X (h) → 0 (3.2)

and

˜A3 = 〈O
˜X (h),O(e4−K

˜X −h),O(e3−K
˜X −h),O(e2−K

˜X −h),O(e1−K
˜X −h)〉.

(3.3)
Furthermore, the push-forward of the resolution map π∗ : Db(˜X) → Db(X) is
essentially surjective with ker(π∗) = 〈O�(−1)〉⊕ where � ranges through the set
of (−2)-curves and 〈〉⊕ denotes the minimal triangulated subcategory closed under
infinite direct sums [23, Lemma 2.3 and Corollary 2.5].

Lemma 3.1 [18, Lemma 2.5] Let Y be a normal surface with rational singularities and
let p : ˜Y → Y be its resolution. Let ˜G ∈ Db(˜Y ). Then the following properties are
equivalent:

(1) for any irreducible exceptional divisor E of p one has ˜G|E ∈ 〈OE 〉;
(2) for any irreducible exceptional divisor E of p one has Ext∗(˜G|E ,OE (−1)) = 0;
(3) there exists G ∈ Dper f (Y ) a perfect complex such that ˜G ∼= p∗G;
(4) one has p∗˜G ∈ Dper f (Y ) and ˜G ∼= p∗(p∗˜G).
In addition, if ˜G is a pure sheaf or a locally free sheaf, then so is p∗˜G.

From its construction by the exact sequence (3.2), one checks that the locally free
sheaf ˜F on ˜X satisfies Lemma 3.1(1). Therefore,

F := π∗ ˜F (3.4)

is a locally free sheaf of rank 2 on X and ˜F = π∗F .

Definition 3.2 [18, Definition 2.7] Let Y be a normal surfacewith rational singularities
and let p : ˜Y → Y be its resolution. A semiorthogonal decomposition Db(˜Y ) =
〈T1, . . . , Tn〉 is compatible with the contraction p if for each irreducible component
E of the exceptional locus one has

OE (−1) ∈ Ti

for one of the the components Ti of the decomposition.

For 1 ≤ a ≤ 3 and {i, j, k, l} = {1, 2, 3, 4}, there are short exact sequences:

0 → O
˜X (ea+1 − K

˜X − h) → O
˜X (ea − K

˜X − h) → O�a,a+1(−1) → 0,

0 → O
˜X (h) → O

˜X (el − K
˜X − h) → O�i jk (−1) → 0.

Therefore, the semiorthogonal decomposition (3.1) is compatible with the contraction
π . Theorem 2.12 in [18] indicates that

Db(X) = 〈A1,A2,A3〉 (3.5)
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where Ai = π∗( ˜Ai ) are admissible subcategories. In fact, the components ˜Ai can
be described explicitly. Note that both A1 = 〈OX 〉 and A2 = 〈F〉 are generated by
exceptional objects (F is exceptional because ˜F is by computation using sequence
(3.2)) and thus equivalent to Db(Spec(k)).

To describeA3, we observe that ˜A3 has an orthogonal decomposition of the form

˜A3 = 〈˜B1, . . . , ˜Bn〉 (3.6)

such that each ˜Bq = 〈L0,L1, . . . ,Lm〉 is generated by line bundles Lp with the
relation Lp = L0(E1 + · · · + Ep). Here {E1, . . . , Em} is a chain of (−2)-cuves on
˜X . Moreover, they fit into short exact sequences

0 → Lp−1 → Lp → OEp (−1) → 0. (3.7)

Such ˜Bq is said to be untwisted adherent to the chain ∪m
i=1Ei in [18, Definition 3.6].

For singular types (*.1), (*.2), the components ˜Bq are obtained by regrouping line
bundles in the decomposition (3.3). For example, for (II.2),we have ˜A3 = 〈˜B1, ˜B2, ˜B3〉
where ˜B1 = 〈O

˜X (h),O
˜X (e4 −K

˜X −h)〉, ˜B2 = 〈O
˜X (e3−K

˜X −h)〉, ˜B3 = 〈O
˜X (e2 −

K
˜X − h),O

˜X (e1 − K
˜X − h)〉.

For type (II.2), becauseO
˜X (h) is orthogonal toO

˜X (ei − K
˜X − h) for i = 3, 4, the

right mutations do not alter these line bundles. Hence,

˜A3 = 〈O(e4 − K
˜X − h) |O(e3 − K

˜X − h) |O
˜X (h),O(e2 − K

˜X − h),O(e1 − K
˜X − h)〉

where it is divided into 3 subgroups separated by |. Similarly, for type (IV.3), we have

˜A3 = 〈O(e4 − K
˜X − h) |O

˜X (h),O(e3 − K
˜X − h),O(e2 − K

˜X − h),O(e1 − K
˜X − h)〉.

Below we give a brief summary of the procedure in [18, § 3] for obtaining the
explicit description of A3.

The line bundles {L0, . . . ,Lm} satisfy

Ext•(Li ,L j ) =
⎧

⎨

⎩

k ⊕ k[−1], j ≥ i + 1
k, j = i
0, j < i

Define P0 as the iterated extension of the collection {L0, . . . ,Lm} as follows. Set
Pm = Lm and Pm−1 to be the unique nontrivial extension of Pm by Lm−1, i.e.

0 → Pm → Pm−1 → Lm−1 → 0.

Notice that inductively one has Ext•(Li ,P j ) = k ⊕ k[−1] for j ≥ i + 1. Finally, P0
is the unique nontrivial extension

0 → P1 → P0 → L0 → 0.
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For later use, we observe the following property for the vector bundle P0:

Lemma 3.3 Q0 := π∗P0 is a vector bundle and P0 = π∗Q0.

Proof It suffices to check that P0 satisfies condition (1) of Lemma 3.1, i.e. P0|Ep ∈
〈OEp 〉 for 1 ≤ p ≤ m. Recall that 〈L0, . . . ,Lm〉 is untwisted adherent to the chain
of (−2)-curves ∪m

i=1Ei . Then [18, Lemma 3.5(1)] indicates that L0 · E1 = 1 and
L0 · Ep = 0 for 2 ≤ p ≤ m. Hence,

Lp · Eq =
⎧

⎨

⎩

1, p = q − 1
−1, p = q
0, otherwise

and one can show inductively that Pp|Eq ∈ 〈OEq 〉 for q ≥ p + 1. ��
Furthermore, the direct sum T = ⊕m

j=0 P j is the universal extension for the collec-

tion {L0, . . . ,Lm} and is a tilting bundle for the subcategory ˜Bq [15, Theorem 2.5].
Therefore, there is an induced equivalence:

β̃ = RHom(T ,−) : ˜Bq
�−→ Db(mod-	) (3.8)

where 	 = End(T ) and Db(mod-	) is the derived category of finite right modules
over 	. In this case, 	 is the Auslander algebra of k[x]/xm+1. Note that ˜β induces
the equivalence ˜Bq

− � D−(mod-	) as well.
Let P0 = β̃(P0) and define K = End X̃ (P0) = End	(P0). Then P0 is a K -	-

bimodule and we have functors:

ρ∗ : D−(mod-	) → D−(mod-K ), M �→ RHom	(P0, M)

ρ∗ : D−(mod-K ) → D−(mod-	), N �→ N ⊗K P0

Denote π∗(˜Bq) by Bq . Since the orthogonal decomposition ˜A3 = 〈˜B1, . . . , ˜Bn〉 is
compatible with the contraction π , we obtain an orthogonal decomposition

A3 = 〈B1, . . . ,Bn〉. (3.9)

Let α̃ = − ⊗	 T be the inverse of ˜β. Theorem 3.16 in [18] proves that the functor

α = π∗ ◦ α̃ ◦ ρ∗ : D−(mod-K ) → B−
q

induces an equivalence

α = π∗ ◦ α̃ ◦ ρ∗ : Db(mod-K )
�−→ Bq (3.10)

where K = k[x]/xm+1. Since K is a compact generator of the category Db(mod-K ),
the image α(K ) = π∗ ◦ α̃(P0) = π∗(P0) = Q0 is a compact generator of Bq .
From the construction, one sees that α = − ⊗K Q0 is a Fourier-Mukai functor with
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kernel Q0. More generally, one has α(k[x]/x p+1) = π∗(Pm−p) for 0 ≤ p ≤ m.
In particular, α(k) = π∗(Lm). Since OEp (−1) ∈ ker π∗, sequences (3.7) imply that
π∗(L0) = · · · = π∗(Lm) and thus Bq = 〈π∗(L0)〉. Geometrically speaking, if we
identify Db(mod-K ) with Db(Spec(K )), then π∗(L0) is the image of the unique
closed point of Spec(K ).

Now rename P0,Q0 by Pq
0 ,Qq

0 to indicate that they are constructed from ˜Bq .
Recall that we have the orthogonal decomposition ˜A3 = 〈˜B1, . . . , ˜Bn〉. Define

P = ⊕n
q=1Pq

0 , Q = ⊕n
q=1Qq

0 . (3.11)

Lemma 3.4 Q = π∗P is a vector bundle such thatP = π∗Q and a compact generator
of A3. In addition, A2 = ⊥OX ∩ Q⊥ and A3 = ⊥OX ∩ ⊥F.

Proof It follows from the argument above, Lemma 3.3 and decompositions (3.5), (3.9).
��

To summarize the discussion of the section, we have

Theorem 3.5 Let X be a quintic del Pezzo surface with rational Gorenstein singu-
larities over an algebraically closed field k. Then the derived category Db(X) only
depends on the singular type of X and it has the following semiorthogonal decompo-
sition:

Db(X) = 〈Db(Spec(k)), Db(Spec(k)), Db(Z)〉

where Z = ⊔

Spec( k[x]
x p+1 ) is an affine scheme of length 5. A singular point of type Ap

on X contributes a singular point Spec( k[x]
x p+1 ) of length p + 1 on Z.

More explicitly, if X is smooth, then Z = Spec(k5); if X has singular type Ap, then
Z = Spec(k4−p × k[x]

x p+1 ); if X has singular type Ap + Aq, then Z = Spec(k3−p−q ×
k[x]
x p+1 × k[x]

xq+1 ).
Moreover, the embeddings of components are given by Fourier–Mukai functors with

kernels OX , F defined by (3.4) and Q defined by (3.11) respectively.

4 Moduli space interpretation

We use the same notation as Sect. 3. For a sheaf F on X , denote hF (t) the Hilbert
polynomial of F with respect to the ample divisor −KX . That is,

hF (t) = χ(F(−t KX )) ∈ Z[t].

More generally, for a bounded complex of sheaves F• on X , one has

hF•(t) =
∑

(−1)iχ(F i (−t KX )) =
∑

(−1)iχ(Hi (F•)(−t KX ))
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whereHi (F•) is the i-th cohomology sheaf. Let G be a sheaf on ˜X . The Leray spectral
sequence Hi (X , R jπ∗G) ⇒ Hi+ j (˜X ,G) implies that hπ∗G(t) = χ(G(−t K

˜X )).
By Riemann-Roch, given a Cartier divisor D on ˜X , the Hilbert polynomial for

π∗O(D) is

hπ∗O(D)(t) = K 2
X
2 t(t + 1) − KX ·D

2 (2t + 1) + D2

2 + χ(OX )

= 5
2 t

2 +
(

5
2 − KX · D

)

t + D2−KX ·D
2 + 1

By calculation, the generators ofA3 have the same Hilbert polynomial. Recall that
A2 = 〈F〉, we denote Hilbert polynomials of the generators of Ai , i = 2, 3 by

{

h2(t) := hF (t) = 5(t + 1)2

h3(t) := hπ∗O(h)(t) = 1
2 (t + 1)(5t + 6)

(4.1)

Lemma 4.1 Let π : ˜X → X be the minimal resolution. Then π∗O(D) for D =
h, ei − K

˜X − h, 1 ≤ i ≤ 4 are stable sheaves of rank 1 with Hilbert polynomial h3(t)
and F is a stable bundle of rank 2 with Hilbert polynomial h2(t).

Proof Lemma 5.1 suggests that π∗O(D) = R0π∗O(D) are sheaves. They are stable
because they are torsion free rank 1 sheaves. For the stability of F , we will use the
equivalent criterion in [16, Proposition 1.2.6] and check conditions for all proper
torsion free quotient sheaves of F .

Let G be a torsion free proper quotient sheaf of F and denote ˜G = L0π
∗G. Factor

˜G by torsion subsheaf T and torsion free quotient sheaf G ′:

0 → T → ˜G → G ′ → 0.

Since G = R0π∗˜G is torsion free and R0π∗T is torsion, the sheaf R0π∗T = 0.
Now consider the following commutative diagram with exact rows (taking ˜E, E ′ as
corresponding kernels):

0 ˜E ˜F ˜G 0

0 E ′
˜F G ′ 0.

Pushing-forward the first row along π induces the exact sequence

0 → R0π∗ ˜E → F → G → R1π∗ ˜E → 0.

Since F → G is surjective, one gets R1π∗ ˜E = 0. In addition, the diagram induces
the short exact sequence

0 → ˜E → E ′ → T → 0.
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Therefore, we have π∗ ˜E ∼= R0π∗ ˜E ∼= R0π∗E ′, which is the kernel of the quotient
map F → G. It also implies that R1π∗E ′ ∼= R1π∗T , which is nonzero unless T = 0.

As a torsion free proper quotient sheaf, the sheaf G is of rank 1. Thus sheaves
G ′, E ′ are also of rank 1. By [13, Proposition 1.1 and Corollary 1.4], the sheaf E ′
is reflexive and thus locally free of rank 1. Since hF (t) = hG(t) + hR0π∗E ′(t), the
stability condition 1

2hF (t) < hG(t)holds if andonly ifhR0π∗E ′(t) < 1
2hF (t). Since the

support of R1π∗E ′ is zero-dimensional, the difference hπ∗E ′ − hR0π∗E ′ = −hR1π∗E ′
is a constant. Therefore, it is enough to show that the coefficient of degree 1 term of
hπ∗E ′ is less than that of 1

2hF , which is 5.
Recall that ˜F is defined by the extension (3.2). Then the composition E ′ → ˜F →

O
˜X (h) is either 0 or injective. Thefirst case implies that E ′ is a subsheaf ofO(−K

˜X−h)

with torsion quotient sheaf. Since the leading coefficient of the Hilbert polynomial of
a sheaf is always positive, one has hπ∗E ′(t) ≤ hπ∗O(−K

˜X−h)(t) < 1
2hF (t). Otherwise,

we have E ′ = O(h − C) for some effective divisor C . Because ˜F is the nontrivial
extension, C = 0. Furthermore, the map E ′ → ˜F → O

˜X (h) → O(−K
˜X − h)[1]

being 0 implies that

Ext1(E ′,O(−K
˜X − h)) = H1(O(−K

˜X − 2h + C)) = 0. (4.2)

By calculation, we have

2hπ∗E ′(t) = 5t2 + (11 + 2C · K
˜X )t + 6 − 2h · C + C2 + C · K

˜X .

Assume the coefficient of degree 1 term of hπ∗E ′(t) is greater than or equal to 5. Then
C · K

˜X = 0 and it implies that C is a nonnegative Z-linear combination of classes
h − e1 − e2 − e3 and ei − ei+1, 1 ≤ i ≤ 3. It is easy to check that C2 < 0 and
C · (−K

˜X −2h) ≤ 0. Hence, H0(OC (−K
˜X −2h+C)) = 0. Consider the short exact

sequence

0 → O(−K
˜X − 2h) → O(−K

˜X − 2h + C) → OC (−K
˜X − 2h + C) → 0.

It induces 0 → H1(O(−K
˜X − 2h)) = k → H1(O(−K

˜X − 2h + C)), which
contradicts (4.2). ��
Lemma 4.2 Let G be a sheaf on X obtained as the iterated extension of a collection
of torsion free semistable sheaves {G0, . . . ,Gm}. Assume that the reduced Hilbert
polynomials hGi /rank(Gi ) are equal for all i . Then G is semistable.

Proof Denote a = hGi /rank(Gi ). It suffices to prove for m = 1. Then we have the
short exact sequence

0 → G1 → G → G0 → 0.

As the extension, the sheaf G is also torsion free with reduced Hilbert polynomial
a. Assume G is not semistable. Then from Harder-Narasimhan filtration, there exists
a semistable subsheaf F of G such that b := hF/rank(F) > a. Since b > a, by
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semistability, the composition F ↪→ G → G0 is zero. Thus, F is a subsheaf of G1,
which contradicts to the assumption that G1 is semistable. ��
Lemma 4.3 Let G ∈ Db(X). Let x ∈ X be a smooth point. Recall that F,Q are vector
bundles constructed from (3.4), (3.11), we have

χ(F,G) = χ(OX ,G) + χ(OX ,G(KX )) − 2χ(Ox ,G),

χ(Q,G) = 2χ(OX ,G) + 3χ(OX ,G(KX )) − 5χ(Ox ,G).

Proof Since π∗ : Db(˜X) → Db(X) is essentially surjective, there exists ˜G ∈
Db(˜X) such that G = π∗˜G. The adjunction implies that χ(F,G) = χ(F, π∗˜G) =
χ(π∗F, ˜G) = χ(˜F, ˜G). Similarly, one has χ(Q,G) = χ(P, ˜G). Let x̃ ∈ ˜X be the
pointwith image x = π(̃x). The constructions of ˜F,P provide the following equations
of Chern characters:

ch(˜F) = ch(O
˜X (h)) + ch(O

˜X (−K
˜X − h)) = 2 − K

˜X + 1

2
Ox̃

= ch(O
˜X ) + ch(O

˜X (−K
˜X )) − 2ch(Ox̃ ),

ch(P) = ch(O
˜X (h)) +

∑4

i=1
ch(O

˜X (ei − K
˜X − h)) = 5 − 3K

˜X + 5

2
Ox̃

= 2ch(O
˜X ) + 3ch(O

˜X (−K
˜X )) − 5ch(Ox̃ )

Hence, Hirzebruch-Riemann-Roch implies that χ(F,G) = χ(˜F, ˜G) = χ(O
˜X , ˜G) +

χ(O
˜X (−K

˜X ), ˜G) − 2χ(Ox̃ , ˜G). Applying the adjunction again yields the result and
the argument for the second equation is similar. ��
Lemma 4.4 Let G be a semistable sheaf on X whose Hilbert polynomial is hd(t) for
d = 2, 3.

(i) If d = 2, then G ∼= F;
(ii) If d = 3, then G ∼= π∗O(D) with D ∈ {h, ei − K

˜X − h, 1 ≤ i ≤ 4}.
Proof Note that Q is a vector bundle of rank 5 with hQ = 5h3 and it is constructed
from iterated extensions of stable sheaves π∗O(D) with D ∈ {h, ei − K

˜X − h, 1 ≤
i ≤ 4}. By Lemma 4.2,Q is semistable. Moreover, as rank 1 sheaf,OX is stable with
hOX (t) = 5

2 t
2 + 5

2 t + 1.
(i) d = 2: First we show that G ∈ A2. By Lemma 3.4, we need to prove that

Ext∗(G,OX ) = Ext∗(Q,G) = 0. Since h3(t) > 1
2h2(t) > hOX (t), by semistability,

Hom(Q,G) = Hom(G,OX ) = 0.

Since 1
2h2(t) > h3(t − 1) and hOX (t) > 1

2h2(t − 1),

Hom(G,Q(KX )) = Hom(OX ,G(KX )) = 0.

By Serre Duality [23, Proposition 2.6],

Ext2(Q,G) = Ext2(G,OX ) = 0.
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Note that Exti (G,OX ) = H2−i (G(KX ))∗ and Exti (Q,G) = Hi (Q∗ ⊗ G) where ()∗
is the dual. Hence, the Ext groups are zero for i > 2. To show that G ∈ A2, it remains
to see that

χ(G,OX ) = χ(G(KX )) = h2(−1) = 0

and

χ(Q,G) = 2χ(G) + 3χ(G(KX )) − 5 · rank(G) = 2h2(0) + 3h2(−1) − 5 · 2 = 0,

which follows from the above lemma and the fact that the leading coefficient of hG =
h2 is 5

2 rank(G).
Since G ∈ A2 = 〈F〉 = Db(k) and as a pure sheaf, G is concentrated in degree 0,

G is a direct sum of F . Thus, hG = hF = h2 implies that G ∼= F . The proof for (ii) is
similar. ��
With the preparation of lemmas above, the same proof in [23, Theorem 4.5] gives

Theorem 4.5 Let Md(X), d ∈ {2, 3} be the moduli spaces of Gieseker semistable
sheaves on X with Hilbert polynomials hd(t) with respect to −KX . ThenMd(X) are
fine moduli spaces. Moreover,

(i)M2(X) ∼= Spec(k) and the vector bundle F is the universal family;
(ii)M3(X) ∼= Z as in Theorem 3.5 and the vector bundleQ is the universal family.

5 Global generation

We use the same notation as Sect. 3 and prove that the rank 2 vector bundle F is
globally generated. First, we provide a useful vanishing lemma.

Lemma 5.1 Let V be a surface with an isolated singular point v, which is of An type.
Let f : ˜V → V be the minimal resolution and E = f −1(v) be the exceptional locus.
Then E = E1 + · · · + En is a chain of (−2)-curves. Let O(D) be an invertible sheaf
on ˜V with degrees di = D · Ei , 1 ≤ i ≤ n. If for some l ∈ {1, . . . , n}, dl ≥ −1 and
di ≥ 0 for i = l, then R1 f∗O(D) = 0.

Proof For p ≥ 1, define E(p) = ˜V ×V Spec(Ov/m
p
v ) where mv is the maxi-

mal ideal of the local ring Ov at the point v. By theorem of formal functions,
H1(E(p),OE(p) (D)) = 0 for all p ≥ 1 implies R1 f∗O(D) = 0. By Theorem 4
in [1], one has E(p) = pE = pE1 + · · · + pEn . We will prove the vanishing of
H1(E(p),OE(p) (D)) inductively.

First let l = 1. It is clear that H1(E1,OE1(D)) = 0 and assume that
H1(W ,OW (D)) = 0 forW = mE1+· · ·+mEi+(m−1)Ei+1+· · ·+(m−1)En,m ≥
1, n ≥ i ≥ 1. Let Z = W + Ei+1 and identify En+1 = E1. We have the short exact
sequence

0 → OEi+1(D − W ) → OZ (D) → OW (D) → 0.
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There are 3 different cases: if 1 ≤ i ≤ n−2, then Ei+1 ·(D−W ) = Ei+1 ·D−1 ≥ −1;
if i = n − 1, then Ei+1 · (D − W ) = Ei+1 · D + m − 2 ≥ −1; if i = n, then
Ei+1 · (D − W ) = Ei+1 · D + m ≥ 0. Therefore, H1 of the first sheaf is 0 and we
have H1(Z ,OZ (D)) = 0.

In the argument above, the vanishing of H1 is proved by adding divisors in the
order of E1, . . . , En . In the general case, the same proof applies by changing the order
to El , . . . , En, El−1, . . . , E1. ��
Lemma 5.2 Let π : ˜X → X be the minimal resolution. Then

(i) π∗O˜X (h) is globally generated, R1π∗O˜X (h) = 0 and

hi (O(h)) =
{

3, i = 0
0, i = 0

;

(ii) R1π∗O(−K
˜X − h) = 0, π∗O(−K

˜X − h) is globally generated and

hi (O(−K
˜X − h)) =

{

2, i = 0
0, i = 0

;

(iii) F and thus ˜F = π∗F are globally generated and

hi (X , F) = hi (˜X , ˜F) =
{

5, i = 0
0, i = 0

.

Moreover, det(˜F) = O(−K
˜X ) and det(F) = O(−KX ).

Proof (i) Let f : ˜X → P
2 be the blow up of 4 points x1, . . . , x4. Pulling back the

Euler sequence on P
2 along f , we get

0 → f ∗�P2(h) → O3
˜X

→ O
˜X (h) → 0.

The restriction of f ∗�P2(h) on �i j is trivial and on �i jl is O ⊕ O(−1). Therefore,
by Lemma 5.1, R1π∗ f ∗�P2(h) = 0 and the Euler sequence implies that π∗O(h) is
globally generated. The vanishing of R1π∗O˜X (h) is similar and the computation of
hi is straightforward.

(ii) Lemma 5.1 implies that R1π∗O(−K
˜X − h) = 0. Let li j ∈ |h − ei − e j | be

the (−1)-curve and li ∈ |h − ei | be the strict transform of the line passing through
the point xi (if they exist). Note that h0(O(li )) = 2, h p(O(li )) = 0 when p = 0 and
h0(O(li j )) = 1, h p(O(li j )) = 0 when p = 0 . The computation of hi (O(−K

˜X − h))

depends on the singular type of X :
For (I.1) (II.1) (III.1), use

0 → O(h − e3 − e4) = O(l34) → O(−K
˜X − h) → Ol12 → 0.

For (IV.1), use further

0 → O(h − e2 − e4) → O(h − e3 − e4) → O�23(−1) → 0,
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0 → O(l14) → O(h − e2 − e4) → O�12(−1) → 0

which imply that hi (O(h − e3 − e4)) = hi (O(l14)). Similarly, for the case (V.1), we
have hi (O(h − e3 − e4)) = hi (O(l12)).

For (I.2) (II.2) (IV.2), use

0 → O(h − e4) = O(l4) → O(−K
˜X − h) → O�123(−1) → 0.

For (III.2), use further

0 → O(l3) → O(h − e4) → O�34(−1) → 0

which implies that hi (O(h − e4)) = hi (O(l3)). Similarly, for the case (V.2), we have
hi (O(h − e4)) = hi (O(l1)).

For (II.3), use

0 → O(h − e2) → O(−K
˜X − h) → O�134(−1) → 0,

0 → O(l1) → O(h − e2) → O�12(−1) → 0.

Similarly for (IV.3), use

0 → O(h − e3) → O(−K
˜X − h) → O�124(−1) → 0

and hi (O(h − e3)) = hi (O(l1)).
For cases (*.1), we deduce that O(−K

˜X − h) is base-point free because it has
sections:

(I.1) l12 + l34 and l13 + l24;
(II.1) l12 + l34 and l13 + l14 + �12;
(III.1) l12 + l34 and 2l13 + �12 + �34;
(IV.1) l12 + l14 + �12 + �23 and C1;
(V.1) 2l12 + �12 + 2�23 + �34 and C2.

Here C1,C2 ∈ | − K
˜X − h| = |2h − e1 − e2 − e3 − e4| are conics. The kernel of

the evaluation map O2
˜X

→ O(−K
˜X − h) is reflexive and thus an invertible sheaf.

Therefore, we have

0 → O(K
˜X + h) → O2

˜X
→ O(−K

˜X − h) → 0.

Moreover, R1π∗O(K
˜X + h) = 0 by Lemma 5.1 and thus π∗O(−K

˜X − h) is globally
generated.

For the rest cases, from the computation above, we haveπ∗O(−K
˜X −h) = π∗O(li )

for some i . Since O(li ) is base-point free, the short exact sequence coming from
extending the evaluation map

0 → O(−li ) → O2
˜X

→ O(li ) → 0
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plus R1π∗O(−li ) = 0 imply that π∗O(li ) is globally generated.
(iii) It is clear that det(˜F) = O(−K

˜X ) and thus det(F) = π∗π∗ det(F) =
π∗ det(˜F) = O(−KX ). The rest follows from (i)(ii). ��

6 Galois descent

Let k be an arbitrary field with the separable closure ks . Let  = Gal(ks/k) be the
absolute Galois group. Let Y be a projective variety over k. Denote the base extension
to ks by Yks = Y ×k ks . Fix a projective varietyW over k. We say Y is a twisted form of
W if there is a ks-isomorphism φ : Wks → Yks . Twisted forms of W are classified by
the first Galois cohomology H1(k,Autks (Wks )) = H1(,Autks (Wks )) [29, III §1.3].

In detail, the correspondence is given as follows.Wks and Yks have a natural Galois
action with  acting on the factor ks . For σ ∈ , define aσ = φ−1 ◦ σ ◦ φ ◦ σ−1.
Then aσ ∈ Autks (Wks ) is a 1-cocycle, i.e. aστ = aσ

σaτ ( acts on Autks (Wks ) by
inner automorphisms). The form Y corresponds to the cocycle class [aσ ]. A different
choice of φ produces the same cocycle class. Conversely, for a 1-cocycle class, choose
a 1-cocycle representative aσ ∈ Autks (Wks ). Define an associated twisted -action on
Wks by sending (σ, x) ∈ ×Wks to aσ (σ (x)). Since aσ is a 1-cocycle, aστ (στ(x)) =
aσ σ (aτ )(στ(x)) = aσ σ (aτ τ (x)). Thus, we indeed obtain a -action. Taking the
invariants of this twisted action, we obtain Y = (Wks )

 as a twisted form of W over
k. A different choice of the cocycle representative produces an isomorphic form.

Let A be a central simple k-algebra. Write SBr (A) for the generalized Severi-
Brauer variety, which by definition is the variety of right ideals of dimension r deg A
over k. It is a twisted form of Grassmannians because for a vector space V , one has
SBr (End(V )) ∼= Gr(r , V ). For more details, see [20, I §1].

Lemma 6.1 Let Y be a projective variety over k. Let l be a Galois extension of k and
G = Gal(l/k) be its Galois group. Let Yl = Y ×k l be the field extension equipped
with the natural G-action. The following are equivalent:

(i) There exists a morphism f : Y → SBr (A) over k where A is a central simple
k-algebra that splits over l, i.e. A ⊗k l = End(W ) for some vector space W over l.

(ii) There exists a G-invariant globally generated vector bundle N of rank r on Yl
such that one can choose, for each σ ∈ G, an isomorphism φσ : σ N → N over Yl
satisfying φσ

σ φτφ
−1
στ ∈ l× ⊂ AutYl (N ) for any σ, τ ∈ G (the inclusion is given by

multiplying elements of l×). Here σ N denotes the pull-back of N along σ : Yl → Yl .
Moreover, given (ii), if the global section H0(Yl , N ) has dimension n, then A can

be chosen to have degree n and N is the pull-back of a vector bundle on Y if and only
if the Brauer class [A] ∈ Br(k) is trivial.

Proof Given f : Y → SBr (A), after field extension, we obtain a G-invariant mor-
phism f ×k l : Yl → Gr(r ,W )whereW is a vector space over l. LetR be the universal
subbundle of Gr(r ,W ) and denote its dual by R∗. Then H0(Gr(r ,W ),R∗) = W ∗
and Hom(R∗,R∗) = l. We check that N = ( f ×k l)∗(R∗) is the required vector
bundle in (ii).

Clearly, the vector bundle N is globally generated of rank r . There is a natu-
ral map Aut(W ) → Aut(Gr(r ,W )) which factors through PGL(W ) and the form
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SBr (A) corresponds to the image of [A] under the induced map H1(G,PGL(W )) →
H1(G,Aut(Gr(r ,W ))). Since R∗ is invariant under Aut(W ), we have R∗ and thus
N are G-invariant. Therefore, there are isomorphisms ψσ : σR∗ → R∗ for σ ∈ G.
Because Hom(R∗,R∗) = l, one has ψσ

σ ψτψ
−1
στ ∈ l× for σ, τ ∈ G. The isomor-

phisms φσ can be chosen to be the pull-backs of ψσ along f ×k l.
Conversely, given (ii), isomorphisms φσ : σ N → N correspond to isomor-

phisms ϕσ : N → σ∗N and they induce l-automorphisms bσ = H0(ϕσ ) on
V ∗ = H0(Yl , N ). The condition τbσbτb−1

τσ = φσ
σ φτφ

−1
στ ∈ l× implies that elements

aσ ∈ Aut(Gr(r , V )) induced by bσ ∈ Aut(V∗) form a 1-cocycle. We equip Gr(r , V )

with the twisted G-action associated to aσ . Let g : Yl → Gr(r , V ) be the morphism
induced by the surjection V ∗ ⊗l OYl → N . By construction, it is G-invariant and thus
descends to f : Y → SBr (A). Note that A ⊗k l = End(V ). Hence, the degree of A
is equal to the dimension of V ∗ = H0(Yl , N ).

Finally, [A] ∈ H1(G,PGL(V )) is the Brauer class induced by bσ . If N is the
pull-back of a vector bundle on Y , then the isomorphisms φσ can be chosen such
that φσ

σ φτφ
−1
στ = 1. Thus, [A] is trivial. On the other hand, if [A] is trivial, then

A = Mn(k) and SBr (A) = Gr(r , n). Now regard R as the universal subbundle of
Gr(r , n) over k. Then N is the pull-back of f ∗(R∗) on Y . ��
Now let X be a quintic del Pezzo surface over k with rational Gorenstein singularities
and let π : ˜X → X be its minimal resolution. Theorem 1 of [7] states that every
geometrically rational surface is separably split. In our case, it indicates that ˜Xks is the
blow-up of P2 at 4 points as in §2.1 and Xks is obtained by contracting (−2)-curves on
˜Xks . Since the assumption of the base field k being algebraically closed is only placed
to make X split, all previous results apply to Xks as well. Recall that there is a rank 2
vector bundle F = πks∗ ˜F on Xks defined by (3.2) and (3.4).

Lemma 6.2 Vector bundles ˜F and F are Galois invariant.

Proof Note that F = πks∗ ˜F and the map πks is Galois invariant. Thus, the Galois
invariance of F follows from that of ˜F . By the semiorthogonal decomposition (3.1),

we have 〈˜F〉 = ˜A2 = ⊥
˜A1 ∩ ˜A3

⊥ = ⊥O
˜Xks

∩ ˜A3
⊥
. The structure sheaf O

˜Xks
is

certainly Galois invariant and thus it suffices to show that ˜A3 is Galois invariant. We
will achieve this by proving that the set {O(h),O(ei − K

˜Xks
− h), 1 ≤ i ≤ 4} is

stable under Aut(˜Xks ), i.e. automorphisms permute elements of the set. The action of
Aut(˜Xks ) on Pic(˜Xks ) preserves K˜Xks

and inner product. By Theorem 23.9 of [25], it
suffices to check that the set is stable under the Weyl group of the root system R =
K ⊥̃

Xks
⊂ Pic(˜Xks )⊗ZR. It is straightforward to check that the reflections corresponding

to simple roots ei − ei+1, 1 ≤ i ≤ 3, h − e1 − e2 − e3 permute the set. ��
Lemma 6.3 The vector bundle F on Xks descends to X. That is, F is the pull-back of
a vector bundle on X along the natural projection p : Xks → X.

Proof From the previous lemma, F is Galois invariant. Moreover, Hom(F, F) = ks
because F is an exceptional object. Thus, F is a vector bundle satisfying Lemma 6.1
(ii) and we have a morphism f : X → SB2(A) where A is a central simple k-algebra
of degree 5. Since X is rational (mentioned in the introduction), SB2(A)(k) = ∅. [20,
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Proposition 1.17] indicates that the index of A divides 2. Being of degree 5, it forces
A to be split and thus F descends. ��
Lemma 6.4 Let X be a quintic del Pezzo surface over k with rational Gorenstein
singularities. Let N be a rank 2 vector bundle on X with det(N ) = OX (−KX ) and a
surjection map O⊕5

X → N. We have the following commutative diagram:

X Gr(2, 5)

P
5

P
9

f

g h

i

where f , g are induced by the surjection O⊕5
X → N and the linear system of det(N )

respectively and h is the Plücker embedding. Then f is injective and X = Gr(2, 5) ∩
P
5 ⊂ P

9. By symmetry of Gr(2, 5) ∼= Gr(3, 5), the same result holds if N is of rank
3.

Proof The map f is injective because i ◦ g is. Let J be the ideal of X in P9. The short
exact sequences

0 → J → OP9 → OX → 0

twisted with OP9(1),OP9(2) imply h0(J (1)) = 4, h0(J (2)) = 39. Moreover, among
the 39-dimensional family of quadrics containing X , 34-dimension are from degen-
erate quadrics. On the other hand, Gr(2, 5) is the intersection of 5 nondegenerate
quadrics in P9. By [14, Theorem 4.4(i)], X is the intersection of 5 quadrics in P5. This
implies that X = Gr(2, 5) ∩ P

5. ��
In §7.2, we provide two constructions for realizing a quintic del Pezzo surface X as

a linear section of Gr(2, 5). By the theory of HPD, Db(X) can be described explicitly
given that the dual linear section of X has the expected dimension. We verify below
that the dual linear section does have the expected dimension.

Let V5 be a 5-dimensional vector space over k and V ∗
5 be the dual vector space. Let

W6 be a 6-dimensional subspace of
∧2 V5 and define W⊥

6 := ker(
∧2 V ∗

5 → W ∗
6 ) as

its orthogonal.

Lemma 6.5 Set X := Gr(2, V5) ∩ P(W6) inside P(
∧2 V5) and Y := Gr(2, V ∗

5 ) ∩
P(W⊥

6 ) inside P(
∧2 V ∗

5 ). If dim X = 2 and X has rational Gorenstein singularity,
then dim(Y ) = 0.

Proof The assumption implies that X is a rational Gorenstein quintic del Pezzo
surface such that X ↪→ P(W6) is the anticanonical embedding. By [14, Proposi-
tion 4.2(i)], there exists a 5-dimensional W5 ⊂ W6 such that the hyperplane section
C := Gr(2, V5) ∩P(W5) of X is a smooth elliptic curve. Thus, the dual linear section
C ′ := Gr(2, V ∗

5 ) ∩ P(W⊥
5 ) is also a smooth elliptic curve by [9, Proposition 2.24].

Since Y is a hyperplane section of C ′, dim(Y ) = 0. ��
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7 Quintic del Pezzo fibrations

Let k be an arbitrary field and k̄ be the algebraic closure.

Definition 7.1 Let f : X → S be a flat morphism over k. The map f is a quintic del
Pezzo fibration if for any point s ∈ S, the fiber Xs is a quintic del Pezzo surface with
rational Gorenstein singularities. Denote the geometric fiber over the point s ∈ S by
Xs̄ .

As is the case in Appendix B of [23], we can consider the moduli stack DP5 of
singular quintic del Pezzo surfaces. It is the fibered category over the category of
schemes over a field k whose fiber over a k-scheme S is the groupoid of all quintic del
Pezzo fibrations over S in the above sense. Theorem B.1 in loc. cit. also proves the
following fact.

Proposition 7.2 The moduli stack DP5 is a smooth Artin stack of finite type over k.

Note that combining with the base change of semiorthogonal decompositions (Propo-
sition 2.3), it suffices to prove Theorem 1.1 when the base S is a smooth variety.

7.1 Moduli space approach

Let Md(X /S), d ∈ {2, 3} be the relative moduli space of semistable sheaves on
fibers of f : X → S with Hilbert polynomial hd(t) defined by (4.1). Comparing with
Theorem 4.5, similar results hold for relative moduli spaces as well.

Proposition 7.3 For d ∈ {2, 3},Md(X /S) are fine moduli spaces. Let Ed be the
universal families of Md(X /S). Then

(i)M2(X /S) ∼= S and E2|Xs̄ is the vector bundle F;
(ii) g : M3(X /S) ∼= Z → S is flat and finite of degree 5. View E3 as a sheaf on X

via the finite morphism X ×S Z → X . The geometric fiber of g is the scheme Z and
E3|Xs̄ is the vector bundle Q.

Moreover, Ed is flat overMd(X /S) and is a locally free sheaf overX . In particular,
Ed has finite Tor-amplitude over Md(X /S) and finite Ext-amplitude over X .

Proof As with the sextic del Pezzo case [23, Proposition 5.3], there exist the coarse
moduli spacesMd(X /S) ∼= Zd and quasi-universal families Ed on the fiber products
X ×S Zd . The Brauer obstructions βd ∈ Br(Zd) for the coarse moduli spaces to be
fine and the quasiuniversal familes to be universal have orders dividing the greatest
common divisor of the values of hd(t).

Note that by construction, the (coarse)moduli spaces, (quasi-)universal families and
Brauer obstructions are compatible with the base change. The claims for the geometric
fiber of g and Ed |Xs̄ follow from Theorem 4.5. To prove (i)(ii), it remains to show that
the obstructions βd are trivial and g is flat. Clearly, the g.c.d of values of h3(d) is 1.
Thus, M3(X /S) is a fine moduli space. Since the fibers of g are of the same length
(= 5), i.e. g∗OZ is locally free, Z is Cohen Macauley by [11, Corollary 18.17] and g
is flat by [26, Theorem 23.1].
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Let η be the generic point of S. Because S is regular integral, the restriction map
j : Br(S) → Br(k(η)) is injective. ByLemma6.3, the vector bundle F onXη̄ descends
to Xη. The Brauer obstruction j(β2) is trivial. Hence, β2 is trivial andM2(X /S) is a
fine moduli space as well.

The rest follows from [23, Lemma 5.7]. The original argument for the locally
freeness of Ed was not clear to us.We give a revised proof as follows. Let s ∈ S, x ∈ Xs

be points. Denote inclusions by i : x r
↪→ Xs

t
↪→ X . BecauseMd(X /S) are flat over S,

Ed are flat over S and t∗Ed = L0t∗Ed are corresponding vector bundles in (i)(ii). Then
i∗Ed = r∗t∗Ed = L0r∗L0t∗Ed implies that L0i∗Ed are vector spaces of dimension
independent of x and L1i∗Ed = 0. Hence, Ed are locally free over X . ��
Now we are ready to give the proof of the main theorem.

Proof of Theorem 1.1 The proof is the same as Theorem 5.2 in [23]. The rough idea is
that 〈Db(S), Db(S), Db(Z)〉 is an S-linear full semiorthogonal collection for Db(X )

because it is so for each geometric fiber by Theorem 3.5. In particular, the embeddings
of components are given by Fourier–Mukai functors with kernels OX , E2, E3, which
have finite Tor-amplitudes over S, S,Z respectively and finite Ext-amplitudes over X
byProposition 7.3.Hence, the finiteness of cohomological amplitudes of the projection
functors and the compatibility with the base change follow from Proposition 2.3. ��

7.2 Homological projective duality approach

Given a flat family of quintic del Pezzo surfaces f : X → S as in Definition 7.1, X
can be realized as a linear section of a Grassmannian bundle over S. We give two such
constructions as follows.

7.2.1 First construction

Let us first go back to the case of a single quintic del Pezzo surface. Let X be a quintic
del Pezzo surface with rational singularities over an arbitrary field k. Sections 5 and 6
indicate that on X there is a rank 2 globally generated vector bundle with determinant
OX (−KX ) and global sections of dimension 5 (base changed to the algebraic closure
of k, this is the vector bundle F defined by (3.4)). Hence, X = P

5 ∩ Gr(2, 5) by
Lemma 6.4. This construction can be generalized to a family because this vector
bundle has another unique property: it is the only (semi)stable sheaf on X whose
Hilbert polynomial is h2(t) (Lemma 4.4(i)). Therefore, the universal family E2 of the
fine moduli space M2(X /S) induces

X = PS(( f∗ω−1
X /S)

∗) ×S GrS(2, ( f∗E2)∗) ⊂ PS

(

2
∧

( f∗E2)∗
)

(7.1)

where ω−1
X /S is the relative anticanonical sheaf. Define L⊥ as the kernel

0 → L⊥ →
2

∧

f∗E2 → f∗ω−1
X /S → 0
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and Z ′ as the corresponding dual linear section of GrS(2, f∗E2), i.e.

Z ′ = PS(L⊥) ×S GrS(2, f∗E2) ⊂ PS

(

2
∧

f∗E2
)

.

Theorem 7.4 Let k be the base field and char(k) = 2, 3. Let f : X → S be a
quintic del Pezzo fibration as in Definition 7.1 and denote by g′ : Z ′ → S the
fibration constructed above. Then we obtain a semiorthogonal decomposition same
as Theorem 1.1. In particular, g′ = g : Z ′ ∼= Z → S.

Proof By construction and Lemma 6.5, each fiber of g′ : Z ′ → S has length 5 and
thus g′ is flat and finite of degree 5. We will use the special version of Homological
Projective Duality introduced in [24], in particular, the relative version of Example 6.1
in loc.cit.. In order to do so, we need a Lefschetz type semiorthogonal decomposition,
which is given by Proposition A.3 and a relative version of this decomposition also
holds by arguments in [28, §3]. This implies that we have an S-linear semiorthogonal
decomposition

Db(X ) = 〈Db(Z ′), f ∗Db(S) ⊗ ω−1
X /S, f ∗Db(S) ⊗ E2 ⊗ ω−1

X /S〉
= 〈 f ∗Db(S) ⊗ OX , f ∗Db(S) ⊗ E2, Db(Z ′)〉
= 〈Db(S), Db(S), Db(Z ′)〉.

(7.2)

The second equality is obtained by applying the Serre functor − ⊗ ωX /S[dimX −
dim S] to the last two components. The embeddings of the components are given by
Fourier–Mukai functors with kernels OX , E2 and E ′ respectively. Moreover, E ′ has
finite Tor-ampiltude overZ ′ and finite Ext-amplitude overX . Therefore, the finiteness
of cohomological amplitudes and compatibility of the base change follow by the same
reason as before.

Finally, the decomposition (7.2) is exactly the same as the one obtained by the
moduli space approach. Comparing these two decompositions, we notice that there is
an S-linear equivalence Db(Z ′) � ⊥〈 f ∗Db(S), f ∗Db(S)⊗E2〉 � Db(Z). ByMorita
equivalence, one gets Z ′ ∼= Z over S and thus the kernels for the embedding functors
are also isomorphic, i.e. E ′ ∼= E3. ��

7.2.2 Second construction

Let X be a quintic del Pezzo surface with rational Gorenstein singularities over an
arbitrary field k. Let X → P

5 be the anticanonical embedding and I be the ideal of
X in P

5. One can compute that I (2) is globally generated with h0(P5, I (2)) = 5.
Therefore, we have a rank 3 vector bundle N∗

X/P5
(2) = I/I 2(2) with determinant

OX (−KX ) and a surjection O⊕5
X → N∗

X/P5
(2). Define F ′ as the cokernel

0 → NX/P5(−2) → O⊕5
X → F ′ → 0. (7.3)
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Then F ′ is a rank 2 vector bundle with determinant OX (−KX ). Again, we obtain
X = P

5 ∩Gr(2, 5) by F ′ and this construction can be generalized to a family as well.
For a family f : X → S, let I be the ideal sheaf of the anticanonical embeddingX ↪→
PS(( f∗ω−1

X /S)
∗) over S and NX /PS be the normal bundle. Letm : PS(( f∗ω−1

X /S)
∗) → S

be the projection. Then we have the short exact sequence

0 → NX /PS (−2) → f ∗(m∗I(2))∗ → F ′ → 0 (7.4)

where O(1) = ω−1
X /S and F ′ is the rank 2 vector bundle defined as the cokernel.

Similarly, we have the linear section structure for X and the dual linear section g′′ :
Z ′′ → S :

X = PS(( f∗ω−1
X /S)

∗) ×S GrS(2,m∗I(2)) ⊂ PS

(

2
∧

m∗I(2)

)

,

0 → L′⊥ →
2

∧

(m∗I(2))∗ → f∗ω−1
X /S → 0,

Z ′′ = PS(L′⊥) ×S Gr(2, (m∗I(2))∗) ⊂ PS

(

2
∧

(m∗I(2))∗
)

. (7.5)

Theorem 7.5 Let k be the base field and char(k) = 2, 3. Let f : X → S be a
quintic del Pezzo fibration as in Definition 7.1 and denote by g′′ : Z ′′ → S the
fibration constructed above. Then there is an S-linear semiorthogonal decomposition
compatible with the base change

Db(X ) = 〈Db(S), Db(S), Db(Z ′′)〉 (7.6)

with embeddings of the components given by Fourier Mukai functors with kernels
OX ,F ′, E ′′.

7.2.3 The two constructions coincide in characteristic 0

In this section, we assume char(k) = 0.
Previously we described two constructions for realizing the flat family of quintic

del Pezzo surfaces f : X → S as a linear section of a Grassmannian bundle over S.
The first one uses the universal family E2 of the fine moduli spaceM2(X /S) and the
second one uses the rank 2 vector bundle F ′ defined by (7.4). We prove in this section
that they produce the same construction. More precisely, we will prove that

(A) F ′ is the universal family of M2(X /S). Equivalently, F ′ defined by (7.3) is
a stable sheaf with Hilbert polynomial h2(t) (By Lemma 4.4(i), F ′̄

k
∼= F where F is

defined by (3.4).).
(B) In (7.4), (m∗I(2))∗ ∼= f∗F ′ and the map f ∗(m∗I(2))∗ → F ′ is the evaluation

map. Equivalently, the map O⊕5
X → F ′ in (7.3) is the evaluation map H0(X , F ′) ⊗k

OX → F ′.
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First note that as a linear section of Gr(2, 5), a quintic del Pezzo surface X with
rational Gorenstein singularities is a projective l.c.i. scheme. Therefore, Hirzebruch-
Riemann-Roch still holds for X [12, Corollary 18.3.1]. One computes the Hilbert
polynomial with respect to −KX for a vector bundle E on X as follows:

hE (t) := χ(E(−t KX ))

= K 2
X
2 rk(E)t2 +

(

K 2
X
2 rk(E) − c1(E).KX

)

t

+ ∫

X
c1(E)2−2c2(E)−c1(E).KX

2 + ∫

X
K 2
X+c2(TX )

12 rk(E)

(7.7)

where TX = T
P5 |X − NX/P5 is the virtual tangent bundle. In particular, 1 = χ(OX ) =

hOX (0) = ∫

X
K 2
X+c2(TX )

12 implies that
∫

X c2(TX ) = 7.

Lemma 7.6 hF ′(t) = hF (t) = h2(t) = 5t2 + 10t + 5.

Proof TX = T
P5 |X − NX/P5 and the sequence (7.3) imply that c2(NX/P5)+ c2(TX )+

c1(NX/P5)c1(TX ) = c2(TP5 |X ) and c2(NX/P5(−2))+c2(F ′)+c1(NX/P5(−2))c1(F ′) =
0. Thus,

∫

X c2(NX/P5) = 43 and
∫

X c2(F ′) = 2. By the equation (7.7), we have
hF ′(t) = 5t2 + 10t + 5. ��

[14, Proposition 4.2(i)] indicates that there is a smooth elliptic curve C ∈ | − KX |
on X which does not meet the singular locus of X .

Proposition 7.7 Let M be a rank 2 vector bundle on X with determinant OX (−KX ).
If M |C is indecomposable on C, then M is Gieseker stable with respect to −KX .

Proof It suffices to prove the lemma when the base field k is algebraically closed.
Let π : ˜X → X be the minimal resolution. Then C can be embedded into ˜X and
C ∈ | − K

˜X |. Recall that π∗F = ˜F . Restricting the sequence (3.2) to C , one gets

0 → OC (−K
˜X − h) → F |C → OC (h) → 0. (7.8)

The short exact sequence

0 → O
˜X (−2h) → O

˜X (−K
˜X − 2h) → OC (−K

˜X − 2h) → 0

induces the exact sequence H1(˜X ,O
˜X (−2h)) = 0 → H1(˜X ,O

˜X (−K
˜X − 2h)) =

k → H1(C,OC (−K
˜X−2h)) = k. Hence, the sequence (7.8) is a nontrivial extension.

We claim that F |C is a stable rank 2 bundle onC , that is, for any line bundle L onC ,
deg(L) < deg(F |C )/rk(F |C ) = 5/2. This is true because either L is a subbundle of
OC (−K

˜X − h) or a nontrivial subbundle ofOC (h) (since the extension is nontrivial).
Thus, deg(L) ≤ deg(OC (−K

˜X − h)) = 2 or deg(L) < degOC (h) = 3. As a stable
bundle, F |C is indecomposable on C .

By assumption, hM (t) = 5t2+10t+ constant. Let E be a rank 1 saturated subsheaf
ofM , i.e. the quotientG := M/E is torsion free.By [13, Proposition1.1], E is reflexive
and thus E |C is a line bundle. Consider the short exact sequence

0 → E(KX ) → E → E |C → 0.
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The first map is injective because E is torsion free. Let hE (t) = 5
2 t

2 + bt + c. Then
χ(E⊗OC (−t KX )) = hE (t)−hE (t−1) = 5t+b− 5

2 . By Riemann-Roch, it is equal
to 5t + deg(E |C ). Thus, b = deg(E |C ) + 5

2 . If b < 10
2 = 5, then hE (t) < 1

2hM (t)
and M is stable.

Note that ker(E |C → M |C ) ∼= ker(G(KX ) → G) ∼= 0 because G is torsion free.
We have a short exact sequence

0 → E |C → M |C → G|C → 0.

By [2, Theorem 7], an indecomposable vector bundle on a smooth elliptic curve is
determined by its determinant when the rank and degree of the bundle are coprime.
Since rk(M |C ) = 2 and deg(M |C ) = deg(OC (−KX )) = 5 and the same is true for
F |C , we have M |C ∼= F |C . In particular, M |C is stable on C and thus deg(E |C ) < 5

2 .
The result follows. ��
Remark 7.8 The proof works for any characteristic and it gives another proof for F to
be stable.

Lemma 7.9 F ′|C and NX/P5 |C are indecomposable on C.

Proof The surjectionO⊕5
C → F ′|C realizes C as P4 ∩Gr(2, 5). Then on Gr(2, 5), we

have an exact Kozsul complex

0 → OGr(−5) → · · · → OGr(−1)⊕5 → OGr → OC → 0.

LetR∗ be the dual of the universal subbundle of Gr(2, 5). Then F ′|C ∼= R∗|C . Let
E := R ⊗ R∗. Since char(k) = 0, E ∼= Sym2(R∗)(−1) ⊕ OGr. By Bott’s Theorem
[31, Corollary 4.1.9], H j (Gr(2, 5),Sym2(R∗)(−i)) = 0 for all j and 1 ≤ i ≤ 6.
Then the Koszul complex implies that End(F ′|C ) ∼= H0(C, E |C ) ∼= H0(C,OC ) = k.
Hence, F ′|C is indecomposable. A similar computation proves the claim for NX/P5 |C .
��
Corollary 7.10 F ′̄

k
∼= F.

Proof Results above show that F ′ is a stable sheaf with Hilbert polynomial h2(t) and
the claim follows from Lemma 4.4(i). ��
This concludes part (A) and now we will prove part (B).

Lemma 7.11 ThemapO⊕5
X → F ′ in (7.3) is the evaluation map H0(X , F ′)⊗kOX →

F ′.

Proof Since h0(X , F ′) = h0(Xk̄, F) = 5, it is equivalent to show that the induced
map H0(X ,O⊕5

X ) → H0(X , F ′) is an isomorphism. Assume the image of the map
has dimension l. Then O⊕5

X → F ′ factors through the surjection O⊕l
X → F ′ and

K := ker(O⊕l
X → F ′) is a direct summand of NX/P5(−2). Since F ′ is not a trivial

bundle, l ≥ 3. If l < 5, then K is a proper direct summand and thus NX/P5(−2) is
decomposable. But by Lemma 7.9, this is impossible. ��
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Theorem 7.12 Let f : X → S be a flat family of quintic del Pezzo surfaces over k as
in Definition 7.1. Let O(1) = ω−1

X /S and m : PS(( f∗O(1))∗) → S be the projection.
Let I be the ideal sheaf of the anticanonical embedding X → PS(( f∗O(1))∗) and
NX /PS be the normal bundle. LetF ′ be the rank 2 vector bundle defined by (7.4). Then

(i)F ′ ∼= E2 is the universal family ofM2(X /S) (up to the pull-back of a line bundle
onM2(X /S)).

(ii) (m∗I(2))∗ ∼= f∗F ′ and the map f ∗(m∗I(2))∗ → F ′ is the evaluation map. In
particular, we have a short exact sequence

0 → NX /PS (−2) → f ∗ f∗E2 → E2 → 0

(iii) The linear section structures constructed in (7.1) and (7.5) are isomorphic.
Hence, Theorem 7.4 and 7.5 are the same. In particular, g′′ = g′ = g : Z ′′ ∼= Z ′ ∼=
Z → S.

Proof Note that by definition there is a natural map (m∗I(2))∗ → f∗F ′. (i)(ii) follow
from the results on fibers of f and (iii) is a consequence of (i)(ii). ��
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Appendix A: Grassmannians in arbitrary characteristic

Let k be an arbitrary field and V be a k-vector space of dimension n. Let R be the
universal subbundle of Gr(r , V ) of rank r andR⊥ be the kernel of the evaluation map
OGr(r ,V ) ⊗k V ∗ → R∗. We call α = [α1, . . . , αn] a weight if all αi ∈ Z. A weight α
is dominant if α1 ≥ · · · ≥ αn and is a partition if in addition αn ≥ 0. For a partition
α, it corresponds to a Young diagram with αi boxes in the i-th row. Write α′ for the
Young diagram transposed to α and |α| = ∑

i αi for the degree. Denote the Schur and
Weyl functors by Lα, K α respectively and when α is a partition, they are defined by

LαV = im

⎛

⎝

⊗

i

α′
i

∧

V
a∨−→ V⊗|α| s−→

⊗

i

Symαi V

⎞

⎠ ,

http://creativecommons.org/licenses/by/4.0/
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K αV = im

⎛

⎝

⊗

i

Dαi V
s∨−→ V⊗|α| a−→

⊗

i

α′
i

∧

V

⎞

⎠

where Dαi V is the divided power and a, s are antisymmetrization and symmetrization
maps respectively. In general, if α is only dominant, then LαV is defined by L ᾱV ⊗k
∧−αn V ∗ where ᾱ = [α1 − αn, . . . , αn−1 − αn, 0] and K α is defined similarly. [6,
Lemma 2.2] implies that for a dominant weight α,

Lα1,...,αn V ∗ = (K αV )∗ = L−αn ,...,−α1V .

In positive characteristic, Borel–Weil–Bott’s theorem is only partially valid. Kempf
vanishing theorem suggests that for dominant weights γ = [γ1, . . . , γr ], β =
[β1, . . . , βn−r ], if γr ≥ β1, then

Hi (Gr(r , V ), LγR∗ ⊗ LβR⊥) =
{

Lγ1,...,γr ,β1,...,βn−r V ∗ i = 0
0, i > 0

(A.1)

We will point out that in fact, the proof of Proposition 1.4 in [6] provides the
following algorithm for some additional vanishing of cohomologies:

Proposition A.1 Let P = P
n−r
k andN be the kernel of the evaluation mapOn−r+1

P
→

OP(1), i.e. N = �P(1). If all cohomologies H•(P,OP(γr ) ⊗ LβN ) vanish, then
Hi (Gr(r , V ), LγR∗ ⊗ LβR⊥) = 0 for all i .

In particular, it indicates that [17, Lemma 3.2(a)] still holds in arbitrary characteristic.
But Lemma 3.2(b) in loc.cit. may not be true in positive characteristic.

Corollary A.2 Let γ = [γ1, . . . , γr ]. Suppose γ1 ≥ . . . γr ≥ −(n − r). Then

Hi (Gr(r , V ), LγR∗) =
⎧

⎨

⎩

0, i > 0
0, i = 0, γr < 0
Lγ V ∗, i = 0, γr ≥ 0

From now on, we will focus on the case dimk V = 5. In arbitrary characteristic, it
is unclear whether the collection

〈O,R∗,O(1),R∗(1),O(2),R∗(2),O(3),R∗(3),O(4),R∗(4)〉 (A.2)

is semiorthogonal because it requires Lemma 3.2(b) in [17]. We will prove below
that it is actually a full exceptional collection of Gr(2, 5) in large characteristic by
producing the collection from Kapranov’s collection via right mutations.

Assume char(k) = 0 or ≥ 5. From [6, Lemma 7.7], one has

(R∗)⊗2 = Sym2R∗ ⊕ O(1), (R∗)⊗3 = Sym3R∗ ⊕ (R∗(1))⊕2 (A.3)
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and for each decomposition, there are no RHom between their direct summands. In
particular, we have

R∗ ⊗ Sym2R∗ = Sym3R∗ ⊕ R∗(1). (A.4)

There is a semiorthogonal decomposition [6, Corollary 7.8]

Db(Gr(2, V ))

= 〈O,R∗,O(1),Sym2R∗,R∗(1),Sym3R∗,O(2), (Sym2R∗)(1),R∗(2),O(3)〉.

We perform the following right mutations:
(i) Move Sym3R∗ to the rightmost and it becomes O(4);
(ii) Move Sym2R∗ towards right past O(3) and it becomes R∗(3);
(iii) Move (Sym2R∗)(1) to the rightmost and it becomes R∗(4).
Note that we have R = R∗(−1),

∧2
(R⊥)∗ = R⊥(1) and a short exact sequence

0 → R⊥ → V ∗ ⊗k O → R∗ → 0 (A.5)

which induces filtrations

0 → N →
2

∧

V ∗ ⊗k O →
2

∧

R∗ = O(1) → 0, (A.6)

0 →
2

∧

R⊥ = (R⊥)∗(−1) → N → R⊥ ⊗ R∗ → 0 (A.7)

and a short exact sequence

0 → R → V ⊗k O → (R⊥)∗ → 0 (A.8)

which induces filtrations

0 → M →
2

∧

V ⊗k O →
2

∧

(R⊥)∗ = R⊥(1) → 0, (A.9)

0 →
2

∧

R = O(−1) → M → R ⊗ (R⊥)∗ → 0. (A.10)

Below we give details for each step of right mutations. All diagrams are commuta-
tive with exact rows and columns. We denote coevaluation maps by coev.
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(i.1): From direct computations, we have RHom(Sym3R∗,O(2)) = 0 and
RHom(Sym3R∗, (Sym2R∗)(1)) = H0(Gr(2, V ),R∗) = V ∗. Right mutations of
the triple (Sym3R∗,O(2), (Sym2R∗)(1)) is (O(2), (Sym2R∗)(1), K1) where K1 is
described as follows:

0 0

0 Sym3R∗ R ⊗ Sym2R∗(1) = R∗ ⊗ Sym2R∗ R∗(1) 0

0 Sym3R∗ V ⊗ Sym2R∗(1) K1 0

(R⊥)∗ ⊗ Sym2R∗(1) (R⊥)∗ ⊗ Sym2R∗(1)

0 0

coev

(A.11)

The first row comes from the decomposition (A.4). The middle row is the sequence
defining K1. The middle column is (A.8) tensoring with (Sym2R∗)(1).

(i.2) The middle row of (A.11) implies RHom(K1,R∗(2)) = ∧2 V ∗. Right muta-
tion of the pair (K1,R∗(2)) is (R∗(2), K2) with K2 described as follows:

0 0

K1 K1

0 M ⊗ R∗(2)
∧2 V ⊗ R∗(2) R⊥ ⊗ R∗(3) 0

0 (R⊥)∗(2) K2 R⊥ ⊗ R∗(3) 0

0 0

coev

(A.12)

The middle column is the sequence defining K2. The middle row is (A.9) tensoring
withR∗(2). The first column is the middle column below:
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0 0

0 R∗(1) K1 (R⊥)∗(1) ⊗ Sym2R∗ 0

0 R∗(1) M ⊗ R∗(2) (R⊥)∗(1) ⊗ (R∗)⊗2 0

(R⊥)∗(2) (R⊥)∗(2)

0 0

(A.13)

The first row is the last column from (A.11). The second row is (A.10) tensoring with
R∗(2). The last column comes from the decomposition of (R∗)⊗2 tensoring with
(R⊥)∗(1).

(i.3)Comparing the last rowof (A.12)with (A.7), onehas K2 = N (3). The sequence
(A.6) implies that the right mutation of (K2,O(3)) is (O(3),O(4)).

(ii.1) RHom(Sym2R∗,R∗(1)) = H0(Gr(2, V ),R∗) = V ∗. Right mutation of
(Sym2R∗,R∗(1)) is (R∗(1), L) with L described as follows:

0 0

0 Sym2R∗ R ⊗ R∗(1) = (R∗)⊗2 O(1) 0

0 Sym2R∗ V ⊗ R∗(1) L 0

(R⊥)∗ ⊗ R∗(1) R ⊗ (R⊥)∗(2)

0 0

coev

(A.14)

Thefirst rowcomes from the decomposition of (R∗)⊗2. Themiddle row is the sequence
defining L . The middle column is (A.8) tensoring withR∗(1).

(ii.2) Comparing the last column of (A.14) with (A.10), one has L = M(2) and
thus RHom(L,O(2)) = ∧2 V ∗. The sequence (A.9) tensoring withO(2) implies that
the right mutation of (L,O(2)) is (O(2),R⊥(3)).
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(ii.3) RHom(R⊥(3), (Sym2R∗)(1)) = RHom(R⊥(3),R∗(2)) = 0. The sequence
(A.5) tensoring with O(3) implies that the right mutation of (R⊥(3),O(3)) is
(O(3),R∗(3)).

(iii) follows from (ii.1-3).
One should note that it is important that we have direct sum decompositions

(A.3)(A.4), namely the factors of the natural filtrations of (R∗)⊗2, (R∗)⊗3 and
R∗ ⊗Sym2R∗ are in fact direct summands. On one hand, it enables us to make coho-
mological computations involving Sym3R∗. On the other hand, the argument above
uses the short exact sequences coming from the splitting maps of the filtrations several
times. Thus, one would expect that the collection (A.2) may not be semiorthogonal in
characteristic 2 or 3. We summarize the result below.

Proposition A.3 Let k be a field and char(k) = 2, 3. Then Gr(2, 5) over k has a
semiorthogonal decomposition (of rectangular Lefschetz type)

Db(Gr(2, 5)) = 〈O,R∗,O(1),R∗(1),O(2),R∗(2),O(3),R∗(3),O(4),R∗(4)〉

where R is the universal subbundle of rank 2.
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