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Abstract
We look at how one can construct from the data of a dimer model a Lagrangian sub-
manifold in (C∗)n whose valuation projection approximates a tropical hypersurface.
Each face of the dimer corresponds to a Lagrangian disk with boundary on our tropi-
cal Lagrangian submanifold, forming a Lagrangian mutation seed. Using this we find
tropical Lagrangian tori LT 2 in the complement of a smooth anticanonical divisor of
a toric del-Pezzo whose wall-crossing transformations match those of monotone SYZ
fibers. An example is worked out for the mirror pair (CP

2\E,W ), X̌9111. We find a
symplectomorphism of CP

2\E interchanging LT 2 and a SYZ fiber. Evidence is pro-
vided that this symplectomorphism is mirror to fiberwise Fourier–Mukai transform
on X̌9111.
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1 Introduction

1.1 Homological mirror symmetry and tropical geometry

Tropical geometry plays an important role in mirror symmetry, a duality proposed in
[10] between symplectic geometry on a space X , and complex geometry on a mirror
space X̌ . A proposed mechanism for constructing pairs of mirror geometries comes
from SYZmirror symmetry [37] where X and X̌ have dual Lagrangian torus fibrations
over a common affine manifold Q.

X X̌

Q

val

ˇval

From this viewpoint, mirror symmetry is recovered by degenerating the symplectic
geometry of X and complex geometry of X̌ to tropical geometry on the base Q. In the
complex setting, this degeneration was studied by [24,27], where a correspondence
between the valuations of complex curves (called the amoeba) and tropical curves
was established. More recently, tropical-Lagrangian correspondences have been con-
structed in the parallel works of [19,26,28,30]. These papers show that for a given
tropical curve V ⊂ Q there exists a Lagrangian submanifold L(V ) ⊂ X with val(X)

approximating V .
Amore precise relation of these two geometries is the homologicalmirror symmetry

conjecture of [22]. This predicts that Lagrangian submanifolds of X and complex
submanifolds of X̌ should be compared as objects via a mirror functor between the
categories Fuk(X) and Db Coh(X̌). An expectation is that homological and SYZ
mirror symmetry interact by relating Lagrangian torus fibers of val : X → Q to
skyscraper sheaves of points on X̌ , and sections of the Lagrangian torus fibration to
line bundles of X̌ .

This intuition was used in [1] which proved that the Fukaya–Seidel category
Fuk((C∗)n,W�) is equivalent to Db Coh(X̌�), the derived category of coherent
sheaves on a mirror toric manifold. This was achieved by using tropical geometry
to construct Lagrangian sections of val : (C∗)n → R

n , and to show that these were
mirror to line bundles on X̌� . In [19], it was shown that the tropical-Lagrangian and
tropical-complex correspondences are compatible with thismirror functor, in the sense
that when a tropical hypersurface V is approximated by ˇval(D) for a divisor D, the
Lagrangian L(V ) is mirror to the sheafOD . This extends the relation between homo-
logical and SYZ mirror symmetry to sheaves beyond line bundles and skyscrapers of
points.
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1.2 Wall-crossings and Lagrangianmutation

Lagrangian submanifolds have a moduli as objects of the Fukaya category. For exam-
ple, the moduli space of Lagrangian torus fibers of the SYZ fibration equipped with
local systems is expected to be the mirror space X̌ . A hands-on approach to under-
standing this moduli space is to build complex coordinate charts. These coordinate
functions are locally constructed using the flux homomorphism between SYZ fibers,
where the flux is weighted by the local systems. An expectation is that Gromov–Witten
potential, a weighted count of holomorphic disks with boundary on these Lagrangian
tori, gives a holomorphic function on the moduli space. A first example are the product
tori in C

2, which bound two holomorphic disks, and whose GW potential is given by
the sum of the two standard flux coordinates.

The presence of bubbling of holomorphic disks in families of Lagrangians leads
to a difficulty in this theory where a discontinuity appears in the disk counts used
to construct the GW potential. In [5] these discontinuities are explained in terms
of a wall-crossing correction which describes how such bubblings can be appropri-
ately incorporated into the flux coordinates on the space. For example, the monotone
Chekanov and product tori in C

2 are related by a Lagrangian isotopy which exhibits
one of these wall-crossing corrections.

This technique inspired [41] to produce examples of non-Hamiltonian isotopic
monotone Lagrangians in toric del-Pezzos. These Lagrangians are constructed by
Lagrangian isotopies where wall-crossing occurs; thus the Lagrangians have related
(but not equal) holomorphic disk counts. This distinguishes the Hamiltonian isotopy
classes of these Lagrangian submanifolds. A framework for this story was developed
by [33], which showed that Lagrangians constructed via Lagrangian mutation (a kind
of Lagrangian surgery presented in [18]) had disk counts which were related by a
wall-crossing transformation. The examples considered in [41] were shown to be
constructed via this Lagrangian mutation process.

1.3 Statement of main results

The goal of this paper is to extend the constructions of [19] to Lagrangian fibrations
X → Q which are almost toric (and so may admit some fibers with singularities). In
doing so, we shed some light on questions laid out in [26, section 6.3] regarding the
homological mirror symmetry interpretation of monotone tropical Lagrangian tori in
toric del-Pezzos.

This paper first provides an alternate description of the tropical Lagrangian subman-
ifolds from [19] using the combinatorics of dimers (classically, an embedded bipartite
graph G ⊂ T 2). To a dimer we construct an exact Lagrangian in (C∗)n whose val-
uation projection lies near a tropical curve (Definition 3.1.4, Corollary 3.1.10). The
argument projection arg : (C∗)n → T n of this Lagrangian is related to the dimer ini-
tially chosen. We can find a set of Lagrangian mutations based on the combinatorics
of the dimer graph.

Lemma (Dimer-Mutation Correspondance, Restatement of 3.3.2) Let L be a
Lagrangian described by the dimer G ⊂ T 2. Suppose a face f of G has bound-
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ary satisfying the zero weight condition (Definition 3.1.6). Then we can construct
another Lagrangian by mutation, μD f L, whose argument projection can be explicitly
described by another dimer.

This motivates the construction of tropical Lagrangian submanifolds inside of toric
del-Pezzos. In the case where dimC(X) = 2, the singular fibers of a toric fibration
X → Q can be chosen to be of a particularly nice form.We then call Q an almost-toric
base diagram, which has the structure of a tropical manifold. We show that tropical
curves V ⊂ Q meeting the discriminant locus of Q admissibly admit Lagrangian
lifts L(V ) ⊂ Q. We then use this to construct some tropical Lagrangian tori in toric
del-Pezzos. As Lagrangian tori, these are interesting because in the complement of an
anticanonical divisor they are not isotopic to those constructed in [41].

Theorem (Restatement of 4.1.3, 5.1.1) Let X be a toric del-Pezzo. Let E ⊂ X be
a smooth anticanonical divisor chosen so that there is an SYZ fibration X\E → Q
obtained from pushing in the corners of the Delzant polytope. There exists a tropical
Lagrangian torus LT 2 ⊂ X\E which is not isotopic to Fq , the fiber of the moment
map. Furthermore both LT 2 and Fq bound matching configurations of Lagrangian
antisurgery disks, giving them matching Lagrangian mutations.

The observation that there exists a correspondence between the antisurgery disks
with boundary on LT 2 and Fq suggests that, although they represent different objects
in the Fukaya category, there is autoequivalence of the Fukaya category interchanging
theLagrangians LT 2 and Fq . Furthermore,we show that a variation of this construction
works more generally whenever one has a certain kind of Lagrangian mutation seed.

We look tomirror symmetry for whymutation configurations (like those considered
by Vianna in toric Fanos) give tropical Lagrangian tori, and restrict to the example of
X = CP

2. The mirror to CP
2\E is known to be X̌9111, an extremal rational elliptic

surface. There is an automorphism of Db Coh(X̌9111) (a fiberwise Fourier–Mukai
transform) which interchanges the moduli of points with the moduli of degree 0 line
bundles supported on the elliptic fibers. Provided that a generation result for the Fukaya
category of CP

2\E is known, we can state what LT 2 is as an object of the Fukaya
category.

Theorem (Restatement of 5.3.2, 5.3.8) There exists a symplectomorphism g :
(CP

2\E)→ (CP
2\E) interchanging LT 2 to Fq .With Assumption 5.3.6, LT 2 is mirror

to a line bundle supported on an elliptic fiber of X̌9111.

1.4 Outline of construction

We now outline the rest of this paper, focusing on the construction of the Lagrangian
LT 2 , its surgery disks, and the symplectomorphism g : CP

2\E → CP
2\E . Sec-

tion 2 starts with some necessary background and notation. In Sect. 2.1, we look at
Lagrangian surgery, antisurgery, and mutations. These are the tools which we use to
build tropical Lagrangian submanifolds and to describe the Lagrangian mutation phe-
nomenon which becomes the focus of inquiry. Section 2.2 reviews tropical geometry
on affine manifolds, with an emphasis on dimension two.
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(a)
(b)

(c)

Fig. 1 Lagrangians projected to the SYZ fiber, Lefschetz fibration base, and SYZ base

Section 3 extends the results of [19] to construct tropical Lagrangian submanifolds
from the data of a dimer. This involves giving a definition for a dual-dimer (Defini-
tion 3.0.2) in higher dimensions as a collection of polytopes {�◦v}, {�•w} in the torus
T n whose vertices have a matching condition imposed on them (see Fig. 1a). We show
that such a collection of polytopes corresponds to a tropical hypersurface in R

n . In
Sect. 3.1 we construct from this collection of polytopes a Lagrangian whose valuation
projection lies nearby the corresponding tropical hypersurface, and whose argument
projection matches the dual dimer. Section 3.2 is a slight detour from themain focus of
the paper to provide a combinatorial model for the Floer-theoretic support of a tropical
Lagrangian in terms of the Kasteleyn operator (similar to the computation in [39] for
microlocal sheaf theory).

The Lagrangian mutation story is introduced in Sect. 3.3, where we show that
each face of the dimer builds a Lagrangian antisurgery disk on the corresponding
Lagrangian. These faces arise as sections of the argument projection over the com-
plement of the polytopes in the dual dimer. We additionally show that Lagrangian
mutation across these disks can be understood as a modification of the underlying
combinatorial dimer. See Fig. 1a.

In Sect. 4, we generalize beyond tropical Lagrangians in (C∗)n to tropical
Lagrangians in almost toric fibrations. We show that a tropical curve in an almost toric
base diagram has a Lagrangian lift by constructing a local model for the Lagrangian
lift near the discriminant locus. In dimension 2, we prove that deformations of tropical
curves lift to Lagrangian isotopies of their Lagrangian lifts.

Lemma (Nodal Trade for Tropical Lagrangians) The local models for Lagrangian
submanifolds in Fig. 1b are Lagrangian isotopic.

This lemma becomes a convenient tool for constructing isotopies of Lagrangian sub-
manifolds, and is based on a method in used in [4] to compare Lagrangians inside of
Lefschetz fibrations. Both the lifting and isotopies of tropical curves are achieved by
modeling a node in the almost toric base diagram with a Lefschetz fibration. Trop-
ical Lagrangians are described in these neighborhoods as Lagrangian surgeries of
Lagrangian thimbles.
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In Sect. 5we apply the tropical lifting construction from the previous section to build
tropical Lagrangian tori in toric del-Pezzos disjoint from an anticanonical divisor (see
Fig. 1c). The vertex of the tropical Lagrangian is modeled on a dimer. A computation
shows that the mutation directions of this dimer match the ones known from [33,42].
This constructs the tropical Lagrangian tori from the first theorem.

Finally, in Sect. 5.2 we present an in-depth example of homological mirror sym-
metry for the example of CP

2\E following [3]. The main observation is that we may
choose E to be a member of the Hesse pencil of elliptics, which has a large amount
of symmetry. Using this observation, we take g : CP

2\E → CP
2\E to be a pencil

automorphism which fixes E , but switches its meridional and longitudinal directions.
The Lagrangian LT 2 is compared to a Lagrangian in a neighborhood of E using the
mutation and nodal-trade operation for tropical Lagrangians. It is then observed that
Fq , a fiber of the SYZ fibration, also may be isotoped so that it too lives near E . In a
neighborhood of E , we see that g interchanges these two Lagrangians.We also present
LT 2 as a surgery of Lagrangian thimbles which are expected to generate the Fukaya
category of CP

2\E , which characterizes the mirror object to LT 2 in Db Coh(X̌9111).

2 Some background

2.1 Lagrangian surgery andmutations

Lagrangian surgery is a tool for modifying a Lagrangian along its self intersection
locus. It was introduced by [32] in the case where a Lagrangian is immersed with
transverse self-intersections. In this setting, a neighborhood of the transverse inter-
section is replaced with a Lagrangian neck. We will be using two similar notions of
surgery. One extension is antisurgery along isotropic surgery disks [18].

Theorem 2.1.1 [18] Suppose that Dk is an isotropic disk with boundary contained
in L and cleanly intersecting L along the boundary. Then there exists an immersed
Lagrangian αD(L) ⊂ X called the Lagrangian antisurgery of L along D, which
satisfies the following properties

• αD(L) is topologically obtained by performing surgery along Dk,
• αD(L) agrees with L outside of a small neighborhood of Dk,
• If L was embedded and disjoint from the interior of Dk, then αD(L) has a single
self-intersection point.

When we perform antisurgery of an embedded Lagrangian along a Lagrangian disk
Dn the resulting Lagrangian has a single self-intersection.1 There exists a choice of
surgery neck so that the resolution of the self-intersection of αDn (L) by Lagrangian
surgery is L . However, ifwe choose aLagrangian surgery neck in the opposite direction
of the disk Dn to combine antisurgery with surgery, we can obtain a new embedded
Lagrangian.

1 The notation αD(L) is chosen as the character α results from applying antisurgery on the character c.
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Definition 2.1.2 (Adapted from [33,Definition4.9]). Let L be an embeddedLagrangian
submanifold, and Dn a surgery disk. Let αD(L) be obtained from Dn by antisurgery.
The mutation of L along Dn is the Lagrangian μD(L) obtained from αD(L) by
resolving the resulting single self-intersection point with the opposite choice of neck.

It is expected that Lagrangians submanifolds which are related by mutation give
different charts on the moduli space of Lagrangian submanifolds in the Fukaya cat-
egory, and that these charts are related by a wall crossing formula [33]. A typical
example of Lagrangians related by mutation are the Chekanov and Clifford tori in C

2

obtained by taking two different resolutions of the Whitney sphere.
The second variation of Lagrangian surgery that we use is surgery along a non-

transverse intersection with a particular collared neighborhood. This surgery replaces
two Lagrangians with one in a neighborhood of their symmetric difference.

Proposition 2.1.3 Let L0 and L1 be two Lagrangians with boundary. Let U ⊂ L0 be
an open neighborhood of L0∩L1. Suppose there exists a choice of collar neighborhood
for the boundary of U

∂U × (0, t0)t ⊂ U

and a function f : U → R with the following properties:

• On the collar, f depends only on the t variable, is decreasing and convex, and
f (t0) = t0.

• The function vanishes on the complement of ∂U × (0, t0)t
• In a sufficiently small Weinstein neighborhood B∗c U, the Lagrangian L1|B∗c U is
the graph of the section d f .

Then there exists a Lagrangian L0#
r ,s
U L1 satisfying the following properties:

• L0#
r ,s
U L1 lives in a small neighborhood of the symmetric difference (L0 ∪

L1)\(L0 ∩ L1)) ⊂ X.
• There exists aLagrangian cobordism (in the sense of [6]) K : (L0, L1) � L0#ε

U L1

The Hamiltonian isotopy class of L0#
r ,s
U L1 is dependent on the choice of profile func-

tions r : R>t0/2 → R, s : R>t0/2 → R, whose properties are given in [19, Proposition
3.1].

The proof is analogous to the proof for the case whenU is contractible presented in
[19, Proposition 3.1.]. When we only need the Lagrangian isotopy class of L0#

r ,s
U L1,

we will drop the decorations of the profile functions and write L0#U L1.

2.2 Affine and tropical geometry

We summarize a description of these tropical manifolds from [14].

Definition 2.2.1 An integral tropical affine manifold with singularities is a manifold
with boundary Q containing an open subset Q0 such that

• Q0 is an integral affine manifold with an atlas whose transition functions are in
SL(Zn) � R

n .
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• � := Q\Q0, the discriminant locus, is codimension 2
• ∂Q ⊂ Q can be locally modelled after a SL(Zn) � R

n coordinate change on
R
n−k × R

k≥0.

Wewill be interested in tropicalmanifoldswhere the discriminant locus additionally
comes with some affine structure. A tropical manifold is a pair (Q,P), where P is a
polyhedral decomposition of Q. For a full definition of the data of a tropical manifold
(Q,P), we refer the reader to [14, Definition 1.27], and provide a short summary
here. The vertices of this polyhedral decomposition are decorated with fan structures
which are required to satisfy a compatibility condition so that the polyhedra may be
glued with affine transitions across their faces. The compatibility need not extend
to affine transitions in neighborhoods of the codimension 2 facets of the polyhedra,
giving rise to the discriminant locus, a union of a subset of the codimension 2 faces.
This determines the affine structure on Q0 completely. We call such a manifold an
integral tropical manifold if all of the polyhedra are lattice polyhedra. For most of the
examples that we consider, Q will be real 2-dimensional, and the notions of tropical
manifold and tropical affine manifold agree with each other.

2.2.1 Almost toric base diagrams

The majority of our focus will be in dim(Q) = 2, where there is a graphical notation
for describing the affine geometry on Q and correspondingly the symplectic geometry
of the 4-dimensional symplectic manifold X [25,36]. To describe the affine struc-
ture on Q, we describe the monodromy around the singular fibers. This can be done
diagrammatically with the following additional data.

Definition 2.2.2 Let (Q,P) be a 2-dimensional tropical manifold. Let Q0 be the set
of singular points. At each point qi ∈ Q0 we define the eigenray Ri ⊂ Q to be the
ray in the base starting at qi pointing in the eigendirection of the monodromy around
qi . A base diagram is a map from Q\⋃i Ri to R

2 with the standard affine structure,
with eigenrays marked with a dashed line at each singularity. We decorate the points
qi with the marker ×k , where the monodromy around qi is a k-Dehn twist.

The Lagrangian fibers Fq of X → Q can be described by the points in the base
diagram.

• If a point q ∈ Q\R has a standard affine neighborhood, then Fq is a Lagrangian
torus.
• If the point q ∈ Q\R has an affine neighborhood modelled on R×R≥0 then fiber

Fq is an elliptic fiber of corank 1, corresponding to an isotropic circle in X .
• If the point q ∈ Q\R has an affine neighborhood modelled on R≥0 × R≥0, the
fiber Fq is an elliptic fiber of corank 2, which is simply a point in X .
• If a point q ∈ Q\R belongs to the discriminant locus, then the fiber is a Whitney
sphere (if k = 1) or a plumbing of Lagrangians spheres (if k > 1).

The nodal slide, nodal trade, and cut transfer are operationswhichmodify the affine
structure of a base diagram Q but correspond to symplectomorphisms of X → Q.
The nodal trade modifies a base diagram by replacing an elliptic corank 2 fiber with
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Fig. 2 The nodal trade applied three times to the toric diagram of CP
2. The toric divisor given by a nodal

elliptic curve is transformed into a smooth symplectic torus

a nodal fiber in the neighborhood of an elliptic corank 1 fiber. This replaces a corner
with a nodal fiber whose eigenline points in the balancing direction to the corner. See
Fig. 2.

2.2.2 Tropical differentials

In the setting where Q = R
n , a tropical hypersurface is defined via the critical locus of

a tropical function φ : Q → R. However, in the general setting of tropical manifolds
there are sets which are locally described by the critical locus of tropical functions
but cannot be globally described by a tropical function due to monodromy around
the singular fibers. Since the construction of tropical Lagrangians only requires the
differential of the tropical function, this is not problematic.

Definition 2.2.3 Let Q be a tropical manifold. The sheaf of tropical differentials on
Q0 is the sheaf �1

aff on the space Q0. It is given by the sheafification of the quotient:

�1
aff(U ) = {φ : U → R}/R

where φ : U → R is a piecewise linear function satisfying the following conditions:

• dφ ∈ T ∗
Z
U whenever dφ is defined,

• For every point q ∈ U there exists an integral affine neighborhood Bε(q) so that
the restriction φ|Bε (q) is concave.

The sheaf R here is the sheaf of constant functions. The sheaf of integral tropical
differentials is the subsheaf of constant sections of T ∗

Z
(Q0).

Let i : Q0 ↪→ Q be the inclusion. We define the sheaf of tropical sections2 to be
the quotient sheaf

dTrop := i∗(�1
aff)/i∗(T ∗ZQ0).

2 In [14], these are called piecewise linear affine multi-valued functions.
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(a) (b) (c)

Fig. 3 a An affine manifold Q with charts A, B and discriminant locus ×. b Contour plots of piecewise
linear concave functions defined over the two charts. The differ on overlaps by constants. c These two
functions give the data of a globally defined tropical differential on Q, whose locus of non-linearity is
drawn in red (Color figure online)

We will call the sections of this sheaf the tropical sections, and denote them φ ∈
dTrop(U ).3 Given a tropical section φ, we denote the locus of non-linearity as V (φ) ⊂
Q. Should φ have a representation in each chart by a smooth tropical polynomial, we
say that φ is smooth.

Remark 2.2.4 A point of subtlety: the quotient defining the sheaf of tropical sections
is performed over Q, not Q0. Importantly, while the presheaves

i∗(�1
aff)/prei∗(T ∗Z (Q\�))

i∗(�1
aff/preT

∗
Z
(Q\�))

agree, their sheafifications do not. In particular, the sheaf of tropical differentials
remember that in the neighborhood of the discriminant locus, the tropical section
must actually arise from a representative tropical differential.

The examples drawn in Figs. 3a–c and 4a illustrate how each component of Defini-
tion 2.2.3 is being used, and Fig. 4b gives an non-example demonstrating the relevance
of Remark 2.2.4.

When Q = R
n , there is no difference between the global sections of dTrop and the

differentials of global tropical polynomials.
Given a triple (Q,P, φ), one can construct a dual triple (Q̌, P̌, φ̌) using a process

called the discrete Legendre transform. Away from the boundary the basemanifolds Q
and Q̌ agree as topological spaces, however their affine structures differ at the singular
points. At the boundary these spaces are modified so that the non-compact facets of

3 This is an abuse of notation, as there may not be a globally defined function whose differential describes
this section. However, this will make the remainder of our discussion consistent with the notation used to
construct tropical Lagrangians.
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(a) (b)

Fig. 4 a An example of a tropical section defined over the affine torus. The affine torus is covered with
4 charts, and over each chart the tropical section is defined by a tropical differential (whose locus of
nonlinearity is drawn in red).Globally, there is no tropical differentialwith the specified locus of nonlinearity.
b A nonexample of a tropical section, from Remark 2.2.4. φA and φB define tropical differentials on A
and B respectively; after modding out by T ∗

Z
Q they assemble to a well defined section outside of the

discriminant locus. However, there is no tropical differential with prescribed locus of nonlinearity on any
chart containing the discriminant locus (Color figure online)

Q are compactified in Q̌ and vice-versa. The simplest example of this phenomenon
is when Q̌ = �� ⊂ R

2 is a compact polytope. The Legendre dual to Q̌ is the plane
Q = R

2, equipped with a fan decomposition whose non-compact regions correspond
to the boundary vertices of P̌ .

Given a tropical manifold Q, we can produce a torus bundle X0 = T ∗Q0/T ∗ZQ0
over Q0. This space X0 comeswith canonical symplectic and almost complex structure
arising from the affine structure on Q0. In good cases this compactifies to an almost
toric fibration X over Q. Similarly, we may produce a associated manifold X̌ over Q̌.
The pair of spaces X and X̌ are candidate mirror spaces. When Q is non-compact we
expect that Q is equipped with additional data in the form of a monomial admissibility
condition or stops in order to obtain a meaningful mirror symmetry statement. This
admissibility condition should be constructed by considering the open GromovWitten
invariants of F̌p. The computation of these invariants is beyond the scope of our
exposition, and we’ll be content with constructing our admissibility conditions in an
ad-hoc manner.

2.2.3 Some examples of tropical sections

A running example that we will use is the symplectic manifold CP
2\E . One can

construct an almost toric fibration for CP
2\E by starting with the toric base diagram

for CP
2. By applying nodal trades at each corner, we obtain a toric fibration val :

CP
2 → Q

CP
2 , where the boundary of Q

CP
2 is an affine S1 (see Fig. 2). The preimage

of val−1(∂Q
CP

2) = E ⊂ CP
2 is a symplectic submanifold isotopic to a smooth

cubic. CP
2\E is the total space of an almost toric fibration over interior of this set,

Q
CP

2\E = Q
CP

2\∂Q. The monodromy around the three singular fibers allows us to
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(a) (b) (c)

Fig. 5 Tropical subvarieties associated to some tropical sections on CP
2\E . b Locally is modelled on

Sect. 2.2.2 and Fig. 4a, b, as is (c) near the discriminant locus

construct some more interesting tropical sections of Q. We give three such examples
of these sections and their associated tropical subvarieties below.

• Tropical sections which have critical locus close to the boundary of Q
CP

2\E .
Figure 5a gives an example of such a section. Even though the critical locus
appears to have three corners, the affine coordinate change across the branch cuts
means that this critical locus is actually an affine circle.
• The example given in Fig. 5b is an example of a tropical section which does not
arise as the differential of a globally defined tropical function. The critical locus
terminates at the nodal point, and points in the direction of the eigenray of the
nodal point.
• Tropical sections which meet the singular fibers coming from admissible tropical
sections as in Fig. 5c. This gives us an example of a compact tropical curve in Q
of genus 1.

The examples above are typical of the kind of phenomenon which may occur for
tropical curves in affine tropical surfaces.

Definition 2.2.5 Let V ⊂ Q be a tropical curve in an affine tropical surface. We say
that V avoids the critical locus if V is disjoint from� and ∂Q. We say that the interior
of V avoids the critical locus if V is disjoint from ∂Q,and at each node q ∈ �, there
is a neighborhood Bε(q) so that the restriction of V ∩ Bε(q) is a ray parallel to the
eigenray of q.

3 Tropical Lagrangians from dimers

Wenow introduce a combinatorial framework generalizing some of the ideas discussed
in [26, Section 5.2], and the previous work of [11,35,39,40].

Definition 3.0.1 A dimer is an embedded bipartite graph G on T 2 so that V (G) =
V ◦ 
V •. A non-embedded dimer is a bipartite graph G on T 2. A zigzag configuration
for a dimer G is a set of transverse cycles � ⊂ C1(T 2) satisfying the following
conditions:

• Each connected component in T 2\� contains at most one vertex of G. These
connected components are called the dimer faces, and are indexed by V (G).
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(a) (b)

Fig. 6 An example of a dimer and associated bipartite graph

• Each edge of the dimer is transverse to every cycle. Each edge passes through
exactly one intersection point between 2 cycles.
• The oriented normals of the cycles point outward on the V ◦ dimer faces, and
inward on the V • dimer faces.

We will now restrict to the setting of dual dimers, where � is a collection of affine
cycles. Denote by [�] ⊂ H1(T 2) the set of homology classes of cycles in �. Note
that zig-zag configurations � satisfy a balancing condition

∑
[c]∈[�][c] = 0. It is the

case that for every set of homology classes [�] ⊂ H1(T 2) satisfying the balancing
condition, we can find a dimer whose zigzag collection � represents the homology
classes [�] [16]. However, it is not necessarily the case that we can find an affine
dimer with this property: see [12, Section 4]. A dimer picks out an oriented two chain
whose boundary is �. This is similar to the data used in [35]. More generally, we will
consider pairs of the following form:

Definition 3.0.2 A dual n-dimer is two finite collections of n-polytopes

{�◦v}, {�•w} ⊂ R
n

which satisfy the following properties.

• Each vertex set {�•/◦v }0 is a set of distinct points on the torus in the sense that
whenever w1, w2 ∈ {�◦v}0 and w1 ≡ w2 mod Z

n ,then w1 = w2.
• We require that these two vertex sets match after quotienting by the lattice,

{�◦v}0/Z
n = {�•w}0/Z

n .

• Let p1 ∈ �◦v1 be a vertex, and let p2 ∈ �•v2 be the corresponding vertex so that
p1 ≡ p2 mod Z

n . Let {e1, . . . , ek} be the edges of �◦v1 containing the vertex p1.
We require that the edges of �•v2 containing p2 point in the opposite directions
{−e1, . . . ,−ek}.

If the interiors of the �◦v and �•w are disjoint mod Z
n , we say that the dual dimer

configuration has no self-intersections.
From this data, we obtain a bipartite graph G ⊂ T n , whose vertices are indexed by

{�◦v} ∪ {�•w}, and whose edges are determined by which polytopes in the dual dimer
share a common vertex.
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We will usually index the polytopes by the vertices v•/◦ ∈ V ◦ 
 V • = V (G). The
edges of the bipartite graph are in bijection with {�◦v}0 = {�•w}0. The graph G need
not be embedded. If the polytopes {�•/◦v } are disjoint, then G can be chosen to be
embedded. A dual dimer prescribes the data of a n-chain in T n . Our requirement that
G is bipartite guarantees that this n-chain is oriented.

We now briefly explore some of the combinatorics of these dual dimers to produce
the data of a tropical hypersurface in R

n .

Claim 3.0.3 The edges of an dual dimer all have rational slope.

Proof Let e be an edge of �◦v , with ends on vertices p−, p+ ∈ {�•/◦v }0. From our
definition of a dual dimer, there exists an edge e− in some �•w which also has end
on p− and is parallel to e. By concatenating e− and e+, we obtain a line segment.
By repeating this process, we obtain an affine representative of a cycle in H1(T n, Z)

associated to each edge e. �

Claim 3.0.4 Let {�◦v}, {�•w} be a dual n-dimer. Let α be a facet of some �•v . Consider
T α ⊂ T n, the affine (n− 1) subtorus spanned by α. The set of (n− 1) polytopes �

•/◦
β

given by the facets of our original set of polytopes which satisfy

{�•β | β is a facet of �•, β ⊂ T α}
{�◦β | βis a facet of �◦, β ⊂ T α}

is the data of an (n − 1) dimer on T α .

By induction, we get the same result for all faces.

Corollary 3.0.5 Let α be a k-face of some �•v . Consider T α ⊂ T n, the affine sub-torus
spanned by α. The set of k polytopes given by the k-faces satisfying

{�•β | β is a k-face of �•, β ⊂ T α}
{�◦β | β is a k-face of �◦, β ⊂ T α}

is a dual k-dimer of T α .

Each of these k dimensional dual dimers gives the data of a k-chain in T α . We
denote these k-chains of T n ,

{Uβ | β is a k-face} ⊂ Ck(T
n, Z).

This can also be thought of an equivalence relation on the set of k-faces of the dual-
dimer, where two faces are equivalent if they define the same dual k-dimer chain.
A cone is the real positive span of a finite set of vectors. Given a cone V ⊂ R

n , a
subspace U ⊂ R

n , the U -relative dual cone of V is

V∨|U := {u ∈ U | 〈u, V 〉 ≥ 0}.

To each k-chain Uβ we can associate a cone in R
n .
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Definition 3.0.6 Let Uβ be a chain given by a face β ⊂ �
•/◦
v . Assume that we have

translated �
•/◦
v so that the origin is an interior point of the face β. Let Rβ be the affine

subspace generated by β. Let (Rβ)⊥ be the corresponding perpendicular subspace.
We define the dual cone to the face Uβ to be

Uβ :=
{

(R≥0 ·�•v)∨|(Rβ)⊥ If β belongs to a • polytope

−(R≥0 ·�◦v)∨|(Rβ)⊥ If β belongs to a ◦ polytope

Suppose that α and β are facets in the same dual k-dimer so that Uα = Uβ . Let
α ⊂ �•v , and suppose that β ⊂ �•w. After translating �•v and �•w so that 0 ∈ α and
0 ∈ β, we get an agreement of the cones R≥0 ·�•v = R≥0 ·�•w. Similarly, if γ ⊂ �◦u
and Uγ = Uα , then R≥0 ·�•v = −R≥0 ·�◦u . It follows that:
Claim 3.0.7 If Uα ⊆ Uβ , then Uα ⊇ Uβ

This also shows that the definition of the cone is really only dependent on the data of
the k-chain represented by the choice of face α, in that Uα = Uβ wheneverUα = Uβ .
Consider the polyhedral complex containing the subsetUβ . This complex satisfies the
zero tension condition, and therefore describes a tropical subvariety of R

n . We will
denote this tropical hypersurface by V , and the codimension-k strata of this tropical
hypersurface by V k .

3.1 Dimer Lagrangians

From thedata of a dimer,wenowconstruct aLagrangian inside of X = (C∗)n . The con-
struction of these Lagrangians are similar to the construction of tropical Lagrangians
in [19, sections 3.1, 3.2]. Let Q = R

n , and T ∗
Z
Q be the lattice in the cotangent bun-

dle generated by dq1, . . . , dqn . We give X the symplectic structure via identification
with T ∗Q/T ∗

Z
Q, and let val : X → Q be the valuation projection. The fibers of this

projection are Lagrangian tori. We denote by arg : X → (T ∗)0Q/(T ∗
Z
)0Q = T n the

argument projection to a torus fiber. The Newton polytope of a piecewise linear func-
tion φ : Q → R is the convex hull of the projection of Im(d(φ)) to (T ∗)0Q = R

n ,
taken wherever the derivative is defined.

Definition 3.1.1 Let �v ⊂ R
n be a polytope. The convex dual tropical function φ◦v :

Q → R is the convex piecewise strictly4 linear function with Newton polytope �v .
Similarly, define φ•v to be the concave dual tropical function, φ•v = −φ◦v .

Given a dual dimer {�◦v}, {�•w}, let {φ◦v}, {φ•w} be the associated dual tropical func-
tions. Following [19], let φ̃

•/◦
ρ : Rn → R be smoothings of the convex functions by

a kernel ρ : Rn → R of small radius R. We add a small constant to this function so
that φ̃•/◦ρ (0) = 0.

4 Here, strictly linear means not just that the derivative is constant, but the extension to all of Q sends
the origin to 0. It is worth pointing this out, as the standard convention is to use piecewise linear to mean
piecewise affine.
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Definition 3.1.2 [1] The tropical Lagrangian section σφ,ρ : Q → X associated to φ

is the composition

T ∗Q X

Q

/T ∗
Z
Q

dφ̃ρ
.

For convenience of notation, when the choice of smoothing kernel is unimportant,
we suppress it and simply write σφ . Furthermore, given the data of {�◦v}, {�•w}, we
set σ •/◦k := σ

φ
•/◦
k

. We glue together the tropical Lagrangian sections σ
•/◦
k along their

overlapping regions.

Claim 3.1.3 Let {�◦v}, {�•w} be a dual dimer configuration without self-intersections.
There is a decomposition of the intersections of the σ ◦v,ρ and σ •w,ρ ,

⋃

v,w∈G
σ •v,ρ ∩ σ ◦w,ρ =

⋃

e∈G
Ue,ρ .

The argument projection of each component Ue,ρ is the shared corner between

polytopes �•w,�◦v . Furthermore, the sections σ
•/◦
k,ρ have intersections with collared

boundaries in the sense of Proposition 2.1.3 at each of the Ue,ρ .

The structure of a collared boundary on the intersections Ue,ρ follows from the

convexity/concavity of the primitive functions φ
•/◦
k,ρ . If the dual dimer has self-

intersections, there will be possibly be additional intersections between the σ •/◦ which
overlap in the argument projection.We will explore the effect of these additional inter-
sections in Example 3.1.14, Sect. 3.3.

We now examine the intersection locusUe,ρ associated to an edge e = vw in more
detail. This setUe,ρ describes one of the regions on where φ̃•w,ρ is linear. Since φ̃•w,ρ is
a smoothing of φ•w,Ue,ρ approximates one of the regions of linearity of φ•w, where the
accuracy of this approximation can be characterized by the radius R of the smoothing
kernel ρ. Let β be the common vertex of the two dimer polytopes corresponding to
the edge e. [19, Proposition 3.11] characterizes the relationship between Ue,ρ and the
tropical hypersurface by:

Ue,ρ = {q ∈ Uβ | BR(q) ⊂ Uβ}.

It is worth noting that the boundary ∂Ue,ρ is a level set of φ•w. Since φ•w matches φ̃•w,ρ

overUe,ρ , the boundary of ∂Ue,ρ is also a level set of the smoothed tropical primitive.
The height of this level set

φ̃•ρ,r |∂Ue,ρ ∝ R (1)

is linearly proportional to the smoothing radius R chosen. Because by construction
φ̃
•/◦
ρ,r (0) = 0, the constant of proportionality is nonzero.
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Fig. 7 A dimer on S1, the corresponding set of Lagrangian sections on C
∗, and the resulting dimer

Lagrangian obtained after surgering the overlap regions

Definition 3.1.4 Let {�◦v}, {�•w} be a dual dimer. LetD := {ρ, {re, se}e∈E } be a choice
of smoothing parameter, and surgery profile function for each e ∈ E . The dimer
Lagrangian is the Lagrangian connect sum

LD(φ•w, φ◦v) := σ ◦v,ρ #re,se
Ue |e∈G,

σ •w,ρ.

Figure 7 gives an example of these dimer Lagrangians, where the dimer considered
is the 4-cycle on S1, lifting to a Lagrangian S1 ⊂ C

∗ by surgering together 4 tropi-
cal sections. Because Ue,ρ approximates Uβ , the valuation of a dimer Lagrangian is
approximates the tropical hypersurface V associated to the dimer. By the argument
projection property of [19, Theorem 3.17] the surgery of Lagrangian sections does not
change the argument projection.

Claim 3.1.5 The image of arg(LD(φ•w, φ◦v)) is {�•w,�◦v} ⊂ T n.

Different choices of surgery profile data D lead to Lagrangian isotopic (but not
Hamiltonian isotopic) Lagrangian submanifolds.We now show that there is a preferred
Hamiltonian isotopy class of these dimer Lagrangian submanifolds, corresponding to
a choice of data making LD(φ•w, φ◦v) exact.

Definition 3.1.6 Let LD(φ•w, φ◦v) be a dimer Lagrangian. Let G be the associated
graph. Give G the structure of a directed graph with edges going from • to ◦. To each
edge e, let

γe : [0, 1] → LD(φ•w, φ◦v)

be a lift of the edge e to the dimer Lagrangian. We define the weight of an edge e to
be the integral

we :=
∫

γe

η,

where η = q · dp is the tautological 1-form on the cotangent bundle of T n .5

5 We apologize for the tragic conflict of notation here.We’re forced to use q as the coordinate on Q, the base
of the SYZ fibration, and p for the coordinate on T ∗0 Q/T ∗

Z
Q, the fiber of the SYZ fibration. Unfortunately,
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The weight of a cycle c ⊂ E(G) is

∑

e∈c
sgn(e, c)we

which descends to a map on w : H1(LD(φ•w, φ◦v))→ R measuring non-exactness of
the dimer Lagrangian. The sign sgn(e, c) is +1 if the • → ◦ orientation of e agrees
with c, and −1 if the orientation of e disagrees with c.

Claim 3.1.7 Let D1,D2 be two choices of surgery profile data. The weight maps w1 :
H1(LD1(φ•w, φ◦v)) → R and w2 : H1(LD2(φ•w, φ◦v)) → R agree if and only if there
exists an isotopy between LD1(φ•w, φ◦v)) and LD2(φ•w, φ◦v)) with total flux zero.

Proof Since the space of surgery data is connected, LD1(φ•w, φ◦v)) and LD2(φ•w, φ◦v))

are Lagrangian isotopic, identifying the homology groups H1(LDi (φ•w, φ◦v)). Since
we are in the symplectically exact setting, the flux of a Lagrangian isotopy is equal to
the change in the evaluation of the flux primitive on homology, i.e. w2(c)−w1(c). �


The weight of an edge e encodes the flux swept by the choices of surgery neck and
smoothing at region Ue,ρ in the construction of LD(φ•w, φ◦v).

Lemma 3.1.8 For any assignment of {ve}e∈E ∈ R≥0 of weights, there exists a choice
of smoothing kernel ρ and surgery profiles re, se so that we = ve for all e.

Proof We give a sketch before performing the computation in detail. The vertices of
the dimer v•/◦ can be rearranged in such a way that arg(dφ̃

•/◦
v (0)) = v•/◦. With this

choice of endpoints, the valuation projection of a path val(γe) starts at the origin of
Q, travels out to the surgery neckUe,ρ , and then comes back to the origin. The weight
we is roughly proportional to the length of this path, which is controlled by how close
the surgery neck comes to the origin. This can be increased for all surgery necks by
taking a larger radius for ρ, and decreased at a specific surgery neck by picking surgery
profile data (re, se) with larger neck radius. See Fig. 8, in comparison to Fig. 7.

Let R be the radius of the support of the smoothing kernel ρ. Consider sections
σ •w,ρ, σ ◦v,ρ which overlap over Ue,ρ . There is a lifting of the edge e to a path γ̂e,
which has the property that γ̂e ⊂ σ •w ∪ σ ◦v and arg(γe) = e (drawn as a dotted path
in Fig. 8a). We show that

∫
γ̂e

η is dependent on the radius of the smoothing kernel.
Parameterize γ̂e : [0, 1] → (C∗)n so that γ̂e|[0,1/2] ⊂ σ •w, and γ̂e|[1/2,1] ⊂ σ ◦v . We
note that qe(1/2) ∈ ∂Ue,ρ , whose properties are described by Eq. (1).

The section σ •w,ρ = dφ̃•w,ρ is parameterized in (q, p) coordinates by (qi , ∂qi φ̃
•
w,ρ).

Write the path γ̂e(t) = (qie(t), p
i
e(t))

n
i=1 so that

pie(t) =
⎧
⎨

⎩

∂qi φ̃
•
w,ρ

∣
∣
∣
qe(t)

t < 1
2

∂qi φ̃
◦
v,ρ

∣
∣
∣
qe(t)

t > 1
2

when we want to treat this as the cotangent bundle of the fiber, our choices make q the fiber coordinate on
T ∗T n , p the coordinate on the base T n , and η = q · dp the canonical 1-form.
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(a) (b)

Fig. 8 Modifying the parametersD change the Lagrangian isotopy class of the Lagrangian (in comparison
to Fig. 7). On the left, increasing the smoothing parameter ρ increases we before applying surgery. On the
right, choosing large surgery necks decreases the weights we

is a parameterization of the edge e. The integral of η along this path is:

∫

γ̂e

η =
n∑

i=1

∫ 1

0
qie ·

d

dt
(pie) =

n∑

i=1
(qie · pie)|t=1t=0 −

∫
dqie
dt
· piedt

as qie = 0 for t = 0, 1

= −
∫ 1/2

0
dφ̃•w,ρ

(
dqe
dt

)

dt −
∫ 1

1/2
dφ̃◦v,ρ

(
dqe
dt

)

dt

= φ̃•w,ρ(qe(0))− φ̃•w,ρ(qe(1/2))+ φ̃◦v,ρ(qe(1/2))− φ̃◦v,ρ(qe(1))

Without loss of generality, we can assume that ρ is an approximation of the iden-
tity. This means that there exists a small constant ερ > 0 so that |φ̃•/◦k,ρ (qe(0)) −
φ
•/◦
k (qe(0))| < ερ . Since qe(0) = 0, qe(1) = 0and φ

•/◦
k (0) = 0

> −φ̃•w,ρ(qe(1/2))+ φ̃◦v,ρ(qe(1/2))− 2ερ

As φ̃◦v,ρ (resp. φ̃•w,ρ) is convex (resp. concave,) and the value of φ̃
•/◦
k,ρ on ∂Ue,ρ is

positive (resp. negative) and governed by Eq. (1). In summary, we can make
∫
γ̂e

η as
large as desired by increasing the radius R.

The discussion following [19, Figure 2] assigns a neck width NW(re, se) to each
choice of surgery profile (re, se). This quantity measures the flux swept by the surgery
in the sense that:

we =
∫

γe

η =
∫

γ̂e

η − NW(re, se).
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The neck width is bounded by the value of the primitive f from propostion 2.1.3 over
the surgery region. In our case, the primitive f is −φ̃•w,ρ + φ̃◦v,ρ , so we can choose
profile functionsmakingNW(re, se) to be as close to−φ•w,ρ(qe(1/2))+φ◦v,ρ(qe(1/2))
as desired.

To conclude the proof: for a fixed set of weights {ve}e∈E , choose R large enough
so that

∫
γ̂e

η > ve for all e, and then pick surgery profiles so that

NW(re, se) =
(∫

γ̂e

η

)

− ve.

�

Corollary 3.1.9 There exists a choice of surgery dataD so thatw : H1(L(φ•w, φ◦v))→
R is constantly zero.

Proof By Lemma 3.1.8, we can choose the weight at every edge to be a fixed constant
A > 0. Since the graph G is bipartite, every cycle c transverses an equal number of
edges in the • → ◦ direction as ◦ → • direction, so that wc = ∑

w•v◦∈c ww•v◦ +∑
v◦w•∈c wv◦w• = 0. �


Corollary 3.1.10 There exists a choice of surgery data D making LD(φ•w, φ◦v) exact.

When we write L(φ•w, φ◦v), we will always mean an exact dimer Lagrangian. By
choosing surgery data with weights going to zero, we obtain Lagrangians whose val-
uations approximate V , the tropical hypersurface associated to the dimer. Recall that
V k is the codimension k strata of V . Let N∗V 0/N∗

Z
V 0 ⊂ (C∗)n the collection of

conormal Lagrangian tori to the top dimensional strata.

Claim 3.1.11 There exists a Lagrangian L, Hamiltonian isotopic to L(φ•w, φ◦v), which
fibers over the tropical hypersurface V in the complement of a neighborhood of V 1,
that is,

L|X\ val−1(Bε (V 1)) = (N∗V 0/N∗
Z
V 0)|X\ val−1(Bε (V 1)).

Proof The Lagrangian submanifolds L(φ•w, φ◦v) and N∗V 0/N∗
Z
V 0 are isotopic in the

complement of val−1(Bε(V 1)); the flux of this isotopy is zero as they are both exact.
Since L(φ•w, φ◦v) and N∗V 0/N∗

Z
V 0 are C1 close, there is a Hamiltonian isotopy

between L(φ•w, φ◦v)|X\ val−1(Bε (V 1)) and (N∗V 0/N∗
Z
V 0)|X\ val−1(Bε (V 1)). By interpolat-

ing theHamiltonian over the remainder of L(φ•w, φ◦v),weobtain the desiredLagrangian
submanifold L . �

Example 3.1.12 Consider the dual dimer model drawn in Fig. 9c. The six triangles
drawn are associated to the following six tropical functions.
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(a) (b)
(c)

Fig. 9 Three related Lagrangians

φ◦1 = (x6/61 � x6/62 )⊕ (x5/61 � x4/62 )⊕ (x4/61 � x5/62 )

φ◦2 = (x2/61 � x4/62 )⊕ (x0/61 � x3/62 )⊕ (x1/61 � x2/62 )

φ◦3 = (x4/61 � x2/62 )⊕ (x2/61 � x1/62 )⊕ (x3/61 � x0/62 )

φ•1 = − (x0/61 � x0/62 )⊕ (x1/61 � x2/62 )⊕ (x2/61 � x1/62 )

φ•2 = − (x2/61 � x4/62 )⊕ (x3/61 � x6/62 )⊕ (x4/61 � x5/62 )

φ•3 = − (x4/61 � x2/62 )⊕ (x5/61 � x4/62 )⊕ (x6/61 � x3/62 )

All six functions give the same nonlinearity stratification to Q,

V (φ•i ) = V (φ◦i ) = V (x1 ⊕ x2 ⊕ (x1 � x2)
−1).

There are nine Lagrangian surgeries that we need to perform in order to build
L(φ•w, φ◦v). The valuation projection of the Lagrangian submanifold approximates
the tropical curve with three legs.

These dimer Lagrangians serve as a generalization of tropical Lagrangians constructed
in [19], where

L(φ) = L(φv, 0).

Example 3.1.13 One can also assemble lifts of more complicated tropical curves by
gluing several dimer Lagrangians together. For example, the genus 1 tropical curve
drawn in Fig. 9a can be built from taking three vertices. At each vertex we place a
dimer whose cycles are normal to the edges of the vertices.

Example 3.1.14 It is not necessary for the dimer model to consist of disjoint faces. In
Fig. 9b we see a configuration with two triangular faces which overlap at a hexagon.
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The Lagrangian associated to this dimer is immersed, but has the same legs as the
example in Fig. 9c.

The relation between these three examples is that of Lagrangian mutation, which we
will formalize to other examples in Sect. 3.3.

3.2 Floer theoretic support from dimermodel

We now restrict ourselves to the setting (C∗)2 = T ∗F0 and describe a combinatorial
approximation of

CF•(L(φ•w, φ◦v), F0),

the Floer theory of our tropical Lagrangian against fibers of the SYZ fibration.

Definition 3.2.1 Let {�◦v}, {�•w} be a dual dimer configuration with affine bipartite
graph G. Let ∇ be a C

∗ connection T n , assigning to each path e : v→ w an element
∇e(1) ∈ C

∗, the image of 1 under parallel transport. The Kasteleyn complex with
weighting∇ is the 2-term chain complex C•(G,∇) which as a graded vector space is

⎛

⎝
⊕

v◦i ∈V ◦
C〈v◦i 〉

⎞

⎠⊕
⎛

⎜
⎝

⊕

w•j∈V •
C〈w•j 〉[1]

⎞

⎟
⎠

The differential d∇ is determined by the structure coefficients

〈d�∇ (v◦), w•〉 =
∑

e∈E(G)
e=v◦w•

∇e(1).

The support of {�◦v}, {�•w} is the set of local systems

Supp({�◦v}, {�•w}) := {∇ | H1(G,∇) �= 0}.

In dimension 2,G is exactly a dimer, and the support is the zero locus of the polynomial

ZG(∇) := det(d∇).

The terminology comes from literature on dimers [23]. By letting the local system∇
determine aweight for each edge of the dimer, the terms of the determinant corresponds
to the product of weights of a maximal disjoint set of edges (called its Boltzmann
weight). A maximal disjoint set of edges in a dimer is called a dimer configuration,
and the sum of Boltzmann weights over all configurations gives the partition function
ZG(∇) of the dimer.

We now explain the relation between the Kasteleyn complex C•(G,∇) and the
Lagrangian intersection Floer complex CF(L(φ•w, φ◦v), (F0,∇)). These complexes
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Fig. 10 The labelling of faces
for the dimer model

are isomorphic as vector spaces, as the intersection points of F0 and L(φ•w, φ◦v) are
in bijection with the vertices of the dimer. The Lagrangian L(φ•w, φ◦v) is built from
taking a surgery of the pieces σv•/◦ . An expectation from [13] is that holomorphic
strips contributing to the differential μ1 : CF(L0#pL1, L2) are in correspondence
with holomorphic triangles contributing to μ2 : CF(L0, L1) ⊗ CF(L1, L2). In our
constructionof L(φ•w, φ◦v)wesmoothed regions larger than intersectionpoints between
the sections σ

•/◦
v , however we expect a similar result to hold. These intersections are in

correspondencewith the edges of the dimerG, and sowe predict that the differential on
CF(L(φ•w, φ◦v), (F0,∇)) should be given byweighted count of edges in the dimer. The
local system ∇ on F0 determines the weight of the holomorphic strips corresponding
to each edge.

Conjecture 3.2.2 The isomorphism of vector spaces

CF•(L(φ•w, φ◦v), F0)→ C•(G,∇)

is a chain homomorphism.

If this conjecture holds, we have a new tool for computing the support of the
Lagrangian L(φ•w, φ◦v), which will be determined by the zero locus of ZG(∇).

Example 3.2.3 A first example to look at is the Kasteleyn complex of Example 3.1.12.
We give the polygons of the dimer the labels from Example 3.1.12. We can rewrite
ZG(∇) as a polynomial by picking coordinates on the space of connections. Let z1
and z2 be the holonomies of a local system ∇ along the longitudinal and meridional
directions of the torus. The differential on the complex C•(G,∇) in the prescribed
coordinates is

d�∇ =

⎛

⎜
⎜
⎝

z
1
3
2 (z1z2)

−1
3 z

1
3
1

(z1z2)
−1
3 z

1
3
1 z

1
3
2

z
1
3
1 z

1
3
2 (z1z2)

−1
3

⎞

⎟
⎟
⎠ .

The determinant of d�∇ is ZG(z1, z2) = 3− (z1 + z2 + 1
z1z2

).
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This polynomial is a reoccurring character in the mirror symmetry story ofCP
2; for

example, it is the superpotential W̌� determining the mirror Landau–Ginzburg model.
This computation motivates Sect. 5.

Remark 3.2.4 In the above definition, we’ve assumed thatD has been chosen in such a
way that the weightswe are negligible and can be ignored. More generally, one should
look use the Novikov ring in place of C, and let ∇ be a Novikov unitary connection.
The differential becomes

〈d�∇ (v◦), v•〉 =
∑

e∈E(G)
e=v◦v•

∇e(1)Twe .

For generic choice of weightswe, there are no choices of local systemswith det(d∇) =
0; for instance, a necessary condition is that the minimal weight must show up at least
twice.

3.3 Mutations of tropical Lagrangians

In previous examples, we exhibited different dimer models with the same associated
tropical curve. We now describe how the different Lagrangian lifts of these dimers are
related to each other in dimension 2.

Lemma 3.3.1 Let {�◦v}, {�•w} be a dimer model with graph G. For each face f ∈
F(G), let c = ∂ f be the boundary cycle of the face. Suppose that c has zero weight.
Let γc : S1 → L(φ•w, φ◦v) be a lift of the cycle to the dimer Lagrangian, in the sense
that

arg(γc) = c.

There exists a Lagrangian disk D f with ∂D f = c ⊂ L(φ•w, φ◦v).

Proof Let V f ⊂ T 2 be the subset of the Lagrangian torus T 2 ⊂ T ∗T 2 corresponding
to the face f . Write γc(θ) = (q(θ), p(θ)), where q(θ) ∈ T ∗p(θ)T

2.6 Let u : S1θ ×
[−ε, ε]r → T 2 be a coordinates on a normal neighborhood of γc, so that we may
write q(θ) = qθ (θ)dθ + qr (θ)dr . The zero weighting condition tells us that

∫

γc

η =
∫

S1
qθ (θ)dθ = 0

so there exists a primitive αθ : S1 → R so that qθdθ = dαθ . Let ρ : [−ε, ε]r → R

be a bump function which is constantly 1 in a neighborhood of r = 0. Consider the
function α := ρ · (αθ + r · qr ) : T 2 → R. We can compute that dα = dρ · (αθ + r ·
qr )+ ρ · (dαθ + qrdr + r · dqr ). Since ρ|c = 1, dρ|c = 0 and r |c = 0, the pullback
of dα to c is dαθ +qrdr = q. Therefore, q can be extended to an exact 1-form on T 2.
The Lagrangian disk D f is defined by the graph of this 1-form. �

6 We again apologize for the inconvenience of using (q, p) for coordinates on T ∗Q/T ∗

Z
Q.
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Fig. 11 The strip h is
parameterized to twist into the
�◦v and �•w polytopes

The Lagrangian antisurgery αD f L(φ•w, φ◦v) is an immersed Lagrangian, which we
now describe with a dual dimermodel. Let ∂ f := {v•1, v◦1, . . . , v•k , v◦k } be the sequence
of vertices of G corresponding to the boundary of f . Recall that � is the set of cycles
in T 2 given by the boundary polygons of the dual dimer model. Let Im(�) ⊂ T 2 be
the image of these cycles. After taking an isotopy of c, we may assume that arg(c) ⊂
Im(�). We can also require that arg(c) is a homeomorphism onto its image. We now
take a parameterization

h : S1 × [−1, 1] → L(φ•w, φ◦v)

for a neighborhood of γc ⊂ L(φ•w, φ◦v), with h(θ, 0) = γc(θ). The boundary com-
ponents of the collar h : S1 × [−1, 1] give two cycles in L(φ•w, φ◦v), which we will
label

γ •c := h(θ,−1)
γ ◦c := h(θ, 1)

The path γ has argument contained within �, but we require the map h(θ, t) : S1 ×
[−1, 1] → L(φ•w, φ◦v) have argument

Im(arg ◦γc•) ⊂ � ∪ {�•w}
Im(arg ◦γc◦) ⊂ � ∪ {�◦v}

which “alternates” between bleeding into argument of L(φ•w, φ◦v). By claim 3.1.5, this
is the collection of �◦v and �•w polytopes. See Fig. 11. We now state this alternating
condition. We require at each θ exactly one of the three following cases occur:

• That the◦ component bleeds out of� into the interior of the dimer so arg ◦h(θ, 1) /∈
�

• That the • component bleeds out of � into the interior of the dimer so
arg ◦h(θ,−1) /∈ �

• Neither boundary component bleeds out of �, but the collar h passes through the
vertex connected to polytopes in our dimer model so arg ◦h(t, θ) maps to a vertex
of the �

•/◦
i .

After performing the Lagrangian surgery, the band parameterized by h will be
replaced with two disks D•f and D◦f . The boundaries of D

•/◦
f are the cycles γc•/◦ .
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(a) (b) (c)

Fig. 12 The dimers associated to Fig. 9. The middle figure is an immersed dimer with two vertices of degree
three, and has a resolution to an embedded dimer on the right

The disk D•f glues the polygons �•vi which lie along the cycle γc• to each other.
Similarly, the disk D◦f connects the �◦wi

together. In summary, the polygons in the
cycle c are replaced with two larger polygons in the antisurgery:

� f • :=Hullv•i ∈∂ f (�
•
v)

� f ◦ :=Hullv◦i ∈∂ f (�
◦
w).

Lemma 3.3.2 Consider a dimer model {�◦v}, {�•w}. Let f be a face of G. Suppose that
the boundary of f has zero weight. The antisurgery αD f L(φ•w, φ◦v) is again described
by a higher dimer model, whose polygons are given by the collections

{�•v | for all v• /∈ ∂ f } ∪ {� f •}
{�◦w | for all w◦ /∈ ∂ f } ∪ {� f ◦}

The graph for this dimer is immersed. For example, from right to left, the Figures
9c, 9b, and 9a describe the antisurgery of a dimer Lagrangian by first obtaining an
immersed Lagrangian, then smoothing out the resulting immersed Lagrangian to build
an embedded tropical Lagrangian. The corresponding dimers are drawn in Figure 12.
Figure 12b is an immersed dimer, with two vertices of degree three lying atop each
other.

3.3.1 Seeds and surgeries

Besides using antisurgery to modify Lagrangian submanifolds, we may use the pres-
ence of antisurgery disks for L(φ•w, φ◦v) to construct a Lagrangian seed in the sense of
[33].

Definition 3.3.3 [33] A Lagrangian seed (L, {Di }) is a monotone Lagrangian torus
L ⊂ X along with a collection of antisurgery disks {Di } for L with disjoint interiors,
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and an affine structure on L making ∂Di affine cycles. Should the ∂Di ⊂ L be the
edges of an affine zigzag diagram, we say that this seed gives a dimer configuration
on L .

Whenever we have an mutation seed giving a dimer configuration on L , we can
build a dual Lagrangian using the same surgery techniques used to construct tropical
Lagrangians. We start by taking aWeinstein neighborhood B∗ε L of L . Let {�◦v}, {�•w}
be the dimer model on L induced by the Lagrangian seed structure. Using Defini-
tion 3.1.4, we can construct L({φ◦v}, {φ•w}) in the neighborhood B∗ε L . The boundary
of L({φ◦v}, {φ•w}) is contained in the ε-cotangent sphere S∗ε L and consists of the ε-
conormals Legendrians N∗ε (∂Di ). After taking a Hamiltonian isotopy, the disks {Di }
can be made to intersect S∗ε L along N∗ε (∂Di ). By gluing the dimer Lagrangian to these
antisurgery disks, we compactify L({φ◦v}, {φ•w}) ⊂ B∗ε L to a Lagrangian L∗ ⊂ X .

Definition 3.3.4 Let (L, {Di }) be a Lagrangian seed giving a dimer configuration on
L . We call the Lagrangian L∗ ⊂ X the dual Lagrangian to (L, {Di }).

Oneway to interpret this construction is that a Lagrangian seed has a small symplec-
tic neighborhood which may be given an almost toric fibration. The dual Lagrangian
L∗ is a compact tropical Lagrangian built inside of this almost toric fibration.

By Lemma 3.3.2 the Lagrangian L∗ possesses a set of antisurgery disks given by
the faces of the dimer graph on L . Should the antisurgery disks D f with boundary on
L∗ form a mutation configuration, we call (L∗, {D f }) the dual Lagrangian seed.

Remark 3.3.5 The geometric portion of this construction does not require L or L∗ to
be tori, although statements about mutations of Lagrangians from [33] and relations
to mirror symmetry use that L is a torus.

4 Tropical Lagrangians in almost toric fibrations

Much of the machinery we have constructed for building Lagrangians lifts of tropical
hypersurfaces in the fibration (C∗)n → R

n carries over to building tropical Lagrangian
hypersurfaces for almost toric fibrations X → Q with the dimension of the base
dim Q = 2. In Sect. 4.1 we look at the local model of a node in a almost toric base
diagram and show that lifts of tropical curves can be constructed for tropical curves
with edges meeting the singular strata of Q along the eigendirection. Section 4.2
continues using local models from the node based on Lefschetz fibrations to show
that isotopy of tropical curves “through” a node of the base extend to isotopies of the
Lagrangian lifts.

4.1 Lifting to tropical Lagrangian submanifolds

Recall that X → Q is an almost toric fibration, X0 → Q0 = Q\� is an honest
toric fibration in the complement of the discriminant locus �. By abuse of notation,
when we are given a tropical section φ ∈ dTrop(U ) where U ⊂ Q0, we will write
σφ : U → X |U to mean the Lagrangian section defined over the bundle X |U → U



3 Page 28 of 50 J. Hicks

given by some choice of smoothing parameter (see [19]). It is immediate that we can
use the existing surgery lemma to build tropical Lagrangians away from the critical
locus.

Claim 4.1.1 Let val : X → Q be an almost toric Lagrangian fibration. Suppose that
V (φ) ⊂ Q is a (smooth) tropical curve which is disjoint from the critical locus.
Then there exists an (embedded) Lagrangian submanifold L(φ) ⊂ X whose valuation
projection lies in a small neighborhood of V . Furthermore, if Q has no boundary,
there exists a tropical section φ so that L(φ) = σ0#σ−φ .

Note that in the non-smooth setting, the number of self-intersection points of the
Lagrangian L(φ) is determined by the sum of the tropical genera of the non-smooth
vertices. Smoothing the tropical curve by deformation is equivalent to removing the
self intersection by Lagrangian surgery. In the almost toric case (dim(Q) = 2), we
can find a Lagrangian lift when the interior of V avoids the critical locus. This is built
on the following local model, whose monodromy was described in [36].

Claim 4.1.2 Let X = C
2\{z1z2 = 1} be the symplectic manifold with symplectic

fibration

W : C2\{z1z2 = 1} →C\{1}
(z1, z2) �→z1z2

and let val : X → Q be the almost toric Lagrangian fibration described in [5,
Section 5.1]. Then Q has a single node q× of multiplicity 1, and there exists a tropical
Lagrangian lift of the eigenray of q×.

Proof The claim follows from considering the construction of the almost toric fibration
arising from the Lefschetz fibration W . The rotation (z1, z2) �→ (eiθ z1, e−iθ z2) is
a global Hamiltonian S1 symmetry which preserves the fibers of the fibration. Let
μ : (C∗)2 → R be the moment map of this Hamiltonian action, which also descends
to a moment map μ : W−1(z)→ R. This map gives an SYZ fibration on the fibers of
the Lefschetz fibration.

The base of the Lefschetz fibration C\{1} comes with a standard SYZ fibration
by circles 1 + re2π iθ . The symplectic parallel transport map given by the Lefschetz
fibration preserves the SYZ fibration on W−1(z); as a result, one can build an SYZ
fibration for the total space {C2\z1z2 = 1} by taking the circles val−1

W−1(z)(s) and

parallel transporting them along circles 1 + reiθ of the second fibration to obtain
Lagrangian tori

Fr ,s = {(z1, z2) | |z1z2 − 1| = r , μ(z1, z2) = s}.

The nodal degeneration occurs from parallel transport of vanishing cycle through the
path 1+eiθ . This corresponds to the single almost toric fiber of this fibration, aWhitney
sphere, which occurs in the base when q× = (1, 0). Q comes with an affine structure
by identifying the cotangent fiber at q with H∗(Fq , R), and taking the lattice to be
the integral homology classes. The monodromy of this fibration around the Whitney
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Fig. 13 Lagrangian tori constructed from a Lefschetz fibration giving an almost toric fibration. The colored
fibers correspond to cycles � being parallel transported around a circle in the base (Color figure online)

sphere acts by a Dehn twist on the vanishing cycle (i.e. for s = 0) of Fq . As a result,
the coordinate s is a global affine coordinate on Q near qx , but r is not. The eigenray
is s = 0. The Lagrangian tori Fq with q in the eigenray of q× are those tori which are
built from parallel transport of the vanishing cycle. See Fig. 13 for the correspondence
between Lagrangians in the Lefschetz fibration and almost toric fibration. We now
consider the Lagrangian thimble τ drawn from the critical point (z1, z2) = (0, 0).
As the Lagrangian thimble is a built from a parallel transport of the vanishing cycle,
it only intersects the Lagrangians Fq with q on the eigenray of q×. Therefore, this
Lagrangian thimble has valuation projection travelling in the eigenray direction of q×,
proving the claim. �


Corollary 4.1.3 Let val : X → Q be an almost toric Lagrangian fibration over an
integral tropical surface Q. Let V be a smooth tropical variety whose interior avoids
the discriminant locus �. Then there exists a tropical Lagrangian lift L ⊂ X of V .

Proof First, construct the lift of V to a Lagrangian L̊ on X\X0. Let V 0 be the collec-
tion of top dimensional strata of V , and V 1 the set of vertices of V . By claim 3.1.11
we may take a Hamiltonian isotopy of L̊ (which we still denote as L̊) so that
L̊|X\(val−1(Bε (V 1))) = N∗V 0/N∗

Z
V 0|X\(val−1(Bε (V 1))). In particular, the discriminant

locus is disjoint from Bε(V 1), and so val : L̊ → Q0 honestly fibers over the tropical
curve V near the discriminant locus.

It remains to compactify L̊ to a Lagrangian submanifold of X . At each point qi ∈
X0, we take a neighborhood Bi of qi and model it on the standard neighborhood from
claim 4.1.2. The portion of L̊ with valuation over Bi is a Lagrangian cylinder given
by the periodized conormal to the eigenray of qi . Similarly, the thimble τi restricted
to this valuation is a Lagrangian cylinder given by the periodized conormal to the
eigenray of qi . Therefore, we may compactify L̊ to a Lagrangian L ⊂ X by gluing
the thimbles τi to L at each nodal point such that qi ∈ V . �


This allows us to build tropical Lagrangian lifts of the tropical curves described
in Fig. 5a–c. We may generalize the examples of compact Lagrangian tori in CP

2 to
more toric symplectic manifolds with dimC(X) = 2. Let X� be a toric surface, and
let val : X� → Qdz

� be the standard moment map projection. The moment polytope
Qdz is an example of an almost toric base diagram. Consider the almost toric fibration
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(a) (b)

Fig. 14 Some more examples of tropical sections

val : X� → Q� obtained by applying a nodal trade to each corner of the moment
polytope. The boundary of Q is now an affine circle, corresponding to a symplectic
torus E ⊂ X� .

Example 4.1.4 The neighborhood of ∂Q� is topologically ∂Q� × [0, ε)t . For fixed
real constant 0 < r < ε, we construct the tropical function r ⊕ t , which only has
dependence on collar direction t . This extends to a tropical function over Q� , whose
critical locus is an affine circle pushed off from the boundary ∂Q� . The critical locus
is a tropical curve which avoids the discriminant locus, so there is an associated
Lagrangian torus L∂Q�

r ⊂ X� corresponding to this tropical curve.
This Lagrangian torus can also be constructed without using the machinery of

Lagrangian surgery. Let γ ⊂ E be a curve. There is a neighborhood D of E ⊂ X�

which is a disk bundle D→ E . There is a standard procedure to take γ and lift it to a
Lagrangian ∂Dγ , the union of real boundaries of this disk bundle along the curve γ .
See Fig. 14a.

As one increases the parameter r , the Lagrangian L∂Q�
r approaches the critical

locus �� . One can continue this family of Lagrangian submanifolds past the critical
locus.

Example 4.1.5 In the above example, each nodal point qi corresponds to a corner of
the Delzant polytope Qdz

� . The index i is cyclically ordered by the boundary of the
Delzant polytope. Let �i be the fan generated by vectors v−i , v+i given by the edges
of the corner corresponding to qi . Let vλ

i be the eigenray of qi . Then �i ∪ {vλ
i } is a

balanced fan. At each nodal point qi , consider the tropical pair of pants with legs in
the directions �i ∪ {vλ

i }.
The legs of adjacent pairs of pants (from the cyclic ordering) match so that v−i =

−v+i+1. Thismeans that if the pairs of pants are properly placed (say so that the distance
from the vertex of the pair of pants along the eigenray direction to the boundary ∂Q�

are all equal) these assemble into a tropical curve.
This is a tropical curve whose interior is disjoint from the critical locus, and thus

lifts to a tropical Lagrangian with the topology of a torus in X� . See Fig. 14b

4.2 Nodal trade for tropical Lagrangians

The tropical curves from Fig. 14a, b are related via an isotopy of tropical curves.
We now introduce some notations for Lagrangians in Lefschetz fibrations which will
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Fig. 15 The three different building blocks for a Lagrangian glove: parallel transport, thimbles, and trace
of a surgery

allow us to show that this isotopy of tropical curves can be lifted to their corresponding
tropical Lagrangians.

The local model for the nodal fiber in an almost toric base diagram is built from
a Lefschetz fibration. The goal of this section is to build some geometric intuition
for interchanging these two different perspectives. We now describe three Lagrangian
submanifolds which will serve as building blocks in Lefschetz fibrations, similar to
those considered in [8]. See Fig. 15.

The first piece is suspension of Hamiltonian isotopy. Given a path e : [0, 1] → C

avoiding the critical values of W : X → C, and Hamiltonian isotopic Lagrangians
�0 and �1 in W−1(e(0)) and W−1(e(1)), we can create a Lagrangian L�

e which is the
suspension of Hamiltonian isotopy along the path e. The image of this suspension
under W sweeps out some area in the base of the Lefschetz fibration related to the
Hofer norm of the isotopy. We work with Hamiltonian isotopies small enough so that
the projection of their suspensions avoids the critical values. This Lagrangian has two
boundary components, one above e(0) and one above e(1). In practice, we will simply
specify the Lagrangian �0 and assume that the Hamiltonian isotopies are negligible.

The second building block that we consider are the Lagrangian thimbles, which
are the real downward flow spaces of critical points in the fibration. These can also be
characterized by taking a path e : [0, 1] → Cwith e(0) a critical value ofW : X → C,
and letting � be a vanishing cycle in W−1(e(1/2)) for a critical point in W−1(e(0)).
The Lagrangian thimble, also denoted L�

e, has single boundary component above e(1).
The third building block we will use comes from Lagrangian cobordisms. In any

small contractible neighborhood U ⊂ C which does not contain a critical value of
W : X → C, we can use symplectic parallel transport to trivialize the fibration so it
is W−1(p) × D2 for some p ∈ U . We then consider cycles �1, �2, �3 ⊂ W−1(p) so
that �1#�2 = �3 with neck size ε. [7] constructs a trace cobordism (there, called a Y -
surgery) of theLagrangian surgerybetween these three cycles in the spaceW−1(p)×C.
Given paths e1, e2, e2 ⊂ D2 indexed in clockwise order, with ei (1) = p, we let L�i

ei be
the trace cobordismof the surgery between the �i with support living in a neighborhood
of the edges ei . This Lagrangian has three boundary components, which live above
ei (0).
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These pieces glue together to assemble smooth Lagrangian submanifolds of X
whenever the ends of the pieces (determined by their intersection with the fiber) agree
with each other.

Definition 4.2.1 Let W : X → C be a symplectic fibration. A Lagrangian glove
L ⊂ X is a Lagrangian submanifold so that for each point z ∈ C, there exists a
neighborhood U � z so that W−1(U ) ∩ L is one of the three building blocks given
above.

The reason that we look at Lagrangian gloves is that they can be specified by the
following pieces of data:

• A planar graph G ⊂ C. This graph is allowed to have semi-infinite edges and
loops.
• A Lagrangian submanifold �e ⊂ W−1(e(0)) labelling each edge e ∈ G.

This data will correspond to a Lagrangian glove if it satisfies the following conditions:

• The interior of each edge is disjoint from the critical values of W .
• Outside of a compact set, the semi-infinite edges are parallel to the positive real
axis.
• All vertices of G have degree 1 or degree 3.
• Every vertex of degree 1 must lie at a critical value. Furthermore, the incoming
edge e to the vertex v is labelled with a vanishing cycle of the corresponding
critical fiber.
• Every vertex of degree 3 with incoming edges e1, e2, e3 must have corresponding
Lagrangian labels �1, �2 and �3 which satisfy the relation �1#�2 = �3 for a surgery
of neck size small enough that there exists a disk D ⊃ v containing the trace of
this surgery.

Such a collection of data gives us a Lagrangian L�e
G ⊂ X .

We will diagram these Lagrangians by additionally picking a choice of branch cuts
bi for C so that W : (X\W−1(bi )) → (C\{bi }) is a trivial fibration. We can then
consistently label the edges of the graph G ⊂ C with Lagrangians in �e ∈ W−1(p)
for some fixed non-critical value p. Graph isotopies which avoid the critical values
correspond to isotopic Lagrangians; furthermore, as long as the label of an edge does
not intersect the vanishing cycle of a critical value, we are allowed to isotope an edge
over a critical value.

There is another type of isotopywhich comes from interchangingLagrangian cobor-
disms with Dehn twists [4,31], which we now describe. Let v be a trivalent vertex with
edges e1 = vw1, e2 = vw2, e3 = vw3. Suppose that the degree of w2 is one (so that
w2 is a critical value). Suppose additionally that the Lagrangians �1 and �2, the labels
above e1 and e2, intersect at a single point so that the surgery performed is the standard
one at a single transverse intersection point. Let H be the graph obtained by replacing
e1, e2, e3 with a new edge f1,3 which has vertices w1, w3, and is obtained travelling
along e1, out along e2 and around the critical value w2, and returning along e2 and e3
(See Fig. 16). Then the graph H = G∪{ f1,3}\{ei } equippedwith Lagrangian labelling
data inherited from G (with the additional label � f1,3 = �e1 ) is again a Lagrangian

glove. We call the Lagrangian obtained via this exchanging operation τw2L
�e
G . In sum-

mary:
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Fig. 16 One can add or remove Lagrangian thimbles by exchanging them for Dehn twists

Proposition 4.2.2 The following operations produce Lagrangian isotopic Lagrangian
gloves.

• Any isotopy of the graph G where the interior of the edges stay outside the com-
plement of the critical values of W.
• Any isotopy of the graph G where an edge passes through a critical value, but the
Lagrangian label of the edge is disjoint from the vanishing cycles of the critical
fibers.
• Exchanging the Lagrangian L�e

G with τwL
�e
G at some vertex w.

Proof The first two types of modifications are clear. For the third kind of modification,
see [4, Lemma A.25]. �


4.2.1 Comparisons between tropical and Lefschetz: pants

We now will provide a construction of a Lagrangian pair of pants in the setting
of (C2\{z1z2 = 1}) from the perspective of the Lefschetz fibration considered in
Sect. 4.1:

W : C2\{z1z2 = 1} →C

(z1, z2) �→z1z2

See Fig. 13 for the correspondence between Lagrangian tori in the Lefschetz fibration
and almost toric fibration.

In this setting we build a Lagrangian glove. We start with the Lagrangian � = R ⊂
W−1(−1 + ε). For small ε < 1, we consider the loop γε = εeiθ − 1. The parallel
transport of � along this loop builds a Lagrangian L�

γε
. The Lagrangian L�

γε
only pairs

against tori Fε,s , so its support in the almost toric fibration will be a line. See the blue
Lagrangian as drawn in Fig. 17.

By exchanging aDehn twist for an additional vertex in the glove (Proposition 4.2.2),
we can build a new Lagrangian τ0L�

γε
(drawn in red in Fig. 17). This description

provides us with another construction of the Lagrangian pair of pants. These local
models are compatible with the discussion fromSect. 4. Let Q× be the integral tropical
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(a)
(b)

Fig. 17 Comparing Lefschetz and tropical pictures at nodal fibers

manifold which is the base of X = C
2\{z1z2 = 1}. Q× can be covered with two affine

charts. Call the charts

Q0 ={(x1, x2)}\{(x, x) | x > 0}
Q1 ={(y1, y2)}\{(y, y) | y < 0}.

The charts are glued with the change of coordinates

(y1, y2) =
{

(x1, x2) x2 > x1
(2x1 − x2, x1) x2 < x1

We now consider two tropical curves inside of Q×. The first is an affine line, which
is given by the critical locus of a tropical polynomial defined over the Q0 chart

φ0(x1, x2) = 1⊕ x1.

The second tropical curve we consider is a pair of pants with a capping thimble (as
described in Sect. 4,) given by the critical locus of a tropical polynomial defined over
the Q1 chart,

φ1(y1, y2) = y1 ⊕ y2 ⊕ 1.

From Proposition 4.2.2, we get the following corollary:

Corollary 4.2.3 (Nodal Trade for Tropical Lagrangians) Consider the tropical curves
V (φ0) and V (φ1) inside of Q×. The Lagrangians L(φ0) and L(φ1) are Lagrangian
isotopic in C

2\{z1z2 = 1}.
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Fig. 18 The resolved A3 singularity, a Lagrangian glove, and its associated tropical curve

This corollary allows us to manipulate tropical Lagrangians by manipulating the trop-
ical diagrams in the affine tropical manifold instead.

Example 4.2.4 Consider the Lefschetz fibration with fiber C
∗ given by the smoothed

An singularity as in Fig. 18. We construct the Lagrangian glove where we parallel
transport the real arc � = R ⊂ C

∗ around the loop of the glove. The monodromy
of the symplectic connection from travelling around the large circle corresponds to n
twists of the same vanishing cycles. By attaching n vanishing cycles to this arc, we
get a Lagrangian glove. In the “moment map” picture, all of the singularities lie on the
same eigenray, and we get the tropical Lagrangian which is a n + 2 punctured sphere
with n of the punctures filled in with thimbles. Though it appears that the n thimbles
of the Lagrangian coincide with each other in the “moment map” picture, they differ
by some amount of phase in the fiber direction, which is easily seen in the Lefschetz
fibration.

Corollary 4.2.5 The Lagrangians from Figs. 14a, b are Lagrangian isotopic.

5 Lagrangian tori in toric del-Pezzos

We now introduce a monotone Lagrangian torus which exists in a toric del-Pezzo.
We show that in the setting of CP

2 this Lagrangian LT 2 is isotopic to Fq , a fiber
of the moment map. Finally, we speculate on homological mirror symmetry for
LT 2 ⊂ CP

2\E , where this Lagrangian is no longer isotopic to Fq . We exhibit
a symplectomorphism g : CP

2\E → CP
2\E expected to be mirror to fiberwise

Fourier–Mukai transform on the mirror.
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(a) (b) (c) (d) (e)

Fig. 19 Top: Lagrangian seeds in toric del Pezzo surfaces. The antisurgery disks are drawn in red.Middle:
The corresponding dual dimer models associated the Lagrangian seeds. In the first example of CP

2, we
additionally draw the classes of the cycles ∂D fi,� ⊂ F∗� . Bottom: Cycle classes of the zigzag diagram,
corresponding to mutation directions

5.1 Examples from toric del-Pezzos

Monotone Lagrangian tori and Lagrangian seeds in del-Pezzo surfaces have been stud-
ied in [33,42]. Let X� be a toric del-Pezzo. A choice of monotone symplectic structure
on X� gives amonotoneLagrangian torus F� at the barycenter of themoment polytope
has a Lagrangian seed structure {Di,�} given by the Lagrangian thimbles extending
from the corners of the moment polytope. The Lagrangian thimbles and correspond-
ing dimers are drawn in Fig. 19a–e. In these 5 examples, the dimer Lagrangian F∗�
constructed from the data of (F�, Di,�) again has the topology of a torus. This can
be checked from the computation of the Euler characteristic of the dual Lagrangian,

χ(L∗) = |V (G)| − |E(G)| + |�|,

where |�| is the number of antisurgery disks of F� .
Onemethodof distinguishingLagrangians is to compute their openGromov–Witten

potentials. In the case of toric Fanos, it was proven in [38] that all Lagrangian tori have
the potentials given by one of those in [42]. A computation shows that the Lagrangians
F� and F∗� have the samemutation configuration.Wewill use this information to later
match their Landau–Ginzburg potentials.

Claim 5.1.1 Let X� be a toric Fano, F� the standard monotone Clifford torus in X� ,
and F∗� be the dual torus constructed using the Lagrangian seed structure on F� .
There is a set of coordinates for H1(F∗�) and H1(F�) so that the mutation directions
determined by their Lagrangian seed structures are the same.

Proof This is done by an explicit computation of the homology classes of the disk
boundaries in F∗� . �
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As a corollary, the wall and chamber structure on the moduli space of Lagrangians
F� obtained by mutations may be replicated in a similar fashion on the moduli space
of the Lagrangians F∗� .
Corollary 5.1.2 In the setting of toric Fanos, the Landau–Ginzburg potential of F� is
the same as F∗� .

In both Figs. 19a, b we may mutate the diagram to give us a dimer model with
two polygons, which is the balanced tropical Lagrangian for some tropical polyno-
mial. As a result, the Lagrangians Fig. 19a, b are Lagrangian isotopic to tropical
Lagrangians constructed in Sect. 4. In the case of Fig. 19a, the dimer Lagrangian
F∗�

CP2
and Lagrangian and Linner from Fig. 5c are related by Lagrangian mutation

and isotopy; the local model of mutation is drawn in Fig. 9. This is perhaps easier
to see geometrically by working in the reverse direction. First apply isotopy by con-
tracting the tropical genus of Linner (Fig. 9a). The underlying tropical curve becomes
nonsmooth, and this isotopy sweeps out some symplectic flux while collapsing a cycle
of Linner . The resulting Lagrangian is an immersed Lagrangian (whose model at the
vertex is Fig. 9b). Surgering this immersed point in the other direction recovers F∗�

CP2

(Fig. 9c).

Remark 5.1.3 Linner is not the mutation of F∗�
CP2

, as mutation is the composition

of antisurgery and surgery with equal neck sizes. Linner is obtained from F∗�
CP2

by
antisurgery followed by surgery, but with some symplectic flux swept out due to non-
equal neck sizes chosen. In particular, F∗�

CP2
is monotone, as is μDF∗�

CP2
. However,

Linner is not.

It is unclear how much of this story extends beyond the toric case.

Question 5.1.4 Is there a relation between (L, Di ) and (L∗, D∗f ) that can be stated
in the language of mirror symmetry?

Weconcludeour discussionwith a collection of observations formirror symmetry of
CP

2\E and the elliptic surface X̌9111. Here, X̌9111 is the extremal elliptic surface in the
notation of [29]. This elliptic surface has a Lefschetz fibration W9111 : X̌9111→ CP

1

with 3 singular fibers of type I1, and one singular fiber of type I9. An Ik fiber is the
degenerate elliptic fiber which is a k-chain ofCP

1s.We can present this elliptic surface
[2, Table Two] as the blowup of a pencil of cubics on CP

2,

(z21z2 + z22z3 + z23z1)+ t · (z1z2z3) = 0.

From this pencil, we get a map π̌bl : X̌9111 → CP
2, which has nine exceptional

divisors. Three of the exceptional divisors correspond to the base points of the pencil
giving us three sections of the fibration W̌9111 : X̌9111→ CP

1. We study homological
mirror symmetrywith the A-model onCP

2.Of principle interestwill be theLagrangian
discussed in Fig. 5c, which we will call Linner ⊂ CP

2. The Lagrangian discussed in
Fig. 5a will be called Louter ⊂ CP

2.
In Sect. 5.2, we use methods from Sect. 4.2 to compare the Lagrangian LT 2 to a

fiber Fq ⊂ CP
2 of themoment map. Finally, wemake a homological mirror symmetry

statement for LT 2 and the fibers of the elliptic surface X̌9111 in Sect. 5.3.
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5.2 Tropical Lagrangian Tori inCP
2.

We now apply the tools from Lefschetz fibrations to give us a better understanding of
the tropical Lagrangians in CP

2 from Fig. 19a.

Proposition 5.2.1 The Lagrangian Linner drawn in Fig. 19a is Lagrangian isotopic to
the moment map fiber Fp of CP

2.

This relation is already somewhat expected. [41] provides an infinite collection of
monotone Lagrangian tori which are constructed by mutating the product monotone
tori along different mutation disks. It is conjectured that these are all of the mono-
tone tori in CP

2. From Corollary 5.1.2 we know that the Lagrangian LT 2 has the
same Lagrangian mutation seed structure as T 2

prod,mon , so if this conjecture on the

classification of Lagrangian tori in CP
2 holds, these two tori must be Hamiltonian

isotopic.

Proof The outline is as follows: we first use the isotopy provided by Corollary 4.2.5
between Linner and Louter . We then compare the Lagrangians Louter to a Lagrangian
glove for a Lefschetz fibration. This Lefschetz fibration is constructed from a pencil
of elliptic curves chosen for a large amount of symmetry. Finally, we compare Fp to
the Lagrangian constructed via a Lefschetz fibration. The Lagrangians Fp and Louter

are matched via an automorphism of the pencil of elliptic curves.
We first will talk about the geometry of the pencil and the automorphism we con-

sider. The Hesse pencil of elliptic curves is the one parameter family described by

(z31 + z32 + z33)+ t · (z1z2z3) = 0

which has four degenerate I3 fibers at symmetric points p1, p2, p3, p4 ∈ CP
1. Let

E12 ⊂ CP
2 be the member of the pencil whose projection to the parameter space

CP
1 is the midpoint p12 between p1 and p2. The generic fiber of the projection

W3333 : CP
2\E12 → C is a 9-punctured torus. From each I3 fiber we have three

vanishing cycles. After picking paths from these degenerate fibers to a fixed point
p ∈ C, we can match the vanishing cycles to the cycles in Ep as drawn in Fig. 20.

Remark 5.2.2 A small digression, useful for geometric intuition but otherwise unre-
lated to this discussion, concerning the apparent lack of symmetry in the vanishing
cycles of W3333. One might expect that the configuration of vanishing cycles which
appear in Fig. 20 to be entirely symmetric. While the Hesse pencil has symmetry
group which acts transitively on the I3 fibers, to construct the vanishing cycles one
must pick a base point p and a basis of paths from Ep to the critical fibers of the Hesse
configuration, which breaks this symmetry. Each path from a point p to one of the
four critical values pi gives us 3 parallel vanishing cycles. The 4 critical fibers of the
Hesse configuration lie at the corners of an inscribed tetrahedron onCP

1. By choosing
p = p123 to be the center of a face spanned by three of these critical values, 3 paths
(say, γ1, γ2, γ3) from p to the critical values are completely symmetric. From such
a choice, we obtain vanishing cycles �

j
1, �

j
2, �

j
3, where j ∈ {1, 2, 3}. The homology

classes (and in fact, honest vanishing cycles)
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Fig. 20 A basis for the vanishing cycles for X3333 given in [34]

|� j
1| = 〈0, 1〉 |� j

2| = 〈1, 0〉 |� j
3| = 〈1, 1〉

are indistinguishable after action of SL(2, Z), reflecting the overall symmetry of both
the X3333 configuration and the symmetry of the paths. The action of SL(2, Z) which
interchanges these cycles also permutes the 9 points of Ep123 which are the base points
of this fibration.

However, the introduction of the last path from the fourth critical fiber to p123 breaks
this symmetry. At best, this path can be chosen so that there remains one symmetry,
which exchanges �1 and �2. In this setup, the vanishing cycles �i4 lies in the class
〈1,−1〉. Correspondingly, the class 〈1,−1〉 distinguishes the class �3 from the other
classes by intersection number.

This pencil is sometimes called the anticanonical pencil of CP
2. The automorphism

group of the Hesse pencil is called the Hessian Group [21]. This group acts on CP
1 by

permuting the critical values by even permutations. Consider a pencil automorphism
g : CP

2 → CP
2 which acts on the 4 critical values via the permutation (p1 p2)(p3 p4).

The point p12 is fixed under this action, therefore g(E12) = E12. While the fiber E12
is mapped to itself, the map is a non-trivial automorphism of the fiber, swapping the
vanishing cycles for p1 and p2:

g(�1) = �2

g(�2) = �1.

We can use the Lefschetz fibration to associate to each cycle � in E12 a Lagrangian
in CP

2 by taking the Hamiltonian suspension cobordism of � in a small circle p12 +
εeiθ around the point p12 in the base of the Lefschetz fibration. Call the Lagrangian
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Fig. 21 Relating tropical Lagrangians to thimbles

torus constructed this way Tε,�. The automorphism of the pencil g : CP
2 → CP

2

interchanges the Lagrangians Tε,�1 and Tε,�2

The standardmoment map valdz : CP
2 → Q

CP
2,dz can be chosen so that one of the

I3 fibers of the Hesse configuration projects to the boundary of the Delzant polygon
Q

CP
2 . We choose the moment map so that val−1dz (∂Q

CP
2,dz) = E1, the I3 fiber lying

above the point p1. When one performs a nodal trade exchanging the corners of the
moment map for interior critical fibers, we obtain a new toric base diagram, Q

CP
2 .

The boundary of the base of the almost toric fibration val : CP
2 → Q

CP
2 corresponds

to a smooth symplectic torus. We arrange that

val−1(∂Q
CP

2) = E12 ⊂ CP
2.

By comparison to the standard moment map, one sees that the cycle �1 ⊂ E12 projects
to a point in the boundary of the moment map, while the cycle �2 ⊂ E12 projects to
the whole boundary cycle. This gives us an understanding of the valuation projections
of Lagrangian Tε,�1 and Tε,�2 . Tε,�1 has valuation projection which roughly looks
like a point, and Tε,�2 has valuation projection which is a cycle that travels close to
the boundary of Q

CP
2 . As a result we have Hamiltonian isotopies identifying the

Lagrangians

Tε,�1 ∼Fp

Tε,�2 ∼Louter .

See Fig. 21, where Louter is drawn in red, and Fp is drawn in blue.
We conclude g(Louter ) ∼ Fp. As the projective linear group is connected, the

morphism g is symplectically isotopic to the identity, and since H1(CP
2) is trivial,

all symplectic isotopies are Hamiltonian isotopies. Therefore the Lagrangians Louter

and Fp are Hamiltonian isotopic.
By Corollary 4.2.3, the Lagrangians Linner and Fp are Lagrangian isotopic. �
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This shows that Linner is obtained from a Lagrangian that we’ve seen before, but
presented from a very different perspective. By taking a Lagrangian isotopy, Louter

can be moved to Linner . We obtain the following relationships between Lagrangian
submanifolds. Here, the equalities are taken up to Hamiltonian isotopy, and the dashed
lines are Lagrangians which we expect to be Hamiltonian isotopic. See also Fig. 9,
Remark 5.1.3.

LT 2 μD f LT 2 Linner Louter

T 2
prod,mon T 2

chek,mon Fp.

mutation Lag. Isotopy Lag. Isotopy

mutation Lag. Isotopy

.

These tori are isomorphic objects of the Fukaya category, but this is a consequence
of Fuk(CP

2) having so few objects.

5.3 A-model onCP
2\E.

We now study the map g : CP
2 → CP

2 given by the automorphism of the Hesse
configuration, and its action on the Fukaya category. Informally, the Fukaya cate-
gory is an A∞ category associated to a symplectic manifold X . The objects of the
category are monotone or unobstructed Lagrangian submanifolds, and the morphisms
between twoLagrangian submanifolds is their Lagrangian intersection Floer cohomol-
ogy CF•(L0, L1). The product m2 : CF•(L1, L2)⊗CF•(L0, L1)→ CF•(L0, L2)

is given by counting holomorphic triangles with boundary on L0, L1, L2 and strip-like
ends limiting to intersection between L1∩ L2, L0∩ L1, and L0∩ L2. Higher products
similarly count holomorphic k + 1-gons with boundary on L0, . . . , Lk and strip-like
ends limiting to the intersections between Li ∩ Li+1.

As there are few monotone Lagrangians in CP
2, the category Fuk(CP

2) does not
contain many objects, so the automorphism of the Fukaya category induced by g is
not so interesting. By removing an anticanonical divisor E = E12 we obtain a much
larger category. For example, the Lagrangians Louter and Fq are no longerHamiltonian
isotopic in CP

2\E .
Claim 5.3.1 Louter and Fq are not isomorphic objects of Fuk(CP

2\E)

Proof The symplectic manifold CP
2\E contains a Lagrangian thimble τ1 which is

constructed from the singular fiber of the almost toric fibration and extends out towards
the removed curve E (see Fig. 5b). This thimble τ1 intersects Louter at a single point,
and therefore CF•(Louter , τ1) is nontrivial. However, τ1 is disjoint from the fiber Fq ,
so CF•(Fq , τ1) is trivial. As a result, Fq and Louter are not isomorphic objects of the
Fukaya category.7 �


Since E12 was fixed by the symplectomorphism g : CP
2 → CP

2, the restriction
to the complement g : CP

2\E12 → CP
2\E12 is still defined.

7 In fact, the same argument shows that Louter and Fq are not topologically isotopic.
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Corollary 5.3.2 The automorphism of the Fukaya category induced by the symplecto-
morphism g

g∗ : Fuk(CP
2\E)→ Fuk(CP

2\E)

acts nontrivially on objects.

This section of the paper is a series of observations and conjectures outlining homo-
logical mirror symmetry with the A-model on CP

2\E , and B-model on X̌9111 which
hope to shed light on the following conjecture.

Conjecture 5.3.3 The symplectomorphism g : CP
2 → CP

2 is mirror to fiberwise
Fourier Mukai transform on the elliptic surface X̌9111 which interchange the points of
X̌9111 with line bundles supported on the fibers of the elliptic fibration.

5.3.1 Homological mirror symmetry forCP
2\E

To that end, we study LT 2 ⊂ CP
2\E .

An intermediate Blowup and Base Diagrams for X̌9111: We will begin with a
description of the elliptic surface X̌9111 as an iterated blow up of CP

2 along the
base points of an elliptic pencil following [3]. Consider the pencil

(z21z2 + z1z
2
2 + z33)+ t z1z2z3 = 0.

This elliptic fibration has 3 base points of degree 4, 4, and 1. We can arrange for 6 of
the blowups (3 on the two base points of degree 4) to be toric. We therefore obtain

an intermediate step between ČP
2
and X̌9111 which is the toric symplectic manifold

X̌�int . The toric diagram Q�int is the Delzant polytope with 9 edges. The remaining
3 blowups introduce nodal fibers in the toric base diagram Q̌9111 for X̌9111 which has
9 edges and 3 nodal fibers. The 9 edges of the toric base correspond to the nine CP

1’s
making the I9 fiber of the fibration. The eigenray at each cut in the diagram is parallel
to the boundary curves. See Fig. 22 for the base diagrams of these different blowups.
Let W̌9111 : X̌9111 → CP

2 → CP
1 be the composition of blowdown and projection

to the t parameter of the pencil.

B-model of X̌9111: Let π̌ : X̌9111→ X̌�int be the projection of the last three blowups.
By [9] have a semiorthogonal decomposition of the category of the blowup as

Db Coh(X̌9111) = 〈π̌−1Db Coh(X̌�int ),OD1 ,OD2 ,OD3〉,

where the Di are the exceptional divisors of the last three blowups. For sheaves
OH ∈ Db Coh(X̌�int )with support on a hypersurface H , this semiorthogonal decom-
position states that there is a corresponding sheaf in X̌9111 whose support is on the total
transform of H . Should H avoid the points of the blow-up, the total transform will
have the same valuation projection as H . Should H contain the point of the blowup, the
total transform includes the exceptional divisor of the blow-up. A fiber of the elliptic
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(a) (b) (c)

Fig. 22 Top: obtaining X̌9111 as a toric base diagram by first blowing up CP
2 6 times, then blowing up 3

more times. Bottom: admissibility conditions for the A-model mirrors

surfaceW−19111(p) is the proper transform of Ep ⊂ X�int , a member of the pencil after
6 blowups. On sheaves, we have an exact sequence:

(
3⊕

i=1
ODi

)

→ π−1(OEp )→ OW−19111(p)
. (2)

We will now set up some background necessary to state a similar story for the
A-model, summarized in Assumption 5.3.6.

Base for CP
2\E : Running the machinery of [15] on Q̌9111, the SYZ base for X̌9111 in

the complement of a smooth anti-canonical divisor, will yield the SYZ base Q
CP

2\E
for CP

2\E . The base diagram Q
CP

2\E can also be constructed by first constructing

the mirror to the space X̌�int . As X̌�int is a toric variety, the mirror space is a Landau
Ginzburg model (X�int ,W�int ) = ((C∗)2,W�int ), where the superpotential W�int

yields a monomial admissibility condition (in the sense of [17])��int on Q�int = R
2.

Assumption 5.3.4 (Monomial Admissible Blow-up) There is notion of monomial
admissibility condition for CP

2\E . This monomial admissibility condition is con-
structed from the data of the monomial admissibility condition ((C∗)2,W�int ).

We now provide some motivation for this assumption. Recall, a monomial admis-
sibility condition assigns to each monomial cαzα a closed set Cα ⊂ Q on which
argcαzα (L|Cα ) = 0. For a set Cα , denote by X�int |Cα the portion of the SYZ valu-
ation with valuation lying inside of Cα . Let L|Cα be the restriction of a Lagrangian
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L to the preimage val−1(Cα). A Lagrangian is monomial admissible if for every α,
L|Cα ⊂ arg−1cαzα (0). The projection arg−1cαzα (0) → Cα is an S1 subbundle of the SYZ
fibration X |Cα → Cα .

To obtain Q
CP

2\E from Q�int , we add in three cuts mirror to the three blowups.
These three cuts are added by replacing the regions Cz1z2 ,Cz1z

−2
2

and Cz−21 z2
with

affine charts C ′z1z2 ,C
′
z1z
−2
2

and C ′
z−21 z2

each containing a nodal fiber. The charts Cα

can be locally modelled on C
2\{y1y2 = 0} with monomial admissibility condition

(y1y2)−1. We replace these with charts containing a nodal fiber modeled on Y :=
C
2\{y1y2 = ε} and admissibility condition controlled by the monomial (y1y2 −

ε)−1. The valuation map Y |C ′α → C ′α is an almost toric fibration. We still have an

S1 subbundle arg−1y1y2−ε(0) ⊂ Y |C ′α of the SYZ fibration Y |C ′α → C ′α whenever ε

is not negative real. This S1-subbundle and the monomial (y1y2 − ε)−1 should be
used to construct a monomial admissibility condition on CP

2\E . See Figs. 23 and
24. From mirror symmetry considerations we expect the function WE : CP

2\E →
C to decompose as the sum of 9 monomials, corresponding to a specific basis of
H0(CP

2,O(E)). This corresponds to a decomposition of the open Gromov–Witten
potential on the mirror space, which counts the number of Maslov 2-holomorphic
disks with boundary on a SYZ fiber (Fq ,∇) ⊂ X̌9111. For Fq ⊂ X̌9111\I9, each disk
contributing to the open Gromov–Witten potential must intersect the I9 anticanonical
divisor; the potential can be split into monomial terms by restricting to those disks
with pass through a specific CP

1 ⊂ I9 component.
In terms of the almost toric base diagrams, this compatibility can be stated as a

matching between the eigendirection of the introduced cuts and the ray of the fan
corresponding to the controlling monomial over the region including the cut.

A-model onCP
2\E We now conjecture the existence of a mirror to the inverse-image

functor on the B-model. Lagrangian submanifolds which lie in the S1 subbundle
arg−1cαzα (0) → Cα should be in correspondence with Lagrangians which lie in the

subbundle arg−1y1y2−ε(0) ⊂ Y |C ′α . In particular monomial admissible Lagrangians of

X give us monomial admissible Lagrangians of CP
2\E . This allows us to transfer

Lagrangians L in Fuk((C∗)2,W�int ) to Lagrangians π−1(L) ∈ Fuk(CP
2\E,WE ).

Remark 5.3.5 π−1(L)does not arise fromamapbetween the spacesCP
2\E and (C∗)2.

The symplectic manifoldCP
2\E is constructed from (C∗)2 by handle attachment. We

keep the notation π−1 so that it is consistent with the inverse image functor from our
earlier discussion on the B-model.

We observe that the thimbles of the newly introduced nodes (as in Fig. 24) do not
arise as lifts of Lagrangians in (C∗)2.When constructing the Lagrangian thimble, there
is a choice of argument in the invariant direction of the node. We take the convention
that in the local model Y |C ′α , the argument of the constructed thimble is positive and
decreasing to zero along the thimble. With this choice of argument an application of
the wrapping Hamiltonian will separate the τi and π−1(L) so that

π−1(L) ∩ θ(τi ) = ∅.
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(a) (b)

Fig. 23 Relating Lagrangians andAdmissibility conditions between (C∗)2 andCP
2\E with local Lefschetz

models near corners

In the monomial admissible category, Lagrangians are infinitesimally wrapped before
computing their Floer homology; this infinitesimal wrapping slightly increases the
argument of each monomial on the Lagrangian over each area of control. A fea-
ture of working with monomial admissible category is that monomially admissible
Lagrangians which are initially disjoint remain disjoint after the infinitesimal wrap-
ping, and so we conclude that hom(π−1(L), τi ) = 0. In summary: see Figs. 23 and
24.

Assumption 5.3.6 (Monomial Admissible Blow-up II) There exists a Lagrangian cor-
respondence between ((C∗)2,W�) and (CP

2,WE ), giving us a functor

π−1 : Fuk�((C∗)2,W�)→ Fuk�(CP
2\E,WE ).

This functor gives us a semi-orthogonal decompositions of categories:

〈π−1 Fuk�((C∗)2,W�), τ1, τ2, τ3〉.

We furthermore assume that this is mirror to the decomposition:

〈π̌−1Db Coh(X�int ),OD1 ,OD2 ,OD3〉.
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Fig. 24 The Lagrangians in CP
2\E relevant to our homological mirror symmetry statement

Remark 5.3.7 While to our knowledge this has not been proven for the monomial
admissibility condition, this statement is understood by experts in the symplectic
Lefschetz fibration admissibility setting [3,20]. We give a translation of our statement
into the Lefschetz viewpoint. Consider the pencil of elliptic curves

p(z1, z2, z3)+ t · (z1z2z3).

where p(z1z2z3) = 0 is homogeneous degree 3 polynomial defining a generic elliptic
curve E meeting z1z2z3 = 0 at 9 distinct points. Consider the elliptic fibration WE3 :
XE3 → CP

1 obtained by blowing up the 9 base points of this elliptic pencil, with
exceptional divisors P1, . . . P9 ⊂ XE3. Let z∞ ∈ CP

1 be a critical value so that
W−1E3 (z∞) = I3. Then

(C∗)2 # XE3\(I3 ∪ P1 ∪ · · · ∪ P9),

and we may look at the restriction

WE3|(C∗)2 : (C∗)2 →CP
1\{z∞} = C

(z1, z2) �→ − p(z1, z2, 1)

z1z2

By construction, this is a rational function which expands into 9 monomial terms,
and has 9 critical points. The nine monomial terms correspond to the 9 directions in
the fan drawn in Fig. 22b. The Fukaya–Seidel category constructed with WE3|(C∗)2 :
(C∗)2 → CP

1 is mirror to X�int , where the 9 thimbles drawn from these critical points
aremirror to a collection of 9 line bundles generating Db Coh(X̌�int ). These 9 thimbles
correspond to 9 tropical Lagrangian sections σφ : Q�int → (C∗)2 in the monomial
admissible Fukaya category with fan Fig. 22b. The elliptic curve E is a smoothing of
the I3 singularity. We now consider X = (CP

2\E) = (XE3\(E ∪ P1 ∪ · · · ∪ P9)).
The restriction

WE3|X : X → (CP
1\{0}) = C

has 12 critical points, 9 of which may be identified with the critical points from the
example before. Conjecturally, this is mirror to X̌9111, where the thimbles from the
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Table 1 A summary of the mirror correspondences that we use for this section

A-side B-side

(a)

(C∗)2,W
�int X

�int

9 Thimbles of W
�int 9 Line Bundles

L(φT 2 ) Member of 9111-pencil

(b)

CP
2\E,WE X̌9111

Thimbles τi Exceptional Divisors Di

π−1(L(φT 2 )) Total transform of member of 9111 Pencil

LT 2 Fiber of X̌9111 → CP
1.

three additional critical points are mirror to the exceptional divisors introduced in
the blowup X̌9111 → X�int . In the monomial admissible picture, the three additional
thimbles are matched to the tropical Lagrangian thimbles introduced from the nodes
appearing in the toric base diagram Q

CP
2\E drawn in Fig. 22c.

5.3.2 A return to the Lagrangian LT2 ⊂ CP
2\E.

We now look at the Lagrangian three punctured torus LφT 2
⊂ (C∗)2 = CP

2\I3
described in Example 3.1.12. In order to make a homological mirror symmetry state-
ment, we need to use the non-Archimedeanmirror X̌�

9111, however the intuition should
be independent of the use of Novikov coefficients.

Let φT 2 = x1 ⊕ x2 ⊕ (x1x2)−1 be the tropical polynomial whose critical locus
passes through the rays of the nodes added in the modification of Q�int to Q9111.

Theorem 5.3.8 There exists a three-ended Lagrangian cobordism with ends

(LT 2 , τ1 ∪ τ2 ∪ τ3) � π−1(LφT 2
),

where τ1 ∪ τ2 ∪ τ3 is a disconnected Lagrangian in the Fukaya category. Provided
that Assumption 5.3.6 holds and the cobordism is unobstructed, the Lagrangian LT 2 is
mirror to a divisor Chow-equivalent to a fiber of the elliptic fibration W̌9111 : X̌9111→
CP

1.

Proof We first construct the Lagrangian cobordism. At each of the 3 nodal points
in the base of the SYZ fibration Q

CP
2\E the Lagrangian LT 2 meets τi at a single

intersection point. In our localmodel for the nodal neighborhood, this is the intersection
of two Lagrangian thimbles. The surgery of those two thimbles is a smooth Lagrangian
whose argument in the eigendirection of the node avoids the node. This was our local
definition for π−1(L(φT 2)) in a neighborhood of the node.
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Recall that in this setting, we have an exact sequence of sheaves

(
3⊕

i=1
ODi

)

→ π−1(OEp )→ OW−19111(p)
. (3)

In the event that the cobordism constructed above is unobstructed, by [6] we have
a similar exact triangle on the A-side,

3⊔

i=1
τi → π−1(L(φT 2))→ LT 2 .

Remark 5.3.9 It is reasonable to expect that the Lagrangian cobordism in question is
unobstructed, as the intersections between the τi and LT 2 are all in the same degree,
therefore for index reasons we can rule out the existence of holomorphic strips on
LT 2 ∪ τi . In complex dimension 2, one can additionally choose an almost complex
structure to rule out the existence of Maslov 0 disks with boundary on LT 2 ∪ τi . These
are similar to the conditions used to prove unobstructedness of tropical Lagrangian
hypersurfaces [19].

Under the assumptions of [19, A.3.2] on the existence of a restriction morphism for
the pearly model of Lagrangian Floer theory of Lagrangian cobordisms , the first and
third term in these exact triangles are mirror to each other. This identifies the mirror
of the middle term in the Chow group, proving the theorem. �


This mirror symmetry statement ties together several lines of reasoning. To each
fiber Fq ⊂ CP

2\E equipped with local system ∇, we can associate a value
OGW (Fq ,∇) which is a weighted count of holomorphic disks with boundary Fq
in the compactification Fq ⊂ CP

2. By viewing X̌9111 as the moduli space of pairs
(Fq ,∇), we obtain a function

WOGW : X̌9111\I9→ C.

This function matches the restriction W̌9111|X̌9111\I9 . In the previous discussion we

conjectured that sheaves supported on W−1OGW (0) are mirror to LT 2 . Recall that LT 2

can also be constructed as the dual dimer Lagrangian (Definition 3.3.4) to the mutation
configuration for the monotone fiber F0. In this example, these two constructions of
LT 2 suggest that the dual dimer Lagrangian for a mutation configuration is mirror to
the fiber of the Open Gromov–Witten superpotential.
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