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Abstract
We study the motive of the moduli space of semistable Higgs bundles of coprime rank
and degree on a smooth projective curve C over a field k under the assumption that C
has a rational point. We show this motive is contained in the thick tensor subcategory
of Voevodsky’s triangulated category of motives with rational coefficients generated
by the motive of C . Moreover, over a field of characteristic zero, we prove a motivic
non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham
moduli spaces are isomorphic.
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1 Introduction

1.1 Moduli of Higgs bundles and their cohomological invariants

Let C be a smooth projective geometrically connected genus g curve over a field k.
A Higgs bundle over C is a vector bundle E together with a Higgs field, which is an
OC -linear map E → E ⊗ ωC . There is a notion of (semi)stability analogous to the
classical notion for vector bundles and a construction via geometric invariant theory of
the moduli space Hss

n,d of semistable Higgs bundles of rank n and degree d over C . We
assume that n and d are coprime; this implies that semistability coincideswith stability,
and that Hss

n,d is a smooth quasi-projective variety of dimension 2n2(g − 1) + 2.
Hitchin’s originalmotivation for introducingHiggs bundles and theirmoduli in [26]

came from mathematical physics, but these spaces now play a central role in many
subfields of geometry. Most notably, over the complex numbers, moduli spaces of
Higgs bundles are (non-compact) hyperkähler manifolds which are isomorphic as real
analytic manifolds to moduli spaces of representations of the fundamental group of
C and moduli spaces of holomorphic connections via Simpson’s non-abelian Hodge
correspondence [42].

For a long time, the cohomology of Hss
n,d was quite mysterious. One recent break-

through was the precise conjectural formulas for the Betti numbers over the complex
numbers by Hausel and Rodriguez-Villegas [19] (predicted via point-counting argu-
ments for character varieties over finite fields); the conjecture was recently proved by
Schiffmann [39], Mozgovoy-Schiffmann [36] and Mellit [35] by counting absolutely
indecomposable vector bundles over finite fields, in the spirit of Kac’s theory for quiver
representations, and using Hall algebra techniques.

Our paper follows a different geometric strategy, which can be traced back to the
original paper of Hitchin [26]. There, he used a scaling Gm-action on the Higgs field
to compute the Betti numbers of Hss

2,d(C), and Gothen [17] extended this approach
to rank 3. This scaling action was later studied by Simpson [42] in higher ranks. The
components of the Gm-fixed loci are moduli spaces of chains of vector bundles on C
which are semistable with respect to a certain stability parameter, and the cohomology
of Hss

n,d can be described in terms of the cohomology of these moduli spaces of chains
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by using the classical techniques of Białynicki-Birula [5]. Since these moduli spaces
of semistable chains are smooth projective varieties, this shows that the cohomology of
Hss

n,d is pure (this purity was observed by Hausel and Thaddeus [21, Theorem 6.2] and
Markman [34]). Moreover, the problem of describing the cohomology of Hss

n,d reduces
to the problem of describing the cohomology of moduli spaces of chains which are
semistable with respect to a specific stability parameter.

The classes of moduli spaces of Higgs bundles and moduli spaces of chains in the
Grothendieck ring of varieties were studied by García-Prada, Heinloth and Schmitt
[14,15,23]. One key geometric idea is to vary the chain stability parameter and use
wall-crossing in terms of unions of Harder–Narasimhan strata to inductively write the
classes of moduli stacks of semistable chains for certain stability parameters using
classes of simpler stacks. More precisely, it suffices to compute the classes of certain
moduli stacks of generically surjective chains of constant rank, for which there are
explicit formulas in terms of the classes of symmetric powers of the curve and classes
of stacks of vector bundles over the curve. The latter were determined by Behrend
and Dhillon [4]. This gives a recursive algorithm to compute the class of Hss

n,d in
the Grothendieck ring of varieties [14] and it follows that the class of Hss

n,d can be
expressed in terms of classes of symmetric powers of C , the Jacobian of C and powers
of the Lefschetz class.

1.2 Our results

In this paper, we study the motive M(Hss
n,d) in Voevodsky’s triangulated category

DMeff(k, R) of (effective) mixed motives over k with coefficients in a ring R such
that the exponential characteristic of k is invertible in R under the assumption that
C(k) �= ∅. By construction M(Hss

n,d) lies in the subcategory DMeff
c (k, R) of compact

objects of DMeff(k, R).
Our first main result adapts the geometric ideas in [14,15,23] to Voevodsky’s trian-

gulated category DMeff(k, R) of mixed motives over k.

Theorem 1.1 Assume that C(k) �= ∅ and that R is a Q-algebra. Then the motive
M(Hss

n,d) lies in the thick tensor subcategory 〈M(C)〉⊗ of DMeff
c (k, R) generated by

M(C). More precisely, M(Hss
n,d) can be written as a direct factor of the motive of a

large enough power of C.

In fact, as C(k) �= ∅, the stack Hss
n,d of semistable Higgs bundles is a trivial Gm-

gerbe over Hss
n,d and the ideas in the proof of Theorem 1.1 provides a more precise

description of the motive ofHss
n,d as fitting in a explicit sequence of distinguished tri-

angles built from known motives (Corollary 6.7), which we hope will lead to precise
computations in small ranks. The promised description as a direct factor is unfortu-
nately completely inexplicit and relies on a general observation about pure motives
and weight structures; see Lemma 6.8.

Schiffmann proved that, over a finite field, the eigenvalues of Frobenius acting
on the compactly supported �-adic cohomology of Hss

n,d are monomials in the Weil
numbers of C (in [38, Corollary 1.6]; note that this is the arXiv preprint, the published
version of the paper does not include this result). He asked us whether this also follows
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from Theorem 1.1; indeed, this is the case, see 6.10 for a more precise statement and
proof.

Our second main result, over a field of characteristic zero, compares the integral
motives of Hss

n,d and the de Rham moduli space MdR
n,d appearing in the non-abelian

Hodge correspondence (see §4 for the precise definition). This motivic counterpart
to the non-abelian Hodge correspondence is relatively easy to prove (and has some
antecedents for cohomology in the literature) but does not seem to have been observed
before, even at the level of Chow groups.

Theorem 1.2 Assume that k is a field of characteristic zero and C(k) �= ∅. For any
commutative ring R, there is a canonical isomorphism

M(Hss
n,d) � M(MdR

n,d)

in DMeff(k, R) which also induces an isomorphism of Chow rings

CH∗(Hss
n,d , R) � CH∗(MdR

n,d , R).

The proof of Theorem 1.1 and of its refined form (Corollary 6.7) is a priori more
complicated than in the context of the Grothendieck ring of varieties, as the cut and
paste relations [X ] = [Z ] + [X \ Z ] for a closed subvariety Z ⊂ X play a key role
in the proof of [14], whereas in DMeff(k, R) one only has an associated localisation
distinguished triangle (and Gysin triangle for smooth pairs) which does not split in
general.

However, there are some circumstances in which these triangles split: in particular,
the Gysin triangles associated to a Białynicki-Birula decomposition of a smooth pro-
jective variety with aGm-action split and one obtains motivic decompositions [7,8,31]
and in fact, in the “Appendix” to this paper, we show this is also true for smooth quasi-
projective varieties with a so-called semi-projective Gm-action (see Theorem A.4).
This provides the first step of our argument: since the scaling action on the moduli
space of Higgs bundles Hss

n,d is semi-projective, the motive of Hss
n,d can be expressed

in terms of Tate twists of motives of certain moduli spaces of semistable chains, which
are smooth and projective. From this, we already deduce the purity of M(Hss

n,d).
It is at this point in the logical development, by combining motivic Białynicki-

Birula decompositions with the geometry of the Deligne-Simpson moduli space of
λ-connections, that we prove Theorem 1.2 (see Theorem 4.2); in fact, it is obtained
as a corollary of a general fact about equivariant specialisations of semi-projective
Gm-actions (Theorem B.1).

The motives of the moduli spaces of semistable chains appearing in the Białynicki-
Birula decomposition of Hss

n,d can be expressed in terms of the motives of the
corresponding moduli stacks of semistable chains when C(k) �= ∅, since this implies
these stacks are trivialGm-gerbes over their coarsemoduli space. Therefore, it remains
to describe the motives of the corresponding moduli stacks of semistable chains. We
follow the geometric ideas in [14,15,23], which involves a wall-crossing argument
together with a Harder–Narasimhan (HN) recursion.
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The space of stability parameters for chains has a wall and chamber structure such
that (semi)stability is constant in chambers and as one crosses a wall, the stacks of
semistable chains for the wall parameter is a union of the stacks of semistable chains
and finitely many stacks of chains of fixed HN type for the stability parameters on
either side of wall. We use a path in the space of stability parameters constructed in
[15] starting from (a small perturbation of) the Higgs stability parameter αH which
ends in a chamber where either the semistable locus is empty or is contained in a
moduli stack of generically surjective chains of constant rank. We obtain a diagram of
distinguished triangles relating the motives of the stacks of αH -semistable chains we
are interested in with the motives of stacks of generically surjective chains of constant
rank and higher HN strata for various stability parameters along the path.

The motives of moduli stacks of chains of fixed (non-trivial) HN type can be
described inductively using the fact that the map taking a chain to its the associ-
ated graded for the HN filtration is a Zariski locally trivial affine space fibration over
a product of moduli stacks of semistable chains of smaller ranks.

The last step of the computation, and the one which requires the most additional
work compared to [15], is to lift the formula for the classes of stacks of generically
surjective chains of constant rank in [15, Lemma 4.9] to DMeff(k, R) and this is where
we are forced to assume that R is a Q-algebra. These stacks turn out to be iterated
moduli stacks of Hecke correspondences over moduli stacks of vector bundles over
C . In [27,28] we prove a formula for the rational motive of the stack Bunn,d of rank
n degree d vector bundles on C under the assumption that C(k) �= ∅; this formula
involves motives of symmetric powers of the curve, the Jacobian of the curve and
Tate twists (see [27, Theorem 1.1]). The arguments in [27] involve calculating the
motive of varieties of Hecke correspondences for a family of vector bundles over C
parameterised by a smooth variety T (see [27, Theorem 3.8]). We were inspired by a
more sheaf-theoretic argument of Heinloth [23, Proof of Proposition 11], which gives
the rational cohomology of stacks of Hecke correspondences over any base using an
argument based on ideas of Laumon [33] involving the cohomology of small maps
which are generically principal bundles. Heinloth’s proof uses perverse sheaves and
cannot be applied in DMeff(k, R), but we gave a more geometric form of the argument
which can be made to work using the six operations formalism for étale motives. It
remains to extend this formula to the case where we replace the smooth variety T
by the smooth stack Bunn,d . Since in [28, Theorem 3.2] we prove that Bunn,d is a
so-called exhaustive stack (see [28, Definition 2.15]), it suffices to prove the formula
extends to smooth exhaustive stacks, which is what we do in Sect. 5. More precisely,
we obtain the following result, which completes the proof of Theorem 1.1.

Theorem 1.3 Assume that R is a Q-algebra. Let E be a family of rank n vector bun-
dles over C parametrised by a smooth exhaustive algebraic stack T . Then the stack
Heckel

E/T of length l Hecke modifications of E (i.e. subsheaves F ⊂ E whose quo-
tient is a family of length l torsion sheaves) is smooth and exhaustive, and we have an
isomorphism

M(Heckel
E/T ) ∼= M(T ) ⊗ M(Syml(C × P

n−1))
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in DMeff(k, R).

Notation and conventions.
Let D be a tensor triangulated category admitting small direct sums and such that
tensor products preserve small direct sums (for instance D = DMeff(k, R)). Let G be
a set of objects inD. We denote by 〈G〉 (resp. 〈〈G〉〉) the smallest thick (resp. localising)
subcategory of D containing G; that is, the smallest triangulated subcategory of D
containing G and furthermore stable by taking direct factors (resp. small direct sums).
We also denote by 〈G〉⊗ (resp. 〈〈G〉〉⊗) the smallest thick (resp. localising) tensor
subcategory of D containing G; that is, the smallest triangulated subcategory of D
containing G and furthermore stable by taking tensor products and direct factors (resp.
tensor products and small direct sums).

It is easy to show that the subcategory 〈G〉 (resp. 〈〈G〉〉) admits a more concrete itera-
tive description as a countable (resp. transfinite) union of full subcategories (〈G〉n)n≥0
(resp. (〈〈G〉〉α)α ordinal), individually not triangulated in general, with

• 〈G〉0 = 〈G〉0 the full subcategory on the set ∪k∈ZG[k] of shifts of objects in G.
• for all n > 0 (resp. for all α > 0), 〈G〉n (resp. 〈〈G〉〉α) the full subcategory of objects
which are either extensions or direct factors (resp. extensions or small direct sums)
of objects in ∪m<n〈G〉m (resp. ∪β<α〈〈G〉〉β ).

2 Moduli of Higgs bundles andmoduli of chains

Throughout this section, we fix a smooth projective geometrically connected genus g
curve C over a field k and coprime integers n ∈ N and d ∈ Z. Let us introduce the
main object of this paper, the moduli space Hss

n,d of semistable Higgs bundles over C
of rank n and degree d.

2.1 Moduli of Higgs bundles

A Higgs bundle over C is a pair (E,�) consisting of a vector bundle E and a homo-
morphism � : E → E ⊗ ωC called the Higgs field. The numerical invariants of the
Higgs bundle are given by the rank rk(E) and degree deg(E) of the vector bundle.

Definition 2.1 The slope of a Higgs bundle (E,�) is defined by μ(E) :=
deg(E)/ rk(E). The Higgs bundle (E,�) is (semi)stable if for all Higgs subbun-
dles E ′ ⊂ E (that is, a vector subbundle E ′ ⊂ E such that �(E ′) ⊂ E ′ ⊗ ωC ), we
have

μ(E ′) (≤) μ(E),

where (≤) denotes ≤ for semistability and < for stability. We say (E,�) is geo-
metrically (semi)stable if its pullback to CK := C ×k K is (semi)stable for all field
extensions K/k.

If we consider Higgs bundles of coprime rank and degree, then the notions of stabil-
ity and semistability coincide. Every Higgs bundle has a unique ‘Harder–Narasimhan’
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filtration by Higgs subbundles whose successive quotients are semistable of strictly
decreasing slopes. The uniqueness of the Harder–Narasimhan filtration can be used to
show that the notions of semistability and geometric semistability coincide over any
field. Over an algebraically closed field, the notions of stability and geometric stability
coincide; however, over a non-algebraically closed field these notions can differ (see
[29, 1.3.9]). For us all these notions will coincide, as n and d will be assumed to be
coprime.

There is a moduli space Hss
n,d of semistable Higgs bundles over C with fixed invari-

ants n and d, which is a quasi-projective variety that can be constructed via geometric
invariant theory [41]. It contains an open subvariety Hs

n,d , the moduli space of geomet-

rically stable Higgs bundles, which is a smooth variety of dimension 2n2(g − 1) + 2
whose geometric points correspond to isomorphism classes [E,�] of stable Higgs
bundles. Moreover, every (semi)stable vector bundle is a (semi)stable Higgs bundle
with any Higgs field and the deformation theory of vector bundles implies that the
cotangent bundle to the moduli space of semistable vector bundles is contained in the
moduli space of semistable Higgs bundles.

2.2 The scaling action on themoduli space of Higgs bundles

In this section we will exploit a natural Gm-action on the moduli space Hss
n,d of

semistable Higgs bundles over C whose fixed loci are moduli spaces of semistable
chains. This action was first used by Hitchin [26] to compute the Betti numbers of
Hss

n,d when n = 2 and was later used by Simpson [42] for higher ranks. TheGm-action
is defined by scaling the Higgs field: for t ∈ Gm and [E,�] ∈ Hss

n,d , let

t · [E,�] := [E, t · �].

The fixed loci and the flow under thisGm-action are described by the following result.

Proposition 2.2 (Hitchin, Simpson) The above Gm-action on Hss
n,d is semi-projective

(in the sense of Definition A.1) and thus there is a Białynicki-Birula decomposition

Hss
n,d =

⊔

i∈I

H+
i ,

where Hi are the connected components of (Hss
n,d)Gm and H+

i is the locally closed
subvariety of Hss

n,d consisting of points x such that limt→0 t · x ∈ Hi . Moreover,
the fixed components Hi are smooth projective varieties and the natural retraction
H+

i → Hi is a Zariski locally trivial affine bundle of rank 1
2 dim Hss

n,d . The strata H+
i

are smooth locally closed subvarieties of Hss
n,d .

Proof The fact that theGm-action is semi-projective is due toHitchin and Simpson and
then by work of Białynicki-Birula [5] (see TheoremA.2), there exists a decomposition
with the above description; for more details on the proof, see [21, Section 9]. ��

In fact, the fixed loci components also have a moduli theoretic description due to
Hitchin and Simpson. If an isomorphism class [E,�] of a semistable Higgs bundle
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is fixed by this action, then either � = 0 or we have Gm ⊂ Aut(E) which induces a
weight decomposition E = ⊕i Ei such that �(Ei ) ⊂ Ei+1 ⊗ ωC , as Gm acts on �

with weight 1. If i0 denotes the minimum weight for which Ei0 is non-zero, then we
obtain a chain of vector bundle homomorphisms

Ei0 → Ei0+1 ⊗ ωC → Ei0+2 ⊗ ω⊗2
C → · · ·

which terminates after finitely many homomorphisms, as there are only finitely many
weights appearing in the decomposition E = ⊕Ei . If we write Fi := Ei0+i ⊗ ω⊗i

C ,
then this gives us a chain

F0 → F1 → F2 → · · · → Fr

for some r ∈ N. Since ωC is a line bundle, the Ei ’s are uniquely determined by the
Fi ’s. The case r = 0 corresponds to vanishing Higgs field � = 0; thus one fixed
component is the moduli space of semistable rank n degree d vector bundles on C .
The other components of the fixed locus will be moduli spaces of semistable chains
as we explain below.

2.3 Moduli of chains

The fixed loci for the above scaling action on Hss
n,d are moduli spaces of chains which

are semistable with respect to a certain stability parameter. We give some basic prop-
erties of moduli of chains and explain their relationship with Higgs bundles.

A chain of length r over C is a collection of vector bundles (Fi )i=0,...,r and homo-
morphisms (φi : Fi−1 → Fi )i=1,···r between these vector bundles, which we write
as

F• = (F0
φ1→ F1 → · · · → Fr−1

φr→ Fr ).

The invariants of this chain are the tuples of ranks and degrees rk(F•) := (rk Fi )i=0,...,r
and deg(F•) := (deg Fi )i=0,...,r . There are natural notions of homomorphisms of
chains and the category of chains over C is an abelian category.

If we fix tuples n and d of ranks and degrees, then there is an algebraic stack
Chn,d of chains with these invariants, which is locally of finite type [15, §4.1]. There
are notions of (semi)stability for chains depending on a stability parameter α and
also natural notions of Harder–Narasimhan filtrations with respect to such a stability
parameter.

Definition 2.3 Let α = (αi )i=0,...,r ∈ R
r+1 be a tuple of real numbers.

(1) We define the α-slope of a chain F• by

μα(F•) =
∑r

i=0(deg Fi + αi rk(Fi ))∑r
i=0 rk Fi

.



On the Voevodsky motive of the moduli space of… Page 9 of 37 11

Note that this only depends on the numerical invariants (rk(F•), deg(F•)) of the
chain. A chain F• is α-(semi)stable if for all proper subchains F ′• ⊂ F• we have

μα(F ′•)(≤)μα(F•),

where (≤) denotes ≤ for semistability and < for stability. We say F• is geometri-
cally α-(semi)stable if its pullback to CK is α-(semi)stable for all field extensions
K/k.

(2) The stability parameter α is critical for given numerical invariants n and d if there
exists 0 < n′ < n (that is, 0 ≤ n′

i ≤ ni for all i with at least one strict inequality)
and d ′ such that μα(n′, d ′) = μα(n, d). Otherwise, we say α is non-critical for
these invariants.

(3) Every chain has a unique Harder–Narasimhan (HN) filtration with respect to α

0 = F (0)• ⊂ F (1)• ⊂ · · · ⊂ F (l)• = F•

such that Fi• := F (i)• /F (i−1)• are α-semistable with strictly decreasing α-slopes
[15, Lemma 4.2]. The α-HN type of F• records the numerical invariants of the
subquotients and we write this as a tuple (rk(F j• ), deg(F j• )) j=1,...,l . We let Chα,ss

n,d

denote the substack of α-semistable chains and let Chα,τ
n,d denote the substack of

chains of α-HN type τ . The substack Chα,ss
n,d is open in Chn,d while each Chα,τ

n,d is
locally closed.

By definition, if α is non-critical for n and d , the notions of α-semistability and
α-stability for chains with these invariants coincide. Similarly to the discussion for
Higgs bundles, if α is non-critical for n and d , then all these notions of (semi)stability
coincide.

There are moduli spaces Chα,ss
n,d of α-semistable chains over C with fixed invariants

n and d which are projective varieties that can be constructed as geometric invariant
theory quotients (see [40]). Furthermore, the deformation theory of chains is described
in [1, Section 3].

Since geometrically α-stable chains have automorphism groups isomorphic to the
multiplicative group Gm , the stack of geometrically α-stable chains Chα,s

n,d is a Gm-

gerbe over its coarse moduli space Chα,s
n,d , the moduli space of geometrically α-stable

chains over C . Moreover, if we assume C(k) �= ∅, then for non-critical values of α

for n and d , the Gm-gerbe Chα,s
n,d → Chα,s

n,d is trivial (for example, this can be proved
using [22, Lemma 3.10]).

Consider the following cones of stability parameters


r := {α ∈ R
r+1 : αi − αi+1 ≥ 2g − 2} and


◦
r := {α ∈ R

r+1 : αi − αi+1 > 2g − 2}.

If α ∈ 
r and α is non-critical for the invariants n and d, then the moduli spaces
Chα,ss

n,d = Chα,s
n,d (and also the correspondingmoduli stacks) are smooth by [1, Theorem

3.8 vi)]. For α ∈ 
◦
r , the moduli stack Chα,ss

n,d of α-semistable chains is smooth by [1,
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Proposition 3.5 ii)] (see also [15, Lemma 4.6] and [24, Section 2.2]). Moreover, the
HN-strata for stability parameters in the cone 
◦

r admit the following description.

Proposition 2.4 [15, Lemma 4.6 and Proposition 4.8] Let α ∈ 
◦
r . For an α-HN type

τ = (n j , d j ) j=1,...,l , the morphism given by taking the associated graded for the
α-HN filtration

gr : Chα,τ
n,d −→

l∏

j=1

Chα,ss
n j ,d j

is an affine space fibration. Thus the stack Chα,τ
n,d of chains with α-HN type τ is also

smooth.

To state the relationship between the fixed point set of the Gm-action on Hss
n,d and

moduli spaces of chains, we introduce a Higgs stability parameter for length r chains

αH := (r(2g − 2), . . . , 2g − 2, 0)

which lies on the boundary of the above cone 
r .

Proposition 2.5 Any length r chain F• determines a Higgs bundle (E = ⊕r
i=0Fi ⊗

ω⊗−i
C ,�), where the Higgs field � : E → E ⊗ ωC is determined by the chain

homomorphisms φi : Fi−1 → Fi . Furthermore, the associated Higgs bundle (E,�)

is (semi)stable if and only if the chain F• is αH -(semi)stable.

Proof This is essentially due to Hitchin [26] and Simpson [42]: one verifies that E ′ =
⊕E ′

i is a Higgs subbundle of (E = ⊕Ei ,�) if and only if F ′• is a subchain of F ′•,
where E ′

i := F ′
i ⊗ ω⊗−i

C . Moreover, one has

μαH (F ′•) =
∑r

i=0(deg F ′
i + (r − i)(2g − 2) rk(F ′

i ))∑r
i=0 rk F ′

i

=
∑r

i=0 deg E ′
i∑r

i=0 rk E ′
i

+ r(2g − 2)

= μ(E ′) + r(2g − 2)

and so (semi)stability of (E,�) corresponds to αH -(semi)stability of F•. ��
Corollary 2.6 The connected components of the fixed point set of the Gm-action on
Hss

n,d are moduli spaces of αH -semistable chains for numerical invariants n and d for
which αH is non-critical (and thus the notions of semistability and stability with respect
to αH coincide for these numerical invariants). In particular, the moduli spaces of αH -
semistable chains appearing as fixed components are smooth projective varieties.

Proof First of all, note that for n and d to appear as numerical invariants of chains
occuring in this fixed locus, we must have

∑
i ni = n and

∑
i di = d +∑

i i(2g − 2).
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The fact that αH is non-critical for the numerical invariants n and d arising in this
decomposition is then a consequence of n and d being coprime, as μαH (n′, d ′) =
μαH (n, d) if and only if μ(

∑
i n′

i ,
∑

d ′
i − i(2g − 2)) = μ(n, d) by the proof of

Proposition 2.5. Since αH is non-critical, one can find a small perturbation to a non-
critical stability parameter α̃H ∈ 
◦

r such that αH -semistability coincides with α̃H -
semistability; then by [24, Theorem 2] the moduli stack of α̃H -semistable chains with
these invariants is connected and so it follows that the moduli space of αH -semistable
chains with these invariants is also connected, hence a connected component of the
Gm-fixed point locus. ��

2.4 Variation of stability and Harder–Narasimhan stratification results

By varying the parameter α ∈ R
r+1, one obtains different notions of (semi)stability

and correspondingly different moduli spaces of semistable chains which are related by
birational transformations. One can subdivide the space of stability parameters Rn+1

into locally closed subsets, known as a wall and chamber decomposition, such that
the notion of α-(semi)stability is constant within each chamber and changes as one
crosses a wall. In fact, the walls are hyperplanes which are in bijections with invariants
(0 < n′ < n, d ′) which witness the criticality of a critical stability parameter in the
sense of Definition 2.3. This wall-crossing picture for chains was studied in [1, Section
4] and was described from the point of view of stacks in [14, Section 3].

Let us recall the description of the stacky wall-crossing given in [14, Proposition 2]:
let α0 be a critical stability parameter for invariants n and d , for δ ∈ R

r+1 consider the
family of stability parameters αt = α0+ tδ in a neighbourhood of t = 0 ∈ R. Then for
0 < ε << 1, we have that αε-(semi)stability and α−ε-semistability are independent
of ε, and if we write α± := α±ε , then we have

Chα0,ss
n,d = Chα±,ss

n,d �
⊔

τ∈I±
Chα±,τ

n,d , (1)

where I± are finite sets of α±-HN types.
For the wall-crossing arguments we employ later, we will need to introduce the

stack of generically surjective chains.

Definition 2.7 Let Chgen−surj
n,d denote the substack of Chn,d consisting of chains

F• = (F0
φ1→ F1 → · · · → Fr−1

φr→ Fr )

such that all the homomorphisms φi are generically surjective.

Remark 2.8 For n = (n, . . . , n) constant, Chgen−surj
n,d is smooth and connected by [15,

Lemma 4.9] (see also [1, Theorem 3.8 v)]). In this constant rank case, as we are
working over a curve, the stack of generically surjective chains coincides with the
stack of injective chains (see [23]).
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Proposition 2.9 Let α ∈ 
r and let n and d be invariants for chains of length r . Then
there is a ray (αt )t≥0 ∈ 
r starting at α0 = α with the following properties.

(1) [14, Lemma 6] If ni �= n j for some i �= j , then for t >> 0 there are no αt -
semistable chains with these invariants; that is, Chαt ,ss

n,d = ∅ for t >> 0.
(2) [15, Corollary 6.10] If ni = n j for all i, j , then for t >> 0 we have

Chαt ,ss
n,d ⊂ Chgen−surj

n,d

and moreover Chgen−surj
n,d is an (infinite) union of αt -HN strata.

If moreover α ∈ 
◦
r , then the ray (αt )t≥0 can be chosen to remain in 
◦

r .

Remark 2.10 As observed in the proof of [24, Proposition 2.6], the above paths can
be perturbed such that every critical value along the perturbed path lies on a single
wall and the path is linear in a neighbourhood of each critical value, as the wall and
chamber decomposition is a locally finite partition of 
◦

r by [1, §2.4].

3 Voevodsky’s category of effective motives andmotives of stacks

3.1 Motives of schemes

In this section, let us briefly recall some basic properties about Voevodsky’s category
DMeff(k, R) := DMNis,eff(k, R) of effective (Nisnevich) motives over k with coeffi-
cients in a ring R. For the remainder of the paper, we fix such a ring R and we always
assume that the exponential characteristic of k is invertible in R (this is necessary for
the more subtle properties of DM(k, R), such as the existence of the weight structure
used in Section 6.3). In places, in particular for our main result (Theorem 1.1), we
need the stronger assumption that R = Q, which we always point out explicitly.

The category DMeff(k, R) is a R-linear tensor triangulated category, which was
originally constructed in [46] and its deeper properties were established under the
hypothesis that k is perfect and satisfies resolution of singularities. These properties
were extended to the case where k is perfect and the exponential characteristic of k
is invertible in R by Kelly in [32], using Gabber’s refinement of de Jong’s results on
alterations.

For a separated scheme X of finite type over k, one can associate a motive M(X) ∈
DMeff(k, R)which is covariantly functorial in X and behaves like a homology theory.
The unit for the monoidal structure is M(Spec k) := R{0}, and there are Tate motives
R{n} := R(n)[2n] ∈ DM(k, R) for all n ∈ N. For any motive M and n ∈ N, we write
M{n} := M ⊗ R{n}.

In DMeff(k, R), there are Künneth isomorphisms, A1-homotopy invariance, Gysin
distinguished triangles, projective bundle formulas, as well as realisation functors
(Betti, de Rham, �-adic,· · · ) and descriptions of Chow groups with coefficients in R
as homomorphism groups in DMeff(k, R). There is also a well-behaved subcategory
DMeff

c (k, R) ⊂ DMeff(k, R) which can be described equivalently as the subcategory
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of compact objects in the triangulated sense or as the thick triangulated subcategory
generated by M(X) for X smooth.

By Voevodsky’s cancellation theorem [45] (together with a result of Suslin to cover
the case where k is imperfect [44]), the category DMeff(k, R) embeds as a full sub-
category of the larger triangulated category of (non-effective) motives DM(k, R). The
advantage of DM(k, R) over DMeff(k, R) is that it admits a form of Poincaré duality.
For an overview of properties of DM(k, R), which by the previous embedding also
covers the main properties of DMeff(k, R) alluded to in the previous paragraph, we
refer the reader to the summary in [28, §2].

3.2 Motives of smooth exhaustive stacks

There are several approaches to defining motives of general algebraic stacks when
working with rational coefficients. For a comparison of different approaches, see [28,
AppendixA], and for amore general approachwhich partially describes a six operation
formalismon stacks via the natural∞-category structures on rationalmotives, see [37].
A key point in the story is that Voevodsky motives with rational coefficients satisfy
smooth cohomological descent, which ensures that the resultingmotives do not depend
on auxiliary choices and relate as expected tomotives of finite type schemes. However,
it is not clear how to construct motives of algebraic stacks with coefficients in a more
general ring R.

In this paper, as in [28], we canworkwith amore restrictive class of algebraic stacks,
namely smooth exhaustive stacks. Informally, an algebraic stack X is exhaustive if it
can be well approximated by a sequence of schemes which occur as open substacks of
vector bundles over increasingly large open substacks of X (see [28, Definition 2.15]
for the precise definition, which we will not need in this paper). In particular, quotient
stacks [X/G] for a G-linearised action of an affine algebraic group G on a smooth
quasi-projective variety X are smooth and exhaustive, see [28, Lemma 2.16]. Almost
all of the stacks we consider in this paper, and all of those for which we consider an
associated motive, are exhaustive, see Proposition 5.4 and Lemma 6.2.

For such smooth exhaustive stacks and for any coefficient ring R, we can attach
a motive in DMeff(k, R) by adapting ideas of Totaro and Morel-Voevodsky (see [28,
Definition 2.17]; note that in loc.cit. we work in DM(k, R) but the definition works
as well and compatibly in the full subcategory DMeff(k, R)). In [28, Appendix A],
we checked that this is compatible with the more general definition alluded to above
when R is a Q-algebra. We do not need to go into the definition, but we will need the
following property which follows immediately from the definition.

Proposition 3.1 Let T be a smooth exhaustive algebraic stack. Then there exists a
diagram of finite type separated k-schemes

U0 → U1 → U2 → . . .

which lives over T and such that we have

M(T ) � hocolimn∈N M(Un)
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in DMeff(k, R). Let f : T ′ → T a flat finite type separated representable morphism,
and U ′

n := Un ×T T ′ for n ∈ N (so that U ′
n is also finite type and separated). Then

T ′ is exhaustive, and we have

M(T ′) � hocolimn∈N M(U ′
n)

in DMeff(k, R).

In [28],we established a fewof the expected properties ofmotives of smooth exhaus-
tive stacks, in particular we prove that the product of exhaustive stacks is exhaustive
and establish Künneth isomorphisms,A1-homotopy invariance and Gysin triangles in
[28, Proposition 2.27]. Note that the results are stated in the larger category DM(k, R)

but also hold in the full subcategoryDMeff(k, R) by theVoevodsky-Suslin embedding.

4 Motivic non-abelian Hodge correspondence

One of the most interesting features of the moduli space Hss
n,d is its role in the non-

abelianHodge correspondence ofCorlette andSimpson,which relatesHss
n,d to amoduli

spaceMdR
n,d of (logarithmic) flat connections onC over the complex numbers [42].Over

a field k of characteristic zero, there is still a geometric relationship between Hss
n,d and

MdR
n,d , instantiated by Deligne’s moduli space MHdg

n,d of (logarithmic) λ-connections.
In this section, which is independent of the rest of the paper, we combine this with
“Appendix B” to compare the motives of Hss

n,d , M
dR
n,d and MHdg

n,d .
In this section, we assume that k is a field of characteristic zero and, as in the rest

of the paper, we assume that n and d are coprime and that C(k) �= ∅. We fix x ∈ C(k)

and consider logarithmic connections with poles at x of fixed residue, whose definition
we recall below.

In [41], Simpson defines the notion of a sheaf 
 of rings of differential operators
over a smooth projective variety X/S generalising the usual ring of differential opera-
torsDX/S and constructs moduli spaces of 
-modules (i.e. sheaves of left 
-modules
which are coherent as OX -modules) which are semistable (in the usual sense of ver-
ifying an inequality of slopes for all 
-submodules). For special choices of 
, one
obtains moduli spaces of coherent sheaves, Higgs bundles, flat connections and more
generally logarithmic connections and their degenerations given by λ-connections.

Definition 4.1 Let 
dR,log x denote the (split, almost polynomial) sheaf of differential
operators over C associated to the sheaf of logarithmic differentials�C (log x) and the
ordinary differential (see [41, page 87 and Theorem 2.11]); then a 
dR,log(x)-module
is a coherent sheaf E on C with logarithmic connection ∇ : E → E ⊗ �C (log x)

with poles at x satisfying the usual Leibniz condition (as we are over a curve, the
integrability condition holds trivially). Following page 86 of loc. cit., we can construct
a deformation to the associated graded Gr(
dR,log x ) = Sym∗(�C (log x)∨) which is
a (split, almost polynomial) sheaf of split differential operators over C × A

1 denoted

dR,log x,R . For λ ∈ k, let iλ : C × {λ} ↪→ C × A

1 denote the inclusion and let
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dR,log x,λ := i∗λ
dR,log x,R ; then a 
dR,log x,λ-module is a logarithmic λ-connection
on C with poles at x .

A logarithmicλ-connection (E,∇) admits a residue at x , which is an endomorphism
of Ex . Fixing the value of the residue determines a closed condition in moduli. We
will be interested in the case when the residue is −λ d

n Id.
When λ is non-zero, it is possible to rescale a (logarithmic) λ-connection (with pole

at x of residue −λ d
n Id) into an ordinary (logarithmic) connection using the natural

scaling action ofGm onA1, while when λ = 0, the residue being zero implies that we
do not have a non-trivial pole and we obtain an ordinary Higgs bundle on C .

A special case of Simpson’s general construction in [41] yields a quasi-projective
coarse moduli space MHdg

n,d of semistable rank n degree d logarithmic λ-connections

with poles at x of residue −λ d
n Id for varying λ ∈ k, together with a flat morphism

f : MHdg
n,d → A

1 such that f −1(0) � Hss
n,d is the moduli space of semistable Higgs

bundles, f −1(1) � Hss
n,d = MdR

n,d is the moduli space of semistable logarithmic

connections with pole at x of residue − d
n Id and f −1(Gm) � MdR

n,d ×Gm (by the

rescaling argument above). Since n and d are coprime, the moduli space MHdg
n,d and

morphism f : MHdg
n,d → A

1 are both smooth. Simpson shows that the scaling action on

Hss
n,d extends to MHdg

n,d , see [41,42]. Moreover, he shows that the variety MHdg
n,d together

with this Gm-action is still semi-projective in the sense of Definition A.1 (see [42,
Lemma 16] for the case of λ-connections of degree 0).

It is known that, when k = C, the family f is topologically trivial, so that the
fibre inclusions Hss

n,d ↪→ MHdg
n,d and MdR

n,d ↪→ MHdg
n,d induce isomorphisms on singular

cohomology; see [42, Proposition 15] and [21, Lemma 6.1]. In the Grothendieck ring
of varieties, the motivic classes of the corresponding stacks (in degree 0, not in the
coprime case) in characteristic zero are proven to be equal in [13, Theorem 1.2.1].

If we believe in the conservativity conjecture of realisations with rational coef-
ficients, the topological triviality suggests that at least the motives with rational
coefficients are the same. In fact, we prove that this holds integrally.

Theorem 4.2 Let k be a field of characteristic 0, C/k be a smooth projective geomet-
rically connected curve with C(k) �= ∅ and let n and d be coprime integers. Let R be
a ring such that the exponential characteristic of k is invertible in R. Then the fibre
inclusions in the Deligne-Simpson family induce isomorphisms

M(Hss
n,d) � M(MHdg

n,d ) � M(MdR
n,d)

in DMeff(k, R).

Proof By the results on the geometry of the Deligne-Simpson family recalled above,
we can apply Theorem B.1 and the result follows. ��

As in Corollary B.2, it follows that the Chow rings with R-coefficients (resp. the
�-adic cohomology, etc.) of Hss

n,d , M
Hdg
n,d and MdR

n,d are canonically isomorphic.
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5 Hecke correspondences and the stack of generically surjective
chains

5.1 Motives of stacks of Hecke correspondences

In [27, §3], we proved a formula for the motives of schemes of Hecke correspondences
associated to a family of vector bundles over the curve C parametrised by a base
scheme. In this section, we generalise this formula to the situation where the base is a
smooth exhaustive algebraic stack. This situation is sufficient for our needs, and it has
the advantage that the proof is then a simple application of the result for schemes. It
is likely that the formula holds for more general base algebraic stacks, but this seems
to require more delicate arguments. This is one of the reasons we chose to restrict to
the formalism of exhaustive stacks in this paper.

For a family E of vector bundles on C parametrised by an algebraic stack T , we
write rk(E) = n and deg(E) = d if the fibrewise rank and degree of this family are n
and d respectively.

Definition 5.1 For l ∈ N and a family E of rank n degree d vector bundles over C
parametrised by an algebraic stack T (considered as a category fibered in groupoids
over Sch /k), we define a category fibered in groupoids Heckel

E/T over Sch /k as
follows. For every S ∈ Sch /k, the objects are defined as

Heckel
E/T (S)

:=
{

g ∈ T (S), φ : F ↪→ (g × idC )∗E : F → S × C vector bundle
rk(F)=n, deg(F)=d−l, rk(φ)=n

}
.

Given a morphism f : S′ → S in Sch /k, a morphism over f from (g′, φ′) ∈
Heckel

E/T (S′) to (g, φ) ∈ Heckel
E/T (S) is a morphism α : g′ → g ◦ f in T (S′) and

an isomorphism ( f × idC )∗F ∼→ F ′ which fits into the diagram

( f × id)∗F

∼

( f × idC )∗(g × idC )∗E

α∗ ∼

F ′ (g′ × idC )∗E .

Note that the left vertical isomorphism is in fact determined by α because of the
injectivity of the horizontal maps. We refer to Heckel

E/T as the stack of length l
Hecke correspondences of E .

By construction, Heckel
E/T comes together with a morphism Heckel

E/T → T ,
and we have the following base change property.

Lemma 5.2 Let f : T ′ → T be a morphism of algebraic stacks. Let l ∈ N and E
a family of rank n degree d vector bundles on C parametrised by T . Then there is a
natural equivalence of categories fibered in groupoids

Heckel
( f ×idC )∗E/T ′ � Heckel

E/T ×T T ′.
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Lemma 5.3 Fix l ∈ N and a family E of rank n degree d vector bundles over C
parametrised by an algebraic stack T . Then the morphism Heckel

E/T → T is rela-

tively representable, smooth and projective. In particular Heckel
E/T is an algebraic

stack.

Proof This follows from Lemma 5.2 and the fact that Heckel
E/T is representable by

a smooth projective (Quot) scheme over T when T is a scheme, as discussed in [27,
§3]. ��

We can now prove Theorem 1.3.

Proof of Theorem 1.3 By Proposition 3.1 and Lemma 5.3, the stack Heckel
E/T is

smooth and exhaustive, and moreover there exists a diagram

U0 → U1 → U2 → . . .

of finite type separated k-schemes over T such that, if we write πn : Un → T for the
structure morphisms and define Ũn := Un ×T Heckel

E/T � Heckel
π∗

n E/Un
, we have

isomorphisms

M(T ) � hocolimn∈N M(Un), and

M(Heckel
E/T ) � hocolimn∈N M(Ũn).

By [27, Theorem 3.8], theN-indexed system {M(Heckel
π∗

n E/Un
)}n∈N is isomorphic

to the tensor product of {M(Un)}with the constant system M(Syml(C ×P
n−1)). Note

that this result requires the assumption that R is a Q-algebra.
The result then follows by passing to the homotopy colimit. ��

5.2 Motive of the stack of generically surjective chains

We compute the rational motive of the stack of generically surjective chains between
sheaves with constant ranks.

Following [28], we define for i ∈ N the motivic zeta function

Z(C, R{i}) :=
∞⊕

j=0

M(Sym j (C)) ⊗ R{i j}.

Proposition 5.4 Let n = (n0, . . . , nr ) and d = (d0, . . . , dr ) be such that ni = ni+1

and li := di − di−1 is non-negative for all i . Then the stack Chgen−surj
n,d of generically

surjective chains is an iterated Hecke correspondence stack over the moduli stack
Bunnr ,dr of vector bundles of rank nr and degree dr on C. It is thus a smooth exhaustive
stack, and its motive in DMeff(k, R), where R is a Q-algebra, is given by
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M(Chgen−surj
n,d ) � M(Bunnr ,dr ) ⊗

r⊗

i=1

M(Symli (C × P
n−1))

� M(Jac(C)) ⊗ M(BGm) ⊗
nr −1⊗

i=1

Z(C,Q{i}) ⊗
r⊗

i=1

M(Symli (C × P
n−1))

and we have M(Chgen−surj
n,d ) ∈ 〈〈M(C)〉〉⊗.

Proof The description of Chgen−surj
n,d as an iterated Hecke correspondence stack over

Bunnr ,dr is contained in [15, Lemma 4.9]. Let us briefly give the details here in the
case of a tuple of constant ranks, in which case generically surjective homomorphisms
of vector bundles of the same rank are in fact injective as we are over a curve. We
write n≥i := (ni , . . . , nr ) and d≥i := (di , . . . , dr ) and Chgen−surj

≥i := Chgen−surj
n≥i ,d≥i

and

write U i
≥i → · · · → Ur≥i for the universal chain over Chgen−surj

≥i × C . Then there are
natural forgetful maps

Chgen−surj
≥i−1 → Chgen−surj

≥i

which we claim are Hecke modification stacks. More precisely, we claim that

Chgen−surj
≥i−1 = Heckeli (U i

≥i/Chgen−surj
≥i ),

since a generically surjective chain Fi → · · · → Fr with invariants n≥i and d≥i
together with a length li Hecke modification Ei ↪→ Fi determines a generically
surjective chain Fi−1 := Ei → Fi → · · · → Fr with invariants n≥i−1 and d≥i−1.

We note that this iteration of Hecke correspondence stacks ends with Chgen−surj
≥r =

Bunnr ,dr , which is a smooth exhaustive stack by [28, Theorem 3.2]. By repeatedly
applying Theorem 1.3 and combining with the formula for the rational motive of
Bunnr ,dr in [27, Theorem 1.1], we obtain the claimed formulas for M(Chgen−surj

n,d ).

We have M(Jac(C)) ∈ 〈M(C)〉⊗ and Q{i} ∈ 〈M(C)〉⊗ for all i ∈ N by [2,
Theorem 4.2.3, Proposition 4.2.5]. By [28, Example 2.21], we deduce that M(BGm) ∈
〈〈M(C)〉〉⊗. We conclude that M(Chgen−surj

n,d ) lies in 〈〈M(C)〉〉⊗. ��

6 The recursive description of themotive of the Higgsmoduli space

In section, we study the motive of the moduli space Hss
n,d of semistable Higgs bundles

over C of rank n and degree d and prove Theorem 1.1.
The scaling Gm-action on Hss

n,d described in §2.2 has fixed locus equal to a finite
disjoint union of moduli spaces of αH -semistable chains by Corollary 2.6

(Hss
n,d)Gm =

⊔

(n′,d ′)∈I
ChαH ,ss

n′,d ′
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where the Higgs stability parameter αH is non-critical for all the invariants n′ and d ′
appearing in this finite index set I. Moreover, by Proposition 2.2 there is an associated
Białynicki-Birula decomposition ofHss

n,d and byTheoremA.4,we obtain the following
motivic decomposition

M(Hss
n,d) �

⊕

(n′,d ′)∈I
M(ChαH ,ss

n′,d ′ )
{

n2(g − 1) + 1 − dim ChαH ,ss
n′,d ′

}
. (2)

Consequently it suffices to describe the motives of the moduli spaces of αH -
semistable chains appearing in this decomposition. Let us outline the strategy for
doing this which follows the geometric ideas in [14,15,23]. We will also check along
the way that the relevant algebraic stacks are smooth and exhaustive.

(i) Relate the motives of the moduli spaces ChαH ,ss
n′,d ′ = ChαH ,s

n′,d ′ in the above decompo-

sition to the motives of the stacks ChαH ,s
n′,d ′ by using the fact that ChαH ,s

n′,d ′ → ChαH ,s
n′,d ′

is a trivial Gm-gerbe (as discussed in Sect. 2.3); see Lemma 6.6.
(ii) Use a wall-crossing argument together with a Harder–Narasimhan (HN) recursion

to relate for all α ∈ 
◦
r the motives of moduli stacks of chains with α-HN type τ

(including the trivial HN type τ = ss) to stacks whose motives we can compute
(namely stacks of generically surjective chains and the empty stack); see Sect. 6.1.

(iii) Use the fact that for all (n′, d ′) in the decomposition (2) the stability parameter αH

is non-critical to perform a slight perturbation to α̃H ∈ 
◦ for which ChαH ,ss
n′,d ′ =

Chα̃H ,ss
n′,d ′ (and thus themotive of the stacks appearing in theRHSof (2) are described

by the second step).

6.1 Motivic consequences of wall-crossing and HN recursions

Let us start with a general proposition which will be required for the proof of the main
theorem in this subsection.

Proposition 6.1 Let X be a smooth exhaustive stack which admits a countable strati-
fication X = ∪i∈NXi by locally closed smooth quasi-compact substacks Xi such that
the closure of Xi is contained in the union of higher X j with j ≥ i . In particular, X0 is
open in X. Then the motive M(X0) in DMeff(k, R) lies in the localising subcategory
generated by the motive of X and Tate twists of the motives of Xi for i > 0; that is,

M(X0) ∈ 〈〈M(X), M(Xi ){r} : i > 0, r ≥ 0〉〉

Proof Write D := 〈〈M(X), M(Xi ){r} : i > 0, r ≥ 0〉〉. For each i > 0, the open
immersion X0 ↪→ X≤i := ∪ j≤iX j has closed complement X(0,i] := ∪0< j≤iX j and
induces a Gysin distinguished triangle (see [28, Proposition 2.27 (iii)] for a version
for smooth exhaustive stacks)

M(X0) → M(X≤i ) → Ci := M(X(0,i]){codim(X(0,i])} +→ (3)
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in DMeff(k, R). Since M(X j ) ∈ D for all j > 0 and Ci can be expressed as a
successive extension of Tate twists of the motives M(X j ) for all j > 0 by inductively
using Gysin triangles, we conclude that Ci ∈ D for all i > 0.

We then take the homotopy colimit of the above triangles to obtain a distinguished
triangle

M(X0) → hocolimi M(X≤i ) → hocolimi Ci
+→ .

The functoriality of the triangle which is used implicitly here is discussed in [28,
Lemma 2.26] SinceD is closed under infinite direct sums and taking cones, we deduce
that hocolimi Ci ∈ D. Moreover, we have hocolimi M(X≤i ) � M(X) by [28, Lemma
2.26], and M(X) ∈ D by definition. This concludes the proof. ��

We can relate the motives of stacks of chains of non-trivial HN types to stacks of
semistable chains as follows.

Lemma 6.2 Let r ∈ N, n ∈ N
r+1, d ∈ Z

r+1, α ∈ 
◦
r ⊂ R

r+1 and τ = (n j , d j ) j=1,...,l
be an α-HN type. Then the stack Chα,τ

n,d is smooth and exhaustive and the motive in

DMeff(k, R) of the stack Chα,τ
n,d of length r chains of α-HN type τ with invariants (n, d)

is given by

M(Chα,τ
n,d) �

l⊗

j=1

M(Chα,ss
n j ,d j ).

Proof For α ∈ 
◦
r and every choice of invariants (m, e), the stack Chα,ss

m,e is smooth
by [1, Theorem 3.8 (vi)], and a quotient stack via the GIT construction of the cor-
responding moduli space. It is thus a smooth exhaustive stack by [28, Lemma 2.16].
The result then follows by combining Proposition 2.4 and the fact that products of
exhaustive stacks are exhaustive together with the A

1-homotopy invariance and the
Künneth isomorphism in DMeff(k, R) (see [28, Proposition 2.27]). ��

Finallywe implement awall-crossing argument togetherwith aHarder–Narasimhan
recursion following [14,15].

Theorem 6.3 For all r ∈ N, n ∈ N
r+1, d ∈ Z

r+1, α ∈ 
◦
r ⊂ R

r+1 and α-HN types
τ , the stack Chα,τ

n,d of length r chains of α-HN type τ with invariants (n, d) fits into an

(infinite) collection of distinguished triangles in DMeff(k, R) whose other terms are
expressed in terms of appropriate Tate twists of

(1) motives of stacks of generically surjective chains, or

(2) motives of Chα′,ss
n′,d ′ for |n′| < |n| and α′ ∈ 
◦

r .

Furthermore, if R = Q, the motive of the stack Chα,τ
n,d lies in the localising tensor sub-

category of DMeff(k,Q) generated by the motive of the curve C for all such r , n, d, α

and τ ; that is,

M(Chα,τ
n,d) ∈ 〈〈M(C)〉〉⊗ ⊂ DMeff(k,Q).
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Proof For non-trivial HN types τ , we can use Lemma 6.2 to express their motives in
terms of motives of stacks of semistable chains. Hence we suppose that τ = ss is
the trivial HN type corresponding to semistability. We then employ the wall-crossing
results of Proposition 2.9: there exists a path (αt )t≥0 in 
◦

r with α0 = α such that

(1) the (finitelymany) critical stability parameters αt1 , . . . αtm on this path lie on single
walls and in a neighbourhood of these critical values the path is linear.

(2) for t >> 0 the notion of αt -(semi)stability parameter is independent of t and

(a) if n is non-constant, then Chαt ,ss
n,d = ∅, or

(b) if n is constant, then Chαt ,ss
n,d ⊂ Chgen−surj

n,d and Chgen−surj
n,d is an infinite union

of αt -HN strata.

Let us write α∞ for αt with t >> 0 as required above. Then this path involves finitely
many different notions of (semi)stability for the parameters

α0, αt1−ε, αt1 , αt1+ε, . . . , αtm−ε, αtm , αtm+ε = α∞.

At each wall-crossing αti −ε, αti , αti +ε , we have by (1) wall-crossing decompositions

Ch
αti ,ss
n,d = Ch

αti ±ε ,ss
n,d �

⊔

τ∈I±
Ch

αti ±ε ,τ

n,d ,

with finite index sets I± which are partially ordered so that the closure of a given
stratum is contained in the union of all higher strata. In particular, amaximal index τmax±
corresponds to a HN stratum Ch

αti ±ε ,τ
max±

n,d which is closed in Ch
αti ,ss
n,d ; hence, by [28,

Proposition 2.27 (iii)], there is a Gysin distinguished triangle associated to the closed

immersion Ch
αti ±ε ,τ

max±
n,d ↪→ Ch

αti ,ss
n,d of smooth exhaustive stacks. By iterating this

procedure, we obtain a diagram of Gysin distinguished triangles relating M(Chα0,ss
n,d )

and M(Chα∞,ss
n,d ) whose other terms are motives of stacks of chains of non-trivial HN

types (which can be described in terms of motives of stacks of semistable chains for
smaller invariants). Therefore, it suffices to describe the motive of Chα∞,ss

n,d . This is
split into the two cases described above.

(a) If n is non-constant, then Chα∞,ss
n,d = ∅ (in which case the motive of this stack is

zero).
(b) If n is constant, then Chα∞,ss

n,d ⊂ Chgen−surj
n,d and moreover, Chgen−surj

n,d is an infinite
union of α∞-HN strata. We then obtain another (infinite) diagram of motives
which relates Chα∞,ss

n,d and Chgen−surj
n,d and whose other terms involve Tate twists of

products of motives of stacks Chα∞,ss
n′,d ′ for smaller invariants |n′| < |n|.

For the final claim, we apply Proposition 6.1 to Chgen−surj
n,d = �τ∈J Chα∞,τ

n,d , where
the lowest open stratum in this decomposition is given by τ = ss. Note that strictly
speaking Proposition 6.1 concerned N-indexed stratifications, but this can equally be
applied to stratifications indexed by a partially ordered set with a cofinal copy ofN; for
instance, one can filter I by maximal slope to get such a cofinalN. By Proposition 5.4,
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the motive of Chgen−surj
n,d for constant n lies in the category 〈〈M(C)〉〉⊗ . By induction,

we have that for all non-trivial HN types τ , the motive of Chα∞,τ
n,d lies in 〈〈M(C)〉〉⊗.

Hence, we can apply Proposition 6.1 to conclude that M(Chα∞,ss
n,d ) ∈ 〈〈M(C)〉〉⊗,

which by the previous wall-crossing arguments is enough to carry out an induction on
the invariants of the chains and complete the proof. ��

6.2 Themotive of the Higgsmoduli space is built from themotive of the curve

We can now prove the first part of Theorem 1.1.

Theorem 6.4 Assume that C(k) �= ∅ and that R is a Q-algebra. Then the motive
M(Hss

n,d) lies in the thick tensor subcategory 〈M(C)〉⊗ of DMeff
c (k, R) generated by

M(C).

Proof The result for R = Q implies the same for any Q-algebra by extension of
scalars. We can thus assume R = Q. This is only necessary to invoke results from
[27] which were formulated with R = Q, but the proof in loc. cit. applies in fact just
as well for R a Q-algebra.

By Lemma 6.5 below applied with M = M(C), it is enough to show that M(Hss
n,d)

lies in the subcategory C := 〈〈M(C)〉〉⊗.
By the motivic Białynicki-Birula decomposition (2) of Hss

n,d , it suffices to show
that the motives of the moduli spaces of αH -semistable chains ChαH ,ss

n′,d ′ in this decom-
position lie in C. By Corollary 2.6, the Higgs stability parameter αH is non-critical
for all invariants (n′, d ′) appearing in this decomposition and thus αH -semistability
coincides with αH -stability.

Since we assumed C(k) �= ∅, it follows that the stack ChαH ,s
n′,d ′ is a trivial Gm-gerbe

over its coarse moduli space ChαH ,ss
n′,d ′ (see Sect. 2.3). Hence, by Lemma 6.6 below, it

suffices to show that the motives of the stacks ChαH ,s
n′,d ′ lie in C.

We cannot directly apply Theorem 6.3 to describe the motive of this stack, as the
Higgs stability parameter αH lies on the boundary of the cone 
r . However, as αH

is non-critical for the invariant appearing in the Białynicki-Birula decomposition, this
stability parameter does not lie on a wall and so we can choose a slight perturbation
α̃H of αH which lies in 
◦

r and is in the same chamber as αH (so that α̃H determines
the same notion of stability as αH ). Then we have ChαH ,s

n′,d ′ = Chα̃H ,s
n′,d ′ and the motive

of the latter lies in C by Theorem 6.3. ��
Lemma 6.5 Let M ∈ DMeff

c (k, R) be a compact effective motive. Then we have

〈M〉⊗ = 〈〈M〉〉⊗ ∩ DMeff
c (k, R)

as full subcategories of DMeff(k, R).

Proof First, let us show that

〈〈M〉〉⊗ = 〈〈M⊗n, n ≥ 0〉〉
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We have 〈〈M⊗n, n ≥ 0〉〉 ⊂ 〈〈M〉〉⊗ since the right-hand side contains M⊗n for all
n ≥ 0 and is triangulated and stable by small direct sums. Recall from the section
on Notations and Conventions that the category 〈〈M⊗n, n ≥ 0〉〉 can be written as a
transfinite union of full subcategories 〈〈M⊗n, n ≥ 0〉〉α with α an ordinal, where

• 〈〈M⊗n, n ≥ 0〉〉0 is the full subcategory on the set {M⊗n[k]|n ∈ N, k ∈ Z}, and
• for all α > 0, 〈〈M⊗n, n ≥ 0〉〉α is the full subcategory of objects which are
extensions or small direct sums of objects in ∪β<α〈〈M⊗n, n ≥ 0 ≥〉〉β .

Using this description, the fact that the set {M⊗n[k]|n ∈ N, k ∈ Z} ∩ {0} is stable
under tensor product and the fact that tensor products commute with small direct sums
in DMeff(k, R), an transfinite induction implies that 〈〈M⊗n, n ≥ 0〉〉 is stable by tensor
products. This shows the converse inclusion 〈〈M〉〉⊗ ⊂ 〈〈M⊗n, n ≥ 0〉〉. A variant of
the above argument, replacing small sums by direct factors, establishes the equality

〈M〉⊗ = 〈M⊗n, n ≥ 0〉.

So the statement of the lemma is equivalent to

〈M⊗n, n ≥ 0〉 = 〈〈M⊗n, n ≥ 0〉〉 ∩ DMeff
c (k, R)

Since M is assumed compact and compact objects are stable by tensor products
in DMeff

c (k, R), {M⊗n|n ≥ 0} is a set of compact objects in a compactly gener-
ated triangulated category. The subcategory 〈〈M⊗n, n ≥ 0〉〉⊗ is thus also compactly
generated, and an object in DMeff

c (k, R) ∩ 〈〈M⊗n, n ≥ 0〉〉⊗ is also compact in
〈〈M⊗n, n ≥ 0〉〉⊗. By [3, Proposition 2.1.24] applied to the compactly generated
subcategory 〈〈M⊗n, n ≥ 0〉〉⊗, we deduce that

〈〈M⊗n, n ≥ 0〉〉 ∩ DMeff
c (k, R) ⊂ 〈〈M⊗n, n ≥ 0〉〉c = 〈M⊗n, n ≥ 0〉.

Since the other inclusion is immediate, this concludes the proof. ��
Lemma 6.6 Let X → Y be a morphism of stacks which is a trivial Gm-gerbe; then

M(X) � M(Y) ⊗ M(BGm) � M(Y) ⊗
⊕

j≥0

Q{ j}.

In particular, if D is a localizing subcategory of DMeff(k, R) stable by Tate twists,
then M(X) lies in D if and only if M(Y) lies in D.

Proof This follows from the Künneth isomorphism [28, Proposition 2.27 (i)] and [28,
Example 2.21]. ��

In fact by Theorem 6.3, the motive of the stacks ChαH ,s
n′,d ′ lying over the moduli

spaces ChαH ,s
n′,d ′ appearing in the motivic Białynicki-Birula decomposition of M(Hss

n,d)

all can be described by an (infinite) collection of distinguished triangles inDMeff(k, R)

whose other terms are Tate twists of tensor products of motives of stacks of semistable
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chains with smaller invariants (which can be inductively described) or motives of
stacks of generically surjective chains (which are described by Theorem 1.3). In par-
ticular, the motive of ChαH ,s

n′,d ′ fits into an infinite collection of distinguished triangles in

DMeff(k, R) whose terms are built out of tensor products and direct sums of motives
of C , its symmetric powers, its Jacobian and Tate twists. Unfortunately, we cannot
deduce a formula for the motives of the moduli spaces ChαH ,ss

n′,d ′ by “canceling” the

factor of the motive of BGm . However, instead if we let Hss
n,d denote the stack of

semistable Higgs bundles, we can describe the motive of Hss
n,d using these triangles.

Under our assumptions that n and d are coprime and C(k) �= ∅, the stack Hss
n,d is a

trivial Gm-gerbe over its coarse moduli space Hss
n,d (see [22, Lemma 3.10]) and we

obtain the following result.

Corollary 6.7 Assume that C(k) �= ∅ and that R is a Q-algebra. The motive of the
stackHss

n,d inDMeff(k, R) fits into an explicit finite sequence of distinguished triangles
whose other terms are built out of tensor products and direct sums of motives of C, its
symmetric powers, its Jacobian and Tate twists.

6.3 Corollaries of purity

We refer to [47, Definition 1.1] for the definition of weight structures on triangulated
categories in the sense ofBondarko.There are twonatural conventions forweight struc-
tures, both of which occur in the literature, andwe use the homological one used in loc.
cit. . We will also use the notion of a bounded weight structure [6, Definition 1.2.1.6].
Recall that the triangulated category DMeff

c (k, R) of constructible effective motives
carries a bounded weight structure (DMeff

c (k, R)w≥0,DMeff
c (k, R)w≤0) whose heart

DMeff
c (k, R)w≥0 ∩ DMeff

c (k, R)w≤0 is equivalent to the category of effective Chow
motives Choweff(k, R) over k via Voevodsky’s embedding [6, §6.5-6]. We call this
weight structure the Chow weight structure on DMeff

c (k, R), and we systematically
identify effective Chow motives with objects in DMeff

c (k, R). Objects in the heart of
the weight structures are called pure motives.

LetT be a triangulated category andT ′ ⊂ T be a triangulated subcategory. Suppose
that T is equipped with a weight structure (Tw≥0, Tw≤0). We say that the weight
structure restricts to T ′ if (Tw≥0 ∩ T ′, Tw≤0 ∩ T ′) is a weight structure on T ′.
Lemma 6.8 Let X be a smooth projective variety over k. The Chow weight structure on
DMeff

c (k, R) restricts to the tensor triangulated subcategory 〈M(X)〉⊗. The heart of
the restricted weight structure is the idempotent complete additive tensor subcategory
Choweff

X (k, R) generated by M(X).

Proof This is an variant of a result ofWildeshaus [48, Proposition 1.2] with essentially
the same proof. For the convenience of the reader, we reproduce the argument.

The category 〈M(X)〉⊗ is generated by Choweff
X (k, R) as a triangulated category.

Moreover, Choweff
X (k, R) is a subcategory of Choweff(k, R) which is the heart of a

weight structure, hence is negative in the sense of [6, Definition 4.3.1.1]. Furthermore,
Choweff

X (k, R) is idempotent complete by construction. By [6, Theorem 4.3.2, II.1-2],
there exists a bounded weight structure (〈M(X)〉⊗w≥0, 〈M(X)〉⊗w≤0) whose heart is
precisely Choweff

X (k, R).
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By construction, we have 〈M(X)〉⊗w=0 ⊂ DMeff
c (k, R)w=0, and since the corre-

sponding weight structures are both bounded, an inductive argument using weight
decompositions implies that we have both

〈M(X)〉⊗w≥0 ⊂ DMeff
c (k, R)w≥0 ∩ 〈M(X)〉⊗

and

〈M(X)〉⊗w≤0 ⊂ DMeff
c (k, R)w≤0 ∩ 〈M(X)〉⊗.

It remains to prove that these inclusions are equalities. Let M ∈ DMeff
c (k, R)w≥0 ∩

〈M(X)〉⊗. Consider a weight decomposition of M with respect to the weight structure
on 〈M(X)〉⊗ constructed above, say

N
f→ M → P

+→

with N ∈ 〈M(X)〉⊗w≤−1 and P ∈ 〈M(X)〉⊗w≥0. In particular, N ∈ DMeff
c (k, R)w≤−1.

By the orthogonality property for the Chow weight structure, the morphism f is 0,
and thus M is a retract of P , so it is also in 〈M(X)〉⊗w≥0. The argument for negative
weights is similar. ��

We can now complete the proof of Theorem 1.1.

Corollary 6.9 Assume that C(k) �= ∅ and that R is a Q-algebra. Then M(Hss
n,d) can

be written as a direct factor of the motive of a large enough power of C. In particular,
M(Hss

n,d) is a pure abelian motive.

Proof By Theorem 6.4, Proposition 2.2 and Corollary A.5, the motive M(Hss
n,d)

belongs to 〈M(C)〉⊗ ∩Choweff(k, R). This latter category is the heart Choweff
X (k, R)

of the restricted weight structure of Lemma 6.8, and objects of that heart are direct
factors of the motives of powers of C by construction. ��

The following resultwasfirst provedbySchiffmannunder slightly different assump-
tions (in [38, Corollary 1.6]; note that this is the arXiv preprint, the published version
of the paper does not include this result).

Corollary 6.10 Assume that k is a finite field and C(k) �= ∅. Let � be a prime number,
not equal to the characteristic of k. The eigenvalues of the geometric Frobenius acting
on the �-adic cohomology and on the compactly supported �-adic cohomology of H
of Hss

n,d are monomials in the Weil numbers of C.

Proof By Theorem 6.4, the motive M(Hss
n,d) is a direct factor of M(C×r ) for some

r ≥ 0. Fix an algebraic closure k̄ of k. By [30, Theorem 4.3], there is an �-adic
realisation functor

R� : DMeff
c (k,Q)op → Db(Q�[Gal(k̄/k)] − Mod)
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with the property that, for any X ∈ Sm /k and i ∈ N, we have

Hi (R�(M(X))) � Hi (Xk̄,Q�)

as a Gal(k̄/k)-representation. This implies that the �-adic cohomology groups of Hss
n,d

are direct factors of those of C×r as Galois representations, and thus that its Frobenius
eigenvalues are a subset of those of C×r , hence monomials in the Weil numbers of C .
The same result then holds for compactly supported cohomology by Poincarè duality.
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Appendix A: Motivic Białynicki-Birula decompositions

A.1 Geometric Biaynicki-Birula decompositions

Let X be a smooth projective k-variety equipped with a Gm-action. By a result of
Białynicki-Birula [5] and Hesselink [25], there exists a decomposition of X , indexed
by the connected components of the fixed locus XGm , with very good geometric
properties. In fact, this decomposition exists in the following slightly more general
context. The following definition appeared in [20].

Definition A.1 A Gm-action on a smooth quasi-projective k-variety X is semi-
projective if

• XGm is proper (and thus projective), and
• for every point x ∈ X (not necessarily closed), the action map fx : Gm → X
given by t �→ t · x extends to a map f̄x : A1 → X . Since X is separated, the
extension is unique and we write limt→0 t · x for the limit point f̄x (0) ∈ X .

In particular, anyGm-action on a smooth projective variety is semi-projective. Note
that the limit point limt→0 t · x is necessarily a fixed point of theGm-action if it exists.

Theorem A.2 (Białynicki-Birula) Let X be a smooth quasi-projective variety over k
with a semi-projective Gm-action. Then the following statements hold.

(i) The fixed locus XGm is smooth and projective. Write {Xi }i∈I for its set of connected
components and di for the dimension of Xi .

http://creativecommons.org/licenses/by/4.0/
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(ii) For i ∈ I , write X+
i for the attracting set of Xi , i.e., the set of all points x ∈ X such

that limt→0 t ·x ∈ Xi . Then X+
i is a locally closed subset of X and X = ∐

i∈I X+
i .

(iii) For every i ∈ I , the map of sets X+
i → Xi given by x �→ limt→0 t · x underlies a

morphism of schemes p+
i : X+

i → Xi , which is a Zariski locally trivial fibration
in affine spaces. For each i ∈ I , we have

dim(X) = di + c+
i + r+

i

where c+
i = codimX (X+

i ) and r+
i denotes the rank of p+

i .
(iv) The tangent space Tx X of a fixed point x ∈ Xi admits aGm-action, hence a weight

space decomposition Tx X = ⊕
k∈Z(Tx X)k . Then we have Tx Xi = (Tx X)0 and

NXi /X+
i ,x � ⊕

k>0(Tx X)k and NX+
i /X ,x � ⊕

k<0(Tx X)k .
(v) Let n := |I |; then there is a bijection ϕ : {1, . . . , n} → I and a filtration of X by

closed subschemes

∅ = Zn ⊂ Zn−1 ⊂ . . . ⊂ Z0 = X

such that, for all 1 ≤ k ≤ n, we have that Zk−1− Zk = X+
ϕ(k) is a single attracting

set (and thus, in particular, is smooth).

Proof Points (i) - (iv) are all established in [5, Theorem 4.1] under the assumption
that k is algebraically closed (the hypothesis that X is smooth and quasi-projective is
used to ensure the existence of an open covering by Gm-invariant affine subsets, and
the assumption that X is semi-projective implies that the strata in [5, Theorem 4.1]
cover all of X ). The hypothesis that k is algebraically closed is removed by Hesselink
in [25].

As the proof of (v) is scattered through [20, §1], we recapitulate their argument.
Let L be a very ample line bundle on the quasi-projective variety X . By [43, Theorem
1.6] applied to the smooth (hence normal) variety X , there exists an integer n ≥ 1
such that L⊗n admits aGm-linearisation. In particular, this provides a projective space
P with a linear Gm-action and a Gm-equivariant immersion ι : X → P. Let {P j } j∈J

be the connected components of PGm with corresponding attracting sets P+
j for each

j ∈ J ; then by equivariance of ι, there is a (not necessarily injective) map τ : I → J
such that ι(X+

i ) ⊂ P
+
τ(i) for all i ∈ I .

As each Xi is connected, the group Gm acts on L |Xi via a character ωi ∈
Hom(Gm,Gm) � Z. For the partial order on I given by i < i ′ ⇔ ωi > ωi ′ , we
claim that for i �= i ′ ∈ I

X+
i ∩ X+

i ′ �= ∅ only if i ′ > i . (4)

Indeed, we can similarly define a partial order on J such that i < i ′ if and only if
τ(i) < τ(i ′) by equivariance of ι; then one can easily deduce that (4) holds for P from
the linearity of theGm-action on P. We now deduce (4) for X from the corresponding
ambient property for P; the only non-trivial case to consider is when i �= i ′ have the
same image j under τ , so that X+

i and X+
i ′ are both contained in P

+
j . In this case, if
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x ∈ X+
i ∩ X+

i ′ , then by passing to an algebraic closure of k if necessary, we can assume
that there is a connected curve S ⊂ X with x ∈ S and S − x ⊂ X+

i ; then S ⊂ P
+
j and

as the action on X is semi-projective, p+
j (S) ⊂ XGm and this connects Xi and Xi ′ ,

contradicting i �= i ′.
Finally to prove the filterability of X , we choose any total ordering of I extending

the above partial order and we view this ordering as a bijection ϕ : {1, . . . , n} → I .
Then for 0 ≤ k ≤ n,

Zk :=
⋃

i∈I :
ϕ−1(i)>k

X+
i

is closed in X by (4) with Zn = ∅ and Z0 = X . ��

Remark A.3 Let X be smooth projective with a fixed Gm-action (t, x) �→ t · x . The
opposite Gm-action (t, x) �→ t−1 · x has the same fixed point locus as the original
action, but the associated Białynicki-Birula decomposition is different. We write X−

i
for the associated strata, c−

i (resp. r−
i ) for their codimension (resp. their rank as affine

bundles), etc. By Theorem A.2 (iv), we see that c−
i = r+

i and r−
i = c+

i , and that the
strata X+

i and X−
i intersect transversally along Xi .

A.2 Motivic consequences

In this appendix, we let R be a coefficient ring such that the exponential characteristic
of k is invertible in R.

Let X be a smooth quasi-projective variety with a semi-projective Gm-action. The
geometry exhibited in the previous sections implies a decomposition of the motive
of X . There are in fact two natural such decompositions, one for the motive M(X)

and one for the motive with compact support Mc(X). These motivic decompositions
have been studied in [7,8,31]; we explain and expand upon their results in this section.
Recall that for two smooth k-schemes X and Y with X of dimension d and an integer
i ∈ N, there is an isomorphism

CHi (X × Y )R � HomDM(M(X), Mc(Y ){d − i})

with CHi the Chow groups of cycles of dimension i ; when this does not lead to
confusion, we use the same notation for a cycle and the corresponding map of motives.

Theorem A.4 Let X be a smooth quasi-projective variety with a semi-projective Gm-
action. With the notation of Theorem A.2, for each i ∈ I , we let γ +

i be the class
of the algebraic cycle given by the closure �p+

i
of the graph of p+

i : X+
i → Xi in

X × Xi , and we let (γ +
i )t be the class of the transposition of this graph closure. Then

we have the following motivic decompositions (where we use without comment that
M(Xi ) � Mc(Xi ) as Xi is projective).
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(i) (Białynicki-Birula decomposition for the motive): There is an isomorphism

M(X) �
⊕

i∈I

M(Xi ){c+
i }.

induced by the morphisms M(X) → Mc(Xi ){c+
i } � M(Xi ){c+

i } given by the
classes γ +

i for each i ∈ I .
(ii) (Białynicki-Birula decomposition for the compactly supported motive): There is

an isomorphism

⊕

i∈I

M(Xi ){r+
i } � Mc(X).

induced by the morphisms M(Xi ){r+
i } → Mc(X) given by the classes (γ +

i )t for
each i ∈ I .

(iii) Assume that X is of pure dimension d. The Poincaré duality isomorphism

Mc(X) � M(X)∨{d}

identifies the motivic Białynicki-Birula decomposition of Mc(X) from (ii) with the
dual of the motivic Białynicki-Birula decomposition of M(X) from (i). In other
words, for every (i, j) ∈ I 2, the composite map

M(Xi ){r+
i } (γ +

i )t

→ Mc(X) � M(X)∨{d} (γ +
j )∨→ M(X j )

∨{d − c+
j }

is 0 if i �= j and is a twist of the Poincaré duality isomorphism for the motive of
the smooth projective variety Xi if i = j (noting the equality d − c+

i − r+
i = di ).

Proof We first prove (i). By Theorem A.2, there is a filtration ∅ = Zn ⊂ Zn−1 ⊂
. . . ⊂ Z0 = X by closed subvarieties such that, for all 1 ≤ j ≤ n, we have that
Z j−1 − Z j = X+

j is an attracting cell. Let U j := X − Z j , which is an open subset

and so in particular is smooth. For 1 ≤ i ≤ j ≤ n, let us write γ +
i, j for the closure of

�pi in U j × Xi (this makes sense since X+
i ⊂ Ui ⊂ U j ) so that γ +

i = γ +
i,n . We will

prove, by induction on 1 ≤ j ≤ n, that the map

j⊕

i=1

γ +
i, j : M(U j ) →

⊕

1≤i≤ j

M(Xi ){c+
i }

is an isomorphism. For j = 1, the statement holds trivially asU0 = ∅ and so M(U1) =
M(X+

1 ) � M(X1) via p+
1 . Assume that the statement is true for j − 1. We have a

closed immersion i j : X+
j → U j between smooth schemes with codimension c+

j and
open complement U j−1; hence, there is a Gysin triangle

M(U j−1) → M(U j )
Gy(i j )→ M(X+

j ){c+
j } +→
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for 1 ≤ j ≤ n. Since (γ +
i, j )|U j−1×Xi = γ +

i, j−1, the following diagram commutes

M(U j−1)

�⊕ j−1
i=1 γ +

i, j−1

M(U j )

⊕ j−1
i=1 γ +

i, j⊕ j−1
i=1 M(Xi )

where the left verticalmap is an isomorphismby induction. This shows that the triangle
splits.

As p+
j : X+

j → X j is a Zariski locally trivial fibration of affine spaces, M(p+
j )

is an isomorphism. It remains to show that the composition M(p j ){c+
j } ◦ Gy(i j ) :

M(U j ) → M(X j ){c+
j } coincides with the map M(U j ) → M(X j ){c+

j } induced by

γ +
j, j . Let us write γ ◦

j, j for the graph of p+
j considered as a subscheme of X+

j × X j .
Let us recall the functoriality of the Poincaré duality isomorphism with respect to

algebraic cycles. Let Y1, Y2 be smooth projective varieties of dimensions d1 and d2,
and γ ∈ CHc(Y1 × Y2), which induces morphisms γ : M(Y1) → M(Y2){c − d2} and
γ t : M(Y2) → M(Y1){c − d1}. Then the following diagram is commutative

M(Y1)
γ

�

M(Y2){c − d2}
�

M(Y1)
∨{d1} (γ t )∨{c}

M(Y2)
∨{c}.

From this commutativity, it suffices to show that γ ◦
j, j ◦ pr∗1Gy(i j ) : M(U j × X j ) →

R(c+
j + d j ) coincides with the map γ +

j, j : M(U j × X j )→R(c+
j + d j ). Let us denote

by a j : γ +
j, j → X+ × X j and b j : γ +

j, j → U j × X j the closed immersions, so that
b j = (i j × X j ) ◦ a j . Consider the diagram

M(U j × X j )

Gy(b j )

γ +
j, j

Gy(i j ×X j )

R(c+
j + d j )

M(X+
j × X j ){c+

j }

Gy(a j ){c+
j }

γ ◦
j, j

M(γ +
j, j ){c+

j + d j }
M(γ ◦

j, j →Spec(k))
R(c+

j + d j )

in DM(k, R). The left triangle commutes because of the general behaviour of Gysin
mapswith respect to composition [12, Theorem 1.34]. The outer square and the bottom
quadrilateral commute because of the compatibility of Gysin maps with fundamental
classes of cycles of smooth subvarieties in motivic cohomology [11, Lemma 3.3].
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This implies that the top triangle commutes. Since pr1 is a smooth morphism, we have
pr∗1Gy(i j ) = Gy(i j × X j ) by [12, Proposition 1.19 (1)] and the commutation of the
top triangle is exactly the equality we want. This concludes the proof of (i).

Statements (ii) and (iii) are deduced from (i) by applying Poincaré duality and using
the functoriality of the Poincaré duality isomorphism with respect to algebraic cycles
recalled above in the proof of (i). ��

Since the fixed loci are smooth projective varieties, their motives are pure and we
obtain the following corollary.

Corollary A.5 Let X be a quasi-projective variety with a semi-projective Gm-action;
then the motive of X is pure, i.e., it lies in the heart of the weight structure on
DMeff(k, R) recalled at the beginning of Sect. 6.3.

In the smooth projective case, one has Mc(X) � M(X) and onewould like compare
this decomposition with the decomposition obtained for the opposite Gm-action. We
do not know the answer and leave it as a question.

Theorem A.6 Let X be a smooth projective variety with a Gm-action. Then, via the
isomorphism Mc(X) � M(X), do the motivic Białynicki-Birula decompositions of
M(X) in TheoremA.4 (i) and of Mc(X) in TheoremA.4 (ii) for the oppositeGm-action
coincide? In other words, for every (i, j) ∈ I 2, is the composition

M(Xi ){r−
i } (γ −

i )t

−→ Mc(X) � M(X)
γ +

j−→ M(X j ){c+
j }

zero if i �= j and the identity if i = j (noting the equality r−
i = c+

i )?

The motivic Białynicki-Birula decomposition is not functorial with respect to all
equivariant maps, only those that are transverse in the following sense.

Definition A.7 Let f : X → Y be a Gm-equivariant morphism of semi-projective
varieties with associated Białynicki-Birula decompositions X = �i∈I X+

i and Y =
� j∈J Y +

j . We say f is a transverse BB-map if there is an injection φ : I → J
compatible with choices of orderings of these index sets given by Theorem A.2
(v) such that f (Xi ) ⊂ Yφ(i) and for all i ∈ I , the morphism of closed pairs
f : (X+

i ,�l≤i X+
l ) → (Y +

φ(i),�l≤i Y
+
φ(l)) induces a cartesian square and these closed

pairs have the same codimensions.

Proposition A.8 Let f : X → Y be a transverse BB-map as above. Then the morphism
M( f ) : M(X) → M(Y ) is compatible with the decompositions given by Theorem
A.4 (i) in the sense that we have a commutative diagram

M(X)
M( f )

�

M(Y )

�
⊕

i∈I M(Xi ){c+
i } ⊕

j∈J M(Y j ){c+
j }

where the lower map is induced by the morphism f restricted to the fixed loci.
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Proof By assumption, the morphism of closed pairs f : (X+
i ,�l≤i X+

l ) →
(Y +

φ(i),�l≤i Y
+
φ(l)) is transversal in the sense of [12, Definition 1.1] and thus the asso-

ciated Gysin maps are compatible (in the sense that there is an induced commutative
diagram) by [12, Proposition 1.19 (1)]. The claim then follows by going through the
proof of TheoremA.4 (i), as themotivic BB decompositions are built from these Gysin
maps. ��

Appendix B: Motives of equivariant semi-projective specialisations

As an application of the motivic Białynicki-Birula decomposition of Appendix A,
we study Gm-equivariant specialisations of smooth semi-projective varieties. This is
applied in the body of the article to compare the motives of the Higgs and de Rham
moduli spaces on a curve, see §4. We also give an application to algebraic symplectic
reductions following [9,20].

Various cohomological incarnations of the following result for coarser invariants
than Voevodsky motives have already appeared in the literature before, but as far as we
know the conclusion is new even for Chow groups. Nakajima’s proof in the appendix
to [9] shows the fibres of a family f : X → A

1 as below have the same number
of rational points over a finite field Fq . For k = C and a family f : X → A

1 of
hyperkähler reductions of a cotangent bundle to a complex vector space, there are
specific instances of the topological triviality of f appearing for quivers in [9, Lemma
2.3.3] and Higgs bundles in [21, Lemma 6.1]. For a family f : X → A

1 over k = C

as below, Hausel, Letellier and Rogriguez-Villegas proved the fibres have isomorphic
cohomology supporting pure mixed Hodge structures [18, Theorem 7.2.1]

Theorem B.1 Let R be a ring such that the exponential characteristic of k is invertible
in R. Let X be a smooth quasi-projective k-variety equipped with a semi-projective
Gm-action and let f : X → A

1 be a smooth morphism, which is Gm-equivariant
with respect to the given action on X and a Gm-action on A

1 of positive weight. For
t ∈ A

1(k), write Xt := f −1(t). Then, for any t ∈ k, the fibre inclusion ιt : Xt ↪→ X
induces an isomorphism

M(Xt ) � M(X) ∈ DM(k, R).

Proof We can assume that f is equivariant with respect to the standard Gm-action of
weight 1 on A

1 by performing a base change via a morphism A
1 → A

1 of the form
z �→ zn .

We start by comparing the motives M(X0) and M(X). First, we observe that the
Gm-action on X restricts to X0 and is semi-projective there. Indeed, X0 is smooth
(since f is smooth) and quasi-projective, we have XGm

0 = XGm , and the condition
on the existence of limits is inherited from X . Moreover, the inclusion morphism
ι0 : X0 → X is a transverse BB-morphism in the sense of Definition A.7; the carte-
sian property follows as ι0 is a closed Gm-invariant immersion and the codimension
calculation is essentially performed in Nakajima’s appendix in [9]. By Proposition
A.8, the morphism M(X0) → M(X) is compatible with the motivic BB decomposi-



On the Voevodsky motive of the moduli space of… Page 33 of 37 11

tions provided by Theorem A.4 (i) and is induced by the corresponding maps on fixed
points, which are isomorphisms since XGm

0 = XGm . This shows that M(X0) � M(X).
We now turn to the non-zero fibres. The morphism

σ : X1 × Gm → X \ X0, (x, t) �→ t · x

is an isomorphism because of the equivariance of f , so that it is enough to treat the
case of X1. For the codimension 1 inclusion ι0 : X0 ↪→ X we have a Gysin triangle

M(X \ X0) → M(X) → M(X0){1} +→ .

As with any Gysin triangle, the composition M(X0) � M(X) → M(X0){1} is the
Euler class of the normal bundle of X0 in X , which is trivial since X0 is a fibre of a
smooth morphism to a smooth variety. We deduce that the Gysin triangle splits. This
suggests we should compare this triangle to the trivially split one coming from the
pair (X × A

1, X). Indeed, there is a cartesian square of closed immersions

X0

ι0

ι0
X

id× f

X
id×{0}X × A

1.

By [10, Theorem 4.32], we deduce that there is a morphism of (shifts of) Gysin
triangles

M(X0)(1)[1]
�

M(X \ X0) M(X)

�

0
M(X0)(1)[2]

�

M(X)(1)[1] M(X × Gm) M(X × A
1)

0 M(X)(1)[2]

from which we conclude that the morphism (id× f )∗ : M(X \ X0) → M(X × Gm)

is an isomorphism. Now, consider the commutative diagram

X1 × Gm
�
σ

ι1×id

X \ X0

id× f

X × Gm
�

X × Gm

of k-varieties, where the bottom isomorphism is (x, t) �→ (t · x, t). We have shown
that the right vertical map induces an isomorphism of motives, and thus we conclude
that the left vertical map ι1 × id does as well. By Künneth, it then follows that ι1
induces an isomorphism of motives, which concludes the proof. ��
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Corollary B.2 With the notations and assumptions of Theorem B.1, the morphism
Xt → X induces an isomorphism of Chow rings with R-coefficients, of Z�-adic coho-
mology groups for any prime � invertible in k, and more generally for any cohomology
theory representable in DM(k, R) in a suitable sense.

Proof The result for Chow groups follows from the representability of Chow groups as
morphism groups in DM(k, R), together with the fact that the isomorphism M(Xt ) �
M(X) is induced by a morphism of smooth varieties, hence compatible with the
diagonal and hence with the cup-product on Chow groups. For �-adic cohomology, it
follows from applying the �-adic realisation functor of [30]. ��

B.1. Applications to families of algebraic symplectic reductions

Let ρ : G → GL(V) be a linear action of a reductive group G on a finite dimensional
k-vector spaceV. This induces an action of G on the cotangent bundle T ∗

V ∼= V×V
∗,

which preserves the Liouville algebraic symplectic form. Let g := Lie G denote the
Lie algebra of G. Then there is a moment map μ : T ∗

V → g∗ given by

〈μ(v,w), A〉 = 〈ρ(A)v,w〉

which is an algebraic morphism that is G-equivariant with respect to the coadjoint
action on g∗. One constructs an algebraic symplectic reduction at 0 ∈ g∗ with respect
to a character χ : G → Gm by taking a GIT quotient

X0 := μ−1(0)//χ G;

for further details, see [16] or [20, §1.1.1]. We can fit this into a family over A1 by
taking a 1-dimensional vector subspace L = kθ ⊂ g∗ spanned by a coadjoint fixed
point θ and then considering the family

f : X := μ−1(L)//χ G → A
1.

By construction of the GIT quotient, both X and X0 are quasi-projective varieties. We
suppose that f is a smooth morphism; this will be the case in certain examples for
generic choices of χ .

There is a Gm-action on X such that X0 is an equivariant semi-projective speciali-
sation of X as described by Hausel and Rodriquez-Villegas [20, §1.1.1]: the dilation
action of Gm on T ∗

V commutes with the G-action and the moment map is equivari-
ant with respect to this action and the weight 2 action of Gm on g∗. This Gm-action
descends to X and X0 such that f is equivariant with respect to the Gm-action on
A
1 of weight 2. Furthermore, as the Gm-action on T ∗

V is semi-projective, it follows
that the Gm-action on X0 and X are semi-projective, as both are projective over their
associated affine GIT quotients; see [20, §1.1.1] for details. Therefore, we can apply
Theorem B.1 to obtain the following corollary.
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Corollary B.3 In the above set-up, suppose that the morphism f : X → A
1 is smooth.

Then the fibre inclusions induce isomorphisms M(Xt ) � M(X) in DM(k, R) for all
t ∈ k.

Example B.4 In [9] this set-up arises in order to study the Kac polynomials of quivers.
Fix a quiver Q = (V , A, h, t) with vertex set V , arrow set A and head and tail maps
h, t : A → V giving the directions of the arrows. For a dimension vector d = (dv)v∈V ,
we set

V = Repd(Q) :=
⊕

a∈A

Hom(kdt(a) , kdh(a) )

andG = ∏
v∈V GLdv , which acts linearly onV by conjugation. Then T ∗

V ∼= Repd(Q)

is the representation space of the associated doubled quiver Q obtained by adding an
opposite arrow a∗ : j → i for each arrow a : i → j in A. One takes a generic stability
parameter θ ∈ Z

V which induces a character χθ : G → Gm (see [9] for details), so
that for L = kθ the associated morphism f : X → A

1 is smooth. In this case the zero
fibre X0 is amoduli space of θ -semistable d-dimensional representations of the double
quiver Q satisfying the relationsR0 imposed by the zero level set of the moment map
(representations of (Q,R0) are modules over the preprojective algebra, see [9]). By
Corollary B.3, we have

M(X0) � M(X) � M(X1),

which lifts the result that the compactly supported �-adic cohomology of the fibres of
f are isomorphic in large characteristic [9, Corollary 3.2.3].
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