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Abstract
To a quiver Q and choices of nonzero scalars qi , non-negative integers αi , and integers
θi labeling each vertex i , Crawley-Boevey–Shaw associate a multiplicative quiver
variety Mq

θ (α), a trigonometric analogue of the Nakajima quiver variety associated
to Q, α, and θ . We prove that the pure cohomology, in the Hodge-theoretic sense, of
the stable locusMq

θ (α)s is generated as aQ-algebra by the tautological characteristic
classes. In particular, the pure cohomology of genus g twisted character varieties of
GLn is generated by tautological classes.

Mathematics Subject Classification 16G20 · 14L30

1 Introduction

A quiver Q = (I ,�) is a directed graph with vertex set I and edge set �. Despite its
simple definition, from the datum of a quiver one can build, using various geometric
quotient constructions, rich families of symplectic algebraic varieties. The best-known
examples of this are [25] Nakajima’s quiver varieties. In this paper, however, we will
study their cousins, the multiplicative quiver varieties, first introduced by Crawley-
Boevey and Shaw [10]. Just as Nakajima’s quiver varieties can be understood as
(coarse) moduli spaces of semistable representations of a class of algebras known
as preprojective algebras their multiplicative analogues can be viewed similarly as
moduli spaces of representations of a noncommutative algebra �q , the multiplicative
preprojective algebra.

The significance of multiplicative quiver varieties is rapidly growing: Crawley-
Boevey and Shaw were led to them through their work on the celebrated Deligne–
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Simpson problem. Subsequently they have been shown to arise as moduli spaces of
irregular connections in the work [3,4] of Boalch and Yamakawa (indeed Boalch’s
work [3] lead him to define an even more general notion of multiplicative quiver
variety than that considered here). Bezrukavnikov and Kapranov [2] realise them
as moduli of microlocal sheaves on nodal curves (see also the work of Crawley-
Boevey [11]), while in symplectic topology the work of Etgü and Lekili [15] shows
that the Fukaya categories of certain symplectic four-manifolds, which are built from
quiver-type data, are controlled by a derived version of the associated multiplicative
preprojective algebra. Moreover, results of Chalykh and Fairon [7] and Braverman–
Etingof–Finkelberg [5] reveal exciting new connections betweenmultiplicative quiver
varieties and new families of integrable systems which have also been constructed
using double affine Hecke algebras.

Recently a number of authors [27,30] have studied the geometry of multiplicative
quiver varieties. The present paper is a contribution to the study of their topology, and,
as we discuss later, we expect its results will help shed light on questions raised by
Hausel and collaborators in [20].

1.1 Results

Just as for a Nakajima quiver variety, a multiplicative quiver variety Mq
θ (α), where

α ∈ NI is a dimension vector, is defined as a GIT quotient (at a character χθ : G →
Gm) of the affine algebraic variety Rep(�q , α) of (framed) representations of �q(α)

by the group G = ( ∏
i GL(αi )

)
/�(Gm), a product of general linear groups modulo

the diagonal copy of Gm ; when it is a free quotient, this endows Mq
θ (α) with a map

c : Mq
θ (α) → BG.

The rational cohomology H∗(BG,Q) is pure in the sense of Hodge theory:
Hm(BG,Q) = WmHm(BG,Q) andWm−1HmBG,Q)) = 0, whereWkHm(BG,Q)

denotes the k-th piece of the weight filtration.
It follows that if we set

PH∗(Mq
θ (α))

def=
⊕

m

grWm
(
Hm(Mq

θ (α),Q
))

,

to be the “pure part” of the cohomology, where grW denotes the associated gradedwith
respect to the weight filtration, then the image of the pullback map c∗ on cohomology
must inject into the pure part of the cohomology of Mq

θ (α).

Remark 1.1 Note that for a smooth variety X the weight filtration on Hm(X ,Q) van-
ishes below degree m, so that grWm(Hm(X ,Q)) = Wm(Hm(X ,Q)). Thus for such
spaces the pure part of cohomology is a subspace of the ordinary cohomology.

The main result of the present paper is:
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Theorem 1.2

(1) Suppose that U ⊆ Mq
θ (α)s is any connected open subset of the stable locus of the

multiplicative quiver variety Mq
θ (α). Then the induced map on cohomology

H∗(BG,Q) → H∗(U ,Q
)

defines a surjectiononto thepure cohomology PH∗(U ) =
⊕

m

grWm
(
Hm(

U ,Q
))
.

(2) In particular, ifMq
θ (α) = Mq

θ (α)s and Mq
θ (α) is connected, then

H∗(BG,Q) → H∗(Mq
θ (α),Q

)

surjects onto PH∗(Mq
θ (α)

)
.

In light of Theorem 1.2 of [26], Theorem 1.2 is nicely consonant with Hausel’s “purity
conjecture” (cf. [17] as well as [19, Theorem 1.3.1 and Corollary 1.3.2], and the
discussion around Conjecture 1.1.3 of [20]), which predicts that when Mq

θ (α) =
Mq

θ (α)s, one should have an isomorphism PH∗(Mq
θ (α)s) ∼= H∗(Mθ (α)s,Q

)
, where

Mθ (α)s denotes the corresponding Nakajima quiver variety.
In the special case in which Q is a quiver with a single node and g ≥ 1 loops,

the dimension vector is α = n, and q ∈ C× is a primitive nth root of unity, the
multiplicative quiver variety Mq

θ (α) is identified with the GLn-character variety
Char(�g,GLn, q Id) of a genus g surface with a single puncture with residue q Id,
sometimes called a genus g twisted character variety [18]. We obtain:

Corollary 1.3 The pure cohomology PH∗(Char(�g,GLn, q Id)
)
is generated by tau-

tological classes.

Corollary 1.3 has already appeared in [29], where it was deduced, via the non-
abelian Hodge theorem, from Markman’s theorem [24] that the cohomology of the
moduli space of GLn-Higgs bundles of degree 1 on a smooth projective genus g curve
is generated by tautological classes. A novelty of our result, compared to [29], is that
we avoid invoking non-abelian Hodge theory: instead, we deduce Corollary 1.3 (as
well as Theorem 1.2) via a more direct and concrete method that invokes only basic
facts of ordinary mixed Hodge theory as in [12].

Unlike the situation of quiver varieties in [26], we know of no obvious generaliza-
tions of Theorems 1.2 to other even-oriented cohomology theories (such as topological
K -theory or elliptic cohomology). However, we do obtain the following analogue of
Theorem 1.6 of [26].

Theorem 1.4 Suppose there is some vertex i ∈ I for which the dimension vector α sat-
isfies αi = 1, and letM = Mq

θ (α)s. Let D(M) denote the unbounded quasicoherent
derived category of M, and Db

coh(M) its bounded coherent subcategory.

(1) The category D(M) is generated by tautological bundles.
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(2) There is a finite list of tautological bundles from which every object of Db
coh(M)

is obtained by finitely many applications of (i) direct sum, (ii) cohomological shift,
and (iii) cone.

As for the analogous result in [26], we emphasize that Theorem 1.4(2) is not simply
a formal consequence of Theorem 1.4(1), since we do not include taking direct sum-
mands (i.e., retracts) among the operations (i)–(iii). It would be interesting to know
generators for Db

coh(M) for more general dimension vectors α than in Theorem 1.4.
As mentioned above, one source of interest in the cohomology of twisted character

varieties (see [18]) and more generally of multiplicative quiver varieties lies in the
P = W conjecture and Hausel’s purity conjecture. One categorical level higher,
Theorems 1.2 and 1.4 may also be expected to have relevance to versions of mirror
symmetry for multiplicative quiver varieties (cf. Section 7B of [2] as well as [16]) and
the Betti geometric Langlands program [1].

1.2 Method of proof

Theorem 1.2 has the following slightly different but equivalent formulation. Choose
a subgroup S ⊂ ∏

i GL(αi ) whose projection S → G is a finite covering. Then
one can form the stack quotient Rep(�q , α)θ -s/S, which comes with a morphism
π : Rep(�q , α)θ -s/S → Mq

θ (α)s that is a gerbe, in fact a torsor over the com-
mutative group stack BH where H = ker(S → G). We have an isomorphism
H∗(BS,Q) ∼= H∗(BG,Q) and π induces an isomorphism H∗(Mq

θ (α)s,Q
) ∼=

H∗(Rep(�q , α)θ -s/S,Q
)
. Thus Theorem 1.2 can be restated as:

Theorem 1.5 Let U be a connected open substack U ⊆ Rep(�q , α)θ -s/S. The pure
cohomology PH∗(U ) is generated as aQ-algebra by theChern classes of tautological
bundles Rep(�q , α)θ -s ×S V associated to finite-dimensional representations V of S.

It is Theorem 1.5 that we prove directly: the tautological bundles Rep(�q , α)θ -s×S

V that appear naturally and geometrically in our proof do not themselves descend to
the multiplicative quiver variety in general, so it is more convenient to work on the
Deligne–Mumford stack Rep(�q , α)θ -s/S.

Our proof of Theorem 1.5 follows the broad outline of that used in [26] to establish
that tautological classes generate the cohomology of Nakajima quiver varieties, how-
ever there are considerable additional technical difficulties not present in that setting:
A first stage of the proof is devoted to producing a suitable modular compactification
of the multiplicative quiver variety (or rather its Deligne–Mumford stack analogue). A
major difference from theNakajima quiver variety case arises already at this stage: one
frequently relies on q being an appropriate tuple of primitive roots of unity to deduce
that Mq

θ (α) parameterizes only stable representations, independently of the choice
of θ ; whereas in [26], we assumed, without significant loss of generality, that θ was
a generic stability condition. We note that such a genericity assumption here would
exclude the possibility of applications to the character variety Char(�g,GLn, q Id);
hence we avoid it. Instead we identify a compactification by a “projective Artin stack”
M, a quotient of a quasiprojective scheme by a reductive group whose coarse mod-
uli space is a projective scheme. Known techniques [14,22] allow us to replace the
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Artin stack compactification by a projective Deligne–Mumford stack at no cost to the
validity of our approach.

The second stage is to identify a complex onMq
θ (α) ×M that, roughly speaking,

resolves the graph of the embedding Mq
θ (α) ↪→ M. Again, while this is morally

similar to [26], the actual construction and proofs are more complicated and sub-
tle. This is essentially because our compactification of the Nakajima quiver variety
relied on a graded 3-Calabi–Yau algebra, whereas the compactification of Mq

θ (α)

uses an algebra, denoted by A in the body of this paper, which may (conjecturally)
be in most cases what one might call a “relative 2g-Koszul algebra”, but which (as
far as we know) is not known to be so. Fortunately it turns out that we can pro-
ceed as if the algebra A were known to have various desired properties in order
to build a suitable complex, and then carry out some (occasionally delicate) cal-
culations to check by hand that it has the properties we need. We note that the
good behaviour of this complex is closely related to the question of whether the
multiplicative preprojective algebra is 2-Calabi–Yau—a conjecture known in many
important cases thanks to [21]. It can be hoped that our graded algebra A may thus
be of some independent interest in relation to this question. Since in the generality
in which we work here (and again unlike [26]), we do not know if the complex
actually provides a resolution of the structure sheaf of the graph of the embed-
ding, we instead rely on work of Markman [24] to show that an appropriate Chern
class of the complex we build is the Poincaré dual of the fundamental class of the
graph.

The final step is to deduce the theorem via usual integral transform arguments.
In [26], we used Nakajima’s result that the (integral) cohomology of a quiver
variety is generated by algebraic cycles, hence is naturally isomorphic to a quo-
tient of the cohomology of any compactification. Such an assertion is not true of
the multiplicative quiver varieties Mq

θ (α). Instead, we rely on the beautiful fact
that the cohomology of any reasonable smooth compactification—which is always
Hodge-theoretically pure—surjects onto the pure part of the cohomology of any
open subset. This yields the assertion of the theorem, which in any case would
be the best possible result, given that the cohomology H∗(BG,Q) is pure. The
Hodge-theoretic nature of this result however necessitates working with rational coho-
mology. It is thus an interesting question to characterize the image of H∗(BG,Z) in
H∗(Mq

θ (α),Z
)
.

1.3 Notation

Throughout, k denotes a field of characteristic 0. In Sects. 1 and 6, k = C.
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2 Quivers andmultiplicative preprojective algebras

2.1 Truncations of graded algebras

Wewill frequently use certain “truncations” of aZ≥0-graded algebra A inwhat follows.
For aZ-graded vector space V and integer n, we write V≥n = ⊕m≥nVm , a vector space
graded by {n, n + 1, . . . }. We note the vector space injection V≥n → V that is the
identity on the mth graded piece for m ≥ n.

Definition 2.1 For a Z≥0-graded algebra A and each N ≥ 0, we define: A[0,N ] :=
A/A≥N+1.

2.2 Quivers, doubles, and triples

Let Q = (I ,�) be a finite quiver, so that s, t : � ⇒ I are the source and target maps:

for a ∈ � we have
s(a)• a t(a)• .

The double of Q is a quiver Qdbl = (I , H = � 
 �) with the same vertex set
I as for Q and the set of arrows H = � 
 � where � is the arrow set of Q and �

is a set equipped with a bijection to �, written � � a ↔ a∗ ∈ �. We extend this
bijection canonically to an involution on H = �
�, still written a → a∗, and decree
s(a∗) = t(a), t(a∗) = s(a). For each arrow a ∈ H we write

ε(a) =
{
1 if a ∈ �,

−1 if a ∈ �.

Fix an integer N ≥ 1. The graded tripled quiver Qgtr associated to Q (cf. Section
4 of [26]) is a quiver defined as follows. We give Qgtr the vertex set I gtr = I × [0, N ]
where I is the vertex set of Q. If � is the edge set of Q and H = �
� the associated
set of pairs of an edge together with an orientation, we give Qgtr the arrow set

(
H × [0, N − 1]) 
 (

I × [0, N − 1]). Thus,

(1) for eachh ∈ H ,n ∈ [0, N−1]wehave arrows (h, n)with
(s(h),n)• (h,n) (t(h),n+1)• ,

i.e.

s(h, n) = (s(h), n) and t(h, n) = (t(h), n + 1);

(2) for each i ∈ I , n ∈ [0, N − 1] we have arrows t(i,n) with
(i,n)• t(i,n) (i,n+1)• , i.e.

s(ti,n) = (i, n) and t(t(i,n)) = (i, n + 1).

More discussion can be found in [26, §4].



The pure cohomology of multiplicative quiver varieties Page 7 of 29 5

2.3 Path algebras

Let S = ⊕
i kei be a commutative semisimple algebra over a field k, with orthogonal

system of idempotents {ei }. Suppose A is an algebra with homomorphism S → A. We
say that x ∈ A has diagonal Peirce decomposition if x ∈

⊕

i∈I
ei Aei , or equivalently

if it lies in the centralizer ZA(S).
Let Q = (I , H) be a quiver. The path algebra kQ of Q is defined as follows: Let S

denote thefinite-dimensional (semisimple commutative) k-algebra S = ⊕
i∈I kei with

idempotents ei labelled by the vertices i ∈ I . We define an S-bimodule B = B(Q),
with k-basis labelled by the arrows, where the S-bimodule structure takes arrows to
be directed “left-to-right,” so eiae j = 0 unless i = s(a), j = t(a), and so that
es(a)aet(a) = a. Then the path algebra kQ is defined to be the tensor algebra TS(B(Q)).

It is natural to grade the path algebra kQ of any quiver Q = (I , H)—for example,
kQdbl— using the normal grading on a tensor algebra, thus the semisimple algebra S
lies in degree 0 and the arrows h ∈ H lie in degree 1.

If A is any S-algebra, we write A[t] for the associative S algebra obtained by
adjoining a central variable t (thus every element of A commutes with t). The algebra
A[t] is graded by t-degree, and hence if we take A = kQdbl, the algebra kQdbl[t]
is naturally bi-graded, but we will only use the total grading, with respect to which
deg(t) = 1. Using the above grading for the path algebra kQgtr, we obtain a graded
algebra homomorphism

kQdbl[t] −→ kQgtr/J by taking

ei →
∑

n

e(i,n) + J , i ∈ I , h →
∑

n

(h, n) + J , h ∈ H , t →
∑

(i,n)

t(i,n) + J ,

where J denotes the two-sided ideal

J =
({

t(s(h),n) · (h, n + 1)−(h, n) · t(t(h),n+1)
∣∣ h ∈ H , n ∈ [0, N − 2]}

)
. (2.1)

The graded algebra kQgtr has the property kQgtr
≥N+1 = 0, so we obtain a homo-

morphism

kQdbl[t][0,N ] := kQdbl[t]/kQdbl[t]≥N+1 −→ kQgtr/J . (2.2)

The above discussion thus shows:

Lemma 2.2 Let kQgtr -modJ denote the category of finite-dimensional left modules for
kQgtr annihilated by J , and furthermore let kQdbl[t][0,N ] -gr[0,N ] denote the category
of finite-dimensional graded left kQdbl[t]-modules concentrated in degrees [0, N ].
Then the homomorphism (2.2) determines an equivalence of categories:

kQgtr -modJ
�−→ kQdbl[t][0,N ] -gr[0,N ] .



5 Page 8 of 29 K. McGerty, T. Nevins

2.4 Universal localizations

We briefly review some aspects of universal localizations that may be unfamiliar to
the reader, using Chapter 4 of [28] as our reference; see also [9].

Suppose that R is a ring with 1 and � is a set of elements of R. Then there is a ring
R� with a homomorphism R → R� that is universal with respect to the property that
for every r ∈ �, r becomes invertible in R� , i.e. r has a two-sided inverse r−1 in R� .
The ring R� is called the universal localization of R at �; an alternative notation that
is sometimes preferable is�−1R. The universal localization is constructed as follows:
letting �−1 denote the set of symbols a−1 for a ∈ �, we define

�−1R = R� := R〈�−1〉/({a−1a − 1, aa−1 − 1 | a ∈ �}).

This evidently has the universal property claimed, though very little else can be
deduced about R� from this construction. Another more illuminating construction
(which allows one to invert morphisms between arbitrary projective modules) is given
in Theorem 4.1 of [28].

We however will only need the following properties, which follow immediately
from the universal property.

Proposition 2.3 Suppose R is a ring with 1.

(1) If t ∈ Z(R) is central, then R{t} is isomorphic to the Øre localization of R at t .

(2) If �,�′ ⊆ R are subsets, let �
′
denote the image of �′ in R� . Then (R�)

�
′ ∼=

R�∪�′ .
(3) Given a two-sided ideal I ⊆ R, let� denote the image of� in R/I and I� denote

the two-sided ideal in R� generated by I . Then (R/I )�
∼= R�/I� .

2.5 Multiplicative preprojective algebras

We review the multiplicative preprojective algebra of a quiver Q as defined in [10].
Given a quiver Q with double Qdbl = (I , H), for each arrow a ∈ H of Qdbl,

we define ga = 1 + aa∗ ∈ kQdbl. Write LQ for the algebra obtained by universal
localization of kQdbl inverting � = {ga | a ∈ H}. Identify the tuple q ∈ (k×)I with
the element

∑
i∈I qi ei ∈ S. Crawley-Boevey and Shaw choose an ordering of the

arrows in H and define ρCBS =
∏−→

a∈H gε(a)
a −q (the arrow over the product indicates

that it is taken in the chosen order). It is proven in [10, §2] that, up to isomorphism,
the quotient algebra LQ/(ρCBS) does not depend on the choice of ordering. Thus, in
this paper we specifically fix an ordering � = {a1, . . . , ag} on the arrows in Q, and
let

ρCBS = ga1ga2 . . . gag g
−1
a∗
1

. . . g−1
a∗
g

− q. (2.3)



The pure cohomology of multiplicative quiver varieties Page 9 of 29 5

Definition 2.4 Following [10, Definition 1.2], the associated multiplicative preprojec-
tive algebra is defined to be

�q = �q(Q) = LQ/(ρCBS),

where ρCBS is defined as in (2.3).

2.6 Homogenizedmultiplicative preprojective algebras

A principal tool in this paper is a certain graded algebra A that “homogenizes” the
multiplicative preprojective algebra �q . Here we construct the algebra A and collect
some basic facts about A and its relation to the multiplicative preprojective algebra
�q .

Thus, fix a quiver Q. Recall that we consider kQdbl[t] as a nonnegatively graded
algebra, with the generators a ∈ H , t all in degree 1, and S = ⊕i∈I kei in degree 0.
We let

Ga := t2 + aa∗ ∈ kQdbl[t] for all a ∈ H .

Remark 2.5 Each Ga has diagonal Peirce decomposition: more precisely,

es(a)Ga = es(a)t
2 + aa∗ = Gaes(a), and eiGa = ei t

2 = t2ei = Gaei for i �= s(a).

We note the obvious equalities

Gaa = aGa∗ , a∗Ga = Ga∗a∗. (2.4)

Given q ∈ (k×)I , we identify q with q := ∑
i∈I qi ei ∈ kQdbl, a sum of idempotents

in the path algebra (which thus also has diagonal Peirce decomposition).
Analogously to [10], we write Lt for the universal localization of the algebra

kQdbl[t] in which the elements {Ga, a ∈ H}, and t are inverted. The algebra Lt

is graded and contains invertible elements ga = t−2Ga = 1+ a

t

a∗

t
in graded degree

0. Moreover we have (Lt )0 ∼= LQ , where as reviewed above LQ is the universal local-
ization of kQdbl ∼= kQdbl[t±1]0 at the elements ga , a ∈ H . As above, fix an ordering
� = {a1, . . . , ag} on the arrows in Q. Write

D = Ga1 . . .Gag , D∗ = q(Ga∗
g
. . .Ga∗

1
), (2.5)

ρ = D − D∗ = (Ga1 . . .Gag ) − q(Ga∗
g
. . .Ga∗

1
) ∈ kQdbl[t]. (2.6)

Definition 2.6 We write A = kQdbl[t]/(ρ), where (ρ) denotes the two-sided ideal
generated by ρ.

The element ρ has diagonal Peirce decomposition, and so ρei = eiρ, and (ρ) =
({ρei |i ∈ I }).
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Proposition 2.7 Write � = {Ga | a ∈ H} ∪ {t}. We have:
(1) A is a graded algebra where ai , a∗

i and t have degree 1 (and S = ∑
i∈I kei lies in

degree 0).
(2) The universal localization

�t := �−1A (2.7)

of A obtained by inverting all Ga, a ∈ H, and t, is a graded algebra, and �t ∼=
�q(Q)[t±1]where�q(Q) =: �q denotes themultiplicative preprojective algebra
of [10].

Proof This almost all follows from the above discussion. The isomorphism (2.7) of
part (2) of Proposition 2.7 follows from Proposition 2.3. �


3 Representations and their moduli

3.1 Representations of kQdbl and kQgtr

Fixing some N ≥ 2g, where g is the number of arrows in Q, we form the graded-
tripled quiver Qgtr associated to Q as above.1 Given a dimension vector α ∈ ZI≥0 for

the quiver Qdbl, we write αgtr ∈ Z
I×[0,N ]
≥0 for the dimension vector for kQgtr for which

α
gtr
i,n = αi for all n ∈ [0, N ]. We write Rep(kQdbl, α) for the space of representations

of kQdbl with on the I -graded vector space V with Vi = kαi for all i ∈ I , so that V
has dimension vector α and G = ∏

i GL(αi ) for the automorphism group; thus

Rep(kQdbl, α) :=
∏

h∈H
Hom(kαs(h) , kαt(h) ).

Similarly we write Rep(kQgtr, αgtr) for the space of representations of kQgtr with
dimension vector αgtr, and Ggtr for the automorphism group.

As in the construction of Section 4.3 of [26], there is a natural “induction functor”
from the category of representations of kQdbl with dimension vector α to the category
of representations of kQgtr of dimension vector αgtr. The construction proceeds as
follows. To a representation V of kQdbl we may associate the Z≥0-graded vector
space V [t], and let arrows h of Qdbl act as multiplication followed by shift-of-grading.
This makes V [t] into a graded left kQdbl[t]-module. We then form V [t]/V [t]≥N+1, a
graded left kQdbl[t][0,N ]-module, and finally apply Lemma 2.2 to get a representation
of kQgtr: in fact, a representation of the quotient kQgtr/J where J is as in (2.1).

More concretely, the above construction is the following. Suppose we have a
representation V = (Vi )i∈I of kQdbl of dimension vector α. We obtain a represen-
tation of kQdbl[t] on a vector space V•,• of dimension vector αgtr defined by setting
V•,• = V × [0, N ] where
1 Thus, in particular, N is at least as large as the degree of the relation ρ.
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(1) the grading is given by Vi,n := Vi × {n} for all n ∈ [0, N ];
(2) the action of the generators ti,n of kQgtr for (i, n) ∈ I × [0, N − 1] is given by

idVi × σ , where σ : [0, N − 1] → [0, N ] is given by σ(n) = n + 1; and
(3) the action of each generator (h, n) ∈ H × [0, N − 1] is given by

h × σ : Vs(h),n → Vt(h),n+1

The construction determines a morphism of algebraic varieties (“induction”)

Ind◦ : Rep(kQdbl, α) −→ Rep(kQgtr, αgtr).

Write G =
∏

i

GL(Vi ) and Ggtr =
∏

(i,n)∈I×[a,b]
GL(Vi,n) ∼=

∏

n∈[a,b]
G,

with the diagonal homomorphism diag : G → Ggtr ∼=
∏

n∈[a,b] G. Then the mor-

phism Ind◦ is (G,Ggtr)-equivariant. We thus get a naturalGgtr-equivariant morphism

Ind : Ggtr ×G Rep(kQdbl, α) −→ Rep(kQgtr, αgtr). (3.1)

Thus, given a representation (ah : Vs(h) → Vt(h))h∈H of kQdbl onV , and (gi,n) ∈ Ggtr,
we have

Ind
(
(gi,n), ah

) = (
(h, n), ti,n

)
where (h, n) = gt(h),n+1ahg

−1
s(h),n and ti,n = gi,n+1g

−1
i,n .

Proposition 3.1 The map Ind of (3.1) defines a Ggtr-equivariant open immersion
of Ggtr ×G Rep(kQdbl, α) in Rep(kQgtr/J , αgtr), whose image consists of those(
(h, n), ti,n

)
for which:

ti,n is an isomorphism for all n ∈ [0, N − 1]. (†)

Proof This follows from the discussion above, indeed one can readily adapt the proof
of the corresponding statment for Nakajima quiver varieties, see [26, Proposition 4.1].

�


3.2 Representations ofA andA[0,N]

Let A -Gr denote the category of graded left A-modules. We also consider the category
A[0,N ] -Gr≥0 of those graded left A[0,N ]-modules M for which Mi = 0 for i /∈ [0, N ].
We remark that A[0,N ] -Gr≥0 can naturally be viewed as a full subcategory of the
category A[0,N ] -Gr of all graded left A[0,N ]-modules, hence also of A -Gr. Define a
functor of truncation,

τ[0,N ] : A -Gr −→ A[0,N ] -Gr≥0,
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byM → τ[0,N ]M := M≥0/M≥N+1.As above,wehave a gradedvector space injection
τ[0,N ](M) → M that is the identity on the mth graded piece for m ∈ [0, N ] and is
zero elsewhere; this map is A≤m-linear on MN−m .

3.3 Representations ofA and3q

We note:

Remark 3.2 The functor �t -Gr −→ �q -Mod, M → M0, is an equivalence of cate-
gories.

Recall from (2.7) that, letting � = {Ga | a ∈ H} ∪ {t}, we have a graded algebra
isomorphism �−1A ∼= �t = �q [t±1], and hence a graded algebra homomorphism
A → �q [t±1]. Given a left or right �q -module M, we form a graded left or right
�t -module M = M[t±1], and thus a graded A-module M = M[t] = M[t±1]≥0.
This defines a functor

R : �q -Mod −→ A -Gr≥0 .

In the opposite direction, we have a functor (�t ⊗A −)0 : A -Gr≥0 → �q -Mod. We
have:

Lemma 3.3

(1) The functors (�t ⊗A −)0 : A -Gr≥0 �q -Mod : R form an adjoint pair.

(2) If M is a finite-dimensional left �q-module then the graded left A-module M =
M[t] is finitely generated and projective as a left St -module and as a left k[t]-
module. Moreover, we have Homk[t](M, k[t]) ∼= Homk(M, k)[t] as a graded
right A-module.

Proof The first statement follows from the isomorphism �t ∼= �q [t±1] along with
the equivalence of categories noted in the above remark. Indeed

Hom(M, N [t]) ∼= Hom(M, N [t±1]) ∼= Hom(�t ⊗A M, N [t±1])
∼= Hom((�t ⊗A M)0, N ),

where the second isomorphism follow fromuniversality. The second statement follows
immediately from the definitions. �


3.4 Representation spaces and group actions

Because the multiplicative preprojective algebra �q is the quotient LQ/(ρCBS) of the
localization LQ of kQdbl by the ideal generated by ρCBS, the space Rep(�q , α) of
left �q -modules with dimension vector α is naturally a locally closed subscheme of
Rep(kQdbl, α): it is the closed subset, defined by vanishing of ρCBS, of the open set
defined by invertibility of the elements ga .
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Similarly, the algebra A[0,N ] is a quotient of kQdbl[t][0,N ] and thus, via Lemma 2.2,
the space Repgr(A[0,N ], αgtr) of graded left A[0,N ]-modules concentrated in degrees
[0, N ] is identified with a closed subscheme of Rep(kQgtr, αgtr) defined by the van-
ishing of the images of ρ and J in kQgtr.

It is immediate from the construction of Sect. 3.1 that:

Proposition 3.4 (cf. Prop. 4.7 of [26]) The morphism Ind of (3.1) restricts to an open
immersion:

Ind : Ggtr ×G Rep(�q , α) → Repgr(A[0,N ], αgtr).

Its image consists of those representations on which the elements t,Ga act invertibly
whenever their domain and target lie in the range [0, N ].
Corollary 3.5 The map Ind defines an open immersion of moduli stacks

Rep(�q , α)/G → Repgr(A[0,N ], αgtr)/Ggtr.

3.5 Semistability and stability

We next discuss (semi)stability of representations and the corresponding GIT quo-
tients.

For any quiver Q = (I ,�) with dimension vector α ∈ ZI≥0, a GIT stability

condition is given by θ ∈ ZI≥0 satisfying
∑

i θiαi = 0. The vector θ determines
a character χθ : ∏

i GL(αi ) → Gm , χ(gi )i∈I = ∏
i det(gi )

θi , and the condition∑
i θiαi = 0 guarantees that the diagonal copy �(Gm) of Gm in

∏
i GL(αi ) lies in

the kernel of χ ; we require this because �(Gm) acts trivially on Rep(Q, α). Given
dimension vectors β, α, we write β < α if β �= α and βi ≤ αi for all i ∈ I .

We now turn to stability conditions for the doubled and tripled quivers Qdbl and
Qgtr for a fixed quiver Q. Suppose θ is a stability condition for Qdbl and dimension
vector α. We construct a stability condition θgtr for Qgtr with dimension vector αgtr as
follows. For a representationM of kQgtr of dimension vectorαgtr, wewrite δi,n(M) :=
dim(Mi,n); we will write θgtr as a linear combination of the δi,n . Also, we note that it
suffices to construct a rational linear functional θgtr , since any positive integermultiple
of θgtr evidently defines the same stable and semistable loci. We fix an ordering on the
vertices of Q, identifying I = {1, . . . , r}. and a positive integer T � 0. We define:

θgtr :=
r∑

i=1

T i [δi,N − δi,0
] +

∑

i∈I
θiδi,0.

Proposition 3.6 Suppose M = Ind(N ) for some representation N of kQdbl with
dimension vector α. Then M is semistable, respectively stable, with respect to θgtr

if and only if N is semistable, respectively stable, with respect to θ .

The proof is an easy adaptation of that of Proposition 4.12(4) of [26].
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We remark that the above construction does not match [26]: there we chose to
construct a stability θgtr for Qgtr thatwould be nondegenerate if θ was,whereas herewe
ignore this possible requirement.While it would be possible to copy the construction of
a stability θgtr from [26] and prove analogues of the statements of [26], there are cases
important to multiplicative quiver varieties in which it is not possible to find a stability
condition for kQdbl that is nondegenerate in the sense used in [26]: for example, the
case when Q has a single vertex and loops based at that vertex, with dimension vector
α = n > 1. However, again for multiplicative quiver varieties, in some interesting
cases the choice of the parameter q can guarantee that every semistable representation
of �q is automatically stable (though not for numerical reasons, as nondegeneracy
guarantees). Indeed, we say q = (qi )i∈I ∈ (k×)I is a primitive αth root of unity if
qα := ∏

qαi
i = 1 and qβ �= 1 for all 0 < β < α. We have:

Lemma 3.7 ([10], Lemma 1.5)

(1) Suppose that M is a representation of �q with dimension vector α. Then qα = 1.
(2) In particular, if q is a primitive αth root of 1, then every representation of �q of

dimension vector α is θ -stable for every θ .

For example, if Q = ({∗}, E) where E has g loops at ∗, α = n, and q is a primitive
nth root of 1, then every representation of �q of dimension n is stable for every
θ ; the corresponding moduli space of representations of �q is the character variety
Char(�g,GLn, q Id) of the introduction.

Remark 3.8 It would be interesting to characterize those stability conditions θgtr for
kQgtr with the property that there is a stability condition θ for kQdbl so that if M =
Ind(N ) then M is θgtr-(semi)stable if and only if N is θ -(semi)stable.

Notation 3.9 We write

Mq
θ (α) := Rep(�q , α)//θG and Mq

θ (α)s := Rep(�q , α)θ−s//θG

for the coarse moduli spaces determined by a stability condition θ .

3.6 Moduli stacks and resolutions

The moduli stacks

Rep(�q , α)θ -ss/G and Repgr(A[0,N ], αgtr)θ
gtr -ss/Ggtr

are never Deligne–Mumford stacks: the diagonal copy of Gm in G, respectively Ggtr,
always acts trivially on Rep(�q , α), respectively Repgr(A[0,N ], αgtr)θ

gtr -ss. Thus, the
moduli stack of stable representations Rep(�q , α)θ -s/G is always a Gm-gerbe over
the moduli space Mq

θ (α)s of stable representations.
However, one can make a choice of subgroup S ⊂ G that ensures that the quotient

stack Rep(�q , α)θ−s/S is a Deligne–Mumford stack and that Rep(�q , α)θ−s/S →
Mq

θ (α)s is a finite gerbe (indeed a principal BH -bundle for a finite abelian group
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H ). Indeed, for example, we can choose any character ρ : Ggtr → Gm for which
the composite with the diagonal embedding ρ ◦ � : Gm → Gm is nontrivial, hence
surjective. Then Sgtr := ker(ρ) has the property thatGgtr = Sgtr ·�(Gm) and similarly
letting S = G∩Sgtr we haveG = S ·�(Gm). Moreover, since�(Gm) is the stabilizer
of every point of Rep(�q , α)θ -s and H := �(Gm) ∩ S is finite, we get:

Lemma 3.10 The quotient Rep(�q , α)θ -s/S is a Deligne–Mumford stack and the nat-
ural morphism

Rep(�q , α)θ -s/S → Mq
θ (α)s

is a torsor for the commutative group stack BH (in particular, is a finite gerbe over
Mq

θ (α)s).

By construction, we have an open immersion:

Rep(�q , α)θ -s/S ↪→ Repgr(A[0,N ], αgtr)θ
gtr -ss/Sgtr,

and the coarse space of the target Repgr(A[0,N ], αgtr)θ
gtr -ss/Sgtr is the projectivemoduli

scheme Repgr(A[0,N ], αgtr)//θgtrG
gtr: it is a closed subscheme of

Rep(kQgtr, αgtr)//θgtrG
gtr, which (as in [26]) is projective because kQgtr has no ori-

ented cycles, and hence is itself projective.
As in [26], our goal is to compactify Rep(�q , α)θ -s/S appropriately. We therefore

replace the quotient stack Repgr(A[0,N ], αgtr)θ
gtr -ss/Sgtr by its closed substack defined

as the closure of Rep(�q , α)θ -s/S:

Notation 3.11 We denote the closure of Rep(�q , α)θ -s/S in Repgr(A[0,N ], αgtr)θ
gtr -ss

/Sgtr byMst.

Lemma 3.12 The stack Rep(�q , α)θ -s/S is smooth. The stack Mst is integral
and its coarse moduli space is a projective scheme. The natural morphism
Rep(�q , α)θ -s/S ↪→ Mst is an open immersion.

Proof The smoothness of Rep(�q , α)θ -s/S is Theorem 1.10 of [10]. The remaining
assertions are immediate. �


We may apply the results of [22] or [14] to Rep(kQgtr, αgtr)θ
gtr -ss/Sgtr and its

closed substack Mst to obtain a projective Deligne–Mumford stack (i.e., a Deligne–
Mumford stack whose coarse space is a projective scheme) M′

st equipped with a
projective morphismM′

st → Mst that is an isomorphism over Rep(�q , α)θ -s/S. The
stack M′

st is itself, by construction, a global quotient of a quasiprojective variety by
S, and thus we may apply equivariant resolution to resolve the singularities of M′

st,
to obtain:

Proposition 3.13 The smooth Deligne–Mumford stack Rep(�q , α)θ -s/S admits an
open immersion

Rep(�q , α)θ -s/S ↪→ Rep(�q , α)θ -s/S
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in a smooth projective Deligne–Mumford stack which is equipped with a projective
morphism

Rep(�q , α)θ -s/S → Mst

that extends the open immersion Rep(�q , α)θ -s/S ↪→ Mst.

4 The diagonal of the algebra A

4.1 Bimodule of derivations

Recall that we have fixed an ordering � = {a1, . . . , ag} on the arrows in Q. For
j = 1, . . . , g we write

La j = Ga1 . . .Gaj−1 , Ra j = Gaj+1 . . .Gag , so D = La j Ga j Ra j ,

La∗
j
= Ga∗

g
. . .Ga∗

j+1
, Ra∗

j
= Ga∗

j−1
. . .Ga∗

1
, so D∗ = qLa∗

j
Ga∗

j
Ra∗

j
.

Let B denote the sub-(S[t], S[t])-bimodule of kQdbl[t] spanned by the arrows, so
that kQdbl[t] is identified with the tensor algebra TS[t](B). As in [10, p. 190], the
bimodule that is the target of the universal S-linear bimodule derivation of kQdbl[t]
satisfies

�S[t](kQdbl[t]) ∼= kQdbl[t] ⊗S[t] B ⊗S[t] kQdbl[t],

under which the universal derivation δkQdbl[t]/S[t] : kQdbl[t] → �S[t](kQdbl[t]) is
identified with a → 1 ⊗ a ⊗ 1. As in [10, p. 190], for the universal localization
Lt we also get �S[t](Lt ) ∼= Lt ⊗kQdbl[t] �S[t](kQdbl[t]) ⊗kQdbl[t] Lt with the obvious
identification of the universal derivation δLt/S[t]. We write:

P1 = A ⊗S[t] B ⊗S[t] A ∼= A ⊗
kQdbl[t]

�S[t](kQdbl[t]) ⊗
kQdbl[t]

A. (4.1)

The module P1 is evidently projective as a bimodule. Via the above description, we
obtain a collection of bimodule basis elements

ηa, a ∈ H , via ηa = 1 ⊗ a ⊗ 1 ∈ A ⊗S[t] B ⊗S[t] A = P1.

4.2 An exact sequence

We write

P0 = A ⊗S[t] A.
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Write ηi = ei ⊗ 1 = 1⊗ ei , i ∈ I , for the obvious bimodule generators of P0. Define
graded bimodule maps

P0(−2g)
α−→ P1(−1)

β−→ P0 (4.2)

by β(ηa) = aηs(a) − ηt(a)a for arrows a of Qgtr, and

α(ηi ) =
∑

a∈�,s(a)=i

La�a Ra −
∑

a∈�,t(a)=i

qLa∗�a∗ Ra∗ , (4.3)

where �a = δ(Ga) (where δ denotes the universal derivation). It is then immediate
that α(ηi ) = ei ·δ(ρ); in particular, letting θ : P0 → (ρ)/(ρ2) denote the map defined
by θ(p ⊗ q) = pρq and writing φ for the isomorphism defined by (4.1), we have:

φ ◦ α = δ ◦ θ. (4.4)

Imitating the proof of Lemma 3.1 of [10] gives:

Lemma 4.1 The sequence

P0(−2g)
α−→ P1(−1)

β−→ P0
γ−→ A → 0, (4.5)

where γ (p ⊗ q) = pq, is an exact sequence of Z-graded bimodules.

Proof As in [28, Theorem 10.3], one gets an exact sequence

(ρ)/(ρ2)
δ−→ �S[t]

(
kQdbl[t]) → �S[t]A → 0.

As in [10], splicing this sequence and the defining sequence for�S[t]
(
A
)
and applying

(4.4) gives a commutative diagram

P0(−2g)

θ

α
P1(−1)

∼= φ

β
P0

∼= ψ

A

=

0

(ρ)/(ρ2)
δ

A ⊗
kQdbl[t]

�S[t](kQdbl[t]) ⊗
kQdbl[t]

A
ξ

A ⊗S[t] A A 0.

The vertical arrows φ,ψ are isomorphisms and θ is surjective, yielding the assertion.
�


4.3 Dual of themap P0(−2g)
˛−→ P1(−1)

Recall that the enveloping algebra of A over k[t] is

Ae := A ⊗k[t] Aop.
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We consider Ae as a left Ae-module where a ⊗ a′ ∈ Ae acts by

a ⊗ a′ · (x ⊗ x ′) = ax ⊗ x ′a′.

We remark that Ae naturally also has a right Ae-module structure commuting with the
left Ae-action, where a ⊗ a′ ∈ Ae acts on the right by

(x ⊗ x ′) · a ⊗ a′ = xa ⊗ a′x ′.

Given afinitely generated leftAe-module,we form P∨ = HomAe (P,Ae), the dual over
the enveloping algebra; by the above discussion, this module has a right Ae-module
structure, which we can identify with a left Ae-module structure via the isomorphism

(Ae)op → Ae, a ⊗ a′ → a′ ⊗ a.

We nowwant to calculate the dual α∨ of the map α of (4.2) using the formula (4.3).
Note that

�(Ga) = aδ(a∗) + δ(a)a∗ = aηa∗ + ηaa
∗.

We thus find from Formula (4.3) that the ηa-component of α is given by

α(ηi )ηa =
{
Laηaa∗Ra − qLa∗a∗ηa Ra∗ if a ∈ �, i = s(a),

La∗a∗ηa Ra∗ − qLaηaa∗Ra if a ∈ �, i = t(a)

and zero otherwise. Let {η∨
a } denote the basis of P∨

1 dual to the basis {ηa} of P1; we
note that

η∨
a ∈ et(a)P

∨
1 es(a). (4.6)

The above formulas then imply:

α∨(η∨
a ) =

{
a∗Raη

∨
s(a)La − qRa∗η∨

t(a)La∗a∗ if a ∈ �,

R∗
aη

∨
t(a)La∗a∗ − qa∗Raη

∨
s(a)La if a ∈ �.

(4.7)

Lemma 4.2 For all a ∈ �, we have

α∨(
η∨
a a − a∗η∨

a∗
) = Ga∗

(
qRa∗η∨

t(a)La∗
) − (

qRa∗η∨
t(a)La∗

)
Ga∗ , (4.8)

α∨(
aη∨

a − η∨
a∗a∗) = Ga

(
Raη

∨
s(a)La

) − (
Raη

∨
s(a)La

)
Ga . (4.9)

Proof These formulas follow by direct calculation using 4.7. �

Lemma 4.3 If a ∈ H, s(a) �= i , then GaDη∨

i = Dη∨
i Ga in P∨

0 .
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Proof The element D is a product of elements of diagonal Peirce type, hence itself is
of diagonal Peirce type. Thus, using es(a)η

∨
i = 0 = η∨

i es(a), we get

GaDη∨
i = (

Gaes(a) + (1 − es(a))t
2)Dη∨

i = (1 − es(a)t
2)Dη∨

i

= Dη∨
i (1 − es(a)t

2) = Dη∨
i

(
es(a)Ga + (1 − es(a))t

2) = Dη∨
i Ga .

This completes the proof. �

Suppose now that M is a graded right �t -module; then M = M≥0 is a graded

right A-submodule ofM. For example, we could takeM = �t itself, as in (2.7). We
consider the map

M ⊗A P∨
1 (1)

1M⊗α∨−−−−→ M ⊗A P∨
0 (2g).

Remark 4.4 We note that, under the above hypothesis on M , for any product Q of
elements Ga , a ∈ H , of degree deg(Q), the elements Qt− deg(Q) and tdeg(Q)Q−1 of
�t give well defined operators of right multiplication on M that satisfy all relations
in �t .

Proposition 4.5 Suppose that M = M≥0 for a graded right �t -moduleM. Then for
all m ∈ M and all i ∈ I and 1 ≤ j ≤ g,

(1) the elements m
(
Gaj Dη∨

i − Dη∨
i Ga j

)
, m

(
Ga∗

j
Dη∨

i − Dη∨
i Ga∗

j

)
, and

(2) the elements m
(
a∗
j Dt−2η∨

s(a j )
−Dt−2η∨

t(a j )
a∗
j

)
, m

(
a j Dt−2η∨

t(a j )
−Dt−2η∨

s(a j )
a j

)

lie in Im(1�t ⊗ α∨) ⊆ M ⊗A P∨
0 (2g).

Proof (1) We first prove that m
(
Gaj Dη∨

i − Dη∨
i Ga j

) ∈ Im(1M ⊗ α∨) by (strong)
induction on j .
Base case j = 1. By Lemma 4.3, the assertion is true for i �= s(a1). From Lemma 4.2,
we have

mGa1α
∨(
a1η

∨
a1 − η∨

a∗
1
a∗
1

) = mGa1Ga1

(
Ra1η

∨
s(a1)La1

) − mGa1

(
Ra1η

∨
s(a1)La1

)
Ga1

= mGa1Dηs(a1) − mDηs(a1)Ga1 .

This completes the base case.

Induction step Assume m
(
Gak Dη∨

i − Dη∨
i Gak

) ∈ Im(1M ⊗ α∨) for all i ∈ I and
k < j . Again, by Lemma 4.3, we have mGaj Dη∨

i − mDη∨
i Ga j ∈ Im(1M ⊗ α∨) for

i �= s(a j ). Applying Lemma 4.2 gives

mGaj α
∨(
a jη

∨
s(a j )

− η∨
s(a j )

a∗
j

) = mGaj Ga j

(
Ra j η

∨
s(a j )

La j

) − mGaj

(
Ra j η

∨
s(a j )

La j

)
Gaj

= mGaj

(
tdeg(La j )L−1

a j
Dt− deg(La j )η∨

s(a j )
La j

)

− (
tdeg(La j )L−1

a j
Dt− deg(La j )η∨

s(a j )
La j

)
Gaj

∈ m
(
Gaj Dη∨

s(a j )
− Dη∨

s(a j )
Gaj

) + Im(1M ⊗ α∨)
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where the last equality applies the inductive hypothesis for each k < j (and various
m ∈ M , see Remark 4.4). This completes the induction step, thus proving the assertion
for the elements Gaj Dη∨

i − Dη∨
i Ga j .

The proof for Ga∗
j
Dη∨

i − Dη∨
i Ga∗

j
follows the analogous descending induction on

j .
(2) Taking note of Remark 4.4, from (4.7) we have

α∨(mGaj t
−2ηa j ) = mGaj t

−2a∗
j Ra j η

∨
s(a j )

La j − mGaj t
−2qRa∗

j
η∨
t(a j )

La∗
j
a∗
j .

Applying part (1) of the proposition to the right-hand side of this formula gives

α∨(mGaj t
−2ηa j ) = mGaj t

−2a∗
j Ra j La j η

∨
s(a j )

− mqGaj t
−2Ra∗

j
La∗

j
η∨
t(a j )

a∗
j

+ Im(1�t ⊗ α∨)

= mGaj a
∗
j G

−1
a j

Dt−2η∨
s(a j )

− mGaj G
−1
a∗
j
Dt−2η∨

t(a j )
a∗
j

+ Im(1�t ⊗ α∨)

= mGaj G
−1
a∗
j

(
a∗
j Dt−2η∨

s(a j )
− Dt−2η∨

t(a j )
a∗
j

) + Im(1�t ⊗ α∨)

where the last equality uses (2.4); in particular this gives the first assertion of Part (2)
of the proposition. The second assertion follows similarly. �


5 Analysis of the ext-complex

5.1 The complex (4.5) and the Hom-functor

Let M, N be graded left A-modules such that M is finitely generated and projective
as a k[t]-module. To the exact sequence

P0(−2g) ⊗A M
α⊗1−−→ P1(−1) ⊗A M

β⊗1−−→ P0 ⊗A M
γ⊗1−−→ M → 0

we apply the functor HomA(−, N ) to obtain an exact sequence

0 → HomA(M, N ) → HomA(P0 ⊗A M, N )
(β⊗1)∗−−−−→ HomA(P1(−1) ⊗A M, N ).(5.1)

We continue the sequence (5.1) using

HomA(P1(−1) ⊗A M, N )
(α⊗1)∗−−−−→ HomA(P0(−2g) ⊗A M, N ). (5.2)

Thus, we would like to compute the cokernel of the map (5.2).

Proposition 5.1 Let M, N be graded left A-modules such that M is finitely generated
and projective as a k[t]-module, and write M∗ = Homk[t](M, k[t]). Consider the
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contravariant functors of finitely generated projective Ae-modules P,

P → (
N ⊗k[t] M∗) ⊗Ae P

∨ and P → HomA(P ⊗A M, N ).

The natural transformation
(
N ⊗k[t] M∗) ⊗Ae P∨ �−→ HomA(P ⊗A M, N ) of these

functors of projective Ae-modules P is a natural isomorphism.

Proof By projectivity, it suffices to check for P = Ae, where it follows by adjunction.
�


Corollary 5.2 Under the hypotheses of Proposition 5.1, the cokernel of the map (5.2)
is

coker
(
1M∗ ⊗ α∨ ⊗ 1N : M∗ ⊗A P∨

1 (1) ⊗A N → M∗ ⊗A P∨
0 (2g) ⊗A N

)
.

We note the following identities, which are immediate from adjunction:

Lemma 5.3 Suppose that M = M[t] is the graded left A-module associated to a
finite-dimensional left �q-module M. Then:

HomA(P1 ⊗A M, N ) ∼= HomA(A ⊗St B[t] ⊗St A ⊗A M, N ) ∼= HomSt (B ⊗S M, N )

∼= HomS(B ⊗S M, N ),

HomA(P0 ⊗A M, N ) ∼= HomA(A ⊗St A ⊗A M, N ) ∼= HomSt (M, N ) ∼= HomS(M, N ).

5.2 The Ext-complex

Fix N ≥ 2g. Let V be a finite-dimensional representation of�q of dimension vectorα,
and letV = V [t]be the correspondinggradedA-module as inSect. 3.2, and specifically
as in Lemma 3.3. Suppose W is a Z≥0-graded A[0,N ] = A/A≥N+1-module, identified
with a representation of Qgtr that has dimension vector αgtr. Thus τ[0,N ]V is also
identified with a representation of Qgtr that has dimension vector αgtr.

Let P• denote the complex of (4.2). We consider the complex HomA(P• ⊗A V ,W ).
Since the sources and target of the Homs in this complex are graded A-modules, each
Hom-space can be regarded as a graded vector space; we write

Ext =
[
HomA -Gr(P0 ⊗A V ,W )

β∨
−→ HomA -Gr(P1 ⊗A V ,W (1))

α∨−→ HomA -Gr(P0 ⊗A V ,W (2g))

]

for its degree 0 graded piece. As in [26], using Lemma 5.3 we may identify Ext with:

L(V0,W0)
∂0−→ E(V0,W1)

∂1−→ L(V0,W2g), (5.3)

where ∂0 = β∨
0 and ∂1 = α∨

0 .
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Proposition 5.4 Suppose that τ[0,N ]V and W are graded A[0,N ]-modules. Then:
(1) We have an isomorphism coker(∂1) ∼= Homk

(
HomA[0,N ] -Gr(W , τ[0,N ]V ), k

)
.

If, in addition, τ[0,N ]V is θ -stable and W is θ -semistable, both of dimension vector
αgtr, then:

(2) We have ker(∂0) = 0 unless τ[0,N ]V ∼= W, in which case ker(∂0) ∼= k.
(3) We have that coker(∂1) is zero unless τ[0,N ]V ∼= W, in which case coker(∂1) ∼= k.

Proof Assertion (2) follows from the exactness of (5.1) and stability. Similarly, asser-
tion (3) is immediate from assertion (1) by stability of τ[0,N ]V and semistability of
W .

Thus it remains to prove assertion (1). Similarly to Lemma 5.3, we use Proposi-
tion 5.1 to identify

HomA -Gr(P0 ⊗A V ,W (2g)) ∼= V ∗ ⊗St W ∼= V ∗
0 ⊗S W2g ∼= HomS(V0,W2g),

(5.4)

HomA -Gr(P1 ⊗A V ,W (1)) ∼= (B ⊗S V0)
∗ ⊗S W1 ∼= HomS(B ⊗S V0,W1). (5.5)

Specifically, we use (5.4) to identify
∑

r λr ⊗ wr ∈ V ∗
0 ⊗S W2g with an element

φ ∈ L(V0,W2g), i.e., an I -graded homomorphism (φi ) : V0 → W2g; and we use
(5.5) to identify

∑
r λr ⊗ wr ∈ (B ⊗S V0)∗ ⊗S W1 with an element ψ ∈ E(V0,W1).

Under these identifications, the elements

∑

r

λr
(
a∗
j Dt−2η∨

s(a j )
− Dt−2η∨

t(a j )
a∗
j

)
wr ,

∑

r

λr
(
a j Dt−2η∨

t(a j )
− Dt−2η∨

s(a j )
a j

)
wr

of Proposition 4.5 are identified with

ψa j a
∗
j t

−2D − a∗
jψa j t

−2D and ψa∗
j
a j t

−2D − a jψa∗
j
t−2D

for ψ ∈ E(V0,W1) ∼= HomA -Gr(P1 ⊗A V ,W (1)).

Via the trace pairings, the k-linear dual of ∂1 is a map L(W2g, V0)
∂∗
1−→ E(W1, V0);

an element φ∗ ∈ L(W2g, V0) satisfies ∂∗
1 (φ∗) = 0 only if

tr
[
φ∗ψa j a

∗
j t

−2D − φ∗a∗
jψa j t

−2D
]

= 0

and tr
[
φ∗ψa∗

j
a j t

−2D − φ∗a jψa∗
j
t−2D

]
= 0

for all ψ ∈ E(V0,W1). Since each Gaj t
−2 acts as an isomorphism on V ∗, the ele-

ments λGaj t
−2ηa j w and λGa∗

j
t−2ηa∗

j
w, for λ ∈ V ∗

0 , w ∈ W1, collectively generate
HomA -Gr(P1 ⊗A V ,W (1)); it follows that an element φ∗ ∈ L(W2g, V0) satisfies
∂∗
1 (φ∗) = 0 if and only if the above conditions are satisfied for all ψ ∈ E(V0,W1).
Cyclically permuting, these conditions become

a∗
j t

−2Dφ∗ − t−2Dφ∗a∗
j = 0 and a j t

−2Dφ∗ − t−2Dφ∗a j = 0. (5.6)
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Given φ∗ ∈ L(W2g, V0) satisfying these conditions, define �∗ : W → τ[0,N ]V by
taking �∗|W2g−m = t−mDφ∗tm . It is immediate from the conditions (5.6) that on
W2g−m , m ≥ 2, we have that �∗ commutes with all a j and a∗

j , whereas for m = 1

we may write �∗|W2g−1 = t t−2Dφ∗t and again �∗ commutes with a j , a∗
j . Thus

�∗ defines an A[0,N ]-linear homomorphism W → τ[0,N ]V , yielding a linear map
ker(∂∗

1 ) ↪→ HomA[0,N ] -Gr(W , τ[0,N ]V ). Conversely, given a graded A[0,N ]-module
homomorphism �∗ : W → τ[0,N ]V , defining φ∗ : W2g → V0 by φ∗ = D−1�∗|W2g ,
we see that φ∗ ∈ ker(∂∗

1 ). This completes the proof. �


6 Cohomology of varieties and stacks

In the remainder of the paper, the base field k is assumed to be C.

Here as throughout the paper, we use H∗(X) to denote cohomology with Q-
coefficients, and HBM∗ (X) to denote Borel-Moore homology with Q-coefficients; if
X is a smooth Deligne–Mumford stack, there is a canonical isomorphism H∗(X) ∼=
HBM∗ (X).

6.1 Mixed hodge structure on the cohomology of an algebraic stack

Suppose that X is an algebraic stack of finite type over C. It follows from Example
8.3.7 of [13] that the cohomology H∗(X) comes equipped with a functorial mixed
Hodge structure.

Proposition 6.1 Suppose X is a complexDeligne–Mumford stack with the action of the
commutative group stack BH for some finite group H, and that X has a coarse moduli
space X → sp(X) with an isomorphism X → sp(X) = X/BH. Then H∗(X ,Q) =
H∗( sp(X),Q

)
as mixed Hodge structures.2

Proof Use the Leray spectral sequence and the fact that H∗(BH ,Q) = Q for a finite
group H . �


6.2 Pushforwards and the projection formula

Suppose f : X → Y is a proper morphism of relative dimension d of smooth,
connected Deligne–Mumford stacks. Then there is a pushforward, or Gysin, map
f∗ : H∗(X) → H∗−d(Y ).

Proposition 6.2 ([6]) If X and Y are of finite type (so their cohomologies support
canonical mixed Hodge structures), the Gysin map f∗ is a morphism of mixed Hodge
structures.

The Gysin map satisfies the projection formula: for classes c ∈ H∗(X), c′ ∈
H∗(Y ), we have

f∗(c ∪ f ∗c′) = f∗(c) ∪ c′. (6.1)

2 We explicitly write the Q-coefficients to emphasize that they are essential.
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Suppose X and Y are smooth Deligne–Mumford stacks and C ∈ H∗(X × Y ) is a
cohomology class. By the Künneth theorem we have H∗(X ×Y ) ∼= H∗(X)⊗H∗(Y ),
and thus we may write C = ∑

xi ⊗ yi with xi ∈ H∗(X), yi ∈ H∗(Y ). The classes
xi , yi are the Künneth components of C (with respect to X or Y respectively).

Now suppose that f : X → Y is a representablemorphism from a smoothDeligne–
Mumford stack X to a smooth, properDeligne–Mumford stackY . The graphmorphism

X
(1, f )−−−→ X × Y is not usually a closed immersion.

Proposition 6.3 (cf. Proposition 2.1 of [26]) The image of f ∗ : H∗(Y ) → H∗(X) is
contained in the span of the Künneth components of (1, f )∗[X ] with respect to the
left-hand factor X.

Proof Write X X × Y
pX pY

Y for the projections. Write p∗ : Y → Spec(C)

for the projection to a point; then (pX )∗ exists since Y is proper. We have f ∗ =
(1, f )∗ p∗

Y and (pX )∗(1, f )∗ = id. Using the projection formula, then, we get

f ∗ = (pX )∗(1, f )∗ f ∗ = (pX )∗(1, f )∗(1, f )∗ p∗
Y = (pX )∗

(
(1, f )∗[X ] ∩ p∗

Y (−)
)
.

This proves the claim. �


6.3 Cohomology of compactifications

We say that a finite-type Deligne–Mumford stack X is quasi-projective if its coarse
space sp(X) is a quasi-projective scheme. For example, if a reductive group S acts
on a polarized quasiprojective varietyM, then any open substack ofMs/S is a quasi-
projective Deligne–Mumford stack.3

The cohomology Hk(X) is pure if its mixed Hodge structure is pure of weight k:
that is, Wk

(
Hk(X)

) = Hk(X) and Wk−1
(
Hk(X)

) = 0. We say H∗(X) is pure if each
Hk(X) is pure.

Proposition 6.4 Suppose Y = Y/G is a quotient stack (i.e., the quotient of an alge-
braic space by a linear algebraic group scheme) and that X◦ ⊂ X ⊂ Y are open,
separated, quasi-projective, smoothDeligne–Mumford substacks ofY. Then the image
of the restriction map Hk(X) → Hk(X◦) contains Wk

(
Hk(X◦)

)
; in particular, if

H∗(X◦) is pure, then the restriction map is surjective.

Proof Consider first the case of smooth quasi-projective varieties X◦ ⊂ X. Then, for
any smooth projective compactification X of X, the image of H∗(X) → H∗(X◦) is
independent of the choice of X: for example, by the Weak Factorization theorem, any
two such X,X

′
are related by a sequence of blow-ups and blow-downs along smooth

centers in the complement ofX◦, and the claimed independence follows from the usual
formula for the cohomology of a blow-up. Since the image of Hk(X) in Hk(X◦) is
Wk

(
H∗K (X◦)

)
by Corollaire 3.2.17 of [12], the claim follows in this case.

3 Here Ms means stable points in the GIT sense: in particular, stabilizers are finite.
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We now consider the general case. By the assumptions, X and X◦ are (separated)
quasi-projective smooth Deligne–Mumford stacks that are global quotients. By The-
orem 1 of [23], there exist a smooth quasi-projective scheme W and a finite flat LCI
morphismW → X; the fiber productX◦ ×XW → X◦ is then also finite, flat, and LCI.
Using the commutative square

X◦ ×X W
j̃

q◦

W

q

X◦ j
X

and base change, we find:

(1) Hk(W)
q∗−→ Hk(X) and Hk(X◦ ×X W)

q◦∗−→ Hk(X◦) are surjective (indeed, q∗q∗
and q◦∗(q◦)∗ are multiplication by the degree of q).

(2) Since the Gysin maps q◦∗ , q∗ are morphisms of mixed Hodge structures by Propo-
sition 6.2,

Wk
(
Hk(X◦ ×X W)

) q◦∗−→ Wk
(
Hk(X◦)

)
is surjective.

(3) The image of Hk(W) in Hk(X◦ ×X W) contains Wk
(
Hk(X◦ ×X W)

)
, by the

conclusion of the previous paragraph.

The assertion is now immediate. �


6.4 Markman’s formula for Chern classes of complexes

Suppose that M is a smooth Deligne–Mumford stack and

C : V−1
g−→ V0

f−→ V1 (6.2)

is a complex of locally free sheaves onM of ranks r−1, r0, r1 respectively.

Proposition 6.5 (Lemma 4 of [24]) Suppose that � ⊂ M is a smooth closed substack
of pure codimension m, and that the complex C of (6.2) satisfies:

(1) H−1(C) = 0,
(2) H1(C) and H1(C∨) are line bundles on �,
(3) m ≥ 2 and rk(C) = m − 2.

Then if m is even, cm(C) = [�] and cm
(H0(C)

) = (1 − (m − 1)!) [�].

Remark 6.6 Markman’s Lemma 4 is ostensibly stated for smooth varieties M , but
Section 3 of op. cit. generalizes the assertion to smooth Deligne–Mumford stacks.
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6.5 Proofs of Theorems 1.5 and 1.2

Fix a quiver Q, stability condition θ for Qdbl and the corresponding stability condition
θgtr for Qgtr as in Sect. 3.5. Choosing a subgroup S ⊂ G as in Sect. 3.6, we obtain a
“graph immersion” in a product of Deligne–Mumford stacks

Rep(�q , α)θ -s/S
ι−→ Rep(�q , α)θ -s/S × Repgr(A[0,N ], αgtr)θ

gtr -ss/Sgtr. (6.3)

We write ι for the immersion and � = Im(ι) for its image, a smooth closed substack.
We remark that ι is not a closed immersion unless H is trivial; however, the morphism
ι identifies

� ∼= Rep(�q , α)θ -s/S × BH .

It follows that (1× ι)∗[Rep(�q , α)θ -s] is a nonzero rational multiple of [�], and thus
we may apply Proposition 6.3 with (1 × ι)∗[Rep(�q , α)θ -s] replaced by [�], and we
do this below.

The factors Rep(�q , α)θ -s/S and Repgr(A[0,N ], αgtr)θ
gtr -ss/Sgtr come equipped

with universal representations V ,W respectively. The complex Ext defined in Sect. 5.2
descends to the product Rep(�q , α)θ -s/S × Repgr(A[0,N ], αgtr)θ

gtr -ss/Sgtr. We recall

from Proposition 3.13 the compactification Rep(�q , α)θ -s/S of Rep(�q , α)θ -s/S.
This carries a natural map to Repgr(A[0,N ], αgtr)θ

gtr -ss/Sgtr which induces an isomor-
phism on the open substack Rep(�q , α)θ -s/S. Pulling the complex Ext back to the
product Rep(�q , α)θ -s/S × Rep(�q , α)θ -s/S, we get a complex that we will denote
C .

Direct calculation shows that the rank of C is m − 2 = codim(�) − 2 (we note
that its rank depends only on Q and α: only the differentials distinguish between the
ordinary and multiplicative preprojective algebras). It follows from Proposition 5.4
that C has the following properties:

(1) H−1(C) = 0,
(2) H1(C) and H1(C∨) are set-theoretically supported on �, and their scheme-

theoretic restrictions to � are line bundles.

Thus, in order to show that � satisfies the hypotheses of Proposition 6.5, it suffices to
show that � is the scheme-theoretic support of both H1(C) and H1(C∨). We do this
by considering a morphism

Spec(k[ε]) → Rep(�q , α)θ -s/S × Rep(�q , α)θ -s/S

(where here and throughout the remainder of the proof, k[ε] denotes the ring of dual
numbers) with the property that the closed point maps to �. Then it will suffice to
show that either Spec(k[ε]) maps scheme-theoretically to �, or that the pullbacks of
H1(C) and H1(C∨) to Spec(k[ε]) are scheme-theoretically supported at Spec(k) ⊂
Spec(k[ε]).
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We thus consider a representationsV ε, V
′
ε of�

q [ε] that are flat over k[ε] and having
dimension vector α after tensoring with k ⊗k[ε] −; and let Vε = V ε[t], V ′

ε = V
′
ε[t].

Assume τ[0,N ]Vε , τ[0,N ]V ′
ε are θgtr-stable. The complexCε defined as in (5.3) becomes

a complex of free k[ε]-modules, andH−1(Cε) = HomAε -Gr
(
τ[0,N ]Vε, τ[0,N ]V ′

ε

)
. This

cohomology is isomorphic to k[ε] if and only if τ[0,N ]Vε
∼= τ[0,N ]V ′

ε . Thus, H1(C∨
ε )

is isomorphic to k[ε] if and only if τ[0,N ]Vε
∼= τ[0,N ]V ′

ε . It follows that the scheme-
theoretic support of H1(C∨) is the reduced diagonal �.

It remains to check that the same is true of H1(C). To do that, we again start with
τ[0,N ]Vε , τ[0,N ]V ′

ε as above, but consider them as graded A-modules (i.e., forgetting
the k[ε]-module structure) and form the complex C . We have a short exact sequence
of graded A-modules

0 → ετ[0,N ]Vε → τ[0,N ]Vε → k ⊗k[ε] τ[0,N ]Vε → 0, (6.4)

where by k[ε]-flatness we have ετ[0,N ]Vε
∼= k⊗k[ε]τ[0,N ]Vε , both stable; and similarly

for V ′. Assume without loss of generality that k ⊗k[ε] τ[0,N ]Vε
∼= k ⊗k[ε] τ[0,N ]V ′

ε

as graded A-modules. Suppose there is a nonzero map of graded A-modules, φ :
τ[0,N ]Vε → τ[0,N ]V ′

ε . If the composite

ετ[0,N ]Vε ↪→ τ[0,N ]Vε
φ−→ τ[0,N ]V ′

ε � k ⊗k[ε] τ[0,N ]V ′
ε (6.5)

is nonzero, it is an isomorphism, since both its domain and target are stable of dimen-
sion vector αgtr; in which case both (6.4) and its analogue for τ[0,N ]V ′

ε are split
extensions. This means that the tangent vector to Rep(�q , α)θ -s/S×Rep(�q , α)θ -s/S

determined by (V ε, V
′
ε) is zero, and thus irrelevant to our analysis of the scheme-

theoretic support ofH1(C). Thus we may assume that the composite (6.5) is zero, and
so the morphism φ is a homomorphism of 1-extensions. Now if φ(ετ[0,N ]Vε) �= 0,
then again by stability it maps isomorphically onto ετ[0,N ]V ′

ε . Since (6.4) is non-split,
it follows that φ is an isomorphism, implying that the tangent vector determined by
(V ε, V

′
ε) is tangent to �, and again irrelevant to our analysis of the scheme-theoretic

support ofH1(C). Finally then, we may assume that φ(ετ[0,N ]Vε) = 0. It follows that
φ factors through the quotient k ⊗k[ε] τ[0,N ]Vε ; similarly its image lies in ετ[0,N ]V ′

ε .
It follows that HomA -Gr

(
τ[0,N ]Vε, τ[0,N ]V ′

ε

)
is scheme-theoretically supported over

Spec(k) ⊂ Spec k[ε], and hence by Proposition 5.4(1) that the same is true ofH1(C).
Since this is true for every Spec k[ε] → Rep(�q , α)θ -s/S × Rep(�q , α)θ -s/S not
tangent to �, we conclude that H1(C) has scheme-theoretic support equal to �, as
required.

By Proposition 6.5, then, we conclude that [�] = cm(C). By Proposition 6.3, the
Künneth components of cm(C) thus span the image of the restriction map

H∗(Rep(�q , α)θ -s/S
) −→ H∗(Rep(�q , α)θ -s/S

)
,

which byProposition 6.4 is exactly⊕mWm

(
Hm

(
Rep(�q , α)θ -s/S

))
. Since theChern

classes of C are polynomials in the Chern classes of the tautological bundles (see the
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proof of Proposition 2.4(ii) of [26]), this completes the proof of Theorem 1.5, hence
also of Theorem 1.2. �


6.6 Proof of Theorem 1.4

The proof of Theorem 1.4 is essentially identical to that of Theorem 1.6 of [26] (and
we note that Theorem 1.4 holds whenever k is any field of characteristic zero and
q ∈ k×). Indeed, the assumption that there is a vertex i0 ∈ I for which αi0 = 1
guarantees the following. First, we may take S = ∏

i �=i0 GL(αi ), which acts freely on

the stable locus: thus,Mq
θ (α)s is a fine moduli space for stable representations of �q .

Second, exactly as in the proof of Theorem 1.6 of [26], in the complex (5.3), there are
direct sum decompositions

L(V0,W0) = Hom(V0,i0 ,W0,i0) ⊕ ( ⊕i �=i0 Hom(V0,i ,W0,i )
)
and

L(V0,W2g) = Hom(V0,i0 ,W2g,i0) ⊕ ( ⊕i �=i0 Hom(V0,i ,W2g,i )
)
,

so that the complex obtained by modifying (5.3) given by

⊕i �=i0 Hom(V0,i ,W0,i )
∂0−→ E(V0,W1)

∂1−→ L(V0,W2g)/Hom(V0,i0 ,W2g,i0)

has no cohomology at the ends, and in themiddle has cohomologyH that is a rankm =
codim(�) vector bundle. Moreover, the remaining map k = Hom(V0,i0 ,W0,i0) →
E(V0,W1) defines a section s of H whose scheme-theoretic zero locus is Z(s) = �.
The remainder of the proof now copies that of Theorem 1.6 of [26]. �
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