Selecta Mathematica (2021) 27:5 Selecta Mathematica
https://doi.org/10.1007/s00029-020-00606-1 New Series

®

Check for
updates

The pure cohomology of multiplicative quiver varieties

Kevin McGerty' - Thomas Nevins?

Accepted: 25 October 2020 / Published online: 13 January 2021
© The Author(s) 2021

Abstract

To a quiver Q and choices of nonzero scalars g;, non-negative integers «;, and integers
0; labeling each vertex i, Crawley-Boevey—Shaw associate a multiplicative quiver
variety ./\/lz (o), a trigonometric analogue of the Nakajima quiver variety associated
to O, «, and 6. We prove that the pure cohomology, in the Hodge-theoretic sense, of
the stable locus /\/lz (o)’ is generated as a Q-algebra by the tautological characteristic
classes. In particular, the pure cohomology of genus g twisted character varieties of
G L, is generated by tautological classes.

Mathematics Subject Classification 16G20 - 141.30

1 Introduction

A quiver Q = (I, Q2) is a directed graph with vertex set I and edge set €2. Despite its
simple definition, from the datum of a quiver one can build, using various geometric
quotient constructions, rich families of symplectic algebraic varieties. The best-known
examples of this are [25] Nakajima’s quiver varieties. In this paper, however, we will
study their cousins, the multiplicative quiver varieties, first introduced by Crawley-
Boevey and Shaw [10]. Just as Nakajima’s quiver varieties can be understood as
(coarse) moduli spaces of semistable representations of a class of algebras known
as preprojective algebras their multiplicative analogues can be viewed similarly as
moduli spaces of representations of a noncommutative algebra A7, the multiplicative
preprojective algebra.

The significance of multiplicative quiver varieties is rapidly growing: Crawley-
Boevey and Shaw were led to them through their work on the celebrated Deligne—
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Simpson problem. Subsequently they have been shown to arise as moduli spaces of
irregular connections in the work [3,4] of Boalch and Yamakawa (indeed Boalch’s
work [3] lead him to define an even more general notion of multiplicative quiver
variety than that considered here). Bezrukavnikov and Kapranov [2] realise them
as moduli of microlocal sheaves on nodal curves (see also the work of Crawley-
Boevey [11]), while in symplectic topology the work of Etgii and Lekili [15] shows
that the Fukaya categories of certain symplectic four-manifolds, which are built from
quiver-type data, are controlled by a derived version of the associated multiplicative
preprojective algebra. Moreover, results of Chalykh and Fairon [7] and Braverman—
Etingof-Finkelberg [5] reveal exciting new connections between multiplicative quiver
varieties and new families of integrable systems which have also been constructed
using double affine Hecke algebras.

Recently a number of authors [27,30] have studied the geometry of multiplicative
quiver varieties. The present paper is a contribution to the study of their topology, and,
as we discuss later, we expect its results will help shed light on questions raised by
Hausel and collaborators in [20].

1.1 Results

Just as for a Nakajima quiver variety, a multiplicative quiver variety Mg (or), where
a € N/ is a dimension vector, is defined as a GIT quotient (at a character yp : G —
G,y) of the affine algebraic variety Rep(A9, «) of (framed) representations of A7 («)
by the group G = (I—[l GL(ozl-)) /A(Gy,), a product of general linear groups modulo
the diagonal copy of G,,; when it is a free quotient, this endows Mg (o) with a map
c: Mg (¢) — BG.

The rational cohomology H*(BG, Q) is pure in the sense of Hodge theory:
H™(BG, Q) = W,,H"(BG, Q) and W,,,_1 H" BG, Q)) = 0, where Wy H" (BG, Q)
denotes the k-th piece of the weight filtration.

It follows that if we set

PH* (M) E @ grWo (H" (Mi(@). Q).

m

to be the “pure part” of the cohomology, where grW denotes the associated graded with
respect to the weight filtration, then the image of the pullback map ¢* on cohomology
must inject into the pure part of the cohomology of Mg (o).

Remark 1.1 Note that for a smooth variety X the weight filtration on H” (X, Q) van-
ishes below degree m, so that grW,,(H™ (X, Q)) = W,,(H™ (X, Q)). Thus for such
spaces the pure part of cohomology is a subspace of the ordinary cohomology.

The main result of the present paper is:
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Theorem 1.2

(1) Suppose that U C MZ ()’ is any connected open subset of the stable locus of the
multiplicative quiver variety /\/lg (). Then the induced map on cohomology

H*(BG, Q) — H*(U, Q)

defines a surjection onto the pure cohomology PH*(U) = @ W, (Hm (U, Q))
m

(2) In particular, if/\/lg (@) = ./\/lg (a)S and /\/lg (@) is connected, then
H*(BG,Q) - H*(Mj (), Q)

surjects onto P H* (Mg (a)).
In light of Theorem 1.2 of [26], Theorem 1.2 is nicely consonant with Hausel’s “purity
conjecture” (cf. [17] as well as [19, Theorem 1.3.1 and Corollary 1.3.2], and the
discussion around Conjecture 1.1.3 of [20]), which predicts that when ./\/lg(a) =
M («)*, one should have an isomorphism P H* (M (a)%) = H*(My(«)*, Q), where
My («)® denotes the corresponding Nakajima quiver variety.

In the special case in which Q is a quiver with a single node and g > 1 loops,
the dimension vector is « = n, and ¢ € C* is a primitive nth root of unity, the
multiplicative quiver variety /\/lg (v) is identified with the GL,-character variety
Char(Zg4, GL,, g Id) of a genus g surface with a single puncture with residue ¢ Id,
sometimes called a genus g twisted character variety [18]. We obtain:

Corollary 1.3 The pure cohomology P H* ( Char(X¢, GLy, g Id)) is generated by tau-
tological classes.

Corollary 1.3 has already appeared in [29], where it was deduced, via the non-
abelian Hodge theorem, from Markman’s theorem [24] that the cohomology of the
moduli space of G L,,-Higgs bundles of degree 1 on a smooth projective genus g curve
is generated by tautological classes. A novelty of our result, compared to [29], is that
we avoid invoking non-abelian Hodge theory: instead, we deduce Corollary 1.3 (as
well as Theorem 1.2) via a more direct and concrete method that invokes only basic
facts of ordinary mixed Hodge theory as in [12].

Unlike the situation of quiver varieties in [26], we know of no obvious generaliza-
tions of Theorems 1.2 to other even-oriented cohomology theories (such as topological
K -theory or elliptic cohomology). However, we do obtain the following analogue of
Theorem 1.6 of [26].

Theorem 1.4 Suppose there is some vertexi € I for which the dimension vector « sat-
isfiesa; = 1, and let M = /\/lg (a)®. Let D(M) denote the unbounded quasicoherent
derived category of M, and Dfoh (M) its bounded coherent subcategory.

(1) The category D(M) is generated by tautological bundles.
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(2) There is a finite list of tautological bundles from which every object of Dfoh M)
is obtained by finitely many applications of (i) direct sum, (ii) cohomological shift,
and (iii) cone.

As for the analogous result in [26], we emphasize that Theorem 1.4(2) is not simply
a formal consequence of Theorem 1.4(1), since we do not include taking direct sum-
mands (i.e., retracts) among the operations (i)—(iii). It would be interesting to know
generators for Dé’oh (M) for more general dimension vectors « than in Theorem 1.4.

As mentioned above, one source of interest in the cohomology of twisted character
varieties (see [18]) and more generally of multiplicative quiver varieties lies in the
P = W conjecture and Hausel’s purity conjecture. One categorical level higher,
Theorems 1.2 and 1.4 may also be expected to have relevance to versions of mirror
symmetry for multiplicative quiver varieties (cf. Section 7B of [2] as well as [16]) and
the Betti geometric Langlands program [1].

1.2 Method of proof

Theorem 1.2 has the following slightly different but equivalent formulation. Choose
a subgroup S C []; GL(«;) whose projection S — G is a finite covering. Then
one can form the stack quotient Rep(A9, «)? /S, which comes with a morphism
7 : Rep(AY,)? /S — /\/lZ(oz)s that is a gerbe, in fact a torsor over the com-
mutative group stack BH where H = ker(S — ). We have an isomorphism
H*(BS,Q) = H*(BG,Q) and 7 induces an isomorphism H*(Mg(a)s,(@) =
H*(Rep(A?, @)? /S, Q). Thus Theorem 1.2 can be restated as:

Theorem 1.5 Let U be a connected open substack U C Rep(A?, o)’ S/S. The pure
cohomology P H*(U) is generated as a Q-algebra by the Chern classes of tautological
bundles Rep(A?, «)? " x5 V associated to finite-dimensional representations V of S.

It is Theorem 1.5 that we prove directly: the tautological bundles Rep(A?, a)? S xg
V that appear naturally and geometrically in our proof do not themselves descend to
the multiplicative quiver variety in general, so it is more convenient to work on the
Deligne-Mumford stack Rep(A9, a)?5/S.

Our proof of Theorem 1.5 follows the broad outline of that used in [26] to establish
that tautological classes generate the cohomology of Nakajima quiver varieties, how-
ever there are considerable additional technical difficulties not present in that setting:
A first stage of the proof is devoted to producing a suitable modular compactification
of the multiplicative quiver variety (or rather its Deligne—-Mumford stack analogue). A
major difference from the Nakajima quiver variety case arises already at this stage: one
frequently relies on g being an appropriate tuple of primitive roots of unity to deduce
that /\/lg(oz) parameterizes only stable representations, independently of the choice
of 6; whereas in [26], we assumed, without significant loss of generality, that 6 was
a generic stability condition. We note that such a genericity assumption here would
exclude the possibility of applications to the character variety Char(Xg, GL, g 1d);
hence we avoid it. Instead we identify a compactification by a “projective Artin stack”
M, a quotient of a quasiprojective scheme by a reductive group whose coarse mod-
uli space is a projective scheme. Known techniques [14,22] allow us to replace the
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Artin stack compactification by a projective Deligne—Mumford stack at no cost to the
validity of our approach.

The second stage is to identify a complex on Mg (o) x M that, roughly speaking,
resolves the graph of the embedding Mg (@) = M. Again, while this is morally
similar to [26], the actual construction and proofs are more complicated and sub-
tle. This is essentially because our compactification of the Nakajima quiver variety
relied on a graded 3-Calabi—Yau algebra, whereas the compactification of /\/lg (o)
uses an algebra, denoted by A in the body of this paper, which may (conjecturally)
be in most cases what one might call a “relative 2g-Koszul algebra”, but which (as
far as we know) is not known to be so. Fortunately it turns out that we can pro-
ceed as if the algebra A were known to have various desired properties in order
to build a suitable complex, and then carry out some (occasionally delicate) cal-
culations to check by hand that it has the properties we need. We note that the
good behaviour of this complex is closely related to the question of whether the
multiplicative preprojective algebra is 2-Calabi—Yau—a conjecture known in many
important cases thanks to [21]. It can be hoped that our graded algebra A may thus
be of some independent interest in relation to this question. Since in the generality
in which we work here (and again unlike [26]), we do not know if the complex
actually provides a resolution of the structure sheaf of the graph of the embed-
ding, we instead rely on work of Markman [24] to show that an appropriate Chern
class of the complex we build is the Poincaré dual of the fundamental class of the
graph.

The final step is to deduce the theorem via usual integral transform arguments.
In [26], we used Nakajima’s result that the (integral) cohomology of a quiver
variety is generated by algebraic cycles, hence is naturally isomorphic to a quo-
tient of the cohomology of any compactification. Such an assertion is not true of
the multiplicative quiver varieties /\/lz (). Instead, we rely on the beautiful fact
that the cohomology of any reasonable smooth compactification—which is always
Hodge-theoretically pure—surjects onto the pure part of the cohomology of any
open subset. This yields the assertion of the theorem, which in any case would
be the best possible result, given that the cohomology H*(BG, Q) is pure. The
Hodge-theoretic nature of this result however necessitates working with rational coho-
mology. It is thus an interesting question to characterize the image of H*(BG, Z) in
H*(M (@), Z).

1.3 Notation

Throughout, k denotes a field of characteristic 0. In Sects. 1 and 6, k = C.
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2 Quivers and multiplicative preprojective algebras
2.1 Truncations of graded algebras

We will frequently use certain “truncations” of a Z-graded algebra A in what follows.
For a Z-graded vector space V and integer n, we write Vs, = @,>, Vi, a vector space
graded by {n,n + 1, ...}. We note the vector space injection V>, — V that is the
identity on the mth graded piece for m > n.

Definition 2.1 For a Zx(-graded algebra A and each N > 0, we define: Ajp n] :=
A/A>N+1.

2.2 Quivers, doubles, and triples

Let Q = (I, 2) be a finite quiver, so that s,  : = [ are the source and target maps:
fora € @ wehave "o’ —4 =)

The double of Q is a quiver Q™' = (I, H = Q U Q) with the same vertex set
I as for Q and the set of arrows H = Q U Q where Q is the arrow set of Q and Q
is a set equipped with a bijection to 2, written Q 3 a < a* € Q. We extend this
bijection canonically to an involutionon H = Q LIS, still written a > a*, and decree
s(a*) =t(a), t(a*) = s(a). For each arrow a € H we write

1 ifa € Q,
€la) = . —
-1 ifaeQ.

Fix an integer N > 1. The graded tripled quiver Q&" associated to Q (cf. Section
4 of [26]) is a quiver defined as follows. We give Q& the vertex set 18" = [ x [0, N]
where 1 is the vertex set of Q. If Q is the edge set of Q and H = QLI Q the associated
set of pairs of an edge together with an orientation, we give Q&Y the arrow set

(Hx[0,N—1])u (I x[0,N —1]). Thus,

(), h, h).n+1
(1) foreachh € H,n € [0, N—1]wehave arrows (, n) with (A(o) " g (l( ).n+ )

1.e.

>

s(h,n) = (s(h),n) and t(h,n) = (t(h),n+ 1);

. . i tin (i,n+1) .
(2) foreachi € I,n € [0, N — 1] we have arrows #(; ) with (:.n) _an ¢ o ) ,1.e.

S(l‘i’n) =(,n) and Z‘(t(i,n)) =(@{,n+1).

More discussion can be found in [26, §4].
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2.3 Path algebras

Let S = €D, ke; be a commutative semisimple algebra over a field k, with orthogonal
system of idempotents {e; }. Suppose A is an algebra with homomorphism § — A. We
say that x € A has diagonal Peirce decomposition if x € @ e; Ae;, or equivalently
if it lies in the centralizer Z 4 (S). !

Let Q = (I, H) be a quiver. The path algebra kQ of Q is defined as follows: Let §
denote the finite-dimensional (semisimple commutative) k-algebra S = P; <1 ke; with
idempotents e¢; labelled by the vertices i € I. We define an S-bimodule B = B(Q),
with k-basis labelled by the arrows, where the S-bimodule structure takes arrows to
be directed “left-to-right,” so e;ae; = 0 unless i = s(a), j = t(a), and so that
es(a)a€;(q) = a. Then the path algebra k Q is defined to be the tensor algebra Ts (B (Q)).

It is natural to grade the path algebra k Q of any quiver Q = (I, H)—for example,
k Q9! using the normal grading on a tensor algebra, thus the semisimple algebra S
lies in degree O and the arrows & € H lie in degree 1.

If A is any S-algebra, we write A[¢] for the associative S algebra obtained by
adjoining a central variable ¢ (thus every element of A commutes with 7). The algebra
A[r] is graded by r-degree, and hence if we take A = kQ9%!, the algebra k Q![¢]
is naturally bi-graded, but we will only use the total grading, with respect to which
deg(¢) = 1. Using the above grading for the path algebra k Q8", we obtain a graded
algebra homomorphism

kO™ — kQ"/J by taking

e Y eimt+J. i€l h> Y (hom)+J, heH, te Y tim+J,
n n (@i,n)

where J denotes the two-sided ideal

J=({z(s(h),,1) o+ D)= (h,n) - tagynsny | h € H, nel0,N— 2]}). @.1)

The graded algebra k Q8" has the property kQ‘g\, +1 = 0, so we obtain a homo-
morphism

kQ®' 1] = kO™ [11/k Q™ 1)y 41 —> KQET/J. (2.2)

The above discussion thus shows:

Lemma 2.2 Letk Q8" -mod; denote the category of finite-dimensional left modules for
k Q& annihilated by J, and furthermore let k Q%'[t]j0.n] -gr(, | denote the category
of finite-dimensional graded left k Q®\[t]-modules concentrated in degrees [0, N1.
Then the homomorphism (2.2) determines an equivalence of categories:

k Q=" -mod; = kQ™[1]0,v1-grpo, w1 -
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2.4 Universal localizations

We briefly review some aspects of universal localizations that may be unfamiliar to
the reader, using Chapter 4 of [28] as our reference; see also [9].

Suppose that R is a ring with 1 and X is a set of elements of R. Then there is a ring
Ry with a homomorphism R — Ry that is universal with respect to the property that
for every r € %, r becomes invertible in Ry, i.e. r has a two-sided inverse r~lin Ry.
The ring Ry is called the universal localization of R at ¥; an alternative notation that
is sometimes preferable is ¥~ R. The universal localization is constructed as follows:
letting ! denote the set of symbols a~! for a € %, we define

> 'R=Ry :=RE"Y/{a'a=1,aa" =1 |a e x).

This evidently has the universal property claimed, though very little else can be
deduced about Ry from this construction. Another more illuminating construction
(which allows one to invert morphisms between arbitrary projective modules) is given
in Theorem 4.1 of [28].

We however will only need the following properties, which follow immediately
from the universal property.

Proposition 2.3 Suppose R is a ring with 1.

(1) Ift € Z(R) is central, then Ry is isomorphic to the Qre localization of R at t.

() If X, %' C R are subsets, let T denote the image of ¥ in Ryx. Then (Re)y =
Rsus. o

(3) Given atwo-sidedideal I C R, let ¥ denote the image of ¥ in R/ I and I, denote
the two-sided ideal in Ry, generated by I. Then (R/I)s = Rx/Ix.

2.5 Multiplicative preprojective algebras

We review the multiplicative preprojective algebra of a quiver Q as defined in [10].
Given a quiver Q with double del = (I, H), for each arrow a € H of del,
we define g, = 1 + aa*™ € kQ®!. Write L ¢ for the algebra obtained by universal
localization of k Q%! inverting ¥ = {g, | @ € H}. Identify the tuple ¢ € (k*)! with
the element ) ;_; gie; € S. Crawley-Boevey and Shaw choose an ordering of the

—
arrows in H and define pcgs = | | u gg(”) — ¢ (the arrow over the product indicates
ae

that it is taken in the chosen order). It is proven in [10, §2] that, up to isomorphism,
the quotient algebra L /(pcBs) does not depend on the choice of ordering. Thus, in
this paper we specifically fix an ordering €2 = {ay, ..., ag} on the arrows in Q, and
let

1 ~1
PCBS = 8a18as - - - gaggaf S ga; —q. (2.3)
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Definition 2.4 Following [10, Definition 1.2], the associated multiplicative preprojec-
tive algebra is defined to be

AT = AY(Q) = Lo/(pcBs),

where pcps is defined as in (2.3).

2.6 Homogenized multiplicative preprojective algebras

A principal tool in this paper is a certain graded algebra A that “homogenizes” the
multiplicative preprojective algebra A9. Here we construct the algebra A and collect
some basic facts about A and its relation to the multiplicative preprojective algebra
A1,

Thus, fix a quiver Q. Recall that we consider k Q°![¢] as a nonnegatively graded
algebra, with the generators a € H,t all in degree 1, and S = ®;cske; in degree O.
We let

Gy :=t>+aa* € kQ® 1] forall a € H.
Remark 2.5 Each G, has diagonal Peirce decomposition: more precisely,
esa)Ga = es(a)t2 4+ aa* = Gues@), and e;G, = e,~t2 = tzei = Gge; fori # s(a).
We note the obvious equalities
Guga =aGu, a*G, = Gyga®*. (2.4)

Given g € (k*)!, we identify ¢ with g := Y icrgi€i € kQ%! a sum of idempotents

in the path algebra (which thus also has diagonal Peirce decomposition).
Analogously to [10], we write L; for the universal localization of the algebra

debl[t] in which the elements {G,,a € H}, and ¢ are inverted. The algebra L,

aa*
is graded and contains invertible elements g, = 172G, =1+ —-—1in graded degree

0. Moreover we have (L;)o = L o, where as reviewed above L ¢ is the universal local-
ization of k Q' = k Q![¢*1]; at the elements g,, a € H. As above, fix an ordering

Q = {ai, ..., ag} on the arrows in Q. Write
D =Gg ...Gqy, D* = Q(G"Zg . Ga;ﬂ), 2.5)
p=D—=D"=(Gy...G4) = q(Gus...Gy:) € kQ%®!1]. (2.6)

Definition 2.6 We write A = debl[t] /(p), where (p) denotes the two-sided ideal
generated by p.

The element p has diagonal Peirce decomposition, and so pe; = ¢;p, and (p) =
({peili € I}).
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Proposition 2.7 Write ¥ = {G, | a € H} U {t}. We have:

(1) Ais a graded algebra where a;, a} and t have degree 1 (and S =), ke; lies in
degree 0).
(2) The universal localization

A =37 'A 2.7)

of A obtained by inverting all G,,a € H, and t, is a graded algebra, and A; =
A(Q)[t*T I where A1(Q) =: A1 denotes the multiplicative preprojective algebra
of [10].

Proof This almost all follows from the above discussion. The isomorphism (2.7) of
part (2) of Proposition 2.7 follows from Proposition 2.3. O

3 Representations and their moduli
3.1 Representations of kQ9' and kQ9*

Fixing some N > 2g, where g is the number of arrows in Q, we form the graded-
tripled quiver Q8" associated to Q as above.! Given a dimension vector a € Zl>o for

the quiver Q%! we write 2" € Zif) [0-N for the dimension vector for k Q8" for which
ozigt; = o; forall n € [0, N]. We write Rep(k del, «) for the space of representations

of k Q! with on the /-graded vector space V with V; = k% forall i € I, so that V
has dimension vector « and G = [[; GL(«;) for the automorphism group; thus

Rep(k Q% o) := ]_[ Hom (k%® | k%),
heH

Similarly we write Rep(kQ8", o) for the space of representations of k Q%" with
dimension vector 8", and G&" for the automorphism group.

As in the construction of Section 4.3 of [26], there is a natural “induction functor”
from the category of representations of k Q' with dimension vector « to the category
of representations of k Q8" of dimension vector o8, The construction proceeds as
follows. To a representation V of kQ%®! we may associate the Z-graded vector
space V[¢], and let arrows & of Q9! act as multiplication followed by shift-of-grading.
This makes V[¢] into a graded left k Q°'[¢]-module. We then form V[¢]/V[t]sn+1,a
graded left k Q![1] [0,~v]-module, and finally apply Lemma 2.2 to get a representation
of kQ8": in fact, a representation of the quotient k Q' /J where J is as in (2.1).

More concretely, the above construction is the following. Suppose we have a
representation V = (V;);e; of kQ®' of dimension vector . We obtain a represen-
tation of kQ%![¢] on a vector space V, , of dimension vector o defined by setting
Ve.e =V x [0, N] where

! Thus, in particular, N is at least as large as the degree of the relation p.
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(1) the grading is given by V; , := V; x {n} forall n € [0, N];

(2) the action of the generators #; , of kQ&" for (i,n) € I x [0, N — 1] is given by
idy, x o, where o: [0, N — 1] — [0, N]is given by o(n) =n + 1; and

(3) the action of each generator (h,n) € H x [0, N — 1] is given by

hxo: Vsayn = Vihy.nti
The construction determines a morphism of algebraic varieties (“induction”)

Ind® : Rep(kQ%®', &) —> Rep(k Q" o&").
Writt  G=[[GL(V) and G"= ] GLViw= [] G

i (i.n)elx[a,b] nela,bl

with the diagonal homomorphism diag : G — G&" = 1_[ ab] G. Then the mor-
nela,

phism Ind® is (G, G&")-equivariant. We thus get a natural G -equivariant morphism
Ind : G xg Rep(kQ®', «) —> Rep(k Q" o2™). (3.1

Thus, given arepresentation (ay, : Vst — Vign))nen of k 0% on v, and (gin) € G,
we have

INd((gi.n), an) = ((h, n), 1; ») where (h, n) = gy nt1an8;gh , A i n = int18] -

Proposition 3.1 The map Ind of (3.1) defines a G -equivariant open immersion
of G2 x¢ Rep(kQ™, @) in Rep(k Q2 /J, a2%), whose image consists of those
((hv n)v ti,n)for Whlch

ti n is an isomorphism for alln € [0, N —1]. (1)

Proof This follows from the discussion above, indeed one can readily adapt the proof
of the corresponding statment for Nakajima quiver varieties, see [26, Proposition 4.1].
O

3.2 Representations of A and Ajg y;

Let A -Gr denote the category of graded left A-modules. We also consider the category
Ao, n1 -Grx¢ of those graded left Ajo, yj-modules M for which M; = O fori ¢ [0, N].
We remark that Ajg y)-Gr>( can naturally be viewed as a full subcategory of the
category Ao, n]-Gr of all graded left Ajp, yj-modules, hence also of A-Gr. Define a
functor of truncation,

70,87 : A-Gr — Ao, n] -Gr>o,
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by M +— 10, njM := M>0/M=n4+1.Asabove, we have a graded vector space injection
7j0,n](M) — M that is the identity on the mth graded piece for m € [0, N] and is
zero elsewhere; this map is A<,,-linear on My _,,.

3.3 Representations of A and A7

We note:

Remark 3.2 The functor A, -Gr — A?-Mod, M — M), is an equivalence of cate-
gories.

Recall from (2.7) that, letting ¥ = {G, | a € H} U {t}, we have a graded algebra
isomorphism ¥ 7'A = A, = AY[+*!], and hence a graded algebra homomorphism
A — A9[r*!]. Given a left or right A?-module M, we form a graded left or right
As;-module M = M([r*'], and thus a graded A-module M = M[r] = M[t*']=.
This defines a functor

R : A?-Mod — A-Grxg.

In the opposite direction, we have a functor (A; ®a —)o : A-Gr>9 — A9 -Mod. We
have:

Lemma 3.3

(1) The functors (A; ®a —)o : A-Grso ——= A?-Mod : R form an adjoint pair.

(2) If M is a finite-dimensional left A9-module then the graded left A-module M =
M (1] is finitely generated and projective as a left S;-module and as a left k[t]-
module. Moreover, we have Homy[,j(M, k[t]) = Homy (M, k)[t] as a graded
right A-module.

Proof The first statement follows from the isomorphism A; = A4 [+ along with
the equivalence of categories noted in the above remark. Indeed

Hom(M, N[¢]) = Hom(M, N[r*']) = Hom(A, ®4 M, N[r*'])
= Hom((A; ®4 M)o, N),

where the second isomorphism follow from universality. The second statement follows
immediately from the definitions. O

3.4 Representation spaces and group actions

Because the multiplicative preprojective algebra A7 is the quotient Lo /(pocgs) of the
localization Lo of k Q%! by the ideal generated by pcs, the space Rep(A9, ) of
left A?-modules with dimension vector « is naturally a locally closed subscheme of
Rep(k del, «): it is the closed subset, defined by vanishing of pcps, of the open set
defined by invertibility of the elements g,,.
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Similarly, the algebra Ao, x| is a quotient of k del [*]{o,n] and thus, via Lemma 2.2,
the space Rep,, (Ajo,n1, @®") of graded left Ao, yj-modules concentrated in degrees
[0, N] is identified with a closed subscheme of Rep(k Q&", ") defined by the van-
ishing of the images of p and J in k Q&".

It is immediate from the construction of Sect. 3.1 that:

Proposition 3.4 (cf. Prop. 4.7 of [26]) The morphism Ind of (3.1) restricts to an open
immersion:

Ind : G&" xg Rep(A?, a) — Repg, (Ajo,n1, o),

Its image consists of those representations on which the elements t, G, act invertibly
whenever their domain and target lie in the range [0, N].

Corollary 3.5 The map Ind defines an open immersion of moduli stacks

Rep(A?, @)/G — Repy, (Ao v, @) /GE".

3.5 Semistability and stability

We next discuss (semi)stability of representations and the corresponding GIT quo-
tients.

For any quiver Q = (I, 2) with dimension vector « € ZI>0, a GIT stability
condition is given by # e 7. satisfying > ;6ia; = 0. The vector 6 determines

a character xy : [[; GL(ot;) = G, x(8)ier = []; det(g;)?%, and the condition
> 6y = 0 guarantees that the diagonal copy A(Gy,) of G, in []; GL(e;) lies in
the kernel of x; we require this because A(G,,) acts trivially on Rep(Q, «). Given
dimension vectors 8, o, we write 8 < o if B # o and B; < «; foralli € I.

We now turn to stability conditions for the doubled and tripled quivers Q9! and
Q2" for a fixed quiver Q. Suppose 6 is a stability condition for Q! and dimension
vector o. We construct a stability condition #8" for Q8" with dimension vector o8 as
follows. For a representation M of k Q&Y of dimension vector ", we write §; ,, (M) :=
dim(M; ,,); we will write 68" as a linear combination of the §; . Also, we note that it
suffices to construct a rational linear functional 88", since any positive integer multiple
of 98" evidently defines the same stable and semistable loci. We fix an ordering on the
vertices of Q, identifying I = {1, ..., r}. and a positive integer 7 >> 0. We define:

.
68" = Z T'[8in — 0] + 291'31',0-
i=1 iel

Proposition 3.6 Suppose M = Ind(N) for some representation N of kQ®' with
dimension vector a. Then M is semistable, respectively stable, with respect to 68"
if and only if N is semistable, respectively stable, with respect to 0.

The proof is an easy adaptation of that of Proposition 4.12(4) of [26].
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We remark that the above construction does not match [26]: there we chose to
construct a stability 98 for Q&Y that would be nondegenerate if § was, whereas here we
ignore this possible requirement. While it would be possible to copy the construction of
a stability 8" from [26] and prove analogues of the statements of [26], there are cases
important to multiplicative quiver varieties in which it is not possible to find a stability
condition for k Q! that is nondegenerate in the sense used in [26]: for example, the
case when Q has a single vertex and loops based at that vertex, with dimension vector
o = n > 1. However, again for multiplicative quiver varieties, in some interesting
cases the choice of the parameter g can guarantee that every semistable representation
of A7 is automatically stable (though not for numerical reasons, as nondegeneracy
guarantees). Indeed, we say ¢ = (g;)ic; € (k™) is a primitive ath root of unity if
q*:=[1q" =1landg? # 1 forall0 < B < . We have:

Lemma3.7 ([10], Lemma 1.5)

(1) Suppose that M is a representation of A1 with dimension vector a. Then g% = 1.
(2) In particular, if q is a primitive ath root of 1, then every representation of A4 of
dimension vector a is 0-stable for every 0.

For example, if Q = ({x*}, E) where E has g loops at *, « = n, and ¢ is a primitive
nth root of 1, then every representation of A9 of dimension n is stable for every
0; the corresponding moduli space of representations of A7 is the character variety
Char(Xg, GLj, g Id) of the introduction.

Remark 3.8 It would be interesting to characterize those stability conditions #8 for
k Q8" with the property that there is a stability condition 6 for k Q' so that if M =
Ind(N) then M is 68-(semi)stable if and only if N is O-(semi)stable.

Notation 3.9 We write
M (@) ;== Rep(A?, @) /G and M (a)® := Rep(A?, )’ /4G

for the coarse moduli spaces determined by a stability condition 6.

3.6 Moduli stacks and resolutions
The moduli stacks
Rep(A?, @)’ /G and Repy (Ajo,n7, o8)%" /G

are never Deligne-Mumford stacks: the diagonal copy of G, in G, respectively G&,
always acts trivially on Rep(AY, &), respectively Repy, (Ajo,n1. «€)?" -5 Thus, the
moduli stack of stable representations Rep(A?, )?**/G is always a G,,-gerbe over
the moduli space MZ () of stable representations.

However, one can make a choice of subgroup S C G that ensures that the quotient
stack Rep(A?, «)? /S is a Deligne—-Mumford stack and that Rep(A?, @)?~%/S —
./\/lZ(oz)S is a finite gerbe (indeed a principal B H-bundle for a finite abelian group
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H). Indeed, for example, we can choose any character p : G& — G, for which
the composite with the diagonal embedding p o A : G,;, — G, is nontrivial, hence
surjective. Then S8 := ker(p) has the property that G&* = S&. A(G,,) and similarly
letting S = GNS&T we have G = S- A(G,,;). Moreover, since A(G,,) is the stabilizer
of every point of Rep(A?, )’ and H := A(G,,) N S is finite, we get:

Lemma 3.10 The quotient Rep(A?, a)? /S is a Deligne—Mumford stack and the nat-
ural morphism

Rep(A?, a)? /S — MZ (a)®

is a torsor for the commutative group stack BH (in particular, is a finite gerbe over

Ml @)

By construction, we have an open immersion:
Rep(A7, )7 /S = Repy (Ao, w1, )7 55 /S8,

and the coarse space of the target Rep,, (Ao, v, Q&) -ss /S&Y is the projective moduli
scheme  Repy, (Ao, N1, ) foerGEY: it is a closed subscheme of
Rep(kQ8, o) /4 GEY, which (as in [26]) is projective because k Q8" has no ori-
ented cycles, and hence is itself projective.

As in [26], our goal is to compactify Rep(A?, &)’ /S appropriately. We therefore
replace the quotient stack Repy, (Ajo, 1. Q&) OET -ss /SEY by its closed substack defined
as the closure of Rep(AY, a)?S/S:

Notation 3.11 We denote the closure of Rep(A?, &) /S in Repy, (Ajo, N7, otgtr)ggtr 88
/SE by M.
Lemma3.12 The stack Rep(A?,«)?/S is smooth. The stack Mg is integral

and its coarse moduli space is a projective scheme. The natural morphism
Rep(A?, @)?%/S < My, is an open immersion.

Proof The smoothness of Rep(A?, «)?*/S is Theorem 1.10 of [10]. The remaining
assertions are immediate. O

We may apply the results of [22] or [14] to Rep(k Q*", Q€0 s /et and s
closed substack My to obtain a projective Deligne—Mumford stack (i.e., a Deligne—
Mumford stack WhOSi ?oarse_space is a projective scheme) /\_/l/gt equipped with a
projective morphism M, — My that is an isomorphism over Rep(A?, «)? **/S. The

stack /W;t is itself, by construction, a global quotient of a quasiprojective variety by
/

S, and thus we may apply equivariant resolution to resolve the singularities of MS[,

to obtain:

Proposition 3.13 The smooth Deligne—Mumford stack Rep(A?, «)? /S admits an
open immersion

Rep(AY, @)? /S <> Rep(A9, a)? /S
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in a smooth projective Deligne—Mumford stack which is equipped with a projective
morphism

Rep(A9, )3 /S — My

that extends the open immersion Rep(A9, a)? /S < M.

4 The diagonal of the algebra A
4.1 Bimodule of derivations

Recall that we have fixed an ordering 2 = {ay, ..., a,} on the arrows in Q. For
j=1,..., g we write

Ly, :Gal...Gaj_l, Ry; :Gaj+1...Gag, SO D:LajGajRaj,
— — *
La;f = Ga;f ... Ga’]'_‘+l, Ra;f = Gaj,l .. Gai‘a so D™ = qLa;Ga}%Ra;.

Let B denote the sub-(S[¢], S[¢])-bimodule of debl[t] spanned by the arrows, so
that kQ%![¢] is identified with the tensor algebra Ts,j(B). As in [10, p. 190], the
bimodule that is the target of the universal S-linear bimodule derivation of debl[t]
satisfies

Qs (k0P 1]) = k QP! [1] @511y B @11 kQP[1],
under which the universal derivation & gasiy s,y © kKQ™'[1] — Qsp(kQ'[1]) is
identified with a — 1 ® a ® 1. As in [10, p. 190], for the universal localization

L; we also get Qg/(L;) = L; Q gavl[1] Qs[,](debl[t]) Q gablfy] L, with the obvious
identification of the universal derivation 8, /s[,. We write:

PI=AQ®s BRsnA=A ® Qsqk0®[]) © A (4.1)
debl[f] debl[t]

The module P; is evidently projective as a bimodule. Via the above description, we
obtain a collection of bimodule basis elements

Na,a€ H, via n,=10a®1€AQsi B®si) A= Pr.

4.2 An exact sequence

We write

Py=A Q5[] A.
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Writen; = e; ® 1 = 1 ®e;,i € I, for the obvious bimodule generators of Py. Define
graded bimodule maps

Po(=2¢) % Pi=1) & Py (4.2)

by B(na) = ans) — Niya for arrows a of Q", and

am) =D LibaRi— Y qLoDoRer, 4.3)

ae2,s(a)=i ae,t(a)=i
where A, = 6(G,) (where § denotes the universal derivation). It is then immediate
that ¢ (n;) = e; - §(p); in particular, letting 6 : Py — (p)/ (,02) denote the map defined
by 0(p ® q) = ppq and writing ¢ for the isomorphism defined by (4.1), we have:
poa=3500. 4.4)
Imitating the proof of Lemma 3.1 of [10] gives:
Lemma 4.1 The sequence

Po(=2e) % Pi=1) & Py L A 0, (4.5)

where y(p @ q) = pq, is an exact sequence of Z-graded bimodules.

Proof As in [28, Theorem 10.3], one gets an exact sequence

(0)/(p?) > Qs (kQ®'[1]) — Q1A — 0.

As in [10], splicing this sequence and the defining sequence for 2] (A) and applying
(4.4) gives a commutative diagram

Py(=2g) —— % > Pi(—-1) Py A 0

0 =|¢ :lv/
§

8
P/ —>=A & QsnkQ®[r]) ® A—=AQsA—>=A—>0.
kQ®[1] kQel[1]

The vertical arrows ¢, ¥ are isomorphisms and 6 is surjective, yielding the assertion.
O

4.3 Dual of the map Po(—2g) i Pi(—1)
Recall that the enveloping algebra of A over k[t] is

A=A k(] A°P.
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We consider A¢ as a left A°-module where a ® a’ € A€ acts by
a®@ad - x@x)=ax®x'd.

We remark that A® naturally also has a right A°-module structure commuting with the
left A¢-action, where a ® a’ € A° acts on the right by

x®x)-a®d =xa®adx'.
Given a finitely generated left A°-module, we form P¥ = Hompe (P, A°), the dual over
the enveloping algebra; by the above discussion, this module has a right A°-module
structure, which we can identify with a left A°-module structure via the isomorphism

A)®? > A°, a®d — d ®a.

We now want to calculate the dual oV of the map « of (4.2) using the formula (4.3).
Note that

A(Gp) = ad(a®) + 8(a)a™ = angx + naa™.
We thus find from Formula (4.3) that the 1,-component of « is given by

Lynga*R, — qLgxa*n,Ryx  ifa € Q,i = s(a),

ami)y = =
@)1, Loa*ngRex — qLgnga*R,  ifa € Q,i =t(a)

and zero otherwise. Let {,} denote the basis of P,” dual to the basis {n,} of Pi; we
note that

77;/ S e,(a)Plvex(a). (4.6)
The above formulas then imply:

a*Ransv(a)La - qRa*ntV(a)La*a* ifa e Q,

R;“nt\/(a)La*a* - qa*RanSV(a)La ifa e Q.

a’(ng) = 4.7)

Lemma4.2 Forall a € 2, we have

av(n:a - a*nav*) = Gg» (qRa* ﬂ;/(a)La*) - (qRa* n;v(a)La*)Ga*, (4.8)
o (an) —nya*) = G (Ransv(a)La) — (Ransv(a)La)Ga. (4.9)

Proof These formulas follow by direct calculation using 4.7. O

Lemma4.3 Ifa € H, s(a) # i, then G,Dn, = Dn,G, in Py .
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Proof The element D is a product of elements of diagonal Peirce type, hence itself is
of diagonal Peirce type. Thus, using esq)n;” = 0 = 1,/ e5(4), we get

GaDn[v = (Gaes(a) + (1 - es(a))tz)Dn,’v =1- €s(a)12)D77,~v
= Dniv(l — es(a)tz) = Dniv(es(a)Ga + (1 - es(a))tz) = Dn;/Ga.

This completes the proof. O

Suppose now that M is a graded right A;-module; then M = Mg is a graded
right A-submodule of M. For example, we could take M = A; itself, as in (2.7). We
consider the map

1 Vv
M @n PY (1) 255 M @4 Py (29).

Remark 4.4 We note that, under the above hypothesis on M, for any product Q of
elements G, a € H, of degree deg(Q), the elements Qr~98(Q) and rdee(@) =1 of
A; give well defined operators of right multiplication on M that satisfy all relations
in A;.

Proposition 4.5 Suppose that M = Mxg for a graded right A,;-module M. Then for
allme Mandalli e land1 < j <g,
(1) the elements m(G[,aniv — Dnl.VGaj), m(Ga;fDniv — Dr/l.VGa;f), and

) -2 -2 -2
(2) the elementsm(a;‘th n;/(aj) — Dt nt\?aj)a;‘), m(a;jDt nz\/(aj) — Dt n;/(aj)aj)
lieinIm(1x, ® a¥) S M ®a Py (2g).
Proof (1) We first prove that m(GaanlV — Dnl.VGaj) € Im(ly ® a) by (strong)
induction on j.

Base case j = 1. By Lemma 4.3, the assertion is true for i # s(a). From Lemma 4.2,
we have

mGaa” (ang, = ngeai) = mGa Gay (Ray 14y Lay) = mGay (Ray15(ay) Lay ) Gay
=mGqy D0s(ay) — mDns(ay)Ga -

This completes the base case.
Induction step Assume m(Gq, DnY — DnyGg) € In(1y ® «V) forall i € I and

k < j. Again, by Lemma 4.3, we have mG,; D, — mDn;Gq; € Im(1y ® ") for
i # s(aj). Applying Lemma 4.2 gives
mGa;” (a; ”sv(a,-) - ”sv(a,-)aj) =mGa;Ga,(Rq, n;/((lj)Laj) —mGa;(Rq, ”sv(a,-)Luj)Gaj
deg(La;) y —1 py,—deg(La,
= mGaj (t e ])Lalet ! j)”sv(aj)L“j)
deg(Ly;) y —1 —deg(Ly.) v
—(t 'L, Dt i ns(aj)Laj)Gaj

€ m(Gaan;/(aj) — Dnsv(aj)Gaj) +Im(ly ®a”)
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where the last equality applies the inductive hypothesis for each k < j (and various
m € M, see Remark 4.4). This completes the induction step, thus proving the assertion
for the elements G,; Dn;” — D1}’ G, .

The proof for Ga; Dniv — Dnl.v Ga;% follows the analogous descending induction on

j.
(2) Taking note of Remark 4.4, from (4.7) we have

av(mGajfzr;aj) = mGajfzafRaj ﬂ;/(aj)La,- —mGy, tfzqRa}f ntv(aj)La;fa;.
Applying part (1) of the proposition to the right-hand side of this formula gives

-2

av(mGajt_znaj) =mGg;t a;‘Raj Ly; nsv(aj) — quujt_zRajf Laj_‘ n,v(uj)a;f

+Im(lp, ® @)
_mGal jG 1Dt_2n;/(a) mGajG;;Dt_zntv(a )a

+Im(lp, ® @)
= mG,, G;;} (a3 D105y = Dt 0y, ha3) +Im(1a, @ @)

where the last equality uses (2.4); in particular this gives the first assertion of Part (2)
of the proposition. The second assertion follows similarly. O

5 Analysis of the ext-complex
5.1 The complex (4.5) and the Hom-functor

Let M, N be graded left A-modules such that M is finitely generated and projective
as a k[t]-module. To the exact sequence

1 1
PO(_28)®AML®1>Pl(_1)®AMﬁ£>P0®AM&M—>O

we apply the functor Homa (—, N) to obtain an exact sequence

0 — Homa(M, N) — Homa(Po ®a M, N) L2 Homa(P,(=1) @ M, N5.1)
We continue the sequence (5.1) using
Homa (P1(—1) ®a M, N) HomA(Po( 2g) ®a M, N). (5.2)

Thus, we would like to compute the cokernel of the map (5.2).

Proposition 5.1 Let M, N be graded left A-modules such that M is finitely generated
and projective as a k[t]-module, and write M* = Homy (M, k[t]). Consider the



The pure cohomology of multiplicative quiver varieties Page210f29 5

contravariant functors of finitely generated projective A°-modules P,

P+ (N ®) M*) ®pe PV and P +— Homa(P ®p M, N).
The natural transformation (N k1] M*) Qpe PV E> Homa (P ®a M, N) of these
functors of projective A°-modules P is a natural isomorphism.

Proof By projectivity, it suffices to check for P = A¢, where it follows by adjunction.
O

Corollary 5.2 Under the hypotheses of Proposition 5.1, the cokernel of the map (5.2)
is

coker (Iy+ @a’ @ 1y : M* @ P)'(1) @ N — M* ®a Py’ (2g) ®a N).

We note the following identities, which are immediate from adjunction:

Lemma 5.3 Suppose that M = M_[t] is the graded left A-module associated to a
finite-dimensional left A9-module M. Then:

Homa(P1 ®a M, N) = Homa(A ®g, B[t] ®s, A®a M, N) = Homg, (B @5 M, N)
= Homgs(B ®s M, N),
Homa (Pp ®a M, N) = Homa(A ®s, A®a M, N) = Homg, (M, N) = Homs(ﬁ, N).

5.2 The Ext-complex

Fix N > 2g.Let V be a finite-dimensional representation of A7 of dimension vector «,
andlet V = V[¢]be the corresponding graded A-module as in Sect. 3.2, and specifically
as in Lemma 3.3. Suppose W is a Z>¢-graded Ajo,y] = A/A>n+1-module, identified
with a representation of Q8" that has dimension vector «®". Thus (o xV is also
identified with a representation of Q& that has dimension vector &%,

Let P, denote the complex of (4.2). We consider the complex Hompa (P ®a V, W).
Since the sources and target of the Homs in this complex are graded A-modules, each
Hom-space can be regarded as a graded vector space; we write

Ext = |:HomA_Gr(Po @AV, W) AR Homa G (P1 ®a V, W(1))
= Homa r(Po ®a V, W(zg»]
for its degree O graded piece. As in [26], using Lemma 5.3 we may identify Ext with:

0 0
L(Vo, Wo) = E(Vo, Wi) = L(Vo, Wag), (5.3)

where 9y = f; and 9; = « .
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Proposition 5.4 Suppose that tjo, N1V and W are graded Ao, y1-modules. Then:
(1) We have an isomorphism coker(d1) = Homy (HomAw’N] cr(W, 0.M V), k).

If, in addition, tjo, NV is O-stable and W is 6-semistable, both of dimension vector
a8 then:

(2) We have ker(dop) = 0 unless tjo, N1V = W, in which case ker(dp) = k.
(3) We have that coker (01) is zero unless tjo, N1V = W, in which case coker(d1) = k.

Proof Assertion (2) follows from the exactness of (5.1) and stability. Similarly, asser-
tion (3) is immediate from assertion (1) by stability of 7o y1V and semistability of
w.

Thus it remains to prove assertion (1). Similarly to Lemma 5.3, we use Proposi-
tion 5.1 to identify

Homp i (Po ®a V, W(2g) = V' ®s, W = V§ ®s Wae = Homg(Vo, Way),
5.4)

Homp Gr(P1 ®a V, W(1)) = (B ®s Vo)* ®s Wi = Homg(B ®s Vo, W1). (5.5)
Specifically, we use (5.4) to identify Zr Ay @ wy € V§ ®g Wag with an element
¢ € L(Vy, W), ie., an I-graded homomorphism (¢;) : Vo — Wa,; and we use

(5.5) to identify > A, ® w, € (B ®s Vo)* ®s W with an element ¢ € E(Vy, Wy).
Under these identifications, the elements

-2 ) -2 -2
ZA, (ath nsv(aj) — Dt n,\?aj)a;‘)wr, ZA, (aj Dt ﬂ;\/(aj) — Dt nsv(aj)aj)wr
r r

of Proposition 4.5 are identified with
Va; a5t 2D — a1 D and wajajz—ZD - ajl//a;fz—ZD

for v € E(Vy, W1) = Homa gr(P1 @a V, W(1)).

8*
Via the trace pairings, the k-linear dual of 91 is a map L(W»,, Vo) BN EWi, Vo),
an element ¢* € L(Wyg, Vo) satisfies 9} (¢*) = 0 only if

tr [¢" V0,051 72D = @' a1 72D] =0

and tr I:(b*l//ajajl‘_zD _ ¢*ajwa7t—2p] —0

for all Y € E(Vy, Wy). Since each Ga_/.t_2 acts as an isomorphism on V*, the ele-

ments AGajt’znaj w and )»Gaf;t’zna;fw, for € Vi, w € Wy, collectively generate

Homa _G:(P1 ®a V, W(1)); it follows that an element ¢* € L(Wpe, Vo) satisfies

97 (¢*) = 0if and only if the above conditions are satisfied for all € E(Vy, Wy).
Cyclically permuting, these conditions become

ait?D¢* —17?D¢*ai =0 and ajt >D¢* —1>D¢*a; =0.  (5.6)
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Given ¢* € L(Wpg, Vp) satisfying these conditions, define ®* : W — 19 57V by
taking <D*|W2g7m = t " D¢*t"™. It is immediate from the conditions (5.6) that on
Wag—m, m > 2, we have that ®* commutes with all a; and a;’f, whereas form = 1
we may write *|y,, | = tt72D¢*t and again ®* commutes with a;, a;. Thus
®* defines an Ajg yj-linear homomorphism W — tjo,51V, yielding a linear map
ker(d}) < Homa, y,-6r(W, 7j0,47V). Conversely, given a graded Ao, yj-module
homomorphism ®* : W — 1j0, 51V, defining ¢* : Wpe — Vj by ¢* = D_1d>*|w2g,
we see that ¢* € ker(9]"). This completes the proof. O

6 Cohomology of varieties and stacks

In the remainder of the paper, the base field k is assumed to be C.

Here as throughout the paper, we use H*(X) to denote cohomology with Q-
coefficients, and HfM(X ) to denote Borel-Moore homology with Q-coefficients; if
X is a smooth Deligne-Mumford stack, there is a canonical isomorphism H*(X) =
HEM(X).

6.1 Mixed hodge structure on the cohomology of an algebraic stack

Suppose that X is an algebraic stack of finite type over C. It follows from Example
8.3.7 of [13] that the cohomology H*(X) comes equipped with a functorial mixed
Hodge structure.

Proposition 6.1 Suppose X is a complex Deligne—Mumford stack with the action of the
commutative group stack B H for some finite group H, and that X has a coarse moduli
space X — sp(X) with an isomorphism X — sp(X) = X/BH. Then H*(X, Q) =
H *( sp(X), Q) as mixed Hodge structures.?

Proof Use the Leray spectral sequence and the fact that H*(BH, Q) = Q for a finite
group H. O

6.2 Pushforwards and the projection formula

Suppose f : X — Y is a proper morphism of relative dimension d of smooth,
connected Deligne-Mumford stacks. Then there is a pushforward, or Gysin, map
fit H¥(X) — H*4(Y).

Proposition 6.2 ([6]) If X and Y are of finite type (so their cohomologies support
canonical mixed Hodge structures), the Gysin map fy is a morphism of mixed Hodge
structures.

The Gysin map satisfies the projection formula: for classes ¢ € H*(X),c' €
H*(Y), we have

fuleU ) = fule)u . (6.1)

2 We explicitly write the Q-coefficients to emphasize that they are essential.
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Suppose X and Y are smooth Deligne-Mumford stacks and C € H*(X x Y) isa
cohomology class. By the Kiinneth theorem we have H*(X x Y) = H*(X) H*(Y),
and thus we may write C = ) x; ® y; withx; € H*(X), y; € H*(Y). The classes
x;, y; are the Kiinneth components of C (with respect to X or Y respectively).

Now suppose that f : X — Y is arepresentable morphism from a smooth Deligne—

Mumford stack X to a smooth, proper Deligne—Mumford stack Y. The graph morphism

X —5 @) X x Y is not usually a closed immersion.

Proposition 6.3 (cf. Proposition 2.1 of [26]) The image of f* : H*(Y) — H*(X) is
contained in the span of the Kiinneth components of (1, f).[X] with respect to the
left-hand factor X.

Proof Write X < X x ¥ X~ ¥ forthe projections. Write p, : ¥ — Spec(C)
for the projection to a point; then (py). exists since Y is proper. We have f* =
(1, f)*py and (px)«(1, f)s+ = id. Using the projection formula, then, we get

5= (x)x(l, Haf = (px)x(l, Hx(l, Py = (px)«((1, HIXTN py ().

This proves the claim. O

6.3 Cohomology of compactifications

We say that a finite-type Deligne—Mumford stack X is quasi-projective if its coarse
space sp(X) is a quasi-projective scheme. For example, if a reductive group S acts
on a polarized quasiprojective variety M, then any open substack of M* /S is a quasi-
projective Deligne—-Mumford stack.’

The cohomology H*(X%) is pure if its mixed Hodge structure is pure of weight k:
thatis, Wi (H*(X)) = H*(X) and Wi_i (H*(X)) = 0. We say H*(X) is pure if each
Hk (%) is pure.

Proposition 6.4 Suppose ) = Y /G is a quotient stack (i.e., the quotient of an alge-
braic space by a linear algebraic group scheme) and that X° C X C ) are open,
separated, quasi-projective, smooth Deligne—Mumford substacks of ). Then the image
of the restriction map H¥(X) — H*(X°) contains Wy (Hk(.’{o)); in particular, if
H*(X°) is pure, then the restriction map is surjective.

Proof Consider first the case of smooth quasi-projective varieties X° C X. Then, for
any smooth projective compactification X of X, the image of H*(X) — H*(X°) is
independent of the choice of X: for example, by the Weak Factorization theorem, any
two such X, X' are related by a sequence of blow-ups and blow-downs along smooth
centers in the complement of X°, and the claimed independence follows from the usual
formula for the cohomology of a blow-up. Since the image of H*(¥) in H*(%°) is
Wi (H*K(.’fc)) by Corollaire 3.2.17 of [12], the claim follows in this case.

3 Here M® means stable points in the GIT sense: in particular, stabilizers are finite.
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We now consider the general case. By the assumptions, X and X° are (separated)
quasi-projective smooth Deligne-Mumford stacks that are global quotients. By The-
orem 1 of [23], there exist a smooth quasi-projective scheme W and a finite flat LCI
morphism W — X; the fiber product X° x x W — X° is then also finite, flat, and LCI.
Using the commutative square

oW w

and base change, we find:

(1) HKwW) LY H¥(X) and H*(X° x x W) &y Hk(x°) are surjective (indeed, ¢.q™*
and g2 (g°)* are multiplication by the degree of g).

(2) Since the Gysin maps ¢, g+« are morphisms of mixed Hodge structures by Propo-
sition 6.2,

Wi (HF(X° xx W)) kL% Wi (H* (X)) is surjective.

(3) The image of H¥(W) in H¥(X° x 3 W) contains Wy (Hk(%O X x W)), by the
conclusion of the previous paragraph.

The assertion is now immediate. O

6.4 Markman'’s formula for Chern classes of complexes

Suppose that 91 is a smooth Deligne—-Mumford stack and

cv,. 5wl (6.2)

is a complex of locally free sheaves on 901 of ranks r_1, rg, r| respectively.

Proposition 6.5 (Lemma 4 of [24]) Suppose that ' C 9N is a smooth closed substack
of pure codimension m, and that the complex C of (6.2) satisfies:

() HH(C) =0,
(2) HY(C) and H'(CV) are line bundles on T,
3) m>2andrk(C) =m — 2.

Then if m is even, ¢, (C) = [I'] andcm(HO(C)) ==m-=DH[T]

Remark 6.6 Markman’s Lemma 4 is ostensibly stated for smooth varieties M, but
Section 3 of op. cit. generalizes the assertion to smooth Deligne—Mumford stacks.
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6.5 Proofs of Theorems 1.5 and 1.2

Fix a quiver Q, stability condition 6 for Q%' and the corresponding stability condition
68" for Q&Y as in Sect. 3.5. Choosing a subgroup S C G as in Sect. 3.6, we obtain a
“graph immersion” in a product of Deligne—-Mumford stacks

Rep(A?, @) /S > Rep(A?, @)” /S x Repg (Ajo,n), )™ 5 /SE. (6.3)

We write ¢ for the immersion and I' = Im(¢) for its image, a smooth closed substack.
We remark that ¢ is not a closed immersion unless H is trivial; however, the morphism
¢ identifies

I' = Rep(A?, )’ /S x BH.

It follows that (1 x 1),[Rep(A?, «)? %] is a nonzero rational multiple of [I'], and thus
we may apply Proposition 6.3 with (1 x t)[Rep(A?, @)? %] replaced by [I'], and we
do this below.

The factors Rep(AY, «)? /S and Rep,, (Aj0, N1, &0 -8 /SEr come equipped
with universal representations V, W respectively. The complex Ext defined in Sect. 5.2
descends to the product Rep(A?, a)? /S x Rep,, (Ajo, N1, Q€)0ET -8 /SEtr We recall
from Proposition 3.13 the compactification Rep(A4, @)?-5/S of Rep(A?, «)?%/S.
This carries a natural map to Repy, (Ao, n1, &)?%7 -5 /S \which induces an isomor-
phism on the open substack Rep(A9, «)?/S. Pulling the complex Ext back to the
product Rep(A?, a)? /S x Rep(A4, a)? /S, we get a complex that we will denote
C.

Direct calculation shows that the rank of C is m — 2 = codim(I") — 2 (we note
that its rank depends only on Q and «: only the differentials distinguish between the
ordinary and multiplicative preprojective algebras). It follows from Proposition 5.4
that C has the following properties:

(1) H~1(C) =0,
(2) H'(C) and H'(CV) are set-theoretically supported on I', and their scheme-
theoretic restrictions to I" are line bundles.

Thus, in order to show that I" satisfies the hypotheses of Proposition 6.5, it suffices to
show that I is the scheme-theoretic support of both H!(C) and H'(C"Y). We do this
by considering a morphism

Spec(k[e]) — Rep(A?, a)g's/S x Rep(A, a)? /S

(where here and throughout the remainder of the proof, k[¢] denotes the ring of dual
numbers) with the property that the closed point maps to I'. Then it will suffice to
show that either Spec(k[€]) maps scheme-theoretically to I', or that the pullbacks of
H'(C) and H'(CY) to Spec(k[e]) are scheme-theoretically supported at Spec(k) C
Spec(k[e]).
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We thus consider arepresentations Vs , V’E of AY[e]thatare flat over k[¢] and having
dimension vector « after tensoring with k @[] —; and let Ve = Veltl, V! = V; [7].
Assume tj0, N7 Ve, T[0,n7V/ are 08" _stable. The complex C, defined as in (5.3) becomes
acomplex of free k[¢]-modules, and H ! (C¢) = Homa, -cr (tj0,n) Ve, Tj0,n1V/). This
cohomology is isomorphic to k[e] if and only if t(o, 57 Ve = 70,57 V/. Thus, ’Hl(Cev)
is isomorphic to k[e] if and only if (o n7Ve = 170,37V, It follows that the scheme-
theoretic support of H'(C") is the reduced diagonal I'.

It remains to check that the same is true of ! (C). To do that, we again start with
10,51 Ve To, N1V, as above, but consider them as graded A-modules (i.e., forgetting
the k[€]-module structure) and form the complex C. We have a short exact sequence
of graded A-modules

0 — eto,n1Ve = 10,M Ve = k Qkle] TI0,N Ve — O, (6.4)

where by k[e]-flatness we have e tjo, 1 Ve = k ®x[e] Tj0, N1 Ve, both stable; and similarly
for V’. Assume without loss of generality that k ®xfe] Tjo.N1Ve = k ®ke] To. N7V
as graded A-modules. Suppose there is a nonzero map of graded A-modules, ¢ :
710,81 Ve — 710,87V, If the composite

¢
€1i0,N1 Ve = TI0,N1 Ve = T[O’N]Vg — k ®kle] T[0,N] VE/ (6.5)

is nonzero, it is an isomorphism, since both its domain and target are stable of dimen-
sion vector 2"; in which case both (6.4) and its analogue for (o x7V/ are split
extensions. This means that the tangent vector to Rep(A?, o)’ /S x Rep(AY, «)? 5 /S
determined by Ve, V;) is zero, and thus irrelevant to our analysis of the scheme-
theoretic support of H!(C). Thus we may assume that the composite (6.5) is zero, and
so the morphism ¢ is a homomorphism of 1-extensions. Now if ¢ (etjo,ny1Ve) # O,
then again by stability it maps isomorphically onto etjo y7V/. Since (6.4) is non-split,
it follows that ¢ is an isomorphism, implying that the tangent vector determined by
Ve, V;) is tangent to I', and again irrelevant to our analysis of the scheme-theoretic
support of H!(C). Finally then, we may assume that ¢ (e 710,§1Ve) = 0. It follows that
¢ factors through the quotient k ®g[¢] T[0,n] Ve; similarly its image lies in etjo,x7V/.
It follows that Homa -Gr (r[(), N1 Ve, 10,81V, ) is scheme-theoretically supported over
Spec(k) C Spec k[€], and hence by Proposition 5.4(1) that the same is true of H!(C).
Since this is true for every Speck[e] — Rep(A7, a)?%/S x Rep(A?, a)? /S not
tangent to I', we conclude that !(C) has scheme-theoretic support equal to I, as
required.

By Proposition 6.5, then, we conclude that [I"] = ¢, (C). By Proposition 6.3, the
Kiinneth components of ¢, (C) thus span the image of the restriction map

H*(Rep(A7, @)7/S) —> H*(Rep(A?, @)’ /S),

which by Proposition 6.4 is exactly @,, W, (H ™ (Rep(A?, )?~/ S)) . Since the Chern
classes of C are polynomials in the Chern classes of the tautological bundles (see the
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proof of Proposition 2.4(ii) of [26]), this completes the proof of Theorem 1.5, hence
also of Theorem 1.2. O

6.6 Proof of Theorem 1.4

The proof of Theorem 1.4 is essentially identical to that of Theorem 1.6 of [26] (and
we note that Theorem 1.4 holds whenever k is any field of characteristic zero and
q € k). Indeed, the assumption that there is a vertex ip € [ for which o, = 1
guarantees the following. First, we may take S = ]_[l-#i o, GL(a;), which acts freely on

the stable locus: thus, Mg ()’ is a fine moduli space for stable representations of A?.
Second, exactly as in the proof of Theorem 1.6 of [26], in the complex (5.3), there are
direct sum decompositions

L(Vo, Wo) = Hom(Vo,iy. Wo.iy) @ ( Dii, Hom(Vo;, Wo,i)) and
L(Vo, Wag) = Hom(Vo iy, Wag,ig) @ ( Diziy Hom(Vo i, Wag i),

so that the complex obtained by modifying (5.3) given by

0 0
@i i, Hom(Vo i, Wo.;) — E(Vo, W1) = L(Vo, Wag)/ Hom(V i5, Wag.io)

has no cohomology at the ends, and in the middle has cohomology H thatis arankm =
codim(I") vector bundle. Moreover, the remaining map k = Hom(Vp ;,, Wo.,i,) —
E(Vy, W)) defines a section s of H whose scheme-theoretic zero locus is Z(s) = T'.
The remainder of the proof now copies that of Theorem 1.6 of [26]. O
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