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Abstract

Holomorphic vector valued differential operators acting on Siegel modular forms
and preserving automorphy under the restriction to diagonal blocks are important in
many respects, including application to critical values of L functions. Such differential
operators are associated with vectors of new special polynomials of several variables
defined by certain harmonic conditions. They include the classical Gegenbauer polyno-
mial as a prototype, and are interesting as themselves independently of Siegel modular
forms. We will give formulas for all such polynomials in two different ways. One is to
describe them using polynomials characterized by monomials in off-diagonal block
variables. We will give an explicit and practical algorithm to give the vectors of poly-
nomials through these. The other one is rather theoretical but seems much deeper. We
construct an explicit generating series of polynomials mutually related under certain
mixed Laplacians. Here substituting the variables of the polynomials to partial deriva-
tives, we obtain the generic differential operator from which any other differential
operators of this sort are obtained by certain projections. This process exhausts all the
differential operators in question. This is also generic in the sense that for any number
of variables and block partitions, it is given by a recursive unified expression. As an
application, we prove that the Taylor coefficients of Siegel modular forms with respect
to off-diagonal block variables, or of corresponding expansion of Jacobi forms, are
essentially vector valued Siegel modular forms of lower degrees, which are obtained
as images of the differential operators given above. We also show that the original
forms are recovered by the images of our operators. This is an ultimate generalization
of Eichler—Zagier’s results on Jacobi forms of degree one. Several more explicit results
and practical construction are also given.
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1 Introduction

First we explain a general problem setting. Assume that D; are bounded symmetric
domains for i = 1, 2 such that D, C D;. Fori = 1, 2, we denote by Aut(D;) the
group of biholomorphic automorphisms of D; and fix subgroups G; C Aut(D;). We
assume that there is an embedding ¢ : G» — G acting equivariantly on D; for the
embedding D, C Dj. Let V; (i = 1, 2) be finite dimensional vector spaces over C.
We consider two automorphy factors Jp,(gi, Z) : G; x D; — GL(V;) fori =1, 2.
We denote by Hol(D;, V;) the space of V;-valued holomorphic functions on D;. For
gi € Gi,and F; € Hol(D;, V), we write (Flyp, [8iD(Zi) = Jp(&i, Z)'F(giZ)
(Z; € Dj, gi € Gi). Our problem is to describe explicitly all linear holomorphic V-
valued differential operators D with constant coefficients on Hol(Dy, V) such that
the following diagram is commutative for any g» € Ga.

D ResD2
Hol(D;, Vi) —— Hol(D, V) — Hol(D», V»)
l‘jnl [t(g2)] lezng] (1)

D Resp,
Hol(Dy, Vi) —— Hol(Dq, Vo) —— Hol(D», V»)

Here Resp, is the restriction of the domain from D; to D>. Roughly speaking, this
condition means that if ' € Hol(Dj, V;) is an automorphic form of weight Jp,, then
Resp, (D(F)) is also an automorphic form of weight Jp,. So we sometimes call Con-
dition (1) the automorphic property, though this is a condition on real Lie groups and
has nothing to do with discrete groups. This is a realization of intertwining operators
of holomorphic discrete series corresponding to Jp,. Those differential operators are
given by polynomials in partial derivatives, so this is also a problem on some kind of
special polynomials. This gives a new area of special functions and there are a lot of
open problems in this general setting.

In this paper, we consider the case when D is the Siegel upper half space H,, of
degree n. We denote by Sp(n, R) C SL(2n, R) the real symplectic group of real rank
n. For positive integers n and r > 2, we fix an ordered partition n = (n1,...,n;)
of n withn = ny + --- + n, where n, (1 < p < r) are positive integers. Then
the domain H, = H,, x --- x H,, is embedded diagonally to H, and we regard
D, = H, inthe diagram (1). Also the group Sp(n, R) = H;zl Sp(np, R) isnaturally
embedded into Sp(n, R), acting equivariantly with respect to the embedding H, —
H, . Roughly speaking, our aim is to obtain all the linear holomorphic vector valued
partial differential operators D with constant coefficients such that for scalar valued
Siegel modular forms F' of weight k, the restriction Resy, (DF) of DF to Hy is a
Siegel modular form of H, of a certain weight det* ® p. Here we denote by (p, V)
a polynomial representation of GL(n, C) = H;zl GL(np,C). So we have V| = C
and Vo = V in the condition (1). When p is irreducible, we have a decomposition
p = p1 ® - ® p, where each p,, is an irreducible representation of GL(n,, C), and
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Resp, (DF) is of weight det* pp as a function of H,, for each p. Since we assumed
that our differential operators ID are linear and have constant coefficients, there are
certain V-valued polynomials P(T") over C in components of an n x n symmetric
matrix T of variables such that

p 0 I+4; 0
]D):P(ﬁ) whereweputﬁz( > @, Z = (zij) € Hy.

So our aim is to give a description of such V-valued polynomials P which give D as
above. Even if we forget Siegel modular forms, these polynomials of several variables
are interesting as themselves and can be regarded as a highly non-trivial generalization
of the classical Gegenbauer polynomials. We see by [14] that components of the vectors
P are in a set of polynomials with several harmonicity conditions depending on n.
We call such polynomials higher spherical polynomials for partition. The space of
these polynomials has two different canonical bases and we approach the problem to
describe P in two different ways through these two bases. One way is to use monomial
basis for the partition which consist of certain polynomials containing as a main part
amonomial in components of off-diagonal blocks of T (i.e. components of some 7,
with p # g of T = (T),), where T}, is the n, x n, matrix block of T') . By using
this, we can reduce an explicit calculation to give P to the problem of realizing a
representation of GL(n) = ]_[;:1 GL(np) on polynomials in the off-diagonal block
variables. Up to this realization, we can give an explicit algorithm to give all P we want
starting from scratch. The other way is to use descending basis for partition which
consist of a set of polynomials mutually related by mixed Laplacians. This method
is rather theoretical but somewhat mysterious. We explicitly construct a generating
series G™ of descending basis for partition n and we claim that every P is obtained
by a certain projection of this series. In this sense, we may call this series a generic
generating series. Besides, this series has a unified expression for any n and any
partition n with a recursive structure by which we can calculate it explicitly starting
from some series of one variable to general n. If we stop calculation at n = 2, then
we have the generating series of the Gegenbauer polynomials. Now, replacing 7' by
% in the generating series, we obtain a differential operator which we call a generic
differential operator D;. Naturally, all the differential operators we want in the paper
are obtained by projections of Dy.

We will also give following direct applications of our differential operators. We
prove that the Taylor coefficients of Siegel modular forms with respect to off-diagonal
block variables, or of Jacobi forms of general degree of any matrix index with respect
to vector part arguments, are linear combinations of certain derivatives of vector val-
ued Siegel modular forms of lower degrees obtained by the images of our differential
operators. We also show that the original forms are recovered by these Siegel modular
forms of lower degrees. The proof of this part is not trivial at all and we need precise
argument for existence of certain good operators. This result is an ultimate generaliza-
tion of Eichler—Zagier’s results on Jacobi forms of degree one. Several more explicit
results and practical construction are also given.

Historically, the differential operators described above are important by various
reasons. They are indispensable for explicit calculations of the critical values of the
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standard L functions of Siegel modular forms (for example, see [1-3,5,23,24]), and
they are used also to give a construction of liftings (see [16,17]). But essential points
of the theory are independent from Siegel modular forms, and it can be regarded as an
interesting theory of new special functions of several variables defined by a system of
differential equations, sometimes holonomic, including the Gegenbauer polynomials
as a prototype. The case ny = np = --- = n, = 1 is treated in [22,26], and the
case n = m + m in [25]. This paper is a natural generalization of those papers, in
particular depends on many previous results in [22]. Also some announcement has
been given in [19,20]. Another explicit one-line formula for D for the case n = m +m
based on a different idea is written separately in [21]. Some basic related theories have
been written in [2] and [14]. In a different context, such differential operators are also
studied by [29,30] and other papers by the same authors. They call such operators
symmetric breaking operators. Although operators themselves seem to be the same as
our operators, their motivation and results are mostly very different from ours and there
seems no essential overlap with our theory. As we explained, our differential operators
give intertwining operators from holomorphic discrete series of Sp(n, R) of scalar type
to holomorphic discrete series of Sp(n, R) of vector type. R. Nakahama wrote in [32]
some explicit general theory on this sort of problem for several symmetric pairs of G
and G in the setting of (1). In our symplectic case, this means the case » = 2 for the
partition of n. He gave an intertwining operator from G> to G (an embedding case
in his terminology) by differential operators of infinite order including the symplectic
case, but the projection case from G| to G, is treated only for scalar type, and the
case from Sp(n, R) to Sp(n, R), which is our subject here, is not treated in that
paper (See also [25]). Since his treatment is fairly general, such work would give us
a hint for conceptual explanation of our generic differential operator which came out
misteriously from scratch by experience. By the way, there are orthogonal polynomials
called Heckman Opdam polynomials in several variables associated to root systems
[9-11]. I understand that roughly speaking they generalized differential equations for
the radial part of the classical Riemannian symmetric pairs to general parameters, and
described polynomial solutions by generalized hypergeometric series. As we explained
in [25, section 7], the case when r = 2 and when the target weight is scalar besides, the
radial part of our polynomial can be written by similar hypergeometric functions. But
the natural differential equations for our theory are different from theirs, the expression
for our polynomials by hypergeometric and the relation of the radial part to the original
homogeneous polynomials that we need are very complicated. Besides there are no
such known theory for r > 3 as far as the author knows. So we believe that our
polynomials are quite new in various senses.

The paper is organized as follows. In Sect. 2, after reviewing some part of [14]
and [22], we give a characterization of the differential operators with the automorphic
property (1) for (D1, D>) = (Hy, Hyp) by higher spherical polynomials for a partition
with some representation theoretic behaviour. We also give fundamental results on
such polynomials. In Sect. 3, we explicitly define a generic generating series G™ of a
descending basis of higher spherical polynomials for a partition, and by using this, we
define the generic differential operator Dy;. We show that our differential operators
and related vectors of polynomials are obtained by a certain projection from these
(Theorems 3.1, 3.2). Based on those theorems, we explain how to calculate dimensions
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of the space of our differential operators for a fixed initial weight and a target weight.
We also give more explicit examples of generating series in some special cases. In
Sect. 4, first from [22] we review the monomial basis forn = (1, ..., 1) and an inner
metric of the higher spherical polynomials, and we add a few remarks not written in
[22]. Applying these, we give a monomial basis for a partition in Theorem 4.1, which
is a generalization of the one in [22], but not a part of that. We also give in Sect. 4.2 and
in Theorem 4.6 some practical algorithm of construction of our differential operators
using the monomial basis for the partition defined here. In most cases, this method is
more practical than the one in Theorem 3.1. We also give a simple example by using this
method. In Sect. 5, by using the results in Sect. 4, we prove Theorem 5.1 on relations
between Taylor coefficients with respect to components in off-diagonal blocks and
vector valued Siegel modular forms of lower degrees. In Sect. 6, we explain how to
apply our operators to the Taylor expansion of Jacobi forms and give an open question.
In the Appendix section 1, we give an explicit irreducible space decomposition of the
action of GL(2) x GL(2) on 2 x 2 matrices. This can be regarded as a necessary
supplement to give more explicit method to give our differential operators for n = 4,
r = 2 and n; = ny = 2 using our theorems both by monomial basis and descending
basis for partition. We also give a concrete example.

2 Higher spherical polynomials

We state our problems more concretely now. For any holomorphic function F on H,,,
any integer k, and any ¢ = (2 B) € Sp(n, R), we define

Flilg] = det(CZ 4+ D) *F(g2).

We fix a partition n = (n1,...,n,), a positive integer k, and a polynomial rep-
resentation (p, V) of GL(n,C). For any ¢ = (g1,...,&) € Spn,R) with
gy = (2]”7 g’;) € Sp(np,R), and any V-valued function f(Z11, Z22,..., Z;r) On

H, = H, x---x H,, with Z,, € H,,, we write

P’

.
(2. 2o, Zep)lkplgl = [ [ det(Cp Zpp + Dp)™*
p=1
xp(C1Zi + Dy, ..., CoZp + D)7 f(81Z11, 827205 -+ ., 81 Zrr).

We consider linear V -valued holomorphic differential operators D with constant coef-
ficients on holomorphic functions on H,, which satisfy the following condition.

Condition 2.1 For any holomorphic function F on H, and any element g =
(g1,...,8) € Sp(n,R) = ]_[:,:1 Sp(np,R) C Sp(n, R), we have

Resy, (D(Fk[g]) = (Resp, (DF))k,plg]
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where we denote by Resp, the restriction of functions of H, to Hy.

For the sake of simplicity, we will say that & is the initial weight and det* ® p is the
target weight of ID in this condition. Here by abuse of language, we denote by der the
representation of G L(n, C) defined by ]_[;:] det(hp)k forh = (h,) € GL(n, C).For
any irreducible polynomial representation (p, V) of GL(n, C) = ]_[;,:1 GL(n,,C),
we denote by D(k, det* p) the linear space over C of V-valued holomorphic linear
differential operators D with constant coefficients which satisfy Condition 2.1 for the
initial weight k and the target weight det* ® p.

It is obvious that for any linear holomorphic V-valued differential operators D
with constant coefficients as above, there exists a V-valued polynomial Py (T) in
components of n x n symmetric matrix 7' of variables such that D = Py (%), where

K <1+5ij d ) Z = (zij) € Hy,
9Z 1<i,j<n

- 2 E d;j is the Kronecker delta.

If D satisfies Condition 2.1, then such polynomials Py have been characterized by
invariant harmonic polynomials in [14]. We quote it here. Let d be a positive integer
@d Y = (yiy) an n x d matrix of variable components. We say that a polynomial
P(Y) in yj, is pluri-harmonic when

AU(Y)ﬁzoforanyi,jwithl <i,j<n

d 92
V=l 8yivaij .

Let p be a finite dimensional irreducible polynomial representation of GL(n, C)
with a representation space V. For n x d matrix Y, we denote by Y, the block matrix
of size n, x d such that

where we put A;;j(Y) =)

g
Y>
y=1| .
Y,
We identify GL(n, C) = H;zl GL(np, C) with the group of matrices
AL 0 --- 0

A= (.)A2 " | 4, €GL(,. O | C GL(,C). 2)

0 --- 0 A
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We will often write such matrices by A = (A, ..., A,) for short. We denote by T
an n X n symmetric matrix of variable components as before.

Theorem 2.2 [14] We assume that d > n. For any V -valued polynomial Py (T), the
differential operator D = PV(%) satisfies Condition 2.1 for the initial weight d /2
and the target weight det?/*® p if and only if Py satisfies the following two conditions.

(i) If we define a V-valued polynomial P by ﬁ(Y) = Py(Y''Y) for ann x d matrix
Y, then all the components of P are pluri-harmonic for each Y;.
(i) For any matrix A € GL(n,C) C GL(n, C), we have

P(AY) = p(A)P(Y).

Note that this theorem does not assert anything on existence of such Py . In principle,
the question that how many such Py exist can be answered by using Kashiwara—Vergne
[27] and branching rule of the restriction of the representation of O (d)" to the diagonal
subgroup isomorphic to O(d), but generally such calculations are hard. We will see in
the next section that we have a better solution for this. By the way, the decomposition
of pluri-harmonic polynomials of matrix argument under the action of GL(n) x O (d)
is a part of Howe’s dual reductive pair. describing also holomorphic discrete series
corresponding to representations of G L(n) (See [12,27]). But our point here is to take
multiple tensor products of these and its subspace invariant by the diagonal action of
O(d).If we put n = 2 and n; = np = 1 in our formulation, this is the usual setting
of the classical Gegenbauer polynomials and the tensor is the product of two spaces.
We do not gain much by emphasizing this conceptual side, so we stick mostly to a
concrete description.

In order to describe such polynomials more concretely, we review a part of the
results of [22]. First of all, it is not nice to write the condition of pluri-harmonicity by
the coordinate of ¥, and we can replace A;;(Y) by the differential operator D;; on
functions in 7;; of components of 7' by the condition (D;; Py)(Y'Y) = A;;(Y)P(Y).
As in [22], we have

n
d
Dij = Di(j) =dojj+ Y tudidji,
k=1

ad
where we put 9;; = (1 +8,-j)F. Of course weregard here t;; = t;;,0;; = 0;;,anditis
ij
obvious that D;; commutes with each other. By rewriting in this way, we are free from
the original meaning of d and we can assume that d is an arbitrary complex number.
Then the pluri-harmonicity of a polynomial Q(Y) = P(Y 'Y) in the condition (1) is
written by the condition on P(T) as

D;;jP =0 forall (i, j) € I(n),
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where we put

](P)Z{(ivj)ezz;n]+"'+I’lp71+1§i,j§n1+...+np}

forpwith1 < p <r, (3)
Iy = I(p). “)
p=1

In short, I(n) is the set of pairs of the row and the column numbers of elements
contained in the diagonal block matrices corresponding to the partition n.

We denote by C[T] the space of polynomials in #;; for T = (f;;). To describe
our polynomials in Theorem 2.2 in T variable, we introduce new notation. For any
complex number d, we put

P(d) = {P(T) e C[T]; DV P =0foralli with 1 <i <n},

The space P(d) has been already introduced in [22] and elements of P(d) are called
higher spherical polynomials there. By definition we have P(d) = PV (d) and
P*(d) C P(d) since (i,i) € I(n) for all i and n. We will call elements of P"(d)
higher spherical polynomials for the partitionn. When d is an integer, any components
of Py (T) in Theorem 2.2 are elements of P"(d). So for any complex number d, it is
natural to consider the following definition.

Definition 2.3 We denote by 73;' (d) the space of V-valued polynomials Py (T") which
satisfy the following two conditions.

(1) Any components of Py (T) are elements in P"(d).
(ii) Forany A € GL(n, C), we have Py (AT "A) = p(A) Py (T), where GL(n, C) is
identified with a subgroup of GL(n, C) by (2).

The condition (ii) of Theorem 2.2 is equivalent to the above (ii) when d is an integer. If
we fix a representation matrix R(A) of p(A) for some basis, then P" (d) is isomorphic
to the space of vectors P(T) = “(P(T),..., PDA(T)) with PO(T) € P*(d)
such that P(AT 'A) = R(A)P(T), where [ = dim p.

Since any component of an element of 77 (d) is an element of P" (d), it is natural to
ask if P*(d) is stable by GL(n, C). The answer is yes as shown below, so it is natural
to study P"(d) first and then apply results for P" (d) to the irreducible decomposition
of P"(d) to obtain Py (d).

Proposition 2.4 The space P"(d) is stable by the action of GL(n, C).
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Before proving Proposition 2.4, we give a Lemma. Let d be any complex number.
We denote by D an n x n matrix of operators defined by D = (D;})1<;, j<n. We fix
A = (ajj) € GL(n, C). We denote by (AD'A);; the (i, j) component of ADA, that
is,

n
(AD'A);; = Z air Dypajp.
p,r=1

Lemma 2.5 Notation being as above,

(i) For any differentiable function Q(T) of t;;, we have
Di;(Q('AT A)) = (AD'A);; Q)("AT A), (%)

(ii) For any polynomial P(T) € C[T] and any differentiable function Q(T) of t;},
we have

P(D)(Q('AT A)) = (P(AD'A)Q)('AT A). (6)

Here we note that, by definition, D, contains variables #;; as coefficients, so in
RHS of (5), these variables in D, should be also replaced by ("AT A)y.

Proof We prove (i). The (r, m) component of ‘AT A is Zf k=1 QirlikQim, SO noting
tik = txi, we have

dik(Q('AT A)) (‘AT A)

00
Z (@ir Qe + QrrAim) a

rm
1<r<m<n

= Z airagm (3 Q)('AT A),

r.m=1

where 9;; = (1 + Sik)%. So we have

n

119101 (Q('AT A)) = Z @iy Qo @ jparg ((0rm 0 pg Q) ('AT A))

r.m,p,q=1
n
= > airajp(D ] tmkmaig) (9rmdpg Q) ('AT A)
p.q.r,m=1 k,l

n

= Z airajp(tADA)mq(armapq Q)(IATA)-
p.q.r,m=1
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So adding d9;; (Q('AT A)) to this, we have

Di;(Q('AT A)) = Z airajpd(d,, Q)('AT A)
p,r=1

+ > airajy, Y (AT A)ug ((9rmdpg Q) (AT A))

p.,r=1 q,m=1
Here by definition we have
("AT A) g (Brmdpg Q) ('AT A) = (tig drmdpq Q) (AT A),

so we have (5). By using the relation (5) repeatedly, we have (i). O

Proof of Proposition 2.4 We define 1(q) and I(n) as before by (3) and (4). For A €

that D;;(P('AT A)) = 0 for any (i, j) € I(n). By (5), we have

n
Dij(P('ATA)) = Z airajp(Dyp P)('AT A).
r,p=1

Here since A € GL(n,C), we have a;, = O or aj, = O unless (i,r) € I(n) and
(j, p) € I(n).Since we have (i, j) € I (n), there exists some g suchthat (i, j) € 1(q),
and if a;rap; # 0 for some (r, p), then we should have (i, r), (p, j) € I(g) for the
same ¢. Hence we have (r, p) € I(q) C I(n) and by our assumption we have
D,, P = 0, hence we also have D;;(P('AT A)) = 0. O

We fix a vector a = (ai, ..., an) € (Z=p)". We say that a polynomial P(T') €
C[T] is homogeneous of multidegree a (as in [22]) if it satisfies P((cicjtij)) =
(T, ciai ) P(T) for variables c;. The space of polynomials of multidegree a is written
by C[T ]a- This is of course finite dimensional. We write

Pa(d) = P(d) NC[T]a, Pg(d) =P"d)NC[T]a.
It is obvious that
P"(d) = ®a Py (d).

To parametrize elements in P(d) and P"(d) and give dimension formulas, we intro-
duce the following notation
N ={v="v=(vj) € My(Z); vij > 0, v;; € 2Z for alli,;},
No={v="v=(v;) € Nsv; =0forall i}.
NI = N = = () € No; vij = 0forall (i, j) € I(m)}.



Generic differential operators on Siegel modular forms and... Page 11 of 50 66

We call an element of A an index. We denote by 1 the column vector in C" such that
all the components are 1, and write

Ni@ ={veNJ;v-1=a}.

We denote the cardinality of N (a) by Njj (a) = #(\} (a)). We denote by 0 the n x n
zero matrix. In order to apply it to a dimension formula of P} (d), we review one of
the canonical basis of P(d) defined in [22].

Theorem 2.6 [22] Unless d is an integer such that d < n, the space P(d) has a basis
(called descending basis) consisting of the polynomials PvD (T) indexed by v € N
which are uniquely determined by the following conditions (1) and (2).

() P(T)=1.
(2) Foranyi, jwithl <i # j < n, we have

DijP(T) = P, (T),

where e;j is the n X n symmetric matrix whose components are 1 at (i, j) and
(j, 1) and O at all other places. Here we put Py, (T) = 0 if any components of
v — e;; is negative.

As an easy corollary of this theorem, we have a following theorem.

Theorem 2.7 Unless d is an integer with d < n, the set of polynomials P‘,D (T) with
v € NI gives a basis of P"(d). We have PP (T) € P2(d) if and only if v € N (a),
and we have dim Py (d) = N (a).

Proof If we take any element P(T) of P(d) and write it by descending basis as

P(T)= ) «Pl(I),
veNy

then we have

D;iP(T) = Z CvPvD—eij . @
veNo

We have Pvll e (T) = 0 if and only if v — e;; contains a negative component. This
is equivalent to vij = 0. If we assume that P(T) € P"(d) and (i, j) € I(n), then
(7) vanishes by definition. The polynomials P2 e,-j(T) with v;; > 1 are linearly
independent since it is a part of a basis. So we have ¢, = 0 unless v;; = 0. Since we
have D;; P = 0 for all (i, j) € I(n), this means that ¢, = 0in (7) unless v € /\/5‘.
The polynomials PUD (T) for v € N are linearly independent by definition. So this
gives a basis of P"*(d). The assertion for the dimension is obvious from this. ]
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Remark 2.8 (1) In [22] we have shown that dim P,(d) = Np(a) unless d is an even
non-positive integer. But Theorem 2.6 is not valid in general for an integer d such
that 0 < d < n — 1. For example, whenn = 3,n = (2,1) and a = (2,2,0),
we have /\/6‘(3) = @, but if d = 1 (which is less than n = 3), then we see that
P(d) = C(t11t22 — t}), s0 NE (a)(d) = 0 < 1 = dim P2 (d).

(2) Although we have shown that P" (d) is stable by the action of G L (n, C), the space
P3 (d) is not stable by the action of GL(n, C) for general n.

3 Generic differential operators with the automorphic property

As explained in the introduction, there are two different ways to give 7 (d) concretely.
In this section, we give one of them. We give a certain generic generating series G ™
of the descending basis PvD (T) (v € N}) of P"(d) and then by using this, we explain
Pp(d) uniformly by some universality of G™. We also define a generic differential
operator Dy with the automorphic property (1) based on G™ which is a source of all
the differential operators in question.

3.1 Universality

We denote by X an n x n symmetric matrix of variables and write this by matrix blocks
as X = (X,) where X, is an n,, x ny matrix for each (p,q) with1 < p,q <r.
We also assume that X, = O forall p = 1, ..., r. For any v € N we write
X" =Tli<icj<n x;);j for X = (xjj)1<i, j<n. Note that by definition of N/}, there is no
x;j term in this product such that (i, j) € I(n). We denote by C[[X]] the vector space
of formal power series in the components of X, that is, we put

CUXN=1 Y aX"ceC
veNJ

Identifying elements A = (Ay, ..., A;) € GL(n, C) with an element in GL(n, C) as
before, we define a left action py of GL(n, C) on C[[X]] by

puA)| D0 oX¥ | =) a(AXA).
veNJ veN§
Of course py is not irreducible at all and is a direct sum of infinitely many finite

dimensional irreducible polynomial representations of GL(n, C). We write this
decomposition as

pU = Damy Py,
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where p, are irreducible representations of G L(n, C) and m;, are their multiplicities.
The irreducible decomposition of py is in principle obtained by applying Peter-Weyl
Theorem, which we will explain later. Take an n x n symmetric matrix T = 'T = (¢; )
of variables #;;. For integers i with 0 < i < n, we define polynomials o; (T X) in #;;
and x;; by the relation

n
det(xl, — TX) =Y (Do (T X)x"",
i=0

where x is a variable. Here g = 1 and we regard o; for | < i < n as independent
variables. For a complex number v such that v is not a negative integer, we define a
formal power series J, (x) in a variable x by

o i 2

X X X
AP Fyrre i i ek T T TR

where (v + 1); = 1_[3-=1(\1 + j) is the ascending Pochhammer symbol. We define

operators M; (1 <i <n)onCloy,...,0,] by
0 0
M; = Z Ol4m—i00ym,  Whereweputd = —, 0,, = —.
. a0y oy,
O<l,m<i
0<l+m—i<n
Itis obvious that o; M; f (o1, ..., 0,) = M;(o; f(o1, ..., 0pn)) forany f(oy, ..., 0p)
€ Cloy, ..., 0,] since M; does not contain the derivation by o;. Finally, we assume

that d is any complex number such thatd ¢ Z<,_1, where Z<,_ is the set of integers
not bigger than n — 1. Then we define a formal power series G(”)(T, X)inoy, o0y, ...,
Op by

1
G(n)(Tv X)=ld=n-1 (67 My) Jazn (01 Mp_1) - - J%(GZMZ) ((1—>

> 5 _ 01/2)d_2
(@)
For each v € N}, we define polynomials P, (T) in t;; by
G"™(T.X)= ) P(T)X". 9)

veN§
For any A € GL(n, C), we have

G™(AT'A, X) = G™(T, "AX A), (10)



66 Page 14 of 50 T. Ibukiyama

since we have 0; (AT "AX) = 0;(TTAXA).

Theorem 3.1 (i) The set of all polynomials P,(T) for v € N} defined above is a
basis of P"(d) proportional to PvD (7).
(ii) The space P"(d) is stable under the action of G L(n, C).
(iii) We have an isomorphism

Homgn,c)(CI[X]1. V) 3 ¢ = ¢(G™(T, X)) € Ph(d).

Proof When ny = --- = n, = 1, we proved in [22] that for each v € Nj, the
coefficients P, (T) of X in G (T, X) is equal to PvD(T) up to multiplication of
a non-zero constant. There X is a matrix such that diagonals are zero. Since our new
series G™ (T, X) is obtained just by replacing G~ (T, X) by taking Xpp = 0 for
all p =1, ...r, we see that for v € A, the coefficients P, (T) are proportional to the
descending basis in P"(d). We have already seen in Theorem 2.7 that this is a basis.
The claim (ii) was proved in Proposition 2.4 but is also obvious by (10). The claim (iii)
is almost obvious, but since this is an important point of this theorem, we try to give a
down to earth explanation. By definition of o;, we see that 0; (AT '"AX) = 0; (T '"AX A)
forany A € GL(n, C), so for A € GL(n, C), we have

> P(AT'A)XY = Y P(T)('AXA)". (1)
veN} veN§

Here by definition of A € GL(n,C) and X, the diagonal blocks of the matrix
AX A are again all zero. Since ("AX A) is a linear combination of X* for u € N
and this expression is nothing but the representation matrix of py, and we see that
G™(AT'A, X) = py(A)G™(T, X). We fix an irreducible representation p which
is equivalent to a subrepresentation of py and denote by W (p) the sum in C[[X]] of
all the irreducible subspaces of C[[X]] equivalent to p. This is called the p-isobaric
component and the decomposition of C[[X]] into isobaric components is uniquely
determined. We consider the scalar extension C[T][[X]] = C[[X]]®cC[T] of C[[X]]
taking polynomials in 7" as coefficients of the formal power series in components of
X. Then G(")(T, X) is regarded as an element in the vector space C[T][[X]] over
C. Then the projection of G™ (T, X) to the p-isobaric component is well defined. In
other words, if we choose a basis ¢; (X) (polynomials in X) of C[[X]] over C consist-
ing of basis of W (p) for all p, then rewriting X" by linear combinations of e; (X), we
may write

G™(T, X) =) fi(T)ei(X)

where f;(T) are certain (finite) linear combinations of P, (7). The partial sum
Py(T, X) of G™ (T, X) obtained by the linear combination only over the basis of
W (p) is the image of the projection of G™ (T, X) to the p-isobaric component. If we
put s, = dim p, we have s,m, = dim W (p). There is no canonical decomposition of
W (p) into irreducible components, but we fix one decomposition W(p) = 69;2’1 \%
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where V; are some irreducible subspaces of C[[X]] equivalent to p. For a fixed rep-
resentation matrix R(A) of p which does not depend on /. we may choose a basis

(e (X),..., el (X)) of V; so that
AxA), ..., el AXA)) = ), ..., el (X)R(A)

O}

where ¢;'" = ei(l) (X) are polynomials in components of X. We write

PyT. X) =Y Y fP (e (X).

=1 i=1

Here £"'(T) € P"(d). We have P,(AT'A, X) = P,(T, 'AX A) and

(1) ‘ (l)
13 (AT'4) ZRM)f(D
”(AT A) 1)

Now let 20 be the vector space spanned over C by all fi(l)(T) with 1 <i < s, and
1 <! < m,. Then polynomias Fi(T), ..., Fsp(T) € 2 satisfy the relation

Fi(AT'A) Fi(T)
: =RA) |
Fy, (AT'A) F, (T)

if and only if there are constants ¢; (1 < < m) depending only on / such that

F(T) =Y afm). (12)

=1

This is easily proved by Schur’s lemma. Indeed, denote by f(T') the s,m,, dimensional
column vector such that £(T) (1 <i <sp, 1 <1 <m,)isthe (i + (I — 1)m,)-th
component and by F(T') the s, dimensional column vector whose i-th component is
F;(T). Then we have F(T) = Bf(T) for some s, X s,m, matrix B and F(AT'A) =
R(A)F(T) = R(A)Bf(T). On the other hand, we have

R(A 0 -~ 0
F(AT'A) = Bf (AT'A) = B 9 R(4) 0 ().
0

6 0 '-:R(.A)
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So writing B = (B;) by blocks where B; are s, X s, matrices, we have R(A)B; =
B;R(A), and this means that B; = ¢;1; » for some constant ¢; by Schur’s lemma, so we
have (12). In other words, let V be an abstract representation space of p and assume
that the representation matrix of p with respect to a basis {w1, ..., ws,} of V is R(A).
Then regarding C[T] as scalars, by the projection ¢ € Homgrm,c)(W(p), V) such

that c(el.(l)(X)) = cjw;, we have

c(Ppy(T, X)) =Y Fi(T)w;

i=1
for some Fi(T), ..., Fs,(T) written as in (12). This proves the assertion (iii). O

Now we interpret Theorem 3.1 into the differential operators with the automor-
phic property. We define a C[[X]]-valued differential operator ®¢ (X) on the space
Hol(H,, C) of holomorphic functions on H, by

d d
— — v
DuX)=G (E)Z’ X) = E P, (E)Z)X .

veNy

We call this the generic differential operators with the automorphic property for the
partition n. We denote by Hol(H,,, C) the vector space of all scalar valued holomor-
phic functions on H,, and by Hol(H,,, C[[X]]) the vector space of all C[[X]]-valued
holomorphic functions given by

Hol(H,, C[[X]]) = Z HZ)XY; fu(Z) € Hol(H,, C)
veNT

Then for any F € Hol(H,, C), we have Dy (X)F(Z) € Hol(H,, C[[X]]). The fol-
lowing theorem is an immediate corollary of Theorem 3.1. In short, the next theorem
claims that ®y exhausts all the differential operators in question.

Theorem 3.2 Assume that k is an integer and d = 2k > n.

(1) The operator Dy satisfies Condition 2.1 for the initial weight k and the target
weight det* ® py.

(2) Let (p, V) be an irreducible polynomial representation of GL(n, C). Then the
vector space D(k, det* p) of all linear holomorphic V -valued differential opera-
tors D of constant coefficients which satisfy Condition 2.1 for the initial weight k
and the target weight det* @ p is linearly isomorphic to Homgr . c) (C[[X]], V).
More precisely, we have

D(k, det* p) = {c 0 Dy; ¢ € HomgLm.c)(CIIX]], V))

and dim D(k, det*p) = m,, where m,, is the multiplicity of p in py.
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Remark 3.3 T was informed by Professor Siddarta Sahi that the projection operators
¢ € Hom(C[[X1]], V) is explicitly described. This is done by using an explicit expres-
sion of the center of the enveloping algebra of GL(n,, C) obtained by a sort of the
Capelli identity. When r = 2, irreducible components are their (different) simulta-
neous eigenspaces, and the eigenvalues are known by Howe and Ueda in [13], so an
explicit projection operator is easily given. The actual description of the images by
this method is not so simple since the images of the monomials X" are not linearly
independent in general and the relations are complicated.

Now we explain how to see which kind of irreducible representations appear in py
and what are their multiplicities. First for p # g we consider the space C[X ,, ] of poly-
nomials in the components of nj, x ng block X ;. The group GL(n,, C) x GL(ng, C)
acts on C[X pg1by f(Xpg) = f(ApXpgAy). The irreducible decomposition of this
space is well known [7,35] and described as follows. Let A be a dominant integral
weight (or the Young diagram parameter)

A= (A1, A2,43,...)

where A; are non-negative integers such that A; > A;1; > 0 and zero except for
finitely many i. We denote by depth()) the maximum number / such that A; > 0. If
we fix a positive integer m, the set of A with depth(A) < m corresponds bijectively
to polynomial representations of G L(m, C). Since this representation depends on the
choice of m, we denote by p, », the representation of G L(m, C) corresponding to A.
Then we have

ClXpgl = > Py ® Py
depth(\) <min(np,ng)

where p; 5, ® p;.,n, means the irreducible representation of GL(n , C)xGL(ny,C)
realized by the tensor product. This is a well known classical result. (See [35] Chapter
VII (7.10) or [7] p. 283 Theorem 5.6.7). In particular, if n, = ng, then this is the
tensor of the same representations pj , b = Phng- We denote by C[X] the space of
polynomials in the components of X with X1 = X2, = --- = X, = 0. Then this is
regarded as a tensor product

(C[X] - ®1§p<q§r(c[qu]~
So for each (p, ¢) with 1 < p < ¢ < r, take a dominant integral weight 1(P?) with
depth(L(P9)) < min(n ,, ng), and we consider a collection A = (A p4)1<p<g<r Of such
representations. We denote by R the set of all such A.

R ={A = AP)1<pg<r; depth(APD) < min(np, ny)}.

When g < p, we put A(P9) = 1 (@P),
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Theorem 3.4 The space C[X] is isomorphic to the direct sum of spaces V () corre-
sponding to A € R, where we put

V(A) = ®;,:1 (@:1:1,(1751,:0)‘(174),”1,) .

Here each <®;:l’q¢ppx<pq>’np) is the tensor representation of GL(n, C) for a fixed
np and V(A) is the representation of GL(n, C) realized by their tensor product.

Here of course the spaces (®2:1,q¢ ppk(pq),np) are not irreducible in general as
a representation space of GL(n, C). The decomposition of the tensor product rep-
resentation into irreducible representations is known as the Littlewood-Richardson
rule and if the corresponding Young diagram is given explicitly, the Young diagram
corresponding to irreducible components in the tensor space can be easily calculated.
(See [34] for example. We omit the details here.)

We give an example. Assume thatn = 6,r = 3 andn; = ny = n3 = 2. Irreducible
representations of GL(2) are generally given by det* Sym(j), where Sym(j) is the
Jj-th symmetric tensor representation. If we take a dominant integral weight (2, 0)
for example, then this corresponds to the symmetric tensor representation Sym (2) of
degree two and we have

Sym(2) ® Sym(2) = Sym(4) + det @ Sym(2) + det?.

So if we take A(12 = A(13) = @3 — (2,0) for example, then the representa-
tion (det(A]A2A3))? appears as one of the irreducible components. But if we take
212 — 243 — @) — (1, 1), then this corresponds to the representation det and
the tensor is det?. So here also, det(A; A, A3)? appears. We can see that there is no
other representation which can produce det?, so the multiplicity of the representa-
tion det(AjA2A43)% of GL(2)? in C[X] is 2. In the same way, when n = 6 and
ny = ny = n3 = 2, we can show that the multiplicity of det(A1A2A3)k in C[X] is
[k/2] + 1 where [k/2] is the maximum integer which is not greater than k /2.

3.2 Explicit generating function in some special cases

Here we putd = 2k, where k is the initial weight. Whenr = 2,n1 = landny; = n—1,
our generating function (8) becomes extremely simple. We explain this here. First of
all, the representation on the polynomials on the block X7, which is a vector of length
n — 1, corresponds with the Young diagram of depth 1 given by (7, 0, ..., 0) for any
positive integer /. This means that the corresponding representations are the tensor
of the symmetric tensor representation of GL(n — 1) and the representation taking a
power of GL(1) of the same degree. So if we take Siegel modular forms of degree n
of weight k, then the weight of Resy, (DF) is k 41 for Z1| € Hy, and detkSym(l)
for Zyy € H,—1, where Sym(l) is the symmetric tensor representation of degree [ of
GL(n—1,C).
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Notation being the same as before, we have X = "X = (x;;) where x;; = 0,
x;j =0for2 <1, j < n.Then we have

tax12 + -+ tHnXin 11X12, -+ 5005 H1XIn

1oXx12 + 123X13 + - - + tpX2y 112X12, *- -, 0, H2X1n
TX =

pX12 + 133 X13 + + + + + tanX1n HnX12, - 5+ HnXln

We denote by e;; the n x n matrix whose (i, j) component is one and the other
components are 0 (so e;; = e;; + ej;). Multiplying the matrices 1, — (x1;/x12)e2;
from the right and 1,, + (x1;/x12)e2i = (1, — (xli/xlz)ez,-)_l from the left for all
i =3, ...,n,we see that T X is conjugate to

tax12 + 13X13 + - F X 11x12 0,---, 0
a2+j€%a3+"'+%an fipxi2 +fi3x13 + -+ Xty 0,000, 0
* * 0,---, 0

* * o, --- 0

where a; = tj2x12 + - - - + tipX1, (nOting ;; = t;). So the characteristic polynomial
of T X is given by

)\‘n _ 0_1)\.}1—1 +O_2)Ln—2
where

o1 = 2(tpx12 + 13X13 + - - + HpX1s)
n

2 2
oy = Z(Ili — nti)xy; +2 Z x1ix1j(tiityj — titij).

i=2 2<i<j<n

Sotaking o; = 0 fori > 3, the generating function of the higher spherical polynomials
for this partition is given by

1

(n)
D = G — e

1
= 13)

(d-2)/2°
(1 =2 hcien ttixti H 111 (o< j<n tijxuxlj))

For example, expanding this as a formal power series of x; ; for all i, the degree two
term is given by

d—2
P Z (dtiit1j — tiitij)X1,ix1,j.

2 —
2<i<jzn
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So P(T) = ((2 — 8;j)(dtiit1j — ti1tij))2<i<j<n gives a differential operator D =
P(%) from the initial weight d/2 to the target weight (d/2 + 2) for H; and
det?/>Sym(2) for H,_.

Actually, this generating function is a part of the results in [14]. There, more general
case has been treated, that is, for any partition n = (n,n2) with n = ny + ny
and the target weight det* POln @ detk Pl,ny» Where py . are the symmetric tensor
representations of GL(n;, C), the generating function of our polynomial has been
given there by

1

@2
(1_2 Do tuvi+ (Y tug) (Y t,-jvivj))

1<i<n 1<i,j<m 1<i,j<nz
ni+1<j<n

(14)

Here we are taking the representation space of p; ,, ® 1., as the space of polynomials

inu = (uy,...,uy)andinv = (vy, ..., vy,) which are homogeneous of degree / for

both u and v. (Incase ny = 1,ny = n— 1, this is the same as (13) if we put xj; = uv;

for 2 < i.) In other words, expanding this generating functions as a series in # and v,
1+6i;

and replacing each 7;; by — T the homogeneous part of degree [ for both u and

v gives the differential operator of the target weight der* Pln @ det® Pl,n,- See also
[4] for an alternative proof of (14). See also [30] II for (13).

The generating function for the case n = 4, n; = np = 2 and the target weight
det*! ® det* ! has been also given in [14]. We write 4 x 4 matrix 7 by 2 x 2 blocks

i T . D L
TijasT = <, 73112 TZ) The generating function in this case is given by

1
R(T, uw)@=5/2/Ao(T, u)> — 4det(T)u>

where

Ao(T,u) =1—det(Tip)u + det(Tlszg)uz,

R(T,u) = (Ag + / A} — 4det(T)u?)/2.

Here u is a dummy variable and the coefficients of u' corresponds with the target
weight det* @ det* ! Tt is not clear if there is any easy way to derive this from (8).
We also have several other explicit algebraic expressions of G™ (T, X) in the case
when r = n and all n; = 1, but we omit them here. See [22] for these.

Applications to Jacobi forms will be given later.
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4 The second algorithm by monomial basis

In this section, we give the second way to give PZ (d) concretely. Theorem 3.1 in the
last section is in a sense rather theoretical in nature, but the method in this section is
much more practical in most cases.

4.1 Monomial basis for the partition

We give another canonical basis of P"(d) different from the descending basis. This is
a generalization (but not a part) of monomial basis defined in [22] forn = (1, ..., 1).
Our method in this section uses this new basis. First we review monomial basis of
P(d) defined in [22]. For any v € N, we write

V,"/2
™= T[] /"

1<i,j<n

Since #;; = t};, we have tl.vj"j/2 = t;;f"/ ifi #j.
Theorem 4.1 [22, Theorem 1] Unless d is even non-positive integer, there exists the
unique polynomial P,f”(T) € P(d) for any v = (vij) € Ny such that

vji/2
ti

PM(T) =T + Q(T),

where TV = ]_[l-<j tl.u;j and Q(T) is a polynomial in t;j (1 <1, j < n)which vanishes
ifweputl‘ll =ty ==t =0.

This basis is called the monomial basis in [22].

In order to generalize this to general partitions n, we need a natural metric on
the space P"(d). We have already defined in [22] an inner metric (P, Q)4 for P,
Q € C[T] for Re(d) > n — 1 by

(P, Q) =ca(d) | ™" DEPT)QT) det(T) ™"~ 2aT
>0

where Q(T) is the complex conjugation, dT = [[;_; dt;;, and

i<j

4,1,1 d—i -1

_ =1/

en(d) =m ]_!)r( > ) :
1=

This is a positive definite metric for any real d > n — 1. It was shown in [22] that
this is a polynomial in d, hence prolonged holomorphically to all d € C. This is non
degenerate unless d is an integer such that d < n — 1, but even if it is non degenerate,
it is not positive definite for general d. Here we give a slightly different approach. For
polynomials P(T"), Q(T) € C[T], we define a sesquilinear form (x, *) over C by

(P(T), Q(T)) = (P((Di}))0)(0). 15)
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Here P((D;;)) means that we replace #;; by D;; in the polynomial P (7). This is well
defined since D;; commutes with each other. For general polynomials P and Q, we
have (P, Q) # (P, Q)4, but if we consider only the case P, Q € P(d), these are
equal.

To see this, first we assume that d is an integer with d > n. Take an n x d variable
matrix Y. Then for P € P,(d), a polynomial P defined by P(Y) = P(Y'Y)is a
linear combination of elements in the space (H, ® -+ ® Ha,,)o(d), where H,;, is the
space of harmonic polynomials in i-th row y; of Y of degree a;, and the superscript
O (d) means an invariant part by the diagonal action of the orthogonal group O (d). So
P (Y) is a certain linear combination of polynomials fi(y1) f2(y2) - - - fu(yn), where
each f;(y;) is a harmonic polynomial in y; independent of the other y;. We write

vi = Vi1, ..., yiq) and

d 2
a 0 d 0 d 9
_=< ) —=<——> Aij(y)zz )
Y a)’iv 3y,~ ay,»l ayid ayivaij

v=1

Then for any harmonic polynomial g(y;), by virtue of Kashiwara and Vergne [27] p.
19 (5.5), we have

(755 )s)

We have (D;; Q)(Y'Y) = A;;(Y)Q(Y) by definition, where Q(Y) = Q(Y'Y) for
QO € P(d). Then (16) means

~ a _~
Y=0 =7 <ﬁ> o)

= (271)"“”2/ TR EW) )y,
Rnd

= [ R fgtidy,(6)
yi=0

P((Dij) QYY)

Y=0

which is nothing but (P, Q)4 in [22].
More generally, we have a following proposition.

Proposition 4.2 (i) For any complex number d € C and P, Q € P(d), we have
(P, Q)= (P, Q).
(ii) For any polynomials P(T) and Q(T), and any matrix A € GL(n, C), we have
(P(AT'A), Q(T)) = (P(T), Q('AT A)).

Proof 1t is known in [22] that (P, Q)4 is a polynomial in d and it is obvious by
definition that (P, Q) is also a polynomial in d. Since they are equal for integers such
that d > n — 1, they are equal for any d. The assertion (ii) directly follows from
Lemma 2.5. O
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For a complex number d ¢ Z<,_1, we have an easy alternative proof of the above
proposition using duality of the monomial and descending basis. We omit the details.

Now we will give a basis of P"(d) similar to the monomial basis of P(d) and
different from the descending basis. We write the block decomposition of 7" for the
partitionn as T = 'T = (T)y), where T}, is an n, x n, matrix.

Theorem 4.3 We fix a partitionn = (ny, ..., n,) of n with r > 2. Assume that d is
not an integer such that d < n and that the metric (P, Q) is positive definite (e.g. d
is real and d > n — 1). Then for each index v € N} there exists a unique polynomial

Pu{w’n(T) € P*(d) such that
PMM(T) =T + Q(T),

where Q(T)|1,,=Ty=-.=T,,=0 = 0. Such polynomials P,,M’"(T) have multidegree v - 1
and form a basis of P"(d). We also have

(PY™(T), P2(T)) = by

foranyv, u € Nt = Né"l""’n"), where 8y, is the Kronecker symbol.

We call this basis a monomial basis for the partition n. This notion depends on
n. In general, this is not a part of the monomial basis defined in [22], since Q(T)
in the above theorem might contain a term T# with u € Np. The monomial basis
defined in [22] or in Theorem 4.1 is the monomial basis corresponding to the partition
n=(1,1,...,1).

In order to prove Theorem 4.3, we first prepare a lemma. We fix a multidegree
a. We denote by W, the subspace of P,(d) spanned by polynomials P (T) for all
VNS Ng (a), where P‘f”(T) = Plfw’(l """ l)(T) are the monomial bases corresponding
to the partitionn = (1, ..., 1). Since PVM (T) are linearly independent, we have

dim W> = N (a) = dim Py (d),

but PvM (T) are not necessarily elements of P"(d), so W is not equal to Pj(d) in
general.

We denote by W the subspace of P, (d) spanned by P‘f” (T) suchthatv € Ny(a) but
v ¢ J\/'g' (a). Since {PVM(T); v € My(a)}isabasisof Py(d), wehave Pa(d) = W1 W,
(a direct sum as modules.) Denote by Wf- the orthogonal complement of Wy in Py (d).
Since the monomial basis is the dual basis of the descending basis, and P} (d) is
spanned by PvD (T) withv € Né’(a), we have

Pr(d) = Wit (17)

Through the natural embedding of P} (d) in Pa(d) = Wi @ W,, we define the natural
projection pr from P} (d) to W>.
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Lemma 4.4 If the metric space P(d) has no singular vector, in particular if the inner
metric (x, %) is positive definite, the projection map pr gives a linear isomorphism
PR (d) = W, (though P (d) # W, in general).

Proof For P = P; + P, € P}(d) C Pa(d) = Wi + W, with P; € W;, assume that
P> = 0. Then we have (P, P) = (P, P1), and by (17) we have (P, P1) = 0. So if
there is no singular vector, we have P = (. This means that pr is injective. Since
dim P} (d) = N{j(a) = dim W», the map pr is surjective. This proves the lemma. O

Proof of Theorem 4.3 Take v € N (a). Then since P,f"[ (T) € W, there exists the
unique P € P*(d) such that pr(P) = PM(T). This means that P(T) = PM(T) +
R(T) for some R(T) € Wi. We may write R(T) = Z# Cu P‘f”(T) where pu runs over
No(a) notin A} (a). By definition, for each p, we have P/LVI (T) = T*+ Qu(T) where
Qu (T) vanishes under the restriction to all #;; = 0. Since u ¢ N(S‘(a), wehave p;; # 0
for some (i, j) € I(n). So we have T*|r, =1,,=..=1.,—0 = 0, and hence we have
R(T)|7y,=Typ=.=T,,—0 = 0. Besides, by definition we have PM(T) = T" + Q,(T)
where Q,(T') vanishes for all #;; = 0. By our construction, P(7") is of multidegree
v - 1. So if we define P,fw (T) by this P, then this satisfies the desired property of
Theorem 4.3. Now it is obvious that {P‘fw’"; NS ./\/6'} is a basis of P"(d) since T"
are linearly independent and dim P} (d) = N{(a). The uniqueness is also clear since
if we write any element in PZ(d) as a linear combination of PYMT) v € N,
then the coefficients are determined only by the coefficients of TV. The duality to the
descending basis is obvious by (17), since we have P,f”*" (T) € PUM(T) + Wi. O

Remark 4.5 In Theorem 4.3, we assumed that d is not an integer such thatd < n — 1,
but if we regard d as a variable, then we can always define a monomial basis for a
partition n as a polynomial such that coefficients are rational functions of d. This can
be seen as follows. We denote by No(a)\ N (a) the set of elements of N (a) that does
not belong to J\/(;' (a). The condition that

PY(TY+ Y cuPY(T) e Pr)
neNo@\N (@)

is equivalent that this is orthogonal to PKM (T) forallk € Ny (a)\./\/(;' (a). So consider
the following linear simultaneous equation for unknown ¢, forallk € Ny(a)\N{ (a).

Yo BT, Y1) = —(PM(T), PY(T)). (18)
reNo@)\N ()

When d > n — 1, the Gram matrix ((PX(T), Pf(T)))K’“eNO(amW(a) is invert-

ible, so this has the unique solution for variable d, and since (PKM (T), Plf’[ (T)) are
polynomials in d, the solutions c,, are rational functions of d.
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4.2 Practical algorithm to calculate ’Pz (d)

Now we explain a practical algorithm to write down vectors P,(T) € 77;,‘ (d). First we
explain how to calculate the monomial basis for partition explicitly. We have already
seen that

PYMTy=PM(T)+ Y cuP(T)
preNy@)\N (a)

where ¢, are solutions of (18). The equation (18) contains the monomial basis forn =
(1, ..., 1) and the inner products, so we must explain how to obtain these concretely.
The formula for the monomial basis has been explicitly given in [22] as follows. For
any vector v = (vy, ..., v,) € (Z=0)", weput§(T)" = [[_, t;/. Forany P € Pa(d)
and for each (i.j) with 1 < i, j < n, we define an operator R;;(a) by

Rij (a)P — 8(T)a+e,+e/7(2711)1/2DU8(T)(Zfd)l/ZfaP(T)

Here e, is the unit vector whose k component is 1 and the other components are 0. We
can define R;; as an element of an algebra of operators on C[T'] which gives R;;(a)
on polynomials of multidegree a. Then R;; maps P,(d) to 773+e,.+ej (d). Here we can
show that the actions of R;; are commutative for all (i, j) on P(d). Hence, for any
v = (vjj) € N, the following operator is well defined.

R’ = ]_[ Rl.”]‘.'-f.

i<j

By aresult in [22], we have

1
Mgy L oy
P(T) = rnld = 2)R (1), (deC,d¢2Z<),

where 1 is the constant function taking the value 1 and

eald—2) =[]dd+2)-(d+2a; —2).

i=1

Now the numbers ¢, in (15) can be calculated once we know (PKM (1), Pli” (7))
for k, € Np(a). The latter is easily calculated as follows. If we write PKM (T) =
T* 4+ Q(T), then by definition any monomial appearing in Q(7) contains some t;;.
We also have Dl-,-P,i” (T) = 0 by definition for any i with 1 <i < n. So if we replace
T by (Dij)i<i,j<n in PY(T), then Q((D;;)) P! (T) = 0. So fork, u € No(a). we
have

(PM(T), PY(T)) = D* Py (T) = ( I1 DZ-’)P,Y (7).

l<i<j<n
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It is obvious that the final expression is a constant, comparing the multidegree. So
we gave a concrete way to calculate PM"(T) explicitly by starting from the con-
stant function 1 by repeating multiplication of several given rational functions and
differentiation several times.

Our final aim is to give P7(d) and we explain this now. We fix an irreducible
polynomial representation (p, V) of GL(n, C). We fix abasis {eq, ..., ¢/} of V where
| = dim p and define the representation matrix R(A) of p by

p(A)e e
| =R
p(A)e el
We assume that P, (d) # {0}. Then by Theorem 3.1, such arepresentation p is realized
as a subrepresentation of py acting on C[X]. We denote by V(p) a C linear space of

all vectors f(T) = (f“(T))1<5< of polynomials f)(T) in t; forall (i, j) ¢ I(n)
such that

F(AT'A) = R(A) f(T).

Assume that the multiplicity of p in py is m,. Then we have dim V(p) = m,. Here
we may write

fOTy =Y ey T (<s=D,
veNo\NI!

where ¢, ¢ = 0 except for finitely many v. Then we put

POy = Y PRI
veNo\NY!

and

P(T) = (P{(T))1<e=-

Theorem 4.6 Assumption and notation being as above, for any f € V(p), we have
Py(T) € 77;,' (d). Any element of 73:)‘ (d) is obtained in this way from some f(T) €
V(p). In particular, we have dim 77:)' (d) =dim V(p) = m,.

By Theorem 4.6 and 2.2(a result in [14]), when d = 2k > n, the differential
operators P f(aiz) satisfies Condition 2.1 for the initial weight k and the target weight
det*p, and any such operators are obtained in this way.
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Proof As before, we write the block decomposition of T as T = (T),;) where T}, are
n, xng matrices. We have P](f) (T) € P*(d) since thisis a linear combination of mono-
mial basis for the partition n, and we also have P}S)(AT "A) € P"(d) since P"(d) is
stable by the action of GL(n, C). Now we prove that Py (AT 'A) = R(A)P;(T) for
any A € GL(n, C). Any component of Py(AT 'A) — R(A)Ps(T) is in P"(d) and
written by a linear combination of the monomial basis P,f” " (T) for the partition n
where v € N(;'. On the other hand, by definition, P;(T) — f(T) becomes 0 if we
restrictitto Tyy = Tpp = --- = T, = 0. Since AT 'A for A = (Aq, ..., A,) is given
by (ApTpy ' Ag)1<p,q<r» the polynomial Pr(AT "A) — f(AT ' A) also vanishes under
the restriction to all 7;; = 0. We have

Pr(AT'A) — f(AT'A) = Pr(AT'A) — R(A)P¢(T) + R(A)(P¢(T) — f(T))

and R(A)(Py(T) — f(T)) vanishes under the restriction to all 7;; = 0, so we see
that Py (AT 'A) — R(A) Py(T) also vanishes under the same restriction. So, writing a

component of Pr(AT 'A) — R(A) Py (T) as a linear combination 3, xm YT
of the monomial basis for the partition n and restricting thisto 711 = --- = T, = 0,
we have

Z cuTH =0.

weNg

Since T# are linearly independent, we have ¢, = 0. So we have P;(AT'A) —
R(A)P¢(T) = 0. The rest of the claims are obvious by Theorem 3.1 m|

In the above theorem, to give the vector f(7T) € V(p) concretely for a general
representation p is a matter of representation theory of GL(n) or G L(n), but it seems
that no really practical closed formula is found in reference. For example, when r = 2,
we can at least give the highest weight vector corresponding to p concretely, but to
write down f(T) itself explicitly in reasonably simple way from that is a different
problem. We give one realization of f(7T) in case when r = 2 and n; = np. We
prepare n x n matrices U, V of independent variables. For any ¢ with 1 < g < n,
denote by U, and V, the g x n matrices consisting of the first ¢ rows of U and V

respectively. For any subset / of {1, ..., n} with cardinality #(/) = g, we denote by
(Ug)1 the g x g minor, the determinant of the matrix consisting of i,-th columns of
U, foralli, € I.Let A = (A1,...,A,) be a dominant integral weight and we put

An+1 = 0. The corresponding representation p, , of GL,(C) can be realized by the

space of bideterminants as in [8,31], that is, the space spanned by all the products
I—[;q:_l)\‘Hl (Ug)1,; for some Iy; C {1,...,n}, #(Iy;) = g, for ¢ = 1 to n, where the
action is induced by U — U A for A € GL,(C). Using this realization and writing

T = (,7;1‘2 %) by n x n blocks 7;;, we can give f(T') by

F(T) = ]"[ det(U, Typ " Vy)ra e+t (19)
q=1
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where U, V are dummy variables to describe a basis of p, ) ® pn.2. We give more
concrete examples in Sect. 1.

Another one-line formula for the differential operators based on a different idea is
given in [21] for the case r = 2. This is an alternative practical way to calculate.

Finally we give a simplest concrete example obtained by the method in this section.
We put n = 4, n = (2, 2) and consider the representation of GL(2,2) = GL(2) x
GL(2) given by p = det'Sym(1) ® det'Sym(1). The representation Sym (1) ®
Sym(1) of GL(2, C) x GL(2, C) isrealized on 2 x 2 matrix Tjp by 12 — A1T12 A
for Ay, A» € GL(2,C). Then for f(T), we may put

13t
F(T) = (hatas — tiataz) | 1) (20)
13 14
(Using the realization (19), thisis (7)) = det(U V) det(T) Z%,j:l U1Vt j42.)
Instead of writing index by a matrix v € N, we write it symbolically by X¥ =
I1i- i xivjfj . We can give following monomial basis forn = (1, 1, 1, I).

PY =1l — t1toar3/d,
iy = 13124 — Tt 33/
M 2
Pyl xian = H3t1at3 — (f12114133 + 111123134) /d + 111124133 /d”,

M _ 2
Pyl xisng = ti2t13134 — (f12114133 + 111123134) /d + 111124133 /d”,

M 2
= tist3 — t1113144/d,
Py 114123 — 11123 44/
M _ 2
Pyl xiang = Hi3tiatoa — (f11124134 + i2013144) /d + 111123144 /d 7,

M _ 2
Pyl viaxsy = h2t1at3a — (ti1tatzs + tiotistas) /d + t11123t44/d”,

M
X14X33

M _ 2
Pyl xosg = H13123104 — (f12024133 + 113122134) /d + 114122133 /d”,

M 2
Pyl xosry = H12013134 — (f12024133 + 113122134) /d + tiat2a133/d”,

2
= tiatyy — hatntsz/d,

[N

M 2
= 3ty — Hi3tntss/d,
e, = 11304 — 113122 44/
M _ 2
Py lixosg = Hiatztoa — (fialoat3s + hiata3tas) /d + ti3taotas/d”,

M 2
Pyl voaxsy = H2t2at3a — (hatntzs + tintastzs) /d + tiztotas/d”.
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Then the monomial basis for the partition n = (2, 2) which correspond to monomials
in f(T) of (20) are given as follows.

. S —
xPx4 i (d— 1)(d +2) s
X13X14X24 X13X14X24 (d _ 1)(d + 2) X12X13X24°
PM,ﬂ — PM _ 2d PM
x2,x23 x%4203 (d — 1)(d +2) “ree
PM,n — M _ d - 2 M
X13X14X24 X13X14X24 (d _ 1)(d + 2) X12X14X34
pa _pyu 2 pu
X140 X14%% (d— 1)(d +2) ¥sae
PM,n — PM _ d - 2 M
X13X23X24 X13X23X24 (d _ 1)(d + 2) X12X23X34°
L —
X133, x13x3, (d — 1)(d +2) ¥12xee
PM,n — M.,n _ d - 2 M )
X14X23X24 X14X23X24 (d _ 1)(d + 2) X12X24X34
Now if we put
M, M, M, M,
p (T) x]2 r24 - PX13)':14X23’ PX13;£24X14 - )6124;:23 (21)
f = , M, M, M, BE
le3,?23x24 - xm;l%%’ x13;l§4 - PX14)':23X24

then we have D;;(Ps(T)) = 0 for (i, j) = (1, 1), (1,2), (2,2), (3,3), 3, 4), (4,4)
and

A O

Pf(ATtA) = det(AlAz)Ale(T)tAz, A= ( 0 A,

) € GL4, C).
Then Py (T) is a basis of the one-dimensional space ’P;)’ (d) for d > 4, and the differ-

ential operator Dp, = P ( aiz) satisfies Condition 2.1 for the initial weight d/2 and
the target weight det?/>*1Sym(1) @ det?*t1 Sym(1).
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5 Taylor expansion for variables in off-diagonal blocks

Now we apply Theorem 4.3 to the Taylor expansion of any scalar valued holomorphic
function F(Z) on H,. We fix a partitionn = (ny, ..., n,) of n with r > 2 as before.
For a fixed block decomposition of Z = (Z,) € H, withn), x n, matrices Z,,, we
consider the Taylor expansion at z;; = O forall (i, j) ¢ I(n). We write this expansion
by

F(Z)= ) FZn.Zn.....2)2"
veN§

where we write Z¥ =[], _; ¢ i)¢rm) zl‘.)]':j for v = (v;;) € NJ. We denote by Resp,
the restriction of functions on H, to the diagonal blocks H, = H,, x --- x H,,.
We assume that d is an even positive integer. If we apply our differential operators D
satisfying Condition 2.1 to this, it is clear that the components of the vector Resy, (DF)
is a linear combination of higher derivatives of F,(Z11, Z22, ..., Z;+). So when F is
a Siegel modular form of weight k = d /2, our operator gives a Siegel modular form
of weight det* ® p on H, for some p depending only on a set of Taylor coefficients
F, of F. It is clear that the similar thing happens also in case when F' is a Jacobi
form. This is a generalization of Eichler—Zagier [6] on the relations between higher
derivatives of the Taylor coefficients of Jacobi forms on H x C and elliptic modular
forms. We also have the following injectivity of these maps.

Theorem 5.1 We fix a positive integer k with 2k > n. Let F be any holomorphic
Sunctions on H,. Then we have F = 0 if and only if Resp, (DF) = 0 for all D which
satisfies Condition 2.1 for a fixed initial weight k and all target weight det* p, where
p runs over all the irreducible representations of GL(n, C).

This is a subtle non-trivial theorem and in order to prove this, we need an existence
of some concrete differential operators. We note that even if we fix p, the space 73;‘ (d)
is not one-dimensional in general, and we need all the corresponding differential
operators D in this theorem. The similar theorem for Jacobi forms will be written in
Theorem 6.1. These theorems mean that there exists an injection from scalar valued
Siegel modular forms and Jacobi forms into direct sum of vector valued Siegel modular
forms of various weights on a lower dimensional domain, so at least theoretically, forms
of higher degrees are determined by forms of lower degrees. In some cases, this is
more explicitly described as in [15]. The above theorem is an easy corollary of the
next theorem.

Theorem 5.2 We fix a natural number k with 2k > n. Then the Taylor coefficients
Fy(Z11, 22, ..., Zy) are linear combinations of certain higher derivatives of the
images Resy, (DF) for all D = P(%) with P € P"(2k). In particular, we have
F =0 ifand only if Resp,(DF) = 0 for all the scalar valued operators D = P(%)
with P € P"(2k).
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Proof We prove this by induction. For multidegrees a = (ay,...,a,) and b =
(b1,...,by), we writea < bifa; < b; fpr all i. We write a < b ifa < b and
a; < b; for some i. We put DY" = pM-» (%) for a monomial basis for the partition

n and index v € V. We see the action of ]D)f,” ™ on F more concretely. We define
Na ={c = (cij) € N cij =0unless (i, j) € I(n)}.

Then any monomial in C[T'] is written as T¢T* for some u € ./\/6’ and ¢ € N,. By
definition, we have PvM’"(T) =T+ Q(T) with Q(T)|7,,=...=T,,=0 = 0. This means
that Q(T') is a linear combination of monomials T¢T* with u € N and ¢ € N,
such that ¢ = (¢;;) # 0, that is, ¢;; # 0 for some (i, j) € I(n). Since P,fw’"(T) is
homogeneous of multidegree v - 1, we havev -1 = ¢ -1 + u - 1 for such a monomial,
andsowe have u -1 < v - 1. We put |v| = ij v;j and write v! = ]—L»<j v;;! where
we put 0! = 1. Then for u = (u;;) € ./\/5', the action of the operator

© Hij
(i) — l_[ 9 Hij (i) !
0Z 82,']‘

1<i<j<n

on Z* for k € N is obviously given by

3\ . 27yt ifp =k,
ren ((5z) #7) =16 w2

On the other hand, we have (aiz)c Z* = 0 for any pair (¢, k) € N x N}, and we
have

R iciup(z))_z—luvicp(z )
esH, 97 97 = u: 37 w11, oy Lyr).

So we have
Resp, (ID)II,V”"(F)) = 2*|"|v!F,,(Z“, ..., Zrr) + alinear combination of
8 c
<—> Fu(Zii,....Zy) forp e N withp -1 <v-1and0 # ¢ € Ny.

0z
(22)

Now for a fixed multidegree b, we consider the condition that all Fj, with -1 < b are
linear combinations of higher derivatives of Resp, (]D),/CW "F)fork -1 < pu-1. We have
Fo = Resp, (F) = Resy, (ID)(I,W’" F), so the condition is satisfied forb = (0, ..., 0).
We fix any v such thata = v-1 and assume that the induction assumption is satisfied for
anyb < v-1.Thenby (22), we may write F, as alinear combination of Resg, (Dﬁ/[ "F)
and higher derivatives of Fy, with -1 < v -1, which are linear combinations of higher
derivatives of Resg, (Dﬁ’l "F)withk -1 < p -1 < v -1 by induction assumption. So
the assertion is also valid for a. So the first assertion follows. From this, we also see
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that if all Resy, (Df,”’"(F)) =0, then F, = Q0 forallv € Né’ and we have F = 0.
Only if part of the last assertion is trivial. O

6 Taylor expansion of Jacobi forms

In Eichler and Zagier [6], it is proved that we can define elliptic modular forms of
various weights by taking linear combinations of the restriction to z = 0 of the
derivatives of Jacobi forms of degree one. By applying our differential operators, we
can do the same thing in case of general degree. This means that Jacobi forms are at
least theoretically (and sometimes more concretely) recovered from their finitely many
Taylor coefficients associated with vector valued Siegel modular forms of less variables
(for example, see [15]). Although the relation between these Taylor coefficients and
Siegel modular forms is obtained by an easy exercise of the results of the previous
section, there are some apparently different features, so for readers’ convenience, we
explain how our differential operators can be applied to (scalar valued) Jacobi forms
of any matrix index. We also give explicit operators in several cases. For a further
generalization for vector valued Jacobi forms, see [18].

6.1 Definition of Jacobi forms of matrix index

We review the definition of scalar valued Jacobi forms of matrix index (See for example
Ziegler [36].) We fix a positive integer n and fix a partitionn = n|+ny withny,ny > 1.
We define the Heisenberg group H 1:"2)(R) as a subgroup of Sp(n, R) consisting of
elements

I, 0 0 'u
Ady, oo« (A, o € My, (R), k€ My, (R),
0 0 1, —"x € Spn, R), such that u’A + x symmetric).
00 0 I,

We denote this element also by [(, i), k]. We define an embedding ¢ of Sp(n, R)
to Sp(n, R) by the mapping

0
1o,
0
0

S OO

e=(20) e spn.®) — 10 = € Spin. B)

S o O Q
[ IS

1,

and regard Sp(n1, R) as a subgroup of Sp(n, R). We denote by J"1-"2)(R) the sub-
group of Sp(n, R) generated by H 12 (R) and Sp(n, R) and call this the real Jacobi
group.

We fix a natural number k and the action F'|¢[g] of g € Sp(n, R) on holomorphic
functions F(Z) of Z € H, is defined as before. We fix an ny x ny half-integral
symmetric matrix M. For simplicity we assume that M is positive definite. (A positive
semi-definite case reduces to the positive definite case in some way. See [36].) We
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consider a holomorphic function F(t, z) on H,, X My,,,(C), where 1 € H,, z €
M0, (C). We denote by w the variable in H,, and we write e(x) = exp(2mwix) for
any x € C. Then by direct calculation, we see that for § € J"1"2(R) C Sp(n, R),
we have

[F (7, 2)e(tr(Mo)|k[3] = Fz(t. 2)e(tr (Mw))

for some holomorphic function I?g on H,, X M,lan(C) independent of w. This fg
depends on the choice of k, M and g. So we write Fz = F| p[g]. More explicitly,

for g = (‘CI 2) € Sp(n1, R) and [(A, w), k] € H™"2(R), we have

Flimlgl = det(ct +d) X e(=Tr(Mz(ct +d) "' c'2))F(gr, z(ct +d)™1),
Flylh, w), k]l =e(Tr(MAT A+ 2124+ n'A+ 1) F(T, 2+ AT + ).

We put
H""2(Z) = {[(h, ), k] € HM(R); &y jt € Myyn, (Z), k € My, (Z)}.

For any subgroup I' of Sp(n, Z) of finite index, we embed I" into J"1:"2)(R) by
¢ as before and denote by I'""1-72) the subgroup of J1:"2)(R) generated by ¢(I")
and H 172 (Z). A holomorphic function F(z, z) on Hp, X Mp,,, (C) is said to be a
holomorphic Jacobi form of weight k of index M of T"*1:2) if

Flmlyl=F (23)

for all y € I'"1:72) and besides if it satisfies the condition on the Fourier expansions
explained later. We denote by Lj the set of all n; x n; half-integral symmetric
matrices. For any g € Sp(n1, Z), by (23), we have the Fourier expansion

Flemlgl = Za(g)(N, re(Tr(Nt +r'z))
N,r

where N € )»g_lLZ . for some rational number Ag depending on g, and r € M, (Z).
The condition on Fourier expansion in the definition of Jacobi forms is that for
g € Sp(n1, Z), we should have a® (N, r) = 0 unless (4\/12 rA//IZ) is positive semi-
definite. This condition on Fourier expansion is automatically satisfied if n; > 2 by
Koecher principle (see [36]). The property (23) is more precisely written as follows.

F(yt, z(ct +d)~ ") = det(ct + d)fe(Tr(Mz(ct + d)"'¢'2))F(z, 2)

forany y = (i Z) el (24)

F(t,z4+ At +u) =e(—=Tr(MOT'A+22"0)F(z, 2)
forany A, u € My,,, (Z). (25)
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We denote by Ji 3 (I'"17"2)) the space of holomorphic Jacobi forms. We consider the
Taylor expansion at z = 0 for z € Mp,,, (C) and will describe the Taylor coefficients
by (vector valued) Siegel modular forms of various weights.

For any dominant integral weight A = (A1, A2, ..., ), we write |A| = Zl A We
denote by V (py,,,) a representation space of the irreducible representation py ,, of
GL(ny, C) corresponding to A with depth(X) < n1. We denote by A,k Py (") the

space of Siegel modular forms of degree n of weight der® ® Px,n; belonging to I,
that is, the space of V (p;, »,)-valued holomorphic functions F(7) of t € H,, which
satisfy the condition

F(yt) = det(ct + d)p(ct +d)F(x)  foranyy = (Ccl Z) €T

and holomorphic at each cusp of I'. For any natural number m, we denote the m fold
direct sum of the space by (A .k o, " (Irnm™.

Theorem 6.1 For any non-negative integer h, we can define linear mappings &,

&t e (DD) — B Awrgy,,, )P

MiX|=h
depth(X)<min(ny,n2)

(A runs over dominant integral weights), such that the following two conditions are

satisfied.

(a) The map &y, depends only on the coefficients of the Taylor expansion of F (t, z) at
z = 0 of total degree up to h.

(b) For any h, the Taylor coefficients of F up to total degree h are determined by the
set of the images &; (F) for 0 <i < h.
In particular, The map & = (&,)7°, on Jk,M(F("""z)) is injective.

Proof The mapping &, is defined by dim p; ,, number of V(p, ,,)-valued holo-
morphic linear differential operators with constant coefficients. Indeed, by Theorem
34, forn = (n1,n2), D1 = Hy,, Do = H, = H,, x H,,, and for any A with
depth(A) < min(ny, na), there exists a V(ox,,,) ® V(px,1,) valued differential oper-
ator D on holomorphic functions of H, which satisfies Condition 2.1 for the initial
weight k and the target weight det*p; ,, ® det* p; ,,. If we apply this differential
operator D on F(t, z)e(Tr(Mw)) for F(t,z) € Jk,M(F(”l'”Z)), then operation on
components of w becomes just a multiple of polynomials in components of M. So we
may define a differential operator Dy, associated with D on holomorphic functions of
Hy, % My, (C) by

D(F(t,2)e(Tr(Mw)) =Dy (F (1, 2)e(Tr(Mw)).
If we take a basis {e;} of V(py,4,), then we have

dim Pr,ny

Resp, D(F(t, z)e(Tr(Mw))) = Z (Fi(1) @ ep)e(Tr(Mw)),

i=1
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for some V (p;. n, )-valued holomorphic functions F; ;(t). By Condition 2.1, for any
g € Sp(n1,R) C Sp(n, R), we have

dim pk,nz

Resy(F(r, DlimlgD) = Y (Frilgebop,, 8D ®ei. (26)

i=1

where Res is the restriction of functions on Hy,; X My, (C) to Hy, . Since F |y m[y1] =
F for any y; € I', we have F) ;|4 “ppny [y1] = F). ;. Now we must prove the holo-
morphy of F; at cusps. If n; > 2, this is obvious by the usual Koecher principle, but
in general, by definition of Jacobi forms, for any g € Sp(n1, Z), we have

F(t, )lemlgl =) a® (N, r)e(Tr(Nt)e(r'z)
N,r

N 'r/2
r/2 M
also positive semi-definite. The function Dy (F (7, z) |k, m[g]) have the same property.
So we have the expansion

where a® (N, r) = 0 unless ( is positive semi-definite. In particular, N is

Froilget tp,,, [81= Db (N)e(Tr(NT))
N

and H®(N) = 0 unless N is positive semi-definite. So the condition on Fourier
expansions at cusps for F; ; are satisfied and we have Fj; € Adetkm_”l (I'). The
second assertion is the injectivity from the Taylor coefficients up to degree A to Siegel
modular forms of degree n1. This has been already proved in Theorem 5.2. O

In order to apply the above maps &, and to determine the space Ji_ s (I'"1"2)) from
finitely many A,k g ,, " (") explicitly, we have to solve the following problem.

Problem 6.2 We consider vectors of mappings in Theorem 6.1 by taking

Eov oo En): ST ) — > (Agerto py p, (TSm0,

depth(A)<min(ny,n2)
0<|xr|<h

What is the minimum h such that this mapping is injective?

Some upper bound is known. For example, when n = 2 and n; = np = 1, where the
index M is a number m > 0, we know that 1 = 2m if k is even and 2m — 3 if k is
odd by [6]. But exact answers in the cases n1 > 2 are known only for a few cases. It
is known that

when (n1,n2) = (2,1)and M = 1, then h = 2,

when (n1,n2) = (2,1)and M =2, then h = 6,
when (n1,n7) = (3,1)and M = 1, then h = 4.
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For the first two, see [15]. The last one is a unpublished joint work with S. Gru-
shevsky.

If we denote the graded ring of Siegel modular forms of even weight by A,yen (I') =
@Bi=0A2(I"), where Ay (I") is the space of scalar valued Siegel modular forms of even
weight 2k, then the module defined by Jy; (T') = @p=1Ji p (TP172)) is an Ayen (I)
module. Such module structural theorems have been given in [15] in some cases. (See
also [18]).

6.2 Examples of differential operators acting on Jacobi forms

Since Theorem 6.1 would look abstract, we give here several concrete examples for
&y, For the differential operators on Siegel modular forms of degree n, the partitions
(n1, ny) and (no, n1) are essentially the same. But for Jacobi forms, the former acts on
functions on Hy,, x M,,,,(C) and the latter on those on H,, x M, ,,(C) and they are
different. First assume that n; = n — 1 and np = 1. So a Jacobi form in question is a
function on H,_ x C"~! and the index M is just anumber m > 0 since ny = 1. Since
the depthof Lis 1 = min(1, n—1), wehave A = (/, 0, ...) and the representation p;, ,
of GL(n—1, C) is the symmetric tensor representation Sym(l) of some fixed degree /.
On the other hand, p;, ,, = p;.1 is one dimensional representation, i.e. dim p,, 1 = 1,
which is just the /-th power of elements of GL(1, C) = C*. So the mapping &, gives
the mapping from Ji_, (" ~1:D) to Agerksym@y (D) for I' C Sp(n — 1, Z). Since the
generating function of such differential operators (or corresponding polynomial) has
been already given in (13), the concrete mapping is given as follows. For Z € H,, we

write
t
T
Zw

where T = (v;;) € Hy—1,2 = (21,...,2u—1) € c" !, w € H,. For any n — 1
dimensional vector z and & = (o) € Z" 1, we write z% = ]_[;1:_11 zf‘i and |a| =

Zf’;ll ;. For variables u = (uy, ..., u,), we define D, (u) by

For f(t,2) € Jin(I'"~1:D) we write the Taylor expansion by

f@a= Y  fa@®:"

WE(Zzo)VHI

and for any integer [ > 0, we write

it =Y fa(mu.

a€(Zxg)"!
la|=l
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Then the mapping &, is given by

bf = ) (=2wim)?Dyw)? fraq(t, ),

0=g=[h/2]

up to constant (See [15]).

Next, we assume that ny = 1 and np = n — 1. This time, we consider functions
f(t,z) where T € Hy,z = (z1, ..., zn—1) € C""!. The dimension of the symmetric
tensor representation p; ,—1 of GL(n — 1, C) is in general greater than one, and for
A=(,0,---,0)and n > 2, it is given by

. l+n—-2 l+n—-2
dim pp y—1 = = .
l n—2

This means that we have (Hn-SZ) different differential operators for the target weight

k + 1. We use the notation w = (w;j) € H,_1. Here an index of Jacobi forms is a
(n—1) x (n— 1) positive definite half-integral matrix M = (S5 m, ;) with m;j € Z.
In order to give differential operators associated with a polynomial P(7T') in ¢;; with

n x nmatrix T = (t;;), we put t;; = % and 2t; = 2t;] = for i > 2. For the

0zi—1
other variables, we put #;; = #mij (2 <i < j <n),since we have
14+6;; 0 1+6;;
+ Y~ Tr(Mw) = + Limy;.
2 30),']‘

So by virtue of (13), the generating function of the differential operator is given by

1

9 9 k—1"

n—1
(1 =2 io X1,i+1—az_ + P Zlgigjfn—l MijX1,i+1X1,j+1
l

27

Here x; are dummy variables and when we expand this as a formal power series in
x1,; for all i, then the coefficient of each monomial in x; ; gives a different differential
operator mapping Jacobi forms on H; x C"~! of weight k to elliptic modular forms
of weight k 4- [, where [ is the total degree of the corresponding monomial in xj ;4.
Each monomial in x1 ; of degree / indicates a different componentin Ay (F)G'i“[1 Pln—1
Hence expanding (27), the differential operators &, of rank & for small / are given by
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Sof = flz=0

d
slf—(k—Dle A

i=1 0z

ol

= at
I<i<j<n-—1

k(k—1) 9% f
+T Z X1,i4+1X1,j+1 .

07;07;
1<i,j<n—1 0]

z= 0

z=0

From this, we see the action on the Taylor coefficients more concretely. For the Taylor
expansion

n—1
f@a=Hp@+Y fimzu+ Y, fij©uz+

i=1 l<i<j<n—1
we have n — 1 differential operators

(k—l)af

Zi

= (k=1 fi(r)

z=0

fori =1, ...,n — 1 which map a Jacobi form of weight & to an elliptic modular form
of weight k + 1. Corresponding to pairs of (i, j) with 1 <i < j < n — 1, there are
n(n — 1)/2 differential operators

k(k—1) 92 9
((2—3ij)¥ / = (k— l)mija_{>

2 0z;0z;
d
= k(k — 1) fij (x) — mij(k — )= fO()

z=0

which map a Jacobi form on Hy x C"~! of weight k of index m to elliptic modular forms
of weight k + 2. It is clear that f;;(t) are recovered by the images of &, with 7 < 2.

In general, it is obvious that each Taylor coefficient of z* = ]—[,:11 z;" is recovered

by the images of the differential operators which are obtained as the coefficient of

1
[T/= xl i1 With 2171 Bi = 2171 Q.
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Appendix: An example of the irreducible decomposition of the space
C[X] and applications

For an explicit construction of our differential operators with the automorphic property,
we have already explained a method in Sect. 4 to use the monomial basis for partition.
We may also use the generating series in (8) in a concrete setting. (See also [21] for
the third method.)

In order to cut out an irreducible part of the differential operators or elements of
PP (d) from the generic differential operator with the automorphic property given
by the generating series (8), we should describe a concrete irreducible subspace of
polynomials in components of X. Since we have more or less concrete elements P, (T")
in P" (d) as coefficients of the generating series G™ (T, X) with respect to components
of X, our problem here is to give a basis of p-isobaric part as a linear combination
of P,(T) and this is possible if we give a concrete irreducible space decomposition
of the action of GL(n, C) on C[X]. This decomposition is also necessary to use the
method in Sect. 4.2. One way to give this is to take some projection as we explained
in Remark 3.3. But here in the appendix we give irreducible space decomposition in
more direct way in the first non-trivial case whenn = 4,r = 2 andn; = ny = 2,
since we did not find any explicit reference even in this simplest case. In this case, we

have
. 0 X
X= (’Xlz 0 )

. X13 X . . ..
fora2 x 2 matrix X = 13 14 , written as X = §1 & for simplicity. We
X23 X24 &1 &

denote by C[X 2] the ring of polynomials in &;; and elements (A, A2) € GL(n,C) =
GL(2,C) x GL(2,C) acts on this space by f(X12) — f("A1X12A2). In order to
avoid a complication of notation, at most places in this section we use the notation n,
k just for integers and not the degree of the upper half space or for the initial weight.
The irreducible decomposition of C[X 2] is given by the direct sum of px ; ® px, ;,
where pi ; = det*Sym(j) and Sym(j) is the j-th symmetric tensor representation.
So if we denote by C[X 2], the linear subspace of polynomials of total degree n, then
we have

[n/2]

ClX12la = ) Pkn—2k ® Phn—2k-
k=0

First we would like to describe an irreducible subspace pk ,—2x ® pk.n—2k in C[X12],
concretely. We putu = (u1, up) and v = (v, v2) for variables u; and v;, and consider

t
uXi2'v=~&nuvy + Epurva + E21u2v1 + Exurv;.
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For any non-negative integers [, m, n with [, m < n, we define polynomials el(,';) (X12)

in &;; by the following relation.
" n\(n
uXpp'v)" = Z (l)<m>el(;'1)(X12)u'{luéU?’”U'g".
1,m=0
More concretely, we have two expressions of el(;‘l) (X12) as

, -1 —1\/I bl
o= (1) X ("7)()areren 09)
0<i<n-—I

0<j=l
i+j=m

—1 _
() e o

0<p=<n—-m p
0<g=<m
p+q=l

These correspond to the expansions of ((§11v] + &jpv2)ut + (&21v1 + Expv2)ur)" and

(Er1ur +Eu2)vy + (E1au1 + Exur)v2)", respectively. Now it is clear that el(;? (X12)
(0 <1, m < n) spans the irreducible subspace corresponding to Sym, ® Sym,. This
can be seen as follows. For any A € GL(2, C) and variables x and y, we define X, Y
by (X, Y) = (x, y)A. Then a representation matrix of A of Sym (n) is realized by the
matrix R(A) defined by

(X", (T)X”_IY, <;>X"_2Y2, L Y")
_ <x", <’I>x”1y, (I;)x"zyz, y") R(A).

Then since we have (u(* A1 X12A2)"v) = (u'A1)X12(Axv) for Ay, Ay € GL(2,C),
it is obvious that we have

(el A1 X1242)) = RCAD (e (X12)) R(A2),

and this realizes the representation of Sym(n) ® Sym(n).

Proposition 7.1 For a fixed k with 0 < 2k < n, the polynomials

(611622 — 512521)](31(,_1;,2,1,()_](()(12) (30)

forl, m withl — k, m — k < n — 2k give a basis of the irreducible representation
det*Sym(n — 2k) @ det* Sym(n — 2k).
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The polynomials in this proposition can be used as a top term f(T) € V(p) of Py(T)
in Theorem 4.6 if we replace &;; = #; 24 for i, j with 1 < i, j < 2, and hence
together with Remark 4.5, this gives an explicit way to give the differential operator
from Hy to Hy x H, for initial weight det*0 to target weight det*+*0 Sym(n — 2k) ®
det* %0 Sym(n — 2k) by means of monomial basis for the partition 4 = 2+ 2. But here
we explain how to get differential operators from the generic generating series. The
coefficients of each monomial in &;; in the generic generating series can be regarded
as known polynomials, so we study a base change map to express such monomials as
linear combinations of (§11&20 — 512521)%1‘5%‘[,( (X12).

Here forafixed m,l < n, the range of k such that (30) is a polynomial of total degree
nin §;; is determined by the inequalities0 <m —k <n—2kand0 <[/ —k <n—2k.
This means that0 < k <m,l,n —m,n—1.Soif we puteg = min(/, m,n —1,n—m),
then the range is 0 < k < ep. We fix [ and m and see what kind of monomials appear
in (28) and (30). If we assume that 51“15{’2551 Ezdz appears in (28), then we have

c+d=I1, b+d=m, a+b+c+d=a+m+1—-d=n. 3D

So the condition that a, b, c,d > Omeans 0 < d <1,0 <d < m and max(m +1 —
n,0) < d. As a whole we have max(m + 1 — n,0) < d < min(l, m). Rewriting this
for a, we have

max(n —m —1,0) <a <min(m,l)+n—m —1, (32)

and for such a, we have unique b, ¢, d > 0 which satisfy the relations (31). If we put
eo = min(/, m,n — [, n — m) as before, then we have

min(m,l) +n—m — 1 =max(0,n —m — ) + eg. (33)

Indeed, since both sides of (33) are symmetric for / and m, assume that [ < m, Then
LHS of (33)isequal ton —m. Sincen —m < n —1[ and/ < m, we have ey = min(n —
m,l) =l+min(n—m—I1, 0).Sincemin(n—m—1[, 0)+max(n—m—1[,0) = n—m—I,
we see RHS of (33) is also equal to n — m. So by (32) and (33), we see that there
are ep + 1 monomials in (28). If we write monomials in (30) by &{,& {’255155’2, then
a=d+p,b=b+q,c=c+q,d=d + p for some non-negative integers a’, b’,
c,d, p,gsuchthat p+g =k, min(n—1—m,0) <a’ <max(n—m—1,0)+ey—k,
d+d =m—k,b'+d =m—k,anda’+b'+c'+d =n—2k.Sowehavec+d =1,
b+d=m,a+b+c+d =nandmin(n—[—m,0) <a <min(n—m—1[, 0)+eg. So
the monomials which appear in (30) is the same as those in (28). The number of k such
that (30) is a polynomial of order n is also ep 4 1. So the linear span of monomials
Si‘léf’zéglégz witha+b+c+d =n,c+d =1,b+d = mis the same as the
linear span of (£11&2 — £12621)Fel” 2 (X12) with 0 < k < eg. Now we consider
the following polynomial Q;,, (X12).

Qun(X12) = Y pabeaki|E0E5 65 (34)
a+b+c+d=n
c+d=I
b4+d=m
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and assume that this is a part of the generic generating function. Then we have p,pcq €
P*(d) and these p,pcq can be more or less explicitly calculated by G™(T, X), so
we regard pgpeq as known objects. If we write “31151252‘1 522 and also Qy,,;,(X12) as

linear combinations of (&; 1522 —&1é )kel fom— k(Xlz) then the coefficients p[k)(T)

of (&11&20 — slzgzl)"el ko k(X12) in Q;,,(X12) is a linear combination of some
Pabed € P™(d). Then the vector

(P (D) (611622 — Enéa) e 1w (X12)k<tm=n—k

in the representation space of G L(n, C), or the numerical vector ( pl(,];) (T))k<t.m<n—k
gives a vector valued higher spherical polynomials such that (p;,, () (AT ' A));  realizes
the representation det* Sym(n — 2k) ® detkSym(n - 2k).

So our aim now is to write each monomial 3t 151252'1 522 by an explicit linear com-
bination of (§11522 — Slzézl)kel ko — k(Xlz) Since (§11622 — Elzézl)kel ko k(XIZ)
and monomials in Qy,;, (X) span the same vector space, there exist c (I, m) which are
linear combinations of pgpcq such that

L n
Oim(X12) = E o m)(éuézz—élzézl)ke,( kif)_k(Xlz). (35)
k=0 '

Our aim is to write down ¢ (I, m) in terms of p,pcq4. By the relationa +b+c+d = n,
c+d=1,b+d=m,wehaved =a—(n—[—m),b=n—1—a,c=n—m—a.
So for a fixed /, m, the numbers b, ¢, d are determined by a and it is reasonable to
compare the relation (35) under the restrictionto §1; = A, &p = 1,6n =1, 861 = 1.
We put

Omi(A) = Qi (k ]> Z pabcd)\a

a+b+c+d=n
c+d=I
b+d=m
and
-1
()5 e
N prg=1—k p 4
0<p<n—m—k
0<q=<m—k

Then for a fixed /, m, by (35), we have

e I,
om0y =3 0" 6 1k p,

!
k=0
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For any function f(A) of A, we write f ) (1) the s-th derivative of f with respect to
A

Lemma 7.2 For any non-negative integer s, we have

)
o =>" <Z>ck(z, m) 570 1),

k=0
Proof This is obvious by the Leibniz rule. Here we regard (§) = 1. O

Lemma 7.3 We have

. n—2k\"'n—m—k\(n—1—k
r r r

In particular, we have fi(1) = fk(o)(l) =1

Proof Differentiate the definition of fi (L) repeatedly , we have

wo=() 2 (750

pH+g=l—k
0<p<n—m—k
0<g=<m—k

,
x<[Jor—m—k—p—i+ 1)>,\"—m—k—p—r
i=1

Here except for p such that 0 < p < n —m — k — r, the term is zero. So we may
assume that (p, ¢) runs under the condition) < p <n—-m—k—r,0<qg <m —k,
and p + g =1 — k. We have

(n—m—k—p)~-~(n—m—k—p—r+1)<n_m_k)
p

_ n—m—k)!
o pln—m—k—p—r)!

n—m—k—r
=(n—m—k)(n—m—k—1)-~-(n—m—k—r+1)( » )

Here we also have

Z (n—m—k—r)(m—k)
p+q=l—k p 4
O<p<n—m—k—r

0<g=m—k

n—2k—r
I —k '
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On the other hand, we have

(n—2k>l<n—2k—r>_ n—k—0D'(n—2k—r)!
l—k l—k =2\ —k—1—r)

-

]_[(n—m—k—i+1)=rz(”_’f_k>,

i=1

Since we have

we have the formula in the lemma. O

For 0 < s,k < eg, we put

st n=2k\""n—m—k\(n—1—k
S\ s —k s—k s—k )
In particular if s < k, then this is O by the general definition of binomial coefficients,

so if we define (eg + 1) x (eg + 1) matrix A by A = (a;j)o<i, j<e,» then this is a lower
triangular matrix. By Lemma 7.3, we have

O (1) =" agker. m),
k=0

and we would like to solve this simultaneous equation for unknown c¢ (I, m), regarding

Q[(fn) (1) as known quantity. It is not difficult to calculate the inverse matrix of A since

A is lower triangular. For integers i, j with 0 < i, j < ep, we put

il n—i—j4+ I\ n—m—j\(n—1—
A I () [l
J! i—j i—J i—j

and put B = (b;;).
Lemma 7.4 We have AB = I, where I is the (eg + 1) X (eg + 1) identity matrix.

Proof For any pair of non-negative integers (v, u), the (v + 1, u + 1) component of
AB is given by

vV
Cop = E Avicbicy -

K=/t
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(We note that (1, 1) components are denoted by ago, boo, coo.) The range of « is
restricted as above since a, = 0if v < k and b, = 0if k < p. In particular, if
v < [, then ¢, = 0, which means that AB is lower triangular, of course. Now we
calculate cyy,. If v = pu, then k = = v, and since a,, = by, = 1, we have

cyy = 1.
Next we assume that v > . We have

aUKbK,LL
_ vl w—)n—v—)n—m-—x)n—1-—«)!
il n=20)'v—1)n—m—v)I!v—x)n—-1-v)!
1)K+MK_! kK=—wW!n-2ck+DIn—m-—w!n-10-—pw)!
uwln—pu—k+ Dk —wW!n—m-—)lk—w!n-—10—«)!
_ (—l)“(v) nm—m—p)'n—1-—p)!
w) (m—m—v)l(n—1-v)!
8 (_1);((" — ,u) n+1-2)(n—v—«)!
V—K n+1—p—c«)!

X (—

The first factor does not depend on k, so we will calculate the following sum S.

_ - k= [V T M n+1-2)n—v—k)!
S_;( K (v—K> m+1—p—x)

Now we put p = v — pu and k = u + . Then we have

P
S Z(_l)a(p> n+1 —2u—2a)(n—2p,’—p—a)!
= o n+1-2u—a)!

_ pln —2pu —2p)! Xp:(—l)“ n=2u+Dn—-2u—p—a)n+1—-2u—2a)
T o(m=2u+ 1) = al(p —a)!(n —2u —2p)!(n+1—2u — a)!

pl(n — 2u — 2p)!

(n— 2+ 1)
P

x Z(—l)“("H_2“><”_2“_p_“>(n+1—2M—2a).
a=0 o p-«

For any variable x, we can show the following combinatorial identity

P
Z(—l)“<x+1>(x_p_a)(x+1—2a) =0.
a=0 o p—

(e.g. by using [28] or [33].) Applying this to x = n — 2 in the last expression of S,
we see § = 0. O
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Theorem 7.5 Notation being the same as before, for a fixed n, | and m, we have
ok =ci(l.m) = Zb/ﬂQ@(l).
For a fixed k, the vector

bys 1 n
Z <M) 1( kzrf) L(X12)Enién — Eng)

k!
k<l,m<n—k

gives an element ofPK(,z’z) (d) for p = det*Sym(n — 2k) ® det*Sym(n — 2k).

We repeat the meaning of Theorem 7.5 a little more in details. Here we are regarding
Oim(X ) as a part of the degree n part of the generic generating function, so we can
write Ql )(1) explicitly by the descending basis which are proportional to pgpcq.
Here the pair (I, m) runs over (n — 2k + 1)2 numbers with k < [,m < n — k and

{el(f;i];lk (X) (11620 — Elzgzl)k}kgl’mfn_k form a basis of the representation space of

detk Sym(n—2k)®@det* Sym(n —2k). So if we define a C" 2+ yalued polynomial
P(T) by

) b (3)1
P(T) = (—Zx:o ]":'Q’m( ) :
’ k<l.m<n—k

then each component vanishes under D11, D12, D22, D33, D34, Das and we have
P(AT"A) = Ry n—2(B) ® Ri.n—2k(C)P(T),

B0
0cC
tation matrix of det* Sym(n — 2k).

We give an example for detSym(1). Then (I, m) = (1, 1), (1,2), (2, 1) or (2, 2)
and eg = min(/,m,n — I, n —m) = 1 for any [/, m. For any (I, m) above, we have
boo = b“ = 1, b()1 = 0 and b]() = —4/3, —2/3, —2/3, —1/3 for (l,m) = (1, l),
(1,2), (2, 1), (2, 2), respectively. We have

where A = ( ) € GL(4,C) (B, C € GL(2,C)) and Ry 2 is some represen-
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011(%) = paooiA” + pitioA,
011 (V) = 2p20012 + pitio,
Q12(1) = p1101A + poz210,
01, () = priots

021(A) = pronr + poi20,
05, (1) = pioi1.

022(%) = pioo2A + poiil,
05 (1) = p1ooz-

So if we put

L (2pa001 = pi110 piio1 — 2po210
P(T)=- , 36
1) 3 (PlOll — 2po120 2p1002 — poiti (36)

then all the entries are in P2 (d) and P(AT 'A) = det(A1A2)A; P(T)"A,. Here
Pssss are obtained from the generating function G>2 (T, X) and given by

P2001 = §<—2dt13t14t23 + (d* 4 2d — ttytos + Atttz
— (d + 2)t11124133 — 2d 112113134 + 4t11t23t34),
P1110 = d((d2 +d — Ht3t14t3 — dt123t24 — dtiptiat33 + 2111124133
+ @4 — d)tiptiztzg — dt11t23t34),
p1101 = d(—dtlz4l23 + (d* +d — Dti3tiatre + (4 — d)tiatiatza
— dty1hatzg — dtinhats + 2t11123t44>,
d( - 2
po2io = 7 <(d +2d — Dtjytr3 — 2dti3t1at24 — 2d 112114134
+ 4t112at34 + At12t13144 — (2 + d)l11t23t44),
p1o11 = d(—dt14t223 + (d* 4+ d — ti3tstos + +2t1at0t3

—dtiptutsz — dtistptzs + (4 — d)l12l23t34>,
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d
poi2o =3 ((d2 +2d — tiatz; — 2dti3tsts — (d + 2tatotss
+ 4t12t04133 + 4113102134 — 2d112t23t34),
d 2 2
piooz = 7 —2dt14ta3tas + (d° + 2d — ti3t5, + 4t1atntzs
— 2dtiptatas — (d + 2)t13t20144 + 4t12t23t44),
polll = d((dz +d — dtiatstrg — diiztsy, — dtiatntsa
+ (4 — d)tiatratzs + 2113100144 — d112t23l44>-

and we have

2p2001 — P1110
3d(d +4)
= (d — Dt13(t13024 — 114123) + tiot14133 — 11024133 — 112113134 + 111123134,
pi1o1 — 2po120
3d(d +4)
= (d — Dtia(t13t24 + t1a123) + tiat1at34 — t11124134 — t2t13144 + 11123144,
ploil — 2po120
3d(d +4)
= (d — Dna3(t13t24 — t14123) + Hiatootzz — tiahaalss — Hi3tnt34 + H2623134,

2p1002 — pot1l
3d(d +4)
= (d — Dtaua(t13t24 — t14123) + t1atoot34 — t1ataal34 — 113122044 + 112123144

Of course (36) should be a constant multiple of (21) in Sect. 4. Indeed if we divide
(36) by d(d — 1)(d + 4), then we obtain (21).
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