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Abstract
In this paper, we introduce polytopes BG arising from root systems Bn and finite
graphs G, and study their combinatorial and algebraic properties. In particular, it is
shown that BG is reflexive if and only if G is bipartite. Moreover, in the case, BG

has a regular unimodular triangulation. This implies that the h∗-polynomial of BG

is palindromic and unimodal when G is bipartite. Furthermore, we discuss stronger
properties, namely the γ -positivity and the real-rootedness of the h∗-polynomials. In
fact, ifG is bipartite, then the h∗-polynomial ofBG is γ -positive and its γ -polynomial
is given by an interior polynomial (a version of the Tutte polynomial for a hypergraph).
The h∗-polynomial is real-rooted if and only if the corresponding interior polynomial
is real-rooted. From a counterexample to Neggers–Stanley conjecture, we construct a
bipartite graphG whose h∗-polynomial is not real-rooted but γ -positive, and coincides
with the h-polynomial of a flag triangulation of a sphere.
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Introduction

A lattice polytope P ⊂ R
d is a convex polytope all of whose vertices have integer

coordinates. Ardila et al. [1] constructed a unimodular triangulation of the convex
hull of the roots of the classical root lattices of type An , Bn , Cn and Dn , and gave
an alternative proof for the known growth series of these root lattices by using the
triangulation.

In [23], lattice polytopes arising from the root system of type An and finite graphs
were introduced. Let G be a finite simple undirected graph on the vertex set [d] =
{1, . . . , d} with the edge set E(G). We denote AG ⊂ R

d the convex hull of the set

A(G) = {0} ∪ {±(ei − e j ) : {i, j} ∈ E(G)},

where ei is the i-th unit coordinate vector in R
d and 0 is the origin of Rd . Then AG

is centrally symmetric, i.e., for any facet F of AG , −F is also a facet of AG , and
0 is the unique (relative) interior lattice point of AG . Note that, if G is a complete
graph, then AG coincides with the convex hull of the roots of the root lattices of type
An studied in [1]. This polytope AG is called the symmetric edge polytope of G and
several combinatorial properties of AG are well-studied [22,23,30].

In this paper, we introduce lattice polytopes arising from the root system of type Bn

andfinite graphs, and study their algebraic and combinatorial properties. LetBG ⊂ R
d

denote the convex hull of the set

B(G) = {0,±e1, . . . ,±ed} ∪ {±ei ± e j : {i, j} ∈ E(G)}.

Then dimBG = d, BG is centrally symmetric and 0 is the unique interior lattice
point ofBG . Note that, if G is a complete graph, thenBG coincides with the convex
hull of the roots of the root lattices of type Bn studied in [1]. Several classes of lattice
polytopes arising from graphs have been studied from viewpoints of combinatorics,
graph theory, geometric and commutative algebra. In particular, edge polytopes give
interesting examples in commutative algebra ( [18,33–35,43]). Note that edge poly-
topes of bipartite graphs are called root polytopes and play important roles in the study
of generalized permutohedra [41] and interior polynomials [25].

There is a strong relation between BG and edge polytopes. In fact, one of the key
properties of BG is that BG is divided into 2d edge polytopes of certain non-simple
graphs ˜G (Proposition 1.1). This fact helps us to find and show interesting properties
of BG . In Sect. 1, by using this fact, we will classify graphs G such that BG has
a unimodular covering (Theorem 1.3). We remark that AG always has a unimodular
covering.

On the other hand, the fact thatBG has a unique interior lattice point 0 leads us to
consider when BG is reflexive. A lattice polytope P ⊂ R

d of dimension d is called
reflexive if the origin ofRd is a unique lattice point belonging to the interior ofP and
its dual polytope

P∨ := {y ∈ R
d : 〈x, y〉 ≤ 1 for all x ∈ P}
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is also a lattice polytope, where 〈x, y〉 is the usual inner product ofRd . It is known that
reflexive polytopes correspond to Gorenstein toric Fano varieties, and they are related
to mirror symmetry (see, e.g., [2,9]). In each dimension there exist only finitely many
reflexive polytopes up to unimodular equivalence [28] and all of them are known
up to dimension 4 [27]. Here two lattice polytopes P ⊂ R

d and P ′ ⊂ R
d ′

are
said to be unimodularly equivalent if there exists an affine map from the affine span
aff(P) of P to the affine span aff(P ′) of P ′ that maps Zd ∩ aff(P) bijectively
onto Z

d ′ ∩ aff(P ′) and that maps P to P ′. Every lattice polytope is unimodularly
equivalent to a full-dimensional one. In Sect. 2, we will classify graphs G such that
BG is a reflexive polytope. In fact, we will show the following.

Theorem 0.1 Let G be a finite graph. Then the following conditions are equivalent:

(i) BG is reflexive and has a regular unimodular triangulation;
(ii) BG is reflexive;
(iii) G is a bipartite graph.

We remark that not all unimodular equivalence classes of reflexive polytopes are
represented by a polytope of the formBG . Indeed,BG is always centrally symmetric
but not all reflexive polytopes are centrally symmetric. On the other hand,AG is always
(unimodularly equivalent to) a centrally symmetric reflexive polytope. However, the
class of reflexive polytopes AG is different from that of BG . For example, if G is
a complete bipartite graph, then BG is not unimodularly equivalent to AG ′ for any
graph G ′.

Next, by characterizing when the toric ideal ofBG has a Gröbner basis consisting
of squarefree quadratic binomials for a bipartite graph G, we can classify graphs G
such that BG is a reflexive polytope with a flag regular unimodular triangulation. In
fact,

Theorem 0.2 Let G be a bipartite graph. Then the following conditions are equivalent:

(i) The reflexive polytope BG has a flag regular unimodular triangulation;
(ii) Any cycle of G of length ≥ 6 has a chord (“chordal bipartite graph”).

Now, we turn to the discussion of the h∗-polynomial h∗(BG, x) ofBG . Thanks to
the key property (Proposition 1.1), we can compute the h∗-polynomial ofBG in terms
of that of edge polytopes of some graphs. On the other hand, since it is known that
the h∗-polynomial of a reflexive polytope with a regular unimodular triangulation is
palindromic and unimodal [7], Theorem 0.1 implies that the h∗-polynomial ofBG is
palindromic and unimodal if G is bipartite. In Sect. 3, we will show a stronger result,
namely for any bipartite graph G, the h∗-polynomial h∗(BG, x) is γ -positive. The
theory of interior polynomials (a version of the Tutte polynomials for hypergraphs)
introduced by Kálmán [24] and the theory of generalized permutohedra [31,41] play
important roles.

Theorem 0.3 Let G be a bipartite graph on [d]. Then h∗-polynomial of the reflexive
polytope BG is

h∗(BG, x) = (x + 1)d I
̂G

(

4x

(x + 1)2

)

,
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where ̂G is a connected bipartite graph defined in (1) later and I
̂G(x) is the interior

polynomial of ̂G. In particular, h∗(BG, x) is γ -positive. Moreover, h∗(BG, x) is real-
rooted if and only if I

̂G(x) is real-rooted.

In addition, we discuss the following relations between interior polynomials and
other important polynomials in combinatorics:

• If G is bipartite, then the interior polynomial of ̂G is described in terms of k-
matchings of G (Proposition 3.4);

• If G is a forest, then the interior polynomial of ̂G coincides with the matching
generating polynomial of G (Proposition 3.5);

• If G is a bipartite permutation graph associated with a poset P , then the interior
polynomial of ̂G coincides with the P-Eulerian polynomial of P (Proposition 3.6).

By using these results and a poset appearing in [47] as a counterexample to Neggers–
Stanley conjecture, we will construct an example of a centrally symmetric reflexive
polytope such that the h∗-polynomial is γ -positive and not real-rooted (Example 3.7).
This h∗-polynomial coincides with the h-polynomial of a flag triangulation of a sphere
(Proposition 3.8). Hence this example is a counterexample to “Real Root Conjecture”
that has been already disproved by Gal [11]. Finally, inspired by a simple description
for the h∗-polynomials of symmetric edge polytopes of complete bipartite graphs
[23], we will compute the h∗-polynomial ofBG when G is a complete bipartite graph
(Example 3.9).

1 A key property ofBG and unimodular coverings

In this section, we see a relation between BG and edge polytopes. First, we recall
what edge polytopes are. Let G be a graph on [d] (only here we do not assume that G
has no loops) with the edge (including loop) set E(G). Then the edge polytope PG of
G is the convex hull of {ei + e j : {i, j} ∈ E(G)}. Note that PG is a (0, 1)-polytope
if and only if G has no loops. Given a graph G on [d], let ˜G be a graph on [d + 1]
whose edge set is

E(G) ∪ {{1, d + 1}, {2, d + 1}, . . . , {d + 1, d + 1}}.

Here, {d + 1, d + 1} is a loop (a cycle of length 1) at d + 1. See Fig. 1. If G is a

Fig. 1 Example of ˜G
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Fig. 2 Example of ̂G

bipartite graph with a bipartition V1 ∪ V2 = [d], let ̂G be a connected bipartite graph
on [d + 2] whose edge set is

E(̂G) = E(G) ∪ {{i, d + 1} : i ∈ V1} ∪ {{ j, d + 2} : j ∈ V2 ∪ {d + 1}}. (1)

See Fig. 2.
Now,we show thekeypropositionof this paper.Given ε = (ε1, . . . , εd) ∈ {−1, 1}d ,

let Oε denote the closed orthant {(x1, . . . , xd) ∈ R
d : xiεi ≥ 0 for all i ∈ [d]}. For a

lattice polytope P , let Vol(P) denote the normalized volume of P .

Proposition 1.1 Work with the same notation as above. Then we have the following:

(a) EachBG∩Oε is the convex hull of the set B(G)∩Oε and unimodularly equivalent
to the edge polytope P

˜G of ˜G. Moreover, if G is bipartite, then BG ∩ Oε is
unimodularly equivalent to the edge polytope P

̂G of ̂G. In particular, one has
Vol(BG) = 2dVol(P

˜G).
(b) The edge polytope of G is a face of BG.

Proof (a) LetP be the convex hull of the set B(G)∩Oε. The inclusionBG∩Oε ⊃ P
is trivial. Let x = (x1, . . . , xd) ∈ BG ∩ Oε. Then x = ∑s

i=1 λiai , where λi > 0,
∑s

i=1 λi = 1, and each ai belongs to B(G). Suppose that the k-th component of ai is
positive and the k-th component of a j is negative. Then ai and a j satisfy

ai + a j = (ai − ek) + (a j + ek),

where ai − ek, a j + ek ∈ B(G). By using the above relations for ai + a j finitely
many times, we may assume that the k-th component of each vector ai is nonnegative
(resp. nonpositive) if xk ≥ 0 (resp. xk ≤ 0). Then each ai belongs to B(G) ∩ Oε and
hence x ∈ P .

Next, we show that eachBG ∩Oε is unimodularly equivalent to the edge polytope
P

˜G . Set Q = BG ∩ O(1,...,1). It is easy to see that each BG ∩ Oε is unimodularly
equivalent toQ for all ε. Moreover, one has

B(G) ∩ O(1,...,1) = {0, e1, . . . , ed} ∪ {ei + e j : {i, j} ∈ E(G)}.
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Hence P
˜G is unimodularly equivalent to Q × {2}. In particular, BG consists of 2d

copies of the edge polytope P
˜G . This implies Vol(BG) = 2dVol(P

˜G). Similarly, if G
is bipartite, it follows that P

̂G is unimodularly equivalent toQ × {1}2.
(b) The edge polytope PG of G is the face of BG with the supporting hyperplane

H = {(x1, . . . , xd) ∈ R
d : x1 + · · · + xd = 2}. ��

LetP ⊂ R
d be a lattice polytope. A (lattice) covering ofP is a finite collection�

of lattice simplices such that the union of the simplices in � isP , i.e.,P = ⋃

δ∈� δ.
A (lattice) triangulation of P is a covering � of P such that

(i) every face of a member of � is in �, and
(ii) any two elements of � intersect in a common (possibly empty) face.

Note that their interiors may overlap in coverings but not in triangulations. A unimod-
ular simplex is a lattice simplex whose normalized volume equals 1. We now focus
on the following properties.

(VA) We say that P is very ample if for all sufficiently large k ∈ Z≥1 and for all
x ∈ kP ∩ Z

d , there exist x1, . . . , xk ∈ P ∩ Z
d with x = x1 + · · · + xk .

(IDP) Wesay thatP possesses the integer decompositionproperty (or is IDP for short)
if for all k ∈ Z≥1 and for all x ∈ kP ∩ Z

d , there exist x1, . . . , xk ∈ P ∩ Z
d

with x = x1 + · · · + xk .
(UC) We say that P has a unimodular covering if P admits a lattice covering con-

sisting of unimodular simplices.
(UT) We say thatP has a unimodular triangulation ifP admits a lattice triangulation

consisting of unimodular simplices.

These properties satisfy the implications

(UT) ⇒ (UC) ⇒ (IDP) ⇒ (VA),

see, e.g., [13, Section 4.2]. On the other hand, it is known that the opposite implications
are false. However, for edge polytopes, the first three properties are equivalent ( [8,33,
43]). We say that a graph G satisfies the odd cycle condition if, for any two odd cycles
C1 and C2 that belong to the same connected component of G and have no common
vertices, there exists an edge {i, j} of G such that i is a vertex of C1 and j is a vertex
of C2.

Proposition 1.2 [8,33,43] Let G be a finite (not necessarily simple) graph. Suppose
that there exists an edge {i, j} of G whenever G has loops at i and j with i �= j . Then
the following conditions are equivalent:

(i) PG has a unimodular covering;
(ii) PG is IDP;
(iii) PG is very ample;
(iv) G satisfies the odd cycle condition.

Wenowshow that the same assertion holds forBG . Namely,weprove the following.

Theorem 1.3 Let G be a finite simple graph. Then the following conditions are equiv-
alent:
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(i) BG has a unimodular covering;
(ii) BG is IDP;
(iii) BG is very ample;
(iv) G satisfies the odd cycle condition.

Before proving Theorem 1.3, we recall a well-known result.

Lemma 1.4 Every face of a very ample polytope is very ample.

Proof Let P ⊂ R
d be a lattice polytope of dimension d. Assume that there exists a

facetF ofP such thatF is not very ample. Then we should show thatP is not very
ample. LetH ⊂ R

d be the hyperplane in Rd defined asH = {x ∈ R
d | 〈x, a〉 = b},

with some lattice point a ∈ Z
d and some integer b such that F = H ∩ P and

P ⊂ H (+), where H (+) = {x ∈ R
d | 〈x, a〉 ≤ b}. Since F is not very ample,

there exist a positive integer k and a lattice point x ∈ kF ∩ Z
d such that there are no

lattice points x1, . . . , xk in F with x = x1 + · · · + xk . Suppose that there are lattice
points y1, . . . , yk inP with x = y1 + · · ·+ yk . Then for each yi , one has 〈yi , a〉 ≤ b.
Since 〈x, a〉 = kb, it follows that for each i , 〈yi , a〉 = b, hence, yi ∈ F . This is a
contradiction. Therefore, P is not very ample. ��
Remark 1.5 Similarly, we can prove that every face of an IDP polytope is IDP. More-
over, it is clear that if a lattice polytope has a unimodular triangulation (resp. a
unimodular covering), then so does any face.

Now, we prove Theorem 1.3.

Proof of Theorem 1.3 First, implications (i) ⇒ (ii) ⇒ (iii) hold in general.
(iii) ⇒ (iv): Suppose that G does not satisfy the odd cycle condition. By Proposi-

tion 1.2, the edge polytope PG of G is not very ample. Since PG is a face of BG by
Proposition 1.1 (b) and Lemma 1.4, BG is not very ample.

(iv)⇒ (i): Suppose thatG satisfies the odd cycle condition. Then so does ˜G. Hence
Proposition 1.2 guarantees that P

˜G has a unimodular covering. By Proposition 1.1 (a),
BG has a unimodular covering. ��
Example 1.6 Let G be a graph in Fig. 3. Since G satisfies the odd cycle condition,
BG has a unimodular covering. However, since the edge polytope PG has no regular
unimodular triangulations [34], so does BG by Proposition 1.1 (b). We do not know
whether BG has a (nonregular) unimodular triangulation or not.

Fig. 3 A graph in [34]
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Fig. 4 Regular unimodular
triangulation ofBG in
Examples 2.1 (b)

2 Reflexive polytopes and flag triangulations ofBG

In the present section, we classify graphs G such that

• BG is a reflexive polytope.
• BG is a reflexive polytope with a flag regular unimodular triangulation.

In other words, we prove Theorems 0.1 and 0.2. First, we see some examples thatBG

is reflexive.

Examples 2.1 (a) If G is an empty graph, thenBG is a cross polytope.
(b) Let G be a complete graph with 2 vertices. ThenBG ∩Z

2 is the column vectors
of the matrix

(

0 1 0 1 1 −1 0 −1 −1
0 0 1 1 −1 0 −1 −1 1

)

,

andBG is a reflexive polytope having a regular unimodular triangulation. See Fig. 4.
Since the matrix

(

1 0 1 1
0 1 1 −1

)

is not unimodular, we cannot apply [36, Lemma 2.11] to show this fact.

In order to show that a lattice polytope is reflexive, we can use an algebraic tech-
nique on Gröbner bases. We recall basic materials and notation on toric ideals. Let
K [t±1, s] = K [t±1

1 , . . . , t±1
d , s] be the Laurent polynomial ring in d+1 variables over

a field K . If a = (a1, . . . , ad) ∈ Z
d , then tas is the Laurent monomial ta11 · · · tadd s ∈

K [t±1, s]. Let P ⊂ R
d be a lattice polytope and P ∩ Z

d = {a1, . . . , an}. Then, the
toric ring of P is the subring K [P] of K [t±1, s] generated by {ta1s, . . . , tan s} over
K . We regard K [P] as a graded ring by setting each deg ti = 0 and deg s = 1. Note
that, if two lattice polytopes are unimodularly equivalent, then their toric rings are
isomorphic as graded rings. Let K [x] = K [x1, . . . , xn] denote the polynomial ring
in n variables over K . The toric ideal IP of P is the kernel of the surjective homo-
morphism π : K [x] → K [P] defined by π(xi ) = tai s for 1 ≤ i ≤ n. It is known
that IP is generated by homogeneous binomials. See, e.g., [13, Chapter 3] and [48,
Chapter 4]. Let < be a monomial order on K [x] and in<(IP ) the initial ideal of IP
with respect to <. The initial ideal in<(IP ) is called squarefree (resp. quadratic) if
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in<(IP ) is generated by squarefree (resp. quadratic) monomials. We recall a relation
between initial ideal in<(IP ) and a triangulation of P . Set

�(P,<) =
⎧

⎨

⎩

conv(S) : S ⊂ P ∩ Z
d ,

∏

ai∈S
xi /∈ √

in<(IP )

⎫

⎬

⎭

.

Then we have

Proposition 2.2 [48, Theorem 8.3] LetP ⊂ R
d be a lattice polytope and < a mono-

mial order on K [x]. Then �(P,<) is a regular triangulation of P .

Here we say that a lattice triangulation � of a lattice polytope P ⊂ R
d is regular

if it arises as the projection of the lower hull of a lifting of the lattice points ofP into
R
d+1. A simplicial complex is called flag if all minimal non-faces contain only two

elements. We say that a lattice triangulation is flag if it is flag as a simplicial complex.
Then we have

Proposition 2.3 [48, Corollary 8.9] Let P ⊂ R
d be a lattice polytope and < a

monomial order on K [x]. Suppose that any lattice point in Z
d+1 is a linear inte-

ger combination of the lattice points inP ×{1}. Then �(P,<) is unimodular (resp.
flag unimodular) if and only if in<(IP ) is squarefree (resp. squarefree quadratic).

By definition, a lattice polytope P ⊂ R
d is reflexive if and only if the lattice

distance between the origin 0 and all affine hyperplanes generated by facets of P
equals 1. Hence if 0 is contained in the interior of P , and P has a unimodular
triangulation such that 0 is a vertex of any maximal simplex of the triangulation,
then P is reflexive. Now, we introduce an algebraic technique to show that a lattice
polytope is reflexive.

Lemma 2.4 [16, Lemma 1.1] Let P ⊂ R
d be a lattice polytope of dimension d

such that the origin of Rd is contained in its interior and P ∩ Z
d = {a1, . . . , an}.

Suppose that Zd = {∑n
i=1 ziai : zi ∈ Z} and there exists an ordering of the variables

xi1 < · · · < xin forwhich ai1 = 0 such that the initial ideal in<(IP ) of IP with respect
to the reverse lexicographic order < on K [x] induced by the ordering is squarefree.
Then P is reflexive and has a regular unimodular triangulation.

Proof The assertion follows since 0 is contained in the interior of P and since the
triangulation �(P,<) is unimodular and 0 is a vertex of any maximal simplex of the
triangulation. ��

By using this technique, several families of reflexive polytopes with regular uni-
modular triangulations are constructed in [15–17,19–21,37]. In order to apply Lemma
2.4 to show Theorem 0.1, we see a relation between the toric ideal of BG and that
of P

˜G . Let G be a simple graph on [d] with edge set E(G) and let RG denote the
polynomial ring in 2d + 1 + 4|E(G)| variables

z, xi+, xi− (1 ≤ i ≤ d), yi j++, yi j−−, yi j+−, yi j−+ ({i, j} ∈ E(G))
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over a field K . Then the toric ideal IBG ofBG is the kernel of a ring homomorphism
π : RG → K [t±1 , . . . , t±d , s] defined by π(z) = s, π(xi+) = ti s, π(xi−) = t−1

i s,
π(yi j++) = ti t j s, π(yi j−−) = t−1

i t−1
j s, π(yi j+−) = ti t

−1
j s, and π(yi j−+) = t−1

i t j s.
Let SG denote the subring of RG generated by the d + 1 + |E(G)| variables

z, xi+ (1 ≤ i ≤ d), yi j++ ({i, j} ∈ E(G)).

Then the toric ideal IP
˜G
of P

˜G is the kernel of π |SG . For each ε = (ε1, . . . , εd) ∈
{−1, 1}d , we define a ring homomorphism ϕε : SG → RG by ϕε(xi+) = xiα and
ϕε(yi j++) = yi jαβ where α is the sign of εi and β is the sign of ε j . In particular,
ϕ(1,...,1) : SG → RG is an inclusion map.

Lemma 2.5 Let G be a Gröbner basis of IP
˜G
with respect to a reverse lexicographic

order <S on SG such that z < {xi+} < {yi j++}. Let <R be a reverse lexico-
graphic order such that z < {xi+, xi−} < {yi j++, yi j−−, yi j+−, yi j−+} and that (i)
ϕε(xi+) <R ϕε(x j+) if xi+ <S x j+ and (ii) ϕε(yi j++) <R ϕε(yk�++) if yi j++ <S

yk�++ for all ε ∈ {−1, 1}d . Then

G ′ =
⎛

⎝

⋃

ε∈{−1,1}d
ϕε(G )

⎞

⎠ ∪ {xiα yi jβγ − x jγ z : {i, j} ∈ E(G), α �= β}

∪{yi jαγ yikβδ − x jγ xkδ : {i, j}, {i, k} ∈ E(G), α �= β}
∪{xi+xi− − z2 : 1 ≤ i ≤ d}

is a Gröbner basis of IBG with respect to <R, where the underlined monomial is the
initial monomial of each binomial. (Here we identify yi jαβ with y jiβα .) In particular,
if in<S (IP˜G

) is squarefree (resp. quadratic), then so is in<R (IBG ).

Proof It is easy to see that G ′ is a subset of IBG . Assume that G ′ is not a Gröbner basis
of IBG with respect to <R . Let in(G ′) = 〈in<R (g) : g ∈ G ′〉. By [13, Theorem 3.11],
there exists a non-zero irreducible homogeneous binomial f = u−v ∈ IBG such that
neither u nor v belongs to in(G ′). Since both u and v are divided by none of xi+xi−,

xiα yi jβγ , yi jαγ yikβδ (α �= β), they are of the form

u =
∏

i∈I
(xiαi )

ui
∏

{ j,k}∈E1

(y jkα jαk )
u jk , v =

∏

i∈I ′
(xiα′

i
)vi

∏

{ j,k}∈E2

(y jkα′
jα

′
k
)v jk ,

where I , I ′ ⊂ [d], E1, E2 ⊂ E(G) and 0 < ui , u jk, vi , v jk ∈ Z. Since f belongs
to IBG , the exponent of t� in π(u) and π(v) are the same. Hence, one of x�α�

and
y�mα�αm appears in u if and only if one of x�α′

�
and y�nα′

�α
′
n
appears in v with α� = α′

�.

Let ε be a vector in {−1, 1}d such that the sign of the i-th component of ε is αi if one
of xiαi and yi jαiα j appears in u. Then f belongs to the ideal ϕε(IP

˜G
). Let f ′ ∈ IP

˜G
be a binomial such that ϕε( f ′) = f . Since G is a Gröbner basis of IP

˜G
, there exists a

binomial g ∈ G whose initial monomial in<R (g) divides the one of the monomials in
f ′. By the definition of<R , we have in<R (ϕε(g)) = ϕε(in<R (g)). Hence in<R (ϕε(g))
divides one of the monomials in f = ϕε( f ′). This is a contradiction. ��
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Using this Gröbner basis with respect to a reverse lexicographic order, we verify
which BG is a reflexive polytope. Namely, we prove Theorem 0.1.

Proof of Theorem 0.1 The implication (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii): Suppose that G is not bipartite. Let G1, . . . ,Gs be the connected

components of G and let di be the number of vertices of Gi . In particular, we have
d = ∑s

i=1 di . Since G is not bipartite, we may assume that G1 is not bipartite. Let
w = ∑s

i=1 wi , where wi = ∑�
k=1 epk ∈ R

d if Gi is a non-bipartite graph on the
vertex set {p1, . . . , p�}, and wi = ∑�

k=1 2epk ∈ R
d if Gi is a bipartite graph whose

vertices are divided into two independent sets {p1, . . . , p�} and {q1, . . . , qm}. It then
follows that H = {x ∈ R

d : 〈w, x〉 = 2} is a supporting hyperplane of BG and
the corresponding face Fw = BG ∩ H is the convex hull of H = ⋃s

i=1 Hi , where
Hi = {eu + ev : {u, v} ∈ E(Gi )} if Gi is not bipartite, and Hi = {eu + ev : {u, v} ∈
E(Gi )} ∪ {ep1 , . . . , ep�

} ∪ {epk − ev : {pk, v} ∈ E(Gi )} if Gi is a bipartite graph
withwi = ∑�

k=1 2epk ∈ R
d . We will show thatFw is a facet ofBG . The convex hull

of {eu + ev : {u, v} ∈ E(Gi )} is the edge polytope PGi of Gi and it is known [33,
Proposition 1.3] that

dim PGi =
{

di − 1 if Gi is not bipartite,
di − 2 otherwise.

If Gi is not bipartite, then the dimension of conv(Hi ) = PGi is di − 1. If Gi is
bipartite, then di − 2 = dim PGi < dim conv(Hi ) since PGi ⊂ conv(Hi ) and a
hyperplaneH = {(x1, . . . , xd) ∈ R

d : x1 + · · ·+ xd = 2} satisfies ep1 /∈ H ⊃ PGi .
Hence the dimension of the face Fw is at least s − 1 + ∑s

i=1(di − 1) = d − 1, i.e.,
Fw is a facet of BG . Since G1 is not bipartite, we have 1

2 · w /∈ Z
d . Thus BG is not

reflexive.
(iii)⇒ (i): Suppose thatG is bipartite. Let<S and<R be any reverse lexicographic

orders satisfying the condition in Lemma 2.5. It is known [13, Theorem 5.24] that
any triangulation of the edge polytope of a bipartite graph is unimodular. By [48,
Corollary 8.9], the initial ideal of the toric ideal of P

̂G with respect to<S is squarefree.
Thanks to Lemmas 2.4 and 2.5, we have the desired conclusion. ��

We now give a theorem on quadratic Gröbner bases of IBG when G is bipartite.
This theorem implies that Theorem 0.2. The same result is known for edge polytopes
( [35]).

Theorem 2.6 Let G be a bipartite graph. Then the following conditions are equivalent:

(i) The toric ideal IBG of BG has a squarefree quadratic initial ideal
(i.e., BG has a flag regular unimodular triangulation);

(ii) The toric ring K [BG] of BG is a Koszul algebra;
(iii) The toric ideal IBG of BG is generated by quadratic binomials;
(iv) Any cycle of G of length ≥ 6 has a chord (“chordal bipartite graph”).

Proof Implications (i) ⇒ (ii) ⇒ (iii) hold in general.
(iii) ⇒ (iv): Suppose that G has a cycle of length ≥ 6 without chords. By the

theorem in [35], the toric ideal of PG is not generated by quadratic binomials. Since
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the edge polytope PG is a face of BG , the toric ring K [PG] is a combinatorial pure
subring [32] of K [BG]. Hence IBG is not generated by quadratic binomials.

(iv)⇒ (i): Suppose that any cycle ofG of length≥ 6 has a chord. By Lemma 2.5, it
is enough to show that the initial ideal of IP

̂G
is squarefree and quadratic with respect

to a reverse lexicographic order <S such that z < {xi+} < {yk�++}. Let A = (ai j )
be the incidence matrix of G whose rows are indexed by V1 and whose columns are
indexed by V2. Then the incidence matrix of ̂G is

A′ =

⎛

⎜

⎜

⎜

⎝

1

A
...

1
1 · · · 1 1

⎞

⎟

⎟

⎟

⎠

By the same argument as in the proof of the theorem in [35], we may assume that A′

contains no submatrices

(

1 1
1 0

)

if we permute the rows and columns of A in A′. Each

quadratic binomial in IP
̂G
corresponds to a submatrix

(

1 1
1 1

)

of A′. The proof of the
theorem in [35] guarantees that the initial ideal is squarefree and quadratic if the initial

monomial of each quadratic binomial corresponds to

(

1
1

)

. It is easy to see that there

exists a such reverse lexicographic order which satisfies z < {xi+} < {yk�++}. ��

3 �-positivity and real-rootedness of the h∗-polynomial ofBG

In this section, we study the h∗-polynomial of BG for a graph G. First, we recall
what h∗-polynomials are. LetP ⊂ R

d be a lattice polytope of dimension d. Given a
positive integer n, we define

LP (n) = |nP ∩ Z
d |.

The study on LP (n) originated inEhrhart [10]who proved that LP (n) is a polynomial
in n of degree d with the constant term 1.We say that LP (n) is theEhrhart polynomial
of P . The generating function of the lattice point enumerator, i.e., the formal power
series

EhrP (x) = 1 +
∞
∑

k=1

LP (k)xk

is called the Ehrhart series ofP . It is well known that it can be expressed as a rational
function of the form

EhrP (x) = h∗(P, x)

(1 − x)d+1 .
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The polynomial h∗(P, x) is a polynomial in x of degree at most d with nonnegative
integer coefficients ( [44]) and it is called the h∗-polynomial (or the δ-polynomial) of
P . Moreover, one has Vol(P) = h∗(P, 1). Refer the reader to [3] for the detailed
information about Ehrhart polynomials and h∗-polynomials.

Thanks to Proposition 1.1 (a), we give a formula for h∗-polynomial ofBG in terms
of that of edge polytopes of some graphs. By the following formula, we can calculate
the h∗-polynomial of BG if we can calculate each h∗(P

˜H , x).

Proposition 3.1 Let G be a graph on [d]. Then the h∗-polynomial of BG satisfies

h∗(BG, x) =
d

∑

j=0

2 j (x − 1)d− j
∑

H∈S j (G)

h∗(P
˜H , x), (2)

where S j (G) denote the set of all induced subgraph of G with j vertices.

Proof By Proposition 1.1 (a), BG is divided into 2d lattice polytopes of the form
BG∩Oε. EachBG∩Oε is unimodularly equivalent to P

˜G . In addition, the intersection
ofBG∩Oε andBG∩Oε′ is of dimensiond−1 if andonly if ε−ε′ ∈ {±2e1, . . . ,±2ed}.
If ε − ε′ = 2ek , then (BG ∩ Oε) ∩ (BG ∩ Oε′) = BG ∩ Oε ∩ Oε′ � BG ′ ∩ Oε′′ ,
where G ′ is the induced subgraph of G obtained by deleting the vertex k, and ε′′ is
obtained by deleting the k-th component of ε. Hence the Ehrhart polynomial LBG (n)

satisfies the following:

LBG (n) =
d

∑

j=0

2 j (−1)d− j
∑

H∈S j (G)

LP
˜H
(n).

Thus the Ehrhart series satisfies

h∗(BG, x)

(1 − x)d+1 =
d

∑

j=0

2 j (−1)d− j
∑

H∈S j (G)

h∗(P
˜H , x)

(1 − x) j+1 ,

as desired. ��
Let f = ∑d

i=0 ai x
i be a polynomial with real coefficients and ad �= 0. We now

focus on the following properties.

(RR) We say that f is real-rooted if all its roots are real.
(LC) We say that f is log-concave if a2i ≥ ai−1ai+1 for all i .
(UN) We say that f is unimodal if a0 ≤ a1 ≤ · · · ≤ ak ≥ · · · ≥ ad for some k.

If all its coefficients are positive, then these properties satisfy the implications

(RR) ⇒ (LC) ⇒ (UN).

On the other hand, the polynomial f is said to be palindromic if f (x) = xd f (x−1). It is
γ -positive if there are γ0, γ1, . . . , γ�d/2� ≥ 0 such that f (x) = ∑

i≥0 γi x i (1+x)d−2i .
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The polynomial
∑

i≥0 γi x i is called γ -polynomial of f . We can see that a γ -positive
polynomial is real-rooted if and only if its γ -polynomial had only real roots ([40,
Observation 4.2]).

By the following proposition, we are interested in connected bipartite graphs.

Proposition 3.2 Let G be a bipartite graph andG1, . . . ,Gs the connected components
of G. Then the h∗-polynomial of BG is palindromic, unimodal and

h∗(BG, x) = h∗(BG1, x) · · · h∗(BGs , x).

Proof It is known [14] that the h∗-polynomial of a lattice polytope P with the interior
lattice point 0 is palindromic if and only if P is reflexive. Moreover, if a reflexive
polytope P has a unimodular triangulation, then the h∗-polynomial of P is unimodal
(see [7]). It is easy to see that,BG is the free sum ofBG1, . . . ,BGs . Thus we have a
desired conclusion by Theorem 0.1 and [6, Theorem 1]. ��

In the rest of the present paper, we discuss the γ -positivity and the real-rootedness
of the h∗-polynomial of BG when G is a bipartite graph. The edge polytope PG of
a bipartite graph G is called the root polytope of G, and it is shown [25] that the
h∗-polynomial of PG coincides with the interior polynomial IG(x) of a hypergraph
induced by G. First, we discuss interior polynomials introduced by Kálmán [24] and
developed in many papers.

A hypergraph is a pair H = (V , E), where E = {e1, . . . , en} is a finite multiset
of non-empty subsets of V = {v1, . . . , vm}. Elements of V are called vertices and
the elements of E are the hyperedges. Then we can associate H to a bipartite graph
BipH with a bipartition V ∪ E such that {vi , e j } is an edge of BipH if vi ∈ e j .
Assume that BipH is connected. A hypertree in H is a function f : E → Z≥0 such
that there exists a spanning tree� of BipH whose vertices have degree f(e)+1 at each
e ∈ E . Then we say that� induce f . Let HT(H ) denote the set of all hypertrees inH .
A hyperedge e j ∈ E is said to be internally active with respect to the hypertree f if it
is not possible to decrease f(e j ) by 1 and increase f(e j ′) ( j ′ < j) by 1 so that another
hypertree results. We call a hyperedge internally inactivewith respect to a hypertree if
it is not internally active and denote the number of such hyperedges of f by ι(f). Then
the interior polynomial ofH is the generating function IH (x) = ∑

f∈HT(H ) x
ι(f). It

is known [24, Proposition 6.1] that deg IH (x) ≤ min{|V |, |E |} − 1. If G = BipH ,
then we set IG(x) = IH (x). In [25] Kálmán and Postnikov proved the following.

Proposition 3.3 [25, Theorems 1.1 and 3.10] Let G be a connected bipartite graph.
Then we have

IG(x) = h∗(PG , x).

Interior polynomials of disconnected bipartite graphs are defined by Kato [26] and
the same assertion of Proposition 3.3 holds for all bipartite graphs. Note that if G is
a bipartite graph, then the bipartite graph ̂G arising from G is connected. Hence we
can use this formula to study the Eq. (2) in Proposition 3.1.
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A k-matching of G is a set of k pairwise non-adjacent edges of G. Let

M(G, k) =
{

{vi1 , . . . , vik , e j1 , . . . , e jk } : there exists a k-matching of G
whose vertex set is {vi1 , . . . , vik , e j1 , . . . , e jk }

}

.

For k = 0, we set M(G, 0) = {∅}. Using the theory of generalized permutohedra
[31,41], we have the following important fact on interior polynomials:

Proposition 3.4 Let G be a bipartite graph. Then we have

I
̂G(x) =

∑

k≥0

|M(G, k)| xk . (3)

Proof Let V ∪ E denote a bipartition of G, where V = {v2, . . . , vm} and E =
{e2, . . . , en} with d = m + n − 2. Then ̂G is a connected bipartite graph with a
bipartition V ′ ∪ E ′ with V ′ = {v1} ∪ V and E ′ = {e1} ∪ E . Recall that {vi , e j } is
an edge of ̂G if and only if either (i − 1)( j − 1) = 0 or {vi , e j } is an edge of G.
Let HT(̂G) be the set of all hypertrees in the hypergraph associated with ̂G. Given a
hypertree f ∈ HT(̂G), let � be a spanning tree that induces f . From [24, Lemma 3.3],
we may assume that {v1, e j } is an edge of � for all 1 ≤ j ≤ n. Note that the degree
of each vi (2 ≤ i ≤ m) is 1.

By definition, e1 is always internally active. We show that, e j ( j ≥ 2) is internally
active if and only if f(e j ) = 0. By definition, if f(e j ) = 0, then e j is internally
active. Suppose f(e j ) > 0. Then there exists i ≥ 2 such that {vi , e j } is an edge of
�. Let f ′ ∈ HT(̂G) be a hypertree induced by a spanning tree obtained by replacing
{vi , e j } with {vi , e1} in �. Then we have f ′(e j ) = f(e j ) − 1, f ′(e1) = f(e1) + 1 and
f ′(ek) = f(ek) for all 1 < k �= j . Hence e j is not internally active. Thus ι(f) is the
number of e j ( j ≥ 2) such that there exists an edge {vi , e j } of � for some i ≥ 2.

In order to prove the equation (3), it is enough to show that, for fixed hyperedges
e j1 , . . . , e jk with 2 ≤ j1 < · · · < jk ≤ n, the cardinality of

S j1,..., jk = {f ∈ HT(̂G) : e j1 , . . . , e jk are not internally active and ι(f) = k}

is equal to the cardinality of

M j1,..., jk =
{

{vi1, . . . , vik } : there exists a k-matching of G
whose vertex set is {vi1 , . . . , vik , e j1 , . . . , e jk }

}

.

Let G j1,..., jk be the induced subgraph of G on the vertex set V ∪ {e j1, . . . , e jk }. If e j�
is an isolated vertex in G j1,..., jk , then bothS j1,..., jk andM j1,..., jk are empty sets. If vi
is an isolated vertex in G j1,..., jk , then there is no relations between vi and two sets, and
hence we can ignore vi . Thus we may assume that G j1,..., jk has no isolated vertices.

It is known thatM j1,..., jk is the set of bases of a transversal matroid associated with
G j1,..., jk . See, e.g., [39, Section 1.6]. For i = 2, . . . ,m, let

Ii = {0} ∪ {� : {vi , e j�} is an edge of G j1,..., jk } ⊂ {0, 1, . . . , k}.
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Oh [31] defines a lattice polytope PM j1,..., jk
to be the generalized permutohedron [41]

of the induced subgraph of ̂G on the vertex set V ∪ {e1, e j1 , . . . , e jk }, i.e., PM j1,..., jk
is

the Minkowski sum �I2 + · · · + �Im , where �I = conv({e j : j ∈ I }) ⊂ R
k+1

and e0, e1, . . . , ek are unit coordinate vectors in R
k+1. By [31, Lemma 22 and

Proposition 26], the cardinality of M j1,..., jk is equal to the number of the lattice
point (x0, x1, . . . , xk) ∈ PM j1,..., jk

∩ Z
k+1 with x1, x2, . . . , xk ≥ 1. In addition,

by [41, Proposition 14.12], any lattice point (x0, x1, . . . , xk) ∈ PM j1,..., jk
∩ Z

k+1

is of the form ei2 + · · · + eim , where i� ∈ I� for 2 ≤ � ≤ m. By a natural
correspondence (x0, x1, . . . , xk) ∈ PM j1,..., jk

∩ Z
k+1 with x1, x2, . . . , xk ≥ 1 and

(f(e1), f(e j1), . . . , f(e jk )) with f ∈ S j1,..., jk , it follows that the number of the lattice
point (x0, x1, . . . , xk) ∈ PM j1,..., jk

∩ Z
k+1 with x1, x2, . . . , xk ≥ 1 is equal to the

cardinality of S j1,..., jk , as desired. ��
Now, we show that the h∗-polynomial ofBG is γ -positive if G is a bipartite graph.

In fact, we prove Theorem 0.3.

Proof of Theorem 0.3 By Propositions 3.1 and 3.4, the h∗-polynomial ofBG is

h∗(BG, x) =
d

∑

j=0

2 j (x − 1)d− j
∑

H∈S j (G)

I
̂H (x)

=
d

∑

j=0

2 j (x − 1)d− j
∑

H∈S j (G)

∑

k≥0

|M(H , k)| xk .

Note that, for each {vi1, . . . , vik , e j1 , . . . , e jk } ∈ M(G, k) there exist
(d−2k
j−2k

)

induced
subgraphs H ∈ S j (G) such that {vi1, . . . , vik , e j1 , . . . , e jk } ∈ M(H , k) for j =
2k, 2k + 1, . . . , d. Thus we have

h∗(BG, x) =
∑

k≥0

d
∑

j=2k

2 j (x − 1)d− j |M(G, k)|
(

d − 2k

j − 2k

)

xk

=
∑

k≥0

|M(G, k)| 22k xk(2 + (x − 1))d−2k

= (x + 1)d
∑

k≥0

|M(G, k)|
(

4x

(x + 1)2

)k

= (x + 1)d I
̂G

(

4x

(x + 1)2

)

,

as desired. ��
By Proposition 3.4, it follows that, if G is a forest, then I

̂G(x) coincides with the
matching generating polynomial of G.
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Proposition 3.5 Let G be a forest. Then we have

I
̂G(x) =

∑

k≥0

mk(G) xk,

where mk(G) is the number of k-matchings in G. In particular, I
̂G(x) is real-rooted.

Proof Let M1 and M2 be k-matchings of G. Suppose that M1 and M2 have the same
vertex set {vi1, . . . , vik , e j1 , . . . , e jk }. If M = (M1 ∪ M2) \ (M1 ∩ M2) is not empty,
then M corresponds to a subgraph of G such that the degree of each vertex is 2. Hence
M has at least one cycle. This contradicts that G is a forest. Hence we have M1 = M2.
Thusmk(G) is the cardinality ofM(G, k). In general, it is known that

∑

k≥0 mk(G) xk

is real-rooted for any graph G. See, e.g., [12,29]. ��
Next we will show that, if a bipartite graph G is a “permutation graph” associated

with a poset P , then the interior polynomial I
̂G(x) coincides with the P-Eulerian

polynomial W (P)(x). A permutation graph is a graph on [d] with edge set

{{i, j} : Li and L j intersect each other},

where there are d points 1, 2, . . . , d on two parallel linesL1 andL2 in the plane, and
the straight lines Li connect i on L1 and i on L2. If G is a bipartite graph with a
bipartition V1 ∪ V2, the following conditions are equivalent:

(i) G is a permutation graph;
(ii) The complement of G is a comparability graph of a poset;
(iii) There exist orderings <1 on V1 and <2 on V2 such that

i, i ′ ∈ V1, i <1 i
′, j, j ′ ∈ V2, j <2 j ′, {i, j}, {i ′, j ′} ∈ E(G)

�⇒ {i, j ′}, {i ′, j} ∈ E(G);

(iv) For any three vertices, there exists a pair of them such that there exists no path
containing the two vertices that avoids the neighborhood of the remaining vertex.

See [5, p. 93] for details. On the other hand, let P be a naturally labeled poset on [d].
Then the order polynomial �(P,m) of P is defined for 0 < m ∈ Z to be the number
of order-preserving maps σ : P → [m]. It is known that

∑

m≥0

�(P,m + 1)xm =
∑

π∈L (P) x
d(π)

(1 − x)d+1 ,

where L (P) is the set of linear extensions of P and d(π) is the number of descents
of π . The P-Eulerian polynomial W (P)(x) is defined by

W (P)(x) =
∑

π∈L (P)

xd(π).
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See, e.g., [46] for details. We now see a relation between the interior polynomial of a
bipartite permutation graph and the P-Eulerian polynomial of a finite poset.

Proposition 3.6 Let G be a bipartite permutation graph and let P be a poset whose
comparability graph is the complement of G. Then we have

I
̂G(x) = W (P)(x).

Proof In this case,BG ∩ O(1,...,1) is the chain polytope CP of P . It is known that the
h∗-polynomial of CP is the P-Eulerian polynomialW (P)(x). See [45,46] for details.
Thus we have I

̂G(x) = h∗(P
̂G , x) = W (P)(x), as desired. ��

It was conjectured byNeggers–Stanley thatW (P)(x) is real-rooted.However this is
false in general. The first counterexample was constructed in [4] (not naturally labeled
posets). Counterexamples of naturally labeled posets were given in [47]. Counterex-
amples in these two papers are narrow posets, i.e., elements of posets are partitioned
into two chains. It is easy to see that P is narrow poset if and only if the comparability
graph of P is the complement of a bipartite graph. Since Stembridge found many
counterexamples which are naturally labeled narrow posets, there are many bipartite
permutation graphs G such that h∗(BG, x) are not real-rooted. We give one of them
as follows.

Example 3.7 Let P be a naturally labeled poset in Fig. 5 given in [47]. Then

W (P)(x) = 3x8 + 86x7 + 658x6 + 1946x5 + 2534x4 + 1420x3 + 336x2 + 32x + 1

has a conjugate pair of zeros near −1.85884± 0.149768i as explained in [47]. Let G
be the complement of the comparability graph of P . Then G is a bipartite graph with
17 vertices and 32 edges. The h∗-polynomial of BG is

h∗(BG, x) = (x + 1)17W (P)

(

4x

(x + 1)2

)

= x17 + 145x16 + 7432x15 + 174888x14 + 2128332x13

+ 14547884x12 + 59233240x11

+ 148792184x10 + 234916470x9 + 234916470x8 + 148792184x7

+59233240x6 + 14547884x5 + 2128332x4 + 174888x3

+7432x2 + 145x + 1

and has conjugate pairs of zeros near −3.88091 ± 0.18448i and −0.257091 ±
0.0122209i . (We used Mathematica to compute approximate values.) On the other
hand, h∗(BG, x) is log-concave.

By the following proposition, it turns out that this example is a counterexample to
“Real Root Conjecture” that has been already disproved by Gal [11].
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Fig. 5 A counterexample to
Neggers–Stanley conjecture [47]

Proposition 3.8 Let G be a bipartite permutation graph. Then h∗(BG, x) coincides
with the h-polynomial of a flag complex that is a triangulation of a sphere.

Proof It is known [5, p.94] that any bipartite permutation graph satisfies the condition
(iv) in Theorem 2.6. Hence there exists a squarefree quadratic initial ideal with respect
to a reverse lexicographic order such that the smallest variable corresponds to the
origin. This means that there exists a flag regular unimodular triangulation � such
that the origin is a vertex of any maximal simplex in �. Then h∗(BG, x) coincides
with the h-polynomial of a flag triangulation of the boundary of a convex polytope
BG arising from �. ��

In [23], for a (p, q)-complete bipartite graph Kp,q , a simple description for the
h∗-polynomial of AKp,q was given. In fact, one has

h∗(AKp+1,q+1 , x) =
min{p,q}

∑

i=0

(

2i

i

)(

p

i

)(

q

i

)

xi (x + 1)p+q+1−2i . (4)

Moreover, it was shown that h∗(AKp+1,q+1 , x) is γ -positive and real-rooted. Similarly,
we can obtain a simple description for the h∗-polynomial of BKp,q and show that
h∗(BKp,q , x) is γ -positive and real-rooted.
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Example 3.9 Let Kp,q be a (p, q)-complete bipartite graph. Then the comparability
graph of a poset P consisting of two disjoint chains 1 < 2 < · · · < p and p + 1 <

p + 2 < · · · < p + q is the complement of Kp,q . It is easy to see that

W (P)(x) =
min{p,q}

∑

i=0

(

p

i

)(

q

i

)

xi .

Hence we have

h∗(BKp,q , x) = (x+1)p+qW (P)

(

4x

(x + 1)2

)

=
min{p,q}

∑

i=0

4i
(

p

i

)(

q

i

)

xi (x+1)p+q−2i .

(5)
Simion [42] proved thatW (P)(x) is real-rooted if P is a naturally labeled and disjoint
union of chains. Thus the h∗-polynomial h∗(BKp,q , x) is real-rooted.

Remark 3.10 In a very recent work [38], it is shown that the h∗-polynomials of sym-
metric edge polytopes of certain graphs can be computed by that ofBG . For example,
the Eq. (4) can be obtained from the Eq. (5) ([38, Example 5.10]).

In [23], for the proof of the real-rootedness of h∗(AKp,q , x), interlacing polynomials
techniques were used. Let f and g be real-rooted polynomials with roots a1 ≥ a2 ≥
· · · , respectively, b1 ≥ b2 ≥ · · · . Then g is said to interlace f if

a1 ≥ b1 ≥ a2 ≥ b2 ≥ · · · .

In this case, we write f � g. In [23], it is shown that

h∗(AKp,q , x) � h∗(AKp,q+1 , x).

By a similar way of [23], we can prove the following.

Proposition 3.11 For all p, q ≥ 1, one has

h∗(BKp,q , x) � h∗(BKp,q+1 , x).

Proof Set γ (BKp,q , x) = ∑

i≥0 4
i
(p
i

)(q
i

)

xi . Since {(pi
)}i≥0 is a multiplier sequence

(see [23]) and since (4x +1)q � (4x +1)q+1, one has γ (BKp,q , x) � γ (BKp,q+1 , x).
By [23, Lemma 4.10], we obtain h∗(BKp,q , x) � h∗(BKp,q+1 , x). ��
Acknowledgements The authors are grateful to the anonymous referee for his/her careful reading and
helpful comments. The authors were partially supported by JSPS KAKENHI 18H01134 and 16J01549.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If



Reflexive polytopes arising from bipartite graphs with… Page 21 of 22 59

material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
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