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Abstract
We show how one can use the representation theory of ternary quartics to construct all
vector-valued Siegel modular forms and Teichmüller modular forms of degree 3. The
relation between the order of vanishing of a concomitant on the locus of double conics
and the order of vanishing of the corresponding modular form on the hyperelliptic
locus plays an important role. We also determine the connection between Teichmüller
cusp forms onMg and the middle cohomology of symplectic local systems onMg .
In genus 3, we make this explicit in a large number of cases.

Mathematics Subject Classification 10D · 11F46 · 14H10 · 14H45 · 14J15 · 14K10

1 Introduction

This paper contains two main results. Firstly, we show how the representation theory
associated to ternary quartics can be used to describe and construct all vector-valued
Siegel and Teichmüller modular forms of degree 3 (Theorem 11.6). This uses the
classical notion of concomitants, of which invariants, covariants, and contravariants
are special cases. Secondly, we describe for arbitrary g the precise relation between
certain spaces of Teichmüller cusp forms on Mg and the middle cohomology of the
standard symplectic local systems on Mg (Theorem 13.1). We illustrate the main
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results by a substantial number of examples, focusing on genus 3 for the second
theorem, and obtain several other results of independent interest.

LetA3 be the moduli space of principally polarized abelian varieties of dimension
3. Over the complex numbers the orbifold A3(C), associated to the moduli space
A3 , can be written as an arithmetic quotient �3\H3 , where the Siegel modular group
�3 = Sp(6,Z)of degree 3 acts on theSiegel upper half spaceH3 of degree 3 in the usual
way. Themoduli stackA3 carries a natural vector bundleE of rank 3, theHodge bundle
with fibre H0(X ,�1

X ) over the point [X ] of A3 . Over C it can be given as a quotient
�3\(H3 × C

3) where the action on C
3 corresponds to the standard representation

of GL(3). In a similar way, for each irreducible representation ρ of GL(3) there is
an associated vector bundle Eρ that can be constructed from E by using a Schur
functor. Sections of powers of the determinant bundle det(E) on A3 can be identified
with scalar-valued Siegel modular forms, while sections of Eρ can be identified with
vector-valued Siegel modular forms. The vector bundle E, and more generally all Eρ ,
extend in a natural way over the standard smooth compactification of A3. By the
Koecher principle holomorphic sections of Eρ extend over this compactification.

Let M3 denote the moduli space of curves of genus 3. The Torelli morphism
t : M3 → A3 is a morphism of algebraic stacks of degree 2 ramified along the
hyperelliptic locus. By pullback under t we obtain the Hodge bundle E′ on M3 and
for each irreducible representation ρ of GL(3) a vector bundle E′

ρ onM3. Sections of
such a bundleE′

ρ are called Teichmüller modular forms of degree 3. The vector bundle
E

′ and hence all the E′
ρ can be extended in a natural way over the Deligne–Mumford

compactification M3 and we show that a holomorphic section of E′
ρ automatically

extends to a holomorphic section of the extended bundle.
The first Teichmüller modular form that is not (a pullback under the Torelli map

of) a Siegel modular form is the scalar-valued form χ9 of weight 9 whose existence
was proven by Ichikawa [22,23]. There is an involution on the space of Teichmüller
forms such that a Teichmüller modular form F that is invariant is the pullback of a
Siegel modular form, while an anti-invariant form is divisible by χ9, with quotient
the pullback of a Siegel modular form. The study of Teichmüller modular forms of
degree 3 reduces therefore to that of Siegel modular forms (Sect. 7).

A nonhyperelliptic curve of genus 3 has as canonical image a quartic curve in P
2

and thus the open part Mnh
3 of M3 that corresponds to nonhyperelliptic curves has

a description as the quotient of an open part of the space of ternary quartics under
the action of GL(3). Thus the representation theory of ternary quartics enters, i.e., the
decomposition of Symd(Sym4(C3)) into irreducible representations of GL(3). The
classical notion of concomitants of ternary quartics makes this decomposition explicit
(see [7]). Our first main result is a complete description of Siegel (and Teichmüller)
modular forms of degree 3 in terms of concomitants. We associate to a concomitant a
meromorphic Siegel or Teichmüller modular form which is holomorphic outside the
hyperelliptic locus on M3 or A3 (see Sect. 10). This is analogous to our description
of Siegel modular forms of degree 2 in terms of covariants of the action of GL(2) on
the space of binary sextics, see [8].

The most basic concomitant is the universal ternary quartic f . It defines a
meromorphic Teichmüller modular form χ4,0,−1 of weight (4, 0,−1). Multiplica-
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tion by χ9 makes it into a holomorphic Siegel modular form χ4,0,8 , a section of
Sym4(E) ⊗ det8(E), the ‘first’ Siegel cusp form of degree 3 (cf. Sect. 4).

The fact that in general concomitants define meromorphic modular forms that
become holomorphic after multiplication with a suitable power of χ9 forces us to
analyze the order of vanishing of the modular form associated to a concomitant along
the hyperelliptic locus. We express this order of vanishing in terms of the order of
vanishing of the concomitant along the locus of double conics in the space of ternary
quartics. Remarkably, this enables us to identify the spaces of concomitants of ternary
quartics with given order of vanishing along the locus of double conics with the spaces
of Siegel modular forms with given order of vanishing along the divisor at infinity
(Theorem 11.6).

Instead of working with χ4,0,−1 and multiplying with a power of χ9 , we can also
work with χ4,0,8 and obtain from a concomitant a holomorphic Siegel modular form,
which may be divisible by a power of χ9 . In order to use this in an efficient way, we
need to know the Fourier expansion of χ4,0,8 rather well. We obtain it by analyzing
the Schottky form, a scalar-valued Siegel cusp form of degree 4 and weight 8, along
the ‘diagonally embedded’ H3 × H1 ⊂ H4 in the Siegel upper half space of degree 4
(see Sects. 4–5).

To demonstrate our approach, we construct a substantial number of Siegel cusp
forms and we compute some of their Hecke eigenvalues, finding agreement with [4].

In [3],Bergströmand twoof the present authors studied the cohomologyof symplec-
tic local systems onA3 . The same method can also be used to study the cohomology
of the corresponding local systems on M3 . (As is well-known, this cohomology
is very closely related to the cohomology of the moduli spaces M3,n of n-pointed
curves of genus 3.) If the local system is even, its cohomology on M3 equals that
on t(M3) = A3 − A2,1 , the moduli space of indecomposable principally polarized
abelian threefolds. However, in the odd case, the cohomology can not be explained in
terms of A3 . It is here that Teichmüller modular forms enter. Our second main result
(Theorem 13.1) gives the precise relationship between certain spaces of Teichmüller
cusp forms and the middle cohomology of symplectic local systems on Mg . This is
a partial analogue of the results of Faltings and Chai [15] for Ag . We then specialize
to genus 3, where we have determined these spaces of Teichmüller cusp forms in a
substantial number of cases, via computations with concomitants. Finally, we discuss
how these results match perfectly with conjectural formulas for the ‘motivic’ Euler
characteristics of the symplectic local systems of weight at most 20 onM3 , obtained
from counts of curves over finite fields, as in [3].

2 Siegel modular forms

LetZ2g be the symplectic lattice of rank 2g with basis elements e1, . . . , eg, f1, . . . , fg

and with the symplectic pairing given by 〈ei , e j 〉 = 0 = 〈 fi , f j 〉 and 〈ei , f j 〉 = δi j .
We write �g = Sp(2g,Z) = Aut(Z2g, 〈 , 〉) for the Siegel modular group of degree
g. An element γ ∈ �g can be given as a 2 × 2 matrix of g × g blocks with respect to
the basis e1, . . . , eg, f1, . . . , fg . We will denote byAg the moduli stack of principally
polarized abelian varieties and by Mg the moduli stack of curves of genus g (for
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g > 1). Over the complex numbers the orbifold Ag(C), associated to the moduli
spaceAg , can be written as �g\Hg , where the Siegel modular group �g = Sp(2g,Z)

of degree g acts on the Siegel upper half space

Hg = {τ ∈ Mat(g × g,C) : τ t = τ, Im(τ ) > 0}

of degree g in the usual way:

τ 	→ γ · τ = (aτ + b)(cτ + d)−1 for γ =
(

a b
c d

)
∈ �g.

The moduli spaceAg carries a rank g vector bundle, the Hodge bundleE. The induced
bundle on Ag(C) corresponds to the factor of automorphy

j(γ, τ ) = cτ + d .

For an irreducible representation ρ of GL(g,C) of highest weight (ρ1, . . . , ρg) with
ρ1 ≥ ρ2 ≥ · · · ≥ ρg , we have a corresponding vector bundle Eρ on Ag; the Hodge
bundle corresponds to the standard representation with highest weight (1, 0, . . . , 0)
and its determinant has highest weight (1, . . . , 1). If ρ : GL(g,C) → GL(W ) is a
finite-dimensional complex representation, the induced vector bundle on Ag(C) is
defined by the factor of automorphy

j(γ, τ ) = ρ(cτ + d) .

A scalar-valued Siegelmodular form of degree g > 1 andweight k is a holomorphic
function f : Hg → C satisfying

f (γ · τ) = det(cτ + d)k f (τ )

for all γ ∈ �g , while for g = 1 we also need a growth condition at infinity. If
W is a finite-dimensional complex vector space and ρ : GL(g,C) → GL(W ) a
representation, then a vector-valued Siegel modular form of degree g > 1 and weight
ρ is a holomorphic map f : Hg → W such that for all γ ∈ �g

f (γ · τ) = ρ(cτ + d) f (τ ) .

Siegel modular forms of weight ρ can be interpreted as sections of the vector bundle
Eρ , and conversely. Sections of the kth power Lk of the determinant line bundle
L = det(E) correspond to scalar-valued Siegel modular forms of degree g and weight
k. The vector bundle E and the bundles Eρ extend in a canonical way to Faltings–Chai
type toroidal compactifications ofAg and theKoecher principle says that their sections
do so too.

A Siegel modular form F of weight ρ admits a Fourier expansion

F =
∑

n

a(n) qn with qn = e2π i Tr(nτ),
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where n runs over the half-integral symmetric positive semi-definite g×g matrices and
a(n) ∈ W . (Half-integral means that 2n is integral with even entries on the diagonal.)

We are interested in the case g = 3. For an irreducible representation ρ of highest
weight (ρ1, ρ2, ρ3) of GL(3,C) we denote the weight of the corresponding Siegel
modular forms by

(i, j, k) = w(ρ) = (ρ1 − ρ2, ρ2 − ρ3, ρ3) . (1)

The vector space of Siegel modular forms of weight (i, j, k) on �3 is denoted by
Mi, j,k . The space of cusp forms is denoted by Si, j,k . For scalar-valued Siegel modular
forms we often abbreviate the weight (0, 0, k) by k.

Scalar-valued Siegel modular forms of degree 3 form a graded ring:

R = ⊕∞
k=0M0,0,k .

Vector-valued modular forms of degree 3 form a graded module M = ⊕i, j,k Mi, j,k

over the ring R. The ring R was described by Tsuyumine [39]. He gave 34 generators
and the generating function of R. His work used results by Igusa [27] and Shioda [37].
Igusa showed that there is an exact sequence

0 → χ18 R → R
r−→ I (2, 8) ,

where χ18 is a cusp form of weight 18 (see Sect. 3) and I (2, 8) is the ring of invariants
of binary octics. The map r is induced by the restriction map to the zero locus in
A3 of χ18. This locus is the closure of the image of the hyperelliptic locus H3 under
the Torelli map. Shioda determined the ring of invariants of binary octics [37]. In the
recent paper [26], Lercier and Ritzenthaler reduce the number of generators of R to
19.

For Siegel modular forms, both the notion of degree and that of genus are used;
we tend to use degree for Siegel modular forms and genus for Teichmüller modular
forms, but are not strict in this respect.

3 The scalar-valued Siegel modular form �18

The scalar-valued Siegel modular form χ18 of degree 3 is up to a normalization defined
as the product of the 36 even theta constants. It is a cusp form of weight 18. Its Fourier
expansion starts with

χ18 = −
(

σ3 − σ2 + σ1 − 1

σ3

)2

(σ 2
3 − 2σ3σ1 + 8 σ3 + σ 2

1 − 4 σ2) q2
1q2

2q2
3 + · · ·

where we use

q j = e2π iτ j j , u = e2π iτ12 , v = e2π iτ13 and w = e2π iτ23 , (2)
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and σi is the i th elementary symmetric function in u, v, w. Thus χ18 vanishes with
multiplicity 2 at infinity. It is well-known that the divisor of χ18 in the toroidal com-
pactification Ã3 is H + 2D with H the hyperelliptic locus and D the divisor of Ã3 at
infinity:

div(χ18) = H + 2 D . (3)

We now give a direct proof that χ18 is up to a scalar the unique cusp form of weight
18 vanishing twice at infinity. This fact also follows from the result of Harris and
Morrison [19, Corollary 0.5] on the slope of effective divisors onM3.

Lemma 3.1 The space of Siegel cusp forms of degree 3 and weight 18 vanishing with
multiplicity ≥ 2 on D is generated by χ18.

Proof The dimension of S0,0,18 is 4. In order to construct a basis we consider the
Eisenstein series E4 and E6 whose Fourier expansions start with

E4 = 1 + 240(q1 + q2 + q3) + · · · , E6 = 1 − 504(q1 + q2 + q3) + · · ·

and cusp forms F12 and F14 of weight 12 and 14; note that dim S0,0,12 = 1 =
dim S0,0,14 (cf. [39]). We normalize these forms such that the following table gives
their first Fourier coefficients:

n det(2n) F12 F14

13 8 164 20
A1(1/2) ⊕ A2(1/2) 6 18 −6
A3(1/2) 4 1 1

Here we write the Fourier series of a modular form as before as

∑
n≥0

a(n) qn (using qn = e2π iTr(nτ))

with n running over the half-integral positive semi-definite symmetric matrices; Ai

refers to the Gram matrix of the standard root lattice. Recall that for a scalar-valued
modular form we have a(n) = a(ut nu) for all u ∈ GL(3,Z). We look at the induced
action of GL(3,Z). The set N of half-integral positive definite symmetric matrices
with 1’s on the diagonal contains elements from three distinct orbits: the orbit of 13
(one element), the orbit of A1(1/2) ⊕ A2(1/2) (sixteen elements), and the orbit of
A3(1/2) (six elements). This implies that we can read off the Fourier coefficient of
q1q2q3 of F12 and F14 from the table above. We claim that a basis of S0,0,18 is given
by

χ18, χ18|T2, E4F14, E6F12
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with T2 the Hecke operator of the prime 2. We can calculate the Fourier coefficient of
χ18|T2 using [10]. We get the following Fourier coefficients:

n det(2n) E6 F12 E4 F14 χ18|T2 χ18

13 8 164 20 108 0
A1(1/2) ⊕ A2(1/2) 6 18 −6 0 0
A3(1/2) 4 1 1 −1 0

This shows that the four cusp forms of weight 18 are linearly independent and that
χ18 is up to a nonzero scalar the unique cusp form of weight 18 that vanishes twice at
infinity. 
�

Remark 3.2 In Sect. 11, we will obtain a considerably more general result, with a
different method of proof (Theorem 11.6 and Corollary 11.8).

4 The vector-valued Siegel modular form �4,0,8

The modular form generating S4,0,8 is the unique nonzero cusp form (up to scalar) for
which i +2 j +3k is minimal (equal to 28) (cf. [38]). This formχ4,0,8 will play a central
role in this paper. Its Fourier expansion can be obtained as in [10] by taking theSchottky
form of weight 8 on �4 and developing it in the normal directions to H1 × H3 in H4.
The lowest order term gives a nonzero multiple of �⊗χ4,0,8 in S12(�1)⊗ S4,0,8(�3).
We normalize χ4,0,8 so that its Fourier expansion starts as follows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

(v − 1)2(w − 1)2/vw

(u − 1)(v − 1)(w − 1)(−1 + 1/vw + 1/uw − 1/uv)

(u − 1)2(w − 1)2/uw

0
(u − 1)(v − 1)(w − 1)(−1 + 1/vw − 1/uw + 1/uv)

(u − 1)(v − 1)(w − 1)(−1 − 1/vw + 1/uw + 1/uv)

0
0
0

(u − 1)2(v − 1)2/uv

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

q1q2q3 + · · · ,

where we use the same variables as in (2). This modular form is a lift of � =∑
τ(n)qn ∈ S12(�1) and its Hecke eigenvalue at a prime p is by the results of [3]



55 Page 8 of 39 F. Cléry et al.

predicted to be

τ(p) (p5 + τ(p) + p6).

We embed H2 × H1 in H3 via

(τ ′, τ ′′) 	→
(

τ ′ 0
0 τ ′′

)

and consider the vanishing of χ4,0,8 along this locus.

Lemma 4.1 Let I ⊂ OH3 be the ideal sheaf of H2 ×H1 in H3. The coordinates of the
form χ4,0,8 lie in I2, but not all in I3.

Proof Consider the Schottky form J8, a scalar-valued Siegel cusp form of weight 8
and degree 4. If we restrict it toH2 ×H2 we find as first term in its development in the
normal directions to H2 × H2 the tensor product χ6,8 ⊗ χ6,8, where χ6,8 is a Siegel
cusp form of weight (6, 8) in degree 2. If we develop J8 along H3 × H1 then we find
as first term in the normal directions χ4,0,8 ⊗� with � the elliptic modular cusp form
of weight 12. We refer to [10] for these facts. Comparing the degrees of vanishing
along H3 × H1 and H2 × H2, see [10, Section 5], we see that χ4,0,8 vanishes with
multiplicity 2 along H2 × H1.

Another way to see this is by looking at the expansion of χ4,0,8 given in [10, p. 39].
We thus see that the coordinates of χ4,0,8 lie in I2, but not all in I3. 
�

We can trivialize the pullback of E to H3 as H3 × C
3. We choose coordinates

z1, z2, z3 on C
3. Since the pullback of Sym2(E) can be identified with the cotangent

bundle of H3 the coordinates τi j correspond to zi z j . In particular, a basis of Sym4(E)

corresponds to the monomials of degree 4 in z1, z2 and z3. Therefore, we can write
χ4,0,8 as

χ4,0,8 =
∑

I

n I αI z I ,

where for a multi-index I = (i1, i2, i3) we inserted a normalization factor nI =
4!/i1!i2!i3!. We take the sum over the lexicographically ordered monomials z I =
zi1
1 zi2

2 zi3
3 of degree 4 and αI is a holomorphic function on H3 which we can present

as a Fourier series living in C[u±1, v±1, w±1][[q1, q2, q3]]. The z I are just dummy
variables to indicate the coordinates nI αI of the vector-valued modular form χ4,0,8.

The symmetric groupS3 acts on C3 by permuting z1, z2, z3 and hence induces an
action on H3 via

(τi j ) 	→ (τσ(i)σ ( j)), σ ∈ S3 . (4)

This action of S3 derives from an action of a subgroup of �3 by taking a 3 × 3
permutation matrix a = (a−1)t and using ( a 0

0 a ). To give the action on the Fourier
expansion, note that we have an induced action of S3 on q1, q2, q3 and on u, v, w.
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Lemma 4.2 The action of S3 on {1, 2, 3} induces an action on the coordinates αI of
χ4,0,8 given by

αI (q1, q2, q3, u, v, w) 	→ ασ(I )
(
qσ(1), qσ(2), qσ(3), σ (u), σ (v), σ (w)

)
.

The action on the fifteen coordinates has one orbit of length 6 and three orbits of
length 3. The reader may check that the action of (23) ∈ S3 on Sym4(E) is given by
sending the transpose of vI = (v1, v2, . . . , v15) to the transpose of

(v1, v3, v2, v6, v5, v4, v10, v9, v8, v7, v15, v14, v13, v12, v11)

and that of (13) ∈ S3 is given by

(v15, v14, v10, v13, v9, v6, v12, v8, v5, v3, v11, v7, v4, v2, v1).

For χ4,0,8 it thus suffices to give the coordinates v1, v2, v4 and v5 only; the other
coordinates can then be calculated by using the action of Lemma 4.2.

5 The Fourier–Jacobi expansion of the Schottky form

In the preceding section the form χ4,0,8 was defined by developing the Schottky form
of degree 4 and weight 8 along H1 × H3 and observing that the first nonzero term is
�⊗χ4,0,8 in S12(�1)⊗ S4,0,8(�3). For our application we need to be able to calculate
the Fourier expansion of χ4,0,8 quite far and for that we need the first Fourier–Jacobi
coefficient of the scalar-valued form J8.

Recall that the Schottky form J8 can be expressed as follows:

J8 = (R2
00 + R2

01 + R2
10 − 2(R00R01 + R00R10 + R01R10))/2

16 ;
here we write

Rμν(τ ) =
∏

α, β, γ∈{0,1}
ϑ[

μ 0 0 0
ν α β γ

](τ ), (τ ∈ H4)

where we use the theta series with characteristics
[ a

b

]
with a and b row vectors of size

g ∈ Z≥1 with coordinates in Z:

ϑ[
a
b

](τ, z) =
∑

l∈Zg

eπ i(l+a/2)τ (l+a/2)t
e2π i(l+a/2)·(z+b/2)t

, τ ∈ Hg, z = (z1, . . . , zg) ∈ C
g .

When z = 0, we denote ϑ[
a
b

](τ, 0) simply by ϑ[
a
b

](τ ). We thus need to calculate the

first Fourier–Jacobi coefficient of these theta functions. For any τ = (τi j ) ∈ H4 we
write

τ =
(

τ ′ zt

z τ4

)
where τ ′ ∈ H3 and z = (τ14, τ24, τ34)
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and we abbreviate τi i as τi . We write the Fourier–Jacobi expansion of ϑ[
μ 0 0 0
ν α β γ

] as

ϑ[
μ 0 0 0
ν α β γ

](τ ) =
∑
l∈Z

(−1)l γ ϑ[
μ 0 0
ν α β

](τ ′, l z)eπ i l2τ4 . (5)

So we get

ϑ[
μ 0 0 0
ν α β γ

](τ ) = ϑ[
μ 0 0
ν α β

](τ ′) + (−1)γ (ϑ[
μ 0 0
ν α β

](τ ′, z) + ϑ[
μ 0 0
ν α β

](τ ′,−z)) q1/2
4 + O(q2

4 ) ,

where q4 = e2π iτ4 . These first terms correspond to l = 0 and l = ±1 in formula (5)
and the next term is given by l = ±2 which gives rise to O(q2

4 ). Since we are dealing
with even characteristics, the latter formula simplifies to

ϑ[
μ 0 0 0
ν α β γ

](τ ) = ϑ[
μ 0 0
ν α β

](τ ′) + 2 (−1)γ ϑ[
μ 0 0
ν α β

](τ ′, z) q1/2
4 + O(q2

4 ) . (5′)

We introduce for τ ∈ H3 and z ∈ C
3 the notation

rμν(τ ) =
∏

α, β∈{0,1}
ϑ[

μ 0 0
ν α β

](τ ), sμν(τ, z) =
∑

α, β∈{0,1}

⎛
⎜⎝

ϑ[
μ 0 0
ν α β

](τ, z)

ϑ[
μ 0 0
ν α β

](τ )

⎞
⎟⎠

2

.

By using formulas (5) and (5′) and this notation we get the following result.

Lemma 5.1 The Fourier–Jacobi expansion of Rμν starts with

Rμν(τ ) = rμν(τ
′)2(1 − 4 sμν(τ

′, z) q4) + O(q2
4 ).

Since we are dealing with explicit theta series this allows us to compute the first
Fourier–Jacobi coefficient of J8 .Wewrite the Fourier–Jacobi development as J8(τ ) =∑∞

m=0 ϕ8,m(τ ′, z)e2π imτ4 .

Proposition 5.2 The first nonzero Fourier–Jacobi coefficient of the Schottky form J8
is given by

ϕ8,1(τ
′, z) = 1

212
(r00r01r10) (−r00s00 + r01s01 + r10s10)(τ

′, z).

Proof We have

J8(τ ) = 1

216
(ϕ8,0(τ

′) + ϕ8,1(τ
′, z) q4 + O(q2

4 )).
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The Fourier–Jacobi coefficient ϕ8,0 is a modular form of weight 8 on �3 but, since J8
is a cusp form, we have ϕ8,0 ∈ S8(�3) and this space is (0), so ϕ8,0 = 0. Computing
its expression in terms of the rμν gives

ϕ8,0(τ
′) = (r400 + r401 + r410 − 2(r200r201 + r200r210 + r201r210))(τ

′)
= (r00 − r01 − r10)(r00 + r01 + r10)(r00 + r10 − r01)(r00 + r01 − r10)(τ

′)
= 0

since we have the following relation

r00 − r01 − r10 = 0. (6)

The Fourier–Jacobi coefficient ϕ8,1 is a Jacobi cusp form of weight 8 and index 1 on
�3 and we have

ϕ8,1 = 8(−r200(r
2
00 − r201 − r210)s00 + r201(r

2
00 − r201 + r210)s01

+ r210(r
2
00 + r201 − r210)s10) = 16 r00r01r10(−r00s00 + r01s01 + r10s10)

since the relation (6) among the rμν implies

r200 − r201 − r210 = 2 r01r10, r200 − r201 + r210 = 2 r00r10,

r200 + r201 − r210 = 2 r00r01. 
�

Recall now that we write χ4,0,8 as
∑

nI αI z I where the sum is over the fifteen
lexicographically ordered multi-indices of the monomials of degree 4 in the three
variables z1, z2, z3 and each αI is a holomorphic function on H3.

Proposition 5.3 The coefficient nI αI for a multi-index I = (i1, i2, i3) with i1 + i2 +
i3 = 4 of the cusp form χ4,0,8 of weight (4, 0, 8) on �3 is given by

αI = 1

219 3
r00r01r10(τ )

(
−r00(τ )

∂4

∂I
s00(τ, 0)+r01(τ )

∂4

∂I
s01(τ, 0)+r10(τ )

∂4

∂I
s10(τ, 0)

)
,

where ∂4/∂I stands for ∂4/∂τ
i1
14∂τ

i2
24∂τ

i3
34 and nI = 24/i1! i2! i3! .

Using Lemma 4.2 and the remarks thereafter we see that we need to calculate
the coefficients for the multi-indices I = (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 2) and
(1, 1, 2, 3) only.

As a check on our calculations we use the fact that the Hecke eigenvalues of χ4,0,8
for a prime p are by the results of [3] predicted to be

λp = τ(p) (p5 + τ(p) + p6)



55 Page 12 of 39 F. Cléry et al.

with � = ∑
τ(n)qn ∈ S12(�1). By applying the explicit formulas for the Hecke

operators for �3 given in [10] we can calculate the Fourier coefficients a(n) and hence
the eigenvalues for small p; for example with the notation used in [10, p. 45] we have
for n0 = [1 1 1; 0 0 0] and p = 2

a2(n0) = a(2 n0) + 215Sym−4
(
1 0 1
0 1 1
0 0 2

)
a([1 1 2; 1 2 2])

+ 29(Sym−4
(
1 0 1
0 2 0
0 0 2

)
a([1 2 2; 2 0 0])

+ Sym−4
(
0 1 1
2 0 0
0 0 2

)
a([1 2 2; 0 2 0])).

The Fourier coefficients needed are the initial one

a(n0) = a([1 1 1; 0 0 0]) = [0, 0, 0, 4, 0, 4, 0, 0, 0, 0, 0, 0, 4, 0, 0]t

and

a([2 2 2; 0 0 0]) = [−512, 0, 0,−2816, 0,−2816, 0, 0, 0, 0,−512, 0,−2816, 0,−512]t

a([1 1 2; 1 2 2]) = [0, 0, 0, 0, 1, 1, 0, 1, 3, 2, 0, 0, 1, 2, 1]t

a([1 2 2; 0 2 0]) = [0, 0, 0,−24, 0,−48, 0,−48, 0,−96, 48, 0,−48, 0,−48]t

a([1 2 2; 2 0 0]) = [0, 0, 0,−48, 0,−24,−96, 0,−48, 0,−48, 0,−48, 0, 48]t ;

this gives λ2(χ4,0,8) = −1728 = −24 (25 − 24 + 26) as expected. We similarly
checked the agreement for λ3 and λ5 .

6 Another expression for �4,0,8

In this sectionwederive another expression forχ4,0,8 that connects it to the geometry of
curves of genus three. For a principally polarized abelian variety (X ,�)of dimension g
we consider the space

�00(X ,�) := {s ∈ H0(X ,O(2�)) : m0(s) ≥ 4} ,

where m0 means the order of vanishing at the origin, see [40]. For a principally
polarized abelian variety (X ,�) that is not decomposable (that is, not a product of
nontrivial lower-dimensional principally polarized abelian subvarieties) it is known
that

dim �00(X ,�) = 2g − g(g + 1)

2
− 1 .

If for σ ∈ (Z/2Z)g we define the second order theta function �σ (τ, z) on Hg × C
g

by

�σ (τ, z) = ϑ[ σ0 ](2 τ, 2 z)
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then for fixed τ the �σ (τ, z) with σ ∈ (Z/2Z)g give a basis of H0(Xτ ,O(2�)) with
Xτ = C

g/�τ the abelian variety associated to τ . Now s = ∑
σ aσ �σ (τ, z) belongs

to �00 if and only if

∑
σ

aσ �σ (τ, 0) = 0,
∑
σ

aσ

∂2�σ

∂zi∂z j
(τ, 0) = 0 for all 1 ≤ i, j ≤ g.

For an indecomposable principally polarized abelian threefold the space �00 has
dimension 1. In [16] Frobenius constructed a non-zero element of �00 by defining
a function ϕ(τ, z) onH3×C

3. A somewhat different construction, leading to the same
result, is as follows. Let �3[2, 4] be the usual congruence subgroup of �3 of level
(2, 4).

The theta functions of the second order �σ (τ, 0) on H3 define a morphism

Th : A3[2, 4] = �3[2, 4]\H3 → P
7 ,

which is an injective map and an immersion along the locus A0
3[2, 4] of indecompos-

able abelian varieties, see [35, Theorem3.2]. The closure of the image is a hypersurface
given by an explicit equation F(. . . , xσ , . . .) = 0 of degree 16 in the coordinates xσ

of P7, see [40, p. 632]. Then the expression

φ(τ, z) :=
∑
σ

∂ F

∂xσ

(. . . ,�σ (τ, 0), . . .)�σ (τ, z)

equals up to a non-zero multiplicative constant the function constructed by Frobenius,
see [40, p. 624]. In fact, the functions ϕ(τ, z) and φ(τ, z) differ multiplicatively by
a function that depends only on τ and is invariant under �3[2, 4] and descends to a
holomorphic function on A0

3[2, 4] and thus is constant since the locus of decomposable
abelian threefolds has codimension 2. For a τ that corresponds to the periods of a
smooth projective nonhyperelliptic curve Y the first term of φ in the Taylor expansion
as a function in z1, z2, z3 gives the quartic polynomial that defines the canonical image
of Y as Frobenius showed [16, p. 37]. In fact, the zero locus of φ on the abelian variety
Jac(Y ) = C

3/�τ is the surface {(x − y) : x, y ∈ Y }. Note that for g = 3 the divisor
{(x − y) ∈ Jac(Y ) : x, y ∈ Y } belongs to |2�|. This surface is singular since under
the map Y × Y → Jac(Y ) given by (x, y) 	→ (x − y) the diagonal is contracted and
the tangent cone to the singularity is the cone over the canonical image of Y , see [40].
For yet another description of φ(τ, z) we refer to [17, Proposition 1].

It follows from the properties of the theta functions �σ and the fact that φ vanishes
to order 4 along the zero section in the universal abelian threefold X3 overA3 that the
degree 4 term in the normal expansion of φ along the zero section defines a section of
Sym4(E) ⊗ det8(E).

Proposition 6.1 The function φ defines a holomorphic Siegel modular cusp form of
weight (4, 0, 8) and for a nonhyperelliptic Jacobian Jac(Y ) the naturally associated
vector of length 15 gives the coefficients of the quartic defining the canonical image
of Y .
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Proof Over the locus of indecomposable abelian threefolds the section φ vanishes
along the zero section of X3 → A3 to order 4. Since its zero locus for a smooth curve
Y is the surface {(x − y) : x, y ∈ Y } it vanishes with exact order 4. Therefore the
first term in the development is a non-zero section of Sym4(E) ⊗ det8(E) over this
locus. Since the complement has codimension two, the section extends over all ofA3
to give a holomorphic modular form. It vanishes on the locus of decomposable abelian
varieties, hence it defines a cusp form. 
�

7 Teichmüller modular forms

The Torelli map is a morphism t = tg : Mg → Ag of Deligne–Mumford stacks
obtained by associating to a smooth projective curve of genus g its Jacobian. It can
be extended to a morphism from the Deligne–Mumford compactification Mg to the
toroidal compactification defined by the second Voronoi fan [31]. In the case of genus
3 this compactification Ã3 is the standard compactification of A3 (cf. [12]).

The moduli spaceM3 carries a vector bundle E′ of rank 3, the Hodge bundle. It is
the pullback under the Torelli morphism of the Hodge bundle E on Ã3. Moreover, for
each irreducible representation ρ of GL(3) of highest weight (ρ1, ρ2, ρ3) we have the
vector bundle E′

ρ on M3, again pulled back from Ã3.
A Teichmüller modular form of weightw(ρ) = (ρ1−ρ2, ρ2−ρ3, ρ3) and degree 3

is a section ofE′
ρ onM3. In Proposition 7.3 below,we show that aTeichmüllermodular

form extends to M3. We denote the space of Teichmüller modular forms of weight
w(ρ) by Tw(ρ). If w(ρ) = (0, 0, k) we are dealing with scalar-valued Teichmüller
modular forms (of weight k). Scalar-valued Teichmüller modular forms form a ring
T = ⊕k T0,0,k .

Ichikawa showed that there exists a Teichmüllermodular formχ9 ofweight (0, 0, 9)
on M3. It is a square root of the pullback of χ18. In particular, χ9 vanishes on the
hyperelliptic locus, with class h ∼ 9λ−δ0−3δ1. The divisor ofχ9 is therefore known:

div(χ9) = h + δ0 + 3 δ1 . (7)

Ichikawa also showed that the ring T is generated over the ring R of scalar-valued
Siegel modular forms of degree 3 by χ9. See [22–25].

The mapM3 → A3 of stacks is a double cover of its image, the locus of indecom-
posable abelian threefolds. It is ramified along the hyperelliptic locus. The covering
involution ι can be understood by using a fine moduli space M3[N ] of curves with
level-N structure (N ≥ 3): it sends the isomorphism class of a pair (C, α) of a curve
C and a level structure α to the class of (C,−α). Note that (A, α) ∼= (A,−α) for a
polarized abelian variety A.

Further, ι preserves the Hodge bundle E
′ and acts as −1 on the fiber. Hence the

bundle E
′
ρ is preserved as well and the action on the fiber is as (−1)ρ1−ρ2+ρ3 =

(−1)ρ1+ρ2+ρ3 .
Call ρ odd (resp. even) when ρ1 + ρ2 + ρ3 is odd (resp. even). Let us also call a

Teichmüller (or Siegel) modular form of weight w(ρ) odd (resp. even) when ρ is odd



Concomitants of ternary quartics and vector-valued Siegel… Page 15 of 39 55

(resp. even). It is clear that an odd Siegel modular form is identically zero and that an
odd Teichmüller modular form vanishes on the hyperelliptic locus. Further, a Siegel
modular form of weight w(ρ) pulls back to a Teichmüller modular form of the same
weight. Moreover, we have the following result.

Lemma 7.1 An even Teichmüller modular form is the pullback of a Siegel modular
form.

Proof Note that the complement of the image of M3 in A3 is A2,1, the locus of
products of principally polarized abelian varieties, of codimension two in A3. An
even Teichmüller modular form of weight w(ρ) is invariant under ι and descends to
a section of Eρ over t(M3). SinceA3 is a smooth stack and the codimension ofA2,1
is two, this section extends to A3 and yields the Siegel modular form that pulls back
to the Teichmüller modular form. 
�

We also have the following extension of Ichikawa’s result.

Lemma 7.2 An odd Teichmüller modular form is divisible by χ9, i.e., it is the product
of χ9 and an even Teichmüller modular form.

Proof Let f be an odd Teichmüller modular form. Consider g = f /χ9, a priori a
meromorphic Teichmüller modular form with possibly a simple pole alongH3. Since
f vanishes on H3, it follows that g is a regular Teichmüller modular form, which
clearly is even. (So g is the pullback of a Siegel modular form.) 
�

A Teichmüller modular form extends holomorphically toM3:

Proposition 7.3 Let f be a Teichmüller modular form of weight w(ρ). Then f extends
to a holomorphic section of E′

ρ on M3.

Proof If f is even, then it is the pullback of a Siegel modular form F . By the Koecher
principle, F extends to Ã3. The pullback of the extension gives the extension of f to
M3. If f is odd, it is the product of χ9 and an even Teichmüller modular form. Both
extend, so f extends as well. 
�
Remark 7.4 In the appendix (Sect. 14), we prove that a Teichmüller modular form
extends toMg for any g ≥ 3.

Corollary 7.5 An odd Teichmüller modular form is a cusp form, i.e., it vanishes along
δ0. It also vanishes with multiplicity at least three along δ1. If it is nonzero and of
weight w(ρ), then ρ3 ≥ 9.

Consider the modular form χ4,0,8. We define a Siegel modular cusp form of weight
(4i, 0, 8i) by taking the i th symmetric power of χ4,0,8 and projecting:

χ(i) = pr[4i,0,8i](Symi (χ4,0,8)),

where pr[4i,0,8i] is the projection of the i th symmetric power of Sym4(E) ⊗ det8(E)

onto Sym4i (E) ⊗ det8i (E).
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Lemma 7.6 The form χ(i) is not identically zero.

Proof We use that χ4,0,8 ⊗� is obtained as the first term of the degree 4 scalar-valued
Siegel cusp form J8 of weight 8 when developed in the normal directions of H3 ×H1.
By developing J i

8 we find χ(i) ⊗�i , since the order of vanishing of J i
8 alongH3 ×H1

is i times the order of J8. 
�
Note that the order of χ(i) along D is at least i . We now give a result on the orders

of vanishing of χ18 and χ4,0,8.

Lemma 7.7 The orders of vanishing of χ18 and χ4,0,8 along the hyperelliptic locus
H, the divisor D at infinity, and the locus A2,1 of products are given in the following
table.

F ordD ordH ordA2,1

χ18 2 1 6
χ4,0,8 1 0 2

Proof The vanishing orders of χ18 along D and H were given in Sect. 3, the order
along A2,1 is given in [10, Proposition 5.2]. If the form χ(2) would vanish on the
hyperelliptic locus, we could divide it by χ18, obtaining a holomorphic Siegel modular
form of weight (8, 0,−2), which has to be zero. So χ(2) does not vanish along H .
It follows that ordH χ4,0,8 = 0. For the remaining entries, see Sect. 4, in particular
Lemma 4.1. 
�

8 Invariants and concomitants of ternary quartics

Let V be a 3-dimensional vector space over C generated by elements x, y and z. We
will denote the space of ternary quartics by Sym4(V ) and we write a ternary quartic
as

f = a0 x4 + 4 a1 x3y + 4 a2 x3z + 6 a3 x2y2 + 12 a4 x2yz + 6 a5 x2z2

+ 4 a6 xy3 + 12 a7 xy2z + 12 a8 xyz2 + 4 a9 xz3 + a10 y4

+ 4 a11 y3z + 6 a12 y2z2 + 4 a13 yz3 + a14z4 .

Note that we order the monomials lexicographically and normalize xa ybzc by the
factor 4!/a! b! c!.

An element A = (ai j ) of the group GL(3,C) acts on Sym4(V ) via

f (x, y, z) 	→ f (a11x + a21y + a31z, a12x + a22y + a32z, a13x + a23y + a33z) .
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We also consider the induced actions of PGL(3,C) and SL(3,C) on Q =
P(Sym4(V )). We take (a0, a1, . . . , a14) as coordinates on Sym4(V ) and Q. The nat-
ural ample line bundle L = OQ(1) on Q admits an action of SL(3,C) compatible
with the action on the projectivized space Q of ternary quartics, cf. [30].

By definition an invariant is an element of the ring

I = ⊕n≥0H
0(Q,Ln)SL(3,C) ,

that is, it is a polynomial in the coefficients a0, . . . , a14 of f which is invariant under
the action of SL(3,C). By the work of G. Salmon, T. Shioda and J. Dixmier (see
[34], [37] and [11]), see also the unpublished work of T. Ohno [32], we know the
structure of the ring of invariants of ternary quartics (see [11, Theorem3.2]: seven alge-
braically independent generators of degrees 3, 6, 9, 12, 15, 18, 27which forma system
of parameters of I and six more basic invariants of degrees 9, 12, 15, 18, 21, 21). (See
also [13] and the recent paper [26].) The Poincaré series of this graded ring was
determined by T. Shioda (see [37]):

∞∑
n=0

dim(In) tn = P(t)

(1 − t3)(1 − t6)(1 − t9)(1 − t12)(1 − t15)(1 − t18)(1 − t27)
,

where In denotes the graded piece of I of degree n and P is the palindromic polynomial

t75 + t66 + t63 + t60 + 2 t57 + 3 t54 + 2 t51 + 3 t48 + 4 t45 + 3 t42 + 4 t39

+ 4 t36 + 3 t33 + 4 t30 + 3 t27 + 2 t24 + 3 t21 + 2 t18 + t15 + t12 + t9 + 1 .

This generating series
∑∞

n=0 dim(In) tn starts as follows

1 + t3 + 2 t6 + 4 t9 + 7 t12 + 11 t15 + 19 t18 + 29 t21 + 44 t24 + 67 t27 + · · ·

Before we come to the notion of concomitant, we will fix coordinates on ∧2V . We
take

x̂ = y ∧ z, ŷ = z ∧ x, ẑ = x ∧ y ; (8)

then a basis of Symi (V ) ⊗ Sym j (∧2V ) is given by the lexicographically ordered
monomials of degree i in x, y, z and degree j in x̂, ŷ, ẑ.

We recall the notion of concomitants for ternary quartics.Write W = V ∨. Consider
an equivariant inclusion of SL(3,C)-representations

ϕ : A → Symd(Sym4(W )),

or equivalently

C ↪→ Symd(Sym4(W )) ⊗ A∨ ,
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where C denotes the trivial representation; write � for the image of 1 under this
map. If A = W [ρ] is the irreducible representation of highest weight ρ we call � a
concomitant of type (d, ρ). It can be viewed as a form of degree d in the coordinates ai

of the ternary quartic and of degree ρ1 −ρ2 (resp. ρ2 −ρ3) in x, y, z (resp. x̂, ŷ, ẑ). In
essence, we follow here Chipalkatti’s set-up in [7], but the notation is the dual one and
our basis of Sym4(V ) includes the multinomial coefficients. Also, although we work
with SL(3,C) here, we have used the notation introduced earlier for the irreducible
representations of GL(3,C), since we will soon need to work with the latter group.

The simplest nontrivial example is the case where d = 1 and A = Sym4(W ) and
the inclusion is the identity. Then the corresponding concomitant � is the universal
ternary quartic f given in the beginning of this section.

For d = 2 we have the decomposition

Sym2(Sym4(W )) = W [8, 0, 0] + W [6, 2, 0] + W [4, 4, 0] .

The concomitants corresponding to the first and last isotypical component are f 2

and a classical concomitant denoted σ by Salmon (see [34, p. 264]). It is a quartic
polynomial in x̂, ŷ, ẑ with coefficients of degree 2 in the ai , see Sect. 12.

The concomitants form a module C over the ring I of invariants.

9 Quartic curves andmoduli

Let M3 be the moduli space of curves of genus 3 and Mnh
3 = M3 − H3 the open

part of nonhyperelliptic curves. The canonical image of a nonhyperelliptic curve is a
quartic curve in P2.

To describe Mnh
3 we consider a 3-dimensional vector space V over a field k, say

generated by x, y, z. We may view Sym4(V ) as the space of ternary quartics. There
is a natural left action of GL(V ) on Sym4(V ): view f ∈ Sym4(V ) as a homogeneous
polynomial map from the dual V ∨ to k of degree 4; the action of A ∈ GL(V ) on f is
defined as

A · f = f ◦ At .

(Recall: for B a linear map from V1 to V2, the transpose Bt is the natural map from
V ∨
2 to V ∨

1 obtained by composition with B.)
In fact, for our purposes it is better to twist Sym4(V ) by the inverse of the deter-

minant, so we consider

Q = Sym4(V ) ⊗ det−1(V ),

the irreducible representation of GL(V ) of highest weight (3,−1,−1). The point is
that c · IdV acts on Q as c · IdQ . Let U ⊂ Q be the GL(V )-invariant open subset
corresponding to nonsingular projective plane quartics.
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Proposition 9.1 There exists an isomorphism of algebraic stacks

[U/GL(V )] ∼−→ Mnh
3 .

Proof The standard construction of the coarse moduli space Mnh
3 is as the quo-

tient of P(U ) by PGL(V ). Since the embedding is canonical, the stack quotient
[P(U )/PGL(V )] gives the stack Mnh

3 . By the above, the stack quotient of U by the
center of GL(V ) may be identified with P(U ). This gives the result. 
�

Actually,weneed an extension of this result to an open subset of Q with complement
of codimension at least two. Let U ′ ⊂ Q be the GL(V )-invariant open subset of
quartics that are either nonsingular or have one singularity, an ordinary double point.
Correspondingly, let

Mnh,∗
3 = M3 − H3 − �1 − �00

be the partial compactification ofMnh
3 consisting of nonhyperelliptic stable curves of

genus 3 with at most one node, which is nondisconnecting. (Here �1 is the boundary
component of curves with a disconnecting node and�00 is the closure of the boundary
stratum of irreducible curves with exactly two nodes.) Essentially the same proof as
above gives:

Proposition 9.2 There exists an isomorphism of algebraic stacks

[U ′/GL(V )] ∼−→ Mnh,∗
3 .

For f ∈ U ′, the elements x, y, z give a basis of the space of global sections of the
dualizing sheaf on the quartic in P

2 defined by f . This globalizes and we obtain the
following result.

Corollary 9.3 The pullback to U ′ under the quotient map q : U ′ → Mnh,∗
3 of the

Hodge bundle E
′ is the GL(V )-equivariant bundle U ′ × V .

Hence the pullback under q of Sym4(E′) ⊗ det−1(E′) is the GL(V )-equivariant
bundle U ′ × Q, which admits the diagonal section, the universal (at most 1-nodal)
ternary quartic.

Corollary 9.4 The diagonal section of U ′ × Q descends to a canonical section of
Sym4(E′) ⊗ det−1(E′) over Mnh,∗

3 .

We revisit the notion of concomitants for ternary quartics. Working with GL(3,C)

instead of SL(3,C), it is best to work with Q or its dual R, as explained above. We
consider an equivariant inclusion of GL(3,C)-representations

ϕ : A → Symd(R),

or equivalently

C ↪→ Symd(R) ⊗ A∨ ,
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where C denotes the trivial representation; write � for the image of 1 under this
map. If A = W [ρ] is the irreducible representation of highest weight ρ we call � a
concomitant of type (d, ρ). It can be viewed as a form of degree d in the coordinates
ai of the twisted ternary quartic and of degree ρ1 − ρ2 (resp. ρ2 − ρ3, resp. ρ3) in
x, y, z (resp. x̂, ŷ, ẑ, resp. x ∧ y ∧ z). Note that d = ρ1 + ρ2 + ρ3, so d is determined
by ρ in the GL(3,C)-setting. Sometimes, we will speak of concomitants of type ρ.

E.g., for d = 2 we have the decomposition

Sym2(R) = W [6,−2,−2] + W [4, 0,−2] + W [2, 2,−2] ;

compared with the earlier decomposition of Sym2(Sym4(W )), in each summand all
entries have been lowered by d = 2.

10 Invariants, concomitants andmodular forms

We consider a scalar-valued Teichmüller modular form F of weight k, that is, a section
of detk(E′) on M3, cf. Proposition 7.3. By Corollary 9.3, the pullback of detk(E′) to
U ′ under q is detk(V ). The pullback of F is a section of detk(V ) over U ′ that extends
to a section of detk(V ) over Q (since the complement of U ′ has codimension two).
The corresponding irreducible representation of GL(V ) has highest weight (k, k, k); it
occurs in Sym3k(Q). Thus F defines an invariant ιF ∈ I of degree 3k (for SL(3,C)).

Conversely, if we have a homogeneous invariant, necessarily of degree 3k with
k ∈ N, it gives a section of detk(V ). It descends to a holomorphic section of detk(E′)
over the open subset Mnh

3 that extends to a meromorphic section over M3. Since χ9
vanishes exactly once on the hyperelliptic locus, we conclude that we get injections

T −→ I −→ Tχ9
(9)

with T the graded ring of scalar-valued Teichmüller modular forms and Tχ9
the ring

obtained by inverting χ9. Under the first map above, the modular form χ9 maps to (a
nonzero multiple of) the discriminant, an invariant of degree 27. (In the recent paper
[26], Lercier and Ritzenthaler study the relation between scalar-valued Siegel modular
forms and invariants of ternary quartics in detail. Their approach differs from ours.)

We now generalize this to concomitants for GL(3,C). A concomitant � of type
(d, ρ) gives an equivariant section of Vρ . It descends to a holomorphic section of E′

ρ

on Mnh
3 that extends to a meromorphic section γ (�) on M3. After multiplication

with the r th power of χ9 for r large enough, it becomes a holomorphic section of
E

′
ρ ⊗ det9r (E′) (as we shall see r = d suffices). Conversely, if F is a Teichmüller

modular form of weight ρ, that is, a section of E′
ρ , then by pulling it back fromMnh,∗

3
to U ′ we get an equivariant section of Vρ that extends to Q: a concomitant β(F) of
type ρ.
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We thus find a commutative diagram

�
β

C
γ

�χ9

T I Tχ9

(10)

where� = ⊕ρTρ (with ρ running over the irreducible representations of GL(3,C)) is
the T -module of vector-valued Teichmüller modular forms, �χ9 denotes the module
obtained by inverting χ9 and C is the I -module of concomitants. A modular form F
of weight (i, j, k) is sent to a concomitant of type

(d, ρ) = (i + 2 j + 3k, [i + j + k, j + k, k])

and a concomitant of type (d, ρ) to a (meromorphic) form of weight

(ρ1 − ρ2, ρ2 − ρ3, ρ3).

Note that the parity of the form equals the parity of the degree d of the concomitant.
A basic observation is the following.

Proposition 10.1 The image of the universal ternary quartic f ∈ C under γ equals
up to a nonzero multiplicative constant the meromorphic Teichmüller modular form

χ4,0,−1 = χ4,0,8/χ9 .

Proof The tautological f defines an element γ ( f ) of�χ9 , ameromorphic Teichmüller
modular form of weight (4, 0,−1). In order to identify it we consider the Siegel (or
Teichmüller) modular form χ4,0,8. By Proposition 6.1 we know that on the open set
Mnh

3 the two sections γ ( f ) and χ4,0,8 differ by a nowhere vanishing holomorphic
function. Therefore they differ by a power of χ9. Since the weights are (4, 0,−1)
and (4, 0, 8), it follows that up to a nonzero multiplicative constant we have γ ( f ) =
χ4,0,8/χ9. 
�

Then the map γ : C → �χ9 can be written as a substitution

c 	→ c ◦ χ4,0,−1

in the following sense. Recall that we write our ternary quartic as f = ∑
I n I aI x I

where I runs over the indices (i1, i2, i3) with i1 + i2 + i3 = 4, nI = 4!/(i1!i2!i3!) and
x I = xi1 yi2 zi3 . We write χ4,0,8 in a similar way as a vector

χ4,0,8 =
∑

I

n I αI x I . (11)
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Then each αI is a holomorphic function on H3 or also on Teichmüller space T3. The
map γ is given by substituting in a concomitant the meromorphic functions αI /χ9 on
T3 for the aI .

Sometimes we prefer to work with holomorphic modular forms. Then we don’t use
the map γ , but a slightly adapted map γ ′ that maps the tautological f to γ ( f )χ9 and
that is defined by substituting in a concomitant c of degree d the αI for the aI . The
result is a holomorphic vector-valued modular form

γ ′(c) = γ (c)χd
9 = c ◦ χ4,0,8.

For a concomitant of type (d, ρ) it is a form of weight (ρ1 − ρ2, ρ2 − ρ3, ρ3 + 9d),
i.e., a section of Eρ ⊗ det9d

E. We can calculate the Fourier expansion of γ ′(c) from
the Fourier expansion of χ4,0,8.

Depending on the parity of ρ, the form γ (c) is a (meromorphic) Siegel or Teich-
müller modular form, but γ ′(c) is (the pullback of) a holomorphic Siegel modular
form. If it vanishes along the hyperelliptic locus, we can divide it by χ18 . Note that
the order of divisibility by χ18 is bounded above by 1/2 of the order along δ0 and also
by 1/6 of the order along δ1.

11 The order along the locus of double conics

Inside the space P14 of ternary quartics there is the locus DC of double conics. The
order of a concomitant c of ternary quartics along the locus DC is determined as the
order in the parameter t ∈ C of the evaluation of c on the quartic t f + g2, where f is
a general ternary quartic and g a general ternary conic.

Proposition 11.1 Let c be a concomitant of degree d vanishing with order v along the
locus of double conics. Then the order of γ (c) along the hyperelliptic locus H3 ⊂ M3
equals 2v − d. Hence the order of γ ′(c) along H3 equals 2v and the corresponding
Siegel modular form has order v along H ⊂ A3.

Proof The proof is completely analogous to that of Theorem 1 in [9], so we only
mention the necessary changes. The meromorphic form γ (c) is obtained by substi-
tuting χ4,0,−1 in c and χ4,0,−1 has a simple pole along H3, so the result holds for the
universal f (with d = 1 and v = 0). After multiplying with f or f 2 if necessary, we
may assume that d is divisible by three, equal to 3e. We now let A be the invariant of
degree 3:

A = a0a10a14 − 4a0a11a13 + 3a0a2
12 − 4a1a6a14 + 12a1a7a13 − 12a1a8a12 + · · · .

One easily checks that A doesn’t vanish along DC , so γ (A) has a pole of order 3 along
H3. We write γ (c) as γ (c/Ae) · γ (A)e, where c/Ae is a meromorphic concomitant of
degree 0. Its components aremeromorphic functions that descend to the components of
γ (c/Ae). Now recall that the coarse moduli space M3 may be constructed by blowing
up the locus of double conics in the projective space of ternary quartics, deleting
the proper transform of the discriminant hypersurface, and taking the quotient by
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PGL(3,C). The order of γ (c/Ae) alongH3 equals twice the order of c/Ae along the
exceptional divisor; this reflects the difference between the stackM3 and M3. On the
other hand, the order along the exceptional divisor equals the order along DC . This
proves the first result. The other results are immediate consequences. 
�
Corollary 11.2 Same hypothesis. If d is even, then the order along H of the meromor-
phic Siegel modular form corresponding to γ (c) equals v − d/2. If d is odd, then
the order along H of the meromorphic Siegel modular form corresponding to χ9γ (c)
equals v − (d − 1)/2.

Corollary 11.3 Let F be a Teichmüller modular form of type ρ that has order m along
H3. Then β(F) is a concomitant of type ρ, so of degree d = ρ1 + ρ2 + ρ3, that has
order 1

2 (m +d) along the locus of double conics. In particular, m and d have the same
parity (which equals that of F).

Proof This follows from the proposition, since the composition γ ◦ β of the maps in
diagram (10) above is the identity map onto � ⊂ �χ9 . That the parities agree was
already known: it is obvious in the even case and follows in the odd case from the fact
that χ9 has multiplicity 1 along H3. 
�
Example 11.4 Let � be the discriminant of ternary quartics, an invariant of degree 27.
Then γ (�) = χ9 and χ9γ (�) = χ18. We know that χ18 has order 1 along H and find
that v = 14, in agreement with a result of Aluffi–Cukierman [1].

Notation 11.5 Let m ≥ 0 be an integer. We denote by Cd,ρ(−m DC) the vector space
of concomitants of type (d, ρ) that have order ≥ m along the locus DC of double
conics.

We denote by Sm
i, j,k the vector space of Siegel modular forms of type (i, j, k) that

have order ≥ m along the boundary divisor D. So S0
i, j,k = Mi, j,k and S1

i, j,k = Si, j,k .
These notations also make sense when m < 0, but in most cases this doesn’t give

anything new, since we consider regular or holomorphic concomitants and modular
forms here. However, see Corollary 11.8 below.

Theorem 11.6 Notation as above. There exists an isomorphism

ϕ : Cd,ρ(−m DC)
∼−→ Sn

ρ1−ρ2,ρ2−ρ3,ρ3+9n , c 	→ γ (c)χn
9 ,

where n = d − 2m.

Proof Let c ∈ Cd,ρ(−m DC). By Proposition 11.1, the order along H3 of γ (c) is
at least 2m − d. So ϕ(c) is regular along H3. Since d and n have the same par-
ity, ϕ(c) is (the pullback of) a Siegel modular form. It follows immediately that
ϕ(c) ∈ Sn

ρ1−ρ2,ρ2−ρ3,ρ3+9n . Now ϕ is certainly injective, but also surjective: take
F ∈ Sn

ρ1−ρ2,ρ2−ρ3,ρ3+9n , then β(F)/�n is a meromorphic concomitant that has order
at least m along DC and order at least 0 along the locus � = 0 of singular quartics.
So it is in fact a regular concomitant and an element of Cd,ρ(−m DC). 
�
Corollary 11.7 If i + 2 j + 4k < 36n, then Sn

i, j,k = 0.
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Proof Trivially, Cd,ρ = 0 when ρ3 < −d. Since i = ρ1 − ρ2, j = ρ2 − ρ3, and
k = ρ3 + 9n, we get d = i + 2 j + 3k − 27n and obtain the result. 
�

We also obtain the following generalization of the main result of Sect. 3; this can
also be deduced from the result of Harris–Morrison [19, Corollary 0.5] on slopes of
effective divisors on M3.

Corollary 11.8 Let k be a positive integer. The space S2k
0,0,18k of cusp forms of weight

18k of order at least 2k along D is generated by χk
18.

Proof Take d = 0, so ρ = (0, 0, 0), and m = −k, so n = 2k. 
�

We illustrate Theorem 11.6 with a number of examples.

Example 11.9 (1) Let d = 1 and m = 0. Then ρ = (3,−1,−1) and n = 1. We
get an identification between the space of concomitants of degree 1, so of type
(3,−1,−1) and the space of cusp forms S4,0,8 : the universal ternary quartic f is
mapped to χ4,0,8. We also see that S2,1,8, S0,2,8, and S1,0,9 all vanish (which was
known).

(2) Let d = 2 and take ρ = (4, 0,−2) and m = 0, so n = 2. We get an identification
between the space of concomitants of degree 2 and type (4, 0,−2) and the space
S2
4,2,16 = M4,2,16(−2D) of Siegel modular forms vanishing at least twice at the

cusp. Hence the latter space is one-dimensional. Analogously, S2
8,0,16 and S2

0,4,16

are also one-dimensional, whereas the vector spaces S2
i, j,k+16 with i +2 j +3k = 8

are zero in all (seven) other cases.
(3) Let d = 3 and take ρ = (6, 0,−3) and m = 1, so n = 1. We get an iso-

morphism C3,(6,0,−3)(−DC) ∼= S6,3,6. The representation W [6, 0,−3] occurs
with multiplicity 1 in Sym3(R) and the associated concomitant vanishes on the
locus of double conics. Correspondingly, dim S6,3,6 = 1. Completely analogously,
ρ = (4, 1,−2) yields dim S3,3,7 = 1.
There are seven other nonzero concomitants of degree 3; they don’t vanish
along DC . Takingm = 0, we find nine one-dimensional spaces of cusp formswith
order at least three along D (two from the cusp forms just mentioned). Finally,
seventeen spaces Si, j,k+6 and ten spaces S3

i, j,k+24 with i + 2 j + 3k = 12 vanish.
(4) Take ρ = (5, 4,−4), so d = 5, and m = 2, so n = 1. There is an isomorphism

C5,(10,9,1)(−2DC) ∼= S1,8,5. The space S1,8,5 is one-dimensional and a generator
of it has been constructed in the paper of Ibukiyama and Takemori [21]. There is
a unique concomitant of type ρ and indeed it vanishes to order 2 along DC . We
give more details in Sect. 12.3.

(5) For d = 27 and ρ = (9, 9, 9), take m = 14, so n = −1. On the right, the space
S−1
0,0,0 is just C. Hence the space of invariants of degree 27 with order at least

14 along DC is one-dimensional; it is generated by the discriminant �, which is
mapped to 1, since γ (�) = χ9.
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12 Constructingmodular forms from concomitants

12.1 Degree 1 and 2

In this section, wewill use the SL(3,C)-notation for concomitants as in Sect. 8, mainly
because it is easier to read. As long as the degree d is known, this should not lead
to confusion. As mentioned in Sect. 9, the GL(3,C)-notation for a concomitant of
degree d is obtained by lowering the three entries by d.

There is one concomitant of degree d = 1, the universal ternary quartic. As we
have seen, the image under the map γ ′ of the basic concomitant f is χ4,0,8 .

For d = 2 we have the decomposition

Sym2(Sym4(W )) = W [8, 0, 0] + W [6, 2, 0] + W [4, 4, 0] .

The last isotypical component defines a covariant denoted σ by Salmon (see [34,
p. 264]). It describes the curve in the dual P2 of lines intersecting the curve defined
by f equianharmonically. Its first terms are given by (using u0 = x̂, u1 = ŷ, u2 = ẑ)

σ = (a10a14 − 4a11a13 + 3a2
12)u

4
0 + (4a9a11 − 12a8a12 + 12a7a13 − 4a6a14)u

3
0u1

+ (−4a9a10 + 12a8a11 − 12a7a12 + 4a6a13)u
3
0u2

+ (6a5a12 − 12a4a13 + 6a3a14 − 12a7a9 + 12a2
8)u

2
0u2

1 + · · ·

Under the map γ ′ the three concomitants corresponding to the three terms in the
decomposition of Sym2(Sym4(W )) give rise to Siegel modular forms of weights
χ8,0,16, χ4,2,16 and χ0,4,16 respectively. The form χ8,0,16 is the (symmetric) square of
χ4,0,8.

Since χ4,0,8 vanishes with multiplicity 1 along D, these three modular forms vanish
with multiplicity ≥ 2 along D. In order to give the beginning of the Fourier expansion
of χ0,4,16 , we notice that it suffices to give the coordinates v1, v2, v4 and v5 , since
under the action of S3 given in (4) the 15 coordinates satisfy the same relations as
those of χ4,0,8. We have for the entries of the coefficient of q2

1q2
2q2

3 :

v1 = 3 (u − 1)4(v − 1)4/u2v2, v2 = 12 (u − 1)3(v − 1)3(w − 1)

(uvw + u − v − w)/u2v2w,

v4 = 6 (u − 1)2(v − 1)2(w − 1)2 (2σ 2
3 − 4σ3σ1 − 2σ3 + 2σ 2

1 − 8σ2
+9(u2 + 1)vw)/σ 2

3

and

v5 = −12 (u − 1)2(v − 1)2(w2 − 1) (σ 2
3 − 2σ3σ1 + 8σ3 + σ 2

1 − 4σ2)/σ
2
3 ,

where as before σi is the elementary symmetric function of degree i in u, v, w.
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Summing up, from Theorem 11.6 and Example 11.9, we have isomorphisms

C2,(8,0,0) ∼= S2
8,0,16, C2,(6,2,0) ∼= S2

4,2,16, C2,(4,4,0) ∼= S2
0,4,16, (12)

given by c ←→ (c ◦ χ4,0,−1)χ18.
Note that the dimensions of S8,0,16 (resp. S4,2,16, S0,4,16) are 26 (resp. 25, 12)

(cf. [38]).

12.2 Degree 3

For d = 3 we have the multiplicity-free decomposition

Sym3(Sym4(W )) = W [12, 0, 0] + W [10, 2, 0]
+ W [9, 3, 0] + W [8, 4, 0] + W [8, 2, 2]
+ W [7, 4, 1] + W [6, 6, 0] + W [6, 4, 2] + W [4, 4, 4] .

The covariant that corresponds to W [12, 0, 0] is given by the form of degree 12 that
is the third power of f , while W [8, 2, 2] corresponds to the covariant given by the
Hessian of f . The contravariant that corresponds to W [6, 6, 0] is given by the dual
sextic of lines intersecting f in a 4-tuple with j-invariant 1728. Finally, W [4, 4, 4]
corresponds to the invariant of degree 3.

By themap c 	→ (c◦χ4,0,−1)χ
3
9 these concomitants yieldmodular forms ofweights

(12, 0, 24), (8, 2, 24), (6, 3, 24), (4, 4, 24), (6, 0, 26), (3, 3, 25),

(0, 6, 24), (2, 2, 26), (0, 0, 28).

In fact, we have isomorphisms between these spaces of concomitants and spaces of
cusp forms vanishing with multiplicity ≥ 3 along D:

C3,(a,b,c) ∼= S3
a−b,b−c,c+24 via c 	→ (c ◦ χ4,0,−1)χ

3
9 ,

and also

C3,(a,b,c)(−DC) ∼= Sa−b,b−c,c+6 via c 	→ (c ◦ χ4,0,−1)χ9 .

Only for ρ = [9, 3, 0] and [7, 4, 1] we get nonzero spaces Sa−b,b−c,c+6 ; namely,
dim S6,3,6 = dim S3,3,7 = 1, in perfect agreement with the fact that the concomitants
of degree 3 that vanish on the locus of double conics are those corresponding to [9, 3, 0]
and [7, 4, 1].

As an example, we take a closer look at the case of the concomitant c provided by
W [7, 4, 1] in Sym3(Sym4(W )). The modular form γ ′(c) is divisible by χ18 and yields
a cusp formχ3,3,7 = ∑

a(N )q N ofweight (3, 3, 7) on�3.We can calculate someof its
Fourier coefficients:wefind the irreducible representation of highestweight (13, 10, 7)
inside Sym3(W ) ⊗ Sym3(∧2(W )) ⊗ det7(W ) with W the standard representation of
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GL(3). For example, using the shorthand N = [n11, n22, n33; 2n12, 2n13, 2n23] for
the half-integral matrix N = (ni j ), we have for N1 = [1, 1, 1; 1, 1, 1]

a(N1) = [6,−20,−20, 0, 40, 0, 0, 0, 0, 0, 0,−27,−30, 15, 90, . . .]t

and for a(2N1) we find

8 [1050,−2380,−2380, 720, 3320, 720, 0, 0, 0, 0, 1560,−4725,−2490,−15, 1430, . . .]t

and for a([3, 2, 2, 4, 4, 2]) we find the vector

4[−480, 860, 860, −430,−1060,−430, 0, 315, 315, 0, −1140, 2160, 2040,−1275,−2610, . . .]t

and then the formula for the Hecke operator for (i, j, k) = (3, 3, 7)

a2(N1) = a(2 N1) + 2i+2 j+k−3Sym−i
(
1 1 1
0 2 0
0 0 2

)
Sym− j (∧2(

(
1 1 1
0 2 0
0 0 2

)
)a([3 2 2; 4 4 2])

gives the eigenvalue λ2 = 1080. The eigenvalues can be checked against the data
provided by [4].
The invariant ι of type (3, (4, 4, 4)) is given by

a0 a10 a14−4 a0 a11 a13+3 a0 a2
12+4 a1 a11 a9−12 a1 a12 a8+12 a1 a13 a7−4 a1 a14 a6

− 4 a10 a2 a9+3 a10 a2
5+12 a11 a2 a8−12 a11 a4 a5 − 12 a12 a2 a7+6 a12 a3 a5+12 a12 a2

4

+ 4 a13 a2 a6 − 12 a13 a3 a4 + 3 a14 a2
3 − 12 a3 a7 a9 + 12 a3 a2

8 + 12 a4 a6 a9

− 12 a4 a7 a8 − 12 a5 a6 a8 + 12 a5 a2
7

in the coefficients ai of the ternary quartic f . It defines a cusp form χ28 of weight 28
vanishing with multiplicity 3 at D. Using the pairing induced by the pairing of W and
∧2W , we get 〈 f , σ 〉 = ι or in terms of modular forms

〈χ4,0,8, χ0,4,16〉 = χ28 ,

where the pairing of χ4,0,8 = ∑
I n I αI x I and χ0,4,16 = ∑

I βI x̂ I is
∑

I n I αI βI . The
Fourier expansion of χ28 starts with

F(τ ) = (
(u − 1)2(v − 1)2(w − 1)2

144 u3v3w3 (u4v4w4 + u4v4w3 + · · · ))q3
1q3

2q3
3 + · · · .

This Siegel modular form vanishes with order 3 at infinity and alongA2,1 with order 8.
Indeed, expanding F as a Taylor series alongH2 ×H1 as done in [10, Proposition 2.1]
we get as first term a tensor product F ′⊗F ′′ ∈ S8,28(�2)⊗S36(�1) because F ′′ will be
a cusp formon�1 vanishingwithmultiplicity 3 at the cusp and the first such form is�3.
By looking around H3

1 we see that F ′ vanishes along H2
1 with multiplicity 4; dividing
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F ′ byχ2
10 we get a cusp formofweight (8, 8) on�2. Now S8,8(�2) has dimension 1 and

is generated by the form χ8,8 (see [8, p. 11]) and we find F ′ = (1/104230)2χ2
10χ8,8 .

We thus see that the modular form F , viewed as Teichmüller form, vanishes with
order 3 along δ0 and order 8 along δ1. It can be seen as a section ofO(28λ−3 δ0−8 δ1);
see the last remark of [33, p. 1766].

12.3 Degree 5

We have the isotypical decomposition of Sym5(Sym4(W )) as

2 W [8, 6, 6] + 2 W [8, 8, 4] + W [9, 6, 5] + W [9, 7, 4] + W [9, 8, 3] + 4 W [10, 6, 4] + 2 W [10, 7, 3]
+ 3 W [10, 8, 2] + W [10, 9, 1] + W [10, 10, 0] + W [11, 5, 4] + 3 W [11, 6, 3] + 2 W [11, 7, 2]
+ W [11, 8, 1] + 3 W [12, 4, 4] + W [12, 5, 3] + 4 W [12, 6, 2] + W [12, 7, 1] + 2 W [12, 8, 0]
+ 2 W [13, 4, 3] + 2 W [13, 5, 2] + 2 W [13, 6, 1] + W [13, 7, 0] + 3 W [14, 4, 2] + W [14, 5, 1]
+ 2 W [14, 6, 0] + W [15, 3, 2] + W [15, 4, 1] + W [15, 5, 0] + W [16, 2, 2] + 2 W [16, 4, 0]
+ W [17, 3, 0] + W [18, 2, 0] + W [20, 0, 0].

The concomitant c provided by W [10, 9, 1] occurring in Sym5(Sym4(W )) vanishes
with order 2 along the locus of double conics, so the modular form γ ′(c) is divisible
by χ2

18 and yields a cusp form χ1,8,5 ∈ S1,8,5. We calculate a few Fourier coefficients.
We represent these inside the representation W ⊗ Sym8(∧2(W )) ⊗ det5(W ) with W
the standard representation of GL(3). With N1 = [1, 1, 1; 1, 1, 1] we have

a(N1) = 1536 [0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 2, 0,−2, 0, 0,−1,−2, . . .]t

and a(2N1) is given by

24 [0,−4, 4, 8, 0,−8,−4, 17,−17, 4, 0,−50, 0, 50, 0, 4, 25, 50, . . .]t

while a([3, 2, 2; 4, 4, 2]) is given by

192 [0, 8,−8,−36, 0, 36, 68, 74,−74,−68,−70,−160, 0, 160, 70, 42, 155, 110, . . .]t .

This gives the Hecke eigenvalue at p = 2: λ2 = −2880 = −24(216 + 22(−24)),
in agreement with the fact that this cusp form is predicted to be a lift from �1 with
Hecke eigenvalues of the shape λp = τ(p)(b(p)+ p2τ(p)), where τ(p) is the Fourier
coefficient of � at p, while b(p) is that of the unique normalized cusp form of weight
16 on �1. This modular form is also given in [21, §5.6], where it is constructed using
theta functions.

In the case of the components

W [10, 6, 4], W [10, 8, 2], W [11, 6, 3], W [12, 4, 4], W [12, 6, 2], W [13, 4, 3], W [13, 6, 1], W [14, 4, 2]
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which occur with multiplicity ≥ 2 one can find a nonzero concomitant c vanishing
with multiplicity ≥ 2 on the locus of double conics, and then γ ′(c)/χ2

18 defines a
holomorphic cusp form of weight

(4, 2, 8), (2, 6, 6), (5, 3, 7), (8, 0, 8), (6, 4, 6), (9, 1, 7), (7, 5, 5), (10, 2, 6)

respectively, and in these cases we checked that the eigenvalue for the Hecke operator
at p = 2 agrees with the data given in [4]. Also the case W [8, 6, 6] gives a concomitant
c vanishing with order ≥ 2 on the locus of double conics. Then γ ′(c)/χ2

18 yields a
cusp form in S2,0,10. Its Fourier expansion starts with

1

2308 uvw

⎛
⎜⎝

c1
...

c6

⎞
⎟⎠ q1q2q3 + · · ·

with

c1 = u2v2w2 + u2v2w + u2vw2 + uv2w2 − 6 u2vw + −6 uv2w

+ 14 uvw2 + u2v + u2w

+ uv2 − 20 uvw + uw2 + v2w + vw2 + u2 + 14 uv

− 6 uw + v2 − 6 vw + w2 + u + v + w

and

c2 = u2 v2w2 + u2v2w + u2vw2 − 6 u2vw + u2v + u2w − v2w − vw2

+u2 − v2 + 6 vw − w2 − v − w

and this determines the other coordinates by Lemma 4.2.

12.4 Degree 6

The so-called catalecticant is an invariant of degree d = 6 and is associated to
W [8, 8, 8] occurring in Sym6(Sym4(W )). It is given as

i6 =

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a3 a5 a4 a2 a1
a3 a10 a12 a11 a7 a6
a5 a12 a14 a13 a9 a8
a4 a11 a13 a12 a8 a7
a2 a7 a9 a8 a5 a4
a1 a6 a8 a7 a4 a3

∣∣∣∣∣∣∣∣∣∣∣∣
and gives rise to a Siegel modular form of weight 56 vanishing with order 6 at D and
with order at least 16 alongA2,1 since the first cusp form vanishing with order 6 at ∞
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on �1 is �6 of weight 72 and 16 = 72− 56. This modular form can be interpreted as
a section ofO(56 λ − 6 δ0 − 16 δ1) onM3, in agreement with [33, p. 1766]. Another
description of this form can be found in [26, Proposition 4.5].

Remark 12.1 Someof themodular forms constructed above have a geometricmeaning.
Chipalkatti proves in [7] that a ternary quartic f is the sum of the fourth powers of s
linear forms f = �41 + �42 + · · · + �4s for 1 ≤ s ≤ 5 if and only if the concomitants in
a certain set Us vanish, where the set Us is given by

U1 = {c(2; 4, 2), c(2; 0, 4)}, U2 = {c(3; 6, 0), c(3; 0, 6), c(3; 3, 3), c(3, 2, 2), c(3; 0, 0)},
U3 = {c(4; 4, 0), c(4; 2, 4), c(4; 1, 3), c(4; 0, 2)},
U4 = {c1(5; 0, 4) − c2(5; 0, 4), c(5; 2, 0)}, U5 = {3c(6, 0, 0) − c(3; 0, 0)2};

the concomitant c(d; m, n) corresponds to the irreducible representationW [m1, m2, m3]
occurring in Symd(Sym4(W )) with m = m1 − m2 and n = m2 − m3 (and
4d = m1 + m2 + m3), see [7, Theorem 4.1]. For example, the vanishing of the
modular forms χ4,2,16 and χ0,4,16 signalizes this property for s = 1.

13 Teichmüller modular forms and the cohomology of local systems

It is well-known that Siegel modular forms of degree g occur in the cohomology of
local systems on the moduli space Ag of principally polarized abelian varieties of
dimension g. Denoting by π : Xg → Ag the universal abelian variety, we let V =
R1π∗Q� be the standard local system of rank 2g onAg . This comes with a symplectic
pairing V × V → Q�(−1). For every irreducible representation of the symplectic
group GSp(2g,Q) with highest weight μ, we have a local system Vμ obtained from
V by applying a Schur functor. We consider the ‘motivic’ Euler characteristic

ec(Ag;Vμ) =
g(g+1)∑

i=0

(−1)i [Hi
c (Ag,Vμ)]

of compactly supported cohomology. The cohomology group Hi
c (Ag ⊗ C,Vμ ⊗ C)

(resp. Hi (Ag ⊗C,Vμ ⊗C)) is provided with a mixed Hodge structure of weights ≤
|μ|+i (resp.≥ |μ|+i) and the sumsof the elements of the 2g subsets of {μg+1, μg−1+
2, . . . , μ1 + g} yield the degrees at which nontrivial steps in the Hodge filtration may
occur, see [15] or [3] and references there. So the last step is F |μ|+g(g+1)/2 and it is
here that we find Siegel modular forms: there is an isomorphism

Sn(μ) = H0(Ag ⊗ C,Eμ ⊗ detg+1(E)(−D)) ∼= F |μ|+g(g+1)/2H g(g+1)/2
c (Ag ⊗ C,Vμ ⊗ C)

(13)

where

n(μ) = (μ1 − μ2, μ2 − μ3, . . . , μg−1 − μg, μg + g + 1) .



Concomitants of ternary quartics and vector-valued Siegel… Page 31 of 39 55

We denote by Hi
! (Ag,Vμ) the image of Hi

c (Ag,Vμ) → Hi (Ag,Vμ). It is known
that if μ is regular then Hi

! (Ag,Vμ) = (0) if i �= g(g + 1)/2. The above results
are due to Faltings [14] and Faltings–Chai [15]; a key role is played by the (dual)
BGG-complex.

We are interested in a similar interpretation ofTeichmüllermodular forms for g ≥ 2.
So far, we have only considered these for g = 3. With a Teichmüller modular form of
type ρ (or weight w(ρ)), we mean here a section overMg of E′

ρ , the bundle obtained
by applying the Schur functor associated to an irreducible representation ρ of GL(g)

to the Hodge bundle E′.
By pulling back under the Torelli map t , we obtain local systems V′

μ = t∗Vμ on

Mg andMc
g = Mg − �0, the moduli space of curves of compact type. We consider

the motivic Euler characteristic

ec(Mg;V′
μ) =

6g−6∑
i=0

(−1)i [Hi
c (Mg,V

′
μ)]

and similarly we can consider ec(Mc
g;V′

μ).
We obtain the following partial analogue of the above results.

Theorem 13.1 For the natural mixed Hodge structures on the middle cohomology
groups, we have the following isomorphisms:

Fm H3g−3(Mg,V′
μ ⊗ C) ∼= H0(Mg,E′

μ ⊗ O(13λ − δ)), (14)

Fm H3g−3(Mc
g,V′

μ ⊗ C) ∼= H0(Mg,E′
μ ⊗ O(13λ + δ0 − 2δ)), and (15)

Fm H3g−3
c (Mg,V′

μ ⊗ C) ∼= Fm H3g−3
c (Mc

g,V′
μ ⊗ C) ∼= H0(Mg,E′

μ ⊗ O(13λ − 2δ)), (16)

where m = 3g − 3 + |μ| is the maximum possible Hodge degree.

Proof It is not clear whether the BGG-complex can be adapted to this setting and
we resort to the logarithmic de Rham-complex. The local system V

′
μ ⊗ C on Mg

(or Mc
g) corresponds to a holomorphic vector bundle Vμ with flat connection ∇ (the

Gauss–Manin connection). The boundary D = Mg − Mg is a divisor with normal
crossings. The bundle Vμ admits a canonical extension Vμ toMg and ∇ extends to a
map

∇ : Vμ → Vμ ⊗ �1
Mg

(log D)

with nilpotent polar part. Then the hypercohomology of the logarithmic de Rham-
complex computes the cohomology of V′

μ ⊗ C onMg :

H p(Mg,V
′
μ ⊗ C) ∼= H

p(Mg,Vμ ⊗ �•
Mg

(log D)).
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Cf. [36]. Twisting with O(−D), we obtain a complex that computes the compactly
supported cohomology:

H p
c (Mg,V

′
μ ⊗ C) ∼= H

p(Mg,Vμ ⊗ �•
Mg

(log D) ⊗ O(−D)).

Analogous statements hold for Mc
g , after replacing D by �0.

These complexes admit naturalHodgefiltrations,which induce theHodgefiltrations
of themixedHodge structures on H p

(c)(Mg,V
′
μ⊗C) and H p

(c)(Mc
g,V

′
μ⊗C). Letm =

3g − 3+|μ| be the top Hodge degree. The complex Fm(Vμ ⊗�•
Mg

(log D)) consists

of the sheaf E′
μ ⊗�

3g−3
Mg

(log D), considered as a complex supported in degree 3g −3.

As is well-known [20], the canonical bundle of the stack Mg equals O(13λ − 2δ).
Since the spectral sequence associated to the Hodge filtration degenerates at E1, we
obtain the stated isomorphisms. 
�

Thus the final steps in the Hodge filtrations on the middle cohomology groups
are isomorphic to spaces of Teichmüller modular forms of highest weight μ +
(13, 13, . . . , 13)with prescribed vanishing behaviour along components of the bound-
ary. This is entirely analogous to the relation between Siegel modular forms and the
cohomology ofAg . In particular, we have in genus 2 the isomorphismMc

2
∼= A2 and

the relation 10λ ∼ δ0 + 2δ1; the isomorphisms forMc
2 above agree with those forA2

discussed earlier. However, note that the Teichmüller modular forms found here are
cusp forms in a strong sense: they need to vanish (at least) once or twice along each
component of the boundary.

The isomorphisms continue to hold if we change the cohomological degrees on
both sides by the same amount; in particular, Fm H p

(c) = (0) for p < 3g − 3. As a
trivial example, takeμ = 0, so m = 3g −3; the top compactly supported cohomology
of Mg and Mc

g is spanned by L3g−3 and coincides with F3g−3; on the other hand,

H3g−3(Mg,O(13λ − 2δ)) ∼= C, as follows from Serre duality.
We now return to g = 3. Assume first that μ = (a, b, c) is even, i.e., a + b + c is

even. Then μ + (13, 13, 13) is odd and so are the Teichmüller modular forms in the
isomorphisms above. As we saw in Sect. 7, odd Teichmüller modular forms of genus
3 are divisible by χ9, and the even quotients are pullbacks of Siegel modular forms.
So for g = 3 and μ even, the isomorphisms above may be rewritten as follows:

Fm H6(M3,V
′
μ ⊗ C) ∼= Fm H6(Mc

3,V
′
μ ⊗ C) ∼= Ma−b,b−c,c+4, (17)

Fm H6
c (M3,V

′
μ ⊗ C) ∼= Fm H6

c (Mc
3,V

′
μ ⊗ C) ∼= Sa−b,b−c,c+4, (18)

with m = a + b + c +6. Therefore, we also have isomorphisms with Fm H6(A3,Vμ)

resp. Fm H6
c (A3,Vμ).

An interesting particular case of equation (17) is obtained by takingμ = 0.We find
that F6H6(M3,C) and F6H6(Mc

3,C) are onedimensional and naturally isomorphic
to M0,0,4, which is spanned by the Eisenstein series α4 (see [39]). This is Looijenga’s
class of type (6, 6) (cf. [28]). (The dual class in H6

c is of type (0, 0) and F6H6
c = (0),

since α4 is not a cusp form.)
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Assume next thatμ is odd, so ν = μ+(13, 13, 13) is even. Equations (14)–(16) say
the following. The classes in Fa+b+c+6 of the middle cohomology of V′

μ ⊗C onM3
correspond to Teichmüller forms of type ν that vanish along the entire boundary. Only
those corresponding to forms that vanish at least twice along the boundary divisors
parametrizing reducible curves are restrictions fromMc

3. Only the forms vanishing at
least twice along the entire boundary correspond to compactly supported classes.

For concrete examples, note that Bergström [2] has determined ec(M3,V
′
μ ⊗ C),

hence e(M3,V
′
μ ⊗C) for all μ with |μ| = a + b + c ≤ 7. E.g., for μ = (1, 1, 1), so

m = 9, one has ec = −L7− L2+ L +1, so e = L9+ L8− L7− L2. Then Fme = L9,
but it is not yet clear which cohomology groups contribute to this. Since the virtual
cohomological dimension of M3 equals 7 (cf. [18]), only classes in H6 and H7 can
contribute, and there must be at least one class in F9H6. Now

F9H6(M3,V
′
μ ⊗ C) ∼= H0(M3,O(14λ − δ)).

According to [39], the space S0,0,14 is spanned by the cusp form β14. We conclude
that β14 vanishes along A2,1 and that F9H7 = (0). In fact, by loc. cit., β14 vanishes
twice along A2,1, so the corresponding class is a restriction fromMc

3.
In [3], Bergström and two of the present authors have counted curves of genus 2

and 3 over finite fields and their numbers of points and in this way determined the
Fq -traces of ec(M3,V

′
μ) and ec(A3,Vμ) for q ≤ 25. As discussed in loc. cit., this

has led to a complete conjecture for these motivic Euler characteristics in the case of
A3. In the case of M3, we have obtained precise conjectures for nearly all μ with
|μ| ≤ 20 (for three μ with |μ| = 19, some information is missing). The work of
Chenevier–Renard [6], Chenevier–Lannes [5], Taïbi [38], and Mégarbané [29] has
played a particularly important role here. Below, we use some of the results to provide
further examples (in effect, we obtain further evidence for the conjectures). Note that
the ‘motivic’ conjectures tell us in particular where terms of the maximum possible
Hodge degree are to be expected.

We first consider scalar-valued Teichmüller modular forms, so μ = (k, k, k). Here
are three more even cases:

(1) k = 2, m = 12: ec = 1, e = L12; this corresponds to the Eisenstein series α6 ;
(2) k = 4, m = 18: ec = L5 + 1, e = L18 + L13; Fme corresponds to the Eisenstein

series α2
4 ;

(3) k = 6, m = 24: Fme = L24 + L7S18 corresponds to the space spanned by the
modular forms α4α6 and α10 .

More interesting are two more odd cases:

(1) k = 3, m = 15: Fme = L15; indeed, H0(M3,O(16λ − δ)) is spanned by
β16, since no nontrivial linear combination of the other two generators α4α12 and
α16 − 27

4 α6α10 of the space of cusp forms of weight 16 vanishes along A2,1 ;
(2) k = 5, m = 21: in this case, we conjecture that

ec(M3,V
′
5,5,5) = L7 + 2L6 + 5L5 + 6L4 + 4L3 + 3L2 + 2L + 1 + S[4, 10],
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so Fme = L21 + Fm S[4, 10] ∼= C
2. On the other hand, H0(M3,O(18λ − δ)) is

spanned byα4β14 andχ18, since no linear combination ofα6α12 andα18−27α2
4α10

(the other generators of the space of cusp forms of weight 18) vanishes alongA2,1 .
Note also that Fmec = Fm S[4, 10] ∼= C. This corresponds to H0(M3,O(18λ −
2δ)) = C · χ18.

More generally, for μ = (a, b, c) odd, it is natural to consider

H0(M3,E
′
μ ⊗ O(13λ − 2δ)),

since this corresponds to compactly supported cohomology by equation (16) and thus
to the data obtained by counting curves.

This space is a subspace of

S2
a−b,b−c,c+13,

which by Theorem 11.6 is isomorphic to

Cd,(a−5,b−5,c−5)(− d−2
2 DC),

where d = a+b+c−15 is even. In particular, there are no contributions for |μ| < 15.
More precisely, the subspace consists of those forms vanishing to order at least 2

along A2,1 (or along δ1 when considered as Teichmüller forms).
Now the isomorphism is given by c 	→ γ (c)χ18 and we know that χ18 has order 6

alongA2,1. So whenever γ (c) has order at least −4 along δ1, we obtain an element of
the subspace of interest. Since χ4,0,−1 has a simple pole along δ1 (by Lemma 4.1 and
Proposition 10.1), this is automatically the case for d ≤ 4.

The case d = 0, hence μ = (5, 5, 5) has been discussed already: m = 21 and

Fmec(V
′
5,5,5 ⊗ C) = Fm S[4, 10]

corresponds to the space spanned by χ18 .
In the case d = 2, there are three nonzero spaces of concomitants (Sect. 12), each of

dimension 1. The correspondingμ are (11, 3, 3), (9, 5, 3), and (7, 7, 3). The associated
(irreducible) ‘motives’ are M[23, 13, 5], S[8, 9], and M[23, 15, 3], respectively. Here,
S[8, 9] is the motive associated to Siegel cusp forms of degree 2 (!) of type Sym8 det9.
The other twomotives are not associated to Siegel cusp forms. They are 6-dimensional
motives of weight 23, first identified by Chenevier–Renard [6]; later, Mégarbané [29]
computed their Fq -traces for many small q, in complete agreement with the counting
data of [3]. In denoting these motives, we essentially follow the notation of [6] and
[29]; e.g., the Hodge degrees of M[23, 13, 5] are

0, 5, 9, 14, 18, 23

(so the successive widths are 23, 13, and 5).
We have explicitly computed all (spaces of) concomitants of ternary quartics of

degree at most 6. We have also determined the subspaces of concomitants vanishing
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to order at least r along DC , for each r ≥ 0. (The computations are quite involved
and we will discuss them in a future paper.)

In particular, for d = 4, we find nonzero concomitants vanishing along DC exactly
in the 13 following cases:

μ = (14, 4, 1), (13, 5, 1), (12, 5, 2), (12, 4, 3), (11, 7, 1), (11, 6, 2), (11, 5, 3),

(10, 7, 2), (10, 6, 3), (10, 5, 4), (9, 7, 3), (9, 5, 5), (8, 7, 4).

The correspondingmotives have been identified in 10 of the 13 cases. Their dimensions
are 4, 6, or 8. The work of Mégarbané [29] has played a crucial role here. There are
reasons to believe that in the 3 remaining cases the motives will be 12-dimensional;
in any case, these motives have not yet been identified.

The conjectural formulas for the Euler characteristics ec(M3,V
′
μ) with μ odd are

rather complicated and contain many more terms than just the motives mentioned
above. The techniques and computations that were used to obtain the formulas, and
the formulas themselves, will be discussed elsewhere.
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14 Appendix: Teichmüller modular forms extend toMg for g ≥ 3

The result below was found by Farkas, Pandharipande, and the second author, after a
talk in Berlin (January 2019), in which Proposition 7.3 and its proof were presented.
The visit to Berlin was supported by the Einstein Stiftung.

Let Mg denote the moduli space of curves of genus g ≥ 2. The Torelli morphism
t : Mg → Ag is a morphism of algebraic stacks. By pullback under t we obtain the
Hodge bundle E′ onMg and for each irreducible representation ρ of GL(g) a vector
bundleE′

ρ onMg . Sections of such a bundleE′
ρ are called Teichmüller modular forms

of degree g. The vector bundle E′ and hence all the E′
ρ extend in a natural way over

the Deligne–Mumford compactificationMg . The purpose of this note is to show that
a holomorphic section of E′

ρ automatically extends to a holomorphic section of the
extended bundle, for g ≥ 3. (As Ichikawa already observed, the result fails for g = 2:

http://creativecommons.org/licenses/by/4.0/
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Igusa’s cusp form χ10 vanishes exactly along�0 and (doubly) along�1 , so its inverse
is a regular section of det−10(E′) onM2 which does not extend toM2 .)

Proposition 14.1 Let g ≥ 3 be an integer. Let ρ be an irreducible representation of
GL(g) and let E′

ρ be the bundle on Mg arising from the Hodge bundle E
′ of rank g

by applying the Schur functor corresponding to ρ. Then a section s of E′
ρ over Mg

extends to a regular section of E′
ρ over Mg .

Proof We first show that s extends over the boundary divisors parametrizing reducible
curves. Let �i with 0 < i ≤ g/2 be such a divisor. Let D be the open boundary
stratum of �i . So D ∼= Mi,1 × Mg−i,1 or its quotient by S2 when i = g/2. Let
X = Mg ∪ D. We show that the global sections of E′

ρ onMg agree with those on X ,
as follows.

On X , we have the following exact sequences:

0 → O(−D) → O → OD → 0,

0 → O → O(D) → O(D)D → 0,

0 → E
′
ρ → E

′
ρ(D) → (E′

ρ(D))|D → 0.

We want

H0(X ,E′
ρ) = H0(X ,E′

ρ(D))

and obtain this by showing that

H0(X , (E′
ρ(D))|D) = H0(D,E′

ρ(D)) = 0.

For the latter vanishing, consider the complete curve B in D obtained by varying the
attachment point on a given smooth curve C of genus g − i (since g ≥ 3 we have
g − i ≥ 2). On such a curve, E′ and thus E′

ρ are constant, so a direct sum of trivial line
bundles. The line bundle O(D)|B is −KC , of strictly negative degree, so its global
sections on B are zero. The same holds then for the global sections of E′

ρ(D) on B
and then also on D, since the curves B fill out D. Thus

H0(X ,E′
ρ) = H0(X ,E′

ρ(D))

as desired. By twisting more with O(D) we find similarly that

H0(X ,E′
ρ) = H0(X ,E′

ρ(k D))

for an arbitrary positive integer k. Thus a global section of E′
ρ onMg , which a priori

could have a pole along D of some order, is in fact regular along D and extends to X .
Next, we consider �0 . Let D be the open part consisting of the open boundary

stratum and the stratum corresponding to smooth curves of genus g−1 with a singular
elliptic tail attached. So D ∼= (C2g−1)/S2 . Again, let X = Mg ∪ D. We proceed as

above, but for the argument on D wemay aswellwork on the double cover D2 ∼= C2g−1 .
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Let B in D be the complete curve obtained by varying the (second) point Q on a given
one-pointed smooth curve (C, P) of genus g − 1. (When Q = P , we get a stable
curve in the smaller stratum, of course.) NowO(D)|B is −KC (2P), again of negative
degree. On D2 , the Hodge bundle E′ sits in an exact sequence

0 → F
′ → E

′ r−→OD2 → 0,

where F′ is the Hodge bundle pulled back from genus g − 1 and the map r to OD2

is obtained by taking the residue at P . The restriction of F′ to B is trivial. A global
section t of E′(D)|D2 on B gives a global section of O(D)D2 on B, which must be
trivial, so t comes from a section of F′(D)|D2 on B, which must be trivial as well.
To show that a global section of E′

ρ(D) on B also must vanish, we argue as follows.
Firstly, global sections of ((E′)⊗n)(D) on B vanish for every n; e.g., for n = 3 a global
section t gives via r ⊗ r ⊗ r a global section of O(D), which vanishes; so t comes
from a section of the subbundle

(F′ ⊗ E
′ ⊗ E

′ + E
′ ⊗ F

′ ⊗ E
′ + E

′ ⊗ E
′ ⊗ F

′)(D)

of rank g3 − 1; applying r ⊗ r ⊗ 1, r ⊗ 1 ⊗ r , and 1 ⊗ r ⊗ r , we find t must come
from a section of

(F′ ⊗ F
′ ⊗ E

′ + F
′ ⊗ E

′ ⊗ F
′ + E

′ ⊗ F
′ ⊗ F

′)(D);

applying r ⊗ 1 ⊗ 1, 1 ⊗ r ⊗ 1, and 1 ⊗ 1 ⊗ r , we find t comes from a section of

(F′ ⊗ F
′ ⊗ F

′)(D),

which must vanish. Next, on D2 we have that det(E′) is trivial. So with ρ = (ρ1 ≥
ρ2 ≥ · · · ≥ ρg), we may and will assume that ρg = 0. Finally, E′

ρ occurs in the
decomposition of (E′)⊗n as a summand, with n = |ρ| = ρ1 + · · · + ρg−1. More
precisely, the bundle of GL(g)-equivariant homomorphisms from E

′
ρ to (E′)⊗n is free

of rank equal to themultiplicity of the former in the decomposition of the latter. Choose
a nonzero section u of this bundle; via u, a section of E′

ρ gives a section of (E′)⊗n ,
by taking the zero section of the other isotypical components. It follows that a global
section of E′

ρ(D) on B necessarily vanishes, as claimed. The same holds then for the
global sections on D and then also for E′

ρ(k D) for positive k.
We conclude that a section of E′

ρ over Mg extends over nonempty open parts of
each boundary divisor. This is enough, since the complement is of codimension 2 and
Mg is a smooth stack. 
�
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12. Dutour Sikirić, M., Hulek, K., Schürmann, A.: Smoothness and singularities of the perfect form and

the second Voronoi compactification ofAg . Algebr. Geom. 2(5), 642–653 (2015)
13. Elsenhans, A.: Explicit computations of invariants of plane quartic curves. J. Symb. Comput. 68(part

2), 109–115 (2015)
14. Faltings, G.: On the Cohomology of Locally Symmetric Hermitian Spaces. Lecture Notes in Mathe-

matics, vol. 1029. Springer, Berlin (1983)
15. Faltings, G., Chai, C.-L.: Degeneration of Abelian Varieties. Ergebnisse der Mathematik und ihrer

Grenzgebiete (3), vol. 22. Springer, Berlin (1990)
16. Frobenius, G.: Über die Jacobischen Functionen dreier Variabelen. J. Reine Angew.Math. 105, 35–100

(1889)
17. Grushevsky, S., Salvati Manni, R.: The vanishing of two-point functions for three-loop superstring

scattering amplitudes. Commun. Math. Phys. 294, 343–352 (2010)
18. Harer, J.: The virtual cohomological dimension of the mapping class group of an orientable surface.

Invent. Math. 84(1), 157–176 (1986)
19. Harris, J., Morrison, I.: Slopes of effective divisors on the moduli space of stable curves. Invent. Math.

99, 321–355 (1990)
20. Harris, J., Mumford, D.: On the Kodaira dimension of the moduli space of curves. With an appendix

by W. Fulton. Invent. Math. 67(1), 23–88 (1982)
21. Ibukiyama, T., Takemori, S.: Construction of theta series of any vector-valued weight and applications

to lifts and congruences. Exp. Math. 28(1), 95–114 (2019)
22. Ichikawa, T.: On Teichmüller modular forms. Math. Ann. 299, 731–740 (1994)
23. Ichikawa, T.: Teichmüller modular forms of degree 3. Am. J. Math. 117, 1057–1061 (1995)
24. Ichikawa, T.: Theta constants and Teichmüller modular forms. J. Number Theory 61(2), 409–419

(1996)
25. Ichikawa, T.: Generalized Tate curve and integral Teichmüller modular forms. Am. J. Math. 122(6),

1139–1174 (2000)
26. Lercier, R., Ritzenthaler, C.: Siegel modular forms of degree three and invariants of ternary quartics.

(2019). arXiv:1907.07431
27. Igusa, J.-I.: Modular forms and projective invariants. Am. J. Math. 89, 817–855 (1967)
28. Looijenga, E.: Cohomology ofM3 andM1

3. Mapping Class Groups and Moduli Spaces of Riemann
Surfaces (Göttingen/Seattle, 1991). Contemporary Mathematics, vol. 150, pp. 205–228. American
Mathematical Society, Providence (1993)

29. Mégarbané, T.: Traces des opérateurs de Hecke sur les espaces de formes automorphes de SO7, SO8
ou SO9 en niveau 1 et poids arbitraire. J. Théor. Nombres Bordeaux 30(1), 239–306 (2018)

30. Mumford, D., Fogarty, J.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzge-
biete, vol. 34, 2nd edn. Springer, Berlin (1981)

31. Namikawa, Y.: A new compactification of the Siegel space and degeneration of abelian varieties. I, II.
Math. Ann. 221(2), 97–141 and (3), 201–241 (1976)

32. Ohno, T.: The graded ring of invariants of ternary quartics I—generators and relations. Preprint (2007)
33. Ottaviani, G., Sernesi, E.: On singular Lüroth quartics. Sci. China Math. 54(8), 1757–1766 (2011)

http://smf.compositio.nl
http://smf.compositio.nl
http://arxiv.org/abs/1907.07431


Concomitants of ternary quartics and vector-valued Siegel… Page 39 of 39 55

34. Salmon, G.: Higher Plane Curves, 3rd edn. Hodges, Foster, Figgis, Dublin (1879) (reprint by Chelsea,
1960)

35. Sasaki, R.: Some remarks on the moduli space of principally polarized abelian varieties with level
(2, 4)-structure. Compos. Math. 85, 87–97 (1993)

36. Schnell, C.: Computing cohomology of local systems. Unpublished lecture notes. http://www.math.
stonybrook.edu/%7Ecschnell/pdf/notes/locsys.pdf. Accessed July 2019

37. Shioda, T.: On the graded ring of invariants of binary octavics. Am. J. Math. 89, 1022–1046 (1967)
38. Taïbi, O.: Dimensions of spaces of level one automorphic forms for split classical groups using the

trace formula. Annales scientifiques de l’ENS 50, 269–344 (2017). See also the tables at https://otaibi.
perso.math.cnrs.fr/dimtrace/

39. Tsuyumine, S.:OnSiegelmodular formsof degree three.Am. J.Math.108, 755–862 (1986).Addendum
to “On Siegel modular forms of degree three.” Am J. Math. 108, 1001–1003 (1986)

40. van Geemen, B., van der Geer, G.: Kummer varieties and the moduli spaces of abelian varieties. Am.
J. Math. 108, 615–641 (1986)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://www.math.stonybrook.edu/%7Ecschnell/pdf/notes/locsys.pdf
http://www.math.stonybrook.edu/%7Ecschnell/pdf/notes/locsys.pdf
https://otaibi.perso.math.cnrs.fr/dimtrace/
https://otaibi.perso.math.cnrs.fr/dimtrace/

	Concomitants of ternary quartics and vector-valued Siegel and Teichmüller modular forms of genus three
	Abstract
	1 Introduction
	2 Siegel modular forms
	3 The scalar-valued Siegel modular form χ18
	4 The vector-valued Siegel modular form χ4,0,8
	5 The Fourier–Jacobi expansion of the Schottky form
	6 Another expression for χ4,0,8
	7 Teichmüller modular forms
	8 Invariants and concomitants of ternary quartics
	9 Quartic curves and moduli
	10 Invariants, concomitants and modular forms
	11 The order along the locus of double conics
	12 Constructing modular forms from concomitants
	12.1 Degree 1 and 2
	12.2 Degree 3
	12.3 Degree 5
	12.4 Degree 6

	13 Teichmüller modular forms and the cohomology of local systems
	Acknowledgements
	14 Appendix: Teichmüller modular forms extend to overlinemathcalMg for gge3
	References




