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Abstract
We prove that the quantum DT-invariants associated to quivers with genteel potential
can be expressed in terms of certain refined counts of tropical disks. This is based on
a quantum version of Bridgeland’s description of cluster scattering diagrams in terms
of stability conditions, plus a new version of the description of scattering diagrams in
terms of tropical disk counts. Theweights withwhich the tropical disks are counted are
expressed in terms ofmotivic integrals of certain quiver flag varieties.We also showvia
explicit counterexample that Hall algebra broken lines do not result in consistent Hall
algebra theta functions, i.e., they violate the extension of a lemma of Carl–Pumperla–
Siebert from the classical setting.
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1 Introduction

In [22], Gross–Hacking–Keel–Kontsevich used scattering diagrams to construct
canonical bases for cluster algebras. Several articles [24,30,32,44,48] have devel-
oped connections between DT-invariants and various scattering diagrams or cluster
transformations. Building off these ideas, Bridgeland [6] constructedHall algebra scat-
tering diagrams whose classical integrals often recover the cluster scattering diagrams
(cf. our Proposition 3.16 for the quantum analog). On the other hand, [9,19,25,38]
show how to express various scattering diagrams in terms of certain (refined) counts
of tropical curves or disks. By extending and combining these ideas, we obtain new
expressions for quantum DT-invariants in terms of refined counts of tropical disks.

1.1 QuantumDT-invariants from tropical ribbons

Let (Q, W ) be a finite quiver Q without loops or oriented 2-cycles, plus a choice of
finite potential W , i.e., a finite linear combination of oriented cycles in Q. Denote
the vertex set of Q by Q0. There are standard notions, reviewed in Sect. 2, of the
associated category of representations rep(Q, W ), the corresponding Grothendieck
lattice N = Z

Q0 , and the moduli stack M of objects in rep(Q, W ). Points θ in
MR := Hom(N , R) can be viewed as stability conditions on rep(Q, W ), determining
a substack 1ss(θ) of θ -stemistable objects1 in rep(Q, W ), cf. Definition 3.7. We let It

denote the quantum integration map taking varieties overM to elements of a quantum
torus algebra Ct [N⊕], cf. Sect. 2.6. E.g., if W = 0, then It is the generalized Poincaré
polynomial. We are interested are the invariants It (log(1ss(θ))).

Some additional notation and terminology regarding this setup will be needed. The
lattice N is equipped with the natural basis {ei }i∈Q0 . Let B denote the skew-symmetric
Euler form on N , cf. (2), and define2 p∗ : N → M , p∗(n) = B(·, n). We say θ ∈ MR

is general if it is not in the intersection of two distinct hyperplanes of the form n⊥ for
n ∈ N\{0}, cf. Remark 3.9.

We will also need the following setup coming from the theory of tropical curves
and scattering diagrams, cf. Sect. 4.1 for details. By a weight-vector, we will mean
a tuple w = (wi )i∈Q0 where each wi = (wi j ) j=1,...,li consists of positive integers
wi1 ≤ wi2 ≤ · · · ≤ wili . Denote the length l(w) := ∑

i li , and let Aut(w) be the
group of automorphisms of the second indices of the wi ’s which act trivially on w.

Define the “multiple cover contributions” Rw := ∏
i j

(−1)wi j−1

wi j (q
wi j −1)

∈ C[t±1] where
q := t2.

One says that a tropical disk h : � → MR (cf. Sect. 4.1) has degree �w if the
unbounded edges Ei j are labelled by the indices of w, and if the weighted outgoing
direction of h(Ei j ) equals wi j p∗(ei ). Let Aw be a collection of affine hyperplanes
{Ai j ⊂ MR} with Ai j a generic translate of e⊥i . For δ > 0, we say that a tropical disk
matches the constraints δAw if h(Ei j ) ⊂ δAi j for each i, j . The type τ of a tropical

1 More precisely, 1ss(θ) is the Hall algebra element associated to the substack of θ -semistable objects.
2 In [22], p∗ is defined by inserting n into the first entry of the skew-symmemtrizable form. This discrepancy
is because the form B here and in [6] is negative the form used in [22].
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disk is the data of the underlying weighted graph � plus the data of directions of h(E)

for each edge E of �.
Each tropical disk includes the data of a special endpoint vertex V∞ ∈ �[0], and we

will impose an additional constraint on the image of V∞. Specifically, given θ ∈ MR

and a tropical disk type τ , we say that τ ∈ Tw(θ) if the following holds: given ε > 0
and any sufficiently small δ > 0 (small relative to ε), there exist tropical disks of
degree �w and type τ which match the constraint δAw and have h(V∞) ∈ Bε(θ) (the
radius ε open ball about θ ). Let T̂w(θ) denote the corresponding space of tropical
ribbon types, i.e., tropical disk types plus the additional data of a cyclic ordering of the
edges at each vertex. We wish to count elements of T̂w(θ) with a multiplicity which
we define next.

The form B descends to a form B on p∗(N ) given by B(p∗(n1), p∗(n2)) =
B(n1, n2). For τ̂ ∈ T̂w(θ), let ν(̂τ ) denote (−1) to the power of the number of
vertices of τ̂ where the ribbon structure does not agree with the orientation induced
by B, cf. Sect. 4.2.2. The ribbon structure induces an ordering Ei1, j1 , . . . Eil(w) jl(w)

on
the Ei j ’s. Given such a tropical ribbon type τ̂ , let Flag(̂τ ) denote the variety overM
whose fiber over a (stacky) point corresponding to a representation M is the space of
composition series

0 = M0 ⊂ M1 ⊂ · · · ⊂ M∑
i j wi j = M

such that the firstwi1 j1 quotients Mi/Mi−1 are isomorphic to the simple representation
Si1 , then the nextwi2 j2 quotients Mi/Mi−1 are isomorphic to the simple representation
Si2 , and so on. The following is the quantum integral case of Theorem 4.10.

Theorem 1.1 Suppose (Q, W ) is genteel over gq (cf. Sect. 3.2.3). Then for general
θ ∈ MR,

It (log(1ss(θ))) =
∑

w

⎛

⎝ 1

|Aut(w)|
∑

τ̂∈T̂w(θ)

ν(̂τ )It (RwFlag(̂τ ))

⎞

⎠ . (1)

See Sect. 3.2.3 for details on our version of the genteel property and modifications
thereof. We note here that genteelness of (Q, W ) is known to at least hold for acyclic
quivers with W = 0. More generally, the possibly weaker condition of genteelness
over gq holds whenever Q admits a green-to-red sequence and W is non-degenerate
[40, Cor. 1.2(i)].

The same statement applies with It replaced by the classical integration map I
(i.e., the t 
→ 1 limit, i.e., taking generalized Euler characteristics), and similarly
for It replaced by other projections Ii of the Hall algebra defined in Sect. 3.2.1.
For the classical version though, one should view I(RwFlag(̂τ )) as living in Acl, a
logarithmic version of theWeyl algebra, cf. Example 4.1. These factorsIt (RwFlag(̂τ ))

and I(RwFlag(̂τ )) can be more easily computed as products in the quantum torus
algebra or Weyl algebra, respectively, cf. Remark 4.11.

Alternatively, one can replace the sum over tropical ribbonswith a sum over tropical
disks, and then the tropical ribbonmultiplicities ν(̂τ )It (RwFlag(̂τ )) are replaced with
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Block–Göttsche [2] style refined tropical disk multiplicities R′
w

∏
V [Mult(V )]t , and

similarly for the classical cases, cf. Remark 4.11 again. Our intention in this paper
though is to give a representation-theoretic description of the tropical multiplicities,
which is why we state Theorem 1.1 in terms of moduli of flags.

See Example 4.12 for a sample computation of a term on the right-hand side of (1).

1.2 Hall algebra broken lines violate the Carl–Pumperla–Siebert Lemma

One might hope (as we had hoped) that Theorem 1.1 holds without applying the
integration maps, i.e., as an identity in the Hall algebra. Unfortunately, this fails as
a result of the fact that elements of the Hall algebra with parallel dimension vectors
need not commute (although we see that the result does hold after modding out by the
ideal generated by these commutators). In Sect. 5, we show that similar issues cause
problems for theta functions.

As in [9,21,23], the construction of theta functions in [22] is based on enumerating
broken lines (an abridged version of tropical disks). This enumeration depends on the
designated endpoint of the broken lines, but according to [9, § 4], different choices of
endpoint are related by path-ordered product, essentially meaning that these choices
glue to give well-defined global functions on the mirror. [38, Thm. 2.14] gives a
refined version of this Carl–Pumperla–Siebert Lemma, implying that the analogous
gluing property holds for quantum theta functions, cf. Lemma 5.2. Refining further,
[7,8] defines Hall algebra broken lines, and from these one might hope to define Hall
algebra theta functions. Unfortunately, this is not a well-behaved notion:

Proposition 1.2 (Proposition 5.4 in the main text) the Carl–Pumperla–Siebert Lemma
does not hold for Hall algebra broken lines.

Our proof is via the explicit construction of a counterexample for an A3-quiver, cf.
Sect. 5.3.

1.3 Motivation

When B has rank 2, the tropical disk counts of Theorem 1.1 can be replaced with
tropical curve counts, cf. [25, Thm. 2.8] and [19, Cor. 4.9]. In higher-dimensions this
is only the case for certain limits of choices of θ , cf. [38, Thm 3.7]. The tropical
curve versions are nice because in the classical limit they can be related via [45] to
log Gromov–Witten invariants, cf. [25, Prop. 5.3]. As the authors have learned from
Mark Gross, the classical versions of our tropical disk counts should also have an
algebraic Gromov–Witten theoretic meaning: according to the announced result [27,
Thm. 2.14], they should be related to certainpunctured Gromov–Witten invariants (one
also expects the existence of correspoding holomorphic disk counts defined from the
perspective of openGromov–Witten theory, e.g., as in [36] for the case ofK3 surfaces).
One expects DT/GW correspondence results to follow from [27, Thm. 2.14] combined
with [6, Lem. 11.4].

On the other hand, the quantum tropical curve counts in rank 2 are Block–Göttsche
invariants [2], which have been related to higher-genus Gromov–Witten invariants
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in [3,4] and to real curve counts in [39]. Upcoming work of the second author will
extend the correspondence of [39] to higher-dimensions, although an extension to
tropical disks is still more distant. Still, we hope that Theorem 1.1 will lead to new
refined DT/GW correspondence results, and we further hope that this correspondence
will be enriched by our interpretation of tropical ribbon multiplicities in terms of
moduli of composition series.

A version of Theorem1.1 for bipartite quiverswas previously observed in [19, Thm.
5.3]. Their argument was based on the observation that in these cases, (1) is equivalent
to a representation-theoretic formula of Manschot–Pioline–Sen [41]. We therefore
hope that our result may be related to some generalization of this MPS formula. With
this in mind, we strongly suspect that our tropical counts are closely related to the
attractor flow trees studied by physicists, cf. [1] in particular, as well as [35].

We note that [37], which appeared immediately after this paper was first posted,
deals with similar problems on scattering diagrams and tropical disks using a
differential-geometric perspective.

1.4 Outline of the paper

In Sects. 2.1–2.2, we review Joyce’s construction [28] of the Hall algebra associated to
a quiver with potential, following [6, § 4–5]. Then in Sects. 2.3–2.4, we use [5, Lem.
4.4] to describe certain products in the Hall algebra in terms of moduli of composition
series. We review the quantum and classical integration maps in Sects. 2.5–2.6.

We review the definition of scattering diagrams in Sect. 3.1, and in Theorem 3.5
we generalize previously known results about initial scattering diagrams uniquely
determining consistent scattering diagrams. We then we review Bridgeland’s Hall
algebra scattering diagrams (and some variants) in Sect. 3.2. If the potential W is
genteel, then theHall algebra scattering diagram is determined by an easily understood
initial scattering diagram which we describe explicitly in Sect. 3.3.

We review the notion of tropical disks in Sect. 4.1, and in Sect. 4.2 we focus on
the tropical ribbons and multiplicities associated to an initial scattering diagram. The
description of scattering diagrams in terms of tropical disks (Theorem 4.4) is given in
Sect. 4.3 and proven in Sect. 4.4. This is applied to the Hall algebra scattering diagram
in Sect. 4.5 to prove our main results, Theorems 4.9 and 4.10.

We turn our attention to theta functions in Sect. 5. We review the definitions of
broken lines and theta functions in Sect. 5.1, explaining how these apply to various
flavors of cluster varieties in Sect. 5.2. Finally, in Sect. 5.3, we work out an explicit
counterexample to show that a foundational result of [9] (cf. Lemma 5.2) does not
extend to the Hall algebra setting (Proposition 5.4).
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2 Themotivic Hall algebra of a quiver with potential

2.1 Preliminaries on quivers with potential and their representations

Let Q be a finite quiver. Denote the sets of vertices and arrows of Q as (Q0, Q1). Let
CQ denote the path algebra of Q. Suppose that Q is equipped with a finite potential,
i.e., a finite linear combination of cycles, denoted W ∈ CQ. Define a two-sided ideal
IW ⊆ CQ on Q by

IW = (∂a W : a ∈ Q1).

Here, if b1 . . . bk is a cycle of arrows in Q, then

∂a(b1 . . . bk) =
k∑

i=1

δabi bi+1 . . . bkb1 . . . bi−1,

where δabi is 1 if a = bi and 0 otherwise. Then the Jacobi algebra for (Q, W ) is the
quotient algebra CQ/IW . Let rep(Q, W ) := modCQ/IW be the abelian category
of finite-dimensional representations of the quiver with potential (Q, W ), i.e., finite-
dimensional left CQ/IW -modules.

Set N = Z
Q0 , M = HomZ(N , Z), MR = M ⊗Z R. Let {ei }i∈Q0 be the natural

basis indexed by the vertices of Q. Denote N⊕ := {∑i ai ei ∈ N |ai ∈ Z≥0 ∀i}, and
N+ := N⊕\{0}. There is a group homomorphism

dim : K0(rep(Q, W )) → N

sending a representation to its dimension vector. For vertices i, j ∈ Q0, let ai j denote
the number of arrows from i to j . Let B denote the integral skew-symmetric bilinear
form on N determined by setting

B(ei , e j ) := a ji − ai j . (2)

We note that our B is negative the pairing 〈·, ·〉 used in [6]. We will also use a second
Z-valued bilinear form χ on N given by

χ(ei , e j ) := δi j − ai j . (3)

Note that B(a, b) := χ(a, b) − χ(b, a).
It is well-known (cf. [6, Lem 4.1]) that there is an algebraic moduli stack M

parameterizing all objects of the category rep(Q, W ). Briefly, objects of M over a
scheme S are isomorphism classes of locally free finite-rankOS-modules E , together
with morphisms ρ : CQ/IW → EndS(E), cf. [6, § 4.2] for details. Furthermore, M
decomposes as

M =
⊔

d∈N⊕
Md (4)
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whereMd is the open and closed substack parametrizing objects of dimension vector
d. There is a 2-category of algebraic stacks over M, and we let St /M denote the
full subcategory consisting of objects f : X → M for which X is of finite type over
SpecC and has affine stabilizers. We similarly write St /C for the analogous category
of stacks over SpecC.

2.2 Construction of the Hall algebra

We now review the motivic Hall algebra developed by Joyce [28], following the
presentation of [6, § 5].

Let K (St /M) be the free abelian group with basis given by isomorphism classes
of objects of St /M modulo the relations given in [6, Def. 5.1]. In particular, one
imposes the scissor relations

[ f : X → M] = [ f |Y : Y → M] + [ f |U : U → M],
where [ f : X → M] is an object of St /M, Y ⊂ X is a closed substack, and
U := X\Y .

One endows the group K (St /M) with a K (St /C)-module structure by setting
[X ] · [Y → M] = [X × Y → M] and extending linearly. There is a unique ring
homomorphism

ϒ : K (St /C) → C(t) (5)

taking the class of a smooth projective variety X over C to its Poincaré polynomial

2d∑

k=1

dimCHk(Xan, C)(−t)k ∈ C[q],

where q := t2 and Hk(Xan, C) denotes singular cohomology. For X ∈ K (St /C), we
will often denote

|X | := ϒ(X).

Let

Kϒ(St /M) := K (St /M) ⊗K (St /C) C(t).

As a C(t)-module, the (motivic)Hall algebra H(Q, W ) is Kϒ(St /M). To define
the multiplication, the convolution product, on H(Q, W ) and make it into a C(t)-
algebra, we consider the stack M(2) of short exact sequences in rep(Q, W ). There is
a diagram

M(2) M

M×M,

(a1,a2)

b

(6)
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where a1, a2, b sends a short exact sequence

0 → A1 → B → A2 → 0

to A1, A2, and B respectively. The convolution product is defined to be

m = b∗ ◦ (a1, a2)
∗ : H(Q, W ) × H(Q, W ) → H(Q, W ).

This product can be expressed as

[X1
f1−→ M] ∗ [X2

f2−→ M] = [Z b◦h−−→ M],

where Z and h are defined by the Cartesian square

Z M(2) M

X1 × X2 M×M

h

(a1,a2)

b

f1× f2

The following is due to Joyce [28, Thm. 5.2], see also [5, Thm. 4.3].

Theorem 2.1 The product m gives H(Q, W ) the structure of an associative unital
algebra over C(t). The unit element is 1 = [M0 ⊂ M].

We note that the decomposition (4) of M induces an N⊕-grading

H(Q, W ) =
⊕

d∈N⊕
H(Q, W )d , (7)

where H(Q, W )d is the submodule of Kϒ(St /M) generated by objects of the form
[X → Md ⊂ M].

2.3 k-fold products

Wewill also need a description of the k-fold product mk : H(Q, W )⊗k → H(Q, W ).
For this we follow [5, § 4.1–4.2]. Let M(k) denote the algebraic moduli stack of k-
flags. That is, the objects ofM(k) over a scheme S are isomorphism classes of k-tuples
of objects (E1, ρ1), . . . , (Ek, ρk) of M(S), together with monomorphisms

0 = E0 ↪→ E1 ↪→ · · · ↪→ Ek (8)

respecting the maps ρi and such that each factor Fi := Ei/Ei−1 is flat over S.
Given another scheme T , an object (E ′

1, ρ
′
1), . . . , (E ′

k, ρ
′
k) over T , and a morphism

f : T → S, a morphism in M(k) lying over f is a collection of isomorphisms of
sheaves �i : f ∗(Ei ) → E ′

i respecting the maps ρi and the maps in the sequences of
monomorphisms as in (8).
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For each i = 1, . . . , k, we have a morphism of stacks ai : M(k) → M taking an
object as in (8) to its i-th factor Fi = Ei/Ei−1. We also have another morphism b :
M(k) → M taking the object as in (8) to the final term (Ek, ρk) of the sequence. One
easily sees that the stackM(2), together with these morphisms a1, a2, b, is equivlaent
to the data we had when defining M(2) as the stack of short exact sequences above.
We now obtain a diagram generalizing (6):

M(k) M

Mk

(a1,...,ak )

b

Lemma 2.2 ([5], Lemma 4.4) The k-fold product mk : H(Q, W )⊗k → H(Q, W ) is
given by

mk := b∗ ◦ (a1, . . . , ak)
∗.

2.4 Hreg and the composition algebra

Next, recalling the notation q = t2, let

Creg(t) := C[t, t−1][(1+ q + q2 + · · · + qk)−1 : k ≥ 1] ⊂ C(t).

Let Hreg(Q, W ) be the Creg(t)-submodule of H(Q, W ) generated by elements of the
form

[ f : X → M]

such that X is a variety over C (so in particular, X ∈ St /C, and so we can apply ϒ to
X ).

Lemma 2.3 ([6], Thm. 5.2) Hreg(Q, W ) is closed under the Hall algebra product
and thus forms an N⊕-graded Creg(t)-subalgebra. Furthermore, Hreg(Q, W ) forms
a Poisson algebra under the bracket

{a, b} := (t − t−1)−1[a, b]. (9)

Now, for any representation A ∈ ob(rep(Q, W )), let pA denote the corresponding
(stacky) point in M, and let δA be the element of H(Q, W ) corresponding to the
inclusion [pA ↪→ M]. Let

κA := |Aut(A)|δA ∈ H(Q, W ) (10)

be the element [SpecC → pA ∈ M]. Clearly, κA is in Hreg(Q, W ).
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Given a collection of objects A1, . . . , Ak, M ∈ ob(rep(Q, W )), let F̃lag(A1, . . . ,

Ak; M) denote the space of filtrations

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mk = M

of M such that Mi/Mi−1 ∼= Ai for each i . We also consider the quotient stack
Flag(A1, . . . , Ak; M) in which the identification of Mk with M is no longer part
of the data of an object. This has the effect of enlarging the automorphism groups
since now automorphisms of M induce automorphisms of flags, so

Flag(A1, . . . , Ak; M) = [F̃lag(A1, . . . , Ak; M)/Aut(M)]. (11)

By Lemma 2.2, we have the following:

Lemma 2.4 Given a collection of objects A1, . . . , Ak ∈ ob(rep(Q, W )), let d =∑k
j=1 dim(A j ) ∈ N⊕. The product κA1 · · · κAk is represented by a complex variety

Flag(A1, . . . , Ak) → Md whose fiber over a point pM is F̃lag(A1, . . . , Ak; M).
Equivalently, the fiber of Flag(A1, . . . , Ak) over the geometric point [SpecC →
pM ∈ Md ] is Flag(A1, . . . , Ak; M).

For each vertex i ∈ Q0, we have an associated simple representation Si ∈
rep(Q, W ) of dimension vector ei . We denote δi := δSi and κi := κSi . More gen-
erally, for each k ∈ Z≥0, we will write the semisimple representation S⊕k

i as Ski ,
and we will write δki := δSki and κki := κSki . As in [28, Ex. 5.20], we define the
composition algebra C(Q, W ) to be the subalgebra of Hreg(Q, W ) generated by the
elements κi for i ∈ Q0. By Lemma 2.4, products of the elements κi are given in terms
of spaces of composition series.

Example 2.5 For i ∈ Q0, let us apply Lemma 2.4 to κk
i . The only point in

Mkei is the one corresponding to the semisimple representation Ski . Furthermore,
Flag(Si , . . . , Si ; Ski ) (Si occurring k times before the semicolon) contains only one
(stacky) point—all maximal flags of Ski are related by automorphisms of Ski . The
stabilizer group for this point (i.e., the space of automorphisms of C

k which fix a
maximal flag) is the unipotent group Uk(C). Thus,

κki = |Uk(C)|κk
i = qk(k−1)/2κk

i . (12)

Using (10) and the fact that

|Aut(Ski )| = |GLk(C)| = qk(k−1)/2
k∏

j=1

(q j − 1),

we can re-express (12) as

δki = 1
∏k

j=1(q
j − 1)

κk
i . (13)
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Alternatively, this could be realized directly as

δki = κk
i /|F̃lag(Si , . . . , Si ; Ski )|

(Si again appearing k times before the semicolon). (13) will be useful in Sect. 3.3.

2.5 The quantum torus algebra

Let Ct [N⊕] denote the quantum torus algebra, by which we mean the N⊕-graded
algebra defined by:

Ct [N⊕] := Creg(t)[zn : n ∈ N⊕]/〈zn1 zn2 = t B(n1,n2)zn1+n2 : n1, n2 ∈ N⊕〉

(the monomials zn adjoined here are non-commuting). This forms a Poisson algebra
under the bracket

{a, b} := [a, b]
t − t−1 . (14)

Note that

{zn1, zn2} = [B(n1, n2)]t zn1+n2 ,

where for any a ∈ Z,

[a]t := ta − t−a

t − t−1 = sgn(a)(t−|a|+1 + t−|a|+3 + · · · + t |a|−3 + t |a|−1). (15)

The usual commutative algebra C[N⊕] also forms a Poisson algebra, with bracket
defined by

{zn1, zn2} := B(n1, n2)z
n1+n2 . (16)

Note that there is a surjective homomorphism of Poisson algebras defined by

πt 
→1 : Ct [N⊕] → C[N⊕], t 
→ 1, zn 
→ zn .

Remark 2.6 Note that Ct [N⊕] viewed as a Lie algebra with its Poisson bracket is
isomorphic as a Lie algebra to (t − t−1)−1 ·Ct [N⊕] with its commutator bracket via
the map

x 
→ x

t − t−1 .

We may thus view πt 
→1 as a Lie algebra homomorphism (t − t−1)−1 · Ct [N⊕] →
C[N⊕]. Similarly, as noted in [6, § 5.9], Hreg(Q, W ) with the bracket from (9) is
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isomorphic as a Lie algebra to (t − t−1)−1 · Hreg(Q, W ) with its commutator bracket.
In Sect. 2.6, we will discuss the “integration map” I = πt 
→1 ◦ It as a homomor-
phism of Poisson algebras Hreg(Q, W ) → C[N⊕], but this can also be viewed as a
homomorphism of Lie algebras (t − t−1)−1 · Hreg(Q, W ) → C[N⊕]. Similarly, we
may view the quantum integration map It : Hreg(Q, W ) → Ct [N⊕] as a Lie algebra
homomorphism (t − t−1)−1 · Hreg(Q, W ) → (t − t−1)−1

Ct [N⊕].
In place of the quantum torus algebra Ct [N⊕] considered above, one may use the

quantum tropical vertex group of [34, § 6.1] or the quantum torus Lie algebra of [13,
§ 2.2.3]. These alternatives are nice because they still admit well-defined Poisson
algebra maps πt 
→1 to C[N⊕], but now the Poisson bracket for the domain is simply
the commutator bracket.While this is often convenient, we shall not use this viewpoint
here.

2.6 The integrationmap

There are several constructions of (quantum) integration maps in the literature, i.e.,
homomorphisms (of algebras, Lie algebras, or Poisson algebras) from H(Q, W ) or
Hreg(Q, W ) to the (quantum) torus algebra. Reineke [47, Lem. 6.1] first constructed
the analog of such a quantum integration map for finitary Hall algebras associated
to quivers without potential. Joyce [28, § 6] then constructed classical and quantum
integration maps with domain Hreg(Q, 0). The classical version of Joyce’s map (of
Lie algebras) was generalized to quivers with potential in [29, § 7] (cf. [6, Thm. 11.1]
for an interpretation as a map of Poisson algebras). On the other hand, a very general
construction of algebra homomorphisms from a full Hall algebra to the “motivic
quantum torus algebra” (which can then be further integrated to the usual quantum
torus algebra) has been outlined by Kontsevich and Soibelman [32, § 6]. Making this
more precise and more algebraic, in [34, § 7], Kontsevich and Soibelman defined a
(monodromic) mixed Hodge structure (building off Saito’s theory of mixed Hodge
modules [49]) on the equivariant cohomology of the vanishing cycle complex, and
then [14] and [11] built on these ideas to rigorously define a quantum integration map
It .

We give a brief sketch of this integration map

It : Hreg(Q, W ) → Ct [N⊕]

essentially as in [11, § 3.3]. We then use this to compute the integration in the simplest
cases. We note that by the definitions of the Poisson structures in (9) and (14), it is
clear that It being a map of algebras implies it is also a map of Poisson algebras, thus
also giving maps of Lie algebras as in Remark 2.6.

Recall that M is the moduli stack of objects in rep(Q, W ) := modCQ/IW .
Let M◦ be the moduli stack of objects in rep(Q, 0). Given an arrow a ∈ Q1, let
t(a), h(a) ∈ Q0 denote the tail and head of a respectively. For any i ∈ Q0 and
d ∈ N⊕, let di denote the corresponding component of d. Denote
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M̃◦
d :=

∏

a∈Q1

HomC(Cdt(a) , C
dh(a) ),

and

GLd :=
∏

i∈Q0

GLdi (C).

Then M◦ = ⊔
d∈N⊕ M◦

d where M◦
d is the stack-theoretic quotient

M◦
d = M̃◦

d/GLd , (17)

where the action by GLd is the one induced by the conjugation action of GLdi (C) on
C

di for each i ∈ Q0.
Viewing elements of M̃◦

d as modules over the path-algebra CQ, we see that multi-
plication by W gives an endomorphism of M̃◦

d . Since the trace is invariant under the
action of GLd , we obtain a function

Tr(W ) : M◦ → C,

the critical locus of which recovers M:

M = crit(Tr(W )) ⊂ M◦.

Let Y be a smooth complex variety and let f : Y → C be a regular function on Y .
The corresponding vanishing cycle functor ϕ f is defined as follows (following [11,
§ 3.1], also cf. [34, § 7.2]). Let Y0 := f −1(0), and let Y≤0 := f −1(R≤0). For a sheaf
F on Y and U an analytic open subset of Y , define

�X≤0F(U ) := ker
(F(U ) → F(U\(U ∩ X≤0)

)
.

Then ϕ f := (R�X≤0F)[1]|X0 .
The stacks M◦

d for d ∈ N⊕ are not quite smooth complex varieties, but each is a
quotient of a smooth complex variety by the action of an algebraic group, cf. (17). One
can thus extend the definition of ϕ f to regular functions f onM◦

d using an equivariant
version of the vanishing cycle construction as in [15, § 2.2].

Let Q
d
denote the constant sheaf on M◦

d . For each u ∈ C
∗, we can define

ϕTr(W )/uQ
d
. Now consider [X → Md ] ∈ Hreg(Q, W ). Composing with the inclusion

Md ⊂ M◦
d , we can consider the pullback

ϕX
Tr(W )/uQ

d
:= (X → M◦

d)∗ϕTr(W )/uQ
d
.

This sheaf ϕX
Tr(W )/uQ

d
on X in fact has the structure of a mixed Hodge module on X ,

and so the compactly supported cohomology H∗
c (X , ϕX

Tr(W )/uQ
d
) has a cohomologi-

cally graded rational mixed Hodge structure. Recall here that a rational mixed Hodge
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structure is a finite-dimensional vector space V over Q, plus the data of an ascending
filtration W∗ of V (the weight filtration) and a descending filtration F∗ of V ⊗Q C

(the Hodge filtration) such that the filtration induced by F∗ on

GrW
n (V ) := Wn ⊗Q C/Wn−1 ⊗Q C

determines a pure Hodge structure of weight n. By a cohomologically graded rational
mixed Hodge structure on H∗

c (X , ϕX
Tr(W )/uQ

d
), we mean a rational mixed Hodge

structure on Hi
c (X , ϕX

Tr(W )/uQ
d
) for each i ∈ Z.

Let us abbreviate H∗
c (X , ϕX

Tr(W )/uQ
d
) as simply H∗

d . Up to isomorphism, the sheaf

ϕX
Tr(W )/uQ

d
is independent of u. However, there may be non-trivial monodromy μ on

H∗
d as u travels around the origin in C. This μ is quasi-unipotent, i.e., the eigenvalues

are roots of unity. Let GrW
n (Hi

d)1 denote the generalized eigenspace for the possi-
ble eigenvalue 1 of μ, and let GrW

n (Hi
d) �=1 denote the direct sum of the generalized

eigenspaces for all eigenvalues ofμ other than 1. Finally, the quantum integration map
It is defined by taking the Serre polynomial (cf. [12, § 3.1.3], also [32, p. 69]) defined
as follows:

It ([X → Md ]) := tχ(d,d)zd
∑

i,n∈Z
(−1)i

(
dim(GrW

n (Hi
d)1)(−t)n + dim(GrW

n (Hi
d) �=1)(−t)n+1

)
, (18)

where χ is defined as in (3).
The map of (18) above is essentially the same as that of [11, (18)], although the

two look somewhat different. The tχ(d,d)-factor in our (18) is simply to account for
the twisting of the monoidal structure in [11, (16)]. The extra factor of (−t) on the
dim(GrW

n (Hi
d) �=1)(−t)n+1-term in our (18) is needed because [11] actuallyworkswith

the category of monodromic mixed Hodge modules, a difference which results in a
shift for part of the weight filtration. See [10, Prop. 2.5] for details on the relationship
between these two perspectives. [11, Prop. 3.13] thus yields the following:

Proposition 2.7 ([11], Prop. 3.13) It : Hreg(Q, W ) → Ct [N⊕] is a homomorphism
of Creg(t)-algebras.

This construction simplifies quite a bit for [ f : X → Md ] with Tr(W )|M◦
d
= 0

and X a smooth projective variety. In this case, ϕTr(W ) = Id, and so GrW
n (Hi

d) equals
Hn

c (X , Q) if n = i and vanishes otherwise. Recalling the definition of ϒ from (5),
we thus recover the following:

Proposition 2.8 If [ f : X → Md ⊂ M] ∈ Hreg(Q, W ) and Tr(W )|M◦
d
= 0, then

It ([ f : X → M]) = ϒ(X)tχ(d,d)zd . (19)

In particular, if W = 0 (e.g., for Q acyclic), It equals the quantum integration map of
[28, § 6].
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Example 2.9 Recall κki := [SpecC → pS⊕k
i

= Mkei ]. We have W |M◦
kei

= 0,

ϒ(κki ) = 1 (the Poincaré polynomial of a point), and χ(kei , kei ) = k2. Hence,
It (κki ) = tk2 zkei . In particular,

It (κi ) = t zei . (20)

As a check, one can use (12) to confirm that It (κ
k
i ) = It (κi )

k .

Composing It with πt 
→1 induces the classical integration map:

I := πt 
→1 ◦ It : Hreg(Q, W ) → C[N⊕].

The classical integration maps of [29, § 7] and [6, Thm. 11.1] are always (even for
nonzero W ) given by the t 
→ 1 limit of (19), i.e., by taking Euler characteristics.
Note that (20) is sufficient to completely determine the restrictions of It and I to the
composition algebra C(Q, W ) in which all our computations will lie. Since I agrees
with the classical integration maps of [29, § 7] and [6, Thm. 11.1] on the generators
κi , the maps necessarily agree on all of C(Q, W ).

3 Scattering diagrams fromHall algebras

3.1 Background on scattering diagrams

Here we review the basic definitions and properties of scattering diagrams from the
perspective useful for understanding the Hall algebra scattering diagrams of [6].

Let � denote a finite-rank lattice equipped with a Z-valued skew-symmetric form
{·, ·}. Let �∨ := Hom(�, Z) be the dual lattice, and let 〈·, ·〉 : � ⊕ �∨ → Z denote
the dual pairing. We have a map

p∗ : � → �∨

n 
→ {·, n}. (21)

Fix a strictly convex rational polyhedral cone σ�⊕ ⊂ �R. Let �⊕ := σ�⊕ ∩ �, and
let �+ := �⊕\{0}.

Let g := ⊕
n∈�+ gn be a Lie algebra graded by �+, meaning that [gn1, gn2 ] ⊆

gn1+n2 . We say that g is skew-symmetric with respect to {·, ·} if

[gn1, gn2 ] = 0 whenever {n1, n2} = 0. (22)

For each k ∈ Z≥1, let

k�+ := {n1 + · · · + nk ∈ �+|ni ∈ �+ for each i = 1, . . . , k}.
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Let g≥k := ⊕
n∈k�+ gn . Note that g≥k is a Lie subalgebra of g. Let gk denote the

nilpotent Lie algebra g/g≥k , and let ĝ := lim←− gk . We have corresponding Lie groups

G := exp g, Gk := exp gk , and Ĝ := exp ĝ = lim←−Gk .

For each n ∈ �+, we have a Lie subalgebra g‖n := ∏
k∈Z≥1 gkn ⊂ ĝ. We say that g

has Abelian walls if each g
‖
n is Abelian. In particular, g has Abelian walls whenever

g is skew-symmetric. Let G‖
n := exp(g‖n) ⊂ Ĝ.

The Abelian walls condition is usually assumed to hold when working with scatter-
ing diagrams, but when defining Hall algebra scattering diagrams, one needs a slight
generalization as in [6, § 2].

Definition 3.1 A wall in �∨
R
over ĝ is data of the form (d, gd), where:

• gd ∈ g
‖
nd for some primitive nd ∈ �+. The element −p∗(nd) is called the direc-

tion of the wall. We call gd the scattering function associated to the wall.
• d is a closed, convex (but not necessarily strictly convex), rational-polyhedral,
codimension-one affine cone in �∨

R
, parallel to n⊥d . We call d the support of the

wall.

A scattering diagram D over ĝ is a set of walls in �∨
R
over ĝ such that for each

k > 0, there are only finitely many (d, gd) ∈ D with gd not projecting to 0 in gk . If
(d1, gd1) and (d2, gd2) are two walls of D, and if codim�∨

R
(d1 ∩ d2) = 1, then we

require that [gd1, gd2 ] = 0 (note that this is automatic for Abelian walls).
A wall with direction−v is called incoming if it contains v. Otherwise, the wall is

called outgoing.

We will sometimes denote a wall (d, gd) by just d. Denote Supp(D) := ⋃
d∈D d,

and

Joints(D) :=
⋃

d∈D
∂d ∪

⋃

d1,d2∈D
dim(d1∩d2)=rank(�)−2

d1 ∩ d2.

Note that for each k > 0, a scattering diagram D over ĝ induces a finite scattering
diagram Dk over gk with walls corresponding to the d ∈ D for which the projection
of gd to gk is nonzero.

Consider a smooth immersion γ : [0, 1] → �∨
R
\ Joints(D) with endpoints not in

Supp(D) which is transverse to each wall ofD it crosses. Let (di , gdi ), i = 1, . . . , s,
denote the walls ofDk crossed by γ , and say they are crossed at times 0 < t1 ≤ · · · ≤
ts < 1, respectively.3 Define

�di := exp(gdi )
sgn〈ndi ,−γ ′(ti )〉 ∈ Gk . (23)

3 If ti = ti+1, then the corresponding elements gdi , gdi+1 ∈ g
‖
n must commute, and so the ordering of the

corresponding walls does not affect �k
γ,D.
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Let �k
γ,D := �ds · · ·�d1 ∈ Gk , and define the path-ordered product:

�γ,D := lim←−
k

�k
γ,D ∈ Ĝ.

Definition 3.2 Two scattering diagrams D and D′ are equivalent if �γ,D = �γ,D′
for each smooth immersion γ as above. D is consistent if each �γ,D depends only
on the endpoints of γ .

We say that x ∈ �∨
R
is general if it is contained in at most one hyperplane of the

form n⊥ for n ∈ �. For D a scattering diagram over ĝ and x ∈ �∨
R
general, denote

gx,D :=
∑

d�x

gd ∈ ĝ,

where the sum is over all walls (d, gd) ∈ D with d � x . One easily sees the following
standard fact (cf. [22, Lem. 1.9]):

Lemma 3.3 Two scattering diagrams D and D′ over ĝ are equivalent if and only if
gx,D = gx,D′ for all general x ∈ �∨

R
.

Example 3.4 (1) ForD a scattering diagram, consider a set of walls {(d, gi ) ∈ g
‖
nd) ∈

D|i ∈ S}, where S is some countable index set and nd and d are independent of
i . Then replacing this set of walls with a single wall (d,

∑
i∈S gi ) produces an

equivalent scattering diagram.
(2) Replacing a wall (d, gd) ∈ D with a pair of walls (di , gd), i = 1, 2, such that

d1∪d2 = d and codim�∨
R
(d1∩d2) = 2 produces an equivalent scattering diagram.

The following theorem is fundamental to the study of scattering diagrams. The
2-dimensional version was first proved in [33], and this was generalized to higher
dimensions in [26, § 3] for scattering diagrams over the module of log derivations.
The higher-dimensional version for scattering diagrams over skew-symmetric Lie
algebras follows from [35, Prop. 3.2.6, 3.3.2] (cf. [22, Thm. 1.21] for a review of this
argument from our viewpoint). As pointed out to us by Lang Mou, this result had not
previously been proven in the presence of non-Abelian walls.

Theorem 3.5 Let g be a �+-graded Lie algebra, and let Din be a finite scattering
diagram over ĝ whose walls are of the form (n⊥i , gi ) for various primitive ni ∈ N+.
If g has Abelian walls, then there is a unique-up-to-equivalence scattering diagram
D such that D is consistent, D ⊃ Din, and D\Din consists only of outgoing walls.
Even if g does not have Abelian walls, if there exists a consistent scattering diagram
D ⊃ Din such that D\Din consists only of outgoing walls as above, then this D is the
unique such scattering diagram, up to equivalence.

We note that an earlier version of this paper claimed existence more generally, but
we have since realized that proving the consistency of the scattering diagram D∞

k
in Sect. 4.4 requires the Abelian walls condition, and so our argument was flawed.
Fortunately, the existence of the Hall algebra scattering diagram is already given by
[6, Theorem 6.5], restated below as Theorem 3.8.
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Proof As noted above, the only new statement is the uniqueness statement in the case
of non-Abelian walls. We prove this using an argument inspired by that [22, Lem.
C.7]. LetD,D′ be two consistent scattering diagrams over ĝwith incoming wallsDin
as in the statement of the theorem.We shall prove by induction on k thatDk and (D′)k

are equivalent over gk for each k, and then the equivalence ofD andD′ follows. Note
that D1 and (D′)1 are both equivalent to the trivial scattering diagram, hence to each
other.

Now suppose that Dk and (D′)k are equivalent over gk . Let D′′ be a scattering
diagram over gk+1 such that

gx,D′′ = gx,Dk+1 − gx,(D′)k+1

for each general x ∈ �∨
R
. Since Dk and (D′)k are equivalent over gk , we must have

gx,D′′ ∈ g≥k\g≥k−1, hence gx,D′′ is central in gk+1. Hence, (D′)k ∪ D′′ is a well-
defined scattering diagram over gk+1, and by Lemma 3.3 it is equivalent toDk+1. Our
goal now is to show that D′′ is equivalent to the trivial scattering diagram.

Since bothD andD′ were assumed to be consistent, and the scattering functions of
D′′ are all central in gk+1, D′′ must also be consistent (over gk+1). Furthermore, this
consistency plus centrality of the scattering functions implies that, up to equivalence,
the support of every wall ofD′′ is an entire affine hyperplane in�∨

R
. But then all walls

of D′′ (up to equivalence) are incoming, and since the incoming walls of D and D′
are the same, this implies that D′′ is equivalent to the trivial scattering diagram over
gk+1, as desired. ��

A scattering diagram playing the role ofDin in Theorem 3.5 will be referred to as an
initial scattering diagram. The consistent scattering diagram D (up to equivalence)
with incoming walls Din as in the theorem will be denoted Scat(Din).

Example 3.6 Consider � = Z
2. Equip � with the skew-symmetric form {·, ·} repre-

sented by

(
0 −1
1 0

)

, and consider the quantum torus algebra Ct [�] as in Sect. 2.5.

Take g to be the Lie subalgebra (with respect to Poisson bracket) with basis {zn : n ∈
�+}. Let

Din := {(e⊥1 ,−Li(−ze1; t)), (e⊥2 ,−Li(−ze2; t))},

where Li(x, t) denotes the quantum dilogarithm as in (25) below. Then D :=
Scat(Din) is obtained by adding a single outgoingwall (R≥0(1,−1),−Li(−z(1,1); t)),
cf. Fig. 1.

The consistency of this scattering diagram is equivalent to a version of the quantum
pentagon identity of [18]. The classical limit is essentially the �1 = �2 = 1 case of [25,
Ex. 1.6] (with some small changes in sign conventions). We will see in Example 3.10
that this is the scattering diagram obtained when applying the quantum integration
map to the Hall algebra scattering diagram associated to the A2-quiver.
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Fig. 1 The quantum A2
scattering diagram

3.2 Hall algebra scattering diagrams

3.2.1 Setup for Hall algebra scattering diagrams and their variants

We now take � = N , �⊕ = N⊕, and {·, ·} = B. Recall that H(Q, W ) admits a
grading by N⊕ as in (7). In particular, we can write Hreg(Q, W ) = Hreg(Q, W )0 ⊕
Hreg(Q, W )>0 for Hreg(Q, W )>0 := ⊕

d∈N+ Hreg(Q, W )d . Let gHall := (t−t−1)−1 ·
Hreg(Q, W )>0, viewed as aLie algebra using the commutator bracket as inRemark2.6.

The Lie algebra gHall typically is not skew-symmetric and does not have Abelian
walls. To get around this issue, let iskew denote the Lie ideal of gHall generated by the
commutators we wish to vanish, i.e.,

iskew :=
〈
[gHalld1 , gHalld2 ] : d1, d2 ∈ N+, {d1, d2} = 0

〉
.

Here, for S a subset ofgreg, 〈S〉denotes theLie ideal generatedby S, i.e., the intersection
of all Lie ideals of gHall which contain S. Then for any Lie ideal iwhich contains iskew,
we define

gi := gHall/i.

Note that for any Lie algebra ideal i of gHall, gHall/i is skew-symmetric if and only if
i ⊃ iskew. Since the commutator bracket on the quantum torus algebra makes it into a
skew-symmetric Lie algebra, we in particular have

ker(It ) ⊃ iskew.

The resulting Lie algebra gq := gker(It ) is just the quantum torus algebra (t − t−1)−1 ·
Ct [N⊕] with its commutator bracket as in (14). Similarly, ker(I) ⊃ iskew, and gcl :=
gker(I) is just C[N⊕] together with its Poisson bracket as in (16). In general, let
Ii : gHall → gi denote the projection.

For g equal to gHall, gi, gq , or gcl, we denote the corresponding Lie group G
by GHall, Gi, Gq , or Gcl, respectively. The notation for the associated completions
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and scattering diagrams will be similarly obvious except for sometimes using “Hall”
instead of “reg.”4

3.2.2 The Hall algebra scattering diagram

Definition 3.7 Given θ ∈ MR, an object E ∈ rep(Q, W ) is said to be θ -semistable if

• θ(E) = 0,
• Every subobject B ⊂ E satisfies θ(B) ≤ 0. If, furthermore, this inequality is
strict, then we say that E is θ -stable.

The notion of semistability given above is due to [31]. Let Mss(θ) ⊂ M denote the
substack of M representing the θ -semistable objects, and let 1ss(θ) := [Mss(θ) ⊂
M] ∈ ĜHall.

The scattering diagram defined in the following theorem of Bridgeland is what one
calls the Hall algebra scattering diagram.

Theorem 3.8 [6, Theorem 6.5] There exists a consistent scattering diagram DHall in
MR over gHall such that:

(1) The support Supp(DHall) consists of those θ ∈ MR for which there exist θ -
semistable objects in rep(Q, I );

(2) For θ ⊂ Supp(DHall)\ Joints(DHall), there is a unique wall (d, gd) ∈ DHall for
which d � θ . For this wall, we have exp(gd) = 1ss(θ) ∈ ĜHall.

Remark 3.9 We say θ ∈ MR is general if it is not in the intersection of two distinct
hyperplanes of the form n⊥ for n ∈ N\{0}. Since the joints ofDHall are codimension
2 subsets of MR and have rational slope, Theorem 3.8 gives the scattering functions of
DHall at all general points θ ∈ MR. Alternatively, we could use a more refined notion
of general. Call θ ∈ MR special if at least one of the following holds:

• There exists a pair of θ -semistable objects with non-parallel dimension vectors;
• Some E ∈ rep(Q, W ) is θ -semistable, but for 0 < ε � 1, E is either not

(θ + ε p∗(dim(E)))-semistable or not (θ − ε p∗(dim(E)))-semistable.

The former condition accounts for joints where two walls of different slopes intersect,
while the latter accounts for intersections of walls with the same slope. That is, θ ∈
Joints(DHall) if and only if θ is special. Theorem 1.1 will still hold and will be slightly
stronger if we define general to mean not special.

Note that we obtain new scattering diagramsDi,Dq , andDcl over gi, gq , and gcl,
respectively, by applying Ii, Iq , or Icl to DHall. The scattering diagram Dcl is what
Bridgeland calls the stability scattering diagram. We callDq the quantum stability
scattering diagram.

4 Note that we could define the Hall algebra scattering diagram using the full Hall algebra H(Q, W ) in
place of Hreg(Q, W ) (as is done in [6]), or alternatively using just the composition algebra C(Q, W ). The
advantage of using Hreg(Q, W ) or C(Q, W ) instead of H(Q, W ) is just for convenience when we talk
about applying integration maps.
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Fig. 2 The A2 Hall algebra scattering diagram

Example 3.10 Let us consider the A2 quiver 1 → 2 with W = 0. The correspond-

ing matrix B is

(
0 −1
1 0

)

as in Example 3.6. Let us explicitly describe the Hall

algebra scattering diagram DHall from Theorem 3.8 in this case. Note that there
are 3 indecomposable representations of A2 up to isomorphism: C → 0, 0 → C,
and C → C (the last map being nonzero). Consider d = (1, 0)⊥. For any point
θ ∈ d, one can see that the representations (C → 0)⊕k are θ -semistable for any
positive integer k, and we find 1ss(θ) = ∑

k≥0(C → 0)⊕k . We similarly compute
that for θ ∈ (0, 1)⊥, 1ss(θ) = ∑

k≥0(0 → C)⊕k , and for θ ∈ R≥0(1,−1), we have
1ss(θ) = ∑

k≥0(C → C)⊕k . Note that (C → C) contains (0 → C) as a subrepresen-
tation, and so (C → C)⊕k is not (−α, α)-semistable for α ∈ R>0. There are no other
θ -semistable representations for any θ in this example, so the Hall algebra scattering
diagram is as in Fig. 2. Note thatDq , obtained from applying the quantum integration
map I to the scattering functions ofDHall (cf. Sect. 3.3 for such computations) yields
the consistent scattering diagram of Example 3.6.

3.2.3 Genteel potentials

We say that a quiver with potential (Q, W ) is genteel (or that W is genteel) if the only
incoming walls of DHall are

DHall
in := {e⊥i , log 1ss(p∗(ei ))}. (24)

Theorems 3.5 and 3.8 together imply the following:

Lemma 3.11 If (Q, W ) is genteel, then DHall
Scat := Scat(DHall

in ) exists and equals DHall

(up to equivalence).

It is expected (cf. [35, Conj. 3.3.4]) that for every 2-acyclic quiver Q, a generic
potential W will be genteel (at least over ad(gq) in the sense explained below). The
following is proved in [13, § 7.1]:

Lemma 3.12 If Q is acyclic—or more generally, if the only cycles in Q are composed
of loops (i.e., 1-cycles)—then (Q, 0) is genteel.
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Remark 3.13 On its face, Lemma 3.12 is, in the cases without loops, the same as [6,
Lem. 11.5] (and the proof in [13] is inspired by that in [6]). However, [6, § 11.5] uses a
slightly different and possibly flawed definition of genteel. In [6, Def. 11.3], an object
E ∈ rep(Q, W ) is called self-stable if it is stable with respect to the stability condition
−p∗(dim(E)). Then (Q, W ) is called genteel if the only self-stable objects are the
simple objects Si for i ∈ Q0. Unfortunately, as pointed out to us by Lang Mou and
acknowledged in [6, arXiv v4], it is not clear that this version of genteel really does
imply the claim about incoming walls being as in (24). For this one would need to
replace “self-stable” with “self-semistable,” but doing so results in other problems,
e.g., acyclic examples which would fail to be genteel. We have therefore taken the
motivating property regarding incoming walls as our definition.

A potentially weaker (but for most purposes equally useful) version of genteel is as
follows: we say that (Q, W ) is genteel over gi if, up to equivalence, the only incoming
walls of Di are

Di
in := {e⊥i , Ii(log 1ss(p∗(ei )))}.

In general (even without genteelness), Theorem 3.5 guarantees the existence of

Di
Scat := Scat(Di

in).

As with Lemma 3.11, W being genteel over gi means that Di
Scat = Di. We note that

genteel implies genteel over every gi, and genteel over gi implies genteel over gi
′
for

every i′ ⊃ i.

Proposition 3.14 ([40], Cor. 1.2(i)) Let (Q, W ) be a quiver with potential (and no
loops) such that W is non-degenerate and Q admits a green-to-red sequence.5 Then
(Q, W ) is genteel over gq and gcl.

We note that a version of Proposition 3.14 over ad(gcl) (i.e., the quotient of gcl by
its center) was also proved in [46, Thm. 1.2.2]. Also, [40, Cor. 1.2(ii)] proves that
non-degenerate potentials for the Markov quiver (which does not admit a green-to-red
sequence) are genteel over ad(gq) and ad(gcl).

Example 3.15 For the A2-quiver of Example 3.10, the simple representations areC →
0 and 0 → C. Thus DHall

in would be as in Fig. 3. By Lemmas 3.11 and 3.12, we have
that DHall

Scat exists and agrees with DHall from Fig. 2.

5 See [16, Def. 7.2] for the definition of a non-degenerate potential, and see [43, Def. 3.1.1] for the definition
of a quiver admitting a green-to-red sequence (or see [22, Def. 8.27] for the equivalent notion of a quiver
with a “large cluster complex”). It is known (at least when allowing infinite potentials) that all quivers Q
without 2-cycles admit non-degenerate potentials, cf. [16, Cor. 7.4]. In particular, (Q, 0) with Q acyclic
satisfy the hypotheses for Proposition 3.14.
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Fig. 3 The initial Hall algebra scattering diagramDHall
in for the A2-quiver

3.3 The initial Hall algebra scattering diagrams

We next wish to better understand the scattering functions of (24). We assume from
now on that Q contains no loops or oriented 2-cycles, although a generalization to
cases with loops is possible—cf. [13, Prop. 7.7] for a description of the incoming walls
associated to vertices with a loop.

For each i ∈ S, we will find a nice expression for log 1ss(p∗(ei )) in terms of powers
of κi . We will need the quantum dilogarithm

�t (x) :=
∞∑

k=0

t−k(k−1)/2xk

(t − t−1)(t2 − t−2) · · · (tk − t−k)

=
∞∑

k=0

(t x)k

∏k
j=1(t

2 j − 1)
,

and the standard fact that log�t (x) = −Li(−x; t), where

Li(x; t) :=
∞∑

k=1

xk

k(tk − t−k)
. (25)

Denote

fi := 1ss(p∗(ei )) =
∞∑

k=0

δki .

By (13), we can rewrite fi as6

fi =
∞∑

k=0

κk
i

∏k
j=1(q

j − 1)
= �t

(κi

t

)
.

6 This expression seems to be well-known to experts, cf. [32, § 6.4].



57 Page 24 of 46 M.-W. Cheung, T. Mandel

Hence, using that log�t (x) = −Li(−x; t), we find

log fi = −Li(−κi/t; t) : =
∞∑

k=1

(−1)k−1

k(tk − t−k)

(κi

t

)k

=
∞∑

k=1

(−1)k−1

k(qk − 1)
κk

i . (26)

We denote

Rk := (−1)k−1

k(qk − 1)
(27)

so log fi can be written as

log fi =
∞∑

k=1

Rkκ
k
i . (28)

It follows immediately from (26), (20), and Theorem 3.5 that applying It toDHall
Scat

produces the quantum cluster scattering diagrams of [38, § 4.2]:

Proposition 3.16 Applying It to DHall
Scat produces the scattering diagram D

q
Scat :=

Scat(Dq
in) over the quantum torus algebra, where

D
q
in := {e⊥i ,−Li(−zei , t)}. (29)

Applying πt 
→1, it follows that I applied to DHall
Scat yields Scat(D

cl
in), where

Dcl
in := {e⊥i ,−Li(−zei )}.

Here, Li(x) := ∑∞
k=1

xk

k2
is the classical dilogarithm. This is precisely [6, Lem. 11.4].

Remark 3.17 Instead of viewing gHall as (t − t−1)−1Hreg(Q, W ) with its commutator
bracket, one might try to view it as simply Hreg(Q, W ) with the Poisson bracket of
(9), cf. Remark 2.6. In this version, instead of having g = log(1ss(θ)) in Theorem
3.8, one has g = (t − t−1) log(1ss(θ)). In (28), this corresponds to redefining Rk to

be (−1)k−1

kt(1+q+q2+···+qk−1)
.

4 Scattering diagrams in terms of tropical disks

4.1 Tropical disks

We now introduce the tropical disks whose enumerations will be related to the scat-
tering diagrams of Sect. 3. For now, our tropical disks will live in LR := L ⊗ R for
an arbitrary finite-rank lattice L (later we will take L = �∨ = M).
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Let � be the topological realization of a finite connected tree without bivalent
vertices, and let� denote the complement of all but one of its 1-valent vertices. Denote
this remaining 1-valent vertex by V∞, and denote the edge containing this vertex by
E∞. Let �[0], �[1], and �

[1]∞ denote the sets of vertices, edges, and non-compact edges
of �, respectively. Let e∞ := #�[1]∞ . Equip � with a weighting w : �[1] → Z>0, plus
a marking ε : S

∼→ �
[1]∞ for some index set S with #S = e∞. For s ∈ S, we denote

Es := ε(s).
A parametrized tropical disk (�,w, ε, h) in LR is data �,w, and ε as above, plus

a proper continuous map h : � → LR such that:

• For each E ∈ �[1], h|E is an embedding into an affine line with rational slope;
• For any vertex V and edge E � V , denote by u(V ,E) the primitive integral vector
emanating from h(V ) into h(E). For each V ∈ �[0]\{V∞}, the following balanc-
ing condition is satisfied:

∑

E�V

w(E)u(V ,E) = 0.

For unbounded edges Es � V , we may denote u(V ,Es ) simply as uEs or us . An
isomorphism of parameterized tropical disks (�, h) and (�′, h′) is a homeomorphism
� : � → �′ respecting the weights and markings such that h = h′ ◦ �. A tropical
disk is then defined to be an isomorphism class of parameterized tropical disks. We
will let (�, h) denote the isomorphism class it represents, and we will often further
abbreviate this as simply � or h.

A tropical ribbon �̂ is a tropical disk (�,w, ε, h) as above, together with the
additional data of a cyclic ordering of the edges at each vertex. A tropical disk or
ribbon is called trivalent if every vertex other than V∞ is trivalent.

The degree � of a tropical disk (�,w, ε, h) is the map � : S → L given by

�(s) = w(Es)uEs .

Let Flags(�) denote the set of flags (V , E), V ∈ E , of �. The type of a tropical
disk is the data of �, w, and ε, along with the data of the map u : Flags(�) → L ,
(V , E) 
→ u(V ,E). Note that the type of a tropical disk determines its degree.

Similarly, the type of a tropical ribbon is the data of the type of the associated
tropical disk, plus the data of the ribbon structure, i.e., the data of the cyclic orderings
at each vertex.

LetA := (As)s∈S be a tuple of affine-linear subspaces As ⊂ LR, each with rational
slope. We say a tropical disk (�,w, ε, h) matches the constraint A if h(Es) ⊂ As

for each s ∈ S.

4.2 Tropical degrees, constraints, andmultiplicities associated to a scattering
diagram

We now combine the setup of Sect. 4.1 with that of Sect. 3.1. Let L = �∨. Let {ei }i∈I

be a finite collection of vectors in �+, indexed by a set I . Suppose we have an initial
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scattering diagram Din over g, with Din having the form

Din = {(di , gi )|i ∈ I },

where for each i , we have di = e⊥i and

gi =
∑

w≥1
gi,w ∈ g‖ei

, (30)

where gi,w ∈ gwei . Assume as in Theorem 3.5 that for each i , the terms gi,w pairwise
commute. We denote

vi = p∗(ei )

for each i ∈ S, so −vi is the direction of the wall di .

4.2.1 Degrees and constraints

Let w := (wi )i∈S be a tuple of weight vectors wi := (wi1, . . . , wili ) with 0 < wi1 ≤
· · · ≤ wili , wi j ∈ Z. For �li denoting the group of permutations of {1, . . . , li }, let

Aut(w) ⊂
∏

i∈S

�li

be the group of automorphisms of the second indices of the weights wi which act
trivially on w. We also define

l(w) =
∑

i∈S

li .

Associated to w, we consider the degree �w : Sw → L given by

Sw := {(i, j)|i ∈ I , j ∈ {1, . . . , li }}, (31)

and

�w((i, j)) = wi jvi . (32)

For the associated constraints

Aw = (Ai j )(i, j)∈Sw

we take the affine-linear space Ai j to be a generic translate of e⊥i . Here, the translates
for different pairs (i, j) are generic relative to each other. We fix such a choice of
Aw for each w. Given δ > 0, let δAw denote the constraints obtained from Aw by
multiplying each Ai j by δ (i.e., the distance from the origin is multiplied by δ).
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4.2.2 Multiplicities

For each (i, j) ∈ Sw, we denote

gi j := gi,wi j ∈ gwi j ei . (33)

Denote

nw :=
∑

(i, j)∈Sw

wi j ei ∈ �.

Now consider a trivalent tropical disk� of degree�w. We will denote E(i, j) simply
as Ei j . We view � as flowing towards the univalent vertex V∞, and we use this flow to
inductively associate an element gE ∈ gnE ⊂ g to each edge E of �, where nE is an
element of �+ such that p∗(nE ) ∈ L is the weighted tangent vector to h(E) pointing
in the direction opposite the flow.

To each of the source edges Ei j , we associate the element gi j from (33) above.
Now consider a vertex V �= V∞ with E1, E2 flowing into V and E3 flowing out of
V , and suppose that for i = 1, 2, we already have associated elements gEi ∈ gnEi

. By
the balancing condition, we have nE3 = nE1 + nE2 . Let us assume that the labelling
of the edges E1, E2 is such that

{nE1, nE2} ≥ 0 (34)

(otherwise we re-label). We then define

gE3 := [gE1, gE2 ] ∈ gnE3
.

We now define the multiplicity of � as

Mult(�) := gE∞ ∈ gnw .

Now suppose that g is a Lie subalgebra of the commutator algebra of a �+-graded
associative algebra A, i.e., we have an associative product such that

[g1, g2] = g1g2 − g2g1.

Example 4.1 For g = gHall, Remark 2.6 says that we can take

gHall = (t − t−1)−1 · Hreg(Q, W ) ⊂ AHall := Hreg(Q, W )[(t − t−1)−1].

Similarly, we can take

gq = (t − t−1)−1
Ct [N⊕] ⊂ Aq := Ct [N⊕][(t − t−1)−1].
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Moreover, for any i such that iskew ⊆ i ⊆ ker(It ), since (t − t−1) /∈ i, we can take

gi = (t − t−1)−1Hreg(Q, W )/i ⊂ Ai := (Hreg(Q, W )/i)[(t − t−1)−1].

However, t − t−1 = 0 in gcl, so we cannot apply this localization in the classical
setting. Instead, we take Acl to be the universal enveloping algebra of gcl.

Alternatively, the Poisson algebra C[N⊕] can be identified with a subalgebra of the
module of log derivations �(N⊕) := C[N⊕] ⊗Z M as in [25, § 1.1]. Here, zn ⊗ m,
typically denoted zn∂m , is viewed as acting on C[N ] via zn′ 
→ 〈n, m〉Zn+n′∂m . The
commutator of these derivations makes �(N⊕) into a Lie algebra with bracket given
by

[zn1∂m1, zn2∂m2 ] = zn1+n2∂〈n2,m1〉m2−〈n1,m2〉m1 .

Let h be the Lie subalgebra spanned by elements of the form zn∂m for 〈n, m〉 = 0.
Then C[N⊕] embeds into h via zn 
→ zn∂B(n,·). Hence, instead of taking Acl to be the
universal enveloping algebra of C[N⊕], it is reasonable to take it to be the universal
enveloping algebra of h or �(N⊕). The latter is simply a log version of the Weyl
algebra in rank(N ) variables. That is, we may view Acl as an algebra of logarithmic
differential forms.

We note that the usual classical multiplicities of tropical curves (as in correspon-
dence theorems like those of [45]) can similarly be computed via iterated Lie brackets
of polyvector fields, cf. [42]. Also, the quantum ribbon multiplicities computed using
Aq are related to certain counts of real curves, cf. [39].

For example, we can always take A to be the universal enveloping algebra of g.
Alternatively, for gHall or gq , we can produce such an A using Remark 2.6.

Suppose that � is equipped with a ribbon structure �̂. At each vertex V �= V∞, let
E1, E2 be the vertices flowing into V and E3 the vertex flowing out of V , and assume
the cyclic ordering of the labelling E1, E2, E3 agrees with the ribbon structure of �̂

at V (otherwise we re-label). We say that the vertex V ∈ �̂[0] is positive if the edges
E1, E2, labelled in this way with respect to the ribbon structure, satisfy the condition
(34). Otherwise, we say V is negative.

We now describe a method of inductively associating an element of gnE ⊂ A to
each edge E of �̂, this time denoting the elements by g7E . The vectors nE will be the
same as before, but the elements g7E will be different and will depend on the ribbon
structure. As before, we take g7Ei j

:= gi j for the source edges. But now, for E1, E2

the edges flowing into a vertex V , E3 the edge flowing out of V , and the labelling
agreeing with the ribbon structure at V , we define

g7E3
:= ν(V )g7E1

g7E2
,

where

ν(V ) :=
{
1 if V is positive

−1 if V is negative,
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and g7E1
g7E2

is the associative product in A. Finally, we define

Mult7(�̂) := g7E∞ ∈ Anw . (35)

Alternatively, define

ν(�̂) :=
∏

V∈�̂

ν(V ).

The ribbon structure induces an ordering of the unbounded edges of �̂, starting with
E∞ and then continuing with Ei1 j1 , . . . , Eil(w) jl(w)

. Using the associativity of A, we
can rewrite (35) as

Mult7(�̂) = ν(�̂)gi1 j1gi2 j2 · · · gil(w) jl(w)
∈ A. (36)

One easily sees the following:

Lemma 4.2 For each � as above,

Mult(�) =
∑

Mult7(�̂),

where the sum is over all possible tropical ribbons �̂ with underlying tropical curve
�.

Note that Mult(�) and Mult7(�̂) are completely determined by the type τ of � or
�̂, respectively. We thus define the multiplicity of a tropical disk or ribbon type τ

as the multiplicity of any of the tropical disks/ribbons of type τ .

4.3 Tropical ribbon counts and the consistent scattering diagram

We continue with the setup of Sect. 4.2. For each weight vector w, each δ > 0, and
each θ ∈ LR, let Tw,δ(θ) denote the set of types of tropical disks of degree �w which
match the constraint δAw and for which h(V∞) = θ . For each ε > 0 and θ ∈ LR, let
Bε(θ) denote the open radius ε ball centered at θ (with respect to the Euclidean metric
associated to any fixed choice of basis for L). Let Tw(θ) denote the set of tropical
disk types7 τ such that, for any ε > 0 and all sufficiently small δ > 0, there exist
θ ′ ∈ Bε(θ) with τ ∈ Tw,δ(θ

′). See Fig. 5 for an example.

Lemma 4.3 Recall our assumption that Aw is generic. For θ outside some locus of
codimension 2 (in particular, for θ general in the sense of Sect. 3.1), every tropical
disk type in Tw(θ) is trivalent.

7 We believe these can be interpreted as types of “virtual tropical disks” as defined in [9, § 5], so that the
classical case of Theorem 4.9 can be viewed as a special case of [9, Prop. 5.14].
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Proof This follows from the correspondence between tropical disks and scattering
walls in Lemma 4.4.2 below. More explicitly, consider a tropical disk � of degree �w
matching the constraints δAw for some δ > 0. Consider the flow of � towards V∞
as in Sect. 4.2.2. Suppose E1, . . . , Es flow into a vertex V with EV flowing out, and
suppose that Ei lies in a generically translated affine hyperspace AEi for i = 1, . . . , s.
Then EV lies in

AEV :=
(

⋂

i

AEi

)

+ RvEi ,

where vEV = p∗(nEV ) is the direction of EV . In particular,

codim(AEV ) =
(

s∑

i=1

codim(AEi )

)

− 1.

For each unbounded edge Ei j , we can take AEi j = Ai j , which has codimension
1. It follows that, if there is a vertex of valence higher than three, then h(V∞) will
necessarily lie in a generically determined translate of some rational-slope subspace
of codimension at least 2. The assumption on θ then implies that h(V∞) cannot be in
Bε(θ), and the result follows. ��

Lemma 4.3 ensures that we can define the multiplicities of elements of Tw(θ) as
in Sect. 4.2.2 whenever θ is outside some bad codimension 2 locus (which will be the
joints of a scattering diagram). Define

N (θ) :=
∑

w

1

|Aut(w)|
∑

τ∈Tw(θ)

Mult(τ ) ∈ ĝ.

Let T7w(θ) denote the set of tropical ribbons types τ̂ such that the associated tropical
disk type τ is in Tw(θ). By Lemma 4.2, we can express N (θ) as

N (θ) =
∑

w

1

|Aut(w)|
∑

τ̂∈T7w (θ)

Mult7(̂τ ).

Note that for each n ∈ �+, the strict convexity of �+ ensures that there are only
finitely many w such that n = nw. Furthermore, for each w, there are clearly only
finitely many types of tropical disks of degree �w. The well-definedness of N (θ)

follows, assuming that we have already fixed Aw. The fact that the generic choice of
Aw does not matter is part of the following theorem.

Theorem 4.4 Assume g has Abelian walls. Let D = Scat(Din), and consider θ ∈
LR\ Joints(D). Up to equivalence, we may assume that D has at most one wall
(d, gd) ∈ D with θ ∈ d. If there is no such wall, then N (θ) = 0, and otherwise,

gd = N (θ).
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4.4 Proof of Theorem 4.4

Theorem 4.4 is a modified version of [38, Thm 3.7], or a refinement of some cases
of [9, Prop. 5.14]. The two-dimensional quantum version is [19, Cor. 4.9], and the
two-dimensional classical version is [25, Thm. 2.8]. The proof is similar in each case.
We repeat the setup here, following [38, § 3.2].

4.4.1 Perturbing the scattering diagram

Definition 4.5 For any scattering diagramD over a Lie algebra g with Abelian walls,
the asymptotic scattering diagram Das of D is defined by replacing every wall
(n + d, gd) ∈ D with the wall (d, gd). Here, d denotes a rational polyhedral cone
(with apex at the origin) and n ∈ NR translates this cone.

Now let T denote the commutative polynomial ring Z[ti |i ∈ I ], and let Tk :=
T /〈tk+1

i |i ∈ I 〉. Let Din,Tk and Din,T be the initial scattering diagrams over g ⊗ Tk

and g ⊗ T , respectively, given by replacing each gdi = ∑
j≥1 gi j from Din with

g′di
:= ∑

j≥1 t j
i gi j . We will show that Theorem 4.4 holds for DTk := Scat(Din,Tk )

for all k, hence for DT := Scat(Din,T ). Taking ti = 1 for each i then recovers the
theorem for D = Scat(Din).

We have an inclusion of commutative rings

Tk ↪→ T ′
k := Z[ui j |i ∈ I , 1 ≤ j ≤ k]/〈u2

i j |i ∈ I , 1 ≤ j ≤ k〉

ti 
→
k∑

j=1

ui j .

Using this inclusion to work in g⊗ T ′
k , we have

g′di
=

k∑

w=1

twi giw =
k∑

w=1

∑

#J=w

w!giwui J , (37)

where the second sum is over all subsets J ⊂ {1, . . . , k} of size w, and

ui J :=
∏

j∈J

ui j .

Consider our scattering diagram Din = {(di , gi )|i ∈ I } with di = e⊥i and gi =∑
w≥1 gi,w as in (30). Applying the equivalence from Example 3.4(1) in reverse and

then perturbing the walls (i.e., translating the walls by some generic amount), we
obtain a scattering diagram

D
0
k := {(di J , w!giwui J )|1 ≤ w ≤ k, J ⊂ {1, . . . , k}, #J = w}, (38)
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Fig. 4 D0
2 perturbing the A2

initial scattering diagram of
Fig. 3

where di J is some generic translation of di = e⊥i . Note that Scat(D
0
k)as = Din,Tk .

It will be useful for us to refine this setup a bit, working over a different commutative
ring T̃k defined by

T̃k := Z[ui J |i ∈ I , J ⊂ {1, . . . , k}]/〈ui J1ui J2 |J1 ∩ J2 �= ∅〉.

Note that we have a surjective homomorphisms

π̃ : T̃k → T ′
k , ui J 
→ ui J . (39)

Let D0
k denote the initial scattering diagram over g⊗ T̃k defined as in (38), but with

the factors ui J replaced by ui J , i.e.,

D0
k := {(di J , w!giwui J )|1 ≤ w ≤ k, J ⊂ {1, . . . , k}, #J = w}. (40)

Example 4.6 For Din as in Example 3.15, the corresponding D0
k for k = 2 may look

like Fig. 4.

Note that π̃ takes the scattering functions of D0
k to those of D

0
k , and so the same

will be true for the corresponding consistent scattering diagrams and their asymptotic
versions. We will write our walls in the form (d, gduJd), where gd ∈ gnd for some
nd ∈ N+, Jd is a collection of pairwise-disjoint subsets of I × {1, . . . , k} of the form
(i, J ) for various i ∈ I and J ⊂ {1, . . . , k}, and

uJd :=
∏

(i,J )∈Jd
ui J . (41)

We now inductively produce a scattering diagram D∞
k = Scat(D0

k) from D0
k as

follows: whenever two walls (d1, gd1uJd1
) and (d2, gd2uJd2

) intersect and satisfy
uJd1

uJd2
�= 0, we add a new wall d(d1, d2) defined as follows: assume {nd1 , nd2} ≥ 0
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(otherwise reorder), and then set

d(d1, d2) := ((d1 ∩ d2) + R≤0 p∗(nd1 + nd2), [gd1, gd2 ]uJd1
uJd2

). (42)

This indeed terminates in finitely many steps and produces a consistent scattering
diagramD∞

k , cf. [38, § 3.2.2–3.2.3] for details. We note that the consistency argument
in [38, § 3.2.3] requires the Abelian walls assumption.

Definition 4.7 If d = d(d1, d2), define Parents(d) := {d1, d2}, and if d ∈ D0
k ,

define Parents(d) := ∅. Recursively define Ancestors(d) by Ancestors(d) := {d} ∪⋃
d′∈Parents(d) Ancestors(d

′). Define

Leaves(d) := {d′ ∈ Ancestors(d)| d′ is the support of a wall inD0
k}.

4.4.2 The tropical description ofD∞
k

We continue to write J to denote a collection of pairwise-disjoint subsets of I ×
{1, . . . , k} of the form (i, J ) for various i ∈ I and J ⊂ {1, . . . , k}. Now, as in
Sect. 4.2.1, fix a weight vector w := (wi )i∈I , wi := (wi1, . . . , wili ) with 0 < wi1 ≤
· · · ≤ wili . Let Jw denote the set of all possible J which can be written in the form

J = {(i, Ji j ) : i ∈ I , j = 1, . . . , li }

with #Ji j = wi j . Note that each J ∈ Jw corresponds to a set of walls

D0
k,J = {di Ji j }(i,Ji j )∈J ⊂ D0

k,

and two choices of J correspond to the same D0
k,J exactly if they are related by an

element of Aut(w). Given J, let wJ denote the corresponding weight vector w for
which J ∈ Jw.

Let D∞
k,J denote the set of walls in D∞

k whose leaves are precisely the walls of

D0
k,J. Note that, for J ∈ Jw and (d, gduJ) ∈ D∞

k,J, we must have gd ∈ gnw . We will
write Tw,δ(θ,AJ) to indicate Tw,δ(θ) as in Sect. 4.3 with the the representatives of
the incidence conditions Aw chosen so that Ai j = di Ji j .

Lemma 4.8 For every wall (d, gduJ) ∈ D∞
k,J and every θ in the interior ofd, there exists

a unique tropical disk h : � → LR in TwJ,1(θ,AJ) with h(V∞) = θ . Furthermore,
we have

gd = Mult(�)
∏

i j

(wi j !). (43)

Proof We construct the tropical disk by starting at h(V∞) = θ ∈ d and following d in
the direction p∗(nd) until we reach a point p ∈ d1 ∩ d2, where {d1, d2} = Parents(d).
The resulting segment is given weight |nd| (the index of nd, i.e., nd equals |nd| > 0
times a primitive vector). From p, extend the tropical curve in the directions nd1 and
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nd2 with weights |nd1 | and |nd2 |, respectively, until reaching the boundaries of the
walls d1 and d2. The balancing condition at p follows easily from (42) and the fact
that commutators in g respect the N+-grading. The process is repeated for each of
these branches, and continues until every branch extends to infinity in some leaf. This
gives the desired tropical disk. The formula for gd follows easily from (42) and the
definition of g� , noting that the

∏
wi j ! factor appears because of the fact that giw is

multiplied by w! in the definition of D0
k in (40), and similarly for the uJ factor. ��

4.4.3 Proof of Theorem 4.4

Given a weight vector w, let |wi | := ∑li
j=1 wi j , and let tw = ∏

i, j t
wi j
i = ∏

i t |wi |
i .

Also, for J = {(i, Ji j ) ⊂ I × {1, . . . , k}}(i, j)∈Sw , let

uJ :=
∏

i, j

ui Ji j .

We will use the following formula, cf. [38, (45)]:

tw =
∑

J∈Jw

⎛

⎝uIJ

∏

i, j

wi j !
⎞

⎠ . (44)

For a scattering diagramD and δ ∈ R>0, let δD denote the scattering diagram obtained
by multiplying the supports of the walls of D by δ (i.e., multiplying their distances
from the origin by 0).

Now fix a point θ ∈ LR\ Joints(DTk ). Recall that DTk = (π̃(D∞
k ))as. Hence, if

θ /∈ supp(DTk ), then for sufficiently small δ > 0, no walls of δD∞
k = Scat(δD0

k)

will intersect a small ε-neighborhood of θ . So then by Lemma 4.8, no tropical disks
representing a type in any TwJ,1(θ,AJ) will intersect such an ε-neighborhood either,
and so we obtain N (θ) = 0.

Now suppose θ ∈ supp(Dk), and for convenience, use Example 3.4(1) to combine
all walls containing θ into a single wall d. Then since DTk = (π̃(D∞

k ))as, we know
that gd = ∑

π̃(gJuJ), where the sum is over all walls (dJ, gJuJ) ∈ D∞
k such that for

any ε > 0, there exists a δ > 0 for which δdJ intersects Bε(θ). By Lemma 4.8, this is
the same as

π̃

⎛

⎝
∑

w

1

|Aut(w)|
∑

J∈Jw

∑

τ∈Tw(θ,AJ)

Mult(τ )uJwi j !
⎞

⎠ ,

where here we write Tw(θ,AJ) to indicate Tw(θ) for our particular choice of Aw as
AJ (since a priori Tw(θ) might depend on this choice). Here we use our observation
that two choices of J correspond to the same D0

k,J, hence the same D∞
k,J, if and only

if they are related by an element of Aut(w).
Now, note that for each w, (D0

k)as is symmetric with respect to permuting the
elements of Jw, i.e., for J1, J2 ∈ Jw, swapping the supports of diJ1 and diJ2 in (40)
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does not affect (D0
k)as. Hence,

∑
τ∈Tw(θ,AJ)

Mult(τ ) is independent of J ∈ Jw, and so
we obtain

gd =
∑

w

1

|Aut(w)|
∑

τ∈Tw(θ)

Mult(τ )

⎛

⎝
∑

J∈Jw
uJwi j !

⎞

⎠ .

Finally, applying (44) yields the desired result. ��

4.5 Themain theorem

We cannot apply Theorem 4.4 directly toDHall
Scat because g

Hall is not skew-symmetric.
However, the theorem does apply to any of our Di

Scat := Ii(DHall
Scat) for i ⊇ iskew as

in Sect. 3.2. Here, we take the associative algebra Ai to be as in Remark 4.1, with Ai

meaning Acl as Remark 4.1 in the case where i = ker(I).
Given a weight vector w, define

Rw :=
∏

i, j

Rwi j ,

where we recall from (27) that Rk := (−1)k−1

k(qk−1)
.

Now, let us fix a quiver with potential (Q, W ) and consider the corresponding
DHall

Scat. Consider a weight vector w and a choice of τ̂ ∈ T7w(θ). Recall that the ribbon
structure induces an ordering of the unbounded edges of τ̂ , starting with E∞ and then
continuing with Ei1 j1, . . . , Eil(w) jl(w)

. Using (36) and (28), we have

Mult7(̂τ ) = ν(̂τ )Rwκ
wi1 j1
i1

· · · κwil(w) jl(w)

il(w)
.

By Lemma 2.4, we have

κ
wi1 j1
i1

· · · κwil(w) jl(w)

il(w)
= Flag(wi1 j1 S1, . . . , wil(w) jl(w)

Sil(w)
) =: Flag(̂τ ), (45)

where we write wik jk Sik to indicate that the entry Sik appears wik jk times, and we
neglect writing the data of the map to Mnw ⊂ M. Finally, applying Theorem 4.4 to
the image under Ii, we obtain:

Theorem 4.9 Let D = Di
Scat for i ⊃ iskew, and consider θ ∈ LR\ Joints(D). Up to

equivalence, we may assume that D has at most one wall (d, gd) ∈ D with θ ∈ d.
If there is no such wall, then N (θ) = 0, and otherwise, gd = N (θ), where N (θ) is
defined as

N (θ) :=
∑

w

⎛

⎝ 1

|Aut(w)|
∑

τ̂∈T̂w(θ)

ν(̂τ )Ii(RwFlag(̂τ ))

⎞

⎠ .
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Combining Theorem 4.9 with Theorem 3.8 and Lemma 3.11, we immediately
obtain the following:

Theorem 4.10 [Main result] Let (Q, W ) be a quiver with genteel potential over gi for
some i ⊃ iskew. Let θ ∈ MR be general. Then

Ii(log(1ss(θ))) =
∑

w

⎛

⎝ 1

|Aut(w)|
∑

τ̂∈T̂w(θ)

ν(̂τ )Ii(RwFlag(̂τ ))

⎞

⎠ . (46)

Theorem 1.1 is the special case where i = ker(It ). The classical limit is the case
where i = ker(I).

Remark 4.11 While we find the expression of Mult7(̂τ ) in terms of moduli of flags to
be interesting, it is of course not generally simple to compute Flag(̂τ ). However, it is
not difficult to describe the quantum and classical integrals of the terms RwFlag(̂τ ).

First, for the quantum cases, recall from (45) that Flag(̂τ ) arose as a prod-

uct κ
wi1 j1
i1

· · · κwil(w) jl(w)

il(w)
. From (2.9), It (κi j ) = t zei j ∈ Ct [N⊕]. Hence, defining

R′
k := (−1)k−1

k(tk−t−k )
and R′

w := ∏
i, j R′

wi j
, we have

It (RwFlag(̂τ )) = R′
w · zwi1 j1ei1 · · · zwil(w) jl(w)

eil(w) ∈ Aq . (47)

Now for the classical version, recall that the map πt 
→1 : gq → gcl takes zn

t−t−1

to zn . Let us embed gcl into the Weyl algebra Acl as in Example 4.1, so zn becomes

zn∂B(n,·). Let Rcl
k := (−1)k

k2
and Rcl

w := ∏
i, j Rcl

wi j
. We then obtain

I(RwFlag(̂τ )) = Rcl
w · zwi1 j1ei1 ∂B(wi1 j1ei1 ,·) · · · zwil(w) jl(w)

eil(w) ∂B(wil(w) jl(w)
eil(w)

,·) ∈ Acl.

We wrote Theorems 4.9 and 4.10 in terms of tropical disk counts because we
do not know a nice moduli-theoretic description of the tropical curve multiplicities.
However, there are again nice interpretations for the quantum and classical integrals.
Consider a tropical curve type τ ∈ Tw(θ). For each vertex V of τ\{V∞}, let u1 and
u2 be any two of the weighted tangent vectors of edges emanating from V . Define
Mult(V ) := |B(u1, u2)|. Then the classical multiplicity Mult(τ ) is given by

Mult(τ ) = Rcl
w

∏

V

Mult(V ),

and the quantum multiplicity Multq(τ ), by which we mean Mult(τ ) in the quantum
cases, is given by

Multq(τ ) = R′
w

∏

V

[Mult(V )]t ,

where [Mult(V )]t is defined as in (15).
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Fig. 5 A tropical disk (given by
the dashed segments)
representing a type τ ∈ Tw(θ).
The unbounded segments of the
tropical curve are in generically
specified lines. The dashed circle
around θ is an ε-ball Bε(θ). The
solid rays are the support of the
scattering diagram

θ

Fig. 6 A tropical ribbon type τ̂

associated to the disk from
Fig. 5. The dashed curves
around the tropical ribbon
outline a topological realization
of the ribbon, the induced
orientation being clockwise

Example 4.12 Let us continue our ongoing example of the A2 quiver 1 → 2 with
W = 0 as in Example 3.10. Recall that in this case, L ∼= Z

2, I = {1, 2}, and
B =

(
0 −1
1 0

)

. Consider the weight-vectorw = ((1, 1), (1, 1)), so Aut(w) = 22 = 4.

For θ ∈ R>0(1,−1), a possible tropical disk type τ ∈ Tw(θ) is illustrated in Fig. 5:
Since there are 3 vertices, there are 23 possible ribbon structures on this tropical

disk. One such ribbon structure τ̂ is illustrated in Fig. 6, namely, the ribbon structure
for which ν(V ) = 1 for each V .

The multiplicity Mult7(̂τ ) is given by Ii(ν(̂τ )Rwκ1κ1κ2κ2). We easily see ν(̂τ ) =
(−1)3 = −1, and Rw =

(
1

q−1

)3
. The space Flag(̂τ ) = κ1κ1κ2κ2 is the space of

composition series of the following form:

(0 → 0) ⊂ (C → 0) ⊂ (C2 → 0) ⊂ (C2 → C) ⊂ (C2 → C
2).
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All maps V → W here, where V , W are C-vector spaces, are necessarily the 0 map,

and so by Lemma 2.4 we have Flag(̂τ ) = Flag(S2, S2, S1, S1;C
2 0→ C

2)κ
C2 0→C2

. As

in Example 2.5, since we work modulo automorphisms of C
2 0−→C

2, there is only one
flag, and its stabilizer group is U2(C)2 (one copy of the unitary group U2(C) for each
C
2). Hence, we find

Flag(̂τ ) = 1

|U2(C)|2 κ
C2 0→C2

= 1

q2 κ
C2 0→C2

So the contribution of this tropical ribbon τ̂ to (46) is

1

|Aut(w)|ν(̂τ )Ii(RwFlag(̂τ )) =
(−1

4

)

Ii

(
1

(q − 1)3
· 1

q2 κ
C2 0→C2

)

. (48)

In the quantum case i = ker(It ), we find using Proposition 2.8 that

It (κ
C2

0−→C2
) = ϒ(pt)tχ((2,2),(2,2))z(2,2) = t4z(2,2),

and so (48) becomes

−z(2,2)

4(q − 1)3
.

Alternatively, this may be computed using (47).

5 Broken lines and theta functions

5.1 Definitions of broken lines and theta functions

Recall the notation and setup of Sect. 3.1. Fix a scattering diagram D. Suppose we
have a commutative ring R and a �-graded R-algebra A = ⊕

λ∈� Aλ with A0 = R
on which g acts via �-graded R-algebra derivations. We say that this action is skew-
symmetric if gn ·Aλ = 0whenever {n, λ} = 0. Let Â denote the (�+)-adic completion
of A. Note that Ĝ acts on Â via �-graded R-algebra automorphisms.

Definition 5.1 Let λ ∈ �\{0},Q ∈ �∨
R
\Supp(D). A broken line γ with ends (λ,Q)

is the data of a continuous map γ : (−∞, 0] → �∨
R
\ Joints(D), values −∞ =:

t−1 < t0 ≤ t1 ≤ · · · ≤ t� = 0, and for each i = 0, . . . , �, an associated homogeneous
element ai ∈ Aλi for some λi ∈ �\{0}, such that:

(i) λ0 = λ and γ (0) = Q.
(ii) For i = 0 . . . , �, γ ′(t) = −p∗(λi ) for all t ∈ (ti−1, ti ).
(iii) a0 = zλ.
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(iv) For i = 0, . . . , � − 1, γ (ti ) ∈ Supp(D). Let

gi :=
∏

(d,gd)∈D
d�γ (ti )

exp(gd)
sgn〈nd,p∗(λ)〉 ∈ Ĝ. (49)

I.e., gi is the ε → 0 limit of the wall-crossing automorphism �γ |(ti−ε,ti+ε)
defined

in (23) (using a smoothing of γ ). Then ai+1 is a homogeneous term of gi ·ai , other
than ai .

The theta function ϑλ,Q ∈ Â is defined by

ϑλ,Q :=
∑

γ

aγ ,

where the sum is over all broken lines γ with ends (λ,Q), and aγ denotes the element
of A associated to the last straight segment of γ .

If g is skew-symmetric and the action on A is skew-symmetric, then [38, Thm.
2.14] (a refinement of [9, Lemmas 4.7, 4.9]) states the following:

Lemma 5.2 (The Carl–Pumperla–Siebert Lemma) Suppose g is skew-symmetric with
skew-symmetric action on A, and suppose D = Scat(Din) as in Theorem 3.5. Let γ

be a smooth path in �∨
R
\ Joints(D) from Q1 to Q2, with Q1,Q2 /∈ Supp(D). Then

for any λ ∈ �,

ϑλ,Q2 = �γ,D(ϑλ,Q1).

In any case, we have a copy ÂQ of Â and a collection of elements {ϑλ,Q|λ ∈ �} ⊂
ÂQ associated to everyQ ∈ �∨

R
\Supp(D). IfD is consistent, then the identifications

of the ÂQ’s with Â are all compatible with the path-ordered products. Furthermore,
if Lemma 5.2 holds, it says that the elements ϑλ,Q ∈ ÂQ are also compatible with
the path-ordered products, thus giving a canonical collection of elements ϑλ ∈ Â. We
may therefore simply denote ϑλ,Q as ϑλ.

5.2 Hall algebra, quantum, and classical broken lines

Take � = N prin := N ⊕ M , and take �⊕ := (N⊕, 0). Denote Mprin := (N prin)∨ =
M ⊕ N . Take {·, ·} to be the Z-valued skew-symmetric form Bprin on N prin defined
via

Bprin((n1, m1), (n2, m2)) = B(n1, n2) − 〈n1, m2〉 + 〈n2, m1〉. (50)

We will write

π∗ : N → M

n 
→ B(·, n),
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while the map p∗ of (21) will be denoted by

p∗,prin : N prin → Mprin

(n, m) 
→ Bprin(·, (n, m)) = (π∗(n) − m, n). (51)

One can show that Bprin is unimodular, so the map p∗,prin is an isomorphism.
Now for our �-graded algebras, we take the following:

AHall,prin := Hreg(Q, W ) ⊗Creg(t) Creg(t)[M],
Aq,prin := Ct [N⊕] ⊗Creg(t) Creg(t)[M],

and

Acl,prin := C[N⊕] ⊗C C[M].

The algebra structure on AHall,prin is determined by specifying that for ad ∈
Hreg(Q, W )d and m ∈ M , we have

ad ∗ zm = q−〈d,m〉zm ∗ ad . (52)

Similarly, for Aq,prin we specify that

zd ∗ zm = q−〈d,m〉zm ∗ zd .

Equivalently, Aq,prin is the quantum torus algebraCt [�]with respect to the form Bprin.
Finally, Acl,prin is just given the usual algebra structure, making it into C[�].

For the action of gHall on AHall,prin we take the adjoint action, i.e.,

g · a := [g, a] = ga − ag,

using the natural inclusion of gHall into (t − t−1)−1 · AHall,prin to make sense of the
multiplication. Similarly for the action of gq on Aq,prin. The action of gcl is the action
with respect to the Poisson bracket, i.e.,

zd · z(n,m) := {z(d,0), z(n,m)} = Bprin((d, 0), (n, m))z(n+d,m).

One sees that the maps It , I, and πt 
→1 extend to homomorphisms between these
algebras which commute with the corresponding Lie algebra actions.

We note that we could also define Ai,prin for any other i ⊇ iskew by applying Ii to
AHall,prin. The induced gi-actions on Ai,prin are skew-symmetric, thus yielding new
examples of algebras for which Lemma 5.2 holds.

Let � represent Hall, i, q, or cl. We can consider scattering diagrams in Mprin
R

over

g�. We take D�,prin
Scat := Scat(D�,prin

in ), where D�,prin
in is defined as in (24), but with

(ei , 0)⊥ in place of e⊥i , and with log 1ss(p∗(ei )) replaced with its image under Ii,
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It or I if � represents i, q or cl, respectively. Note that the intersection of D� with
(MR, 0) ⊂ Mprin

R
agrees with what we previously called Scat(D�

in ).

Remark 5.3 Note that all scattering walls have supports of the form (n, 0)⊥ for n ∈ N ,
so they are invariant under translation by (0, NR). It follows that ϑλ,Q is invariant
under translation ofQ by elements of (0, NR), and when enumerating broken lines, it
suffices to consider their projections modulo (0, NR).

Note that g� and the action on A�,prin are skew-symmetric if � = i, q or cl, but
typically not for � = Hall. With this setup and for � = Hall, the broken lines with
ends (λ,Q) with Q ∈ (M ⊕ N )R and λ ∈ � are precisely the Hall algebra broken
lines discussed in [7]. These will be examined in Sect. 5.3.

We now briefly explain how the above theta functions for � = cl relate to those of
[22]. In the usual cluster algebras language, zm form ∈ M gives the A cluster variables,
while zn for n ∈ N gives the X cluster variables.8 In the principle coefficients setting,
we have z(m,n) = ∏

i Ami
i Xni

i , where m = ∑
i mi e∗i and n = ∑

i ni ei . The theta
functions on Aprin, A, and X are obtained as follows:

• Allowing any λ ∈ �, the resulting theta functions ϑ
prin
λ := ϑλ are the theta

functions which [22] constructs on the cluster variety with principal coefficients
Aprin (or rather, on some formal version of this in general). The theta functions
ϑ
prin
λ for λ ∈ (N⊕)∨ (i.e., the positive span of the vectors e∗i ) are the ones examined

by Bridgeland [6, Thm. 1.4].
• One obtains the theta function ϑA

λ on the cluster A-variety via the projection

(n, m) 
→ m of ϑ
prin
λ (i.e. setting all the X -variables in ϑλ equal to 1), assuming

that this projection iswell-defined, i.e., that it converges. Themiddle cluster algebra
of [22] is defined to be the span of all the ϑA

λ for which the convergence holds.
The corresponding elements λ form a cone � ⊂ M which contains the Fock–
Goncharov [17] cluster complex C . The ϑA

λ for λ ∈ C give the cluster monomials.
• By applying a change of variables z(m,n) 
→ zn to {ϑ(n,m)|m = π∗(n)}, one
obtains [22]’s theta functions ϑX

n for the X -space (or a formal version thereof).
Note that m = π∗(n) implies p∗,prin((n, m)) = (0, n), so this change of variables
essentially amounts to applying p∗,prin.
The theta functions for � = q are among those considered in [38]. It was recently

shown in [13] that these formbases for the quantumcluster varieties (or formal versions
thereof), thus giving quantum analogs for the results of [22].

5.3 Hall algebra theta functions and the CPS lemma

As noted in Sect. 5.2, gHall and its action on AHall,prin typically fail to be skew-
symmetric, and so [38]’s proof of Lemma 5.2 does not apply to Hall algebra broken
lines. In fact, we provide here a counterexample, thus showing that:

8 The A and X notation is due to Fock and Goncharov, cf. [17], and was also used by [22]. Some other
authors use the Fomin-Zelevinsky [20] convention of denoting the A-variables by X and the X -variables
by Y .
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Proposition 5.4 The analog of Lemma 5.2 does not generally hold for theta functions
constructed from Hall algebra broken lines.

We note though that Hall algebra broken lines are still useful for understanding theta
functions. For example, by studying Hall algebra broken lines and then integrating, we
can understand the quantumor classical broken lines in terms of quiverGrassmannians,
cf. [7].

Recall from Remark 5.3 that we may compute theta functions using the images
of broken lines under the projection Mprin

R
= MR ⊕ NR → MR. We will work in

this projection throughout this subsection. Furthermore, the theta function we will
consider will be of the form ϑ(0,m),Q with m ∈ π∗(N ). Suppose ai ∈ Aλi is the
homogeneous element element attached to some straight segment of a broken line
contributing to ϑ(0,m),Q. Then λi has the form (ni , m) for ni ∈ N . Using (51), we see
that the projection of p∗,prin(λi ) modulo (0, N ) is π∗(ni ) − m ∈ π∗(N ). Hence, by
Definition 5.1(ii) (modulo (0, N )), we have

γ ′(t) = m − π∗(ni ) ∈ π∗(N ) (53)

for all t in the corresponding straight segment of γ . We thus obtain the following:

Lemma 5.5 For m ∈ π∗(N ), all broken lines contributing to ϑ(0,m),Q are contained
in Q+ π∗(NR).

For our counterexample, we use the A3-quiver 1 → 2 ← 3. In the corresponding
(standard) basis e1, e2, e3 for N , the matrix for B is

B =
⎛

⎝
0 −1 0
1 0 1
0 −1 0

⎞

⎠ .

In general, the map π∗ : N → M takes ei to the i-th row of B. In particular, we see
that ker(π∗) is in this case generated by e1− e3, and Image(π∗) = (e1− e3)⊥, or the
span of the first two rows of B (viewed as vectors in the dual basis).

Thewalls of the initial scattering diagramDHall
in (i.e.,DHall,prin

in projected to MR) are
di := (e⊥i , 1ss(π∗(ei ))). Figure 7 depicts a slice of the resulting consistent scattering
diagramDHall

Scat (which exists and agrees withD
Hall by Lemmas 3.11 and 3.12), parallel

to π∗(NR) (taking advantage of Lemma 5.5), with the upward-pointing direction in
the figure being parallel to π∗(e1) = π∗(e3) = (0, 1, 0), and the leftward-pointing
direction being parallel to π∗(e2) = (−1, 0,−1). In the figure, whenever two walls
with attached scattering functions gi1, gi2 collide with the corresponding ni1 , ni2 sat-
isfying B(ni1 , ni2) > 0 (otherwise reorder), the picture is locally the same, up to a
change of variables, as the picture in Example 3.2. Hence, consistency results in one
new wall with attached scattering function given up to first order by [gi1, gi2 ]. Recall
from (26) that log(1ss(π∗(ei ))) = (q−1)−1κi +(higher order terms). So in particular,
the element of ĝHall attached to d12 is (q − 1)−2[κ2, κ1] + (higher order terms).

The bold lines in Fig. 7 represent broken lines with ends (m,Q1) and (m,Q2),
where m = π∗(e1)+π∗(e2), i.e., m = (−1, 1,−1) in the basis e∗1, e∗2, e∗3 for M . Here
we keep in mind that by (53), γ ′(t) = m on the first straight segment of γ .
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Fig. 7 Counterexample to the
Carl–Pumperla–Siebert Lemma
for Hall algebra broken lines

By inspection, these are the only broken lines contributing to ϑm,Q1 or ϑm,Q2

whose attached element of Â is in Am+e1+e2+e3 (the subscript denoting the degree
in the N prin-grading). We claim that for our counterexample, it suffices to check that
these two attached elements are different from one another. Indeed, while Q1 and
Q2 do lie on opposite sides of d1, the wall-crossing from Q2 to Q1 can only affect
the grading in the e1-direction. So since there are no other broken lines with ends
(m,Q2) whose final monomial has degree (m + ke1 + e2 + e3) for k ∈ Z, the degree
(m + e1 + e2 + e3) part of ϑm,Q2 after crossing d1 must still be the final attached
monomial of the bottom broken line from the figure.

Recall from Sect. 5.2 that when a broken line with attached element a crosses a
wall with attached element g ∈ ĝHall, the result of the action of g on a is exp[g, a]. In
particular, if g = ∑

k≥1 gk with gk ∈ gHallkn for some n ∈ N+, then the action yields
[g, a] + (higher order terms). Note that for each of the two broken lines in Fig. 7, it
is only the first-order terms of the scattering functions that contribute. Also note that
all the signs in the exponents as in (49) are positive for the two broken lines under
consideration. We thus compute that the final attached element for the broken line γ1
ending at Q1 is

aγ1 = (q − 1)−3[κ2, [κ1, [κ3, zm]]],

Similarly, the final attached element for the broken line γ2 ending at Q2 is

aγ2 = (q − 1)−3[[κ2, κ1], [κ3, zm]]
= (q − 1)−3[κ2, [κ1, [κ3, zm]]] − (q − 1)−3[κ1, [κ2, [κ3, zm]]],

where in the last step we applied the Jacobi identity. So the difference between aγ2

and aγ1 is

aγ1 − aγ2 = (q − 1)−3[κ1, [κ2, [κ3, zm]]]

After applying Ii for i ⊃ iskew, the skew-symmetry of the brackets implies that
[κ2, [κ3, zm]] will vanish, and so this difference is indeed 0 as implied by Lemma 5.2.
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But in AHall,prin this is not the case, as we will now check. Using (52), we compute
that

[κ3, zm] = (q−1 − 1)zmκ3,

and then

[κ2, (q−1 − 1)zmκ3] = (q−1 − 1)zm(q−1κ2κ3 − κ3κ2). (54)

Let κ23, f denote the κ-element of the Hall algebra corresponding to the representa-

tion (0 → C
f← C). Up to isomorphism, f here is either 0 or Id. Then using Lemma

2.4, we compute

κ2κ3 = κ23,0 + (q − 1)κ23,Id

and

κ3κ2 = κ23,0.

Now the right-hand side of (54) becomes:

(q−1 − 1)2zm(κ23,0 − κ23,Id)

As a check, note that It (κ23,0 − κ23,Id) = 0, so we do not violate Lemma 5.2 after
integrating.

Finally, we must check that that

[κ1, zm(κ23,0 − κ23,Id)]

is nonzero. Moving κ1 past zm yields

[κ1, zm(κ23,0 − κ23,Id)] = zm (
qκ1(κ23,0 − κ23,Id)− (κ23,0 − κ23,Id)κ1

)
. (55)

Letκ123,a,b denote theκ-element corresponding to the representationC
a→ C

b← C.
Rather than completely computing qκ1(κ23,0 − κ23,Id) − (κ23,0 − κ23,Id)κ1, let us
just look at the coefficient of κ123,0,0 in the product. The product qκ1κ23,0 yields a
contribution of qκ123,0,0, while the product−κ23,0κ1 yields a contribution of−κ123,0,0.
Thus, (55) includes a term of the form

zm(q − 1)κ123,0,0

which will not cancel with any other terms. In particular, (55) is nonzero, as desired.
This proves Proposition 5.4. ��
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