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Abstract
In this paper we introduce new categorical notions and give many examples. In an
earlier paper we proved that the Bridgeland stability space on the derived category of
representations of K (l), the l-Kronecker quiver, is biholomorphic toC×H for l ≥ 3. In
the present paper we define a new notion of norm, which distinguishes {Db(K (l))}l≥2.
More precisely, to a triangulated category T which has property of a phase gap we
attach a non-negative real number ‖T ‖ε. Natural assumptions on a SOD T = 〈T1, T2〉
imply ‖〈T1, T2〉‖ε ≤ min{‖T1‖ε , ‖T2‖ε}. Using the norm we define a topology on
the set of equivalence classes of proper triangulated categories with a phase gap, such
that the set of discrete derived categories is a discrete subset, whereas the rationality
of a smooth surface S ensures that [Db(point)] ∈ Cl([Db(S)]). Categories in a
neighborhood of Db(K (l)) have the property that Db(K (l)) is embedded in each of
them. We view such embeddings as non-commutative curves in the ambient category
and introduce categorical invariants based on counting them. Examples show that the
idea of non-commutative curve-counting opens directions to newcategorical structures
and connections to number theory and classical geometry. We give a definition, which
specializes to the non-commutative curve-counting invariants. In an example arising
on the A side we specialize our definition to non-commutative Calabi–Yau curve-
counting, where the entities we count are a Calabi–Yau modification of Db(K (l)).
In the end we speculate that one might consider a holomorphic family of categories,
introduced by Kontsevich, as a non-commutative extension with the norm, introduced
here, playing a role similar to the classical notion of degree of an extension in Galois
theory.
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1 Introduction

Motivated byM. Douglas’s work in string theory T. Bridgeland defined in [10] a map:

{
triangulated
categories

}
Stab�

{
complex
manifolds

}
. (1)

For a triangulated category T the associated complex manifold Stab(T ) is referred
to as the space of stability conditions (or the stability space or the moduli space of
stability conditions) on T .

The map (1) behaves well with respect to orthogonal decompositions (Defini-
tion 5.1). Due to lack of a reference in the literature we show this in Sect. 5. In
particular, there is a a bijection

Stab(T1 ⊕ T2 ⊕ · · · ⊕ Tn) ∼= Stab(T1)× Stab(T2)× · · · × Stab(Tn), (2)

which is biholomorphism, when the categories are with finite rank Grothendieck
groups (Proposition 5.2). Our previous paper [19, Theorem 1.1 ] contains examples
of semi-orthogonal decomposition, SOD, T = 〈T1, T2〉 where rank(K0(T )) = 2 and
Stab(T ) is not biholomorphic to Stab(T1)× Stab(T2).

The behavior of the map (1) with respect to general SOD has been studied in
[16]. This is a difficult problem and no formula relating Stab(〈T1, T2〉) and Stab(T1),
Stab(T2) is obtained.

In this paper using Bridgeland stability conditions we define (Definition 4.11) for
any 0 < ε < 1 a function (the domain is explained below and it does not depend
on ε):

⎧⎨
⎩

triangulated
categories

with a phase gap

⎫⎬
⎭

‖·‖ε� [0, π(1− ε)] and we denote ‖T ‖ε = π(1− ε)− ‖T ‖ε (3)
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and prove (Theorem 6.1) that if T = 〈T1, T2〉 is a semi-orthogonal decomposition in
which T is proper,1 rank(K0(T )) <∞, T1 and T2 have phase gaps, then T has phase
gap as well and

‖〈T1, T2〉‖ε ≥ max{‖T1‖ε , ‖T2‖ε} ⇒ ‖〈T1, T2〉‖ε ≤ min{‖T1‖ε , ‖T2‖ε}. (4)

For the proof of this inequality we employ themethod for gluing of stability conditions
in [16], crucial role has also [11, Lemma 4.5] which ensures certain finiteness property
of a stability condition with a phase gap.

The function (3) depends on ε ∈ (0, 1), however the three subsets of its domain
determined by the three conditions on the first row in the following table do not depend
on ε (Lemma 4.16):

Categories with: ‖·‖ε = 0 0 < ‖·‖ε < π(1− ε) ‖·‖ε = π(1− ε)

examples: for any acyclic quiver
Q Db(Q) is here iff
Q is Dynkin or
affine, any discrete
derived category is
here

Db(K (l1))⊕ · · · ⊕
Db(K (lN )) where
N ∈ Z≥1, li ≥ 3 for
some i

Db(P1 ×
P
1), Db(Pn)n ≥

2, Db(Fm )m ≥ 0,
many wild quivers
as in Prop. 8.5 (a)

Further examples can be obtained by using (4) and the property that for a proper
T with rank(K0(T )) < ∞ and decomposition T = T1 ⊕ T2 with ‖T1‖ε = 0 holds
‖T1 ⊕ T2‖ε = ‖T2‖ε (Corollary 5.6). In particular by blowing up the varieties in last
column one obtains other elements in this column (see Corollary 6.4).

In Sect. 11 using (3) we introduce a topology on the class of proper triangulated
categories with a phase gap up to equivalence. The function ‖·‖ε = π(1− ε)− ‖·‖ε
is upper semi-continuous for this topology. The class of discrete derived categories
modulo equivalence is a discrete subset w.r. to it (see Sect. 10). For a proper T with
rank(K0(T )) ≥ 3 we show in Proposition 11.9 that the following condition:2

for each l ∈ N there exists a full exceptional collection (E0, E1, . . . , En)

and integers 0 ≤ i < j ≤ n for which hommin(Ei , E j ) ≥ l (5)

implies [Db(point)] ∈ Cl ([T ]). In Proposition 8.5 we verify (5) in Db(X) for
any smooth complete rational surface X and for some higher dimensional smooth
varieties. A conjecture stated by Orlov says that a surface over an algebraically
closed field admits a full exceptional collection only if it is rational (see e.g. [41,
p. 5]). If this conjecture holds, then the presented results would imply that for any
smooth projective surface S with a full exceptional collection holds (5) and hence

1 By proper we mean that
∑

i∈Z homi (X , Y ) < +∞ for any two objects X , Y in T (see also Sect. 2
dedicated to Notations).
2 The meaning of hommin(A, B) can be seen in formula (14).
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[Db(point)] ∈ Cl([Db(S)]). The condition (5) fails for Db(K (n)), andConjecture 1.3
would imply that it fails for the quivers depicted there. Related questions are:

Question 1.1 Let X denote a smooth projective variety X, different from P
1, with a

full exceptional collection. Is there X, s. t. [Db(point)] /∈ Cl([Db(X)]) ? Is there X
and a natural number N ∈ N s. t. for any full exceptional collection (E0, . . . , En) in
Db(X) and any 0 ≤ i < j ≤ n we have hommin(Ei , E j ) ≤ N ?

A positive answer of some of the questions in 1.1 with dim(X) = 2 would be a
counterexample of Orlov conjecture.

Another class of categorical invariants introduced in this paper is motivated by the
following question (many of these invariants behave in a certain sense monotone with
respect to SOD):

For the topology from Sect. 11 any category (except Db(A1)) in table 1 is in
a neighborhood of NP

l for some l ( following Kontsevich–Rosenberg [32] we
denote sometimes Db(K (l + 1)) by NP

l ). More precisely, there is a SOD 〈NP
l ,A〉

for some l and some A. Recalling that Gromow-Witten invariants count pseudo-
holomorphic curves, we view such embeddings of NP

l into T as analogous to a
“pseudo-holomorphic curve” in the category T and ask a question: can we count
such entities in a given T , how many are they ?

In Sect. 12 and in [20] we show that the answer is positive. The idea is: for two
triangulated catogoriesA, T , a subgroup �⊂Aut(T ), and a choice of some additional
restrictions P of fully faithful functors we define the set of equivalence classes of fully
faithful functors fromA to T satisfying P with two functors F, F ′ being equivalent iff
F ◦ α ∼= β ◦ F ′ for some α ∈ Aut(NP

l), β ∈ �. This set is denoted by C�
A,P (T ) (see

Definition 12.5). We prefer to choose some A, which is non-trivial but well studied.
The studies in this paper naturally impose NP

l as our first choice - we consider
also NP

−1, which is a category generated by an orthogonal exceptional pair. We refer
to NP

l as a non-commutative curve and by rescaling ‖·‖ 1
2
(see Sect. 12.1) we define

an invariant:
⎧⎨
⎩

triangulated
categories

with a phase gap

⎫⎬
⎭

dimnc� [0,+∞], s.t.
dimnc(〈A,B〉) ≥ max{dimnc(A), dimnc(B)}
dimnc(NP

l ) = l l ≥ 0, dimnc(NP
−1) = 0

(6)

to which we refer to as “non-commutative genus”. In particular, NP
l is a non-

commutative curve of genus l for l ≥ 0. Although NP
−1 has homological dimension

0 we refer to it as a non-commutative curve of genus−1 (see Remark 12.2 for further
motivation).

Using the inequality in (6) we have derived vanishing theorem for C�
NPl ,P

(T ) for

certaion choice of P (see Remark 12.6). Choosing A = NP
l , assuming that T is K-

linear and choosing the additional restriction P of the functors to beK-linear, we write
just C�

l (T ) instead of C�
NPl ,P

(T ) and refer to this set as to the set of non-commutative
curves of genus l in T modulo the subgroup �. Furthermore, by fixing a stability
condition σ ∈ Stab(T ) we strengthen the restriction P depending on σ to define the
set of σ -semistable, resp. σ -stable non-commutative curves in T and denote it by
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C�
l,σ (T ), resp. C�

l,σσ (T ) (Definition 12.12). The definitions of the counting invariants
introduced here are carefully explained in a subsequent work [20].

From this vanishing criterion (174), Remark 12.7 and after determining
dimnc(Db(Q)) for affine and Dynkin Q (see Remark 12.1) follow these vanishings:

If l ≥ 2 and Q is affine aciclic quiver⇒
∣∣∣C {Id}l (Db(Q))

∣∣∣ = 0, (7)

If l ≥ 1 and Q is Dynkin quiver⇒
∣∣∣C {Id}l (Db(Q))

∣∣∣ = 0. (8)

It is interesting to find further examples of wild quivers Q with dimnc(Db(Q)) <

∞, we propose potential examples, see Conjecture 1.3, analogous vanishings for
Cl(Db(Q)) for big enough l would follow by the vanishing criterion (174).

It is easy to prove that
∣∣∣C {Id}l (NP

k)

∣∣∣ = δl,k for l, k ≥ −1. For l ≥ 1 we describe

the zones in Stab(NP
l), where

∣∣∣C {Id}l,σ (NP
l)

∣∣∣ is zero and one respectively, in particular
one sees the walls, where a wall-crossing takes place (see part 1.3 of the introduction
below and Proposition 12.13).

The numbers
∣∣C�

l (T )
∣∣ are computed for two affine quivers in [20, Section 6], and

estimated for Db(P2) in [20, Section8]. InSect. 12.3 herewepresent the results of these

computations. In particular, part of Proposition 12.10 is that CAutC(Db(P2))
l

(
Db(P2))

)
is finite for all l and non-empty iff l = 3m − 1 for some Markov number m, where
P
2 is the complex projective plane and AutC(Db(P2)) is the group of C-linear auto-

equivalences of P
2. Furthermore, Corollary 12.11 is that the Markov’s conjecture in

number theory and a conjecture by Tyurin ([36, p. 100] or [25, Section 7.2.3 ]) are true

iff for each Markov number m �= 1, m �= 2 we have
∣∣∣CAutC(Db(P2))

3m−1 (Db(P2))

∣∣∣ = 2.

Via the latter Corollary in future works we plan to approach Markov’s conjecture
using homological mirror symmetry and applying A side techniques for computing
the non-commutative curve-counting invariants.

In Sect. 12.4 we explain an example, where
∣∣∣C {Id}1,σ (T )

∣∣∣ takes all possible values in{
0, 1, 2 =

∣∣∣C {Id}1 (T )

∣∣∣} as σ varies in Stab(T ) (the proof is in the master thesis [6]).

Section 12.5 contains a conjectural example of finite sets C�
A,P (T ) of different

origin (the proof is postponed for future work as well). Here T is the so called Fukaya
category of an elliptic curve, Fuk(E). In this case we set A to be a a Calabi–Yau
modification of Db(K (l)), denoted by CY (l). The question about the cardinalities of
C�

CY (l),C (Fuk(S)) for higher genus curves should be related to counting geodesics on
S.

Finally (Sect. 13), relating our norm to the notion of holomorphic family of cat-
egories introduced by Kontsevich we suggest a framework in which sequences of
holomorphic families of categories are viewed as sequences of extensions of non-
commutative manifolds.
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This paper is the beginning of a longer pursuitmotivated by the invariants introduced
here. In [20] we extend our studies of C�

A,P (T ) beyond counting: besides numbers

we extract from C�
A,P (T ) categorical versions of classical geometric structures which

open new perspectives in non-commutative geometry.
1.1. We give here more details on the definition of ‖T ‖ε and on the examples.
By definition each stability condition σ ∈ Stab(T ) determines a set of non-zero

objects in T (called semi-stable objects) labeled by real numbers (called phases of the
semistable objects). The semi-stable objects correspond to the so called “BPS” branes
in string theory. The set of semi-stable objects will be denoted by σ ss , and φσ (X) ∈ R

denotes the phase of a semi-stable X . For anyσ ∈ Stab(T )wedenote by PT
σ the subset

of the unit circle {exp(iπφσ (X)) : X ∈ σ ss}⊂S
1. A categorical analogue of the density

of the set of slopes of closed geodesics on a Riemann surface was proposed in [18]. In
[18, section 3] the focus falls on constructing stability conditions for which the set Pσ

is dense in a non-trivial arc of the circle. The result is the following characterization
of the map (1), when restricted to categories of the form Db(RepK(Q)) (Q denotes
an acyclic quiver):

Dynkin quivers (e.g. ◦� ◦) Pσ is always finite

Affine quivers (e.g. ◦�� ◦) Pσ is either finite or has exactly two limit points

Wild quivers (e.g. ◦��� ◦) Pσ is dense in an arc for a family of stability conditions

(9)

In [21, Proposition 3.29] are constructed stability conditions σ ∈ Stab(Db(Q)) with
two limit points of Pσ for any affine quiver Q (by Db(Q) we mean Db(Repk(Q))).

Stability conditions on wild quivers whose set of phases are dense in an arc were
constructed in [18], however for them the set of phases is still not dense in the entire S

1,
i.e. Pσ does misses a non-trivial arc, in which case we say for short that Pσ has a gap.
In particular all the categories in table (9) are examples of what we call in this paper a
triangulated category with phase gap, this is a triangulated category T for which there
exists a full3 σ ∈ Stab(T ) whose set of phases PT

σ has a gap. Stability conditions
whose set of phases is not dense in S

1 and their relation to so called algebraic stability
conditions have been studied in [37]. In particular the results in [37] imply that when
rankK0(T ) < ∞, then T has a phase gap iff there exists a bounded t-structure in
T whose heart is of finite length and has finitely many simple objects (Lemma 4.7).
Whence the domain of the invariant (3) contains also the CY3 categories discussed in
[12].

By definition ‖T ‖ε is the supremum of4 vol
(
Pσ

)
/2 as σ varies in the subset

Stabε(T )⊂Stab(T ) of those stability conditions σ for which Pσ misses at least one
closed ε-arc (see Definitions 38, 4.3).

3 We recall what is a full stability condition in Sect. 4.1. The stability conditions on the third raw of (9) are
full.
4 For a Lebesgue measurable subset X⊂S

1 we denote by vol(X) its Lebesgue measure with vol(S1) = 2π .
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From the definition and table (9) it follows that for any acyclic quiver Q the norm∥∥Db(Q)
∥∥

ε
vanishes iff Q is Dynkin or affine. Thus, using [19, table (4)] we obtain

the table

Q
∥∥Db(Q)

∥∥
ε

Stab(Db(Q))

◦ �� ◦ or ◦ � ◦ ∥∥Db(Q)
∥∥

ε
= 0 C× C

K (l), l ≥ 3
∥∥Db(Q)

∥∥
ε

> 0 C×H
. (10)

and [19, Conjecture 1.2] can be reformulated as follows:

Conjecture 1.2 Let 0 < ε < 1 and let Q be any acyclic quiver. The stability space
Stab(Db(Q)) is affine (of the form C

n) iff
∥∥Db(Q)

∥∥
ε
= 0.

In table (9) we see that the map (1) has the same value (up to biholomorphism) on all
the categories {Db(K (l))}l≥3. In this paper we compute

∥∥Db(K (l))
∥∥

ε
for any l and

0 < ε < 1 and show:
∥∥∥Db(K (l1))

∥∥∥
ε

<

∥∥∥Db(K (l2))
∥∥∥

ε
⇐⇒ l1 < l2 and 3 ≤ l2 (11)

l ≥ 2 ⇒
∥∥∥Db(K (l))

∥∥∥ 1
2

= arccos

(
2

l

)
. (12)

Some criteria ensuring that ‖T ‖ε = π(1− ε) explained below imply that for many
of the wild quivers Q we have

∥∥Db(Q)
∥∥

ε
= π(1 − ε) (see Proposition 8.5 (a)) and

also
∥∥Db(X)

∥∥
ε
= π(1 − ε) where X is P

n , n ≥ 2, P
1 × P

1, Fa , a ≥ 0 or a smooth
algebraic variety obtained from these by a sequence of blow ups in finitelymany points
(see Proposition 8.5e, f), for n = 1 we have

∥∥Db(P1)
∥∥

ε
= 0. Actually, the condition

‖T ‖ε < π(1 − ε) imposes restrictions on the full exceptional collections in T (see
Corollary 8.4).

The criteria for ‖T ‖ε = π(1 − ε) obtained here do not apply to category of
the form T ∼= Db(K (l1)) ⊕ Db(K (l2)) ⊕ · · · ⊕ Db(K (lN )) and we do prove that
‖T ‖ε < π(1− ε) in this case.

We expect that the criterion in Corollary 8.3 does not apply to all wild quivers, and
we do know that its corollary, Corollary 8.5 (a), cannot be applied to all of them, for
example, to the following:

S1 =
a2

v
��

�
a1

� S2 =
a1 � a2 � a3

v
� �

�
S3 =

a4

a1

�

a2
�

a3

�

v
��

� .

We conjecture, that:

Conjecture 1.3 For i = 1, 2, 3 we have 0 <
∥∥Db(Si )

∥∥
ε

< π(1− ε), which is equiv-

alent to dimnc(Db(Si )) < ∞ (see (6)). Furthermore we conjecture that C {Id}l (T ) is
finite for all l ≥ 1.
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1.2. It follows a brief discussion on the computations of ‖T ‖ε. In Sect. 7 we denote
Tl = Db(K (l)) and compute ‖Tl‖ε. To that end we start in Sect. 7.1 by recalling
the construction and some properties of the helix of exceptional objects {si }i∈Z in Tl

(infinite in both directions sequence of exceptional objects and any two consecutive
form a full exceptional pair). In Sect. 7.2 we determine explicitly the set of phases Pl

σ

for each σ ∈ Stab(Tl) and each l ≥ 2 (Proposition 7.4). It turns out that for l ≥ 3 a

stability condition has vol
(

Pl
σ

)
�= 0 and satisfies σ ∈ Stabε(Tl) iff there exists j ∈ Z

such that s j , s j+1 ∈ σ ss and ε < φσ (s j+1) − φσ (s j ) < 1, the set Pl
σ for such a σ is

the set of fractions {n/m : (n, m) ∈ 
+(K (l))} appropriately embedded in the circle
via a function depending on the stability condition. In Lemma 7.3 we shed light on
the structure of the set {n/m : (n, m) ∈ 
+(K (l))} (see formulas 80, 81) and use it
in the proof of Proposition 7.4.

We start Sect. 7.3 by deriving a formula expressing the non-vanishing numbers

vol
(

Pl
σ

)
/2 as a smooth function depending on |Z(s j+1)||Z(s j )| and φσ (s j+1)− φσ (s j ) for

any j ∈ Z (see Proposition 7.6). After computing partial derivatives of this functionwe

find that the supremum of vol
(

Pl
σ

)
/2 as σ varies in Stabε(Tl) is equal to vol

(
Pl

σ

)
/2

where σ has s j , s j+1 ∈ σ ss , |Z(s j+1)||Z(s j )| = 1 and φσ (s j+1) − φσ (s j ) = ε. The precise

formula for ‖Tl‖ε is in Proposition 7.7 and it produces (11), (12). In particular it
follows that

lim
l→+∞‖Tl‖ε = π(1− ε). (13)

Section 8 contains examples of T with ‖T ‖ε = π(1 − ε) (Proposition 8.5). This
section is based on (13) and the observation (Proposition 8.1) that for any exceptional
pair (E1, E2) in a proper T holds ‖〈E1, E2〉‖ε ≥ ‖Tl‖ε where l = hommin(E1, E2). It
follows that the condition ‖T ‖ε < π(1− ε) imposes restrictions on hommin(Ei , E j )

in a full exceptional collection (E0, . . . , En) (see Corollary 8.4).
Section9 is devoted to the proof that

∥∥Db(K (l1))⊕ · · · ⊕ Db(K (lN ))
∥∥

ε
< π(1−ε)

for any N ∈ Z≥1 and any 0 < ε < 1. Using the results for the sets Pl
σ from Sects. 7.2,

7.3 we show here that, whenever Pl
σ is contained in C ∪ −C for an open arc C⊂S

1

with length less than π , then for some closed arc pl
σ⊂C ∩ Pl

σ the set Pl
σ \(pl

σ ∪−pl
σ )

is at most countable, and furthermore, provided that the length of C is fixed, we show
that when some of the end points of pl

σ is very close to some of the end points of C ,
then pl

σ itself has very small length (Corollary 9.3). Due to the fact, proven in Sect. 5,
that for any orthogonal decomposition T = T1 ⊕ · · · ⊕ Tn and any σ ∈ Stab(T )

holds PT
σ = ⋃n

i=1 PTi
σi , where (σ1, . . . , σn) is the value of the map (2) at σ (see

Proposition 5.2 and Corollary 5.5), the proof of the desired inequality reduces to
proving that the measure of union of arcs ∪n

i=1 pli
σ⊂C of the type explained above,

cannot become arbitrary close to the length of C . Having proved this for one arc
(in Sect. 7.3) we perform induction and the tool for the induction step is the already
discussed Corollary 9.3.

In Sect. 10we discuss the class of discrete derived categories and show that ‖T ‖ε =
0 for any such category. These categories were introduced by Vossieck [42], they were



Some new categorical invariants Page 9 of 60 45

classified in [4] and thoroughly studied in [14], whereas the topology of the stability
spaces on them were studied in [13,37], in particular it was shown that these spaces
are all contractible. This class contains the categories {Db(Q) : Q is Dynkin}, and the
discrete derived categories not contained in this list are of the form Db(�(r , n, m)) for
n ≥ r ≥ 1 andm ≥ 0, where�(r , n, m) is the path algebra of the quiver with relations
shown on [37, Section 4.3, Figure 1]. Actually, we show that if T is a category with
phase gap, s.t. every heart of a bounded t-structure has finitely many indecomposable
objects up to isomorphism, then ‖T ‖ε = 0.

1.3. Using the helix {s j } j∈Z in Db(K (l + 1)) ∼= NP
l we can explain what we

mean by a σ -semistable non-commutative curve (see Definition 12.12 for precise
statement). Let Stab(T ) �= ∅ and σ ∈ Stab(T ). Recall that a non-commutative curve
of genus l in T is equivalence class of fully faithful exact K-linear functors from NP

l

to T (equivalence is re-parametrization in the domain), we will say that the curve
is σ -semistable, resp. σ -stable, if for infinitely many, resp. for all, j ∈ Z the object
F(s j ) ∈ T is σ -semistable object (it does not matter which functor F we take as a
representative). We denote the set of σ -semistable, resp. σ -stable, non-commutative
curves of genus l, and modulo subgroup �⊂Aut(NP

l), by C�
l,σ (T ), resp. C�

l,σσ (T ).

Our basic example is C {Id}l,σσ (NP
l), l ≥ 1. First note that from Remark 12.3 it follows

that C {Id}j (NP
j ) = δi, j for i, j ≥ 0. In Propositions 12.13, 7.2 is shown that for any

l ≥ 1 and any σ ∈ Stab(NP
l) we have one of the following possibilities

• only two consecutive elements in the helix, of the form s j , s j+1, are semi-stable

and φσ (s j+1) > φσ (s j )+ 1, in particular C {Id}l,σ (NP
l) = 0

• all elements {s j } j∈Z are semistable and φσ (s j+1) = φσ (s j )+ 1 for some j ∈ Z,

hence C {Id}l,σσ (NP
l) = 1

• all elements {s j } j∈Z are semistable and φσ (s j ) < φσ (s j+1) < φσ (s j )+ 1 for all

j ∈ Z, hence C {Id}l,σ (NP
l) = 1

2 Notations

In this paper the letters T andA denote a triangulated category and an abelian category,
respectively, and K denotes an algebraically closed field. The shift functor in T is
designated by [1]. We write Homi (X , Y ) for Hom(X , Y [i]) and, if T is K-linear, we
write homi (X , Y ) for dimK(Hom(X , Y [i])), where X , Y ∈ T . For X , Y ∈ A, writing
Homi (X , Y ), we consider X , Y as elements in T = Db(A), i.e. Homi (X , Y ) =
Exti (X , Y ).

A K-linear triangulated category T is called proper if
∑

i∈Z homi (X , Y ) < +∞
for any two objects X , Y in T . For X , Y ∈ T in a proper T , we denote:

hommin(X , Y ) =
{
homi (X , Y ) if i = min{ j : hom j (X , Y ) �= 0} > −∞

0 otherwise.
(14)

We write 〈S〉⊂T for the triangulated subcategory of T generated by S, when
S⊂Ob(T ).
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An exceptional object in aK-linear T is an object E ∈ T satisfyingHomi (E, E) =
0 for i �= 0 and Hom(E, E) = k.

An exceptional collection is a sequence E = (E0, E1, . . . , En)⊂Texc satisfying
hom∗(Ei , E j ) = 0 for i > j . If in addition we have 〈E〉 = T , then E will be called a
full exceptional collection.

If an exceptional collection E = (E0, E1, . . . , En)⊂Texc satisfies homk(Ei , E j ) =
0 for any i, j and for k �= 0, then it is said to be strong exceptional collection.

An abelian categoryA is said to be hereditary, if Exti (X , Y ) = 0 for any X , Y ∈ A
and i ≥ 2, it is said to be of finite length, if it is Artinian and Noterian.

By Q we denote an acyclic quiver and by Db(RepK(Q)), or just Db(Q), - the
derived category of the category of representations of Q.

For an integer l ≥ 1 the l-Kronecker quiver (the quiver with two vertices and l
parallel arrows) will be denoted by K (l).

For a complex number z = (a + ib), a, b ∈ R we denote �(z) = b, �(z) = a,
and by H we denote the upper half plane, i.e. H = {z ∈ C : �(z) > 0}, whereas
H = H∪ {z ∈ C : �(z) = 0,�(z) < 0}. The number of elements of a finite set X we
denote by |X | or by #(X).

3 On Bridgeland stability conditions

We use freely the axioms and notations on stability conditions introduced by Bridge-
land in [10] and some additional notations used in [22, Subsection 3.2]. In particular,
the underlying set of the manifold Stab(T ) is the set of locally finite stability condi-
tions on T and for σ = (Z ,P) ∈ Stab(T ) we denote by σ ss the set of σ -semistable
objects, i.e.

σ ss = ∪t∈RP(t)\{0}. (15)

Also for a heartA of bounded t-structure inT wedenote byH
A⊂Stab(T ) the subset of

the stability conditions (Z ,P) ∈ Stab(T ) for which P(0, 1] = A (see [21, Definition
2.28]).

Recall that one of Bridgeland’s axioms [10] is: for any nonzero X ∈ Ob(T ) there
exists a diagram of distinguished triangles called Harder–Narasimhan filtration:

0 � E1 � E2 � · · · � En−1 � En = X

A1

�

�

A2

�

�

An

�
�

(16)

where {Ai ∈ P(ti )}ni=1, t1 > t2 > · · · > tn and Ai is non-zero object for any
i = 1, . . . , n (the non-vanishing condition makes the factors {Ai ∈ P(ti )}ni=1 unique
up to isomorphism). Following [10] we denote φ−σ (X) := tn , φ+σ (X) := t1, and the
phase of a semistable object A ∈ P(t)\{0} is denoted by φσ (A) := t . The positive
integer: mσ (X) = ∑n

i=1 |Z(Ai )| is called the mass of X w.r. to σ ([10, p.332]). We
will use also the following axioms [10]:

X ∈ σ ss ⇒ Z(X) = mσ (X) exp(iπφσ (X)), mσ (X) = |Z(X)| > 0 (17)
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X , Y ∈ σ ss φσ (X) > φσ (Y ) ⇒ Hom(X , Y ) = 0. (18)

Finally we note that:

X ∼= X1 ⊕ X2 ⇒
mσ (X) = mσ (X1)+ mσ (X2)

φ−σ (X) = min{φ−σ (X1), φ
−
σ (X2)}

φ+σ (X) = max{φ+σ (X1), φ
+
σ (X2)}

, (19)

which follows easily from the arguments for the proof of [21, Lemma 2.25].

3.1 Actions on Stab(T )

3.1.1 The universal covering group of GL+(2,R).

The universal covering group G̃L
+
(2, R) of GL+(2, R) can be constructed as follows

(we point the steps without proving them). First step is to show that the following set
with the specified bellow operations and metric is a topological group:

G̃L
+
(2, R)

=
{

(G, ψ) : G ∈ GL+(2, R), ψ ∈ C∞(R)

∀t ∈ R ψ ′(t) > 0, ψ(t + 1) = ψ(t)+ 1, G(exp(iπ t))
|G(exp(iπ t))| = exp(iπψ(t))

}

(20)
unit element: (IdC, IdR) (21)
multiplication: ((G1, ψ1), (G2, ψ2)) �→ (G1 ◦ G2, ψ1 ◦ ψ2) (22)
inverse element: (G, ψ) �→ (G−1, ψ−1) (23)
metric: d ((G1, ψ1), (G2, ψ2))

= sup
t∈R
{|G1(exp(iπ t))− G2(exp(iπ t))| , |ψ1(t)− ψ2(t)|}. (24)

Second step is to show that the following is a covering map:

G̃L
+
(2, R)

π� GL+(2, R) (G, ψ) �→ G. (25)

The subset Uε = {G ∈ GL+(2, R); supt∈R{|G(exp(iπ t))− exp(iπ t)|} < sin(πε)}5
is evenly coveredbya family of open subsets {(G, ψ);G ∈ Uε supt∈R |ψ(t)− t − 2k|
< ε} indexed by k ∈ Z for small enough ε. In particular one obtains a structure or a
Lie Group on G̃L

+
(2, R) such that π is a morphism of Lie groups.

Finally, one can show that G̃L
+
(2, R) is simply connected by recalling that

π1(GL+(2, R)) ∼= Z is generated by S
1 = SO(2)⊂GL+(2, R) and then by find-

ing the lifts of this path in G̃L
+
(2, R).

Remark 3.1 For any 0 < ε < 1, 0 < ε′ < 1 there exists unique gε,ε′ = (G, ψ) ∈
G̃L

+
(2, R) such that G−1(1) = 1 and G−1(exp(iπε)) = exp(iπε′) and ψ(0) =

0, ψ(1) = 1, ψ(ε′) = ε, in particular :

5 Neighborhood of IdC ∈ GL+(2, R).
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ψ([0, ε′]) = [0, ε], ψ([ε′, 1]) = [ε, 1] (26)

Furthermore, (gε,ε′)−1 = gε′,ε.

The right action of G̃L
+
(2, R) on Stab(T ) is defined by (recall [10]):

Stab(T )× G̃L
+
(2, R)→ Stab(T ) ((Z ,P), (G, ψ)) �→ (Z ,P) · (G, ψ)

= (G−1 ◦ Z ,P ◦ ψ). (27)

Using the formula (24) determining the topology on G̃L
+
(2, R) and the basis of

the topology in Stab(T ) explained on [10, p. 335] one can show that the function in
(27) is continuous.

We recall also (see [10, Theorem 1.2]) that the projection Stab(T )
proj� Hom(K0(T ), C), proj(Z ,P) = Z restricts to a local biholomorphism

between each connected component of Stab(T ) and a corresponding vector subspace
of Hom(K0(T ), C) with a well defined linear topology (when rank(K0(T )) < +∞
this is the ordinary linear topology).Note also that the results in [10] imply that Stab(T )

is locally path connected (follows from the results in [10, Section 6] and [10, Theorem
7.1]), therefore the components and the path components of Stab(T ) coincide and
they are open subsets in Stab(T ).

Finally, assume for simplicity that rank(K0(T )) < +∞. Due to continuity of (27)
it follows that for each connected component 
 of Stab(T ) the action (27) restricts
to a continuous action 
 × G̃L

+
(2, R) → 
 and it is easy to show that there is a

commutative diagram:


 × G̃L
+
(2, R) � 


V (
)× GL+(2, R)

proj|×π �
� V (
)

proj| � (28)

where V (
)⊂Hom(K0(T ), C) is the corresponding to 
 vector subspace, such that
the vertical arrows are local diffeomorphisms (the right arrow is local biholomor-
phism), and the lower horizontal arrow is an action of the form (A, G) �→ A ◦G−1 on
V (
). Now it follows that the upper horizontal arrow is smooth, and therefore (27) is
smooth as well.

3.1.2 The action ofCCC

There is a Lie group homomorphism C → G̃L
+
(2, R) given by λ �→

(
e−λ, IdR

−�(λ)
π

)
. And composing the action (27) with this homomorphism results in the action

(29) below. This action is free [34, Definition 2.3, Proposition 4.1]. It is easy to show
that for any X ∈ T , σ ∈ Stab(T ), z ∈ C hold the properties in (30), (31) below, and
the HN filtrations of X w.r. to σ and to z�σ are the same:

C× Stab(T )
�� Stab(T ) z� (Z , {P(t)}t∈R) = (

ez Z , {P(t − �(z)/π)}t∈R
)

(29)
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(z�σ)ss = σ ss φz�σ (X) = φσ (X)+ �(z)/π X ∈ σ ss (30)

φ±z�σ (X) = φ±σ (X)+ �(z)/π; mz�σ (X) = e�(z)mσ (X). (31)

4 Triangulated categories with phase gaps and their norms

4.1 Full stability conditions

We start this section by recalling what is meant when saying that a stability condition
is full.

Full stability condition on K3 surface is defined in [10, Definition 4.2]. Analogous
definition can be given for any triangulated category T and locally finite stability
condition whose central charge factors through a given group homomorphism ch :
K0(T )→ Z

n .
When K0(T ) has finite rank, we choose always the trivial homomorphism

K0(T )→ K0(T ).Now theprojectionStab(T )
proj� Hom(K0(T ), C), proj(Z ,P) =

Z restricts to a local biholomorphism between each connected component of Stab(T )

and a corresponding vector subspace of Hom(K0(T ), C) (see [10, Theorem 1.2]).
A stability condition σ ∈ Stab(T ) in this case is a full stability condition, if
the vector subspace of Hom(K0(T ), C) corresponding to the connected component

 containing σ is the entire Hom(K0(T ), C), which is equivalent to the equality
dimC(
) = rank(K0(T )).

As we will see later all stability conditions on K (l) are full, for all l ≥ 1 (see
table (10)). It is reasonable to hope that, whenever Stab(T ) �= ∅, there are always full
stability conditions on T and, to the best of our knowledge, there are no counterex-
amples of this statement so far.

4.2 The "-norm of a triangulated category

Recall that for σ = (Z ,P) ∈ Stab(T ) we denote (see [18, Section 3]):

PT
σ = {exp(iπφσ (X)) : X ∈ σ ss} = {exp(iπ t) : t ∈ R and P(t) �= {0}}, (32)

Here we will use also the notation:

P̃T
σ = {t ∈ R : P(t) �= {0}} ⇒ PT

σ = exp
(
iπ P̃T

σ

)
. (33)

The sets PT
σ and P̃T

σ satisfy PT
σ = −PT

σ , P̃T
σ + 1 = P̃T

σ . In particular the closures

PT
σ , P̃T

σ satisfy:

vol
(

PT
σ

)
= 2πμ

(
P̃T

σ ∩ [0, 1]
)
= 2π

∫
[0,1]∩P̃σ

dμ, (34)



45 Page 14 of 60 G. Dimitrov, L. Katzarkov

where μ is the Lebesgue measure in R and vol is the corresponding measure in S
1

with vol(S1) = 2π . Due to (27), (30), for any z ∈ C, any g = (G, ψ) ∈ G̃L
+
(2, R),

and any σ ∈ Stab(T ) we have:

PT
z�σ = exp(i�(z))PT

σ P̃T
σ ·g = ψ−1

(
P̃T

σ

)
. (35)

Definition 4.1 Let 0 < ε < 1. Any subset of S
1 of the form exp(iπ [a, a + ε]), where

a ∈ R will be referred to as a closedε-arc in S
1.

Remark 4.2 The action of Aut(T ) on Stab(T ) was recalled in the end of the previous
section. Following this definition one defines straightforwardly a biholomorphism
[F] : Stab(T1)→ Stab(T2) for any equivalence F between triangulated categories T1
and T2 satisfying PT2

[F](σ ) = PT1
σ for each σ ∈ Stab(T1).

In Definition 4.11 we will use the following subset of the set of stability conditions:

Definition 4.3 For any 0 < ε < 1 and any triangulated category T we denote:

Stabε(T ) = {σ ∈ Stab(T ) : σ is full and S
1\PT

σ contains a closed ε arc}
Stab[a,a+ε](T ) = {σ ∈ Stab(T ) : σ is full and P̃T

σ ∩ [a, a + ε] = ∅}.

It is obvious that (recall also 35):

Stabε(T ) = ∪a∈RStab[a,a+ε](T ) = C�Stab[0,ε](T ) (36)

The next simple observation is:

Lemma 4.4 Let gε,ε′ ∈ G̃L
+
(2, R) be as in Remark 3.1. For any 0 < ε < 1, 0 <

ε′ < 1 holds:

Stab[0,ε](T ) · gε,ε′ = Stab[0,ε′](T ). (37)

Proof Using (35), (26), and the fact that ψ is diffeomorphism we compute

P̃T
(σ ·gε,ε′ ) ∩ [0, ε′] = ψ−1(P̃T

σ ) ∩ ψ−1([0, ε]) = ψ−1
(

P̃T
σ ∩ [0, ε]

)
.

Now the lemma follows from the very Definition 4.3 and the property g−1
ε,ε′ = gε′,ε. ��

Corollary 4.5 Let T be any triangulated category. The following are equivalent:

(a) Stabε(T ) �= ∅ for some ε ∈ (0, 1)
(b) Stabε(T ) �= ∅ for each ε ∈ (0, 1)
(c) PT

σ is not dense in S
1 for some full σ ∈ Stab(T ).

Proof (a)⇒ (b). Follows from (36) and Lemma 4.4.



Some new categorical invariants Page 15 of 60 45

(b)⇒ (c). It is obvious from the definitions that for any 0 < ε < 1 and any σ ∈
Stabε(T ) the set PT

σ is not dense in S
1.

(c)⇒ (a). If PT
σ is not dense, then S

1\PT
σ contains an open arc, but then it contains

a closed arc as well and then σ ∈ Stabε(T ) for some ε ∈ (0, 1).
��

Definition 4.6 A triangulated category T will be called a category with phase gap if

PT
σ is not dense in S

1 for some full σ ∈ Stab(T ) (by Corollary 4.5 then Stabε(T ) is
not empty for any 0 < ε < 1).

Lemma 4.7 If K0(T ) has finite rank, then T has a phase gap iff there exists a bounded
t-structure in T whose heart is of finite length and has finitely many simple objects.

Proof Let A be such a heart and let s1, s2, . . . , sn be the simple objects in A. Under
the given assumptions K0(T ) ∼= K0(A) ∼= Z

n . [10, Proposition 2.4, Proposition 5.3]
imply that for any sequence of vectors z1, z2, . . . , zn in H there exists unique stability
condition σ = (Z ,P) with P(0, 1] = A and Z(si ) = zi , i = 1, . . . , n. For this
σ we have Z(P(0, 1]\{0}) = {∑n

i=1 ai zi : (a1, a2, . . . , an) ∈ N
n\{0}} and therefore

Z(σ ss)⊂ ± {∑n
i=1 ai zi : (a1, a2, . . . , an) ∈ N

n\{0}}, now from [16, Lemma 1.1] it
follows that σ is locally finite. Recall that we denote by H

A⊂Stab(T ) the subset of
the stability conditions (Z ,P) ∈ Stab(T ) for which P(0, 1] = A (see after 15). So
far we constructed σ ∈ H

A determined uniquely by any sequence z1, z2, . . . , zn in
H. Varying the vector (z1, z2, . . . , zn) ∈ H

n we obtain a biholomorphism between
H

n and the subset H
A⊂Stab(T ). In particular the stability conditions in H

A are full.
Since for σ ∈ H

A corresponding to a sequence z1, z2, . . . , zn in H holds Z(σ ss)⊂±{∑n
i=1 ai zi : (a1, a2, . . . , an) ∈ N

n\{0}}, it follows that Z(σ ss)⊂ ± {x exp(iπa) +
y exp(iπ(a + 1 − ε) : x, y ∈ (0,+∞)} for some a ∈ R and some 0 < ε < 1,
therefore by (17) S

1\PT
σ contains a closed ε arc, hence σ ∈ Stabε(T ), and hence T

has a phase gap (recall Definitions 4.3, 4.6).
Conversely, let σ ′ = (Z ,P) ∈ Stabε(T ). By definition σ ′ is a full stability con-

dition. Due to (36), we can choose λ ∈ C, so that the stability condition σ = λ�σ ′
satisfiesPσ (t) = {0} for t ∈ [0, ε] andPσ (0, 1] = Pσ (ε/2, 1]. From [11, Lemma 4.5]
it follows that Pσ (0, 1] = Pσ (ε/2, 1] is a finite length quasi-abelian category (here
the property of σ being full is used), and since σ is a stability condition, Pσ (0, 1] is a
heart of a bounded t-structure. Therefore Pσ (0, 1] is a finite length abelian category
whose simple objects are a basis of K0(T ), in particular the simple objects are finitely
many. ��
Remark 4.8 The elements σ ∈ Stab(T ) for which P(0, 1] is of finite length and with
finitely many simple objects are called algebraic stability conditions and have been
discussed extensively in [37].

Remark 4.9 In [12] they define a quiver with potential starting with a triangulation
of a compact closed surface with marked points. The full subcategory of the derived
category of the complete Ginzburg algebra of this quiver consisting of modules with
finite-dimensional cohomology is a CY3 category. Due to (i), (ii) in [12, Subsection
7.1] and Lemma 4.7 CY3 categories obtained by this procedure have phase gaps.
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Remark 4.10 Let T be proper andwith a full exceptional collection. [22, Remark 3.20]
and Corollary 4.5 imply that Stabε(T ) �= ∅ for any 0 < ε < 1, i.e. T is a category
with a phase gap.

The main definition of this section is:

Definition 4.11 Let T be a triangulated category with phase gap. Let 0 < ε < 1. We
define:

‖T ‖ε = sup

{
1

2
vol

(
Pσ

) : σ ∈ Stabε(T )

}
. (38)

Remark 4.12 For a category T which carries a full stability condition, but has no phase
gap (i.e. PT

σ is dense in S
1 for all full stability conditions σ ) it seems reasonable to

define ‖T ‖ε = π(1 − ε), but we will restrict our attention to categories with phase
gaps in the rest.

In remarks 4.13, 4.14 ε and T are as in Definition 4.11.

Remark 4.13 Using (34), (35), (36) one shows that (μ is the Lebesgue measure of R):

‖T ‖ε = sup
{
πμ

(
[ε, 1] ∩ P̃σ

)
: σ ∈ Stab[0,ε](T )

}
. (39)

Remark 4.14 We have always 0 ≤ ‖T ‖ε ≤ π(1− ε).

Remark 4.15 Using Remark 4.2 we see that if T1, T2 are equivalent triangulated
categories with finite rank Grothendieck groups, then for any 0 < ε < 1 holds
‖T1‖ε = ‖T2‖ε.
Lemma 4.16 Let ε, ε′ be any two numbers in (0, 1).

(a) There exist 0 < m < M such that m ‖T ‖ε ≤ ‖T ‖ε′ ≤ M ‖T ‖ε for any category
with a phase gap T . In particular, for any category with a phase gap T we have:
‖T ‖ε = 0 ⇐⇒ ‖T ‖ε′ = 0.

(b) For any category with a phase gap T we have ‖T ‖ε = π(1− ε) ⇐⇒ ‖T ‖ε′ =
π(1− ε′).

Proof We will use the element gε,ε′ = (G, ψ) ∈ G̃L
+
(2, R) from Remark 3.1. In

particular the functionψ ∈ C∞(R) restricts to a diffeomorphsimψ| : [ε′, 1] → [ε, 1].
Let us denote the inverse function by κ , then we choose m, M ∈ R as follows:

ψ−1| = κ : [ε, 1] → [ε′, 1] ∀t ∈ [ε, 1] 0 < m ≤ κ ′(t) ≤ M . (40)

With the help of [39, formula (15) on page 156], we see that for any Lebesgue
measurable subset A⊂[ε, 1] holds (for a subset E⊂[ε′, 1] or E⊂[ε, 1] we denote by
χE the function equal to 1 at the points of E and 0 elsewhere):

μ (κ (A)) =
∫ 1

ε′
χκ(A)(t)dt =

∫ 1

ε

χκ(A)(κ(t))κ ′(t)dt =
∫ 1

ε

χA(t)κ ′(t)dt
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which by (40) implies:

mμ (A) ≤ μ (κ (A)) ≤ Mμ (A) . (41)

Using Remark 4.13, Lemma 4.4, and the second equality in (35) we get:

‖T ‖ε /π = sup
{
μ

(
[ε, 1] ∩ P̃σ

)
: σ ∈ Stab[0,ε](T )

}
(42)

‖T ‖ε′ /π = sup
{
μ

(
κ

(
[ε, 1] ∩ P̃σ

))
: σ ∈ Stab[0,ε](T )

}
. (43)

Now (a) follows from (41), (42), (43).
(b) Let ‖T ‖ε = π(1 − ε) and δ > 0. We will prove that (43) equals (1 − ε′)

by finding σ ∈ Stab[0,ε](T ) such that μ
(
κ

(
[ε, 1] ∩ P̃σ

))
> 1 − ε′ − δ. Since

1 − ε′ = μ([ε′, 1]) = μ
(
κ

(
[ε, 1] ∩ P̃σ

))
+ μ

(
κ

(
[ε, 1]\P̃σ

))
, we need to find

σ ∈ Stab[0,ε](T ) such that:

μ
(
κ

(
[ε, 1]\P̃σ

))
< δ. (44)

Since ‖T ‖ε = π(1 − ε), (42) ensures that there is σ ∈ Stab[0,ε](T ) such that

μ
(
[ε, 1] ∩ P̃σ

)
> 1 − ε − δ

M , which due to the equality μ
(
[ε, 1] ∩ P̃σ

)
+

μ
(
[ε, 1]\P̃σ

)
= 1− ε is the same as μ

(
[ε, 1]\P̃σ

)
< δ

M . We combine (41) and the

latter inequality to deduce the desired (44): μ
(
κ

(
[ε, 1]\P̃σ

))
≤ Mμ

(
[ε, 1]\P̃σ

)
<

δ. ��
[18, Corollary 3.28] (see [21, Corollary 3.25] for any algebraically closed field K)

amounts to the following criteria for non-vanishing of ‖T ‖ε
Proposition 4.17 Let (E0, E1, . . . , En) be a full exceptional collection in a K-
linear proper triangulated category D. If for some i the pair (Ei , Ei+1) satisfies
hom1(Ei , Ei+1) ≥ 3 and hom≤0(Ei , Ei+1) = 0, then ‖D‖ε > 0.

Corollary 4.18 Let ε ∈ (0, 1). Then:

(a) If Q is an acyclic quiver, which is neither Dynkin nor affine, then
∥∥Db(Q)

∥∥
ε

> 0.
(b)

∥∥Db(coh(X))
∥∥

ε
> 0, where X is a smooth projective variety over C, such that

Db(coh(X)) is generated by a strong exceptional collection of three elements

Proof (a) Follows from the previous proposition, [18, Proposition 3.34], and the fact
that each exceptional collection in Db(Q) can be extended to a full exceptional
collection (see [17]).

(b) It follows from proposition 4.17 and [18, 3.5.1].
��

In Sect. 8 we will refine Proposition 4.17, which will help us to prove that∥∥Db(coh(X)
∥∥

ε
= π(1 − ε) if X is P

1 × P
1, P

n with n ≥ 2 or some of these blown
up in finite number of points.
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Proposition 4.19 Let ε ∈ (0, 1). For acyclic quiver Q we have
∥∥Db(Q)

∥∥
ε
= 0 iff Q

is affine or Dynkin. In particular
∥∥Db(coh(P1))

∥∥
ε
= 0.

Proof If Q is affine or Dynkin, then from the first and the second raws of table (9) we
see that vol

(
Pσ

) = 0 for any σ ∈ Stab(Db(Q)), therefore
∥∥Db(Q)

∥∥
ε
= 0, and in

Corollary 4.18 we showed that
∥∥Db(Q)

∥∥
ε

> 0 for the rest quivers. ��

5 Stability conditions on orthogonal decompositions

First we recall the definition of a semi-orthogonal, resp. orthogonal, decomposition of
a triangulated category:

Definition 5.1 If T is a triangulated category, T1, T2, . . . , Tn are triangulated subcat-
egories in it satisfying the equalities T = 〈T1, T2, . . . Tn〉 and Hom(T j , Ti ) = 0 for
j > i , then we say that T = 〈T1, T2, . . . Tn〉 is a semi-orthogonal decomposition. If
in addition holds Hom(Ti , T j ) = 0 for i < j , then we say that T = 〈T1, T2, . . . Tn〉
is an orthogonal decomposition, in which case we will write sometimes T = T1 ⊕
T2 ⊕ · · · ⊕ Tn . Obviously, if T = 〈T1, T2, . . . Tn〉 is an orthogonal decomposition,
then T = 〈Ts(1), Ts(2), . . . Ts(n)〉 is an orthogonal decomposition for any permutation
s : {1, . . . , n} → {1, . . . , n}.
Proposition 5.2 Let T = 〈T1, T2, . . . , Tn〉 be any orthogonal decomposition. Let

K0(Ti )
ini� K0(T )

pr j� K0(T j ), 1 ≤ i, j ≤ n be the natural biproduct diagram.
Then:

(a) The following map is a bijection:

Stab(T )→ Stab(T1)× Stab(T2)× · · · × Stab(Tn) (45)

(Z , {P(t)}t∈R) �→ ((Z ◦ pr1, {P(t) ∩ T1}t∈R),

. . . , (Z ◦ prn, {P(t) ∩ Tn}t∈R)) . (46)

(b) For any (Z , {P(t)}t∈R) ∈ Stab(T ) and any t ∈ R the subcategory P(t) is non-
trivial iff for some j P(t) ∩ T j is non-trivial.

(c) If rank(K0(Ti )) < +∞ for all i = 1, 2, . . . , n, then the map defined above is
biholomorphism.

(d) For each σ ∈ Stab(T ) holds PT
σ = ∪n

i=1PTi
σi , where (σ1, . . . , σn) is the value of

(45) at σ .

Proof We will give all details for the proof of (a), (b), (c) in the case n = 2. The
general case follows easily by induction. (d) follows from the very definition (32) and
(a), (b).

It is well known that for each X ∈ T there exists unique up to isomorphism triangle
E2 → X → E1 → E2[1]with Ei ∈ Ti , i = 1, 2. By Hom(T1, T2) = 0 it follows that
each of these triangles is actually part of a direct product diagram and pri ([X ]) = [Ei ]
for i = 1, 2.
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Now let X ∈ T1 and U → X → B → U [1] be a triangle in T . Using
Hom(T2, T1) = Hom(T1, T2) = 0 and decomposingU into direct summandsU1⊕U2
with Ui ∈ Ti one easily concludes that the triangle U → X → B → U [1] is isomor-
phic to a triangle of the form U1 ⊕U2 → X → B ′ ⊕U2[1] → U1[1] ⊕U2[1]. If we
apply these arguments to the last triangle in (16) and using that hom(En−1, An[i]) = 0
for i ≤ 0, we immediately obtain En−1, An ∈ T1 and then by induction it follows that
the entire HNfiltration of X lies in T1, in particular Ai ∈ P(ti )∩T1 for i = 1, 2, . . . , n,
furthermore we have Z1([X ]) = Z(pr1([X ])) for each X ∈ P(t) ∩ T1 and now it is
obvious that (Z ◦ pr1, {P(t) ∩ T1}t∈R) = (Z1,P1) is a stability condition on T1.

The same arguments as in the previous paragraph apply to the case X ∈ T2 and
show that (Z ◦ pr2, {P(t) ∩ T2}t∈R) = (Z2,P2) is a stability condition on T2. We
will show that σi are locally finite for i = 1, 2.

Indeed, since σ is locally finite stability condition on T , then there exists 1
2 > ε > 0

such that P(t − ε, t + ε) is quasi-abelian category of finite length for each t ∈ R.
One easily shows that Pi (t − ε, t + ε) = Ti ∩ P(t − ε, t + ε) for each t . From [10,
Lemma 4.3] we know that a sequence A → B → C in Pi (t − ε, t + ε) is a strict
short exact sequence iff it is part of a triangle A → B → C → A[1] in Ti . Since
for A, B, C in Ti A → B → C → A[1] is triangle in Ti iff it is a triangle in T , we
deduce that for A, B, C ∈ Pi (t − ε, t + ε) A → B → C is a strict exact sequence in
Pi (t − ε, t + ε) iff it is a strict exact sequence in P(t − ε, t + ε), and now from the
fact that P(t − ε, t + ε) is of finite length it follows that Pi (t − ε, t + ε) is of finite
length and σi ∈ Stab(Ti ) for i = 1, 2.

So far we showed that the map is well defined. Since for any interval I⊂R the
subcategoryP(I ) is thick (see e.g. [21, Lemma 2.20.]), it follows thatP(t) = P1(t)⊕
P2(t) for each t ∈ R and hence follows the injectivity of the map. Furthermore, using
the terminology of [16, Definition before Proposition 2.2] we see that σ is glued from
σ1 and σ2. From the given arguments it follows also that for X ∈ Ti the HN filtrations
w.r. to σ and w.r. to σi coincide, in particular:

X ∈ Ti ⇒ φ±σi
(X) = φ±σ (X) mσi (X) = mσ (X) (47)

on the other hand any X ∈ T can be represented uniquely (up to isomorphism) as a
biproduct X ∼= X1 ⊕ X2 with Xi ∈ Ti for i = 1, 2 and (19) imply

X ∈ T ⇒ X ∼= X1 ⊕ X2, Xi ∈ Ti ⇒
mσ (X) = mσ1(X1)+ mσ2(X2)

φ−σ (X) = min{φ−σ1(X1), φ
−
σ2

(X2)}
φ+σ (X) = max{φ+σ1(X1), φ

+
σ2

(X2)}
(48)

Conversely, if (σ1, σ2) ∈ Stab(T1) × Stab(T2), then [16, Proposition 3.5] ensures
existence of a locally finite stability condition σ ∈ Stab(T ) glued from σ1, σ2 and
using [16, (3) in Proposition 2.2]) one easily shows that our map sends the glued σ to
the pair (σ1, σ2), hence the surjectivity of the map follows.

Now we will show that if rank(K0(Ti )) < +∞ for i = 1, 2, then the map defined
above is biholomorphism. First we show that it is continuous.

[10, Proposition 8.1.] says that for any triangulated category T assigning to any
two σ1, σ2 ∈ Stab(T ) the following:
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d(σ1, σ2) = sup
0 �=X∈T

{∣∣φ−σ1(X)− φ−σ2(X)
∣∣ ,

∣∣φ+σ1(X)− φ+σ2(X)
∣∣ ,

∣∣∣∣log mσ2(X)

mσ1(X)

∣∣∣∣
}

∈ [0,+∞] (49)

defines a generalized metric whose topology coincides with the topology of Stab(T ).

We denote by d, d1, d2 the generalized metrics on Stab(T ), Stab(T1), Stab(T2). For
any σ, σ ′ ∈ Stab(T ) let (σ1, σ2) and (σ ′1, σ ′2) be the pairs assigned via the bijection.
To show that the map is homeomorphism we will show that :

max{d1(σ1, σ ′1), d2(σ2, σ
′
2)} ≤ d(σ, σ ′) (50)

d(σ, σ ′) ≤ d1(σ1, σ
′
1)+ d2(σ2, σ

′
2) (51)

The first (50) follows easily from (47). The second requires a bit more computations,
which we will present partly. Take any X ∈ T and decompose it X ∼= X1 ⊕ X2,
Xi ∈ Ti , then from (48) we see that

∣∣∣∣log mσ (X)

mσ ′(X)

∣∣∣∣ =
∣∣∣∣∣log

mσ1(X1)+ mσ2(X2)

mσ ′1(X1)+ mσ ′2(X2)

∣∣∣∣∣
≤

∣∣∣∣∣log
mσ1(X1)

mσ ′1(X1)

∣∣∣∣∣+
∣∣∣∣∣log

mσ2(X2)

mσ ′2(X2)

∣∣∣∣∣ (52)

≤ d1(σ1, σ
′
1)+ d2(σ2, σ

′
2), (53)

where we used, besides the definition of the generalized metrics (49), the following
lemma:

Lemma 5.3 For any positive real numbers x1, x2, y1, y2 holds the inequality:

∣∣∣∣log x1 + x2
y1 + y2

∣∣∣∣ ≤
∣∣∣∣log x1

y1

∣∣∣∣+
∣∣∣∣log x2

y2

∣∣∣∣ .

Proof We can assume that x1+x2
y1+y2

≥ 1 (otherwise take y1+y2
x1+x2

). Now we consider three
cases:

If x1
y1
≥ 1 and x2

y2
≥ 1, then the desired inequality becomes log x1+x2

y1+y2
≤ log x1

y1
+

log x2
y2

which after exponentiating is equivalent to

x1 + x2
y1 + y2

≤ x1x2
y1y2

⇐⇒ (x1 + x2)y1y2 ≤ x1x2(y1 + y2)

⇐⇒ 0 ≤ x1y1(x2 − y2)+ x2y2(x1 − y1)

the latter inequality follows from x1 ≥ y1, x2 ≥ y2.
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If x1
y1
≤ 1 and x2

y2
≥ 1, then the desired inequality becomes log x1+x2

y1+y2
≤ log y1

x1
+

log x2
y2

which after exponentiating is equivalent to

x1 + x2
y1 + y2

≤ y1x2
x1y2

⇐⇒ (x1 + x2)x1y2 ≤ y1x2(y1 + y2)

⇐⇒ 0 ≤ y21 x2 − x21 y2 + x2y2(y1 − x1)

the latter inequality follows from y1 ≥ x1, x2 ≥ y2.
If x1

y1
≤ 1 and x2

y2
≤ 1, then the desired inequality becomes log x1+x2

y1+y2
≤ log y1

x1
+

log y2
y2

which after exponentiating is equivalent to

x1 + x2
y1 + y2

≤ y1y2
x1x2

⇐⇒ (x1 + x2)x1x2 ≤ y1y2(y1 + y2)

⇐⇒ 0 ≤ y21 y2 − x21 x2 + y22 y1 − x22 x1

the latter inequality follows from y1 ≥ x1, y2 ≥ x2. ��
Now in order to prove (51) it is enough to show that

∣∣φ±σ (X)− φ±
σ ′(X)

∣∣ ≤
d1(σ1, σ ′1)+ d2(σ2, σ ′2) which in turn via (48) is the same as

∣∣∣max{φ+σ1(X1), φ
+
σ2

(X2)} −max{φ+
σ ′1

(X1), φ
+
σ ′2

(X2)}
∣∣∣

≤ d1(σ1, σ
′
1)+ d2(σ2, σ

′
2) (54)∣∣∣min{φ−σ1(X1), φ

−
σ2

(X2)} −min{φ−
σ ′1

(X1), φ
−
σ ′2

(X2)}
∣∣∣

≤ d1(σ1, σ
′
1)+ d2(σ2, σ

′
2), (55)

which in turn follow from the following:

Lemma 5.4 For any real numbers x1, x2, y1, y2 we have:

|max{x1, x2} −max{y1, y2}| ≤ |x1 − y1| + |x2 − y2|
|min{x1, x2} −min{y1, y2}| ≤ |x1 − y1| + |x2 − y2|

Proof If max{x1, x2} = xi and max{y1, y2} = yi for the same i , then the inequalities
follow immediately. So let max{x1, x2} = xi max{y1, y2} = y j , i �= j , e.g. let i = 1,
j = 2. Then x1 ≥ x2, y1 ≤ y2, and the lemma follows from:

|max{x1, x2} −max{y1, y2}| = |x1 − y2|
=

{
x1 − y2 = x1 − y1 + y1 − y2 ≤ x1 − y1 = |x1 − y1| if x1 ≥ y2
y2 − x1 = y2 − x2 + x2 − x1 ≤ y2 − x2 = |x2 − y2| if x1 ≤ y2

(56)

|min{x1, x2} −min{y1, y2}| = |x2 − y1|
=

{
x2 − y1 = x2 − x1 + x1 − y1 ≤ x1 − y1 = |x1 − y1| if x2 ≥ y1
y1 − x2 = y1 − y2 + y2 − x2 ≤ y2 − x2 = |x2 − y2| if x2 ≤ y1

. (57)

��
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Thus, we have (50), (51) and they imply that (45) is homeomorphism for n = 2.

Let Stab(T )
proj� Hom(K0(T ), C), Stab(Ti )

proji� Hom(K0(Ti ), C), i = 1, 2 be
the projections proj(Z ,P) = Z . Then the following diagram (the first row is the map
(45) and the second row is the assignment Z �→ (Z ◦ pr1, Z ◦ pr2)) is commutative:

Stab(T )
ϕ � Stab(T1)× Stab(T2)

Hom(K0(T ), C)

proj �
ϕ′� Hom(K0(T1), C)× Hom(K0(T2), C).

proj1×proj2 �

If we take any connected component 
⊂Stab(T ), then (since ϕ is homeomorphism)
ϕ(
) = 
1×
2 is a connected component of Stab(T1)×Stab(T2), resp. 
i are con-
nected components of Stab(Ti ), and furthermore m = dimC(
) = dimC(
1 × 
2).
From the Bridgeland’s main theorem we know that proj restricts to local biholo-
morphisms between 
 and an m-dimensional vector subspace V⊂Hom(K0(T ), C)

and proj1 × proj2 restricts to local biholomorphisms between 
1 × 
2 and an m-
dimensional vector subspaceV1×V2⊂Hom(K0(T1), C)×Hom(K0(T2), C). It follows
(using that ϕ′ is a linear isomorphism and that each open subset in a vector subset con-
tains a basis of the space) that ϕ′(V ) = V1 × V2. Thus, the diagram above restricts
to a diagram with vertical arrows which are local biholomorphisms, the bottom arrow
is biholomorphism, and the top arrow is a homeomorphism, it follows with standard
arguments that the the top arrow must be biholomorphic. It follows that ϕ is biholo-
morphism and we proved the proposition. ��

From this proposition and Definition 4.3 it follows:

Corollary 5.5 Let T = T1 ⊕ T2 ⊕ · · · ⊕ Tn be an orthogonal decomposition (Def-
inition 5.1) and let rank(K0(Ti )) < +∞ for i = 1, . . . , n. Let Stab(T ) →
Stab(T1)×· · ·×Stab(Tn), σ �→ (σ1, σ2, . . . , σn) be the biholomorphism from Propo-
sition 5.2a.

For any 0 < ε < 1 the following are equivalent: (a) σ ∈ Stabε(T ); (b) {σi ∈
Stabε(Ti )}ni=1 and there exists a closed ε-arc γ such that PTi

σi ∩ γ = ∅ for each
1 ≤ i ≤ n.

In particular T has a phase gap iff Ti has a phase gap for each 1 ≤ i ≤ n.

Since the closure of A ∪ B equals the union of closures of A and B and vol(A) ≤
vol(A ∪ B) ≤ vol(A)+ vol(B), from Corollary 5.5 it follows:

Corollary 5.6 Let T = T1⊕T2⊕· · ·⊕Tn be an orthogonal decomposition with finite
rank Grothendieck groups of the factors, and let 0 < ε < 1.

IfT has a phase gap and
∥∥T j

∥∥
ε
= 0 for some j , then‖T ‖ε =

∥∥〈T1, T2, T j−1, T j+1,
. . . , Tn〉‖ε.

6 The inequality ‖〈T1,T2〉‖" ≥ max{‖T1‖" , ‖T2‖"}
Here we show conditions which ensure ‖〈T1, T2〉‖ε ≥ max{‖T1‖ε , ‖T2‖ε} for any
ε ∈ (0, 1), where 〈T1, T2〉 is a semi-orthogonal decomposition (see Definition 5.1) of
some T .
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Theorem 6.1 Let T be proper and let K0(T ) has finite rank. Assume 0 < ε < 1. Let
T = 〈T1, T2〉 be a semi-orthogonal decomposition. If T1, T2 are categories with phase
gaps, then T is a category with phase gap and for any 0 < ε < 1 holds :

‖〈T1, T2〉‖ε ≥ max
{‖T1‖ε , ‖T2‖ε

}
. (58)

Proof Take any 0 < μ. Let σi = (Zi ,Pi ) ∈ Stabε(Ti ) be full stability conditions,
s. t.

vol

(
PTi

σi

)

2
> ‖Ti‖ε − μ for i = 1, 2.

Due to (36) we can assume that exp(iπ [0, ε])⊂S
1\PTi

σi . By the same arguments as
in the last paragraph of the proof of Lemma 4.7 it follows that Pσi (0, 1] are finite
length abelian categories, therefore the simple objects in them are a basis of K0(Ti )

for i = 1, 2, and these abelian categories are the extension closures of their simple
objects. In particular the sets of simple objects are finite and it follows that for some
j ∈ Z holds

Hom≤1(Pσ1(0, 1],Pσ2(0, 1][ j]) = Hom≤1(Pσ1(0, 1],Pσ2( j, j + 1]) = 0.

Recalling (29)we deduce thatHom≤1(Pσ1(0, 1],P(−i jπ)�σ2(0, 0+1]) = 0. By replac-
ing σ2 with (−i jπ)�σ2 we obtain stability conditions σi ∈ Stabε(Ti ) for i = 1, 2
satisfying the following conditions:

vol

(
PTi

σi

)

2
> ‖Ti‖ε − μ for i = 1, 2, (59)

Hom≤1(Pσ1(0, 1],Pσ2(0, 1]) = 0, (60)

Pσ2(0, 1] and Pσ2(0, 1] are of finite length and with finitely many simples,

(61)

Pσi (t) = {0} for t ∈ [ j, j + ε] for i = 1, 2, j ∈ Z. (62)

In the listed properties of σi ∈ Stab(Ti ) with the given semi-orthogonal decom-
position T = 〈T1, T2〉 are contained the conditions of [16, Proposition 3.5 (b)]. This
proposition ensures a glued (see [16, Definition ]) locally finite stability condition
σ = (Z ,P) ∈ Stab(T ). The glued stability condition satisfies the following (we use
[16, Proposition 2.2 (3)] and write Pi instead of Pσi )

P(0, 1] is extension closure of P1(0, 1],P2(0, 1] (63)

∀i ∈ {1, 2} ∀t ∈ R Pi (t)⊂P(t) (64)

Z(X) = Z1(X) for X ∈ T1; Z(X) = Z2(X) for X ∈ T2. (65)
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We will show that

t ∈ [0, ε] ⇒ P(t) = 0. (66)

Indeed, let s11, s12, . . . , s1n and s21, s22, . . . , s2m be the simple objects ofP1(0, 1] and
P2(0, 1], respectively. Then {s1i }ni=1⊂σ ss

1 , {s2i }mi=1⊂σ ss
2 and by (62), (65), and (17)

we deduce that

Z(s1i ), Z(s2 j ) ∈ R>0 exp(iπ(ε, 1)), (67)

and on the other hand by (63) it follows that Z(X) is a positive linear combination
of {Z(s1i )}ni=1, {Z(s2i )}mi=1 for X ∈ P(t)\{0}, t ∈ (0, 1], and therefore Z(X) ∈
R>0 exp(iπ(ε, 1)) , hence (17) gives φσ (X) ∈ (ε, 1) and (66) follows. This in turn
implies exp(iπ [0, ε])∩PT

σ = ∅ and then for obtainingσ ∈ Stabε(T ) (recallDefinition
4.3) it remains to show that σ is a full stability condition.Wewill prove this by showing
that P(0, 1] is a finite length abelian category (then it follows that H

P(0,1] ∼= H
n+m

and σ is full, since σ ∈ H
P(0,1]). However [16, Proposition 3.5 (a)] claims that if 0 is

an isolated point for � (Zi (Pi (0, 1])) for i = 1, 2 (which is satisfied due to (61) and
(62)), then P(0, 1) is a finite length category, and on the other hand due to (66) holds
P(0, 1] = P(0, 1). Therefore indeed P(0, 1] is finite length category and σ is a full
stability condition.

Finally, from (64) it follows that PTi
σi ⊂PT

σ , therefore PTi
σi ⊂PT

σ , and hence

vol

(
PTi

σi

)
≤ vol

(
PT

σ

)
for i = 1, 2, recalling (59) we derive:

vol
(
Pσ

)
2

≥ max
{‖T1‖ε , ‖T1‖ε

}− μ. (68)

This ineqaullity holds for any μ > 0 and from the very definition 4.11 we deduce
(58). ��
Remark 6.2 Let T , T1, T2 be as in Theorem 6.1 (in particular there is a SOD T =
〈T1, T2〉). From the proof of Theorem 6.1 we see that if for some i = 1, 2 there exists
a full σ ∈ Stab(Ti )with infinite set of phases Pσi , then there exists a full σ ∈ Stab(Ti )

with infinite Pσ as well.

Corollary 6.3 For any exceptional collection (E0, E1, . . . , En) in a proper triangu-
lated category and for any 0 ≤ i ≤ n we have:

‖〈E0, E1, . . . , En〉‖ε
≥ max

{‖〈E0, E1, . . . , Ei 〉‖ε , ‖〈Ei+1, Ei+2, . . . , En〉‖ε
}
. (69)

Proof Due to Remark 4.10 the categories 〈E0, E1, . . . , En〉, 〈E0, E1, . . . , Ei 〉,
〈Ei+1, Ei+2, . . . , En〉 have phase gaps. All the conditions of Theorem 6.1 are
satisfied for the semi-orthogonal decomposition 〈E0, . . . , En〉 = 〈〈E0, . . . , Ei 〉 ,
〈Ei+1, . . . , En〉〉, hence equality (58) gives rise to (69). ��
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Corollary 6.4 Let X be a smooth algebraic variety and let Y be a smooth sub-variety
so that K0(Db(X)), K0(Db(Y )) have finite rank and Db(X), Db(Y ) have phase gaps.
Denote by X̃ the smooth algebraic variety obtained by blowing up X along the center
Y .

Then Db(X̃) has phase gap and
∥∥Db(X̃)

∥∥
ε
≥ max

{∥∥Db(X)
∥∥

ε
,
∥∥Db(Y )

∥∥
ε

}
for

any ε ∈ (0, 1).

Proof [7, Theorem 4.2] ensures that there is a semi-orthogonal decomposition
Db(X̃) = 〈T1, T2, . . . , Tk, Db(X)〉, where Ti is equivalent to Db(Y ) for i =

1, 2, . . . , k. Now Theorem 6.1 ensures that the inequality holds. ��

7 Norm ofDb(K(l))

7.1 The Helix in Db(K(l)) for l ≥ 2

From now on we assume that l ≥ 2 and denote Tl = Db(K (l)). We write dim(X) =
(n, m), dim0(X) = n, dim1(X) = m for a representation:

X = kn �... �
km ∈ RepK(K (l))

Recall that RepK(K (l)) is hereditary category in which for any two X , Y ∈
RepK(Q) with dimension vectors dim(X) = (nx , mx ), dim(Y ) = (ny, my) holds
the equality (the Euler Formula):

hom(X , Y )− hom1(X , Y ) = nx ny + mx my − lnx my (70)

Let s0, s1 ∈ Tl be so that s0[1], s1 are the simple objects in RepK(Q) with
dim(s0[1]) = (1, 0) and dim(s1) = (0, 1). Using (70) one easily computes
hom(s0, s1) = l, hom p(s0, s1) = 0 for p �= 0 and hom∗(s1, s0) = 0. With the
terminology from Sect. 2 we say that (s0, s1) is a full strong exceptional pair in
Tl = Db(K (l)).

Remark 7.1 Recall that (see e.g. [9, p. 222]) for any exceptional pair (A, B) in any
proper triangulated category T one defines objects L A(B) (left mutation) and RB(A)

(right mutation) by the triangles

L A(B) � Hom∗(A, B)⊗ A
ev∗A,B� B A

coev∗A,B� Hom∗(A, B )̌ ⊗ B � RB(A)

(71)

and (L A(B), A), (B, RB(A)) are exceptional pairs as well, they are full if (A, B) is
full.

It follows, that for any exceptional collection E = (E0, E1, . . . , En) in T and for
any 0 ≤ i < n the sequences Ri (E) = (E0, E1, . . . , Ei+1, REi+1(Ei ), . . . , En),
Li (E) = (E0, E1, . . . , L Ei (Ei+1), Ei , . . . , En) are exceptional and 〈Ri (E)〉 =
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〈Li (E)〉 = 〈E〉. The sequences Li (E) and Ri (E) are called left and right mutations of
E .

From the exceptional pair (s0, s1) we get objects Ls0(s1), Rs1(s0) via left and right
mutation, denoted by s−1, s2, respectively, and each two adjacent elements in the
sequence s−1, s0, s1, s2 form a full exceptional pair. Applying iteratively left/right
mutations on the left/right standing exceptional pair generates a sequence (infinite
in both directions) of exceptional objects {si }i∈Z. This is the helix induced by the
exceptional pair (s0, s1), as defined in [9, p. 222]. In [19, Section 5 - see (25), (27) and
Lemma 5.2] with the help of results for geometric helices in [9] and is proved that:

complete lists of exceptional pairs and objects (up to shifts) are

{(si , si+1)}i∈Z and {si }i∈Z. (72)

no two elements in {si }i∈Z are isomorphic and s≤0[1], s≥1
∈ RepK(K (l)) (73)

for any i ∈ Z there exists a distinguished triangle

si−1 → sl
i → si+1 → si−1[1] (74)

i ≤ j ⇒
{
hom(si , s j ) �= 0
hom p(si , s j ) = 0 for p �= 0

; (75)

i > j + 1 ⇒
{
hom1(si , s j ) �= 0
hom p(si , s j ) = 0 for p �= 1

. (76)

7.2 The set of phases

We prove first the following Proposition

Proposition 7.2 We have a disjoint union Stab(Tl) = Z � (�i∈ZZi ) and:

σ ∈ Z ⇐⇒ ∀i ∈ Z si ∈ σ ss and φ(si ) < φ(si+1) < φ(si )+ 1 (77)

σ ∈ Zi ⇐⇒ si , si+1 ∈ σ ss and φ(si )+ 1 ≤ φ(si+1). (78)

The subset Z is open and it is biholomorphic to the specified subset of C
2 via the

following map:

Z → {(z1, z2) ∈ C
2; �(z1) < �(z2) < �(z1)+ 1}

Z � (Z ,P) �→ (log |Z(si )| + iπφσ (si ), log |Z(si+1)| + iπφσ (si+1)) . (79)

Furthermore, if σ ∈ Zi and φ(si+1) > φ(si )+ 1, then s j /∈ σ ss for j �= i, j �= i + 1.
If σ ∈ Zi and φ(si+1) = φ(si )+ 1, then s j ∈ σ ss for each j ∈ Z.

Proof The existence ot a disjoint union Stab(Tl) = Z ��i∈ZZi , with the properties
(77), (78) and the biholomorphism (79) follow from [23, Proposition 6.1, formula
(35), Lemma 6.2].

Assume now that σ ∈ Zi and φ(si+1) > φ(si )+1 for some i φ(si+1) > φ(si )+1.
If s j ∈ σ ss for some j > i + 1, then due to (75) φ(s j ) ≥ φ(si+1), and hence
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φ(s j ) > φ(si )+ 1, hom1(s j , si ) = 0, which contradicts (76). The arguments for the
case j < i are similar.

Finally, assume that σ ∈ Zi and t = φ(si+1) = φ(si )+ 1. Recall that s0[1] and s1
are the simple ojects in RepK(K (l)) (see after (70)). It follows that for each j we have
that s j [k] is in the extension closure of s0[1] and s1 for some k. Using [23, Corollary
5.3] one deduces easily that for each j we have that s j [k] is in the extension closure
of si [1] and si+1 for some k, and since si [1], si+1 ∈ P(t) it follows that s j [k] ∈ P(t),
therefore s j ∈ σ ss . ��

We start by some comments on the root system of K (l). The root system of K (l) is

l+ = 
+(K (l)) = 
re

l+ ∪
im
l+, where 
re

l+ = {(n, m) ∈ N
2 : n2 +m2 − lmn = 1}

and 
im
l+ = {(n, m) ∈ N

2 : n2 + m2 − lmn ≤ 0}\{(0, 0)}. It is well known that the
real roots 
re

l+ are exactly the dimension vectors of the exceptional representations in
RepK(K (l)) and for the imaginary roots
im

l+ we have formula (74) in [18]. From (72)
and Lemma 7.3 we have the complete list {s≤0[1], s≥1} of exceptional representations
in RepK(K (l)). Let us denote the corresponding dimension vectors as follows:

(ni , mi ) =
{
dim(si ) i ≥ 1
dim(si [1]) i ≤ 0

(80)

Therefore we can write:


re
l+ = {(ni , mi ) : i ∈ Z}


l+ = {(ni , mi ) : i ∈ Z} ∪
{

a−1l ≤ n

m
≤ al : n ∈ N≥1, m ∈ N≥1

}
. (81)

al = l +√l2 − 4

2
⇒ a−1l = l −√l2 − 4

2
; a−1l + al = a2

l + 1

al
= l. (82)

We will need later the following facts for the real roots {(ni , mi ) : i ∈ Z}:
Lemma 7.3 (a) (n−1, m−1) = (l, 1), (n0, m0) = (1, 0), (n1, m1) = (0, 1),

(n2, m2) = (1, l)
(b) (m−i , n−i ) = (ni+1, mi+1) for i ≥ 0.
(c) n−i > m−i and ni+1 < mi+1 for i ≥ 0; ni+1 > 0 and m−i > 0 for i ≥ 1.

(d) ni
mi
= l

2 −
√

l2
4 − 1+ 1

m2
i

and n−i
m−i

= l
2 +

√
l2
4 − 1+ 1

m2−i
for i ≥ 1.

(e) n−1
m−1 >

n−2
m−2 > · · · > n−i

m−i

i→∞−−−→ al and 0 = n1
m1

< n2
m2

< · · · < ni
mi

i→∞−−−→ a−1l .

Proof (a) (n0, m0) = (1, 0), (n1, m1) = (0, 1) follow from the definition. The trian-
gles (74) for i = 1, and i = 0 amount to short exact sequences: sl

1
� s2 � s0[1]

and s1 � s−1[1] � s0[1]l in RepK(K (l)), and it follows that dim(s2) = (1, l),
dim(s−1[1]) = (l, 1)

(b) The equality for 0 ≤ i ≤ 1 follows from (a). We make the induc-
tion assumption that for some p ≥ 1 the equality holds for any 0 ≤
i ≤ p, we will make the induction step, namely that the equality for
i = p + 1 follows from this induction assumption. Indeed, for i ≥ 1
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from (74) we obtain the following short exact sequences in RepK(K (l)):
s−i−1[1] � sl

−i [1] � s−i+1[1], si � sl
i+1 � si+2 therefore for i ≥ 1 we

obtain:

n−i−1 = ln−i − n−i+1 m−i−1 = lm−i − m−i+1 (83)

ni+2 = lni+1 − ni mi+2 = lmi+1 − mi (84)

having these recursive formulas one easily caries out the inductive step.
(c) Due to (b) it is enough to show that ni+1 < mi+1. For i = 0 this is shown in

(a). For i ≥ 1 we have hom(si+1, s−i [1]) > 0, hom1(si+1, s−i [1]) = 0 (recall
Lemma 7.3), hence the Euler formula amounts to:

〈
dim(si+1), dim(s−i [1])

〉 = hom(si+1, s−i [1])− hom1(si+1, s−i [1]) > 0

⇒ 〈(ni+1, mi+1), (n−i , m−i )〉 = ni+1n−i + mi+1m−i − lni+1m−i > 0.

Putting the equality from (b) in the last inequality we get ni+1mi+1+mi+1ni+1−
lni+1ni+1 > 0. Therefore ni+1(2mi+1 − lni+1) > 0, hence ni+1 > 0, mi+1 >
l
2ni+1 ≥ ni+1 and (c) is proved.

(d) Take any i ∈ Z, i �= 0. From (c) we know that mi �= 0. From (81) we know that

n2
i +m2

i −lni mi = 1, hence via the quadratic equation
(

ni
mi

)2−l ni
mi
+1− 1

m2
i
= 0

we get ni
mi
= 1

2

(
l ±

√
l2 − 4+ 4

m2
i

)
. One checks that 12

(
l +

√
l2 − 4+ 4

m2
i

)
>

1, 1
2

(
l −

√
l2 − 4+ 4

m2
i

)
< 1 and then from (c) we deduce (d).

(e) Using (83), (84), and induction one shows that mi < mi+1, m−i−1 > m−i for
i ≥ 0 and then (e) follows from (d).

��
We write for short Pl

σ instead of PTl
σ , and now we determine Pl

σ :

Proposition 7.4 . Let Stab(Tl) = Z � �i∈ZZi be the decomposition from Proposi-
tion 7.2. Let σ ∈ Stab(Db(K (l))).

(a) If σ /∈ Z , then the set of phases Pl
σ is finite (has up to 4 elements).

(b) If σ ∈ Z , then for any j ∈ Z we have the following formulas:

0 < φσ (s j+1)− φσ (s j ) < 1 (85)

exp(iπ(1− φσ (s j ))) · Pl
σ = {±1} ∪ {± exp (i f (ni/mi )) : i �= 0} ∪

± exp
(
i f

(
Q ∩

[
a−1l , al

]))
, (86)

where x, y, and the function (strictly increasing smooth) f : [0,∞) →
[π(φσ (s j+1)− φσ (s j )), π) are:
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f (t) = arccos

(
xy − t√

t2 + x2 − 2t xy

)
x =

∣∣Z(s j+1)
∣∣∣∣Z(s j )

∣∣
y = cos

(
π(φσ (s j+1)− φσ (s j ))

)
. (87)

(c) For σ ∈ Z holds the equality {± exp(iπφσ (si ))}i∈Z = Pl
σ \L(Pl

σ ) (recall that by
L(Pl

σ ) we denote the set of limit points in the circle of Pl
σ ).

(d) For any σ ∈ Z and any j ∈ Z hold:

lim
k→+∞πφσ (sk[−1]) = uσ ≤ vσ = lim

k→−∞πφσ (sk) (88)

π(φσ (s j )− 1) < πφσ (s j+1[−1]) < πφσ (s j+2[−1]) < · · · < uσ ≤
≤ vσ < · · · < πφσ (s j−2) < πφσ (s j−1) < πφσ (s j ) (89)

Pl
σ = ± exp

(
i{πφσ (s j+k[−1])}k≥1 ∪ i[uσ , vσ ] ∪ i{πφσ (s j−k)}k≥0

)
(90)

vσ − uσ

uσ − πφσ (s j+1[−1]) =
f (al)− f (a−1l )

f (a−1l )− arccos(y)

vσ − uσ

πφσ (s j )− vσ

= f (al)− f (a−1l )

π − f (al)
, (91)

where f , x, y are as in (87) and uσ = f (a−1l )+ π(1− φσ (s j )), vσ = f (al)+
π(1− φσ (s j )).

(e) Let σ ∈ Z and 0 < ε < 1. Then S
1\Pl

σ contains a closed ε-arc iff there exists
i ∈ Z such that φσ (si+1)− φσ (si ) > ε.

Before giving the proof of this proposition we make some preparatory steps.
For a pair of complex numbers v = (z1, z2) we discussed in [18] (see [18, Lemma

3.18] and the first row of the proof) the following subset of the circle

Rv,
l+ =
{
± nz1 + mz2
|nz1 + mz2| |(n, m) ∈ 
l+

}
⊂S

1. (92)

From [18, Remark 3.16] and (81) we deduce that:

Lemma 7.5 For any pair of complex numbers v = (z1, z2) of the form zi = ri exp(iφi ),
ri > 0, i = 1, 2, 0 < φ2 < φ1 ≤ π holds:

Rv,
l+ = {± exp (iφ1)} ∪ {± exp (i f (ni/mi )) : i �= 0}
∪

{
± exp (i f (n/m)) : n/m ∈

[
a−1l , al

]}
(93)

where f : [0,∞)→ [φ2, φ1)⊂(0, π) is the strictly increasing smooth function:

f (t) = arccos

⎛
⎝ tr1 cos(φ1)+ r2 cos(φ2)√

t2r21 + r22 + 2tr1r2 cos(φ1 − φ2)

⎞
⎠ ,
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f (0) = φ2, lim
t→∞ f (t) = φ1. (94)

Proof of Proposition 7.4 Let σ = (Z ,P) ∈ Stab(Db(K (l))). From Proposition 7.2 we
have either σ ∈ Z j for some j ∈ Z or σ ∈ Z .

(a) Assume first that σ ∈ Z j for some j ∈ Z. Then by (78) we see that

s j , s j+1 ∈ σ ss φ(s j )+ 1 ≤ φ(s j+1). (95)

We will show that in this case Pl
σ = {± exp(iπφσ (s j )),± exp(iπφσ (s j+1))}. Indeed,

(95) implies that there exists k ≥ 1 such that φ(s j ) ≤ φ(s j+1[−k]) < φ(s j )+1. From
Lemma 7.3 it follows that (s j , s j+1[−k]) is a σ -exceptional pair (as defined in [22,
Definition 3.17]). From [22, Corollary 3.18] (and its proof) it follows that the extension
closure of (s j , s j+1[−k]) equals P(t, t + 1] for some t ∈ R. Since (s j , s j+1[−k]) is
an exceptional pair, each element Y in the extension closure of (s j , s j+1[−k]) can be
put in a triangle of the form s j+1[−k]a � Y � sb

j
� s j+1[−k + 1]b for some

a, b ∈ N. Take any X ∈ σ ss , then for some i ∈ Z we have φσ (X [i]) ∈ (t, t + 1] and
therefore we have a triangle:

s j+1[−k]a α� X [i] β� sb
j

� s j+1[−k + 1]a . (96)

��
If a = 0 or b = 0, then X [i] ∼= sb

j or X [i] ∼= s j+1[−k]a and hence
φσ (X [i]) = φ(s j ) or φσ (X [i]) = φ(s j+1[−k]) and the exp(iπφσ (X)) ∈
{± exp(iπφσ (s j )),± exp(iπφσ (s j+1))}.

Next assume that a �= 0 and b �= 0. If φ(s j ) = φ(s j+1[−k]), then we
get exp(iπφσ (X)) = exp(iπφσ (s j )) using (96). Thus, we reduce to φ(s j ) <

φ(s j+1[−k]), which in turn by (96), X [i] ∈ σ ss , and (18) implies that α = 0 or
β = 0. If α = 0, then sb

j
∼= X [i] ⊕ s j+1[−k + 1]b and by [22, Lemma 3.7] it follows

thatφ(s j ) = φ(X [i]) = φ(s j+1[−k+1]); ifβ = 0, then s j+1[−k]a ∼= X [i]⊕s j [−1]b
and by [22, Lemma 3.7] it follows that φ(s j+1[−k]) = φ(X [i]) = φ(s j [−1]). Thus
we see that (95) implies Pl

σ = {± exp(iπφσ (s j )),± exp(iπφσ (s j+1))} and (a) is
proved.

(b) If σ ∈ Z , then (77) shows that for any j ∈ Z holds s j , s j+1 ∈ σ ss , φσ (s j ) <

φσ (s j+1) < φσ (s j ) + 1. Choosing one j ∈ Z, denoting σ ′ = (Z ′,P ′) =
(− log

∣∣Z(s j )
∣∣+ iπ(1− φσ (s j )))�σ and using (30), (31), we get:

Z ′(s j ) = −1,
∣∣Z ′(s j+1)

∣∣ =
∣∣Z(s j+1)

∣∣∣∣Z(s j )
∣∣ ,

φσ ′(s j+1) = φσ (s j+1)+ 1− φσ (s j ) (97)

1 = φσ ′(s j ) < φσ ′(s j+1) < φσ ′(s j )+ 1 = 2

⇒ 0 < φσ ′(s j+1[−1]) < φσ ′(s j ) = 1. (98)
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Let A be the extension closure of (s j , s j+1[−1]). Utilizing Lemma 7.3 and
recalling that hom(s j , s j+1) = l ≥ 2 (see for example the arguments before
74) we see that (s j , s j+1[−1]) is an l-Kronecker pair [21, Definition 3.20], and
by (98) it is a σ ′-exceptional pair as well. From [22, Corollary 3.18] (and its
proof) we see that the extension closure A of (s j , s j+1[−1]) coincides with
P ′(0, 1]. Applying [21, Lemma 3.19] to (s j , s j+1[−1]) we see that A is the
heart of a bounded t-structure of Tl and due to the equality A = P ′(0, 1] we
have actually σ ′ ∈ H

A (see [21, Definition 2.28]). Now all the conditions of [21,
Corollary 3.21] with the exceptional pair (s j , s j+1[−1]) hold and we deduce that
Pl

σ ′ = Rv,
l+ , where v = (Z ′(s j ), Z ′(s j+1[−1])). On the other hand (35) shows
that exp(iπ(1− φσ (s j ))) · Pl

σ = Rv,
l

To determine the set Rv,
l we use Lemma 7.5 and observe that now (see 97) v =(
−1, |Z(s j+1)||Z(s j )| exp(iπ(φσ (s j+1)− φσ (s j ))

)
, 0 < π(φσ (s j+1) − φσ (s j )) < π ,

in particular the equality (93) yields (86) and the function (94) has the form (87).
(c) Let σ ∈ Z . In (b) j was any integer, here we choose j = 0. Now formulas (97)

and (98) give:

Z ′(s0) = −1 Z ′(s1[−1]) =
∣∣Z ′(s1)

∣∣ exp(iπφσ ′(s1[−1])),
0 < φσ ′(s1[−1]) < φσ ′(s0) = 1. (99)

Since s0[1], s1 are the simple representations and since s≥1, s≤0[1] ∈ RepK(K (l))
(Lemma 7.3), it follows that (see also 80) for any i ≥ 1 Z ′(si ) = ni Z ′(s0[1])+
mi Z ′(s1), and for any i ≤ 0 Z ′(si [1]) = ni Z ′(s0[1])+mi Z ′(s1), and now using
[18, Remark 3.16] (in particular f is as in 87) we obtain :

± Z ′(si )

|Z ′(si )| =

⎧⎪⎨
⎪⎩
∓ ni Z ′(s0)+mi Z ′(s1[−1])|ni Z ′(s0)+mi Z ′(s1[−1])| = ∓ exp(i f (ni/mi )) i ≥ 1
∓1 i = 0

± ni Z ′(s0)+mi Z ′(s1[−1])|ni Z ′(s0)+mi Z ′(s1[−1])| = ± exp(i f (ni/mi )) i ≤ −1
.

(100)

In (b) we showed that Pl
σ ′ equals the set on the RHS of (86). Due to Lemma 7.3

we get that L(Pl
σ ′) = ± exp

(
i f

([
a−1l , al

]))
, and therefore (100) and (17)

imply that Pl
σ ′ \L(Pl

σ ′) = {± exp(iπφσ ′(si ))}i∈Z. Recalling that σ ′ = λ�σ for
certain λ ∈ C with the help of formulas (30) and (35) we deduce the desired
Pl

σ \L(Pl
σ ) = {± exp(iπφσ (si ))}i∈Z.

(d) In (b)we showed that Pl
σ ′ forσ

′ = (Z ′,P ′) = (− log
∣∣Z(s j )

∣∣+iπ(1−φσ (s j )))�σ

equals the RHS of (86) and taking into account Lemma 7.3 we deduce that
Pl

σ ′ \L(Pl
σ ′) = ±1 ∪ {± exp (i f (ni/mi )) : i �= 0}, which combined with (c)

yields:

± 1 ∪ {± exp (i f (ni/mi )) : i �= 0} = {± exp(iπφσ ′(si ))}i∈Z. (101)

Recalling that (85) holds for any j ∈ Z and also (76), (98) we derive:

0 = φσ ′(s j )− 1 < φσ ′(s j+1[−1]) < φσ ′(s j+2[−1]) < · · · < φσ ′(s j−2)
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< φσ ′(s j−1) < φσ ′(s j ) = 1 (102)

We already know that (see (b) of the proposition and (e) in Lemma 7.3)

f (0) = f (n1/m1) = π(φσ (s j+1)− φσ (s j ))

= πφσ ′(s j+1[−1]) = arccos(y). (103)

Furthermore from (e) in Lemma 7.3 we deduce:

0 < f

(
n1

m1

)
< f

(
n2

m2

)
< · · · < f (a−1l )

≤ f (al) < · · · < f

(
n−2
m−2

)
< f

(
n−1
m−1

)
< π. (104)

By induction the equalities (101), (102), (104) imply:

k ≥ 1 ⇒ f

(
nk

mk

)
= πφσ ′(s j+k[−1]) f

(
n−k

m−k

)
= πφσ ′(s j−k). (105)

Now recalling that (see (31))

∀i ∈ Z φσ ′(si ) = φσ (si )+ 1− φσ (s j ) (106)

we deduce (88), (89), (91) from (105), (103), and (102). The equality (90) in turn
follows from (86), (105), (106).

(e) Follows easily from the already proven (d).

7.3 Computing
∥
∥
∥Db(K(l))

∥
∥
∥

"

.
If we define the function:

F : (0,+∞)× (−1,+1)× (0,+∞)→ (0, π)

F(x, y, t) = arccos

(
xy − t√

t2 + x2 − 2t xy

)
(107)

then using Proposition 7.4 (a), Lemma 7.3 (e), and formulas (86), (87) one concludes
that:

Proposition 7.6 Let σ = (Z ,P) ∈ Stab(Tl).

If σ /∈ Z , then vol
(

Pl
σ

)
= 0. If σ ∈ Z , then for any j ∈ Z holds:

1

2
vol

(
Pl

σ

)
= F

(
x j (σ ), y j (σ ), al

)− F
(

x j (σ ), y j (σ ), a−1l

)
,
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where x j (σ ) =
∣∣Z(s j+1)

∣∣∣∣Z(s j )
∣∣ y j (σ ) = cos

(
π

(
φσ (s j+1)− φσ (s j )

))
.

(108)

One computes

∂

∂x
F(x, y, t) = −t

√
1− y2

t2 + x2 − 2t xy

∂

∂t
F(x, y, t) = x

√
1− y2

t2 + x2 − 2t xy
(109)

and therefore:

∂

∂x

(
F(x, y, al)− F(x, y, a−1l )

)

= al(a2
l − 1)

√
1− y2

(1+ (al x)2 − 2al xy)(a2
l + x2 − 2al xy)

(1− x2), (110)

which implies that for any x > 0, y ∈ (−1,+1) we have:

F(x, y, al)− F(x, y, a−1l ) ≤ F(1, y, al)− F(1, y, a−1l ) (111)

On the other hand one computes that for any y ∈ (−1,+1), t ∈ (0,+∞) holds:

F(1, y, al)− F(1, y, a−1l ) = arccos

⎛
⎝ y − al√

a2
l + 1− 2al y

⎞
⎠

− arccos

⎛
⎝ al y − 1√

a2
l + 1− 2al y

⎞
⎠ (112)

∂

∂ y

(
F(1, y, al)− F(1, y, a−1l )

)
=

⎧⎨
⎩

a2l −1√
1−y2(a2l +1−2al y)

> 0 l ≥ 3

0 l = 2
(113)

∂

∂t

(
F(1, y, t)− F(1, y, t−1)

)
= 2

√
1− y2

t2 + 1− 2t y
> 0. (114)

Therefore the numbers (115) depending on ε ∈ (0, 1) and l ≥ 2 satisfy (116), (117),
(118):

Kε(l) = arccos

⎛
⎝ cos(πε)− al√

a2
l + 1− 2al cos(πε)

⎞
⎠

− arccos

⎛
⎝ al cos(πε)− 1√

a2
l + 1− 2al cos(πε)

⎞
⎠ (115)
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0 < ε < 1 ⇒ Kε(2) = 0 (116)

l ∈ N≥3 0 < u < v < +1 ⇒ Ku(l) > Kv(l) (117)

0 < ε < 1 2 ≤ l1 < l2 ∈ N≥2 ⇒ Kε(l1) < Kε(l2) (118)

lim
l→+∞ Kε(l) = π(1− ε). (119)

The inequality (111) and the derivative (113) imply that for ε ∈ (0,+1) and l ≥ 2
holds:

sup
(x,y)∈(0,+∞)×(−1,cos(πε))

{
F(x, y, al)− F(x, y, a−1l )

}
= Kε(l), (120)

Note that sup(x,y)∈(0,+∞)×(−1,1)
{

F(x, y, al)− F(x, y, a−1l )
}
is always equal to π

independently on l ≥ 3 as opposed to Kε(l), which is strictly increasing on l.
Finally we note that for ε = 1/2 the expression (115) takes a simple form (recall

that l = a2l +1
al

):6 K 1
2
(l) = arccos

( 2
l

)
. and from Proposition 7.7 follows (12).

Now we can compute
∥∥Db(K (l))

∥∥
ε
.

Proposition 7.7 Let ε ∈ (0, 1), l ≥ 2, and let Kε(l) be as in (115). Then∥∥Db(K (l))
∥∥

ε
= Kε(l).

Proof From Proposition 7.4 (a), (b), (e) we see that Pσ is not dense in S
1 for all σ ,

and (38) reduces to the following formula:
∥∥∥Db(K (l))

∥∥∥
ε

= sup

⎧⎨
⎩
vol

(
Pl

σ

)
2

: σ ∈ Z and there exists j ∈ Z such that φσ (s j+1)− φσ (s j ) > ε

⎫⎬
⎭

= sup

⎧⎨
⎩
vol

(
Pl

σ

)
2

: σ ∈
⋃

j∈Z
{
x ∈ Z : φx (s j+1)− φx (s j ) > ε

}
⎫⎬
⎭

= sup

⎧⎨
⎩sup

⎧⎨
⎩
vol

(
Pl

σ

)
2

: σ ∈ Z and φσ (s j+1)− φσ (s j ) > ε

⎫⎬
⎭ : j ∈ Z

⎫⎬
⎭ .

By using (108) and (120) we will show that for all j ∈ Z holds:

sup

⎧⎨
⎩
vol

(
Pl

σ

)
2

: σ ∈ Z and φσ (s j+1)− φσ (s j ) > ε

⎫⎬
⎭ = Kε(l) (121)

and then the proposition follows. Recalling Proposition 7.2 we see that σ ∈ Z and
φσ (s j+1)−φσ (s j ) > ε iff s j , s j+1 ∈ σ ss and ε < φσ (s j+1)−φσ (s j ) < 1, furthermore

6 One shows this using the equality arccos(x)− arccos
(√

1− x2
)
= arccos

(
2x

√
1− x2

)
, which holds

for 0 ≤ x ≤ 1√
2
.
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restricting the map (79) to the set of stability conditions σ with s j , s j+1 ∈ σ ss and
ε < φσ (s j+1) − φσ (s j ) < 1 we see that the set of pairs (x j (σ ), y j (σ )) from (108)
for these σ is:

{
(x j (σ ), y j (σ )) : σ ∈ Z and φσ (s j+1)− φσ (s j ) > ε

}
= (0,+∞)× (−1, cos(πε)). (122)

Combining the latter equality with (108) and (120) leads to (121). ��
The latter Proposition and (118) imply (11)

8 The inequality ‖〈E1, E2〉‖" ≥ K"(hom
min(E1, E2))

In this section we dervie a formula, which will help us to compute other norms. To
that end it is useful to extend the definition of Kε(l) in (115) by postulating Kε(0) =
Kε(1) = 0. Recall that the notation hommin(E1, E2) is explained in (14): this is the
dimension of Homi (E1, E2) for the smallest i such that Homi (E1, E2) �= 0, if there
is no such i hommin(E1, E2) is by definition 0.

Proposition 8.1 Let T be a proper category, and let (E1, E2) be any exceptional pair
in it. Then

‖〈E1, E2〉‖ε ≥ Kε

(
hommin(E1, E2)

)
for ε ∈ (0, 1). (123)

Proof We can assume that hom≤0(E1, E2) = 0 and l = hom1(E1, E2) �= 0, and
under these assumption we have to show that

‖〈E1, E2〉‖ε ≥ Kε (l) . (124)

LetD be the triangulated subcategory 〈E1, E2〉. The assumptions on (E1, E2) are the
same as in the definition of an l-Kronecker pair, [21, Definition 3.20], and we can
apply [21, Lemma 3.19, Corollary 3.21] to it. In particular the extension closure A
of (E1, E2) is a heart of a bounded t-structure in D with simple objects E1, E2, and
any stability condition σ = (Z ,P) ∈ H

A⊂Stab(D) with arg(Z(E1)) > arg(Z(E2))

satisfies PD
σ = Rv,
l+ , where v = (Z(E1), Z(E2)). The arguments in the beginning

of the proof of Lemma 4.7 show that for each v ∈ H
2 there exists unique σ = (Z ,P) ∈

H
A with v = (Z(E1), Z(E2)) and that σ is full. For any 0 < μ such that μ+ ε < 1

choose the vector (−1, exp(iπ(ε+μ))) = vμ and denote by σμ the stability condition
σμ = (Pμ, Zμ) ∈ H

A with (Zμ(E1), Zμ(E2)) = vμ. The given arguments ensure
that σμ is full and PD

σμ
= Rvμ,
l+ . Using the formula for Rvμ,
l+ in Lemma 7.5 for

the given vμ one derives:

vol
(

PD
σμ

)
2

= vol
(
Rvμ,
l+

)
2

= Kε+μ(l), (125)
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where Kε+μ(l) is in (115). Note that the arc exp (iπ [μ/2, ε + μ/2]) is in the comple-
ment of PD

σμ
and therefore σμ ∈ Stabε(D). Now from the very Definition 4.11 we see

that ‖D‖ε ≥ Kε+μ(l) for any small enough positive μ, letting μ → 0 we derive the
desired ‖D‖ε ≥ Kε(l). ��
Corollary 8.2 Let E = (E0, E1, . . . , En) be an exceptional collection in a proper
triangulated category T . Then for any 0 ≤ i < j ≤ n we have ‖〈E〉‖ε ≥
Kε

(
hommin(Ei , E j )

)
.

Proof Take 0 ≤ i < j ≤ n. By mutating the sequence E (see Remark 7.1) one
can get a sequence E ′ of the form E ′ = (Ei , E j , C2, . . . , Cn) such that 〈E〉 = 〈

E ′
〉
.

Corollary 6.3 implies ‖〈E〉‖ε =
∥∥〈
E ′

〉∥∥
ε
≥ ∥∥〈

Ei , E j
〉∥∥

ε
, and due to Proposition 8.1 we

get
∥∥〈

Ei , E j
〉∥∥

ε
≥ Kε(hommin(Ei , E j )). ��

Corollary 8.3 Let T be a proper triangulated category such that for each l ∈ N there
exists a full exceptional collection (E0, E1, . . . , En) and integers 0 ≤ i < j ≤ n for
which hommin(Ei , E j ) ≥ l. Then ‖T ‖ε = π(1− ε) for any ε ∈ (0, 1).

Proof The given property ofT combinedwithCorollary 8.2 amounts to ‖T ‖ε ≥ Kε(l)
for each l ≥ N (Recall also 118). Now from (119) and Remark 4.14 we obtain
‖T ‖ε = π(1− ε). ��
Corollary 8.4 Let T be a proper category, and let 0 < ε < 1.

(a) If ‖T ‖ε = 0, then for any full exceptional collection E = (E0, E1, . . . , En) and
for any 0 ≤ i < j ≤ n we have hommin(Ei , E j ) ≤ 2.

(b) If ‖T ‖ε ≤ Kε(l), l ≥ 2, then for any full exceptional collection E =
(E0, E1, . . . , En) and for any 0 ≤ i < j ≤ n we have hommin(Ei , E j ) ≤ l.

(c) If ‖T ‖ε < π(1 − ε), then there exists l ∈ N such that for any full excep-
tional collection E = (E0, E1, . . . , En) and for any 0 ≤ i < j ≤ n we have
hommin(Ei , E j ) ≤ l.

We will aply Corollary 8.3 to various examples. More precisely we will show that

Proposition 8.5 In the following examples of triangulated categories are satisfied the
conditions of Corollary 8.3. In particular ‖T ‖ε = (1 − ε)π for any T in this list of
examples.

(a) Db(Q), where Q is an acyclic quiver, s.t. there exists a subset A⊂V (Q) such
that the quiver Q A is affine and there exists a vertex v ∈ V (Q) such that v is a
source or a sink in Q A∪{v} (see Definition 8.6 for the terminology)

(b) Db(Pn), n ≥ 2;
(c) Db(P1 × P

1);
(d) 7 Db(Fm), m ≥ 0
(e) Db(X), where X is a smooth algebraic variety obtained from P

n, n ≥ 2, or from
P
1×P

1, or from Fm, m ≥ 0 by a sequence of blow ups at finite number of points;
(f) Db(S), where S is any smooth complete rational surface8

7 Where Fm is the m-th Hirzebruch surface
8 In particular any smooth projective surface.
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Definition 8.6 For any quiver Q and any subset A⊂V (Q)we denote by Q A the quiver
whose vertices are A and whose arrows are those arrows of Q whose initial and final
vertex is in A. A vertex v ∈ V (Q) is called adjacent to A if there exists an arrow in
Q starting at v and ending at a vertex of A or an arrow starting at a vertex of A and
ending at a v.

Proof of Proposition 8.5 (a) Let l ≥ 3. By [21, Corollary 3.36] for any l ≥ 3 there
exists a an exceptional pair (E0, E1) in Db(Q) such that hommin(E0, E1) ≥ l. In [17]
is shown that (E0, E1) can be extended to a full exceptional collection. Therefore we
can apply Corollary 8.3 to Db(Q). ��

Nowwe present onemethod (Lemma 8.8) to obtain l-Kronecker pairs with arbitrary
big l as part of full exceptional collections, i.e. method to obtain the conditions of
Corollary 8.3. This method relies on full exceptional collections in which a triple
remains strong after certain mutations (see (c) in the statement of Lemma 8.8). In [9] a
strong exceptional collection E which remains strong under all mutations is called non-
degenerate. Furthermore in [9] are defined so called geometric exceptional collections
and [9, Corollary 2.4] says that geometricity implies non-degeneracy. Furthermore,
[9, Proposition 3.3] claims that a full exceptional collection of length m of coherent
sheaves on a smooth projective variety X of dimension n is geometric if and only if
m = n + 1. In particular it follows:

Remark 8.7 The full exceptional collection E = {O,O(1), . . . ,O(n)} in Db(Pn)

introduced by Beilinson [3] is geometric and therefore non-degenerate, whereas
the well known (see [24,38]) strong full exceptional collection of line bundles
(O(0, 0),O(0, 1),O(1, 0),O(1, 1)) in Db(P1 × P

1) is not geometric.

That’s why the method of Lemma 8.8 is readily applied to Db(Pn), whereas applying
it to Db(P1 × P

1) requires some additional arguments to ensure (c) in Lemma 8.8.

Lemma 8.8 Let T be a proper triangulated category and ε ∈ (0, 1). Let E =
(F0, F1, F2, E3, . . . , En) be a full exceptional collection with n ≥ 3. Let {Fi }i∈N
be a sequence starting with F0, F1, F2 and Fi+1 = RFi (Fi−1) for i ≥ 2. If the
following three properties hold:

(a) hom(F0, F1) < hom(F0, F2);
(b) l = hom(F1, F2) ≥ 2;
(c) (F0, Fi , Fi+1) is strong for all i ≥ 1, then T satisfies the condition of Corol-

lary 8.3 and ‖T ‖ε = π(1− ε).

Proof Now (71) becomes

Fi−1
coev∗Fi−1,Fi� Hom∗(Fi−1, Fi )̌ ⊗ Fi � RFi (Fi−1) = Fi+1 i ≥ 2. (126)

Since the property of being full is preserved under mutations, it follows that
(F0, Fi−1, Fi , E3 . . . , En) is full for each i ≥ 2. We will show that (127) holds,
and then our T satisfies the conditions of Corollary 8.3, hence ‖T ‖ε = π(1− ε).

i ∈ N≥2 ⇒ hom(F0, Fi−1) < hom(F0, Fi ) (127)
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To show (127) we first note that due to (c) we have homk(Fi−1, Fi ) = 0 for each k �= 0
and each i ≥ 2 and it follows that (see e.g. [9, Example 2.7]) l = hom(F1, F2) =
hom(Fi−1, Fi ) = hom(Fi , Fi+1) for each i ≥ 2 and then (126) has the form:

Fi−1
coev∗Fi−1,Fi� F⊕l

i
� Fi+1 i ≥ 2. (128)

In (a) we are given hom(F0, Fi−1) < hom(F0, Fi ) for i = 2 and we will show (127)
by induction. Indeed, since (F0, Fi−1, Fi ) is a strong exceptional collection for each
i ≥ 2, applying Hom(F0, _) to (128) yields short exact sequences between finite
dimensional vector spaces:

0 � Hom(F0, Fi−1) � Hom(F0, Fi )
⊕l � Hom(F0, Fi+1) � 0, i ≥ 2.

(129)

The obtained exact sequences and l ≥ 2 imply:

hom(F0, Fi+1) = l hom(F0, Fi )− hom(F0, Fi−1) ≥ 2 hom(F0, Fi )− hom(F0, Fi−1)
= hom(F0, Fi )+ (hom(F0, Fi )− hom(F0, Fi−1)), (130)

hence for i ≥ 2 the inequality hom(F0, Fi ) > hom(F0, Fi−1) implies hom(F0, Fi+1)
> hom(F0, Fi ). The lemma is proved. ��

Proof of Proposition 8.5 (b) InRemark8.7 is given a full strong exceptional collectionE
on Db(Pn)which remains strong under allmutations. Using [9, Example 2.9] one com-
putes hom(O,O(1)) = hom(O(1),O(2)) = n + 1 < hom(O,O(2)) = (n+1)(n+2)

2 .
Therefore we can apply Lemma 8.8 and the corollary follows. ��

Proof of Proposition 8.5 (c) Let us denote here T = Db(P1×P
1). Exceptional collec-

tions in T have been studied in [38] and [24]. In particular the full strong exceptional
collection (O(0, 0),O(0, 1),O(1, 0),O(1, 1)) mentioned in Remark 8.7 satisfies
hom(O(0, 0),O(0, 1)) = hom(O(0, 1),O(1, 1)) = 2 and hom(O(0, 0),O(1, 1)) =
4 (see [35, p. 3] or [8, Example 6.5]). After one mutation we get a full exceptional col-
lection (F0, F1, F2, E3) inwhich (F0, F1, F2) is strong, hom(F0, F1) < hom(F0, F2),
and hom(F1, F2) = 2. Let {Fi }i∈N be a sequence starting with F0, F1, F2 and
Fi+1 = RFi (Fi−1) for i ≥ 2. To apply Lemma 8.8 and deduce that ‖T ‖ε = π(1− ε)

we need to show that (F0, Fi , Fi+1) is strong for all i ≥ 1.
From [24, Proposition 5.3.1, Theorem 3.3.1.] it follows that:

For each exceptional pair (E, F) in T there is at most one

i ∈ Z wi th homi (E, F) �= 0. (131)

From the way we defined {Fi }i∈N it follows (see e.g. [9, Example 2.7]) 2 =
hom(F1, F2) = hom(Fi−1, Fi ) = hom(Fi , Fi+1) for all i ≥ 2, hence taking into
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account (131), to show that (F0, Fi , Fi+1) is strong for all i ≥ 1 suffices to show that
hom(F0, Fi ) �= 0 for each i ≥ 1. Now (71) becomes distinguished triangle

Fi−1
coev∗Fi−1,Fi� F⊕2i

� Fi+1 � Fi−1[1] i ≥ 2. (132)

We have 0 < hom(F0, F1) < hom(F0, F2). Assume that for some i ≥ 2 holds

0 < hom(F0, F1) < · · · < hom(F0, Fi−1) < hom(F0, Fi ) (133)

we will show that this implies hom(F0, Fi ) < hom(F0, Fi+1) and by induction
the corollary follows. Applying Hom(F0, _) to (132) and since homk(F0, Fi−1) =
homk(F0, Fi ) = 0 for k �= 0 one easily deduces that homk(F0, Fi+1) = 0 for k /∈
{−1, 0}. If hom−1(F0, Fi+1) �= 0, then by (131) it follows that hom(F0, Fi+1) = 0
and applying Hom(F0, _) to (132) yields an exact sequence of vector spaces:

0 � Hom−1(F0, Fi+1) � Hom(F0, Fi−1) � Hom(F0, Fi )
⊕2 � Hom(F0, Fi+1) = 0,

(134)

which contradicts (133). Therefore hom−1(F0, Fi+1) = 0 and homk(F0, Fi+1) = 0
for k �= 0. Now we apply Hom(F0, _) to (132) again and get a short exact sequence
as in (128) which by the same computation as in (130) implies hom(F0, Fi+1) >

hom(F0, Fi ), thus we proved the corollary. ��
Lemma 8.9 Let X be a smooth algebraic variety s. t. Db(X) satisfies the conditions of
Corollary 8.3. Let X̃ be obtained from X by blowing up a point. Then Db(X̃) satisfies
the conditions of Corollary 8.3 as well.

Proof [7, Theorem 4.2] ensures that there is a semi-orthogonal decomposition
Db(X̃) = 〈T1, T2, . . . , Tk, Db(X)〉, where Ti is equivalent to Db(point) for i =

1, 2, . . . , k, which implies that Ti is generated by an exceptional object for each i .
Now it is clear that the full exceptional sequences of Db(X) ensuring the conditions
of Corollary 8.3 extend to full exceptional collections on Db(X̃), so these conditions
are satisfied in Db(X̃) as well. ��
Proof of Proposition 8.5 (d), (e), and (f) Since F0 = P

1×P
1 and F1 is P

2 blown up at a
point, then the cases a = 0, 1 are contained in Proposition 8.5 (a), (b), and Lemma 8.9.
In [28] they construct families of full exceptional collections of invertible sheaves on
Db(Fa) for any a. To show that their exceptional collections furnish the conditions
of Corollary 8.3 we just need to combine some results in [28]. First adopt here some
notations and terminology from [28]: P, Q denotes basis of Pic(Fa) (see [28, Section
4, p.1224]) s.t.

P.Q = 1, Q2 = a, P2 = 0. (135)

Hille and Perling study certain sequences of Cartier divisors on a rational surfaces X
which they call toric systems. Furthermore a toric system A1, A2, . . . , An is called
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strongly exceptional (see [28, Definition 3.6]), if they generate a sequence of invertible
sheaves

OX ,OX (A1),OX (A1 + A2), . . . ,OX

(
n−1∑
i=1

Ai

)
,

which is strong exceptional. For such a toric system each divisor A j is numerically
left orthogonal [28, Definition 3.1 (a)], which means that χ(−A j ) = 0. Indeed, we
have

Extk

⎛
⎝OX

⎛
⎝ j∑

i=1
Ai

⎞
⎠ , OX

⎛
⎝ j−1∑

i=1
Ai

⎞
⎠

⎞
⎠ = {0}

for each k ∈ Z, since the sequence is exceptional, and on the other hand

Extk

⎛
⎝OX

⎛
⎝ j∑

i=1
Ai

⎞
⎠ , OX

⎛
⎝ j−1∑

i=1
Ai

⎞
⎠

⎞
⎠ ∼= Hk(OX (−A j )) = {0}

(see e.g. [28, the beginning of Section 3]), and hence χ(−A j ) = 0. Note also
that since the sequence is strong it follows that χ(A j ) = dim(H0(OX (A j ))) =
hom

(
OX

(∑ j−1
i=1 Ai

)
, OX

(∑ j
i=1 Ai

))
. On the other hand, having that A j is numer-

ically left orthogonal and using [28, Lemma 3.3 (i)] we derive:

hom

⎛
⎝OX

⎛
⎝ j−1∑

i=1
Ai

⎞
⎠ , OX

⎛
⎝ j∑

i=1
Ai

⎞
⎠

⎞
⎠ = χ(A j ) = −K X .A j (136)

[28, Proposition 5.2] proves that P, s P+Q, P,−(a+s)P+Q is a strongly exceptional
toric system on Fa when s ≥ −1. If we denote by Es

1, Es
2, Es

3, Es
4 the corresponding

strong exceptional collection, then using the formula (136) and the property of toric
system, that

∑n
i=1 Ai = −K X (see [28, p. 1233 down]), and also the equalities (135)

we compute:

hom(Es
2, Es

3) = −K X .(s P + Q) = (2(P + Q)− a P).(s P + Q)

= 2s = a + 2+ 2s (137)

Thuswe see that hom(Es
2, Es

3) can be done arbitrary big. The sequence Es
1, Es

2, Es
3, Es

4
is already shown to be full (see [28, Theorem 5.8.], also [28, the beginning of the
proof of Theorem 8.6.] or [29, Proposition 2.1]). Part (d) is proved. Part (e) follows by
recursively applying Lemma 8.9 and the already proven cases. Part (f) reduces to part
(e), since any smooth complete rational surface S can be constructed after applying a
finite sequence of blow ups starting with P

2 of Fa , a ≥ 0 (see e.g. [28, the beginning
of Section 4, p. 1243]). ��
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9 The inequality
∥
∥Tl1 ⊕ · · · ⊕ Tln

∥
∥

" < �(1 − ")

The goal of this seciton is to prove the following:

Proposition 9.1 Let n ≥ 1, let li ≥ 1, i = 1, 2, . . . , n be a sequence of integers, and
let 0 < ε < 1. Then for any orthogonal decomposition of the form T = Tl1 ⊕ Tl2 ⊕
· · · ⊕ Tln , where Tli

∼= Db(K (li )), holds ‖T ‖ε < π(1 − ε). Furthermore ‖T ‖ε > 0
iff li ≥ 3 for some 1 ≤ i ≤ n.

Before going to the proof of this proposition we prove some facts for the case l ≥ 3
and denote Tl = Db(K (l)). We will use notations and results from Sect. 7. The first
step is:

Lemma 9.2 For σ /∈ Z the set Pl
σ = Pl

σ is finite. Otherwise, for σ ∈ Z , we use the

description of the set Pl
σ as in Proposition 7.4 (88), (89), (90).

For any 0 < ε < 1 there exists Ml,ε > 0 such that for any σ ∈ Z and for any
j ∈ Z :

φσ (s j+1)− φσ (s j ) > ε ⇒
vσ − uσ

uσ − πφσ (s j+1[−1]) ≤ Mε,l
vσ − uσ

πφσ (s j )− vσ

≤ Mε,l . (138)

Proof The part of the lemma which is not contained in Proposition 7.4 are the inequal-
ities (138). So, let us chose σ ∈ Z , j ∈ Z and 0 < ε < 1 and assume that
φσ (s j+1)−φσ (s j ) > ε. In terms of the function (107) we can rewrite (91) as follows:

vσ − uσ

uσ − πφσ (s j+1[−1]) =
F(x, y, al)− F(x, y, a−1l )

F(x, y, a−1l )− arccos(y)
;

vσ − uσ

πφσ (s j )− vσ

= F(x, y, al)− F(x, y, a−1l )

π − F(x, y, al)
(139)

where (recall that σ ∈ Z implies φσ (s j+1)− φσ (s j ) < 1):

0 < x =
∣∣Z(s j+1)

∣∣∣∣Z(s j )
∣∣ − 1 < y = cos

(
π(φσ (s j+1)− φσ (s j ))

)
< cos(πε) :

(140)

For any a ∈ (0,+∞), b ∈ (−1,+1) the differentiable functions (0,+∞) � t �→
F(a, b, t) and (0,+∞) � t �→ F(t, b, a) can be extended uniquely to continuous
functions in [0,+∞) having values arccos(b) andπ at 0, respectively, and thereforewe
can apply themeanvalue theorem to these functions.More precisely, if h : [0,+∞)→
R is a function obtained in such a way, then for any 0 ≤ α < β < +∞ there exists
α < t < β, such that h(β) − h(α) = (β − α)h′(t). In particular, for any x, y as in
(140) we can represent all the differences in (139) as follows (recall 109):
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1

π − F(x, y, al)
= −1

F(x, y, al)− π
= 1

x al

√
1−y2

a2l +x ′2−2al x ′y

= a2
l + x ′2 − 2al x ′y

xal

√
1− y2

for some 0 < x ′ < x (141)

1

F(x, y, a−1l )− arccos(y)
= 1

a−1l
x
√

1−y2

t2+x2−2t xy

= al(t2 + x2 − 2t xy)

x
√
1− y2

for some 0 < t < a−1l (142)

F(x, y, al)− F(x, y, a−1l ) = (al − a−1l )x
√
1− y2

t ′2 + x2 − 2t ′xy

≤ (al − a−1l )x
√
1− y2

t ′2 + x2 − 2t ′x cos(πε)
for some a−1l < t ′ < al . (143)

And now looking back at (139) we deduce:

vσ − uσ

uσ − πφσ (s j+1[−1]) ≤
(a2

l − 1)(t2 + x2 − 2t xy)

t ′2 + x2 − 2t ′x cos(πε)
(144)

vσ − uσ

πφσ (s j )− vσ

≤ (1− a−2l )(a2
l + x ′2 − 2al x ′y)

t ′2 + x2 − 2t ′x cos(πε)
. (145)

Now since t ′2 + x2 − 2t ′x cos(πε) gets minimal values for t ′ = x cos(πε) (with
respect to the variable t ′) and for x = t ′ cos(πε) (with respect to the variable x) we
have t ′2 + x2 − 2t ′x cos(πε) ≥ x2(1 − cos2(πε)) = x2 sin2(πε) and t ′2 + x2 −
2t ′x cos(πε) ≥ t ′2 sin2(πε) ≥ a−2l sin2(πε), therefore:

t ′2 + x2 − 2t ′x cos(πε) ≥ max
{

a−2l , x2
}
sin2(πε) (146)

and (144), (145) can be continued (recall that 0 < t < a−1l in (142) and 0 < x ′ < x
in (141)):

vσ − uσ

uσ − πφσ (s j+1[−1]) ≤
(a2

l − 1)(t2 + x2 − 2t xy)

max{a−2l , x2} sin2(πε)

≤ (a2
l − 1)

sin2(πε)
sup

⎧⎨
⎩

(t2 + x2 − 2t xy)

max{a−2l , x2} :
t ∈ (0, a−1l )

x ∈ (0,+∞)

y ∈ (−1, cos(πε))

⎫⎬
⎭

vσ − uσ

πφσ (s j )− vσ

≤ (1− a−2l )(a2
l + x ′2 − 2al x ′y)

max{a−2l , x2} sin2(πε)

≤ (1− a−2l )

sin2(πε)
sup

⎧⎨
⎩

(a2
l + x ′2 − 2al x ′y)

max{a−2l , x2} :
x ∈ (0,+∞)

x ′ ∈ (0, x)

y ∈ (−1, cos(πε))

⎫⎬
⎭

hence (138) follows. ��
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Corollary 9.3 For any σ ∈ Z there is closed vol(Pl
σ )

2 -arc pl
σ⊂Pl

σ s.t. Pl
σ \(pl

σ ∪ −pl
σ )

is countable.
Let 0 < ε < 1. For any closed ε-arc γ satisfying Pl

σ ∩ γ = ∅ hold (pl
σ ∪ −pl

σ ) ∩
(γ ∪−γ ) = ∅ and any (of the four) connected component c of S

1\{pl
σ∪−pl

σ∪γ ∪−γ }
restricts vol(Pl

σ ) as follows:

c⊂S
1\{pl

σ ∪ −pl
σ ∪ γ ∪ −γ } π0(c) = {0}

⇒ vol(Pl
σ )

2
= vol(pl

σ ) ≤ Ml,εvol(c) (147)

where Ml,ε is as in Lemma 9.2.

Proof For σ ∈ Z , the set Pl
σ is as described in (88), (89), (90) and then we can choose

pl
σ to be exp(i[uσ , vσ ]) and S

1 can be divided as follows (for any j ∈ Z):

S
1 = eiπ [φσ (s j [−1]),φσ (s j+1[−1])) ∪ ei[πφσ (s j+1[−1]),uσ ) ∪ pl

σ ∪ ei(vσ ,πφσ (s j ))

∪ − eiπ [φσ (s j [−1]),φσ (s j+1[−1])) ∪ −ei[πφσ (s j+1[−1]),uσ ) ∪
(
−pl

σ

)

∪ − ei(vσ ,πφσ (s j )) (148)

Furthermore, let γ be a closed ε-arc with Pl
σ ∩ γ = ∅, then using (89) one easily

sees that γ⊂ exp(iπ(φσ (s j ), φσ (s j+1))) or−γ⊂ exp(iπ(φσ (s j ), φσ (s j+1))) for some
j ∈ Z and therefore π(φσ (s j+1) − φσ (s j )) > vol(γ ) = πε, hence by Lemma 9.2
follow the inequalities (138) and

γ⊂eiπ [φσ (s j [−1]),φσ (s j+1[−1])) or − γ⊂eiπ [φσ (s j [−1]),φσ (s j+1[−1])). (149)

Therefore, taking into account the disjoint union (148)we see that the four components
of S

1\{γ ∪ −γ ∪ pl
σ ∪ −pl

σ } can be ordered as c1, c2, −c1, −c2 so that: c1 ⊃
ei[πφσ (s j+1[−1]),uσ ), c2 ⊃ ei(vσ ,πφσ (s j )), in particular:

vol(±c1) ≥ uσ − πφσ (s j+1[−1]) vol(±c2) ≥ πφσ (s j )− vσ (150)

and the corollary follows from (138). ��
Proof of Proposition 9.1 From Remark 4.15 and Sect. 7.3 we see that:

∥∥Tli

∥∥
ε
=

∥∥∥Db(K (li ))
∥∥∥

ε
= Kε(li ) (151)

hence the proposition follows for n = 1. ��
Assume that we have already proved the proposition for 1 ≤ n ≤ N . And assume

that T = Tl1 ⊕ Tl2 ⊕ · · · ⊕ TlN ⊕ TlN+1 , where Tli
∼= Db(K (li )) and denote by L the

set L = {l1, l2, . . . , lN , lN+1}.
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If 1 ≤ l j ≤ 2 for some j , then
∥∥Tl j

∥∥
ε
= ∥∥Db(K (l j ))

∥∥
ε
= 0, and the statement

follows from the induction assumption, Corollary 5.6, and
∥∥Tl j

∥∥
ε
= 0. Therefore we

can assume that all integers in L are at least 3. From the induction assumption there
exists δ > 0 such that:

δ + X = π(1− ε), where

X = max
{∥∥Tx1 ⊕ Tx2 ⊕ · · · ⊕ Tx j

∥∥
ε
: j < N + 1, xi ∈ L for 1 ≤ i ≤ j

}
(152)

Note that due to Remark 4.2, Proposition 5.2 (d), and Corollary 5.5 for any sequence
x1, x2, . . . , x j in L holds:

∥∥Tx1 ⊕ Tx2 ⊕ · · · ⊕ Tx j

∥∥
ε

= sup

⎧⎨
⎩
vol

(⋃ j
i=1 Pxi

σi

)
2

: ∃closed ε-arc γ s.t. ∀i σi ∈ Stab(Db(K (xi ))) and ∅ = Pxi
σi
∩ γ

⎫⎬
⎭

(153)

Assume now that σi ∈ Stab(Db(K (li ))) for i = 1, . . . , N + 1 and that there exists a
closed ε-arc γ satisfying ∅ = Pli

σi ∩ γ = ∅ for i = 1, . . . , N + 1. In particular we can
represent the circle S

1:

S
1 = exp(i(α, β)) ∪ γ ∪ − exp(i(α, β)) ∪ −γ disjoint union (154)

where α ∈ R and β = α + π(1 − ε). If for some k the corresponding σk /∈
Zlk⊂Stab(Db(K (lk))), then by Lemma 9.2 Plk

σk is finite and taking into account (152),
(153) we derive:

vol
(⋃N+1

i=1 Pli
σi

)
2

=
vol

(⋃N+1
i=1,i �=k Pli

σi

)
2

≤ X , (155)

otherwise for all i we have σi ∈ Zli , and then by Corollary 9.3
vol

(⋃N+1
i=1 P

li
σi

)

2 =
vol

(⋃N+1
i=1 pli

σi

)
, where pli

σi is a closed arc as explained in Corollary 9.3 and we can

assume that pli
σi⊂ exp(i(α, β)) for all i (see (154)). There exist δ− > 0, δ+ > 0 such

that
⋃N+1

i=1 pli
σi⊂ exp(i[α+ δ−, β− δ+]), exp(i(α+ δ−), exp(i(β− δ+)) ∈ ⋃N+1

i=1 pli
σi .

Let j, k be such that exp(i(α + δ−) ∈ p
l j
σ j and exp(i(β − δ+) ∈ plk

σk If we denote

M = max{Mli ,ε : 1 ≤ i ≤ N + 1}, then from Corollary 9.3 we obtain vol(p
l j
σ j ) +

vol(plk
σk ) ≤ M(δ+ + δ−). Since

⋃N+1
i=1 pli

σi⊂ exp(i[α + δ−, β − δ+]) it follows that
δ+ + δ− ≤ π(1− ε)− vol

(⋃N+1
i=1 pli

σi

)
, therefore we can write:
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vol
(⋃N+1

i=1 Pli
σi

)
2

= vol

(
N+1⋃
i=1

pli
σi

)
≤ vol(p

l j
σ j )+ vol(plk

σk
)+ vol

⎛
⎝ N+1⋃

i=1,i �= j,i �=k

pli
σi

⎞
⎠

≤ M

(
π(1− ε)− vol

(
N+1⋃
i=1

pli
σi

))
+

vol
(⋃N+1

i=1,i �= j,i �=k Pli
σi

)
2

≤ M

(
π(1− ε)− vol

(
N+1⋃
i=1

pli
σi

))
+ X

= M

⎛
⎜⎝π(1− ε)−

vol
(⋃N+1

i=1 Pli
σi

)
2

⎞
⎟⎠+ X (156)

The obtained inequalities (155), (156), and the formula (153) with xi = li , for i =
1, 2, . . . , N + 1 show that for a certain set Y and a real function G on Y we have:

∥∥Tl1 ⊕ Tl2 ⊕ · · · ⊕ TlN+1
∥∥

ε
= sup{G(y) : y ∈ Y }

∀y ∈ Y 0 ≤ G(y) ≤ π(1− ε); G(y) ≤ M(π(1− ε)− G(y))+ X .

Now recalling (152) we get G(y) ≤ M(π(1 − ε) − G(y)) + π(1 − ε) − δ for any
y ∈ Y , which is the same as G(y) ≤ π(1− ε)− δ

M+1 . Therefore the proof completes
with the following inequality:

0 <
∥∥Tl1 ⊕ Tl2 ⊕ · · · ⊕ TlN+1

∥∥
ε
≤ π(1− ε)− δ

M + 1
. (157)

10 Discrete derived categories and their norms

There are categories, in which every heart of a bounded t-structure has finitely many
indecomposable objects up to isomorphism. Due to the following lemma the norm of
these categories vanishes:

Lemma 10.1 For any triangulated category T and any a ∈ R we have:

PT
σ = {± exp(iπφσ (I )) : I ∈ σ ss ∩ P(a, a + 1]

and I is P(a, a + 1]−indecomposable}. (158)

Proof From [18, Lemma 3.9] we know that

PT
σ = {exp(iπφσ (I )) : I is T − indecomposable and I ∈ σ ss}. (159)

Furthermore, the properties that for any j ∈ Z holds I ∈ σ ss iff I [ j] ∈ σ ss , and that
φσ (I [ j]) = φσ (I )+ j whenever I ∈ σ ss are axioms of Bridgeland , which together
with (159) imply
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PT
σ = {± exp(iπφσ (I )) : I is T − indecomposable and

I ∈ σ ssand φσ (I ) ∈ (a, a + 1]}. (160)

From[22,Lemma3.7] it follows that anobject I ∈ P(a, a+1] isT -indecomposable
iff it is P(a, a + 1]-indecomposable, hence the lemma follows. ��
Corollary 10.2 Let T be a category with phase gap, s.t. every heart of a bounded t-
structure has finitely many indecomposable objects up to isomorphism. Then‖T ‖ε = 0
for every ε ∈ (0, 1).

Proof First recall that for each σ = (Z ,P) ∈ Stab(T ) and for any a ∈ R the
subcategory P(a, a+ 1] is a heart of a bounded t-structure. From the previous lemma
PT

σ is finite for each σ ∈ Stab(T ). Therefore fromDefinition 39 it follows that ‖T ‖ε =
0. ��

In representation theory was introduced a class of triangulated categories with a
particularly discrete structure, called Discrete derived categories (Vossieck [42]), they
were classified in [4] and thoroughly studied in [14], whereas the topology of the stabil-
ity spaces on themwere studied in [13,37], in particular it was shown that these spaces
are all contractible. This class contains the categories {Db(Q) : Q is Dynkin}, and the
discrete derived categories not contained in this list are of the form Db(�(r , n, m))

for n ≥ r ≥ 1 and m ≥ 0, where �(r , n, m) is the path algebra of the quiver with
relations shown on [37, Section 4.3, Figure 1].

Proposition 10.3 For any discrete derived category T (in the sense of [4,42]) and any
ε ∈ (0, 1) holds ‖T ‖ε = 0.

Proof [14, Proposition 7.1] says that each heart of a bounded t-structure in T
has finitely many indecomposable objects and is of finite length. In articular (see
Lemma 4.7) T has a phase gap and it satisfies the conditions of Lemma 10.2, there-
fore ‖T ‖ε = 0. ��

11 Topology on the class of proper triangulated categories with a
phase gap

In this section we denote by T′ the set of all small triangulated categories within a
certain universe (a universe which contains the derived categories of representations
of algebras) and byPG′⊂T′ we denote the subset of proper categories with finite rank
Grothendieck group and with a phase gap. From Proposition 10.3 (see also its proof)
it follows that each discrete category is in PG′. Furthermore, from [14, Proposition
7.6] it follows that each discrete derived category has a full Exceptional collection.
Thus if we denote by DDK′ the subset in T′ of discrete derived categories, and by
E′ the subset of proper categories with a full exceptional collection, then we have the
inclusions:DDK′⊂E′⊂PG′⊂T′. When we write A ∼= B for A, B ∈ T′, we mean an
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equivalence between triangulated categories, and by T = T′/ ∼= , PG = PG′/ ∼=,
DDK = DDK′/ ∼= we denote the corresponding sets of equivalence classes and then
we have inclusions:

DDK⊂E⊂PG⊂T. (161)

We give first an example of a topology on the largest T and give evidence that this
topology is too coarse.

Definition 11.1 For any T ∈ T′ we denote a subset of T′ as follows :

B(T ) = {
T ′ ∈ T′ : T ′ ∼= T or there is a SOD T ′ = 〈A,B〉 with A ∼= T

}
.(162)

By definition we have B(T1) = B(T2), if T1 ∼= T2.

Lemma 11.2 Let T ′, T be triangulated categories. If T ′ ∈ B(T ), then B(T ′)⊂B(T ).
In particular, the family of sets {B(T )}T ∈T′ is a base of a topology on T′, and the
family of sets {B(T )/ ∼=}T ∈T′ is a base of a topology on T.

Proof Since T ′ ∈ B(T ), by definition there is a SOD T ′ = 〈A,B〉 with A ∼= T .
Let T1 ∈ B(T ′), therefore there is a SOD T1 = 〈C,D〉 with C ∼= T ′, now the SOD

T ′ = 〈A,B〉 implies a SOD C = 〈A′,B′〉, where A′ ∼= A ∼= T . Therefore we obtain
a SOD T1 = 〈〈A′,B′〉,D〉 = 〈A′, 〈B′,D〉〉 with A′ ∼= T . i.e. T1 ∈ B(T ). ��

Lemma 11.3 If T is indecomposable with respect to semi-orthogonal decompositions,
then [T ] ∈ T is a closed points w.r. to the topology introduced in Lemma 11.2. If there
exists a SOD T = 〈A,B〉, where T � A, then [T ] ∈ T is not a closed point in this
topology.

Proof Let T be indecomposable and T ′ � T , then T /∈ B(T ′) by the definition 11.1,
therefore [T ] is a closed point indeed.

Assume that there exists a SOD T = 〈A,B〉 and T � A, it follows that [T ] ∈
B(A)/ ∼= and [T ] �= [A], therefore all open subsets containing [A], contain [T ] as
well. i.e. [A] is in the closure of [T ], and it is different from [T ], so [T ] is not a closed
point. ��

Corollary 11.4 The only closed point inEw.r. to the topology introduced in Lemma11.2
(also with respect to the induced on E topology) is [T ] = [Db(point)].

Proof It is well known that Db(point) is indecomposable with respect to semi-
orthogonal decomposition. Now the corollary follows from Lemma 11.3. ��

Now we define a refinement of the topology discussed so far, in which we have
many closed points, furthermore we have many discrete subsets, in particular the set
of discrete derived categories (up to equivalence) will be a discrete subset as well.
However this new topology is defined only on PG′, respectively PG.
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Definition 11.5 For any ε ∈ (0, 1) and any T ∈ PG′ we denote

‖T ‖ε = (1− ε)π − ‖T ‖ε . (163)

For any T ∈ PG′, any δ > 0 we denote a subset of PG′ as follows:

Bε
δ (T ) = {T ′ ∈ PG′ : T ′ ∼= T or T ′ = 〈A,B〉 is a SOD

with A ∼= T ,B ∈ PG′, ‖B‖ε < δ}. (164)

By definition we have Bε
δ (T1) = Bε

δ (T2), if T1 ∼= T2. Furthermore from Theorem 6.1
it follows that for any T1, T2 ∈ PG′ and any SOD T = 〈T1, T2〉 holds:

‖〈T1, T2〉‖ε ≤ min{‖T1‖ε , ‖T2‖ε}. (165)

From now on ε is a real number in (0, 1) and we will write just Bδ(T ) instead of
Bε

δ (T ).

Lemma 11.6 If T , T ′ ∈ PG′, δ > 0 and T ′ ∈ Bδ(T ), then Bδ′(T ′)⊂Bδ(T ) for any
δ′ > 0. In particular, the family of sets {Bδ(T )}T ∈PG′,δ>0 is a base of a topology on
PG′, and the family of sets
{Bδ(T )/ ∼=}T ∈PG′,δ>0 is a base of a topology on PG.

Proof Since T ′ ∈ Bδ(T ), by definition T ′ = 〈A,B〉 with A ∼= T , B ∈ PG′ and
‖B‖ε < δ.

Let T1 ∈ Bδ′(T ′), therefore T1 = 〈C,D〉with C ∼= T ′,D ∈ PG′. As in the proof of
Lemma 11.2 one dervies a SOD T1 = 〈A′, 〈B′,D〉〉withA′ ∼= T ,B′ ∼= B. From (165)
we deduce the inequality

∥∥〈B′,D〉∥∥ε ≤ ∥∥B′∥∥ε
< δ, which amounts to the required

T1 ∈ Bδ(T ). ��
Proposition 11.7 (a) The function below is upper semi-continuous:

PG
‖·‖ε� R [T ]�→‖T ‖ε (166)

(b) For any x > 0 the subset PG≥x = {y ∈ PG : ‖y‖ε ≥ x} is a discrete subset of
PG w. r. to the topology from Lemma 11.6.

Proof (a) follows from the following application of (165): for any δ > 0, T ∈ PG′
holds

∀[T ′] ∈ (Bδ(T )/ ∼=)\{[T ]} 0 ≤ ∥∥T ′∥∥ε ≤ min{‖T ‖ε , δ}. (167)

(b) follows from the same formula. Indeed, from this formula one checks that for any
[T ] ∈ PG≥x and any 0 < δ < x we have PG≥x ∩ (Bδ(T )/ ∼=) = {[T ]}.

��
Corollary 11.8 DDK∪{[Db(Q)] : Q is affine} is a discrete subset of PG with respect
to the topology introduced in Lemma 11.6.
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Proof From Propositions 4.19 and 10.3 it follows that for any [T ] ∈ DDK ∪
{[Db(Q)] : Q is affine} has ‖T ‖ε = π(1 − ε), hence (since the function 164 takes
values in (0, π(1− ε))) we obtain:

DDK ∪ {[Db(Q)] : Q is affine}⊂PG≥π(1−ε). (168)

On the other hand from Proposition 11.7(b) we know that PG≥π(1−ε) is a discrete
subset and the corollary follows. ��

Examples of non-closed points are contained in Proposition 8.5. More precisely:

Proposition 11.9 The element [Db(point)] ∈ PG is in the closure of [T ] ∈ PG
for any T ∈ PG′ which satisfies the conditions of Corollary 8.3 and such that
rank(K0(T )) ≥ 3.

Proof We will show that [T ] ∈ Bδ(Db(point))/ ∼= for any δ > 0. Indeed, take
any δ > 0. From (119) it follows that there exists N s.t. π(1 − ε) − Kε(l) < δ

for l ≥ N . Since T satisfies the conditions of Corollary 8.3 and rank(K0(T )) ≥ 3,
therefere there is a full exceptional collection E0, E1, . . . , En−1, En with n ≥ 2, s. t.
hommin(Ei , E j ) > N for some i < j . Since we can apply mutations, we can assume
that hommin(En−1, En) > N . Now let us denoteA = 〈E0〉, B = 〈E1, . . . , En〉. Then
we have a SOD T = 〈A,B〉 with A ∼= Db(point), and ‖B‖ε ≤ ‖〈En−1, En〉‖ε ≤
π(1 − ε) − Kε(hommin(En−1, En)) < δ, where in the latter chain of inequalities
we used (165), Proposition 8.1. Recalling the definition of Bδ(Db(point)) ( Defini-
tion 11.5) we conclude that T ∈ Bδ(Db(point)) and the proposition follows. ��
Corollary 11.10 For any smooth complete rational surface surface S holds [Db(point)]
∈ Cl([Db(S)]).

12 Non-commutative curve-counting

12.1 Rescaling ‖‖ 1
2
so that all natural numbers are values

Following Kontsevich–Rosenberg [32] we denote Db(K (l + 1)) by NP
l (non-

commutative projective space) for l ≥ 0. Note that we include the case l = 0, and
NP

0 is a non-trivial cateogry. We denote also NP
−1 = Db(K (l + 1)), i.e. this is a

category generated by an orthogonal exceptional pair. Then we define for a category
with a phase gap T :

dimnc(T ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if ∀ full σ ∈ Stab(T ) |Pσ | <∞
2

cos

(
‖T ‖ 1

2

) − 1 if ‖T ‖ 1
2

< π/2 and ∃ full σ ∈ Stab(T ) s.t. |Pσ | = ∞

+∞ if ‖T ‖ 1
2
= π/2

and using (12), and table (9) we see that

dimnc(NP
l) = l l ≥ 0 dimnc(NP

−1) = 0. (169)
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Due to Theorem 6.1 and Remark 6.2 we have

dimnc(〈A,B〉) ≥ max{dimnc(A), dimnc(B)}, (170)

whenever A, B have phase gap and 〈A,B〉 is a semi-orthogonal decomposition of a
proper category. (170) ensures that whenever T has a finite dimnc(T ) < +∞ and
A⊂T is a good enough embedded subcategry, then A has also finite dimnc(A) ≤
dimnc(T ) < +∞. We note also that

Remark 12.1 Proposition 4.19 and table (9) imply that for an acyclic quiver Q we have
dimnc

(
Db(Q)

) = 0 iff Q is Dynkin and dimnc
(
Db(Q)

) = 1 iff Q is affine.

12.2 A question and a definition

We start with two remarks:

Remark 12.2 Recall that the homological dimension of NP
l , l ≥ 0 is one. Also due

to table (10) we have Stab(NP
l) ∼= C × C for l = 0, 1 and Stab(NP

l) ∼= C × H
for l ≥ 2. Note also that, whereas the spirals in NP

0 are periodic (up to shifts there
are only three exceptional objects), for l ≥ 1 the spirals in NP

l consist of pairwise
non-isomorphic objects.

In view of these notes, we find it convenient to view NP
l as a non-commutative

curve of genus l.
Note that NP

−1 has homological dimension 0 and one should not think of this as a
curve. Nevertheless, in order that we include also NP

−1 in the terminology we refer
to it as a “non-commutative curve of genus −1” (a kind of degenerate curve).

Remark 12.3 Let l ≥ −1 and T be any triangulated cateogry linear over K, let
NP

l F� T be any fully faithful K-linear exact functor,9 and denote by A the iso-
morphism closure of the image of F in T . ThenA is a triangulated subcategory of T
generated by two exceptional objects and it is equivalent to NP

l , hence due to [8, The-
orem 3.2] the functor F has left and right adjoints and there are SOD T = 〈A,A⊥〉,
T = 〈⊥A,A〉, in particular T ∈ B(NP

l) (see Definition 11.1).

Due to (170) we see that whenever we have T ∈ Bδ(NP
l) for some real δ > 0

(recall that by definition 11.5 this implies that there is a SODof the formT = 〈NP
l ,A〉

whereA has a phase gap) and some integer l ≥ 0, then dimnc(T ) ≥ l. In particular if
T ∈ Bδl (NP

l) for arbitrary big l, then dimnc(T ) = +∞, and this was used in Sect. 8.
Now we come to the question of this section:

Question 12.4 Incidences T ∈ B(NP
l)10 are embeddings of NP

l into T . Viewing
such embeddings as non-commutative curves in the category T we ask how many are
these curves in a given T ?

9 Recall that an exact functor is actually a a pair of a functor F ′ and a natural isomorphism between the
functors F ′ ◦T1 and T2 ◦F2, where T1, T2 are the translation functors of the source and the target categories,
respectively.
10 i.e. a SOD 〈NP

l ,A〉.



Some new categorical invariants Page 51 of 60 45

In this section we sketch the concept of non-commutative curve-counting and give
several numbers which result from this counting. The proofs and further numbers are
in [20] and in future works. The first step is the following definition (see [20, Sections
3,4] for details):

Definition 12.5 Let A, T be any triangulated categories. And let �⊂Aut(T ) be a
subgroup of the group of auto-equivalences. We denote

C ′A,P (T ) = {A F� T : F is fully faithful exact functor satisfying properties P}.
(171)

Next we fix an equivalence relation in C ′A,P (T ), and we will be interested in the set
of equivalence classes, in particular the size of this set.

C�
A,P (T ) = C ′A,P (T )/∼ F ∼ F ′ ⇐⇒ F ◦ α

∼= β ◦ F ′ for some α ∈ Aut(A), β ∈ � (172)

where F ◦ α ∼= β ◦ F ′ means equivalence of exact functors between triangulated
categories (this is so called graded equivalence).

12.3 First non-trivial examples withA = NP
l, l ≥ −1 and three different targets:

two quivers, and Db(P2)

Here we specify A = NP
l in Definition 12.5 and T is a K-linear category. We note

first an example of a choice for the additional property P in Definition 12.5:

Remark 12.6 Let us choose the additional properties P from (171) as follows:

Property P : F is K-linear, the left or the right orthogonal to Im(F) in T has a phase gap

(173)

This paper contains examples of T and l ≥ 0, s. t. C�
NPl ,P

(T ) �= ∅. On the other hand
from (170) follows:

dimnc(T ) ≤ n ⇒ C�
NPl ,P (T ) = ∅ for l > n. (174)

In all the examples of categories T with dimnc(T ) = ∞ given in Sect. 8 one has
C�

NPl ,P
(T ) �= ∅ for infinitely many l.

Next we note examples, where the additional restriction P from Remark 12.6 is
equivalent to requiring only K-linearity:

Remark 12.7 When T = Db(P2) or T = Db(Q) for an acyclic quiver Q, then for any
fully faithful exact K-linear functor F : NP

l → T the right and the left orthogonal to
the image of F is generated by an exceptional collection, therefore any such functor
automatically satisfies the additional property P in 173. This follows from the fact
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that every exceptional pair in T can be extended to a full exceptional collection in T
(this is proved in [17] and [26]).

So, let us specify Definition 12.5 with this simpler P , that is (see [20, Section 5]
for detailed exposition):

Definition 12.8 Let l ∈ Z≥−1 and let T be any K-linear triangulated category. And
let �⊂AutK(T ) (where AutK(T ) is the group of K-linear auto-equivalences). Let
the property P from Definition 12.5 be “F is K-linear”. We denote C ′

NPl ,P
(T ) and

C�
NPl ,P

(T ) by C ′l (T ) and C�
l (T ), respectively and refer to the elements of C�

l (T ) as
to non-commutative curves of genus l in T modulo �.

The invariants just defined are computed for two affine quivers in [20, Section 6],
the result is:

Proposition 12.9 Let Ti = Db(Qi ), i = 1, 2, where: Q1, Q2

Q1 =
2

1 �

�

3

� Q2 =
2 � 3

1

�

� 4.

�

Then the numbers
∣∣C�

l (Ti )
∣∣ for l ∈ {−1, 0,+1}, i = 1, 2,� ∈ {{Id}, 〈S〉,AutK(Ti )}

are:

∣∣∣C�
l (T1)

∣∣∣ =
����l

� {Id} 〈S〉 AutK(T1)

−1 0 0 0
0 ∞ 3 1
+1 2 1 1

∣∣∣C�
l (T2)

∣∣∣ =
����l

� {Id} 〈S〉 AutK(T2)

−1 ∞ 4 2
0 ∞ 8 1
+1 4 2 1

l ≥ 2 ⇒
∣∣∣C {Id}l (T1)

∣∣∣ =
∣∣∣C {Id}l (T2)

∣∣∣ = 0,

Proof The vanishings follow from (8). The rest of the proof is in [20]. ��
In [20] we estimate the new invariants defined in Definition 12.8, the result is as

follows:

Proposition 12.10 Let K = C. Denote T = Db(P2). Let 〈S〉⊂AutC(T ) be the sub-
group generated by the Serre functor. Then C {Id}−1 (T ) = ∅ and ∀l ≥ 0 the set C 〈S〉l (T )

is finite. It is non-empty for:

{
l ≥ 0 : C 〈S〉l (T ) �= ∅

}
=

{
l ≥ 0 : C {Id}l (T ) �= ∅

}
= {3m − 1 : m is a Markov number}. (175)

Furthermore, for any Markov number11 m we have

∣∣∣C {Id}3m−1(T )

∣∣∣ = ∞ (176)

11 Recall that aMarkov number x is a number x ∈ N≥1 such that there exist integers y, z with x2+y2+z2 =
3xyz.
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1 ≤
∣∣∣CAutC(T )

3m−1 (T )

∣∣∣ =
∣∣∣∣∣∣

⎧⎨
⎩y :

0 ≤ y < m, y ∈ Z and there exists an
exceptional vector bundle E on P

2,

with r(E) = m, y = c1(E)

⎫⎬
⎭

∣∣∣∣∣∣ ≤ m,

(177)

3 ≤
∣∣∣C 〈S〉3m−1(T )

∣∣∣ = 3
∣∣∣CAutC(T )

3m−1 (T )

∣∣∣ ≤ 3m, (178)

where c1(E), r(E) are the first Chern class (which we consider as an integer) and the
rank of E.

Proof See [20, Section 8]. ��
Corollary 12.11 Denote T = Db(P2). The first several non-trivial

∣∣∣CAutC(T )
3m−1 (T )

∣∣∣ are

(recall that m is a Markov number and on the first row are listed the first 9 Markov
numbers):

m 1 2 5 13 29 34 89 169 194∣∣∣CAutC(T )
3m−1 (T )

∣∣∣ 1 1 2 2 2 2 2 2 2
(179)

Furthermore, the so called Tyurin’s conjecture, which is equivalent to the Markov’s
conjecture (this equivalence is proved in [36, p. 100], see also [25, Section 7.2.3 ])
is equivalent to the following statement: for all Markov numbers m �= 1, m �= 2 we

have
∣∣∣CAutC(T )

3m−1 (T )

∣∣∣ = 2.

Proof See [20, Section 8]. ��

12.4 Dependence on a stability condition: semistable, resp. stable.
non-commutative curves

Definition 12.12 Let l ∈ Z≥−1 and let T be a triangulated category linear over K

and s.t. Stab(T ) �= ∅, let � and P be as in Definition 12.5. One approach to define,
semi-stable w.r. to a stability condition non-commutative curves in T is as follows.
Choose σ ∈ Stab(T ). Now we apply the same Definition 12.5 with A = NP

l and P
is the one from Definition 12.8 twisted by an additional restriction depending on σ .
We give two options for this additional restriction. More precisely, let {s j } j∈Z be a
Helix in NP

l (see [20, Section 7.2]), then let us denote:

C ′l,σ (T ) =
{

F ∈ C ′NPl ,K
(T ) : ∣∣{ j : F(s j ) ∈ σ ss}∣∣ = ∞ }

(180)

C ′l,σσ (T ) = {F ∈ C ′l (T ) : ∀ j ∈ Z F(s j ) ∈ σ ss }. (181)

where C ′
NPl ,K

, is the set (171) (see also Definition 12.8) and σ ss is the set of σ -

semistable objects. The formulas (172) give equivalence relations in C ′l,σ (T ) and in
C ′l,σσ (T ) and we define σ -semistable (resp. σ -stable) non-commutative curves of
genus l in T , and modulo �:

C�
l,σ (T ) = C ′l,σ (T )/∼= C�

l,σσ (T ) = C ′l,σσ (T )/∼=
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Note that for l = 0, l = −1 we have always C�
l,σ (T ) = ∅.

We will give two examples. In both of them � = {Id}. Here we proof only one of
them. To that end we note first a lemma

Proposition 12.13 Let l ≥ 1. Then
∣∣∣C {Id}k (NP

l)

∣∣∣ = δk,l . Let Z⊂Stab(NP
l) be as in

Proposition 7.2. Then we have
∣∣∣C {Id}l,σσ (NP

l)

∣∣∣ = 1 for σ ∈ Cl(Z) and
∣∣∣C {Id}l,σ (NP

l)

∣∣∣ = 0

for σ /∈ Cl(Z).

Proof From the Remark 12.3 it follows that, if for some integer j ≥ −1 there exists
a fully faithful K-linear functor NP

j F� NP
l , then l = j and F is equivalence

(from [17] we know that any exceptional pair in NP
l is full). It follows the equality∣∣∣C {Id}k (NP

l)

∣∣∣ = δk,l . For the proof of the rest we note fist that for any j the subset in

Stab(NP
l) where s j is semi-stable is closed subset. From Proposition 7.2 we know

that for σ ∈ Z all alements in {s j } j∈Z are semi-stable, therefore this holds also for
σ ∈ (Z). Thus we see that σ ∈ Cl(Z)⇒ ∣∣Cl,σσ (NP

l)
∣∣ = 1.

Now let σ /∈ Cl(Z). We will show that
∣∣Cl,σ (NP

l)
∣∣ = 0 and the Proposition

follows. Indeed recalling also that in Proposition 7.2 we have also disjoint union
Stab(NP

l) = Z��i∈ZZi and (78) we deduce that for some i ∈ Z we have si , si+1 ∈
σ ss , 1 ≤ φ(si+1) − φ(si+1). Now if 1 = φ(si+1) − φ(si+1), then using (79) this
would imply that σ ∈ Cl(Z), therefore 1 < φ(si+1) − φ(si+1). In this case the
last statement in Proposition 7.2 ensures that only si , si+1 are semi-stable, therefore∣∣Cl,σ (NP

l)
∣∣ = 0. ��

In the master thesis [6] is proved:

Proposition 12.14 Let T = Db(Q1) (Q1 is as in Proposition 12.9). As σ varies in
Stab(T ) the subset C {Id}1,σ (T )⊂C {Id}1 (T ) takes all possible subsets of C {Id}1 (T ).

Remark 12.15 We expect that Porposition 12.14 holds for C {Id}1,σσ (T ) as well.

12.5 Non-commutative Calabi–Yau curve-counting

Nowwe sketch a conjectural example of a finite C�
A,P (T ) (defined in Definition 12.5)

coming from categories appearing naturally on the A-side. Here the categories are
C-linear and we fix the property P of the functor F in Definition 12.5 to be “F is
C-linear” and we will write C�

A,C
(T ) instead of C�

A,P (T ). Now the domain category

A is a modification of Db(K (l)), which is Calabi–Yau. We pass from Db(K (l)) to
the new domain by changing

{
exceptional
objects

}
←→

{
spherical
objects

}

and this amounts to consideringA = CY (l), instead ofA = Db(K (l)). The definition
is based on the quiver:
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• •

0

1

In the next conjectural example � = AutC(T ) is the group of C-linear auto-
equivalences of T :

Conjecture 12.16 Let T = Fuk(E) with E an elliptic curve. In this case we have a
correspondence:

CAutC(T )
CY (n),C

(T )←→
{

Primitive Lagrangian
generating Fuk(E)

}

It follows that:
∣∣∣CAutC (T )

CY (l),C (T )

∣∣∣ = #{d|gcd(d, n) = 1, 1 ≤ d ≤ n}.
We plan to work on Conjecture 12.16 in a future work.

Remark 12.17 For curves S of higher genus we expect that finding of the cardinality
of CAutC(T )

CY (n),C
(T ) for T = Fuk(S) is related to very recent insights on counting of

geodesics—see [33].

13 A-side interpretation and holomorphic sheaves of categories

In this section we give a different point of view on the category of representations of
the Kronecker quiver and introduce the notion of holomorphic families of Kronecker
quivers.

We suggest a framework in which sequences of holomorphic families of categories
are viewed as sequences of extensions of non-commutative manifolds by relating our
norm to the notion of holomorphic family of categories introduces by Kontsevich.
Several questions and conjectures are posed.

First we sketch how to interpret Db(K (n)) as a perverse sheaf of categories. Recall
that LG model of P

2 is C
∗2, w = x + y + 1

xy—see [1].

D

The category Db(K (3)) can be obtained by taking the part of the Landau Ginzburg
model over a disc D which contains 2 singular fibers.

Surgeries on the manifold:

S1 × E
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can be performed so that the Floer homology HF(L1, L2) = 3 changes to
HF(L1, L2) = n and as a result we get Db(K (n)).

To interpret Db(K (n)) as a perverse sheaf of categories one considers a locally
constant sheaf of categories over a graph � shown on the picture below, the picture
encodes also the data about the sheaf:

�

Fuk(E)

Db(A2)⊗Fuk(E)

Db(A1)

Db(A1)

p2

p1

F

The locally constant sheaf is denoted by F . The stalks over inner points of the edges
of � are isomorphic to Fuk(E), the stalk over the vertex where three edges meet is
Db(A2) ⊗ Fuk(E), the stalks over the two end points of � on the left is Db(A1)

(these points correspond to the two singular points of the LG model). There are three
functors from Db(A2)⊗Fuk(E) to Fuk(E) coming from three functors from Db(A2)

to Db(A1). The letters p1, p2 from the figure above denote two spherical functors from
Db(A1) to Fuk(E), thus this figure encodes a diagram of functors. One defines the
category of global sections H0(�,F) of the sheaf F as a category which is obtained
by a limit of the described diagram of functors. For appropriately chosen spherical
functors the category H0(�,F) is the same as Db(K (n)). The surgeries are recorded
by the changes of the spherical functors p1, p2. What we explained about interpreting
Db(K (n)) as a perverse sheaf of categories is only a sketch . More details are given in
a subsequent work of the second author with Pandit and Spaide [31, Example 3.22].
In [31, page 41] are discussed also the surgeries.

The category Db(K (4)) can be interpreted also as part of the LGmodel of P
3, C∗3,

w = x + y + z + 1
xyz :

D

K3

K3

Db(K (4))

In this case surgeries on the fiber - a K3 surface:

K3

S1



Some new categorical invariants Page 57 of 60 45

can be performed so that the category changes from Db(K (4)) to Db(K (n)).
The Landau Ginzburg models with K3 surfaces in the fibers can be interpreted as

perverse sheafs of categories, encoded in the following picture—see [27]:

�

Fuk(K3)

Db(A2)⊗Fuk(K3)

Db(A1)

Db(A1)

p2

p1

F

H0(�,F) = Db(K (n)) .

Remark 13.1 The property of having a phase gap, which we require in this paper to
define the norm, can also be interpret as existence of a CY formwith certain properties.

Namely let Y be a LG model, � is a CY form on Y . Let L be a Lagrangian s.t.
θ1 ≤ arg�|L ≤ θ2. Assume that there exits a form β on Y s.t. (1) β = dα, (α is an
n − 1 form), (2) Reβ|L > 0. (3) α → 0 when ω → 0.

Then there are no stable lagrangians L with θ1 ≤ arg�|L ≤ θ2. In other words
existence of such forms � and α lead to gaps in phases.

One more direction for future research is holomorphic families of categories, in
particular holomorphic families of Kronecker quivers.

Holomorphic families of categories over X with fiber K (n) should be defined by
homomorphisms ϕi : O(Ui )→ HH0(Db(K (n))) in the zero-th Hochschild cohomol-
ogy of Db(K (n)) where {Ui } is a covering of X by open sets. We use the following
picture for such a holomorphic family of categories:

X

K (n)

The holomorphic sheaves of categories are enhanced by perverse sheaves of stability
conditions - see [30] for defining morphisms and the gluing between the categories on
intersecting opens that defines the sheaf.

The case of holomorphic family of K (2) is the classical case of conic bundles:

X

Z conic

X

F
K (2)

The global sections H0(X ,F) are Db(Z). Similarly H0(X ,F) with K (n) for n ≥ 3
produces a new non-commutative variety.

Iterating the procedure described above results in a family of categories over a
family of categories. Some questions addressing relations between the norms of the
fibers and of the gobal sections follow:
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Question 13.2 Under what condition ||C||ε � ||H0(X ,F)||ε? (here C is the category
in the fiber)

X

FC

Question 13.3 Let us consider a tower of families of categories and each of the fiber
categories Ci has non maximal ‖·‖ε(recall the relation of ‖·‖ε and ‖·‖ε in Defini-
tion 11.5). Is it true that if the Rouquier dimension [2] of the category in the combined
fiber is one then the norm ‖·‖ε of this category is non-maximal ?

We summarise the proposed analogy in the table bellow.

Galois theory Norms

X2

X1

X

finite

finite

The sequence of

finite coverings

is finite

X2

X1

X

C2 ||C2||ε < max

C1 ||C1||ε < max

⎛
⎝C2
↓
C1

⎞
⎠ = C

X2
↓
X

Rouquier dim (C) = 1

⇓
||C||ε < max

Question 13.4 Do we have a similar theory as the classical theory of conic bundles for
sheaves of categories with fibers categories of representations of Kronecker quivers
or any other quiver category with a Rouquier dimension [2] equal to one?

In a certain way our norm can be seen as analogue of height function defined in [15].
We expect that some higher analogues of this norm for higher Rouquier dimensions
can be defined. In fact in this paper we only scratch the surface proposing a possible
approach to “noncommutative Galois theory”—representing “noncommutative man-
ifolds” (categories) as a sequence of perverse sheaves of categories and holomorphic
families of categories.

It will be interesting to study categories which can be represented as a tower of
holomorphic families of categories with nonmaximal norms ‖·‖ε. One example of
such category is Db(P1 × · · · × P

1).

Question 13.5 Characterise projective varieties X whose derived categories Db(X)

can be represented as tower of holomorphic families of categories with non-maximal
norms starting with Db(Z), whehre Z is a rational variety.
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(1) Under what conditions are these projective varieties X rational? (It is rather
clear that a nontrivial condition is needed since every hyperelliptic curve can be
seen as such a tower).

(2) We conjecture that for a unirational variety U there is a tower of families of
categories

Db(Z)
F1� Z1

F2� Z2· · · � Db(U )

and each of the fiber categories has non-maximal norm: ‖Fi‖ε < π(1− ε) (see
[5]), and Z is rational.
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