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Abstract

In this paper we introduce new categorical notions and give many examples. In an
earlier paper we proved that the Bridgeland stability space on the derived category of
representations of K (1), the [-Kronecker quiver, is biholomorphic to Cx H for/ > 3.1In
the present paper we define a new notion of norm, which distinguishes {DP(K (1)) Yi>2.
More precisely, to a triangulated category 7 which has property of a phase gap we
attach a non-negative real number ||7 ||°. Natural assumptions ona SOD 7 = (7}, 73)
imply (77, 72)|I° < min{||71]|%, ||72]|?}. Using the norm we define a topology on
the set of equivalence classes of proper triangulated categories with a phase gap, such
that the set of discrete derived categories is a discrete subset, whereas the rationality
of a smooth surface S ensures that [D?(point)] € CI([D?(S)]). Categories in a
neighborhood of DP(K (1)) have the property that DP(K (1)) is embedded in each of
them. We view such embeddings as non-commutative curves in the ambient category
and introduce categorical invariants based on counting them. Examples show that the
idea of non-commutative curve-counting opens directions to new categorical structures
and connections to number theory and classical geometry. We give a definition, which
specializes to the non-commutative curve-counting invariants. In an example arising
on the A side we specialize our definition to non-commutative Calabi—Yau curve-
counting, where the entities we count are a Calabi—Yau modification of DY (K ().
In the end we speculate that one might consider a holomorphic family of categories,
introduced by Kontsevich, as a non-commutative extension with the norm, introduced
here, playing a role similar to the classical notion of degree of an extension in Galois
theory.
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1 Introduction

Motivated by M. Douglas’s work in string theory T. Bridgeland defined in [10] a map:

{triangulated} Stab { complex } 0

categories manifolds

For a triangulated category 7 the associated complex manifold Stab(7) is referred
to as the space of stability conditions (or the stability space or the moduli space of
stability conditions) on 7.

The map (1) behaves well with respect to orthogonal decompositions (Defini-
tion 5.1). Due to lack of a reference in the literature we show this in Sect. 5. In
particular, there is a a bijection

Stab(T1 @ L ® --- ® Tp) = Stab(7T;) x Stab(T3) x - - - x Stab(7Ty,), 2)

which is biholomorphism, when the categories are with finite rank Grothendieck
groups (Proposition 5.2). Our previous paper [19, Theorem 1.1 ] contains examples
of semi-orthogonal decomposition, SOD, 7 = (77, 72) where rank(Ky(7)) = 2 and
Stab(7) is not biholomorphic to Stab(77) x Stab(75).

The behavior of the map (1) with respect to general SOD has been studied in
[16]. This is a difficult problem and no formula relating Stab({7;, 72)) and Stab(77),
Stab(73) is obtained.

In this paper using Bridgeland stability conditions we define (Definition 4.11) for
any 0 < & < 1 a function (the domain is explained below and it does not depend
on ¢):

triangulated "
categories — [0, (1 —&)] and we denote || T|* =n(l —e)— 7|, 3)
with a phase gap
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and prove (Theorem 6.1) that if 7 = (77, 73) is a semi-orthogonal decomposition in
which 7 is proper,' rank(Ko(7)) < oo, 77 and 7> have phase gaps, then 7 has phase
gap as well and

T, D)l = max{|7ille . 121} = K70, 2)01° < min{| 7 ]1°, 122017}, (4)

For the proof of this inequality we employ the method for gluing of stability conditions
in [16], crucial role has also [11, Lemma 4.5] which ensures certain finiteness property
of a stability condition with a phase gap.

The function (3) depends on ¢ € (0, 1), however the three subsets of its domain
determined by the three conditions on the first row in the following table do not depend
on ¢ (Lemma 4.16):

Categories with: [I]le =0 O0<|llg <m(l—e¢) Ile =71 —¢)
examples: for any acyclic quiver Db(K(ll)) DD Db(]P>I X
Q DY(Q) is here iff DY (K (Iy)) where Py, DY (P")n >
Q is Dynkin or N € Zs1,l; > 3 for 2, DP@,)m > 0,
affine, any discrete some i many wild quivers
derived category is as in Prop. 8.5 (a)
here

Further examples can be obtained by using (4) and the property that for a proper
T with rank(Ko(7)) < oo and decomposition 7 = 77 & 7, with || 71]|, = 0 holds
171 & 12ll, = 721l (Corollary 5.6). In particular by blowing up the varieties in last
column one obtains other elements in this column (see Corollary 6.4).

In Sect. 11 using (3) we introduce a topology on the class of proper triangulated
categories with a phase gap up to equivalence. The function |- = 7 (1 — &) — ||-||,
is upper semi-continuous for this topology. The class of discrete derived categories
modulo equivalence is a discrete subset w.r. to it (see Sect. 10). For a proper 7 with
rank (Ko(7)) > 3 we show in Proposition 11.9 that the following condition:?

for each [ € N there exists a full exceptional collection (Eg, E1, ..., Ej)

and integers 0 < i < j < n for which hom™" (E;, E;) =1 5)

implies [Db(point)] € CI([7]). In Proposition 8.5 we verify (5) in Db(X) for
any smooth complete rational surface X and for some higher dimensional smooth
varieties. A conjecture stated by Orlov says that a surface over an algebraically
closed field admits a full exceptional collection only if it is rational (see e.g. [41,
p. 5]). If this conjecture holds, then the presented results would imply that for any
smooth projective surface S with a full exceptional collection holds (5) and hence

1 By proper we mean that ) ;.7 hom! (X, Y) < +oc for any two objects X, Y in 7 (see also Sect. 2
dedicated to Notations).

2 The meaning of hom™" (A, B) can be seen in formula (14).
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[DP(point)] € CI([D?(S)]). The condition (5) fails for D? (K (n)), and Conjecture 1.3
would imply that it fails for the quivers depicted there. Related questions are:

Question 1.1 Let X denote a smooth projective variety X, different from P!, with a
full exceptional collection. Is there X, s. t. [Db(point)] ¢ Cl([Db(X)]) ? Is there X
and a natural number N € N s. t. for any full exceptional collection (Ey, ..., Ey) in
D?(X) and any 0 <i < j < n we have hom™"(E;, E;) < N ?

A positive answer of some of the questions in 1.1 with dim(X) = 2 would be a
counterexample of Orlov conjecture.

Another class of categorical invariants introduced in this paper is motivated by the
following question (many of these invariants behave in a certain sense monotone with
respect to SOD):

For the topology from Sect. 11 any category (except DP(A1)) in table 1 is in
a neighborhood of NP for some | ( following Kontsevich-Rosenberg [32] we
denote sometimes DP(K (I + 1)) by N]P’l). More precisely, there is a SOD (NIP’I, A)
for some | and some A. Recalling that Gromow-Witten invariants count pseudo-
holomorphic curves, we view such embeddings of NP into T as analogous to a
“pseudo-holomorphic curve” in the category T and ask a question: can we count
such entities in a given T , how many are they ?

In Sect. 12 and in [20] we show that the answer is positive. The idea is: for two
triangulated catogories A, 7, a subgroup I'CAut(7'), and a choice of some additional
restrictions P of fully faithful functors we define the set of equivalence classes of fully
faithful functors from A to 7 satisfying P with two functors F, F’ being equivalent iff
Foa = BoF forsomea € Aut(NIP’I) B € I'. This set is denoted by C P(T) (see
Definition 12.5). We prefer to choose some .4, which is non-trivial but well studied.

The studies in this paper naturally impose NP! as our first choice - we consider
also NP~!, which is a category generated by an orthogonal exceptional pair. We refer
to NP as a non-commutative curve and by rescaling ||-|| 1 (see Sect. 12.1) we define

an invariant:

dimy,c((A, B)) = max{dim.(A), dim,c(B)}

triangulated
dim,(NPY =1 [ >0, dim,(NP~)=0

categories dimn — [0, +o00], s.t.
with a phase gap

(6)

to which we refer to as “non-commutative genus”. In particular, NP is a non-
commutative curve of genus / for / > 0. Although NPP~! has homological dimension
0 we refer to it as a non-commutative curve of genus —1 (see Remark 12.2 for further
motivation).

Using the inequality in (6) we have derived vanishing theorem for C NP P (T) for
certaion choice of P (see Remark 12.6). Choosing A = NP!, assuming that 7 is K-
linear and choosing the additional restriction P of the functors to be K-linear, we write
just Cz (7) instead of CT NP P (7) and refer to this set as to the set of non-commutative
curves of genus / in 7 modulo the subgroup I'. Furthermore, by fixing a stability
condition o € Stab(7) we strengthen the restriction P depending on o to define the
set of o-semistable, resp. o-stable non-commutative curves in 7 and denote it by
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Cll? o (1), resp. CEM (7)) (Definition 12.12). The definitions of the counting invariants
introduced here are carefully explained in a subsequent work [20].

From this vanishing criterion (174), Remark 12.7 and after determining
dimnc(Db (Q)) for affine and Dynkin Q (see Remark 12.1) follow these vanishings:

If/ > 2 and Q is affine aciclic quiver = ‘Cl{ld}(Db(Q))’ =0, @)

If/ > 1 and Q is Dynkin quiver = ‘Cl{ld}(Db(Q))‘ —0. ®)

It is interesting to find further examples of wild quivers Q with dim,.(D?(Q)) <
0o, we propose potential examples, see Conjecture 1.3, analogous vanishings for
Ci(D?(Q)) for big enough / would follow by the vanishing criterion (174).

It is easy to prove that )Cl{ld}(NIP’k)‘ =8 forl,k > —1. Forl > 1 we describe

the zones in Stab(NP!), where ‘Cl{}g} (NP ‘ is zero and one respectively, in particular

one sees the walls, where a wall-crossing takes place (see part 1.3 of the introduction
below and Proposition 12.13).

The numbers |C ll" (T)| are computed for two affine quivers in [20, Section 6], and
estimated for D? (P2) in [20, Section 8]. In Sect. 12.3 here we present the results of these

computations. In particular, part of Proposition 12.10 is that C, Autc (D (B%) (Db (}P’z)))
is finite for all / and non-empty iff [ = 3m — 1 for some Markov number m, where
PP is the complex projective plane and Autc (D?(P?)) is the group of C-linear auto-
equivalences of P2. Furthermore, Corollary 12.11 is that the Markov’s conjecture in
number theory and a conjecture by Tyurin ([36, p. 100] or [25, Section 7.2.3 ]) are true

b p2
iff for each Markov number m # 1, m # 2 we have ‘C?,ztflw ® ))(Dh(}P’z))‘ =2
Via the latter Corollary in future works we plan to approach Markov’s conjecture

using homological mirror symmetry and applying A side techniques for computing
the non-commutative curve-counting invariants.

In Sect. 12.4 we explain an example, where ‘CH(;} T )‘ takes all possible values in

{O 1,2 = ‘C{Id} (T)H as o varies in Stab(7) (the proof is in the master thesis [6]).

Section 12.5 contains a conjectural example of finite sets CL, A p(7) of different
origin (the proof is postponed for future work as well). Here 7 is the so called Fukaya
category of an elliptic curve, Fuk(E). In this case we set A to be a a Calabi—Yau
modification of D?(K (1)), denoted by CY (I). The question about the cardinalities of
C CI:Y(I),(C (Fuk(S)) for higher genus curves should be related to counting geodesics on
S.

Finally (Sect. 13), relating our norm to the notion of holomorphic family of cat-
egories introduced by Kontsevich we suggest a framework in which sequences of
holomorphic families of categories are viewed as sequences of extensions of non-
commutative manifolds.
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This paper is the beginning of a longer pursuit motivated by the invariants introduced
here. In [20] we extend our studies of CE\ p(7) beyond counting: besides numbers

we extract from CEL p(7) categorical versions of classical geometric structures which
open new perspectives in non-commutative geometry.

1.1. We give here more details on the definition of || 7], and on the examples.

By definition each stability condition ¢ € Stab(7) determines a set of non-zero
objects in 7 (called semi-stable objects) labeled by real numbers (called phases of the
semistable objects). The semi-stable objects correspond to the so called “BPS” branes
in string theory. The set of semi-stable objects will be denoted by o**, and ¢ (X) € R
denotes the phase of a semi-stable X. Forany o € Stab(7") we denote by PGT the subset
of the unit circle {exp(im ¢y (X)) : X € 0°°}CS'. A categorical analogue of the density
of the set of slopes of closed geodesics on a Riemann surface was proposed in [18]. In
[18, section 3] the focus falls on constructing stability conditions for which the set P,
is dense in a non-trivial arc of the circle. The result is the following characterization
of the map (1), when restricted to categories of the form DP (Repk (Q)) (Q denotes
an acyclic quiver):

lDynkin quivers (e.g. o — o)[ P, is always finite ‘

| Affine quivers (e.g. o ¥ o)| Py is cither finite or has exactly two limit points |

’ Wild quivers (e.g. o ;_: o) ‘ Py, is dense in an arc for a family of stability conditions‘

&)

In [21, Proposition 3.29] are constructed stability conditions o € Stab(D? (Q)) with
two limit points of P, for any affine quiver Q (by Db (Q) we mean Db (Repr(Q))).

Stability conditions on wild quivers whose set of phases are dense in an arc were
constructed in [ 18], however for them the set of phases is still not dense in the entire St,
i.e. P, does misses a non-trivial arc, in which case we say for short that P, has a gap.
In particular all the categories in table (9) are examples of what we call in this paper a
triangulated category with phase gap, this is a triangulated category 7 for which there
exists a full® o € Stab(7) whose set of phases P(,T has a gap. Stability conditions
whose set of phases is not dense in S' and their relation to so called algebraic stability
conditions have been studied in [37]. In particular the results in [37] imply that when
rankKog(7) < oo, then 7 has a phase gap iff there exists a bounded t-structure in
T whose heart is of finite length and has finitely many simple objects (Lemma 4.7).
Whence the domain of the invariant (3) contains also the CY3 categories discussed in
[12].

By definition |7, is the supremum of* vol (P_g) /2 as o varies in the subset
Stab, (7)CStab(7) of those stability conditions o for which P, misses at least one
closed e-arc (see Definitions 38, 4.3).

3 We recall what is a full stability condition in Sect. 4.1. The stability conditions on the third raw of (9) are
full.

4 Fora Lebesgue measurable subset X cS! we denote by vol(X) its Lebesgue measure with vol(S1 ) =2m.
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From the definition and table (9) it follows that for any acyclic quiver Q the norm
| D?(Q)||, vanishes iff Q is Dynkin or affine. Thus, using [19, table (4)] we obtain
the table

0 |D*(Q)], [Stab(D”(Q))
o ooro—o|[DP(Q)],=0] CxC

K(),1>=3 ||D"Q)],>0] CxH

(10)

and [19, Conjecture 1.2] can be reformulated as follows:

Conjecture 1.2 Let 0 < ¢ < 1 and let Q be any acyclic quiver. The stability space
Stab(D?(Q)) is affine (of the form C") iff | D*(Q)|, = 0.

In table (9) we see that the map (1) has the same value (up to biholomorphism) on all
the categories {D”(K(l))}lzg. In this paper we compute H DP(K (1)) HE for any / and
0 < ¢ < 1 and show:

|pPkay)| <[pP&@wy| = n<band3<p (1)

2
, = arccos (7) . (12)
2

Some criteria ensuring that || 7 ||, = (1 — &) explained below imply that for many
of the wild quivers Q we have || Db (0) ||8 = (1 — ¢) (see Proposition 8.5 (a)) and
also ||Db(X) ||8 =n(l —¢) where X is P", n > 2, P! x P!, F,, a > 0 or a smooth
algebraic variety obtained from these by a sequence of blow ups in finitely many points
(see Proposition 8.5¢, f), for n = 1 we have || D”(]P’l)H)S = 0. Actually, the condition
171, < m(1 — &) imposes restrictions on the full exceptional collections in 7 (see
Corollary 8.4).

The criteria for |7 ||, = m(1 — &) obtained here do not apply to category of
the form 7 = D’(K (1)) ® D*(K(l)) @ --- ® D’(K (Iy)) and we do prove that
7], <7 (1 — ¢) in this case.

We expect that the criterion in Corollary 8.3 does not apply to all wild quivers, and
we do know that its corollary, Corollary 8.5 (a), cannot be applied to all of them, for
example, to the following:

122 = |Dp'KW)

as
a a; — ar — a t
S = v/' \a S = \11)/ 3 S3 = al/\‘aTz;ag

v

We conjecture, that:

Conjecture 1.3 Fori = 1,2,3 we have 0 < || DP(S)) ||8 < (1l — &), which is equiv-

alent to dimnc(Db(Si)) < o0 (see (6)). Furthermore we conjecture that Cl{ld} (T) is
finite for alll > 1.
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1.2. It follows a brief discussion on the computations of || 7 ||,. In Sect. 7 we denote
7, = D”(K(l)) and compute IZ/]l;. To that end we start in Sect. 7.1 by recalling
the construction and some properties of the helix of exceptional objects {s;};c7 in 7;
(infinite in both directions sequence of exceptional objects and any two consecutive
form a full exceptional pair). In Sect. 7.2 we determine explicitly the set of phases Pé
for each o € Stab(7;) and each [ > 2 (Proposition 7.4). It turns out that for [ > 3 a

stability condition has vol (P_f,) # 0 and satisfies o0 € Stab, (7)) iff there exists j € Z

such that sj,s; 411 € 0°¥ and & < ¢y (sj11) — Po(s;) < 1, the set P(l, for such a o is
the set of fractions {n/m : (n, m) € A4 (K (l))} appropriately embedded in the circle
via a function depending on the stability condition. In Lemma 7.3 we shed light on
the structure of the set {n/m : (n,m) € A{(K(l))} (see formulas 80, 81) and use it
in the proof of Proposition 7.4.

We start Sect. 7.3 by deriving a formula expressing the non-vanishing numbers

vol (P_é> /2 as a smooth function depending on ||ZZ(S(JX +)1|) | and ¢5 (sj+1) — Po (s;) for
J

any j € Z (see Proposition 7.6). After computing partial derivatives of this function we
find that the supremum of vol (Pé) /2 as o varies in Stab, (7;) is equal to vol (Pé) /2

s 1ZGj0]
| ZGs )]
formula for ||7;]|, is in Proposition 7.7 and it produces (11), (12). In particular it

follows that

where o has s;,s;41 € 0° = 1 and @5 (sj41) — ¢ (s;) = €. The precise

lim 7]l =7 (1 —¢). (13)
=400
Section 8 contains examples of 7 with |7 |, = 7 (1 — &) (Proposition 8.5). This
section is based on (13) and the observation (Proposition 8.1) that for any exceptional
pair (E1, E») inaproper 7 holds ||(Ey, E2)|l, > || 77|, where ! = hom™"(Eq, E»). It
follows that the condition || 7], < 7 (1 — &) imposes restrictions on hom™"(E;, E i)
in a full exceptional collection (Ey, ..., E;,) (see Corollary 8.4).

Section 9 is devoted to the proof that || DP(K(L)® -+ @ D (K (In)) ||8 < m(l—e¢)
forany N € Z>1 and any O < ¢ < 1. Using the results for the sets P(l, from Sects. 7.2,
7.3 we show here that, whenever Pé is contained in C U —C for an open arc C cS!
with length less than 7, then for some closed arc p!. CC N P! the set PL\(pL U—p!)
is at most countable, and furthermore, provided that the length of C is fixed, we show
that when some of the end points of pfj is very close to some of the end points of C,
then pf, itself has very small length (Corollary 9.3). Due to the fact, proven in Sect. 5,
that for any orthogonal decomposition 7 = 71 @ --- @& 7, and any ¢ € Stab(7)
holds P(,T = U?:l Pg , where (o1, ...,0,) is the value of the map (2) at o (see
Proposition 5.2 and Corollary 5.5), the proof of the desired inequality reduces to
proving that the measure of union of arcs U!_,; pf;' CC of the type explained above,
cannot become arbitrary close to the length of C. Having proved this for one arc
(in Sect. 7.3) we perform induction and the tool for the induction step is the already
discussed Corollary 9.3.

In Sect. 10 we discuss the class of discrete derived categories and show that | 7 ||, =
0 for any such category. These categories were introduced by Vossieck [42], they were
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classified in [4] and thoroughly studied in [14], whereas the topology of the stability
spaces on them were studied in [13,37], in particular it was shown that these spaces
are all contractible. This class contains the categories {D”(Q) : Q is Dynkin}, and the
discrete derived categories not contained in this list are of the form D (A(r,n, m)) for
n>r > landm > 0, where A(r, n, m) is the path algebra of the quiver with relations
shown on [37, Section 4.3, Figure 1]. Actually, we show that if 7 is a category with
phase gap, s.t. every heart of a bounded t-structure has finitely many indecomposable
objects up to isomorphism, then || 7 ||, = 0.

1.3. Using the helix {s;};ez in DP(K(l + 1)) = NP we can explain what we
mean by a o-semistable non-commutative curve (see Definition 12.12 for precise
statement). Let Stab(7) # ¢ and o € Stab(7). Recall that a non-commutative curve
of genus [ in 7 is equivalence class of fully faithful exact K-linear functors from NP
to 7 (equivalence is re-parametrization in the domain), we will say that the curve
is o-semistable, resp. o-stable, if for infinitely many, resp. for all, j € Z the object
F(sj) € T is o-semistable object (it does not matter which functor F we take as a
representative). We denote the set of o-semistable, resp. o -stable, non-commutative
curves of genus /, and modulo subgroup I'CAut(NP'), by C ZF o (1), resp. C I ().

l,oo
1

Our basic example is C l{ dL (N P! ), [ > 1. First note that from Remark 12.3 it follows

(e

that C}Id}(NIP’j) = §;,j fori, j > 0. In Propositions 12.13, 7.2 is shown that for any
[ > 1and any o € Stab(NP) we have one of the following possibilities

e only two consecutive elements in the helix, of the form s;, 51, are semi-stable
and ¢ (5j11) > do(sj) + 1. in particular C's (NP') = 0

e all elements {s;} ez are semistable and @5 (sj+1) = ¢o(s;) + 1 for some j € Z,
hence C}'%) (NP!) = 1

o all elements {s;} ¢z are semistable and ¢, (s;) < Po(sj41) < ¢ (s;) + 1 for all
j € Z. hence C/'} (NP!) = 1

2 Notations

In this paper the letters 7 and .4 denote a triangulated category and an abelian category,
respectively, and K denotes an algebraically closed field. The shift functor in 7 is
designated by [1]. We write Hom' (X, Y) for Hom(X, Y[i]) and, if 7 is K-linear, we
write hom! (X, Y) fordimg (Hom(X, Y[i])), where X, Y € 7.For X, Y € A, writing
Hom! (X, Y), we consider X, Y as elements in 7 = D?(A), i.e. Hom'(X,Y) =
Ext' (X, Y).

A K-linear triangulated category 7 is called proper if ) ;. hom' (X, Y) < +oo
for any two objects X, Y in 7. For X,Y € 7 in a proper 7, we denote:

hom! (X, Y) if i = min{j : hom/(X,Y) # 0} > —o0

0 otherwise. (14)

hom™"(X,Y) = {

We write (S)C7 for the triangulated subcategory of 7 generated by S, when
SCob(T).
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An exceptional object in aK-linear 7 is an object E € 7 satisfying Hom' (E, E) =
0 fori # 0 and Hom(E, E) = k.

An exceptional collection is a sequence £ = (Eg, E1, ..., E,)CT,y satisfying
hom*(E;, E;) = 0fori > j.If in addition we have (£) = 7, then £ will be called a
full exceptional collection.

If an exceptional collection £ = (Ey, E1, ..., E;)C7Z, satisfies homk(Ei, E;) =
0 for any i, j and for k # 0, then it is said to be strong exceptional collection.

An abelian category A is said to be hereditary, if Ext'(X,Y) = 0forany X, Y € A
and i > 2, it is said to be of finite length, if it is Artinian and Noterian.

By QO we denote an acyclic quiver and by Db(RepK(Q)), or just Db(Q), - the
derived category of the category of representations of Q.

For an integer / > 1 the /-Kronecker quiver (the quiver with two vertices and /
parallel arrows) will be denoted by K ().

For a complex number z = (a + ib), a, b € R we denote J(z) = b, R(z) = a,
and by H we denote the upper half plane, i.e. H = {z € C : J(z) > 0}, whereas
H=HU{z€C:3I() =0,NR(z) < 0}. The number of elements of a finite set X we
denote by |X| or by #(X).

3 On Bridgeland stability conditions

We use freely the axioms and notations on stability conditions introduced by Bridge-
land in [10] and some additional notations used in [22, Subsection 3.2]. In particular,
the underlying set of the manifold Stab(7') is the set of locally finite stability condi-
tions on 7 and for 0 = (Z, P) € Stab(7) we denote by o** the set of o-semistable
objects, i.e.

o™ = UierP(1)\{0}. (15)

Also for a heart A of bounded t-structure in 7 we denote by HACStab(7) the subset of
the stability conditions (Z, P) € Stab(7) for which P(0, 1] = A (see [21, Definition
2.28]).

Recall that one of Bridgeland’s axioms [10] is: for any nonzero X € Ob(7T) there
exists a diagram of distinguished triangles called Harder—Narasimhan filtration:

0 E, Ey—»...—~E, | ——E, =X
A4
N ANV o7 (16)
Al A2 An
where {A; € Pt)}'_, 1 > to > --- > 1, and A; is non-zero object for any
i =1,...,n (the non-vanishing condition makes the factors {A; € P(t;)}?_, unique

up to isomorphism). Following [10] we denote ¢ (X) := t,, qb;‘ (X) := 11, and the
phase of a semistable object A € P(¢)\{0} is denoted by ¢, (A) := . The positive
integer: mq(X) = Y/, |Z(A;)| is called the mass of X w.r. to o([10, p.332]). We
will use also the following axioms [10]:

Xeo™ = ZX) =me(X) explings (X)), mo(X) =1Z(X)| >0 (17)
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X,Y €0” ¢o(X) > ¢po(Y) = Hom(X,Y)=0. (18)
Finally we note that:

My (X) = me(X1) +my(X2)
X=X 0 X2 = ¢, (X) =min{¢, (X1), ¢, (X2)}, (19)
oF (X) = max{op} (X1). ) (X2)}

which follows easily from the arguments for the proof of [21, Lemma 2.25].

3.1 Actions on Stab(7)
3.1.1 The universal covering group of GL* (2, R).

The universal covering group GL* (2, R) of GL™ (2, R) can be constructed as follows
(we point the steps without proving them). First step is to show that the following set
with the specified bellow operations and metric is a topological group:

GLT(2,R)

G eGLT(2,R), ¥ eC®R) _
Gy er V() >0, Yt + 1) =)+ 1, SERTD) - expiimy (1))

|G (exp(in1))]
(20)
unit element: (Idc, Idg) 20
multiplication: ((G1, Y1), (G2, ¥2)) > (G1 0 Ga, Y1 0 ¥) (22)
inverse element: (G, ¥) — (G, v~ 1) (23)
metric: d ((G1, Y1), (G2, ¥2))
= SuDg{IGl(exp(iﬂt)) — Ga(exp(imt)|, |1 () — Y2(D)[}. (24)
te
Second step is to show that the following is a covering map:
GLT(2,R) & GLT(2,R) (G,¥)— G. (25)

The subset U, = {G € GL* (2, R); sup,cr{lG(exp(int)) — exp(int)|} < sin(yre)}5
isevenly covered by a family of open subsets {(G, ¥); G € Ug sup,cg |V () —t — 2k|
< ¢} indexed by k € Z for small enough €. In particular one obtains a structure or a
Lie Group on ﬁﬁ(Z, R) such that 7 is a morphism of Lie groups.

Finally, one can show that GL* (2, R) is simply connected by recalling that
T (GLT2,R)) = Z is generated by S! = SO)cGLt(2,R) and then by find-
ing the lifts of this path in GL* 2,R).

Remark 3.1 Forany 0 < ¢ < 1,0 < ¢ < 1 there exists unique g, o = (G, ¥) €

G]:WZ, R) such that G1(1) = 1 and G‘l(exp(ins)) = exp(ime’) and ¥ (0) =
0,¢¥ (1) =1, ¥ (&) = ¢, in particular :

5 Neighborhood of Idc € GL* (2, R).
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Y0, =10,¢], v([e, 1) =[e 1] (26)
Furthermore, (gw/)_l =8¢

The right action of GL (2, R) on Stab(7) is defined by (recall [10]):

Stab(7T) x GLT(2,R) — Stab(T) ((Z,P), (G, ¥)) — (Z,P) - (G, ¥)
=G 'oZ,Poy). 27)

Using the formula (24) determining the topology on (?ZJr(Z, R) and the basis of
the topology in Stab(7") explained on [10, p. 335] one can show that the function in
(27) is continuous.

We recall also (see [10, Theorem 1.2]) that the projection Stab(7)

L Hom(Ky(T), C), proj(Z,P) = Z restricts to a local biholomorphism
between each connected component of Stab(7") and a corresponding vector subspace
of Hom(Ky(7), C) with a well defined linear topology (when rank(Ky(7)) < 400
this is the ordinary linear topology). Note also that the results in [ 10] imply that Stab(7")
is locally path connected (follows from the results in [10, Section 6] and [10, Theorem
7.1]), therefore the components and the path components of Stab(7") coincide and
they are open subsets in Stab(7).

Finally, assume for simplicity that rank (Ko (7)) < 4o00. Due to continuity of (27)
it follows that for each connected component X of Stab(7") the action (27) restricts
to a continuous action X X éi*(z, R) — X and it is easy to show that there is a
commutative diagram:

YxGL 2,R) —— %

projyxm * proj l (28)
V() x GLT(2,R) — V(%)

where V (X)CHom(Ko(7), C) is the corresponding to X vector subspace, such that
the vertical arrows are local diffeomorphisms (the right arrow is local biholomor-
phism), and the lower horizontal arrow is an action of the form (A, G) — Ao G ! on
V(X). Now it follows that the upper horizontal arrow is smooth, and therefore (27) is
smooth as well.

3.1.2 The action of C

There is a Lie group homomorphism C — GVL+(2, R) given by A — (e_)‘, Idr

_3®
g

(29) below. This action is free [34, Definition 2.3, Proposition 4.1]. It is easy to show

that for any X € 7, o € Stab(7'), z € C hold the properties in (30), (31) below, and

the HN filtrations of X w.r. to o and to zxo are the same:

). And composing the action (27) with this homomorphism results in the action

C x Stab(T) = Stab(T) zx (Z, {P()}ier) = (¢°Z, (Pt — I(2)/7)hier) (29)
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(2%0)* = 0% dro(X) = ¢ (X) +J(2)/7 X € 0** (30)
¢L, (X) = ¢F(X) + @)/ Mzwe (X) = " Omg (X). 31)

4 Triangulated categories with phase gaps and their norms
4.1 Full stability conditions

We start this section by recalling what is meant when saying that a stability condition
is full.

Full stability condition on K 3 surface is defined in [10, Definition 4.2]. Analogous
definition can be given for any triangulated category 7 and locally finite stability
condition whose central charge factors through a given group homomorphism ch :
Ko(T) — Z".

When Ko(7) has finite rank, we choose always the trivial homomorphism
Ko(7) — Ko(7).Now the projection Stab(7") % Hom(Ko(T), C), proj(Z, P) =
Z restricts to a local biholomorphism between each connected component of Stab(7")
and a corresponding vector subspace of Hom(Ky(7), C) (see [10, Theorem 1.2]).
A stability condition ¢ € Stab(7) in this case is a full stability condition, if
the vector subspace of Hom(K(7"), C) corresponding to the connected component
¥ containing o is the entire Hom(Ko(7), C), which is equivalent to the equality
dimc(X) = rank(Ko(7)).

As we will see later all stability conditions on K (I) are full, for all / > 1 (see
table (10)). It is reasonable to hope that, whenever Stab(7") # ¢, there are always full
stability conditions on 7 and, to the best of our knowledge, there are no counterex-
amples of this statement so far.

4.2 The &-norm of a triangulated category

Recall that for 0 = (Z, P) € Stab(7) we denote (see [18, Section 3]):
Pg = {exp(inps (X)) : X € 6°°} = {exp(int) : t € Rand P(¢) # {0}}, (32)
Here we will use also the notation:

PI=teR: P £(0) = PT=exp(inBT). (33)

The sets P! and E,T satisfy P = —P7, f;JT +1= FUT . In particular the closures
PT, PT satisty:

vol (PGT) =2mp (ﬁ_gm [0, 1]) =27 /[O - du, (34)
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where 1 is the Lebesgue measure in R and vol is the corresponding measure in S'
with vol(S!) = 27. Due to (27), (30), for any z € C, any g = (G, /) € GL+(2, R),
and any o € Stab(7) we have:

L — exp(iS(Z))Pg ﬁgg =y~ (f’?) ) 4>

ya (o

Definition 4.1 Let 0 < & < 1. Any subset of S! of the form exp(ir[a, a + €]), where
a € R will be referred to as a closeds-arc in S'.

Remark 4.2 The action of Aut(7) on Stab(7") was recalled in the end of the previous
section. Following this definition one defines straightforwardly a biholomorphism
[F] : Stab(77) — Stab(7>) for any equivalence F between triangulated categories 7;

and 7, satisfying P[?](U) = P(,T1 for each o € Stab(77).

In Definition 4.11 we will use the following subset of the set of stability conditions:

Definition 4.3 For any 0 < ¢ < 1 and any triangulated category 7 we denote:

Stab, (7)) = {o € Stab(7) : o is full and SI\PUT contains a closed ¢ arc}
Stabyg.q4¢)(7) = {o € Stab(7) : o is fulland P/ N [a,a + &] = 0}.

It is obvious that (recall also 35):
Stabg (7)) = UgerStabyg, a4¢1(7) = CStabyg ¢1(7) (36)

The next simple observation is:

——t
Lemma4.4 Let g, € GL (2,R) be as in Remark 3.1. Forany 0 < ¢ < 1,0 <
g’ < 1 holds:

Stabyg,¢] (7) - 8ee! = Stab[o,e/](T). 37

Proof Using (35), (26), and the fact that v is diffeomorphism we compute
P N10.61=y ' By (0,6 =y~ (BT n1o0.21).

Now the lemma follows from the very Definition 4.3 and the property gg_sl, =gy .0

Corollary 4.5 Let T be any triangulated category. The following are equivalent:

(a) Stab.(7) # @ for some ¢ € (0, 1)
(b) Stab.(7) # @ for each e € (0, 1)
(©) P(,T is not dense in S' for some full o € Stab(7).

Proof (a) = (b). Follows from (36) and Lemma 4.4.
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(b) = (c). It is obvious from the definitions that for any 0 < ¢ < 1 and any o €
Stab, (7)) the set PUT is not dense in S!.
©)=(a). If P(,T is not dense, then S! \P(,T contains an open arc, but then it contains
a closed arc as well and then o € Stab,(7") for some ¢ € (0, 1).
O

Definition 4.6 A triangulated category 7 will be called a category with phase gap if

PUT is not dense in S' for some full o € Stab(7) (by Corollary 4.5 then Stab, (7)) is
not empty for any 0 < ¢ < 1).

Lemma 4.7 If Ko(7) has finite rank, then T has a phase gap iff there exists a bounded
t-structure in T whose heart is of finite length and has finitely many simple objects.

Proof Let A be such a heart and let 51, 52, ..., s, be the simple objects in .A. Under
the given assumptions Ko (7) = Ky(A) = Z". [10, Proposition 2.4, Proposition 5.3]
imply that for any sequence of vectors z1, z2, . . ., 2, in H there exists unique stability
condition 0 = (Z,P) with P(0,1] = A and Z(s;) = z;,i = 1,...,n. For this
o we have Z(P(0, 1IN0} = {X/_ aizi : (a1, a2, . .., ay) € N"\{0}} and therefore
Zo*)C £ {X 1 aizi : (a1, a2, ..., ay) € N"\{0}, now from [16, Lemma 1.1] it
follows that o is locally finite. Recall that we denote by HACStab(7") the subset of
the stability conditions (Z, P) € Stab(7") for which P(0, 1] = A (see after 15). So
far we constructed ¢ € HA determined uniquely by any sequence 21, 22, ..., Zp in
H. Varying the vector (z1, 22, ..., 2,) € H" we obtain a biholomorphism between
H" and the subset HACStab(7). In particular the stability conditions in HA are full.
Since for o € HA corresponding to a sequence z1, 22, - - . , 2 in H holds Z(o*%)C £+
>0 aizi (a1, a2, ..., ay) € N'\{0}}, it follows that Z(c**)C =+ {x exp(ira) +
yexp(im(a@a+1—¢) : x,y € (0,400)} for some a € R and some 0 < ¢ < 1,
therefore by (17) Sl\P(,T contains a closed ¢ arc, hence o € Stab.(7), and hence 7
has a phase gap (recall Definitions 4.3, 4.6).

Conversely, let 0/ = (Z, P) € Stab. (7). By definition ¢’ is a full stability con-
dition. Due to (36), we can choose A € C, so that the stability condition 6 = Axc’
satisfies P, (1) = {0} fort € [0, €] and P (0, 1] = Py (e/2, 1]. From [11, Lemma4.5]
it follows that P, (0, 1] = P, (¢/2, 1] is a finite length quasi-abelian category (here
the property of o being full is used), and since o is a stability condition, P, (0, 1] is a
heart of a bounded t-structure. Therefore P, (0, 1] is a finite length abelian category
whose simple objects are a basis of K((7), in particular the simple objects are finitely
many. O

Remark 4.8 The elements o € Stab(7") for which P(0, 1] is of finite length and with
finitely many simple objects are called algebraic stability conditions and have been
discussed extensively in [37].

Remark 4.9 In [12] they define a quiver with potential starting with a triangulation
of a compact closed surface with marked points. The full subcategory of the derived
category of the complete Ginzburg algebra of this quiver consisting of modules with
finite-dimensional cohomology is a CY3 category. Due to (i), (ii) in [12, Subsection
7.1] and Lemma 4.7 CY3 categories obtained by this procedure have phase gaps.
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Remark 4.10 Let 7 be proper and with a full exceptional collection. [22, Remark 3.20]
and Corollary 4.5 imply that Stab,(7) # @ forany 0 < ¢ < 1, i.e. 7 is a category
with a phase gap.

The main definition of this section is:

Definition 4.11 Let 7 be a triangulated category with phase gap. Let 0 < ¢ < 1. We
define:

71, = sup {%vol (Ps):0 € Stabg(T)} : (38)

Remark 4.12 For a category 7 which carries a full stability condition, but has no phase
gap (i.e. POT is dense in S! for all full stability conditions o) it seems reasonable to
define ||7 ||, = w(1 — ¢), but we will restrict our attention to categories with phase
gaps in the rest.

In remarks 4.13, 4.14 ¢ and 7 are as in Definition 4.11.

Remark 4.13 Using (34), (35), (36) one shows that (u is the Lebesgue measure of R):
1T, = sup {;m ([e, 1] mPTJ) o€ Stab[o,g](T)] . (39)

Remark 4.14 We have always 0 < || 7|, < 7 (1 — ¢).

Remark 4.15 Using Remark 4.2 we see that if 7;, 7, are equivalent triangulated
categories with finite rank Grothendieck groups, then for any 0 < ¢ < 1 holds
1711l = 1221l

Lemma4.16 Let ¢, &’ be any two numbers in (0, 1).

(a) There exist0 <m < M suchthatm | T ||, < 7Ty < M ||T||, for any category
with a phase gap T. In particular, for any category with a phase gap T we have:
IT). =0 < ||l =0.

(b) For any category with a phase gap T we have |T ||, =n(1—¢) < |7l =
w(l—¢).

Proof We will use the element g, .» = (G, ¥) € f}\l/f(Z, R) from Remark 3.1. In
particular the function ¢ € C*°(R) restricts to a diffeomorphsim v : [¢/, 1] — [e, 1].
Let us denote the inverse function by «, then we choose m, M € R as follows:

Yl =kile 11> [ 1] Viele 1] 0<m<k'(t) <M. (40)

With the help of [39, formula (15) on page 156], we see that for any Lebesgue
measurable subset AC[e, 1] holds (for a subset EC[¢’, 1] or EC[g, 1] we denote by
xE the function equal to 1 at the points of E and O elsewhere):

1

1 1
w0 = [rn@dt = [ gt o = [ oo

&



Some new categorical invariants Page 17 of 60 45

which by (40) implies:
mp (A) < p(k (A)) < Mu(A). (41)

Using Remark 4.13, Lemma 4.4, and the second equality in (35) we get:

171/ = sup {1 (1e. 11N 7 ) : o € Stabjo e1(T) 42)
17l /7 = sup [ (ke (12 110 7)) : 0 € Stabpo,e (D] 43)

Now (a) follows from (41), (42), (43).
(b) Let | 7], = m(1 —¢) and § > 0. We will prove that (43) equals (1 — ¢’)

by finding 0 € Stabpg (7)) such that (K ([8, 11N P:,)) > 1 —¢ — 6. Since

1—e/=,u@an)=,L@(RJ]mE))+u(xﬁalnﬁ))“mnwdmﬁmi
o € Staby,¢(7) such that:

M@(kJn§3)<a. (44)

Since |7l = m(1 — &), (42) ensures that there is o € Stabyg¢(7) such that
M([e, 11N f~’g> > 1 —¢e — %, which due to the equality u([e, 11N f~’g> +

u ([8, 1]\P?g> = 1 — ¢ is the same as u ([8, 1]\P70> < % We combine (41) and the

latter inequality to deduce the desired (44): n (K ([8, 1]\PT<,)) <Mpn ([e, 1]\}~’_(,) <
8. m]

[18, Corollary 3.28] (see [21, Corollary 3.25] for any algebraically closed field K)
amounts to the following criteria for non-vanishing of || 7|,

Proposition4.17 Let (Eg, E1, ..., E,;) be a full exceptional collection in a K-
linear proper triangulated category D. If for some i the pair (E;, E;+1) satisfies
hom!(E;, Eiy1) > 3 and hom=C(E;, Ei 1) = 0, then | D|, > 0.

Corollary 4.18 Let ¢ € (0, 1). Then:
(a) If Q is an acyclic quiver, which is neither Dynkin nor affine, then || D?(0) || . >0

(b) || DP(coh(X)) ||8 > 0, where X is a smooth projective variety over C, such that
DP(coh(X)) is generated by a strong exceptional collection of three elements

Proof (a) Follows from the previous proposition, [18, Proposition 3.34], and the fact
that each exceptional collection in D (Q) can be extended to a full exceptional
collection (see [17]).

(b) It follows from proposition 4.17 and [18, 3.5.1].

m]

In Sect. 8 we will refine Proposition 4.17, which will help us to prove that
| Db (coh(X) Hg =7(l —¢)if X is P! x P!, P* with n > 2 or some of these blown
up in finite number of points.
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Proposition 4.19 Let ¢ € (0, 1). For acyclic quiver Q we have || DP(Q) ||8 =0if Q0
is affine or Dynkin. In particular || DY (coh(P)) ||£ =0.

Proof If Q is affine or Dynkin, then from the first and the second raws of table (9) we
see that vol (P;) = 0 for any o € Stab(D?(Q)), therefore | D”(Q) ||8 =0, and in

Corollary 4.18 we showed that H Db Q) H%j > ( for the rest quivers. O

5 Stability conditions on orthogonal decompositions

First we recall the definition of a semi-orthogonal, resp. orthogonal, decomposition of
a triangulated category:

Definition 5.1 If 7 is a triangulated category, 71, 72, ..., 7, are triangulated subcat-
egories in it satisfying the equalities 7 = (71, T2, ... 7,) and Hom(7;, 7;) = O for
Jj > i, then we say that 7 = (71, 75, ...7,) is a semi-orthogonal decomposition. If
in addition holds Hom(7;, 7;) = O fori < j, then we say that 7 = (71, D2, ... 7;)
is an orthogonal decomposition, in which case we will write sometimes 7 = 77 &
T &7, Obviously, if 7 = (71,72, ...7,) is an orthogonal decomposition,
then 7 = (Zyq1y, Z52), - - - Zs(n)) 1s an orthogonal decomposition for any permutation
s:{l,...,n} > {1,...,n}.

Proposition5.2 Let 7 = (71,7, ...,7,) be any orthogonal decomposition. Let

Ko(7}) iny Ko(T) ry Ko(7;), 1 < i,j < n be the natural biproduct diagram.
Then:

(a) The following map is a bijection:

Stab(7) — Stab(7;) x Stab(Z3) x - - - x Stab(7;,) (45)
(ZAP®)}icr) = ((Z o pr1, {P() N Ti}icr)s
co s (Z o pry, {P() N Ty}ier)) - (46)

(b) For any (Z,{P(t)};cr) € Stab(7) and any t € R the subcategory P(t) is non-
trivial iff for some j P(t) NT; is non-trivial.
(¢) If rank(Ko(7Z;)) < 4+oo foralli = 1,2,...,n, then the map defined above is

biholomorphism.
(d) For each o € Stab(7T) holds PJT =V, ng where (o1, ..., 0y,) is the value of
45)ato.

Proof We will give all details for the proof of (a), (b), (c) in the case n = 2. The
general case follows easily by induction. (d) follows from the very definition (32) and
(a), (b).

It is well known that for each X € 7 there exists unique up to isomorphism triangle
Ey > X - E; — Ex[1]with E; € 7;,i = 1,2. By Hom(7;, 72) = 0 it follows that
each of these triangles is actually part of a direct product diagram and pr; ([ X]) = [E;]
fori =1, 2.
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Now let X € 77 and U - X — B — U[1] be a triangle in 7. Using
Hom(73, 71) = Hom(71, 73) = 0 and decomposing U into direct summands U @ U;
with U; € 7; one easily concludes that the triangle U — X — B — U[1] is isomor-
phic to a triangle of the form U; ® Uy — X — B’ @ U[1] — U;[1] ® U[1]. If we
apply these arguments to the last triangle in (16) and using thathom(E,_1, A,[i]) =0
fori < 0, we immediately obtain E,_1, A, € 7] and then by induction it follows that
the entire HN filtration of X lies in 77, in particular A; € P(t;)N7; fori = 1,2,...,n,
furthermore we have Z([X]) = Z(pr1([X])) for each X € P(¢) N 7} and now it is
obvious that (Z o pry, {P(t) N 711};er) = (Z1, Py) is a stability condition on 7.

The same arguments as in the previous paragraph apply to the case X € 75 and
show that (Z o pry, {P(t) N T2};er) = (Z2, P2) is a stability condition on 7;. We
will show that o; are locally finite fori = 1, 2.

Indeed, since o is locally finite stability condition on 7, then there exists % >e>0
such that P(t — ¢, t + ¢) is quasi-abelian category of finite length for each r € R.
One easily shows that P;(t — e, t +¢) = 7; N P(t — &, t + ¢) for each ¢. From [10,
Lemma 4.3] we know that a sequence A — B — C in P;(t — e, + ¢) is a strict
short exact sequence iff it is part of a triangle A — B — C — A[l] in 7;. Since
for A,B,Cin7; A—> B — C — A[l]is triangle in 7; iff it is a triangle in 7, we
deduce that for A, B, C € P;i(t —¢e,t +¢) A — B — C is a strict exact sequence in
Pi(t — e, t + ¢) iff it is a strict exact sequence in P(t — ¢, + ¢), and now from the
fact that P(t — ¢, t + ¢) is of finite length it follows that P; (t — ¢, ¢ + ¢) is of finite
length and o; € Stab(7;) fori =1, 2.

So far we showed that the map is well defined. Since for any interval /CR the
subcategory P(7) is thick (see e.g. [21, Lemma 2.20.]), it follows that P(¢) = P1(t) &
Pa(t) for each t € R and hence follows the injectivity of the map. Furthermore, using
the terminology of [16, Definition before Proposition 2.2] we see that o is glued from
o1 and o;. From the given arguments it follows also that for X € 7; the HN filtrations
w.r. to 0 and w.r. to o; coincide, in particular:

X eTi = ¢ (X) =¢;(X) me(X) =mg(X) (47)

on the other hand any X € 7 can be represented uniquely (up to isomorphism) as a
biproduct X = X @ X, with X; € 7; fori = 1,2 and (19) imply

me(X) = Mg (X1) + maz(XZ)
XeT=XEX10X2, XieTi= ¢ (X) = min{qb;l(Xl),(Pg_z(Xz)} (48)
o (X) = max{g; (X1), ¢, (X2))

Conversely, if (o1, 02) € Stab(77) x Stab(73), then [16, Proposition 3.5] ensures
existence of a locally finite stability condition o € Stab(7") glued from oy, 0, and
using [16, (3) in Proposition 2.2]) one easily shows that our map sends the glued o to
the pair (o1, 02), hence the surjectivity of the map follows.

Now we will show that if rank (Ko (7Z;)) < 4o0 for i = 1, 2, then the map defined
above is biholomorphism. First we show that it is continuous.

[10, Proposition 8.1.] says that for any triangulated category 7 assigning to any
two o1, 07 € Stab(7) the following:
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d(c1,02) = sup {!% X) —
0£XeT

moz (X) }
me, (X)
€ [0, +00] 49)

o2

defines a generalized metric whose topology coincides with the topology of Stab(7").

We denote by d, d1, d; the generalized metrics on Stab(7), Stab(77), Stab(73). For
any 0,0’ € Stab(7T) let (o1, 02) and (o, o) be the pairs assigned via the bijection.
To show that the map is homeomorphism we will show that :

max{d; (o1, 0}), d2(02, 05)} < d(0, ") (50)
d(o,0') <di(o1,0]) + dar(02, 03) (5D

The first (50) follows easily from (47). The second requires a bit more computations,
which we will present partly. Take any X € 7 and decompose it X = X; & Xo,
X; € 7;, then from (48) we see that

‘log me (X) _ Mg, (X1) + maz(XZ)
mg(X) My (X1) 4 mep (X2)
< liog me, (X1) Mgy (X2) (52)
my (X1) My (X2)
< di (01, 01) + d2(02, 03), (53)

where we used, besides the definition of the generalized metrics (49), the following
lemma:

Lemma 5.3 For any positive real numbers x1, X2, y1, y2 holds the inequality:

X1 +x X X
‘log ! 2 < log—] + log—2 .
YL+ J1 y2
Proof We can assume that % > 1 (otherwise take %). Now we consider three

cases:

If 3t > 1and xz > 1, then the desired inequality becomes log 222 <

X1
Sy S logy1 +

log = Wthh after exponentlatlng is equivalent to

X1+ x2 X1X2
——— < —= &= (x1 +x2)y1y2 < x1x2(001 + y2)
yi+y2 o iy

= 0 < x1y1(x2 — y2) +x2y2(x1 — y1)

the latter inequality follows from x; > y1, xo > y».
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If 3t < 1and xz > 1, then the desired inequality becomes log 15-2 xlﬂz

log Wthh after exponentlatlng is equivalent to

X1+ x2 < X2
yi+y2 X1y
&= 0 < yixg — xiy2 +x22(y1 — x1)

> (x1 +x2)x1y2 < y1x2(y1 + y2)

the latter inequality follows from y; > x1, xo > y».

log Wthh after exponentlatmg is equivalent to

X1+ x2 <2

| -I-)’2 XX
2 2 2 2

= 0 < yiy2 —x7x2 + Y351 — X5%1

> (x1 +x2)x1x2 < y1y2(31 + y2)

the latter inequality follows from y; > x1, y2 > x».

< log 3+ +

If ’” < 1and "2 < 1, then the desired inequality becomes log J1--2 ““2 < log ;—1 +

Now in order to prove (51) it is enough to show that |¢f(X) — ¢;E,(X)|

di (01, 0{) + d2(02, 05) which in turn via (48) is the same as

[max(@7; (X1), 6 (X2)) — max(@, (X0), 67 (X))
< d(01,01) + dr(02, 0%)

[min{g7, (X1, ¢, (X2)) = min{g, (X1), 6, (X2)]|
< di(01,07) + d2(02, 03),

which in turn follow from the following:

Lemma 5.4 For any real numbers x1, x2, y1, y2 we have:

[max{xy, x2} — max{y1, y2}| < |x1 — y1l + [x2 — y2|
[min{xy, x2} — min{y1, y2}| < |x1 — y1] + |x2 — ¥2|

(54)

(55)

Proof If max{x;, xo} = x; and max{y, y2} = y; for the same i, then the inequalities
follow immediately. So let max{x, x2} = x; max{y1, y2} = y;, i # j,e.g. leti =1,

j = 2.Then x1 > x3, y1 < y2, and the lemma follows from:

Imax{x;, x2} — max{y, y2}| = [x1 — y2|
_ {xl —yn=xi=yi+yi—y»=<xi—y1=|Ix1 —=ylifx; >
m=—xi=y—x+x-x1<y-—x=x—-nlifx <y

[min{xy, x2} — min{y1, y2}| = [x2 — y1l
_ {X2—y1 =x2— X1 +x1 —y1 <x;—y1 = |x;p —yi|ifx2 >y
yi—x2=yi—ytyn—x2<y—x2=|x2—ymlifxa <y

(56)

. (57)
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Thus, we have (50), (51) and they imply that (45) is homeomorphism for n = 2.

Let Stab(7) % Hom(K((T), C), Stab(7;) 2% Hom(K((7;), C), i = 1,2 be
the projections proj(Z,P) = Z. Then the following diagram (the first row is the map
(45) and the second row is the assignment Z — (Z o pry, Z o pr»)) is commutative:

Stab(7) 2 Stab(7;) x Stab(73)
projl ) projlxprojzl
Hom(K((7), C) % Hom(K((7}), C) x Hom(K((T2), C).

If we take any connected component X CStab(7), then (since ¢ is homeomorphism)
@(X) = X1 x X, is a connected component of Stab(7;) x Stab(73), resp. X; are con-
nected components of Stab(7;), and furthermore m = dimc(X) = dimc (X x Xp).
From the Bridgeland’s main theorem we know that proj restricts to local biholo-
morphisms between ¥ and an m-dimensional vector subspace VCHom(K((7), C)
and proj; x projj restricts to local biholomorphisms between ¥; x X, and an m-
dimensional vector subspace V| x Vo, CHom(Ky(77), C) xHom(K((77), C). It follows
(using that ¢ is a linear isomorphism and that each open subset in a vector subset con-
tains a basis of the space) that ¢’(V) = V| x V,. Thus, the diagram above restricts
to a diagram with vertical arrows which are local biholomorphisms, the bottom arrow
is biholomorphism, and the top arrow is a homeomorphism, it follows with standard
arguments that the the top arrow must be biholomorphic. It follows that ¢ is biholo-
morphism and we proved the proposition. O
From this proposition and Definition 4.3 it follows:

Corollary5.5 Let T =171 &1, ® --- ® 7, be an orthogonal decomposition (Def-
inition 5.1) and let rank(Ko(7Z;)) < +oo fori = 1,...,n. Let Stab(7) —
Stab(77) x - - - x Stab(7,), 0 — (01, 02, ..., 0y) be the biholomorphism from Propo-
sition 5.2a.

For any 0 < ¢ < 1 the following are equivalent: (a) o € Stab.(7), (b) {o; €
Stab (7;)}?_, and there exists a closed g-arc y such that ng Ny = @ for each
1<i<n.

In particular T has a phase gap iff T; has a phase gap for each 1 <i < n.

Since the closure of A U B equals the union of closures of A and B and vol(A) <
vol(A U B) < vol(A) + vol(B), from Corollary 5.5 it follows:

Corollary5.6 Let T =11 &1 & - - - ® T, be an orthogonal decomposition with finite
rank Grothendieck groups of the factors, and let 0 < ¢ < 1.
If T has aphase gap and HT, HE = Oforsome j, then|T|, = || (T, D, Tj—1, Tj+1,
o T llg-

6 The inequality [[(77, 72) |l = max{lT1ll¢, I 721l}

e € (0, 1), where (77, T>) is a semi-orthogonal decomposition (see Definition 5.1) of
some 7 .

Here we show conditions which ensure ||(71, 72) |, > max{||71],, 72|l } for any
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Theorem 6.1 Let T be proper and let Ko(7T) has finite rank. Assume 0 < ¢ < 1. Let
T = (11, T1) be a semi-orthogonal decomposition. If 1|, T are categories with phase
gaps, then T is a category with phase gap and for any 0 < ¢ < 1 holds :

K71, To)lle = max {I 71l , 121l } - (58)

Proof Take any 0 < p. Let 0; = (Z;, P;) € Stab.(7;) be full stability conditions,

S. t.
vol (Pg’)
—= > 7,

— for i =1,2.

2 H !

Due to (36) we can assume that exp(in [0, 8])CSl\P§ . By the same arguments as
in the last paragraph of the proof of Lemma 4.7 it follows that P, (0, 1] are finite
length abelian categories, therefore the simple objects in them are a basis of Ko (7;)
for i = 1,2, and these abelian categories are the extension closures of their simple

objects. In particular the sets of simple objects are finite and it follows that for some
J € Z holds

HomSI(PO'I (09 1]7 Paz(os 1][]]) = HOHlS](PO'I (Ov 1]7 Paz(jv .] + 1]) = 0
Recalling (29) we deduce thatHomfl(Pg] (0, 11, P(~ijn)so, (0, 0+1]) = 0. By replac-

ing oy with (—ijm)xo, we obtain stability conditions o; € Stab.(7;) fori = 1,2
satisfying the following conditions:

vol <P§>

— > 17l —p for i=1,2, (59)

Homfl(Pgl (0, 11, Py, (0, 17) = 0, (60)

Ps,(0,1] and Py, (0, 1] are of finite length and with finitely many simples,
(61)

Po;(t) ={0} for tel[j,j+e] for i=1,2,j€Z. (62)

In the listed properties of o; € Stab(7;) with the given semi-orthogonal decom-
position 7 = (7, T) are contained the conditions of [16, Proposition 3.5 (b)]. This
proposition ensures a glued (see [16, Definition ]) locally finite stability condition
o = (Z,P) € Stab(7). The glued stability condition satisfies the following (we use
[16, Proposition 2.2 (3)] and write P; instead of Py, )

P(0, 1] is extension closure of P;(0, 1], P»(0, 1] (63)
Vie{l,2} Vi e R P;(t)CP(t) (64)
Z(X)=2Z((X) for X eT; Z(X)=2ZyX) for X €T, (65)



45 Page 24 of 60 G. Dimitrov, L. Katzarkov

We will show that
tel0,e] = P@)=0. (66)

Indeed, let s11, s12, .. ., S1n and s21, $22, . . ., $2,,, be the simple objects of P (0, 1] and
P»(0, 1], respectively. Then {sy;}7_, Co7*, {s2;}72,Co;* and by (62), (65), and (17)
we deduce that

Z(s1i), Z(s2j) € Ry exp(in (e, 1)), (67)

and on the other hand by (63) it follows that Z(X) is a positive linear combination
of {Z(s1)}!_;, {Z(s2)}]2, for X € P(®\{0}, t € (0, 1], and therefore Z(X) €
R.gexp(imz(e, 1)) , hence (17) gives ¢, (X) € (e, 1) and (66) follows. This in turn
implies exp(irr [0, 5])ﬂP(,T = {Jand then for obtaining o € Stab. (7) (recall Definition
4.3) itremains to show that o is a full stability condition. We will prove this by showing
that P(0, 1] is a finite length abelian category (then it follows that HF (.11 = fn+m
and o is full, since o € HP©-11). However [16, Proposition 3.5 (a)] claims that if O is
an isolated point for I (Z; (P; (0, 1])) for i = 1, 2 (which is satisfied due to (61) and
(62)), then P (0, 1) is a finite length category, and on the other hand due to (66) holds
P(0, 1] = P(0, 1). Therefore indeed P(0, 1] is finite length category and o is a full
stability condition.

Finally, from (64) it follows that P,Z[?CPT

o

vol (ng ) < vol (ﬁ) fori =1, 2, recalling (59) we derive:

therefore Pg,?CPT and hence

o

1(P,
vol(P) max {I7ill, . 1770} — . (68)

This ineqaullity holds for any ;> 0 and from the very definition 4.11 we deduce
(58). O

Remark 6.2 Let 7, 71, 7 be as in Theorem 6.1 (in particular there is a SOD 7 =
(71, T2)). From the proof of Theorem 6.1 we see that if for some i = 1, 2 there exists
afull o € Stab(7;) with infinite set of phases Py,, then there exists a full o € Stab(7;)
with infinite P, as well.

Corollary 6.3 For any exceptional collection (Ey, Ey, ..., E,) in a proper triangu-
lated category and for any 0 < i < n we have:

I{Eo, E1, ..., En)lle

2 max {”(EOs Elv ceey El)”e 5 ||<Ei+la Ei+2’ ey EVl)”g} . (69)
Proof Due to Remark 4.10 the categories (Ey, Ei, ..., E;), (Eo, E1, ..., Ei),
(Eit+1, Eiy2, ..., E;) have phase gaps. All the conditions of Theorem 6.1 are
satisfied for the semi-orthogonal decomposition (Ey, ..., E,) = ((Eo,..., E;),

(Eit1, ..., Ey)), hence equality (58) gives rise to (69). O
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Corollary 6.4 Let X be a smooth algebraic variety and let Y be a smooth sub-variety
so that KO(Pb(X)), Ko(DP(Y)) have finite rank and D?(X), D®(Y) have phase gaps.
Denote by X the smooth algebraic variety obtained by blowing up X along the center
Y.

Then D ()~() has phase gap and || Db()?) ||‘s > max { || DP
any e € (0, 1).

M|} for

Proof [7, Theorem 4.2] ensures that there is a semi-orthogonal decomposition
DY(X) = (T1,Ts, ..., Ty, D’(X)), where 7; is equivalent to D?(Y) for i
1,2,..., k. Now Theorem 6.1 ensures that the inequality holds. O

7 Norm of D2 (K (1))
7.1 The Helix in D (K())) for | > 2

From now on we assume that / > 2 and denote 7; = D (K (D)). We write dim(X) =
(n, m), dimy(X) = n, dim; (X) = m for a representation:

X =k k" e Repr(K(D))
N ¢

Recall that Repk (K (l)) is hereditary category in which for any two X,Y €
Repk (Q) with dimension vectors dim(X) = (ny, my), dim(Y) = (ny, my) holds
the equality (the Euler Formula):

hom(X, Y) —hom! (X, Y) = nyny + mymy — Inym, (70)

Let 59,51 € 7; be so that so[1], s; are the simple objects in Repg(Q) with
dim(so[1]) = (1,0) and dim(s;) = (0, 1). Using (70) one easily computes
hom(sg, s1) = [, homP(sg,s;) = 0 for p # 0 and hom™* (s, s9) = 0. With the
terminology from Sect. 2 we say that (sg, s1) is a full strong exceptional pair in
T = DP(K ().

Remark 7.1 Recall that (see e.g. [9, p. 222]) for any exceptional pair (A, B) in any
proper triangulated category 7 one defines objects L 4 (B) (left mutation) and Rp(A)
(right mutation) by the triangles

C0€UA B

La(B) — Hom*(A, B) ® A Chg A SRS o (A, B) ® B — Rg(A)

(71)

and (L4 (B), A), (B, Rp(A)) are exceptional pairs as well, they are full if (A, B) is
full.

It follows, that for any exceptional collection & = (Ey, E, ..., E;) in 7 and for
any 0 < i < n the sequences R;(£) = (Eo, E1,..., Eix1, Rg,y (E), ..., Ep),
Li(£) = (Eo,E1,...,Lg (Eiy1), Ei,..., E;) are exceptional and (R;(£)) =
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(L;i(€)) = (£). The sequences L;(£) and R;(E) are called left and right mutations of
E.

From the exceptional pair (so, s1) we get objects Lg,(s1), R, (so) via left and right
mutation, denoted by s_1, s2, respectively, and each two adjacent elements in the
sequence s_i, g, 51, s2 form a full exceptional pair. Applying iteratively left/right
mutations on the left/right standing exceptional pair generates a sequence (infinite
in both directions) of exceptional objects {s;};cz. This is the helix induced by the
exceptional pair (sg, 51), as defined in [9, p. 222]. In [19, Section 5 - see (25), (27) and
Lemma 5.2] with the help of results for geometric helices in [9] and is proved that:

complete lists of exceptional pairs and objects (up to shifts) are

{(si, siv1)}iez and {si}icz. (72)
no two elements in {s;};cz are isomorphic and s<o[1], s>1

€ Repr (K (1)) (73)
for any i € Z there exists a distinguished triangle

sic1 = st > sip1 — sil1] (74)
i=J {Egﬁf’sfs’:{v)j)ioo for p£0° (73)

hom! (s;, 5;) # 0

hom?(s;,s;) =0 for p#1"° (76)

i>j+1 = {

7.2 The set of phases

We prove first the following Proposition

Proposition 7.2 We have a disjoint union Stab(7;) = Z U (U;cz Z;) and:

c€Z & VieZ siec® and ¢(s;) < dp(sip1) <o) +1  (77)
0€Z & 55,5141 €0 and ¢(si)+1 < P(sivy). (78)

The subset Z is open and it is biholomorphic to the specified subset of C* via the
following map:

Z - {(z1,22) € C 3(z1) < S(22) < (1) + 1)
Z3(Z,P) > (log|Z(si)| +imdg (i), 1og | Z(sit- )| + 1w dg (sig1)) . (79)

Furthermore, ifo € Z; and ¢ (si11) > ¢(s;) + 1, thens;j ¢ o’ for j #1i,j #i+ 1L
Ifo € Ziand ¢ (siyx1) = ¢(s;) + 1, then s; € o°° for each j € 7.

Proof The existence ot a disjoint union Stab(7;) = Z U ;.7 Z;, with the properties
(77), (78) and the biholomorphism (79) follow from [23, Proposition 6.1, formula
(35), Lemma 6.2].

Assume now thato € Z; and ¢ (si41) > ¢ (s;) + 1 forsomei ¢ (si+1) > ¢(s;) + 1.
If s; € 0% for some j > i+ 1, then due to (75) ¢(s;) > ¢(si1+1), and hence
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o(sj) > P(si) + 1, hom! (s i, 8i) = 0, which contradicts (76). The arguments for the
case j < i are similar.

Finally, assume that o € Z; and t = ¢ (sj+1) = ¢(s;) + 1. Recall that so[1] and s;
are the simple ojects in Repi (K (1)) (see after (70)). It follows that for each j we have
that s;[k] is in the extension closure of so[1] and s for some k. Using [23, Corollary
5.3] one deduces easily that for each j we have that s;[k] is in the extension closure
of s;[1] and s; 41 for some k, and since s;[1], s;11 € P(¢) it follows that s;[k] € P(2),
therefore s; € o*°. a

We start by some comments on the root system of K (/). The root system of K (I) is
Ay = A (K1) = AjCU A;ﬁ, where AJS ={(n,m) e N* : n? + m? —Imn = 1}
and A" = {(n,m) € N* : n* + m? lmn < 0}\{(0, 0)}. It is well known that the
real roots A} are exactly the dimension vectors of the exceptional representations in
Repk (K (1)) and for the imaginary roots Am we have formula (74) in [18]. From (72)
and Lemma 7.3 we have the complete list {s<o[1], s>1} of exceptional representations
in Repk (K (1)). Let us denote the corresponding dimension vectors as follows:

ooy Jdim(si)  i>1
(m”“‘{@mmnhiso (80)
Therefore we can write:
Alri ={(nj,m;):i € Z}
Al+={(n,~,m,-):ieZ}U{al_1§%SalzneNzl,meNzl}. 81)
I+12—4 1=V =4 a? +1
a=—>)= azl=T; alta = ’al =1. (82)

We will need later the following facts for the real roots {(n;, m;) : i € Z}:

Lemma?7.3 (a) (n—;,m-1) = (1), (no,mo) = (1,0), (n;,my) = (0, 1),
(n2,mp) = (1,1)

(b) (m—_j,n_j) = (njt1, mj41) fori > 0.

() n_j >m_;andnjy1 <mjqy fori >0, njp1 >0andm_; > 0fori > 1.

m>%=§—/%—1+#nm;’=2+/ — 14 b fori = 1

B S e — n n i—Q 1
(e) T s > > = a;and 0 = m1 < T a;

< e <

Proof (a) (ng, mg) = (1,0), (n;, my) = (0, 1) follow from the definition. The trian-
gles (74) fori = 1,and i = 0 amount to short exact sequences:s{ — 5o — so[1]
and s; — s_{[1] — so[l]l in Repk (K (1)), and it follows that dim(s>) = (1, /),
dim(s—([1)) = (, D)

(b) The equality for 0 < i < 1 follows from (a). We make the induc-
tion assumption that for some p > 1 the equality holds for any 0 <
i < p, we will make the induction step, namely that the equality for
i = p + 1 follows from this induction assumption. Indeed, for i > 1
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from (74) we obtain the following short exact sequences in Repk (K (I)):
s—ict[1] = s5, (11 — s_i1[1], s; — s, — si42 therefore for i > 1 we
obtain:

neji—y=lIn_j—n_jy1 m_j_1=Im_;j —m_;j (83)

nitp =lInigy —n; migo =Imip —m; (84)

having these recursive formulas one easily caries out the inductive step.

Due to (b) it is enough to show that n;41 < m;4. For i = O this is shown in
(a). For i > 1 we have hom(s;+1, s—;i[1]) > O, homl(sl-H, s_i[1]) = O (recall
Lemma 7.3), hence the Euler formula amounts to:

(c

~

(dim(si41), dim(s—;[1])) = hom(si41, s—;[1]) — hom! (s 11, s—[1]) > 0

= ((it1, mit1), (n—j,m_;)) = njpin—i + miyym—; —Injyym—_; > 0.

Putting the equality from (b) in the last inequality we getn;y1m;4+1 +m;+1ni41 —
lni+1ni+1 > 0. Therefore ni4+1 (2m,~+1 — ln,-+1) > O, hence niy1 > O, miy1 >
él’li+1 > n;4+1 and (c) is proved.

(d) Take any i € Z, i # 0. From (c) we know that m; # 0. From (81) we know that

2
n?+m?—In;m; = 1, hence via the quadratic equation <r'r'l—’l> —l’% +1-— # =0

we get +i = % (l:l: 12 —4+ %).Onechecksthat% <l+ 2 -4+ %) >

1, % [— 12 -4+ n;% < 1 and then from (c) we deduce (d).

i

(e

~

Using (83), (84), and induction one shows that m; < m;y;, m_;_; > m_; for
i > 0 and then (e) follows from (d).
O

We write for short P. instead of P(,72 , and now we determine P! :

Proposition 7.4 . Let Stab(7;) = Z U U;cz Z; be the decomposition from Proposi-
tion 7.2. Let o € Stab(D” (K (1))).

(a) If o ¢ Z, then the set of phases P(l, is finite (has up to 4 elements).
(b) If o € Z, then for any j € 7Z we have the following formulas:

0 < ¢o(sjt1) —ds(sj) <1 (85)
exp(im (1 — ¢5 (s5))) - PL={£1}U{Eexpif (ni/m;)) :i # 0} U
+exp (if (Qm [al_l,aID), (86)

where x, y, and the function (strictly increasing smooth) f : [0,00) —

[77(Po (sj+1) — Po (s7)), 7) are:
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f(t) — arccos xy—_t e M
V2 +x2 = 2txy |Z(Sj)|
y = 08 ((¢o (sj+1) — $o (5)))) - 87

(c) Foro € Z holds the equality {£ exp(im ¢ (5i))}icz = P(l,\L(Pé) (recall that by
L(P(l,) we denote the set of limit points in the circle of P(l, ).
(d) Foranyo € Z and any j € Z hold:

kEToom% Gk[=1D = us <vp = klilzloo 7T $o (Sk) (88)
(o (sj) — 1) < wPo (sj41[—1]) < TPs(sjt2l—1D) < - <us <
SV < <TAP(sj—2) < TP (sj—1) < TPs(s;) (89)
P_é = texp ({7 o (5j44 [~ 1D }r=1 Uiluo, vo 1 U i{mdo (sj—1) }k=0) (90)
Vo — Ug _ f(az)—f(afl) Vo — Ug
Ug — g (sj+1[—11) f(al_l) — arccos(y) 7o (s;) — Vs
fla) = fah

Z—’ 91
7 — fla) G

where f, x, y are as in (87) and u, = f(al_l) + 7 = po(s)), vo = fla) +
(1 — 5 (s))).

(e) Leto € Zand 0 < ¢ < 1. Then SI\P; contains a closed e-arc iff there exists
i € Z such that ¢y (Si+1) — Po (i) > €.

Before giving the proof of this proposition we make some preparatory steps.
For a pair of complex numbers v = (z1, z2) we discussed in [18] (see [18, Lemma
3.18] and the first row of the proof) the following subset of the circle

nzy +mzp

—————|(n,m) € A1+} cst. 92)
lnzy + mzz|

From [18, Remark 3.16] and (81) we deduce that:

Lemma 7.5 Forany pair of complex numbersv = (z1, z2) of the form z; = r; exp(i¢;),
ri>0i=1,20< ¢ < ¢1 <m holds:

Ry a, = {Eexp (i)} U{xexpf (ni/mi)) 1 i # 0}
U[:I:exp(if(n/m)):n/m € [afl,al]} 93)

where f : [0, 00) = [¢2, $1)C(0, m) is the strictly increasing smooth function:

f(t) = arccos tr1 cos(¢1) + ra cos(¢n)

t2r12 + r22 + 2tryry cos(pr — ¢2)
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FO =g, lim f(©) = 1. (94)

Proof of Proposition 7.4 Leto = (Z, P) € Stab(D?(K (1))). From Proposition 7.2 we
have either 0 € Z; for some j € Zoro € Z.

(a) Assume first that o € Z; for some j € Z. Then by (78) we see that
5j,8j+1 €07 @(sj) +1 < @(sj41)- 95)

We will show that in this case Pé = {Lexp(imr s (s;)), L exp(inds(s;41))}. Indeed,
(95) implies that there exists k > 1suchthat ¢ (s;) < ¢ (sj+1[—k]) < ¢(s;)+1. From
Lemma 7.3 it follows that (s, s;+1[—k]) is a o-exceptional pair (as defined in [22,
Definition 3.17]). From [22, Corollary 3.18] (and its proof) it follows that the extension
closure of (s;, sj41[—k]) equals P(z, t + 1] for some ¢ € R. Since (s}, sj4+1[—k]) is
an exceptional pair, each element Y in the extension closure of (s, s;+1[—k]) can be
put in a triangle of the form s;4([—k]* — ¥V —» sj? — sjr1[—k + 11° for some
a,b € N. Take any X € o', then for some i € Z we have ¢, (X[i]) € (¢, + 1] and
therefore we have a triangle:

o

sjntl—k1" % X[ Do sh ik 1 (96)

m}

Ifa = 0orb = 0, then X[i] sé’ or X[i] = sj41[—k]* and hence

¢ (X[I]) = @(sj) or ¢o(X[i]) = ¢(sj+1[—k]) and the exp(imr¢po (X)) €
{Lexp(imr s (s;)), L exp(im s (sj+1))}

Next assume that a # 0 and b # 0. If ¢(s;) = ¢ (sjr1[—k]), then we
get exp(ings (X)) = exp(imds(s;)) using (96). Thus, we reduce to ¢(s;) <
¢ (sj+1[—k]), which in turn by (96), X[i] € o*%, and (18) implies that « = 0 or
B =0.Ifa =0, then sf = X[i]1® sj+1[—k + 1]° and by [22, Lemma 3.7] it follows
that ¢ (s;) = ¢ (X[i]) = ¢ (sj41[—k+11);if B = 0, then s 41 [—k]* = X[i]®s;[—11°
and by [22, Lemma 3.7] it follows that ¢ (s 1[—k]) = ¢ (X[i]) = ¢(s;j[—1]). Thus
we see that (95) implies Pé = {Zexp(imes(s;)), Lexp(irds (sj+1))} and (a) is
proved.

(b) If o € Z, then (77) shows that for any j € Z holds sj, sj4+1 € 0%, ¢o(sj) <

¢5(sj+1) < ¢o(s;) + 1. Choosing one j € Z, denoting 0’ = (Z',P') =
(—log|Z(sj)| 4+ im (1 — ¢s(s;)))*c and using (30), (31), we get:

Tro N oo _ |Z(Sj+1)|
Z'(sj) = —1, |Z'(sj41)] = Tzol
b0 (sj+1) = Po (sj11) + 1 — do (5)) 97)

1=¢5(sj) < o (sj41) < @o'(sj) +1=2
= 0 < o (sj1[-1D) < P (sj) = 1. (98)
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(©)

(d)

Let A be the extension closure of (s;, s;4+1[—1]). Utilizing Lemma 7.3 and
recalling that hom(s;, sj4+1) = [ > 2 (see for example the arguments before
74) we see that (s, s;1[—1]) is an /-Kronecker pair [21, Definition 3.20], and
by (98) it is a o’-exceptional pair as well. From [22, Corollary 3.18] (and its
proof) we see that the extension closure A of (s;, sj41[—1]) coincides with
P’(0, 1]. Applying [21, Lemma 3.19] to (sj,sj4+1[—1]) we see that A is the
heart of a bounded t-structure of 7; and due to the equality A = P’(0, 1] we
have actually o’ € HA (see [21, Definition 2.28]). Now all the conditions of [21,
Corollary 3.21] with the exceptional pair (s, sj+1[—1]) hold and we deduce that
Pé, = Ry, A, Where v = (Z'(s;), Z'(sj+1[—1])). On the other hand (35) shows
that exp(in (1 — ¢ (s))) - PL = Ry a,

To determine the set R, A, we use Lemma 7.5 and observe that now (see 97) v =
(=1 et expli (@ (5741) = 85 570), 0 < 7o (5511 — b0 (57) < 7,
in particular the equality (93) yields (86) and the function (94) has the form (87).

Let o € Z.In (b) j was any integer, here we choose j = 0. Now formulas (97)
and (98) give:

Z'(s0) = =1 Z'(s1[=1]) = |Z'(s1)| exp(im po (s1[—1])),

0 < ¢gr(s1[—11) < Po'(s0) = 1. 99)
Since sp[1], s1 are the simple representations and since s> 1, s<o[1] € Repk (K (1))
(Lemma 7.3), it follows that (see also 80) for any i > 1 Z'(s;) = n; Z'(so[1]) +

m;Z'(s1), and for any i < 0 Z’(s;[1]) = n; Z'(so[1]) + m; Z'(s1), and now using
[18, Remark 3.16] (in particular f is as in 87) we obtain :

n; Z' (so)+m; Z' (s1[—11)

Z'(si) T Zeotm 27 (1) = T XPASf(ni/mi)) i =1
i—|Z,( N i=0 .
Si 2 tmiZ 1D exn(i f(ni fmi)) i< —1

[ni 2 (so)+mi Z" (s1[—1D)]

(100)
In (b) we showed that Pé/ equals the set on the RHS of (86). Due to Lemma 7.3
we get that L(Pé,) = Zexp (if ([a[l,al]», and therefore (100) and (17)
imply that P! \L(P!,) = {£exp(im¢o'(si))}icz. Recalling that o’ = Ao for
certain & € C with the help of formulas (30) and (35) we deduce the desired
PI\L(Py) = {£exp(in ¢y (s1))}icz.
In (b) we showed that Pé, fora’ = (Z',P') = (—log |Z(sj)|+in(l—¢g (sj))*o
equals the RHS of (86) and taking into account Lemma 7.3 we deduce that
P\L(P!) = £1 U {£exp(if (ni/m;)) : i # 0}, which combined with (c)
yields:

11U {xexp (if (ni/mi)) i # 0} = {£exp(ind,(si)}iez.  (101)
Recalling that (85) holds for any j € Z and also (76), (98) we derive:

0=05(sj) =1 < P (sj+1[—1]) < @' (sj12[=1]) < -+ < Por(sj-2)
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< @51 (sj-1) < ¢gr(sj) =1 (102)
We already know that (see (b) of the proposition and (e) in Lemma 7.3)

FO) = fni/my) = 7(po (sj+1) — ¢ (s)))
= TPy (sj+1[—1]) = arccos(y). (103)

Furthermore from (e) in Lemma 7.3 we deduce:

0<f<;—11><f<:1—22><“'<f(a[_1)

Sf(al)<”~<f<n—2><f<n—])<7r. (104)

m_n m_q

By induction the equalities (101), (102), (104) imply:

k>1 = f (;-Z) = 7o (s al—11) f (;‘l—") = 7o (sj-). (105)

Now recalling that (see (31))

Vi €Z ¢o(si) = Po(si) + 1 — do(s)) (106)
we deduce (88), (89), (91) from (105), (103), and (102). The equality (90) in turn

follows from (86), (105), (106).
(e) Follows easily from the already proven (d).

7.3 Computing "D"(K(I))"g

If we define the function:
F :(0,+00) x (—1,+1) x (0, +00) — (0, )

Xy —t
F(x,y,t) =arccos | ————————= (107)
V2 +x2 = 2txy

then using Proposition 7.4 (a), Lemma 7.3 (e), and formulas (86), (87) one concludes
that:

Proposition 7.6 Let o = (Z,P) € Stab(7)).
If o ¢ Z, then vol (P[l,) =0. Ifo € Z, then for any j € Z holds:

1 S
EVOI (Pé.) =F (xj(g)a y](6)7 al) - F (Xj(O'), yj(G),a;1> ’
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Z .
||Z(s(+)ll)} Yj (@) = cos (1 (¢ (sj41) — o (5)))) -
J

where xj(0) =

(108)
One computes
A e A0 e S YN e ST
a X, ), = _— X, Y, =
dx Y 12+ x2 —2txy ot Y 12 + x2 — 2txy
and therefore:
0 -1
— (Fer v a = Fxy.ah)
0x
- arla = DY1 =y (1—x2) (110)
(1 + (@x)? = 2aixy)(a} + x2 — 2a;xy) ’
which implies that for any x > 0, y € (—1, +1) we have:
F(x,y.a)— F(x,y,af ) < F(1,y,a) — F(1,y,a; ") (111)

On the other hand one computes that for any y € (—1, +1), t € (0, +00) holds:

—da
F(l,y,a) — F(1,y,a; ") = arccos Y @

‘/alz—}- 1 —2ay
—1
ey -- (112)
al2 +1—-2ay

2
a;—1

a —©br >0 [>3
5 (F(ls ) Cll) - F(lv Y, al_l)) = 0\/ 1*y2(012+172a1y) - (113)

— arccos

a 21 —y2
E(F(l’y’t)_F(lvyvt_l))_ Y

=———>0. 114
t2+1—2ty> (114

Therefore the numbers (115) depending on € € (0, 1) and [ > 2 satisfy (116), (117),
(118):

cos(me) — ap
K. (I) = arccos

alz + 1 — 2a; cos(me)

ajcos(me) — 1
— arccos

(115)
alz + 1 — 2a; cos(re)
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0<e<l = K.(2)=0 (116)
leNs3 O<u<v<+1l = K, >K,0 117)
0<e<l12<li<heNsy = Kcli)<Ke(l) (118)
lim K.() =7(1 —¢). (119)
[—+00

The inequality (111) and the derivative (113) imply that for ¢ € (0, +1) and [ > 2
holds:

sup [Fa.y.an = Py arh) = ke, (120
(x,y)€(0,400) x(—1,cos(me))

Note that SUP (¢ y)e(0,400)x (1,1) {F(x, v,a;) — F(x,y, al—l)} is always equal to
independently on [ > 3 as opposed to K. (I), which is strictly increasing on /.
Finally we note that for ¢ = 1/2 the expression (115) takes a simple form (recall

2
that 7 = 4! ):0 K% (1) = arccos (%) . and from Proposition 7.7 follows (12).

a
Now we can compute || DP(K (1)) ||g

Proposition7.7 Let ¢ € (0,1), I > 2, and let K.(I) be as in (115). Then
|DP(K @), = K ).

Proof From Proposition 7.4 (a), (b), (e) we see that P, is not dense in S! for all o,
and (38) reduces to the following formula:

o),

vol (PT’,)

= sup

: 0 € Z and there exists j € Z such that ¢ (5j41) — ¢ (5;) > s}

= sup 5 :GGUjEZ {er:¢X(sj+1)—¢x(sj)>s}}

= sup { sup

co € Zand g (sjy1) — Po(sj) > 8} 1 j € Z} .
By using (108) and (120) we will show that for all j € Z holds:
vol (Pl>
sup — co € Zand ¢o(sj41) — o (sj) > e = K (D) (121)

and then the proposition follows. Recalling Proposition 7.2 we see that 0 € Z and
G (Sj41)—@o (sj) > €iffsj, sj41 € 0 ande < ¢o (sj11)— o (s;) < 1,furthermore

6 One shows this using the equality arccos(x) — arccos (\/ 1— xz) = arccos <2x\/ 1 - xz), which holds

1
< < —
forO_x_ﬁ.
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restricting the map (79) to the set of stability conditions o with 5;,s;411 € 0*® and
& < ¢s(Sj41) — ¢s(sj) < 1 we see that the set of pairs (x;(0), yj(0)) from (108)
for these o is:

{(xj(0),y(0)) : 0 € Z and ¢ (sj11) — do () > €}
= (0, +00) x (—1, cos(me)). (122)

Combining the latter equality with (108) and (120) leads to (121). ]

The latter Proposition and (118) imply (11)

8 The inequality || (E1, E2) ||z > K (hom™" (Eq, E3))

In this section we dervie a formula, which will help us to compute other norms. To
that end it is useful to extend the definition of K () in (115) by postulating K. (0) =
K¢ (1) = 0. Recall that the notation hom™"(E|, E,) is explained in (14): this is the
dimension of Hom! (E;, E,) for the smallest i such that Hom’(E;, E») # 0, if there
is no such i hom™" (Ey, E5) is by definition 0.

Proposition 8.1 Let T be a proper category, and let (E|, E») be any exceptional pair
in it. Then

I(Er. B2l = Ko (hom™"(E1, Ep)) for ¢ € (0, 1). (123)

Proof We can assume that hom=C(E|, E;) = 0 and [ = hom!(Ej, E2) # 0, and
under these assumption we have to show that

I(E1, E2)lle = Ke (). (124)

Let D be the triangulated subcategory (E1, E»). The assumptions on (E1, E») are the
same as in the definition of an /-Kronecker pair, [21, Definition 3.20], and we can
apply [21, Lemma 3.19, Corollary 3.21] to it. In particular the extension closure .4
of (E1, E») is a heart of a bounded t-structure in D with simple objects Ey, E», and
any stability condition o = (Z, P) € HACStab(D) with arg(Z(E})) > arg(Z(E»))
satisfies P(,D = Ry A, Where v = (Z(E1), Z(E>2)). The arguments in the beginning
of the proof of Lemma 4.7 show that for each v € H? there exists unique o = (Z, P) €
HA with v = (Z(E1), Z(E»)) and that o is full. Forany O < p such that u + ¢ < 1
choose the vector (—1, exp(iz (¢ + 1)) = v, and denote by o, the stability condition
oy =Py, Zy) € HA with (Zu(Ev), Z(E2)) = vy. The given arguments ensure
that o, is full and P£ = Ry, A1 Using the formula for Ry, A, in Lemma 7.5 for
the given v, one derives:

— o
o (72) ol ()
2 o 2

= Kepn (), (125)
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where K1, (/) isin (115). Note that the arc exp (iw[n/2, € + u/2]) is in the comple-
ment of PD and therefore o, € Stab, (D). Now from the very Definition 4.11 we see
that | D], > K e+ (1) for any small enough positive u, letting © — 0 we derive the

desired ||D||, > K (I). O

Corollary 8.2 Let £ = (Ep, Ey, ..., E,) be an exceptional collection in a proper
triangulated category T. Then for any 0 < i < j < n we have |[(E)|, >
K, (hom™"(E;, E})).

Proof Take 0 < i < j < n. By mutating the sequence £ (see Remark 7.1) one
can get a sequence & of the form &' = (E;, Ej, Ca, ..., Cp) such that (£) = ().
Corollary 6.3 implies [|(£)], = ”(8’)” H(El, Ej)| . and due to Proposition 8.1 we

get |(Ei, Ej)|, = Ke(hom™"(E;, E,)). .

Corollary 8.3 Let T be a proper triangulated category such that for each |l € N there
exists a full e_xceptional collection (Ey, E1, ..., E,) and integers 0 <i < j < n for
which hom™"(E;, E;) > I. Then |T ||, = w(1 — ¢) for any ¢ € (0, 1).

Proof The given property of 7 combined with Corollary 8.2 amountsto |7 ||, > K. (I)
for each [ > N (Recall also 118). Now from (119) and Remark 4.14 we obtain
171l =7 (1 —e). O

Corollary 8.4 Let T be a proper category, and let 0 < ¢ < 1.

@) If 7 |l; = O, then for any full exceptional collection £ = (Ey, Ey, ..., E;) and
forany 0 <i < j < n we have hom™"(E;, Ej) <2

®) If | Tll, < Kc(), I = 2, then for any full exceptional collection €& =
(Eo, E1, ..., Ep) and forany 0 < i < j < n we have hom™"(E;, E;) <l

© If 7T, < w1 — &), then there exists | € N such that for any full excep-
tional collection £ = (Ey, E1, ..., Ey) and for any 0 < i < j < n we have
hommin(Ei, Ej) <l

We will aply Corollary 8.3 to various examples. More precisely we will show that

Proposition 8.5 In the following examples of triangulated categories are satisfied the
conditions of Corollary 8.3. In particular | T ||, = (1 — &) for any T in this list of
examples.

(a) D®(Q), where Q is an acyclic quiver, s.t. there exists a subset ACV (Q) such
that the quiver Q 4 is affine and there exists a vertex v € V(Q) such that v is a
source or a sink in Q aujv) (see Definition 8.6 for the terminology)

(b) DP(PY),n > 2;

(c) DP(P' x PYy;

(d) 7 DP(Fy),m = 0

(e) Dt (X), where X is a smooth algebraic variety obtained from P"*, n > 2, or from
P! x PL, or from F,,, m > 0 by a sequence of blow ups at finite number of points;

(f) DP(S), where S is any smooth complete rational surface®

7 Where I,y is the m-th Hirzebruch surface

8 In particular any smooth projective surface.
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Definition 8.6 For any quiver Q and any subset ACV (Q) we denote by Q 4 the quiver
whose vertices are A and whose arrows are those arrows of Q whose initial and final
vertex is in A. A vertex v € V(Q) is called adjacent to A if there exists an arrow in
Q starting at v and ending at a vertex of A or an arrow starting at a vertex of A and
ending at a v.

Proof of Proposition 8.5 (a) Let [ > 3. By [21, Corollary 3.36] for any / > 3 there
exists a an exceptional pair (Eyp, E1) in D?(Q) such that hom™ " (Eg, E) > 1. In[17]
is shown that (Ey, E1) can be extended to a full exceptional collection. Therefore we
can apply Corollary 8.3 to D?(Q). O

Now we present one method (Lemma 8.8) to obtain /-Kronecker pairs with arbitrary
big [ as part of full exceptional collections, i.e. method to obtain the conditions of
Corollary 8.3. This method relies on full exceptional collections in which a triple
remains strong after certain mutations (see (c) in the statement of Lemma 8.8). In [9] a
strong exceptional collection £ which remains strong under all mutations is called non-
degenerate. Furthermore in [9] are defined so called geometric exceptional collections
and [9, Corollary 2.4] says that geometricity implies non-degeneracy. Furthermore,
[9, Proposition 3.3] claims that a full exceptional collection of length m of coherent
sheaves on a smooth projective variety X of dimension # is geometric if and only if
m = n + 1. In particular it follows:

Remark 8.7 The full exceptional collection £& = {O, O(1), ..., O(n)} in D*(P")
introduced by Beilinson [3] is geometric and therefore non-degenerate, whereas
the well known (see [24,38]) strong full exceptional collection of line bundles
(0(0,0), 00, 1), O(1,0), O(1, 1)) in D?(P' x P') is not geometric.

That’s why the method of Lemma 8.8 is readily applied to D”(P"), whereas applying
it to D?(P! x P') requires some additional arguments to ensure (c) in Lemma 8.8.

Lemma 8.8 Let T be a proper triangulated category and ¢ € (0,1). Let £ =
(Fo, F1, F2, E3, ..., E,) be a full exceptional collection with n > 3. Let {Fi}ieN
be a sequence starting with Fy, Fy, F> and Fi1 = Rp,(Fi—1) fori > 2. If the
following three properties hold:

(a) hom(Fy, F1) < hom(Fy, F»);

(b) | =hom(Fy, F») > 2;

(¢) (Fo, Fi, Fiy1) is strong for all i > 1, then T satisfies the condition of Corol-

lary 8.3 and |T ||, = (1 — ¢).

Proof Now (71) becomes

coev’:;

Fiog — =% Hom*(Fi_1, F}) ® F; — Rp,(Fi—1)) = Fip1 i >2. (126)
Since the property of being full is preserved under mutations, it follows that
(Fy, F;_1, F;, E3 ..., E,) is full for each i > 2. We will show that (127) holds,

and then our 7 satisfies the conditions of Corollary 8.3, hence |7 ||, = 7 (1 — ).

i € N>, = hom(Fp, Fi—1) < hom(Fp, F;) (127)
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To show (127) we first note that due to (c) we have hom* (F;_1, F;) = O foreachk # 0
and each i > 2 and it follows that (see e.g. [9, Example 2.7]) [ = hom(F1, F3) =
hom(F;_1, F;) = hom(F;, F;4+1) for each i > 2 and then (126) has the form:

*
coevp. | .

Fiog — =4 F¥ » Fy iz2. (128)
In (a) we are given hom(Fp, F;_1) < hom(Fp, F;) for i = 2 and we will show (127)
by induction. Indeed, since (Fy, F;_1, F;) is a strong exceptional collection for each
i > 2, applying Hom(Fp, _) to (128) yields short exact sequences between finite
dimensional vector spaces:

0 — Hom(Fy, Fi_1) — Hom(Fy, F;)® — Hom(Fy, Fi41) — 0, i >2.
(129)

The obtained exact sequences and [ > 2 imply:

hom(Fy, Fiy1) = [hom(Fo, F;) —hom(Fop, Fi—1) > 2hom(Fo, F;) —hom(Fo, Fi—1)
= hom(Fy, F;) + (hom(Fy, F;) —hom(Fp, F;_1)), (130)

hence for i > 2 the inequality hom(Fy, F;) > hom(Fy, F;_1) implies hom(Fp, Fji1)
> hom(Fp, F;). The lemma is proved. m|

Proof of Proposition 8.5 (b) InRemark 8.7 is given a full strong exceptional collection £
on D?(P") which remains strong under all mutations. Using [9, Example 2.9] one com-
putes hom(O, O(1)) = hom(O(1), O(2)) = n + 1 < hom(O, O(2)) = L+,
Therefore we can apply Lemma 8.8 and the corollary follows. O

Proof of Proposition 8.5 (c) Let us denote here 7 = Db (P! x P. Exceptional collec-
tions in 7 have been studied in [38] and [24]. In particular the full strong exceptional
collection (O(0, 0), O, 1), O(1,0), O(1, 1)) mentioned in Remark 8.7 satisfies
hom(O(0, 0), O(0, 1)) = hom(O(0, 1), O(1, 1)) = 2 and hom(O(0, 0), O(1, 1)) =
4 (see [35, p. 3] or [8, Example 6.5]). After one mutation we get a full exceptional col-
lection (Fp, F1, F2, E3) inwhich (Fy, Fy, F)isstrong, hom(Fy, F1) < hom(Fp, F>),
and hom(F, F;) = 2. Let {F;}ien be a sequence starting with Fy, F1, F> and
Fiy1 = RF,(F;—) fori > 2. To apply Lemma 8.8 and deduce that || 7|, = 7 (1 —¢)
we need to show that (Fp, F;, Fij11) is strong for all i > 1.
From [24, Proposition 5.3.1, Theorem 3.3.1.] it follows that:

For each exceptional pair (E, F)inT thereis at most one
i € Zwith hom'(E, F) # 0. (131)

From the way we defined {F;}en it follows (see e.g. [9, Example 2.7]) 2 =
hom(F1, F») = hom(F;_1, F;) = hom(F;, F;4+1) for all i > 2, hence taking into



Some new categorical invariants Page390of60 45

account (131), to show that (Fp, F;, F;+1) is strong for all i > 1 suffices to show that
hom(Fy, F;) # 0 for each i > 1. Now (71) becomes distinguished triangle

*
coevy.

i—1:-F; .
Fiog — 54 F®2 o Fiy — Fi[l] i > 2. (132)

1

We have 0 < hom(Fy, F1) < hom(Fp, F,). Assume that for some i > 2 holds
0 < hom(Fy, F1) < --- < hom(Fy, Fi_1) < hom(Fp, F;) (133)

we will show that this implies hom(Fp, F;) < hom(Fy, F;+1) and by induction
the corollary follows. Applying Hom(Fp, _) to (132) and since homF (Fo, Fi—1) =
homk(Fo, F;) = 0 for k # 0 one easily deduces that homk(Fo, Fiy1) =0fork ¢
{—1,0}. If hom ™! (Fy, Fi;1) # 0, then by (131) it follows that hom(Fpy, F;4+1) = 0
and applying Hom(Fp, _) to (132) yields an exact sequence of vector spaces:

0 — Hom ™! (Fy, Fi+1) - Hom(Fy, F;—1) - Hom(Fy, F;})®* — Hom(Fy, Fi11) =0,
(134)

which contradicts (133). Therefore hom ™! (Fp, Fiy1) =0and homX (Fy, Fiy1) =0
for k # 0. Now we apply Hom(Fp, _) to (132) again and get a short exact sequence
as in (128) which by the same computation as in (130) implies hom(Fy, Fj+1) >
hom(Fy, F;), thus we proved the corollary. O

Lemma 8.9 Let X be a smooth algebraic variety s. 1. D" (X) satisfies the conditions of
Corollary 8.3. Let X be obtained from X by blowing up a point. Then D”(X) satisfies
the conditions of Corollary 8.3 as well.

Proof [7, Theorem 4.2] ensures that there is a semi-orthogonal decomposition
DY(X) = (T}, T», ..., Ty, D (X)), where T is equivalent to D?(point) fori =
1,2,..., k, which implies that 7; is generated by an exceptional object for each i.
Now it is clear that the full exceptional sequences of D?(X) ensuring the conditions
of Corollary 8.3 extend to full exceptional collections on D? (X), so these conditions
are satisfied in Db(ff ) as well. m]

Proof of Proposition 8.5 (d), (e), and (f) Since Fy = P! x P! and FF; is P? blown up ata
point, then the cases a = 0, 1 are contained in Proposition 8.5 (a), (b), and Lemma 8.9.
In [28] they construct families of full exceptional collections of invertible sheaves on
DP(F,) for any a. To show that their exceptional collections furnish the conditions
of Corollary 8.3 we just need to combine some results in [28]. First adopt here some
notations and terminology from [28]: P, Q denotes basis of Pic(FF,) (see [28, Section
4, p.1224]) s.t.

P.O=10"=a, P> =0. (135)

Hille and Perling study certain sequences of Cartier divisors on a rational surfaces X
which they call toric systems. Furthermore a toric system Aj, As, ..., A, is called



45 Page 40 of 60 G. Dimitrov, L. Katzarkov

strongly exceptional (see [28, Definition 3.6]), if they generate a sequence of invertible
sheaves

n—1
Ox,O0x(A1), Ox(A1+ A2), ..., Ox (Z Ai) )
i=1

which is strong exceptional. For such a toric system each divisor A; is numerically
left orthogonal [28, Definition 3.1 (a)], which means that x (—A;) = 0. Indeed, we
have

J Jj—1
Ext* | Oy ZAi , Ox Z Aj = {0}
i=1 i=1
for each k € Z, since the sequence is exceptional, and on the other hand
J Jj—1
Ext | Ox [ DA | ox [ DA || = H Ox(=4)) = (0)
i=1 i=1

(see e.g. [28, the beginning of Section 3]), and hence x(—A;) = 0. Note also
that since the sequence is strong it follows that x(A;) = dim(H 0(Ox(A i) =

hom (OX (le;ll Ai) , Ox (Z{zl Ai>>. On the other hand, having that A ; is numer-
ically left orthogonal and using [28, Lemma 3.3 (i)] we derive:

hom | Oy ZAl- , Ox ZA,» = x(A)) = —Kx.A; (136)

[28, Proposition 5.2] proves that P, s P+Q, P, —(a+s) P+ Q is astrongly exceptional
toric system on F, when s > —1. If we denote by EY, E3, E3, E; the corresponding
strong exceptional collection, then using the formula (136) and the property of toric
system, that Z?:l A; = —Kx (see [28, p. 1233 down]), and also the equalities (135)
we compute:

hom(E3, E3) = —Kx.(sP + Q) = 2(P + Q) —aP).(sP + Q)
=25 =a+2+2s (137)

Thus we see thathom(E3, E3) can be done arbitrary big. The sequence Ej, E3, E3, Ej
is already shown to be full (see [28, Theorem 5.8.], also [28, the beginning of the
proof of Theorem 8.6.] or [29, Proposition 2.1]). Part (d) is proved. Part (e) follows by
recursively applying Lemma 8.9 and the already proven cases. Part (f) reduces to part
(e), since any smooth complete rational surface S can be constructed after applying a
finite sequence of blow ups starting with P? of F,,, a > 0 (see e.g. [28, the beginning
of Section 4, p. 1243]). O
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9 Theinequality || 7, & --- @ 7, ||, < T(1 — &)

The goal of this seciton is to prove the following:

Proposition9.1 Letn > 1,letl; > 1,i = 1,2, ..., n be a sequence of integers, and
let 0 < & < 1. Then for any orthogonal decomposition of the form T = T;, ® T, ®
- @7, where Tj;, = DP(K (1;)), holds | T, < w(1 — &). Furthermore |T|, > 0
iffl; > 3 for some 1 <i <n.

Before going to the proof of this proposition we prove some facts for the case [ > 3
and denote 7; = D?(K ()). We will use notations and results from Sect. 7. The first
step is:

Lemma9.2 For o ¢ Z the set P; = P_f, is finite. Otherwise, for o € Z, we use the
description of the set Pé as in Proposition 7.4 (88), (89), (90).

For any 0 < ¢ < 1 there exists M; . > 0 such that for any o € Z and for any
JEL:

Qo (sj+1) — Po(sj) > € =
Vg — Uy Vo — Uo
<My —————— <M. (138)
U — TPg(sj+1[—1]) TPs(sj) — Vo

Proof The part of the lemma which is not contained in Proposition 7.4 are the inequal-
ities (138). So, let us chose 0 € Z, j € Z and 0 < ¢ < 1 and assume that
@o (Sj+1) — o (sj) > €. In terms of the function (107) we can rewrite (91) as follows:

Vo — Ulg _FGx,y.a)—F(x,y.q7")
Ug — whe(sjs1l—11)  F(x, y,afl) — arccos(y)
_ -1
Vo —lUg F,y,aq)—F(x,y,aq; ) (139)
TP (5j) — Vo m—F(x,y, a)
where (recall that o € Z implies ¢y (511) — ¢o(s;) < 1):
Z .
0<x= % — 1 <y=cos (n(¢g(sj+1) —qbg(sj))) < cos(me) :

(140)

For any a € (0, 400), b € (—1, 41) the differentiable functions (0, 4+00) > ¢ >
F(a,b,t) and (0, 4+00) > t — F(t, b, a) can be extended uniquely to continuous
functions in [0, 4-00) having values arccos(b) and 7 at 0, respectively, and therefore we
can apply the mean value theorem to these functions. More precisely, if 2 : [0, +00) —
R is a function obtained in such a way, then for any 0 < o < < 400 there exists
a <t < B, such that 1(8) — h(a) = (B — o)/ (¢). In particular, for any x, y as in
(140) we can represent all the differences in (139) as follows (recall 109):
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1 -1 1

m—Fx,y, a) - F(x,y,a)—m - N aj/1-y?

a12+x’2—2a1x’y

2
g +x2 = 2axy

forsome 0 < x’ < x (141)
xalm
1 _ 1
F(x, y,afl) — arccos(y) B o x4/ 1—y2
I 124x2-2txy

2 2
t —2t
= @l +x %) forsome 0 <t < al_l (142)

xy1—y?2
= a /1= )?

—1
F(X,y,al)—F(x:y’al )_ t/2+x2_2t/xy

(a; — al_l)x\/l —y2

T 2 4+ x2 —2¢'x cos(me)

for some atl_1 <t <a. (143)

And now looking back at (139) we deduce:
Vg — Uy - (al2 — 1)(t2 +x2 - 2txy)
Ug — TP (sj+1[—11) = 12 4+ x? — 2t'x cos(me)
Vo —Ho  _ 1 - al_z)(al2 +x2 = 2a1x'y)
Te(sj) —ve — 2+ x2—2t'xcos(me)

(144)

(145)

Now since > 4+ x2 — 2¢'x cos(re) gets minimal values for 1 = x cos(e) (with
respect to the variable ') and for x = t' cos(r¢) (with respect to the variable x) we
have 2 4+ x2 — 2t'x cos(we) > x2(1 — cos?(me)) = x2sin%(we) and 12 + x2 —
2¢'x cos(me) > 12 sinz(rrs) > al_2 sinz(n's), therefore:

"2 + x% — 2t'x cos(me) > max {al_z, xz} sin?(re) (146)

and (144), (145) can be continued (recall that 0 < t < al_l in(142)and 0 < x’ < x
in (141)):

Vg — Uy - (al2 — 1)(t2 +x2— 2txy)
Ug = Tho (sj+1[=1D) = max{a; 2, x2} sin?(we)
-1
(a12 -1 (12 + x% — 2txy) te0,a)
== Su; —— : x € (0,400)
sin“(mre) max{a; °, x*} y € (=1, cos(re))
Vg — Uy - (1 —al_2)(a/2+x/2—2a1x/y)
T (s)) —vs ~  max{a; %, x2}sin?(we)
a- afz) (al2 +x2 = 2a;x"y) X ? (0, +-00)
= — sup - : x" e (0,x)
sin”(re) max{a, ~, x7} y € (=1, cos(me))

hence (138) follows. ]
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l — —
Corollary 9.3 For any o € Z there is closed w-arc pLcPL st PI\(pL U—pl)
is countable.
Let 0 < ¢ < 1. For any closed e-arc y satisfying Pé Ny =0 hold (pf7 U —p(l,) N
(yU—y) = @ and any (of the four) connected component ¢ of S! \{pf, U —pfr UyU—y}
restricts vol(Pé) as follows:

ccS"\{pL U—pl Uy U—y} mo(c) = {0}
vol(PL)

= vol(pl) < M vol(c) (147)

where M ¢ is as in Lemma 9.2.

Proof Foro € Z,the setP_é is as described in (88), (89), (90) and then we can choose
pf, to be exp(i[uy, vs]) and S! can be divided as follows (for any j € Z):

S! = (8o (51100 (55111  ¢ilr@a (1 [=1Dia) | pl | gilVo 7o (57))
U — e[¢0 (s [=1D.¢ (541 [=1D) | _gilmdo (sj41[=1Dua) | (_pé)

U— ei(va’”(bn(sj)) (148)

Furthermore, let y be a closed e-arc with P(l, Ny = @, then using (89) one easily

sees that y C exp(7t (@ (), bo (57+1))) or —y C exp(ist (¢ (57, ¢ (sj+1))) for some
J € Z and therefore 7 (¢ (sj11) — ¢5(s;)) > vol(y) = me, hence by Lemma 9.2
follow the inequalities (138) and

yCelmleo 6= go i l=1D) op ) ceildo (i =1Dga (s l=1D)  (149)

Therefore, taking into account the disjoint union (148) we see that the four components
of SI\{y U —y U pf, U —pf,} can be ordered as ci, ¢2, —c1, —c2 so that: ¢; D
ellmdo (i1 [=1D.0) oy 5 eiUo. 05 () in particular:

vol(£c1) = ug — o (sj41[—1D vol(£c2) = 7Po (s)) — Vo (150)
and the corollary follows from (138). O
Proof of Proposition 9.1 From Remark 4.15 and Sect. 7.3 we see that:

1], = | p*ekan| = xea (151)

hence the proposition follows for n = 1. O

Assume that we have already proved the proposition for 1 < n < N. And assume
thatT =7, 87, & --- ® Ty, Ty, where 7;, = D’ (K (1;)) and denote by L the
set L={l1,lr,...,IN,INF+1}.
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If 1 <1; <2 forsome j, then ||7?, “5 = || Db(K(lj))“g = 0, and the statement
follows from the induction assumption, Corollary 5.6, and ||’27j ||€ = 0. Therefore we
can assume that all integers in L are at least 3. From the induction assumption there
exists 6 > 0 such that:

§+ X =n(l—¢), where
X=max{”’]}1 ea’T)QEB---eaij”S:j <N+ 1l,x;eLforl <i fj}
(152)
Note that due to Remark 4.2, Proposition 5.2 (d), and Corollary 5.5 for any sequence
X1, X2,...,x; in L holds:
HZH © 7Ty, @"'@7;/'”5

i=1

J pXi
vol ( Ps ) , )
=sup{ ————— = : dclosed e-arc y s.t. Vi o; € Stab(D”(K (x;))) and ¥ = P;‘ii Ny

2
(153)
Assume now that o; € Stab(D?(K ([;))) fori = 1, ..., N + 1 and that there exists a
closed e-arc y satisfying J = P(l,’;. Ny =@Pfori =1,..., N+ 1. Inparticular we can
represent the circle S':
St = exp(i(e, B)) Uy U —exp(i(e, B)) U —y disjoint union (154)
where « € R and B = o + (1 — ¢). If for some k the corresponding oy ¢

Z, CStab(Db (K (lx))), then by Lemma 9.2 Péi is finite and taking into account (152),
(153) we derive:

2 o 2 -

vol (UK psy) vol (UM i )
<X, (155)

vl )
otherwise for all i we have o; € Zj,, and then by Corollary 9.3 —— =

vol (UIN;EI p(l}i), where pf}i is a closed arc as explained in Corollary 9.3 and we can
assume that pf}i C exp(i(a, B)) for all i (see (154)). There exist 5_ > 0, 6+ > O such
that M4 ph cexp(ila+8_, B— 84 1), exp(i(a+5_), exp(i(B—81)) € N phi.
Let j, k be such that exp(i(e + 6_) € pf,’j and exp(i(B — 64) € pg‘k If we denote
M = max{M;, ; : 1 <i < N + 1}, then from Corollary 9.3 we obtain Vol(pf,jj) +
vol(pf,kk) < M6+ + §-). Since UlN:JEl pf,",.Cexp(i[oz + 6_, B — 64]) it follows that
0y +6-<m(l—¢)—vol (UZN;EI p,l}'l.>, therefore we can write:
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W(UWE)
————=vol| U £l ) = vol(pdp) +volpg) +vol | py,
i=1 i=1,i#j,i#k
N+1 pli
N+1 . vol <Ui=ﬁ)i7&j,i7&k Pm)
<M |71 —¢) —vol UP&,» + 2
i=1
N+1
<M (n(l —¢) — vol (U Pfr’})) +X
i=1
vol (U,N:JEl Pé")

The obtained inequalities (155), (156), and the formula (153) with x; = [;, fori =
1,2, ..., N + 1 show that for a certain set Y and a real function G on Y we have:

|7, @7, & @ Tiy.., |, = sup{G(y) : y € ¥}
VyeY 0=G() <m(l—e); GO <Mml—e —G(y)+X.

Now recalling (152) we get G(y) < M(w(1 — &) — G(y)) + 7 (1 — &) — § for any
y € Y, whichis the same as G(y) <7 (l —¢) — MLH' Therefore the proof completes
with the following inequality:

O<”771®772®@EN+1||SSH(1_8)_ (157)

M+1

10 Discrete derived categories and their norms

There are categories, in which every heart of a bounded t-structure has finitely many
indecomposable objects up to isomorphism. Due to the following lemma the norm of
these categories vanishes:

Lemma 10.1 For any triangulated category T and any a € R we have:

PT = (xexping, (1)) : I € 0% NP(a,a+1]
and [ is P(a, a + 1]—indecomposable}. (158)

Proof From [18, Lemma 3.9] we know that
PGT = {exp(in ¢, (1)) : I is T — indecomposable and I € *°}. (159)
Furthermore, the properties that for any j € Z holds I € ¢*¥ iff I[j] € ¢*, and that

¢ (I[j]) = ¢5(I) + j whenever I € o* are axioms of Bridgeland , which together
with (159) imply
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Pg = {*exp(imrpys (1)) : I is T — indecomposable and
I € c”and ¢ (1) € (a,a + 1]}. (160)

From [22,Lemma 3.7] it follows that an object I € P(a, a+1]is 7 -indecomposable
iff it is P(a, a + 1]-indecomposable, hence the lemma follows. O

Corollary 10.2 Let T be a category with phase gap, s.t. every heart of a bounded t-
structure has finitely many indecomposable objects up to isomorphism. Then | T ||, = 0
forevery e € (0, 1).

Proof First recall that for each 0 = (Z,P) € Stab(7) and for any a € R the
subcategory P(a, a 4 1] is a heart of a bounded t-structure. From the previous lemma
PaT is finite foreach o € Stab(7"). Therefore from Definition 39 it follows that || 7 ||, =
0. O

In representation theory was introduced a class of triangulated categories with a
particularly discrete structure, called Discrete derived categories (Vossieck [42]), they
were classified in [4] and thoroughly studied in [14], whereas the topology of the stabil-
ity spaces on them were studied in [13,37], in particular it was shown that these spaces
are all contractible. This class contains the categories {Db(Q): Qis Dynkin}, and the
discrete derived categories not contained in this list are of the form D (A(r,n, m))
forn > r > 1 and m > 0, where A(r, n, m) is the path algebra of the quiver with
relations shown on [37, Section 4.3, Figure 1].

Proposition 10.3 For any discrete derived category T (in the sense of [4,42]) and any
e €(0,1) holds | T, = 0.

Proof [14, Proposition 7.1] says that each heart of a bounded t-structure in 7°
has finitely many indecomposable objects and is of finite length. In articular (see
Lemma 4.7) 7 has a phase gap and it satisfies the conditions of Lemma 10.2, there-
fore | 7], = 0. m]

11 Topology on the class of proper triangulated categories with a
phase gap

In this section we denote by T’ the set of all small triangulated categories within a
certain universe (a universe which contains the derived categories of representations
of algebras) and by P&’ C T’ we denote the subset of proper categories with finite rank
Grothendieck group and with a phase gap. From Proposition 10.3 (see also its proof)
it follows that each discrete category is in §3®’. Furthermore, from [14, Proposition
7.6] it follows that each discrete derived category has a full Exceptional collection.
Thus if we denote by DD R’ the subset in ¥ of discrete derived categories, and by
¢’ the subset of proper categories with a full exceptional collection, then we have the
inclusions: DD K CE& PG’ CT’. When we write A = B for A, B € T/, we mean an
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equivalence between triangulated categories, and by € = T/ =, P& = P&’/ =,
DDA = DDR'/ = we denote the corresponding sets of equivalence classes and then
we have inclusions:

DODRCECPBCXE. (161)

We give first an example of a topology on the largest ¥ and give evidence that this
topology is too coarse.

Definition 11.1 For any 7 € ¥’ we denote a subset of T’ as follows :
B(T)={T' €T : T =T orthereisa SOD 7' = (A, B) with A = T} .(162)

By definition we have B(7}) = B(7p),if 7} = 75.

Lemma 11.2 Let 7', T be triangulated categories. If T' € B(T), then B(T')CB(T).
In particular, the family of sets {B(T)}Tcs is a base of a topology on T/, and the
Sfamily of sets {B(T)/ Z}7ex is a base of a topology on X.

Proof Since 7' € B(T), by definition there is a SOD 7' = (A, B) with A = 7.

Let 7; € B(7T"), therefore there is a SOD 77 = (C, D) with C = 7', now the SOD
T’ = (A, B) implies a SOD C = (A’, B'), where A" = A = T. Therefore we obtain
aSOD T, = (A, B}, D) = (A, (B, D)) with A’ = T.ie.Tj € B(T). 0

Lemma 11.3 If7 is indecomposable with respect to semi-orthogonal decompositions,
then [T] € T is a closed points w.r. to the topology introduced in Lemma 11.2. If there
exists a SOD T = (A, B), where T 2 A, then [T] € ¥ is not a closed point in this

topology.

Proof Let 7 be indecomposable and 7' % 7, then 7 ¢ B(7") by the definition 11.1,
therefore [7] is a closed point indeed.

Assume that there exists a SOD 7 = (A, B) and 7 % A, it follows that [7] €
B(A)/ = and [7] # [A], therefore all open subsets containing [.A], contain [7] as
well. i.e. [A] is in the closure of [7], and it is different from [7 ], so [7] is not a closed
point. O

Corollary 11.4 The only closed point in € w.r. to the topology introduced in Lemma 11.2
(also with respect to the induced on € topology) is [T] = [Db(point)].

Proof It is well known that D’(point) is indecomposable with respect to semi-
orthogonal decomposition. Now the corollary follows from Lemma 11.3. O

Now we define a refinement of the topology discussed so far, in which we have
many closed points, furthermore we have many discrete subsets, in particular the set
of discrete derived categories (up to equivalence) will be a discrete subset as well.
However this new topology is defined only on 3®’, respectively 3&.
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Definition 11.5 For any ¢ € (0, 1) and any 7 € P&’ we denote
170° =1 —e)m — 1T, . (163)
For any 7 € &', any § > 0 we denote a subset of P&’ as follows:

B{(T)={T € P& : T' =T orT' = (A, B) isa SOD
with A= T, B e P&, 1B <38).  (164)

By definition we have B§ (7)) = B;(T2), if 7| = 7. Furthermore from Theorem 6.1
it follows that for any 77, 75 € 8%’ and any SOD 7 = (71, 7;) holds:

{71, 7)1 < min{[| 77 11°, 1 7211°}- (165)

From now on ¢ is a real number in (0, 1) and we will write just Bs(7') instead of
B§(T).

Lemma11.6 If 7,7 € P&, 8§ > 0and T’ € Bs(T), then By (T')CBs(T) for any
8" > 0. In particular, the family of sets { Bs (D)} Tepe’ -0 is a base of a topology on
P&, and the family of sets

{Bs(T)/ ZlTepe’ 50 s a base of a topology on P&.

Proof Since 7’ € Bs;(7T), by definition 7/ = (A, B) with A = 7, B € P&’ and
IBII¢ < 8.

Let7; € By (T"), therefore 71 = (C, D) withC = 77, D € B&’. Asin the proof of
Lemma 11.2 one derviesaSOD 77 = (A', (B, D)) with A’ = 7, B = B.From (165)
we deduce the inequality || (B, D) HS < ||B’| < &, which amounts to the required
T, € Bs(7). O

Proposition 11.7 (a) The function below is upper semi-continuous:
po o R (T )T (166)

(b) Forany x > 0 the subset P&, = {y € P& : || y||® > x} is a discrete subset of
BS w. r. to the topology from Lemma 11.6.

Proof (a) follows from the following application of (165): for any § > 0, 7 < P&’
holds

VIT' € (Bs(T)/ D\(ITT} 0<|T'|° <min{|T),8}.  (167)

(b) follows from the same formula. Indeed, from this formula one checks that for any
[7] € P&, andany 0 < § < x we have P&, N (Bs(7T)/ =) = {[T]}.
O

Corollary 11.8 DDRU{[D(Q)] : Q is affine} is a discrete subset of P& with respect
to the topology introduced in Lemma 11.6.
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Proof From Propositions 4.19 and 10.3 it follows that for any [7] € DDRK U
{ID?(Q)] : Q is affine} has ||T||° = 7 (1 — &), hence (since the function 164 takes
values in (0, 7 (1 — €))) we obtain:

DDAU{[D?(Q)]: Q is affine} CPG- (). (168)

On the other hand from Proposition 11.7(b) we know that P& (j_, is a discrete
subset and the corollary follows. O

Examples of non-closed points are contained in Proposition 8.5. More precisely:

Proposition 11.9 The element [D”(point)] € P& is in the closure of [T] € P&
for any T € BS’ which satisfies the conditions of Corollary 8.3 and such that
rank(Ko(7)) > 3.

Proof We will show that [T] € Bs(D’(point))/ = for any § > 0. Indeed, take
any § > 0. From (119) it follows that there exists N s.t. (1 —¢) — K,(I) < §
for [ > N. Since 7 satisfies the conditions of Corollary 8.3 and rank(Ky(7)) > 3,
therefere there is a full exceptional collection Ey, E, ..., E,—1, E, withn > 2,s. t.
hom™"(E;, E j) > N forsomei < j. Since we can apply mutations, we can assume
that hom™" (E,_1, E;,) > N.Now let us denote A = (Eg), B=(FE{,..., E;). Then
we have a SOD T = (A, B) with A = D?(point), and ||B||® < |(En—1, En)|I¥ <
7l —¢) — Kg(hom’"i”(En_l, E.)) < &, where in the latter chain of inequalities
we used (165), Proposition 8.1. Recalling the definition of Bs(D”(point)) ( Defini-
tion 11.5) we conclude that 7 € Bg(Db (point)) and the proposition follows. ]

Corollary 11.10 Forany smooth complete rational surface surface S holds [ D? (point)]
€ CI(D"(5))).

12 Non-commutative curve-counting

12.1 Rescaling || || 1 so that all natural numbers are values
2

Following Kontsevich—-Rosenberg [32] we denote DP (K + 1) by N P! (non-
commutative projective space) for / > 0. Note that we include the case / = 0, and
NP is a non-trivial cateogry. We denote also NP~! = DP(K (I + 1)), i.e. this is a
category generated by an orthogonal exceptional pair. Then we define for a category
with a phase gap 7:

0 ifVfullo € Stab(7) |Py| < o0
. —2 1 if I7)l: <m/2and 3 full o € Stab(7) s.t. |Py| = o0
dim,.(7) = cos(HTll 1 ) 2
2
+o00 if ||T||% =m/2

and using (12), and table (9) we see that

dim,.(NP)=1 >0 dim, (NP~ =0. (169)



45 Page 50 of 60 G. Dimitrov, L. Katzarkov

Due to Theorem 6.1 and Remark 6.2 we have
dim,((A, B)) > max{dim,.(A), dim,.(B)}, (170)

whenever A, BB have phase gap and (A, B) is a semi-orthogonal decomposition of a
proper category. (170) ensures that whenever 7 has a finite dim,.(7) < +oo and
ACT is a good enough embedded subcategry, then A4 has also finite dim,.(A) <
dim,.(7) < +o00. We note also that

Remark 12.1 Proposition 4.19 and table (9) imply that for an acyclic quiver Q we have
dim,. (D?(Q)) = 0iff Q is Dynkin and dim,. (D?(Q)) = 1iff Q is affine.

12.2 A question and a definition

We start with two remarks:

Remark 12.2 Recall that the homological dimension of N ]P’l, [ > 01is one. Also due
to table (10) we have Stab(NP') = C x C for/ = 0, 1 and Stab(NP) = C x H
for [ > 2. Note also that, whereas the spirals in NPV are periodic (up to shifts there
are only three exceptional objects), for / > 1 the spirals in NP/ consist of pairwise
non-isomorphic objects.

In view of these notes, we find it convenient to view NP! as a non-commutative
curve of genus /.

Note that NP~! has homological dimension 0 and one should not think of this as a
curve. Nevertheless, in order that we include also NP~! in the terminology we refer
to it as a “non-commutative curve of genus —1” (a kind of degenerate curve).

Remark 12.3 Let [ > —1 and 7 be any triangulated cateogry linear over K, let

NP L T be any fully faithful K-linear exact functor,” and denote by A the iso-
morphism closure of the image of F in 7. Then A is a triangulated subcategory of 7
generated by two exceptional objects and it is equivalent to NP!, hence due to [8, The-
orem 3.2] the functor F has left and right adjoints and there are SOD 7 = (A, AL),
T = (+ A, A), in particular 7 € B(NP') (see Definition 11.1).

Due to (170) we see that whenever we have 7 € Bs(N P! ) for some real § > 0
(recall that by definition 11.5 this implies that there is a SOD of the form 7 = (NP, A)
where A has a phase gap) and some integer [ > 0, then dim,,.(7") > /. In particular if
T € By, (NP for arbitrary big /, then dim,,.(7) = +00, and this was used in Sect. 8.
Now we come to the question of this section:

Question 12.4 Incidences T € B(NP)'0 are embeddings of NP into T. Viewing
such embeddings as non-commutative curves in the category T we ask how many are
these curves in a given T ?

9 Recall that an exact functor is actually a a pair of a functor F’ and a natural isomorphism between the
functors F’ o T} and T o F», where T}, T, are the translation functors of the source and the target categories,
respectively.

10 je.a SOD (NP, A).
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In this section we sketch the concept of non-commutative curve-counting and give
several numbers which result from this counting. The proofs and further numbers are
in [20] and in future works. The first step is the following definition (see [20, Sections
3,4] for details):

Definition 12.5 Let .4, 7 be any triangulated categories. And let TCAut(7) be a

subgroup of the group of auto-equivalences. We denote

C:4, p(1) ={A LT Fis fully faithful exact functor satisfying properties P}.
171)

Next we fix an equivalence relation in C’ P(’T ), and we will be interested in the set
of equivalence classes, in particular the 31ze of this set.

CYp(T) =CYyp(T))~ F~F & Foa
= Bo F' forsome o € Aut(A),B el (172)

where F o o = B o F’ means equivalence of exact functors between triangulated
categories (this is so called graded equivalence).

12.3 First non-trivial examples with A = NP, I > —1 and three different targets:
two quivers, and D° (P?)

Here we specify A = NP in Definition 12.5 and 7 is a K-linear category. We note
first an example of a choice for the additional property P in Definition 12.5:

Remark 12.6 Let us choose the additional properties P from (171) as follows:

Property P : F is K-linear, the left or the right orthogonal to Im(F) in T has a phase gap
(173)

This paper contains examples of 7 and [ > 0, s.t. CL
from (170) follows:

NF, P(T ) # . On the other hand

dim,.(T) <n = CL (7)=@ for | > n. (174)

NP/, P
In all the examples of categories 7 with dim,.(7) = oo given in Sect. 8 one has

NP, »(T) # § for infinitely many /.

Next we note examples, where the additional restriction P from Remark 12.6 is
equivalent to requiring only K-linearity:

Remark 12.7 When T = D?(P?) or T = D?(Q) for an acyclic quiver Q, then for any
fully faithful exact K-linear functor F : NP — 7T the right and the left orthogonal to
the image of F is generated by an exceptional collection, therefore any such functor
automatically satisfies the additional property P in 173. This follows from the fact
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that every exceptional pair in 7 can be extended to a full exceptional collection in 7°
(this is proved in [17] and [26]).

So, let us specify Definition 12.5 with this simpler P, that is (see [20, Section 5]
for detailed exposition):
Definition 12.8 Let/ € Z>_; and let 7 be any K-linear triangulated category. And
let T CAutg(7) (where Autg(7) is the group of K-linear auto-equivalences). Let
the property P from Definition 12.5 be “F is K-linear”. We denote C;VP, P(T ) and
C;Pl’ P(T ) by C/(T) and CIF (7), respectively and refer to the elements of Clr (7T) as
to non-commutative curves of genus / in 7 modulo T".

The invariants just defined are computed for two affine quivers in [20, Section 6],
the result is:

Proposition 12.9 Let T; = DP(Q;), i = 1,2, where: Q1, 0>

2—3

o SN el ]

3 1 — 4.

Then the numbers |C| (T;)| forl € {—1,0,+1},i = 1,2, T € {{Id}, (S), Autg(T;)}

are:

RN RUN e I A RUR PTe S
‘C,F(To(: - 0 0 0 |clr(72)): - ~ | 4 2
0 ~ | 3 [ 0 ~ | 8 1
11 2 1 1 +1 4 2 I
122 = /)| =|c/ )| =o.
Proof The vanishings follow from (8). The rest of the proof is in [20]. O

In [20] we estimate the new invariants defined in Definition 12.8, the result is as
follows:

Proposition 12.10 Let K = C. Denote T = D?(P?). Let (S)CAutc(T) be the sub-
group generated by the Serre functor. Then C {_Iil} (T) =@ and vl > 0 the set C I<S) (7)
is finite. It is non-empty for:

frz0:cf@ 20l =liz0:c/"7) 0]
= {3m — 1 : m is a Markov number}. (175)

Furthermore, for any Markov number'' m we have

e ()| = o0 (176)

1 Recall that a Markov number x is a number x € N> 1 such that there existintegers y, z with x2 +y2+22 =
3xyz.
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0 <y <m,y € Z and there exists an
1< ‘C Am‘C(T) (T)’ = |{ y: exceptional vector bundle E on IP’2, <m,
withr(E) =m, y = c1(E)
(177)

3= b @] =3]ce @) < 3m, (178)
where c1(E), r(E) are the first Chern class (which we consider as an integer) and the
rank of E.

Proof See [20, Section 8]. O
3m—1

(recall that m is a Markov number and on the first row are listed the first 9 Markov
numbers):

Corollary 12.11 Denote T = D”(P?). The first several non-trivial |C Autc(T) (’T)‘ are

| m [1]2[5]13|29|34/89]169[194|
[esst?li]2]2]2[2] 2 ]2 | o

Furthermore, the so called Tyurin’s conjecture, which is equivalent to the Markov’s
conjecture (this equivalence is proved in [36, p. 100], see also [25, Section 7.2.3 ])
is equivalent to the following statement: for all Markov numbers m # 1,m # 2 we

have ‘C?n:“_cla) (T)’ =2.
Proof See [20, Section 8]. O

12.4 Dependence on a stability condition: semistable, resp. stable.
non-commutative curves

Definition 12.12 Let / € Z>_; and let 7 be a triangulated category linear over K
and s.t. Stab(7) # @, let I and P be as in Definition 12.5. One approach to define,
semi-stable w.r. to a stability condition non-commutative curves in 7 is as follows.
Choose o € Stab(7). Now we apply the same Definition 12.5 with A = NP and P
is the one from Definition 12.8 twisted by an additional restriction depending on o.
We give two options for this additional restriction. More precisely, let {s;} ez be a
Helix in NP (see [20, Section 7.2]), then let us denote:

Cla (™) = |F € Cop (D : i1 Fsj) € o) =00 | (180)
C,’)M(T)z{FeCl(T):VjeZ F(sj) e o™ }. (181)
where CNP, K’ is the set (171) (see also Definition 12.8) and o*% is the set of o-

semistable objects. The formulas (172) give equivalence relations in C l”o (7)) and in
CZ”M(T) and we define o-semistable (resp. o-stable) non-commutative curves of
genus [ in 7, and modulo T":

Clo(T) = Cl (T))Z Cloo(T) =Cf 4o (T))=
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Note that for / = 0,/ = —1 we have always C}?U (T)=40.

We will give two examples. In both of them I' = {Id}. Here we proof only one of
them. To that end we note first a lemma

Proposition 12.13 Let [ > 1. Then ’c,i’d}(zvpl)‘ = 8. Let ZCStab(NP!) be as in

Proposition7.2. Then we have ‘Cl{lgir (N]P’I)‘ = lforo € CI(Z) and ‘CW}(NIF’Z)‘
foro ¢ CI(2).

Proof From the Remark 12.3 it follows that, if for some integer j > —1 there exists
a fully faithful K-linear functor NP/ £ NP, then [ = j and F is equivalence
(from [17] we know that any exceptional pair in NP is full). It follows the equality
‘Clild} (N]P’l)‘ = k.. For the proof of the rest we note fist that for any j the subset in
Stab(N P ) where s; is semi-stable is closed subset. From Proposition 7.2 we know
that for o € Z all alements in {s;} ez are semi-stable, therefore this holds also for
o € (Z). Thus we see that 0 € CI(Z) = |Cl,00 (NP)| = 1.

Now let o ¢ CI(Z). We will show that |C; ,(NP/)| = 0 and the Proposition
follows. Indeed recalling also that in Proposition 7.2 we have also disjoint union
Stab(N]P”) = Z U U;czZ; and (78) we deduce that for some i € Z we have s;, sj+1 €
o, 1 < @(siv1) — d(si1). Now if 1 = ¢ (si+1) — @ (si+1), then using (79) this
would imply that o € CI(Z), therefore 1 < ¢(si+1) — @(si4+1). In this case the
last statement in Proposition 7.2 ensures that only s;, s;11 are semi-stable, therefore
|Clo (NPH| = 0. o

In the master thesis [6] is proved:

Proposition 12.14 Let 7 = Db(Ql) (Q1 is as in Proposition 12.9). As o varies in
Stab(7) the subset C| Id} - (1)CC Ud) (T takes all possible subsets of C dy Ty,

Remark 12.15 We expect that Porposition 12.14 holds for Cil,g}o (T) as well.

12.5 Non-commutative Calabi-Yau curve-counting

Now we sketch a conjectural example of a finite C L AP (7) (defined in Definition 12.5)
coming from categories appearing naturally on the A-side. Here the categories are
C-linear and we fix the property P of the functor F in Definition 12.5 to be “F is
C-linear” and we will write C,I;l,(c(T ) instead of CE\, P(T ). Now the domain category
A is a modification of D?(K (1)), which is Calabi—Yau. We pass from Db (K@) to
the new domain by changing

{ exceptional } { spherical }
. «—> .
objects objects

and this amounts to considering A = CY (I), instead of A = D?(K (1)). The definition
is based on the quiver:
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In the next conjectural example I' = Autc(7) is the group of C-linear auto-
equivalences of 7 :

Conjecture 12.16 Let 7 = Fuk(E) with E an elliptic curve. In this case we have a
correspondence:

CY(n),C

Autc(T) Primitive Lagrangian
¢ P { generating Fuk(E)

It follows that: Cél;t(%(?(?')‘ =#{d|gcd(d,n) =1,1<d <n).

We plan to work on Conjecture 12.16 in a future work.
Remark 12.17 For curves S of higher genus we expect that finding of the cardinality
of Cé;’,t&(fg (T) for T = Fuk(S) is related to very recent insights on counting of
geodesics—see [33].

13 A-side interpretation and holomorphic sheaves of categories

In this section we give a different point of view on the category of representations of
the Kronecker quiver and introduce the notion of holomorphic families of Kronecker
quivers.

We suggest a framework in which sequences of holomorphic families of categories
are viewed as sequences of extensions of non-commutative manifolds by relating our
norm to the notion of holomorphic family of categories introduces by Kontsevich.
Several questions and conjectures are posed.

First we sketch how to interpret D?(K (n)) asa perverse sheaf of categories. Recall
that LG model of P2 is C*?, w = x + v+ xly—see [1].

KKK
.

The category D”(K (3)) can be obtained by taking the part of the Landau Ginzburg
model over a disc D which contains 2 singular fibers.
Surgeries on the manifold:

D s'xe
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can be performed so that the Floer homology HF(L, L;) = 3 changes to
HF(L1, L») = n and as a result we get D?(K (n)).

To interpret DY(K (n)) as a perverse sheaf of categories one considers a locally
constant sheaf of categories over a graph I" shown on the picture below, the picture
encodes also the data about the sheaf:

F

DP(Ay)

P1 \,: Fuk(E) .

P2 ( DY (A7) ®Fuk(E)
Db(Ay)

The locally constant sheaf is denoted by JF. The stalks over inner points of the edges
of I' are isomorphic to Fuk(E), the stalk over the vertex where three edges meet is
DP(A,) ® Fuk(E), the stalks over the two end points of I on the left is DP(A))
(these points correspond to the two singular points of the LG model). There are three
functors from D?(A») ® Fuk(E) to Fuk(E) coming from three functors from D?(A»)
to D?(A}). The letters py, p» from the figure above denote two spherical functors from
DP(A}) to Fuk(E), thus this figure encodes a diagram of functors. One defines the
category of global sections HO(T", F) of the sheaf F as a category which is obtained
by a limit of the described diagram of functors. For appropriately chosen spherical
functors the category H O(T, F) is the same as D?(K (n)). The surgeries are recorded
by the changes of the spherical functors p1, po. What we explained about interpreting
DP(K (n)) as a perverse sheaf of categories is only a sketch . More details are given in
a subsequent work of the second author with Pandit and Spaide [31, Example 3.22].
In [31, page 41] are discussed also the surgeries.

The category D?(K (4)) can be interpreted also as part of the LG model of P?, C*3,

w=x+yt+ztL: K3O >( >< ><

xyz"
3

poay D

In this case surgeries on the fiber - a K3 surface:

K3

S
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can be performed so that the category changes from DP(K (4)) to D?(K (n)).
The Landau Ginzburg models with K3 surfaces in the fibers can be interpreted as
perverse sheafs of categories, encoded in the following picture—see [27]:

f

DP(Ay)

14 \4.: Fuk(K 3) )
P2 D’ (A>)®Fuk(K3)

DP(Ay)
HO(I', F) = D" (K (n))

Remark 13.1 The property of having a phase gap, which we require in this paper to
define the norm, can also be interpret as existence of a CY form with certain properties.
Namely let Y be a LG model, Q2 is a CY form on Y. Let L be a Lagrangian s.t.
01 < argQ|r < 6. Assume that there exits a form g on Y s.t. (1) 8 = da, (o is an
n — 1 form), (2) ReB|r > 0. (3) ¢ — 0 when w — 0.
Then there are no stable lagrangians L with 6 < arg|p < 6,. In other words
existence of such forms 2 and « lead to gaps in phases.

One more direction for future research is holomorphic families of categories, in
particular holomorphic families of Kronecker quivers.

Holomorphic families of categories over X with fiber K (n) should be defined by
homomorphisms ¢; : O(U;) — HH®(D? (K (n))) in the zero-th Hochschild cohomol-
ogy of D?(K (n)) where {U;} is a covering of X by open sets. We use the following
picture for such a holomorphic family of categories:

K(n)
J

X

The holomorphic sheaves of categories are enhanced by perverse sheaves of stability
conditions - see [30] for defining morphisms and the gluing between the categories on
intersecting opens that defines the sheaf.

The case of holomorphic family of K (2) is the classical case of conic bundles:

Z conic K(Q)
J J d
X X

The global sections H(X, F) are DP(Z). Similarly H(X, F) with K (n) forn > 3
produces a new non-commutative variety.

Iterating the procedure described above results in a family of categories over a
family of categories. Some questions addressing relations between the norms of the
fibers and of the gobal sections follow:
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Question 13.2 Under what condition ||C||e > ||H%(X, F)||¢? (here C is the category
in the fiber)

F

—

X

Question 13.3 Let us consider a tower of families of categories and each of the fiber
categories C; has non maximal ||-|| (recall the relation of ||-|° and ||, in Defini-
tion 11.5). Is it true that if the Rouquier dimension [2] of the category in the combined
fiber is one then the norm |- ||, of this category is non-maximal ?

We summarise the proposed analogy in the table bellow.

Galois theory Norms
X X5
lﬁnite lCz [IC2]le < max C, X,
X1 X1 V]1=Ccl
lﬁnite lcl [IC1]]e < max Ci X
X X

The sequence of Rouquier dim (C) = 1

finite coverings U

is finite [IC|le < max

Question 13.4 Do we have a similar theory as the classical theory of conic bundles for
sheaves of categories with fibers categories of representations of Kronecker quivers
or any other quiver category with a Rouquier dimension [2] equal to one?

In a certain way our norm can be seen as analogue of height function defined in [15].
We expect that some higher analogues of this norm for higher Rouquier dimensions
can be defined. In fact in this paper we only scratch the surface proposing a possible
approach to “noncommutative Galois theory”—representing “noncommutative man-
ifolds” (categories) as a sequence of perverse sheaves of categories and holomorphic
families of categories.

It will be interesting to study categories which can be represented as a tower of
holomorphic families of categories with nonmaximal norms ||-||,. One example of
such category is DP(P! x --- x P1).

Question 13.5 Characterise projective varieties X whose derived categories D?(X)
can be represented as tower of holomorphic families of categories with non-maximal
norms starting with D?(Z), whehre Z is a rational variety.
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(1) Under what conditions are these projective varieties X rational? (It is rather
clear that a nontrivial condition is needed since every hyperelliptic curve can be
seen as such a tower).

(2) We conjecture that for a unirational variety U there is a tower of families of
categories

D2y Bz, B2 z,... -~ Db )

and each of the fiber categories has non-maximal norm: || F;|, < 7 (1 — €) (see
[5]), and Z is rational.
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