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1 Introduction

1.1 The relative character

Let G be a reductive group1 defined over R. In this paper, we prove that a relative
character (a.k.a. spherical character) of a smooth admissible Fréchet representation
of moderate growth of G(R) is holonomic. The relative character is a basic notion of
relative representation theory that generalizes the notion of a character of a represen-
tation. Let us now recall the notions of spherical pair, relative character and holonomic
distribution. For the notion of smooth admissible Fréchet representation of moderate
growth and its relation to Harish-Chandra modules, we refer the reader to [11] or [32,
Chapter 11].

Definition 1.1 Let H ⊂ G be a (closed) algebraic subgroup defined over R. Let
P denote a minimal parabolic subgroup of G defined over R and B denote a Borel
subgroup of G (possibly not defined over R). The subgroup H is called spherical if
it has finitely many orbits on G/B. We will call H strongly real spherical if it has
finitely many orbits on G/P .

It is known that a pair (G, H) is spherical if and only if H has an open orbit on
G/B.

Definition 1.2 Let H1, H2 ⊂ G be spherical subgroups and let hi be the Lie algebras
of Hi . Let χi be characters of hi . Let π be a smooth admissible Fréchet representation
of moderate growth of G(R), π∗ the continuous dual of π , and let π̂ ⊂ π∗ be the

1 By a reductive group we mean a connected algebraic reductive group.
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smooth contragredient representation to π (i.e., the only smooth admissible Fréchet
representation of moderate growth with the same underlying Harish-Chandra module
as π∗). Let φ1 ∈ (π∗)h1,χ1 and φ2 ∈ (π̂∗)h2,χ2 be equivariant functionals. Fix a
Haar measure on G(R). It gives rise to an action of the space of Schwartz functions
S(G(R)) on π∗ and π̂∗, and this action maps elements of π∗ and π̂∗ to elements of π̂

and ˆ̂π = π respectively. For the definition of the space of Schwartz functions S(G(R))

see, e.g., [4,11,32].
The relative character ξφ1,φ2 of π , with respect to φ1 and φ2, is the tempered distri-

bution on G(R) (i.e., a continuous functional on S(G(R))) defined by 〈ξφ1,φ2 , f 〉 =
〈φ1, π( f ) · φ2〉.
Definition 1.3 Let X be an algebraic manifold defined over R. Let ξ ∈ S∗(X (R)) be
a tempered distribution. The singular support2 SS(ξ) of ξ is the zero locus in T ∗ X of
all the symbols of (algebraic) differential operators that annihilate ξ . The distribution
ξ is called holonomic if dim SS(ξ) = dim X .

In this paper we prove the following theorem.

Theorem A (See § 4.2) In the case of Definition 1.2, the relative character ξφ1,φ2 is
holonomic.

We prove Theorem A using the following well-known statement.

Proposition 1.4 (See § 4.2) Let g, hi be the Lie algebras of G and Hi , i = 1, 2.
Identify T ∗G with G × g∗ and let

S := {(g, α) ∈ G × g∗ | α is nilpotent, 〈α, h1〉 = 0, 〈α, Ad∗(g)(h2)〉 = 0}.

Then SS(ξφ1,φ2) ⊂ S.

Note that the Bernstein inequality states that the dimension of the singular support
of any non-zero distribution is at least the dimension of the underlying manifold. Thus
Theorem A follows from the following more precise version, which is the core of this
paper.

Theorem B (See § 2) We have dim S = dim G.

Let U :=
{

g ∈ G | S ∩ T ∗
g G = {(g, 0)}

}
. Note that U is Zariski open since S is

conic and closed. It is easy to see that Theorem B implies the following corollary.

Corollary C The set U is a Zariski open dense subset of G.

This corollary is useful in view of the next proposition, which follows from Propo-
sition 1.4 and Corollary 3.3 below.

2 a.k.a. characteristic variety.
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Proposition 1.5 The restriction ξφ1,φ2 |U (R) is an analytic function.

Remark 1.6 In general, S has irreducible components that cannot lie in SS(ξφ1,φ2) for
any φ1, φ2. Indeed, SS(ξφ1,φ2) is coisotropic by [14,22,27], and thus, by Theorem A,
Lagrangian. On the other hand, one can show that when G = GL4(R), and H1 =
H2 = GL2(R) × GL2(R) embedded as block matrices inside G, the variety S has
non-isotropic (and thus non-Lagrangian) components.

1.2 Bounds on the dimension of the space of solutions

Next we apply our results to representation theory. For this, we use the following
theorem.

Theorem 1.7 (Bernstein–Kashiwara) Let X be an algebraic manifold defined over R.
Let

{Diξ = 0}i=1...n

be a system of linear PDE on S∗(X (R)) with algebraic coefficients. Suppose that the
joint zero set of the symbols of Di in T ∗ X is dim X-dimensional. Then the space of
solutions of this system is finite-dimensional.

It seems that this theorem is not found in the literature in this formulation; however it
has two proofs, one due to Kashiwara (see [20,21] for similar statements) and another
due to Bernstein (unpublished).

In order to make our applications in representation theory more precise, we need an
effective version of this theorem. We prove such a version (see Theorem 3.13 below)
following Bernstein’s approach, as it is more appropriate for effective bounds. We
use this effective version to derive a relative version. Namely, we show that if the
system depends on a parameter in an algebraic way, then the dimension of the space
of solutions is bounded (see § 3.3 below).

This relative version allows us to deduce the following theorem.

Theorem D (See § 3.3) Let G be an algebraic group defined over R and let X be an
algebraic G-manifold with finitely many orbits. Let g be the Lie algebra of G. Let E
be an algebraic G-equivariant bundle on X. Then, for any natural number n ∈ N,
there exists Cn ∈ N such that for every n-dimensional representation τ of g, we have

dimHomg(τ, S
∗(X (R),E)) ≤ Cn,

where Homg denotes the space of all continuous g-equivariant maps.

Remark 1.8 Note that the condition that G has finitely many orbits on X is equivalent
to G(C) having finitely many orbits on X (C) but not equivalent to (and not implied
by) G(R) having finitely many orbits on X (R).
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1.3 Applications to representation theory

Using § 3, we give a short proof of some results from [24,25]. Namely, we prove:

Theorem E (See § 4) Let G be a reductive group defined over R, H ⊂ G a Zariski
closed subgroup, and let h be the Lie algebra of H.

(i) If H is a strongly real spherical subgroup then, for every irreducible smooth
admissible Fréchet representation of moderate growth π ∈ Irr(G(R)), and nat-
ural number n ∈ N there exists Cn ∈ N such that for every n-dimensional
representation τ of h we have

dimHomh(π, τ ) ≤ Cn .

(ii) If H is a spherical subgroup and we consider only one-dimensional τ , then the
space is universally bounded, i.e., there exists C ∈ N such that dim(π∗)h,χ ≤ C
for any π ∈ Irr(G(R))) and any character χ of h.

Corollary F Let G be a reductive group defined over R, H ⊂ G a Zariski closed
reductive subgroup, and let h be the Lie algebra of H.

(i) If the diagonal ΔH is a strongly real spherical subgroup in G × H, then for every
π ∈ Irr(G(R))) and τ ∈ Irr(H(R))) we have finite multiplicities, i.e.,

dimHomh(π, τ ) < ∞.

(ii) If the diagonal ΔH is a spherical subgroup in G × H, then the multiplicities are
universally bounded, i.e., there exists C ∈ N such that for every π ∈ Irr(G(R))),
τ ∈ Irr(H(R))) we have

dimHomh(π, τ ) ≤ C.

This corollary follows from Theorem E since Homh(π, τ ) lies in the space of Δh-
invariant functionals on the completed tensor productπ⊗̂τ̂ ∈ Irr(G(R))×H(R))) (see
[5, Corollary A.0.7 and Lemma A.0.8]). All symmetric pairs satisfying the conditions
of the corollary were classified in [23].

The inverse implications for Theorem E(ii) and Corollary F(ii) are proved in [24].
The results on multiplicities in [24,25] are stronger than Theorem E since they

do not require H to be algebraic, and consider maps from the Harish-Chandra space
of π to τ . Also, in [24,25] Theorem E(i) and Corollary F(i) are proved in the wider
generality of real spherical subgroups.

In addition, [24, Theorem B] implies that if H ⊂ G is an algebraic spherical
subgroup, there exists C ∈ N such that dimHomh(π, τ ) ≤ C dim τ, for every π ∈
Irr(G(R)) and every finite-dimensional continuous representation τ of H(R). It is
easy to modify our proof of Theorem E(ii) to show the boundedness of multiplicities
for any π ∈ Irr(G(R)) and any τ of a fixed dimension, but the proof that the bound
depends linearly on this dimension would require more work.

Our methods are different from the methods of [24], which in turn differ from those
of [25], and the bounds given in the three works are probably very different.
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1.4 The non-Archimedean case

Theorem B and Corollary C hold over arbitrary fields of characteristic zero. They are
useful also for p-adic local fields F , since the analogs of Propositions 1.4 and 1.5
hold in this case, see [8, Theorem A and Corollary F]. Namely, we have the following
theorem.

Theorem 1.9 ([8]) Let G be a reductive group defined over a non-Archimedean field
F of characteristic 0 and let ξ be a relative character of a smooth admissible repre-
sentation with respect to two spherical subgroups H1, H2 ⊂ G. Let S and U be the
sets defined in Proposition 1.4 and Corollary C. Then

(i) The wave front set of ξ lies in S(F).
(ii) The restriction of ξ to U (F) is given by a locally constant function.

1.5 Related results

In the group case, i.e., the case when G = H × H and H1 = H2 = ΔH ⊂ H × H ,
Theorem A essentially becomes the well-known fact that characters of admissible
representations are holonomic distributions.

As we mentioned above, Theorem E was proved earlier in [24,25] using different
methods. An analog of Theorem E(i) over non-Archimedean fields is proved in [13]
and [30, Theorem 5.1.5] for many spherical pairs, including arbitrary symmetric pairs.

The group case of Corollary C, Proposition 1.5, and Theorem 1.9(ii) is (the easy
part of) the Harish-Chandra regularity theorem (see [16,17]). Another known special
case of these results is the regularity of Bessel functions, see [6,7,26].

1.6 Future applications

Our proof of Theorem E(ii) does not use the Casselman embedding theorem (The-
orem 4.3). This gives us hope that it can be extended to the non-Archimedean case.
The main difficulty is the fact that our proof heavily relies on the theory of modules
over the ring of differential operators, which does not act on distributions in the non-
Archimedean case. However, in view of Thereom 1.9 we believe that this difficulty can
be overcome. Namely, one can deduce an analog of Theorem E(ii) for many spherical
pairs from the following conjecture.

Conjecture G Let G be a reductive group defined over a non-Archimedean field F
of characteristic 0 and let H1, H2 ⊂ G be its (algebraic) spherical subgroups. Let χi

be characters of Hi (F). Fix a character λ of the Bernstein center z(G(F)).
Then the space of distributions which are:

(1) left (H1(F), χ1)-equivariant,
(2) right (H2(F), χ2)-equivariant,
(3) (z(G(F)), λ)-eigen,

is finite-dimensional. Moreover, this dimension is uniformly bounded when λ varies.



Holonomicity of relative characters and applications... 2331

Note that Theorems B and 1.9(i) imply that the dimension of (the Zariski closure of)
the wave front set of a distribution that satisfies (1–3) does not exceed dim G. In many
ways the wave front set replaces the singular support, in absence of the theory of
differential operators (see, e.g., [2,3,7,8]). Thus, in order to prove Conjecture G, it is
left to prove analogs of Theorems 1.7 and 3.13 for the integral system of equations
(1–3).

1.7 Structure of the paper

In § 2, we prove TheoremB using a theorem of Steinberg [31] concerning the Springer
resolution.

In § 3, we prove an effective version of Theorem 1.7, and then adapt it to algebraic
families. We also derive Theorem D.

In § 4, we derive Theorem E from Theorem B and § 3. We do that by embedding
the multiplicity space into a certain space of relative characters.

InAppendixA,we prove Lemma 3.1which computes the pullback of theD-module
of distributions with respect to a closed embedding. We use this lemma in § 3.

2 Proof of Theorem B

It is enough to prove the theorem for a reductive group G defined over an algebraically
closed field of characteristic 0. Since S includes the zero section of T ∗G ∼=G ×g∗, we
have dim S ≥ dim G. Thus, it is enough to prove that dim S ≤ dim G. Let B denote
the flag variety of G and N ⊂ g∗ denote the nilpotent cone. Since G is reductive, we
can identify

T ∗B ∼= {(B, X)∈ B × g∗ | X ∈ (LieB)⊥}.

Recall the Springer resolution μ : T ∗B → N defined by μ(B, X) = X and consider
the following diagram.

T ∗B × T ∗B
μ×μ

G × N

α

N × N

Res

h∗
1 × h∗

2

(2.1)
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Here, α is defined by α(g, X) = (X,Ad∗(g−1)X), and Res is the restriction.
Passing to the fiber of 0 ∈ h∗

1 × h∗
2, we obtain the following diagram.

L1 × L2

μ′
S

α′

Nh1 × Nh2

(2.2)

Here, Nhi := N ∩ h⊥
i and Li := {(B, X) ∈ T ∗B | X ∈ h⊥

i }. We need to estimate
dim S. We do it using the following lemma.

Lemma 2.1 (See § 2.1 below) Let ϕi : Xi → Y , i = 1, 2, be morphisms of algebraic
varieties. Suppose that ϕ2 is surjective. Then there exists y ∈ Y such that

dim X1 ≤ dim X2 + dim ϕ−1
1 (y) − dim ϕ−1

2 (y).

By this lemma, applied to φ1 = α′ and φ2 = μ′, it is enough to estimate the
dimensions of Li and of the fibers of μ′ and α′.

Lemma 2.2 We have dim L1 = dim L2 = dimB.

Proof Since Hi has finitely many orbits inB, it is enough to show that Li is the union
of the conormal bundles to the orbits of Hi in B. Let B ∈ B, and b = LieB, and
identify TBB ∼= g/b. Then TB(Hi · B) ∼= hi/(b ∩ hi ) and the conormal space at B to
the Hi -orbit of B is identified with b⊥ ∩ h⊥

i . ��
Let (η,Ad∗(g)η) ∈ Im(α′). The fiber (α′)−1(η,Ad∗(g)η) is isomorphic to the

stabilizerGη, and the dimensionof thefiber (μ′)−1(η,Ad∗(g)η) is twice the dimension
of the Springer fiber μ−1(η). Recall the following theorem of Steinberg (conjectured
by Grothendieck):

Theorem 2.3 ([31, Theorem 4.6])

dim Gη − 2 dimμ−1(η) = rk G.

Using Lemma 2.1, we obtain for some (η, ad∗(g)η):

dim S ≤ dim(L1 × L2) + dim(a′)−1(η, ad∗(g)η) − dim(μ′)−1(η, ad∗(g)η)

= 2 dimB + dim Gη − 2 dimμ−1(η) = 2 dimB + rk G = dim G.

2.1 Proof of Lemma 2.1

Recall that, for a dominant morphism ϕ : X → Y of irreducible varieties, there exists
an open dense U ⊂ Y such that dim X = dim Y + dim ϕ−1(y) for all y ∈ U (see,
e. g., [29, Theorem 1.8.3]). Let Z be an irreducible component of X1 of maximal
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dimension and let W ⊂ Y be the Zariski closure of ϕ1(Z). Since W is irreducible,
there exists an open dense U ⊂ W such that

dim X1 = dim Z ≤ dim W + dim ϕ−1
1 (y) (2.3)

for all y ∈ U . Let V ⊂ U be an open dense subset such that ϕ−1
2 (V ) intersects those

and only those irreducible components C1, . . . , C j of ϕ−1
2 (W ) that map dominantly

to W . Note that j > 0 since ϕ2 is surjective. Moreover, without loss of generality,
we may assume that for every 1 ≤ i ≤ j , all fibers over V of the restriction of ϕ2
to Ci are of the same dimension. Since one of these dimensions has to be equal to
dim ϕ−1

2 (V ) − dim V , we have that there is an 1 ≤ i ≤ j such that, for all y ∈ V ,

dim V = dim Ci − dim(ϕ2|Ci )
−1(y)

≤ dim ϕ−1
2 (V ) − dim ϕ−1

2 (y) ≤ dim X2 − dim ϕ−1
2 (y). (2.4)

Thanks to dim V = dim W , taking any y ∈ V , formulas (2.3) and (2.4) imply the
statement. ��

3 Dimension of the space of solutions of a holonomic system

In this section, we prove an effective version of Theorem 1.7, and then adapt it to
algebraic families. We also derive Theorem D.

3.1 Preliminaries

3.1.1 D-modules

In this section, we will use the theory of D-modules on algebraic varieties over an
arbitrary field k of characteristic zero. We will now recall some facts and notions that
we will use. For a good introduction to the algebraic theory of D-modules, we refer
the reader to [9] and [10]. For a short overview, see [5, Appendix B].

By a D-module on a smooth algebraic variety X , we mean a quasi-coherent sheaf
of right modules over the sheaf DX of algebras of algebraic differential operators. By
a finitely generated D-module on a smooth algebraic variety X , we mean a coherent
sheaf of right modules over the sheaf DX . Denote the category of DX -modules by
M(DX ).

For a smooth affine variety V , we denote D(V ) := DV (V ). Note that the category
M(DV ) of D-modules on V is equivalent to the category of D(V )-modules. We will
thus identify these categories.

The algebra D(V ) is equipped with a filtration which is called the geometric filtra-
tion and defined by the degree of differential operators. The associated graded algebra
with respect to this fitration is the algebra O(T ∗V ) of regular functions on the total
space of the cotangent bundle of V . This allows us to define the singular support of
a finitely generated D-module M on V in the following way. Choose a good filtration



2334 A. Aizenbud et al.

on M , i.e., a filtration such that the associated graded module is a finitely-generated
module over O(T ∗V ), and define the singular support SS(M) to be the support of this
module. One can show that the singular support does not depend on the choice of a
good filtration on M .

This definition easily extends to the non-affine case. A finitely generated D-module
M on X is called smooth if SS(M) is the zero section of T ∗ X . This is equivalent to
being coherent overOX and to being coherent and locally free overOX . The Bernstein
inequality states that for any non-zero finitely generated M , we have dim SS(M) ≥
dim X . If the equality holds, then M is called holonomic.

For a closed embedding i : X → Y of smooth affine algebraic varieties, define
the functor i ! : M(DY ) → M(DX ) by i !(M) := {m ∈ M | IX m = 0}, where
IX ⊂ O(Y ) is the ideal of all functions that vanish on X . It has a left adjoint functor
i∗ : M(DX ) → M(DY ), given by the tensor product with i !(DY ). The functor i∗ is an
equivalence of categories betweenM(DX ) and the category of DY -modules supported
in X . Both i∗ and i ! map holonomic modules to holonomic ones.

If V is an affine space, then the algebra D(V ) has an additional filtration, called
the Bernstein filtration. It is defined by deg(∂/∂xi ) = deg(xi ) = 1, where xi are the
coordinates inV . This gives rise to the notion ofBernstein’s singular support, whichwe
will denote SSb(M) ⊂ T ∗V ∼= V ⊕ V ∗. It is known that dim SS(M) = dim SSb(M).

We will also use the theory of analytic D-modules. By an analytic D-module on a
smooth complex analytic manifold X , we mean a coherent sheaf of right modules over
the sheaf DAn

X of algebras of differential operators with analytic coefficients. All of
the above notions and statements, except for those concerning the Bernstein filtration,
have analytic counterparts. In addition, all smooth analytic D-modules of the same
rank are isomorphic.

3.1.2 Distributions

We will use the theory of distributions on differentiable manifolds and the theory
of tempered distributions on real algebraic manifolds, see e.g., [4,19]. For an alge-
braic manifold X defined over R, we denote the space of real valued distributions
on X (R) by D′(X (R),R) := (C∞

c (X (R),R))∗ and the space of real valued tem-
pered distributions (a.k.a. Schwartz distributions) by S∗(X(R),R) := (S(X(R),R))∗.
Similarly, denote by D′(X (R)) := D′(X (R),C) the space of complex valued
distributions on X (R) and by S∗(X (R)) := S∗(X (R),C) the space of complex
valued tempered distributions on X (R). Also, for an algebraic bundle E (complex
or real) over X , we denote D′(X(R),E) := (C∞

c (X(R),E))∗ and S∗(X(R),E) :=
(S(X(R),E))∗.

The algebra D(X) acts on the spaces D′(X(R),R) and S∗(X(R),R). Thus, for
affine X we can consider these spaces as DX -modules and D′(X(R),R) also as an
analytic DX -module. Similarly, we will regard the spacesD′(X (R)) and S∗(X (R)) as
DXC

-modules, where XC denotes the complexification of X . For non-affine X , define
the DX -module S∗

X,R
by S∗

X,R
(U ) := S∗(U (R),R). It is easy to see that this sheaf

is quasi-coherent. Denote by S∗
X the DXC

-module obtained by complexification of
S∗

X,R
.
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We define the singular support of a tempered distribution to be the singular support
of the D-module it generates. It is well known that this definition is equivalent to
Definition 1.3. We say that a distribution is holonomic if it generates a holonomic
D-module.

Lemma 3.1 (See Appendix A). Let i : X → Y be a closed embedding of smooth
affine algebraic varieties defined over R. Then

D′(X(R)) ∼= i !(D′(Y (R))) and S∗(X(R)) ∼= i !(S∗(Y (R))).

Lemma 3.2 Let M be a smooth D(An
C
)-module of rank r . Embed the space An(Cn)

of analytic functions on C
n into D′(Rn) using the Lebesgue measure. Then

HomD(An
C
)(M,D′(Rn)) = HomD(An

C
)(M,An(Cn)) and

r = dimHomD(An
C
)(M,D′(Rn)).

Proof Let MAn := M ⊗O(Cn) An(C
n) and DAn(A

n
C
) := D(An

C
) ⊗O(Cn) An(C

n) be
the analytizations of M and D(An

C
). Then

HomD(An
C
)(M,D′(Rn)) ∼= HomDAn(A

n
C
)(MAn,D

′(Rn)).

Since MAn is also smooth, MAn ∼= An(Cn)r . Thus it is left to prove that

HomDAn(A
n
C
)(An(C

n),D′(Rn)) = HomDAn(A
n
C
)(An(C

n),An(Cn))

and the latter space is one-dimensional. This follows from the fact that a distribution
with vanishing partial derivatives is a multiple of the Lebesgue measure. ��
Corollary 3.3 If a distribution generates a smooth D-module, then it is analytic.

3.1.3 Lie algebra actions

Definition 3.4 Let X be an algebraic manifold defined over a field k and g a Lie
algebra over k.

(i) An action of g on X is a Lie algebra map from g to the algebra of algebraic vector
fields on X .

(ii) Assume that X is affine, fix an action of g on X and let E be an algebraic vector
bundle on X . Let M be the space of global regular (algebraic) sections of E.
An action of g on E is a linear map T : g → Endk(M) such that, for any
α ∈ g, f ∈ O(X), v ∈ M , we have

T (α)( f v) = (α f )v + f T (α)v.

(iii) The definition above extends to non-affine X in a straightforward way.
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3.1.4 Weil representation

Definition 3.5 Let V be a finite-dimensional real vector space. Let ω be the standard
symplectic form on V ⊕ V ∗. Denote by pV : V ⊕ V ∗ → V and pV ∗ : V ⊕ V ∗ → V ∗
the natural projections. Define an action of the symplectic group Sp(V ⊕ V ∗) on the
algebra D(V ) by

(∂v)
g := π(g)(∂v) := pV ∗(g(v, 0)) + ∂pV (g(v,0)),

wg := π(g)w := pV ∗(g(0, w)) + ∂pV (g(0,w))

where v ∈ V, w ∈ V ∗, ∂v denotes the derivative in the direction of v, and elements
of V ∗ are viewed as linear polynomials and thus differential operators of order zero.
For a D(V )-module M and an element g ∈ Sp(V ⊕ V ∗), we will denote by Mg the
D(V )-module obtained by twisting the action of D(V ) by π(g).

Since the above action of Sp(V ⊕ V ∗) preserves the Bernstein filtration on D(V ),
the following lemma holds.

Lemma 3.6 For a finitely generated D(V )-module M and g ∈ Sp(V ⊕ V ∗) we have
SSb(Mg) = gSSb(M).

Theorem 3.7 ([33]). There exists a two-folded cover p : S̃p(V ⊕ V ∗) →
Sp(V ⊕V ∗)(R) and a representation � of S̃p(V ⊕V ∗) on the space S∗(V ) of tempered
distributions on V such that, for any α ∈ D(V ), g ∈ S̃p(V ⊕ V ∗), ξ ∈ S∗(V ), we
have

�(g)(ξα) = (�(g)ξ)α p(g).

Corollary 3.8 We have an isomorphism of D(V )-modules S∗(V )g ∼= S∗(V ) for any
g ∈ Sp(V ⊕ V ∗)(R).

In fact, this corollary can be derived directly from the Stone–von Neumann theorem.

3.1.5 Flat morphisms

Lemma 3.9 Let φ : X → Y be a proper morphism of algebraic varieties defined over
a field k and M be a coherent sheaf on X. Then there exists an open dense U ⊂ Y
such that M|φ−1(U ) is flat over U.

Proof By [15, Théorème II.3.I], the set V of scheme-theoretic points x ∈ X for which
M is φ-flat at x is open in X . Since φ is proper, the set Z := φ(X\V ) is closed in Y .
Note that M is flat over U := X\Z , since φ−1(U ) ⊂ V . Moreover, U contains the
generic points of the irreducible components of Y . Hence U ⊂ Y is dense. ��
Lemma 3.10 (See, e.g., [28, Corollary on p. 50]). Let φ : X → Y be a proper
morphism of algebraic varieties defined over a field k and, M be a coherent sheaf on
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X that is flat over Y . For a point y ∈ Y , let My denote the pullback of M to φ−1(y).
Then the function

y �→ χ(My) =
∞∑

i=0

(−1)i dimk(y) H
i (My)

is locally constant.

Corollary 3.11 Let Y be an algebraic variety defined over a field k and let M be a
coherent sheaf on Y ×P

n. Then there exists an open dense U ⊂ Y such that the Hilbert
polynomial3 of My does not depend on y as long as y ∈ U.

3.2 Dimension of the space of solutions of a holonomic system

Definition 3.12 Let k be a field of characteristic zero.

(i) Let M be a finitely generated D-module over an affine spaceAn
k over k. Let Fi be

a good filtration on M with respect to the Bernstein filtration on the ring DA
n
k
. Let

p be the corresponding Hilbert polynomial of M , i.e., p(i) = dim Fi for large
enough i . Let d be the degree of p and ad be the leading coefficient of p. Define
the Bernstein degree of M to be degb(M) := d!ad . It is well-known that d and
ad do not depend on the choice of a good filtration Fi .

(ii) Let M be a finitely generated D-module over a smooth algebraic variety X defined

over k. Let X = ⋃l
i=1 Ui be an open affine cover of X and let φi : Ui ↪→ A

ni
k be

closed embeddings. Denote

deg{(Ui ,φi )}(M) :=
l∑

i=1

degb((φi )∗(M |Ui )).

Define the global degree of M by deg(M) := min deg{(Ui ,φi )}(M), where the
minimum is taken over the set of all possible affine covers and embeddings.

In this subsection, we prove

Theorem 3.13 Let X be an algebraic manifold defined over R. Let M be a holonomic
right DXC

-module. Then dimHom(M, S∗(X)) ≤ deg(M).

We will need the following geometric lemmas.

Lemma 3.14 Let V be a vector space over an algebraically closed field, let L ⊂ V be
a subspace and C ⊂ V be a closed conic algebraic subvariety such that L ∩C = {0}.
Then the projection p : C → V/L is a finite map.

3 For the definition of Hilbert polynomial, see [18, Chapter III, Exercise 5.2].
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Proof By induction, it is enough to prove the case dim L = 1. Choose coordinates
x1, . . . , xn on V such that the coordinates x1, . . . , xn−1 vanish on L . Let p be a
homogeneous polynomial that vanishes on C but not on L . Write p = ∑d

i=1 gi xi
n ,

where each gi is a homogeneous polynomial of degree d − i in x1, . . . , xn−1. Then
xn|C satisfies a monic polynomial equation with coefficients in O(V/L). ��
Lemma 3.15 Let W be a 2n-dimensional real symplectic vector space, and C ⊂ WC

be a closed conic subvariety of dimension n. Then there exists a real Lagrangian
subspace L ⊂ W such that LC ∩ C = {0}.
Proof Let L denote the variety of all Lagrangian subspaces of W . Note that dimL =
n(n + 1)/2. Let P(C) ⊂ P(WC) be the projectivizations of C and WC. Consider the
configuration space

X := {(x, L) ∈ P(C) × L | x ⊂ L}.

SinceL is smooth, irreducible, and has a real point, it is enough to show that p(X) �= L

where p : X → L is the projection. Let q : X → P(C) be the other projection. Note
that dim q−1(x) = n(n − 1)/2 for any x ∈ P(C). Thus

dim X = n(n − 1)/2 + n − 1 < n(n + 1)/2 = dimL,

and thus p : X → LC cannot be dominant. ��
Corollary 3.16 Let V be a real vector space of dimension n. Consider the standard
symplectic form on V ⊕ V ∗. Let C ⊂ VC ⊕ V ∗

C
be a closed conic subvariety of

dimension n, defined over R. Let p : VC ⊕ V ∗
C

→ VC denote the projection. Then
there exists a linear symplectic automorphism g ∈ Sp(V ⊕ V ∗)(R) such that p|gC is
a finite map.

Proof By Lemma 3.15 there exists a Lagrangian subspace L ⊂ V ⊕ V ∗ such that
LC ∩ C = {0}. Since the action of Sp(V ⊕ V ∗)(R) on Lagrangian subspaces is
transitive, there exists g ∈ Sp(V ⊕ V ∗)(R) such that V ∗ = gL and thus gC ∩ V ∗

C
=

{0}. From Lemma 3.14 we get that p|gC is a finite map.

��
Proof of Theorem 3.13 Let X = ⋃l

i=1 Ui be an open affine cover of X and let φi :
Ui ↪→ A

ni
C
be closed embeddings. Clearly

dimHom(M, S∗
X ) ≤

l∑
i=1

dim Hom(M |(Ui )C , S∗(Ui (R))).

By Lemma 3.1

Hom(M |(Ui )C , S∗(Ui (R))) ∼= Hom(M |(Ui )C , φ!
i (S

∗(Rni ))

∼= Hom((φi )∗(M |(Ui )C), S∗(Rni )).
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Thus it is enough to show that for any holonomic D-module N on an affine space
A

n
C
we have

dimHom(N , S∗(Rn)) ≤ degb(N ).

Let C ⊂ A
2n
C

be the singular support of N with respect to the Bernstein filtration.
By Corollary 3.16, there exists g ∈ Sp2n (R) such that p|gC is a finite map, where
p : A2n

C
→ A

n
C
is the projection on the first n coordinates. By Corollary 3.8 we have

dimHom(N , S∗(Rn)) = dimHom(N g, S∗(Rn)g) = dimHom(N g, S∗(Rn)).

ByLemma 3.6we have SSb(N g) = gC . Let F be a good filtration on N g (with respect
to the Bernstein filtration on D(An

C
)). We see that Gr N g is finitely generated over

O(An
C
), and thus so is N g . Thus N g is a smooth D-module. Note that rkO(An) N g ≤

degb N g = degb N . By Lemma 3.2 dimHom(N g, S∗(Rn)) ≤ rkO(An
C
) N g . ��

3.3 Families of D-modules

In this sectionwediscuss families of D-modules on algebraic varieties over an arbitrary
field k of zero characteristic.

Let φ : X → Y be a map of algebraic varieties and M a quasi-coherent sheaf of
OX -modules. For any y ∈ Y , denote by My the pullback of M to φ−1(y).

Definition 3.17 Let X, Y be smooth algebraic varieties.

– If X and Y are affine, we define the algebra D(X, Y ) to be D(X) ⊗k O(Y ).
– Extending this definition we obtain a sheaf of algebras DX,Y on X × Y .
– By a family of DX -modules parameterized by Y , wemean a sheaf of right modules
over the sheaf of algebras DX,Y on X × Y which is quasi-coherent as a sheaf of
OX×Y -modules.

– We call a family of DX -modules parameterized by Y coherent if it is locally finitely
generated as a DX,Y -module.

– For a family M of DX -modules parameterized by Y and a point y ∈ Y , we call
My the specialization of M at y and consider it with the natural structure of a
DX -module.

– We say that a coherent familyM is holonomic if every specialization is holonomic.

Theorem 3.18 Let X, Y be smooth algebraic varieties and let M be a family of DX -
modules parametrized by Y . Then degMy is bounded when y ranges over the k-points
of Y .

Proof Without loss of generality, we can assume that X = A
n and Y is an affine

variety, and prove that degb(My) is bounded. We will prove this by induction on
dim Y .

The Bernstein filtration on D(An) gives rise to a filtration on D(An, Y ). Choose
a filtration F on M which is good with respect to this filtration and let N := GrM,
considered as a graded O(A2n × Y )-module. Associate to N a coherent sheaf N on
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P
2n−1×Y . LetNy be the pullback ofN under the embedding of P2n−1 into P2n−1×Y

given by x �→ (x, y). By definition, the Hilbert polynomial of My with respect to
the filtration induced by F is the Hilbert polynomial of Ny . By Corollary 3.11, there
exists an open dense subset U ⊂ Y such that the Hilbert polynomial of Ny does not
depend on y as long as y ∈ U . By the induction hypothesis, degb(My) is bounded on
Y\U , and thus bounded on Y . ��

For an application of this theorem we will need the following lemma.

Lemma 3.19 Let a real Lie algebra g act on an algebraic manifold X defined over
R and on a complex algebraic vector bundle E on X. Fix a natural number n and let
Y be the variety of all representations of g on C

n. Then there exists a coherent family
M of DX -modules parameterized by Y such that, for any τ ∈ Y , we have

(1) Homg(τ, S
∗(X (R),E)) = HomDX (Mτ , S

∗
X ).

(2) The singular support of Mτ (with respect to the geometric filtration) is included
in

{(x, φ) ∈ T ∗ X | ∀α ∈ g we have 〈φ, α(x)〉 = 0}.

Proof It is enough to prove the lemma for affine X . Let N be the coherent sheaf of
the regular (algebraic) sections of E (considered as a sheaf of OXC

-modules). Let N
be the pullback of N to XC × Y . Let N′ := N ⊗OXC×Y DXC,Y ⊗C C

n , and N′′ ⊂ N′
be the DXC,Y -submodule generated by elements of the form

αn ⊗ 1 ⊗ v + n ⊗ ξα ⊗ v + n ⊗ fα(v),

whereα ∈ g, ξα is the vector field on X corresponding toα, and fα(v) ∈ DXC,YC
⊗CC

n

is the C
n-valued regular function on XC × Y given by fα(v)(x, τ ) = τ(α)v. Then

M := N′/N′′ satisfies the requirements. ��
Theorems 3.13, 3.18, and Lemma 3.19 imply Theorem D.

4 Proof of Theorems A and E

In this section, we derive Theorems A and E from Theorem B and § 3. We do that by
embedding the multiplicity space into a certain space of relative characters.

4.1 Preliminaries

For a reductive group G defined over R, we denote by Irr(G(R)) the collection of
irreducible admissible smooth Fréchet representations of G(R) of moderate growth.
We refer to [11,32] for the background on these representations.

Theorem 4.1 (See [32, Theorem 4.2.1]) The center z(U(g)) of the universal envelop-
ing algebra of the complexified Lie algebra of G acts finitely on every admissible
smooth Fréchet representation π of G of moderate growth. This means that there
exists an ideal in z(U(g)) of finite codimension that annihilates π .
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Lemma 4.2 ([1, Theorem 1.2 and Corollary 1.4]) For any reductive group G defined
over R, there exists an involution θ of G such that, for any π ∈ Irr(G(R)), we have
π̂ ∼= πθ .

Theorem 4.3 (Casselman embedding theorem, see [12, Proposition 8.23]) Let G be
a reductive group G defined over R and P be a minimal parabolic subgroup of G.
Let π ∈ Irr(G(R)). Then there exist a finite-dimensional representation σ of P and
an epimorphism IndG(R)

P(R)
(σ ) � π .

4.2 Proof of Theorem A and Proposition 1.4

Theorem A follows from Theorem B and Proposition 1.4.

Proof of Proposition 1.4 Let ξ be a relative character of a smooth admissible Fréchet
representation π of G(R) of moderate growth with respect to a pair of subgroups
(H1(R), H2(R)) and their characters χ1, χ2. By Theorem 4.1, there exists an ideal
I ⊂ z(U(g)) of finite codimension that annihilates π and thus annihilates ξ . For
any element z ∈ z(U(g)), there exists a polynomial p such that p(z) ∈ I and thus
p(z)ξ = 0. This implies that the symbol of any z ∈ z(U(g)) of positive degree vanishes
on the singular support of ξ . It is well-known that the joint zero-set of these symbols
over each point g ∈ G is the nilpotent cone N(g∗). Since ξ is (h1 × h2, χ1 × χ2)-
equivariant, this implies that the singular support of ξ lies in S. ��

4.3 Proof of Theorem E

Part (i) follows immediately from TheoremD and the Casselman embedding theorem.
If G is quasisplit, then so does part (ii). For the proof of part (ii) in the general case,
we will need the following lemma.

Lemma 4.4 Let G be a reductive group defined over R and let H1, H2 be spherical
subgroups. Let Y = Spec(z(U(g)))×Y1 × Y2, where Yi is the variety of characters of
hi = Lie Hi . For any λ ∈ Y (C), define Uλ,χ1,χ2 := S∗(G(R))h1×h2,(χ1,χ2),(z(U(g)),λ)

to be the space of tempered distributions on G that are left χ1-equivariant with respect
to h1, right χ2-equivariant with respect to h2 and are eigendistributions with respect
to the action of z(U(g)) with eigencharacter λ. Then dimUλ,χ1,χ2 is bounded over
Y (C).

Proof Let us construct a family of D(G)-modules M parameterized by Y . For any
α ∈ g, let rα and lα be the corresponding right and left invariant vector fields on G
considered as elements in D(G, Y ). For any β ∈ z(U(g)), αi ∈ hi , let fβ, gi

αi
be the

functions on Y that send (μ, γ1, γ2) ∈ Y to μ(β), γi (αi ) respectively. Also let dβ

be the differential operator on G corresponding to β, such that dβξ = βξ for any
distribution ξ on G(R). We consider dβ, rα1 , lα2 , fβ, gi

αi
as elements of D(G, Y ). Let

I ⊂ D(G, Y ) be the ideal generated by rα1−g1
α1
, lα2−g2

α2
and fβ−dβ where αi ∈ hi

and β ∈ z(U(g)). Define M := D(G, Y )/I .
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It is easy to see that Uλ,χ1,χ2
∼= Hom(M(λ,χ1,χ2), S

∗(G(R))). As in the proof of
Proposition 1.4, the singular support of M(λ,χ1,χ2) lies in S, for any λ, χ1, χ2. By
Theorem B, M(λ,χ1,χ2) is holonomic and, therefore, M is holonomic. By Theorem
3.13, we have dimUλ,χ1,χ2 ≤ degM(λ,χ1,χ2). By Theorem 3.18, degM(λ,χ1,χ2) are
bounded. ��
Proof of Theorem E(ii) We choose an involution θ as in Lemma 4.2, let H1 :=
H, H2 := θ(H), and define the spaces Uλ as in Lemma 4.4.

Now let π ∈ Irr(G(R)) and let χ be a character of h such that (π∗)h,χ �= 0. Let λ
stand for the infinitesimal character of π . By Lemma 4.2, (π̂∗)dθ(h),dθ(χ) �= 0. Fix a
non-zero φ ∈ (π̂∗)dθ(h),dθ(χ). Then φ defines an embedding (π∗)h,χ ↪→ Uλ,χ,dθ(χ)

by ψ �→ ξψ,φ , where ξψ,φ is the relative character, which is defined by ξψ,φ( f ) :=
〈ψ,π( f )φ〉. Thus, dim(π∗)h,χ ≤ dimUλ,χ,dθ(χ), which is bounded by Lemma 4.4.
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Appendix A: Proof of Lemma 3.1

For the proof,wewill need the following standard lemmas.Let M be a smoothmanifold
and N ⊂ M be a closed smooth submanifold.

Lemma A.1 Denote IN := { f ∈ C∞
c (M) | f |N = 0}. Let J ⊂ IN be an ideal in

C∞
c (M) such that

(1) For any x ∈ N, the space {dx f | f ∈ J } is the conormal space to N in M at the
point x.

(2) For any x ∈ M\N, there exists f ∈ J such that f (x) �= 0.

Then J = IN .

Proof Using the partition of unity, it is enough to show that for any f ∈ IN and
x ∈ M , there exists f ′ ∈ J such that f coincides with f ′ in a neighborhood of x . For
x /∈ N this is obvious, so we assume that x ∈ N . We prove the statement by induction
on the codimension d of N in M . The base case d = 1 follows, using the implicit
function theorem, from the case N = R

n−1 ⊂ R
n = M , which is obvious.

For the induction step, take an element g ∈ J such that dx g �= 0. Let

Z := {y ∈ M | g(y) = 0} and U := {y ∈ M | dy g �= 0}.

http://creativecommons.org/licenses/by/4.0/
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By the implicit function theorem, U ∩ Z is a closed submanifold of U . Choose ρ ∈
C∞

c (M) such that ρ = 1 in a neighborhood of x and Supp(ρ) ⊂ U . Let f̄ :=
(ρ f )|U∩Z . Let

J̄ := {α|U∩Z |α ∈ J and Suppα ⊂ U }.

By the induction hypothesis, f̄ ∈ J̄ . Thus, there exists f ′′ ∈ J such that f − f ′′
vanishes in a neighborhood of x in Z . Now case d = 1 implies that there exists
α ∈ C∞

c (M) such that f − f ′′ coincides with αg in a neighborhood of x . ��
Lemma A.2 The restriction C∞

c (M) → C∞
c (N ) is an open map.

Proof Let K ⊂ M be a compact subset. It is easy to see that there exists a compact
K ′ ⊃ K such that the restriction map C∞

K ′(M) → C∞
K ′∩N (N ) is onto, using the

partition of unity. By the Banach open map theorem this map is open. Thus, the
restriction C∞

c (M) → C∞
c (N ) is an open map. ��

Let Y be an affine algebraic manifold defined over R and X be a closed algebraic
submanifold. Let i : X → Y denote the embedding.

Lemma A.3 Let ξ be a distribution on X(R) such that i∗ξ is a tempered distribution.
Then ξ is a tempered distribution.

Proof The map i∗ is dual to the pullback map C∞
c (Y (R)) → C∞

c (X(R)). This can be
extended to a continuous map i∗ : S(Y (R)) → S(X(R))which is onto by [4, Theorem
4.6.1]. The Banach open map theorem implies that i∗ is an open map. It is easy to see
that i∗ξ : S(Y (R)) → C vanishes on Ker(i∗), and thus it gives rise to a continuous
map S(X(R)) → C, which extends ξ . ��
Lemma A.4 Let ξ be a complex valued distribution on Y (R) such that pξ = 0 for
any polynomial p on Y that vanishes on X. Then ξ is a pushforward of a distribution
on X(R).

Proof Let J (X) be the ideal of all polynomials on Y that vanish on X . Let J :=
J (X)C∞

c (Y (R)). By Lemma A.1 we have J = IX(R). Thus, ξ vanishes on IX(R) and
thus, by Lemma A.2, ξ is a pushforward of a distribution on X(R).

Lemma 3.1 follows from Lemmas A.3 and A.4 and the definition of i ! for closed
embedding of smooth affine varieties.
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