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Abstract The bispectral quantum Knizhnik–Zamolodchikov (BqKZ) equation cor-
responding to the affine Hecke algebra H of type AN−1 is a consistent system
of q-difference equations which in some sense contains two families of Chered-
nik’s quantum affine Knizhnik–Zamolodchikov equations for meromorphic functions
with values in principal series representations of H . In this paper, we extend this
construction of BqKZ to the case where H is the affine Hecke algebra associated
with an arbitrary irreducible reduced root system. We construct explicit solutions of
BqKZ and describe its correspondence to a bispectral problem involving Macdonald’s
q-difference operators.
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1 Introduction

The bispectral quantum Knizhnik–Zamolodchikov (BqKZ) equations of type GLN

were introduced in [18]. The BqKZ equations make up a consistent system of
q-difference equations for functions depending on two torus variables t, γ ∈ T :=
(C\{0})N , such that for fixed γ ∈ T , the equations in t form Cherednik’s [1] quantum
affine Knizhnik–Zamolodchikov (KZ) equations associated with the principal series
module Mγ of the affine Hecke algebra H of type GLN with central character γ , while
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on the other hand, for fixed t ∈ T , the equations in γ form another system of quantum
affine KZ equations associated with Mt−1 . The second system is expected to relate to
Etingof and Varchenko’s system of dynamical q-difference equations [8].

Cherednik constructed quantum affine KZ equations using intertwiners of repre-
sentations of the affine Hecke algebra. This way different types of quantum affine KZ
equations can be associated with different types of affine Hecke algebras and thus to
different types of affine root systems. For classical root systems the quantum affine
KZ equations appear as consistency equations for integrable spin chains with differ-
ent types of boundary conditions (quasi-periodic boundary conditions for GLN ). In
the present paper, we extend the theory of BqKZ and its solutions to arbitrary root
systems. Apart from the case of GLN , which was treated in [18], there are three cases
to consider in the Macdonald–Cherednik theory, namely the twisted and untwisted
reduced affine root systems and the nonreduced affine root system of type C∨C (see
[14, (1.4.1)–(1.4.3)]). In this paper, we consider the twisted case [14, (1.4.2)]; the
untwisted case is expected to allow for a similar treatment. The construction of BqKZ
for C∨C (along the lines of [18]) appeared in a recent preprint by Takeyama [17], so
the picture is now rather complete.

Let us explain the ideas involved in a bit more detail. Choose 0 < q < 1. Let
W = W0 � P∨ be the (extended) affine Weyl group, the semidirect product of the
finite Weyl group W0 and the coweight lattice P∨, corresponding to some reduced
irreducible root system of rank N . Consider the complex torus T := HomZ(P∨, C

×).
Transposing the natural action of W0 on P∨ gives rise to an action of W0 on T . For
λ ∈ P∨, let qλ ∈ T be defined by

qλ(μ) := q〈λ,μ〉, μ ∈ P∨.

The action of W0 on T extends to an action of W on T by letting λ ∈ P∨ act via
t �→ qλt . Let V be a finite-dimensional complex vector space of dimension #W0. The
BqKZ system that we will introduce is a system of q-difference equations of the form

C(λ,μ)(t, γ ) f
(
q−λt, qμγ

) = f (t, γ ), λ, μ ∈ P∨,

for meromorphic functions f on T × T with values in V . Here, C(λ,μ) (λ,μ ∈ P∨)
are End(V )-valued meromorphic functions on T ×T , satisfying the following cocycle
property

C(λ+ν,μ+ξ)(t, γ ) = C(λ,μ)(t, γ )C(ν,ξ)

(
q−λt, qμγ

)
, λ, μ, ν, ξ ∈ P∨,

which implies that BqKZ is a holonomic system of q-difference equations.
BqKZ contains, in some sense, two families of Cherednik’s quantum affine KZ

equations associated with the principal series representation of H . We recall that the
quantum affine KZ equations associated with a finite-dimensional H -module M is a
consistent system of q-difference equations of the form

F M
λ (t) f

(
q−λt

) = f (t), λ ∈ P∨,
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for meromorphic functions f on T with values in M , and where F M
λ (λ ∈ P∨) are

End(M)-valued meromorphic functions on T (see Sect. 3.1). Now, the first family of
quantum affine KZ equations inside BqKZ is parametrized by γ ∈ T � {1} × T ⊂
T × T . More precisely, if we fix γ = ζ ∈ T , we have

C(λ,e)(t, ζ ) = F
Mζ

λ (t),

where Mζ is the principal series representation of H with central character ζ , which
as a vector space can be identified with V via a ζ -dependent isomorphism. Similarly,
interchanging the roles of the torus variables t and γ , BqKZ contains a second family
of quantum affine KZ equations, parametrized by t ∈ T (related to the affine Hecke
algebra module Mt−1 ).

Let us give an overview of the paper. After the construction of BqKZ, we introduce
the principal series representation, needed to express the (asymptotic) values of the
connection matrices C(λ,μ)(t, γ ). These in turn are used to construct an asymptotically
free self-dual meromorphic solution � of BqKZ. The set of solutions SOL of BqKZ
allows an action of W0, and the orbit W0� constitutes a basis of SOL viewed as a
vector space over the field of q-dilation invariant meromorphic functions on T × T .

For GLN , a correspondence [18, Thm. 6.16] between solutions of BqKZ and solu-
tions of a bispectral problem involving Ruijsenaars’ commuting trigonometric q-dif-
ference operators (also known as Macdonald–Ruijsenaars operators) was derived as a
bispectral incarnation of Cherednik’s [2, Thm. 4.4] embedding of the solutions of the
quantum affine KZ equations (for GLN ) into the solutions of the Ruijsenaars eigen-
value problem. The latter has been generalized to an embedding of the solution space
of the quantum affine KZ equations for an arbitrary root system into the solution space
of a system of q-difference equations involving Macdonald’s q-difference operator
(see [9, Thm. 4.6] and [3]). We give the analog of the bispectral correspondence [18,
Thm. 6.16] in the setting of arbitrary root systems.

As for GLN , we may apply the correspondence to � to obtain a self-dual
Harish-Chandra series solution of the bispectral problem. It is a bispectral analog
of (difference) Harish-Chandra series solutions of the spectral problem for Macdon-
ald’s q-difference operators, which were studied in [7] and [10] for root systems of
type A and in [12] for arbitrary root systems. Exploiting the corresponding features of
�, we obtain new results on the convergence and singularities of the Harish-Chandra
series. These results have applications in harmonic analysis on symmetric spaces as
well as in relativistic quantum Calogero-Moser systems. Recently, it was shown (see
[15]) that for generic γ , the Harish-Chandra solutions we construct form a basis of the
meromorphic solution space of the spectral problem of the Macdonald q-difference
operators, the quantum integrals of the relativistic quantum Calogero–Moser system.
It is expected that this will lead to a q-version of Harish-Chandra’s c-function expan-
sion of the spherical function, an essential step for the q-version of harmonic analysis
(cf. [16]).

Though the general constructions are more or less the same as for GLN , various
technical results require a different approach. This becomes apparent in Sect. 4 when
computing the cocycle values, in Sect. 5 determining the asymptotic behavior of the
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q-connection matrices and their singularities, and in Sect. 6 finding the leading term
of �. An important difference with the case of GLN , complicating some of the proofs,
is the fact that the affine Weyl group of type GLN (and the corresponding affine Hecke
algebra) allows a rather convenient presentation in terms of the finite Weyl group
(respectively finite Hecke algebra) and an affine Dynkin diagram automorphism (see
[5, Lemma 1.3.4] or [18, §2.1]), which is lacking for affine Weyl groups (respec-
tively affine Hecke algebras) of arbitrary type. In this paper, we give all the main
constructions and provide those proofs that are substantially different from the proofs
for GLN .

1.1 Conventions

– ⊗ always stands for tensor product over C and End(M), for a module M over C,
stands for C-linear endomorphisms.

– N = {1, 2, . . .}.
– For a module M over a commutative ring R and a ring extension R ⊂ S, we write

M S = S ⊗R M .
– For a, r ∈ R with a > 0, we choose ar to be the positive real branch of the power

function.

2 Notations

2.1 Root data

Let (V, 〈, 〉) be a real Euclidean space of dimension N > 0. Let V̂ be the space of affine
linear real functions on V . Consider the 1-dimensional vector space Rc. There is a
natural isomorphism of real vector spaces V⊕Rc � V̂ via v+rc �→ (u �→ 〈v, u〉+r)

for u, v ∈ V and r ∈ R. We will use this isomorphism to identify V̂ and V ⊕Rc, thus
regarding c ∈ V̂ as the constant function equal to 1.

The map D : V̂ → V defined by D(v + rc) = v (v ∈ R, r ∈ R) is called the
gradient map. We extend the inner product 〈 , 〉 to a positive semi-definite bilinear
form on V̂ by

〈 f, g〉 := 〈D f, Dg〉,

for f, g ∈ V̂ . For f ∈ V̂ with D f �= 0, we set f ∨ := 2 f/〈 f, f 〉 ∈ V̂ .
Let R ⊂ V be a reduced irreducible finite root system in V and assume that the

scalar product is normalized such that long roots have squared length 2. The Weyl
group W0 ⊂ O(V ) associated with R is the group generated by the orthogonal reflec-
tions sα in the hyperplanes α⊥ (α ∈ R). Explicitly, we have

sα(v) = v − 〈v, α〉α∨,



Bispectral quantum KZ equations 187

for α ∈ R, v ∈ V . Fix a basis of simple roots {α1, . . . , αN } of R. Write R+ for the
set of positive roots, R− := −R+ for the set of negative roots, and φ for the highest
root with respect to this basis. Note that φ ∈ R+ is a long root (and so φ∨ = φ).

We use the standard notations for the (co)root and (co)weight lattices, that is,

Q := Z-span of R,

Q∨ := Z-span of R∨,
P := {

λ ∈ V | 〈λ, α∨〉 ∈ Z, ∀α ∈ R
}
,

P∨ := {μ ∈ V | 〈μ, α〉 ∈ Z, ∀α ∈ R} .

Note that Q ⊆ P and Q∨ ⊆ P∨. Furthermore, since ‖α‖2 = 2 for α ∈ R a long root
and thus ‖α‖2 ∈ {1, 2/3} for α ∈ R short, we have α∨ = 2

‖α‖α ∈ {α, 2α, 3α} ⊂ Q
for any α ∈ R. Hence, Q∨ ⊆ Q and therefore also P∨ ⊆ P .

Let L ⊂ V be any W0-invariant lattice. The canonical action of W0 on V extends
to a faithful action of the semi-direct product group WL := W0 � L on V such that
elements of L act as translations. If we want to stress that we view λ ∈ L as an element
of WL , we write t(λ). In this notation, L ⊂ WL acts on V by

t(λ)v = v + λ,

for λ ∈ L and v ∈ V . Transposing the action of WL on V gives an action of WL

on V̂ . It is given by

w(v + rc) = w(v)+ rc, w ∈ W0,

t(λ)(v + rc) = v + (r − 〈v, λ〉)c, λ ∈ L ,

for v ∈ V, r ∈ R. Note that 〈w( f ), w(g)〉 = 〈 f, g〉 for all f, g ∈ V̂ and w ∈ WL .
In the case that L = Q∨, WL = WQ∨ = W0 � Q∨ is the affine Weyl group. The
extended affine Weyl group is WP∨ = W0 � P∨, and we will simply denote it by W .

Associated with the reduced irreducible finite root system R, there is a reduced
irreducible affine root system S = S(R) := {α+ rc | α ∈ R, r ∈ Z} in V̂ . For a ∈ S,
let sa : V → V be the reflection in the hyperplane a−1({0}), given by

sa(v) = v − a(v)Da∨,

for v ∈ V . Then, sa = sDa t(a(0)Da∨) ∈ WQ∨ . Note that S ⊂ V̂ is W -invariant. We
define an ordered basis (a0, . . . , aN ) of S by setting

(a0, a1, . . . , aN ) := (−φ + c, α1, . . . , αN ).

Write S+ and S− for the associated sets of positive and negative affine roots, respec-
tively. Note that

S+ := {α + rc | α ∈ R, r ≥ χ(α)},
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where χ is the characteristic function of R−, i.e., χ(α) = 1 if α ∈ R−, and χ(α) = 0
if α ∈ R+.

We put si := sai ∈ WQ∨ ⊆ W for i = 0, . . . , N . The affine Weyl group WQ∨ is
a Coxeter group with Coxeter generators the simple reflections si . For w ∈ W write
S(w) := S+ ∩ w−1S−. The length function � on W is defined by

�(w) := #S(w), w ∈ W.

The unique element with maximal length in W0 is denoted by w0.
The finite abelian subgroup � := {w ∈ W | �(w) = 0} of W is isomorphic to

P∨/Q∨, and we have

W � WQ∨ � �.

The action of � on V̂ restricts to a faithful action on the set {a0, . . . , aN } of sim-
ple roots of S, so we can view � as a group of permutations on the set of indices
{0, . . . , N }. We write C[�] for the group algebra of �.

The Bruhat order ≤ on WQ∨ extends to a partial order on W , referred to as the
Bruhat order on W (cf. [14, §2.3]). It is defined as follows. For w = ωu and w′ = ω′u′
with ω,ω′ ∈ � and u, u′ ∈ WQ∨ , we have by definition

w ≤ w′ ⇐⇒ ω = ω′ and u ≤ u′. (2.1)

2.2 Algebra of q-difference reflection operators

Consider the complex torus T := HomZ(P∨, C
×). By transposition, the natural action

of W0 on P∨ gives rise to an action of W0 on T . Fix 0 < q < 1. For λ ∈ P∨, let
qλ ∈ T be defined by

qλ(μ) := q〈λ,μ〉, μ ∈ P∨.

The action of W0 on T extends to an action of W = W0 � P∨ on T by letting λ ∈ P∨
act via t �→ qλt . Let the evaluation of t ∈ T in a point λ ∈ P∨ be denoted by tλ ∈ C

×.
Then, summarizing, we have an action of W on T given by

(wt)μ = tw
−1μ,

(t(λ)t)μ = q〈λ,μ〉tμ,

for t ∈ T, w ∈ W0 and λ,μ ∈ P∨.
Let {�∨i }Ni=1 be the set of fundamental coweights in P∨ with respect to {α j }N=1, so

〈�∨i , α j 〉 = δi j for 1 ≤ i, j ≤ N . We identify T � (C \ {0})N via t ↔ (t1, . . . , tN )

defined by

ti := t�
∨
i
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for i = 1, . . . , N . Under this identification, the action of P∨ on T reads

t(λ)t = qλt =
(

q〈λ,�∨1 〉t1, . . . , q〈λ,�∨N 〉tN

)
(2.2)

for λ ∈ P∨ and t = (t1, . . . , tN ) ∈ T .

The algebra of complex-valued regular functions on T is C

[
x±1

1 , . . . , x±1
N

]
=

spanC{xλ}λ∈P∨ , where xi is the coordinate function xi (t) := t�
∨
i (i = 1, . . . , N ) and

xλ(t) := tλ for λ ∈ P∨. Clearly, it is isomorphic to the group algebra C[P∨] of P∨.

We write C[T ] = C

[
x±1

1 , . . . , x±1
N

]
, and we let C(T ) denote the field of rational

functions on T, O(T ) the ring of analytic functions on T , and M(T ) the field of
meromorphic functions on T . The W -action on T gives rise to a W -action by algebra
automorphisms on each of these function algebras, via

(w f )(t) = f (w−1t),

for w ∈ W, t ∈ T and f a (regular, rational or meromorphic) function on T . Note
that for λ ∈ P∨ and r ∈ R, we have

w(xλ+rc) = xw(λ+rc),

where xλ+rc := qr xλ ∈ C[T ].
By means of this W -action by field automorphisms on C(T ), we can form the

smash product algebra C(T )#q W , which we call the algebra of q-difference reflection
operators with coefficients in C(T ), since it acts canonically on C(T ) and M(T ) as
q-difference reflection operators. For f ∈ C(T ), we will write f (X) ∈ C(T )#q W for
the operator on M(T ) (or C(T )) defined as multiplication by f . We will also write
Xλ+rc = qr Xλ for λ ∈ P∨ and r ∈ R.

Remark 2.1 Note that since
(

t(λ) f )(t) = f (q−〈�∨1 ,λ〉t1, . . . , q−〈�∨N ,λ〉tN

)
(λ∈ P∨,

f ∈M(T )), C(T )#q W actually depends on a choice for q
1
m , where m ∈ N is deter-

mined by m〈P∨, P∨〉 = Z. Our global convention concerning real powers of positive
real numbers justifies the apparent abuse of notation writing q instead of q1/m .

2.3 The extended affine Hecke algebra and Cherednik’s basic representation

Let ki (i = 0, . . . , N ) be nonzero complex numbers such that ki = k j if si and s j

are conjugate in W . Write k for the corresponding multiplicity label k : S → C \ {0},
so k(a) = ki for all a ∈ W (ai ) (i = 0, . . . , N ). We set ka := k(a) for a ∈ S.
Furthermore, for w ∈ W we define

k(w) :=
∏

a∈S(w)

ka .
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A coweight λ ∈ P∨ is called dominant if 〈λ, αi 〉 ≥ 0 for i = 1, . . . , N . Let P∨+ denote
the set of dominant coweights.

Lemma 2.2 For λ ∈ P∨+ , we have

k(t(λ)) =
∏

α∈R+
k〈λ,α〉
α = δλ

k , (2.3)

where δk ∈ T is defined by (δk)i =∏
α∈R+ k

〈�∨i ,α〉
α (i = 1, . . . , N).

Proof For λ ∈ P∨+ we have

S(t(λ)) = {α + rc | α ∈ R+, 0 ≤ r < 〈λ, α〉} ,

cf. [14, §2.4]. Note that kα+rc = kα for α ∈ R and r ∈ Z since α + rc and α are
conjugate under the action of W . Indeed, for μ ∈ P∨, we have t(μ)(α + rc) =
α + (r − 〈μ, α〉)c and for any α ∈ R, there exists some ν ∈ P∨ such that 〈ν, α〉 = 1,
so that we can take μ = rν. Therefore,

k(t(λ)) =
∏

α∈R+
0≤r<〈λ,α〉

kα+rc =
∏

α∈R+
k〈λ,α〉
α .

The second equality in (2.3) follows from the definitions. ��
Definition 2.3 The affine Hecke algebra HQ∨ associated with the Coxeter system(
WQ∨ , {s0, . . . , sN }

)
and the multiplicity label k is the unital complex associative

algebra generated by elements T0, . . . , TN , such that

(i) T0, . . . , TN satisfy the braid relations, i.e. if for i �= j , we have

si s j si · · · = s j si s j · · · ,

with mi j factors on each side, then

Ti Tj Ti · · · = Tj Ti Tj · · · ,

with mi j factors on each side;
(ii) (Tj − k j )(Tj + k−1

j ) = 0, for j = 0, . . . , N .

Note that since k is W -invariant, the group � acts on HQ∨ by algebra automor-
phisms via Ti �→ Tω(i) for i = 0, . . . , N .

Definition 2.4 The extended affine Hecke algebra H = H(k) is the smash product
H := HQ∨#�.
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For w ∈ W and a reduced expression w = ωsi1 . . . si�(w)
with ω ∈ � and

ik ∈ {0, . . . , N }, we define

Tw := ωTi1 . . . Ti�(w)
∈ H,

which is independent of the reduced expression chosen. The set {Tw | w ∈ W } is a
linear basis of H . Note that for k ≡ 1, the extended affine Hecke algebra is just the
group algebra C[W ] of W . The finite Hecke algebra is the subalgebra H0 = H0(k)

of H , generated by T1, . . . , TN .
For λ ∈ P∨+ , put

Y λ := Tt(λ) ∈ H,

and for arbitrary λ ∈ P∨ put

Y λ := Y μ(Y ν)−1,

if λ = μ − ν with μ, ν ∈ P∨+ . Then, the Y λ (λ ∈ P∨) are well defined, and we

have Y 0 = 1 and Y λY μ = Y λ+μ = Y μY λ for all λ,μ ∈ P∨. Set Yi := Y �∨i for
i = 1, . . . , N .

For κ ∈ C \ {0}, we define the functions b(z, κ) and c(z, κ) by

b(z; κ) := κ − κ−1

1− z
,

c(z; κ) := κ−1 − κz

1− z
,

as rational functions in z. Then for a ∈ S, we define ba;k,q = ba ∈ C(T ) and
ca;k,q = ca ∈ C(T ) by

ba(t) := b(ta∨; ka)

ca(t) := c(ta∨; ka).

Remark 2.5 The q-dependence of ba,k,q and ca;k,q comes from the convention
tα+rc = qr tα for α ∈ R and r ∈ R. If we write k−1 for the multiplicity label
defined by k−1(a) = (k(a))−1 for all a ∈ S, then we have

ca;k,q(t−1) = ca;k−1,q−1(t) (2.4)

for all a ∈ S and t ∈ T . We leave out the subscripts k and q as long as there is no
chance of confusion (which is until Sect. 6).

Note that ba(t) = ka − ca(t) and (wca)(t) = cw(a)(t) for all w ∈ W . It is conve-
nient to introduce the notations b j := ba j and c j := ca j for j = 0, . . . , N . The
following characterization of H is due to Bernstein and Zelevinsky (see e.g., [14,
§4.2]).
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Theorem 2.6 The affine Hecke algebra H = H(k) is the unique complex associative
algebra, such that

(i) H0⊗C[T ] � H as complex vector spaces, via h⊗ f �→ h f (Y ) for h ∈ H0, f ∈
C[T ], where f (Y ) =∑

λ aλY λ if f =∑
λ aλxλ ∈ C[T ];

(ii) the canonical maps H0, C[T ] ↪→ H are algebra embeddings; we write CY [T ] =
spanC{Y λ}λ∈P∨ for the image of C[T ] in H;

(iii) Lusztig’s relations are satisfied, that is,

f (Y )Tj = Tj (s j f )(Y )+ b j (Y
−1)

(
f (Y )− (s j f )(Y )

)
(2.5)

for j = 1, . . . , N and f ∈ C[T ].

Remark 2.7 Note that b j (Y−1)
(

f (Y )− (s j f )(Y )
) ∈ CY [T ] although b j (Y−1) by

itself is not defined as an element of H .

We end this section with the definition of the double affine Hecke algebra and state
some of its key properties. All of this is due to Cherednik; see [5]. It starts with the
realization of the affine Hecke algebra inside the algebra C(T )#q W of q-difference
reflection operators (see [14, (4.3.10)]).

Theorem 2.8 There is an injective algebra homomorphism ρ = ρk,q : H →
C(T )#q W satisfying

ρ(Ti ) = ki + ci (X)(si − 1), i = 0, . . . , N ,

ρ(ω) = ω, ω ∈ �.

Remark 2.9 The image ρ(H) preserves C[T ], viewed as a subspace of the canonical
C(T )#q W -module C(T ). The resulting faithful representation of H on C[T ] is called
the basic representation of H .

Definition 2.10 The double affine Hecke algebra H = H(k, q) is the subalgebra of
C(T )#q W generated by H (i.e. by ρk,q(H)) and by the multiplication operators f (X)

( f ∈ C[T ]).

Remark 2.11 Note that ρ = ρk,q and H = H(k, q) actually depend on q
1
m (see

Remark 2.1).

We view H as a left C[T ]-module by ( f, h) �→ f (X)h ( f ∈ C[T ], h ∈ H). The
rule f ⊗ h �→ f (X)h (h ∈ H, f ∈ C[T ]) induces an isomorphism of C[T ]-modules

C[T ] ⊗ H � H, (2.6)

Similarly to Theorem 2.6, the algebra structure of H can be described in terms of the
left-hand side of (2.6), allowing for an abstract definition of H (see [4, Thm. 2.1]):



Bispectral quantum KZ equations 193

Theorem 2.12 The double affine Hecke algebra H can be characterized as the unique
associative algebra satisfying

(i) C[T ] ⊗ H � H as complex vector spaces;
(ii) the canonical maps H, C[T ] ↪→ H are algebra embeddings;

(iii) the following cross relations are satisfied: for f ∈ C[T ]

Tj f (X) = (s j f )(X)Tj + b j (X)
(

f (X)− (s j f )(X)
)
, j = 0, . . . , N , (2.7)

ω f (X) = (ω f )(X)ω, ω ∈ �. (2.8)

A crucial ingredient in the construction of the bispectral quantum KZ equations is
Cherednik’s duality involution on H (see [14, (4.7.6)]).

Theorem 2.13 There exists an involutive anti-automorphism ∗: H→ H determined
by

T ∗w = Tw−1 , w ∈ W0,

(Y λ)∗ = X−λ, λ ∈ P∨,
(Xλ)∗ = Y−λ, λ ∈ P∨.

3 Bispectral quantum KZ equations

In this section, we extend the construction of the bispectral quantum Knizhnik–
Zamolodchikov equations for GLN [18] to arbitrary root systems. First, we recall
Cherednik’s construction of the quantum affine Knizhnik–Zamolodchikov equations
[1] associated with a finite-dimensional H -module.

3.1 The quantum affine KZ equations

In order to define the quantum affine KZ equations, we first need to left-localize the
double affine Hecke algebra H � C[T ] ⊗ H (see Theorem 2.12) with respect to
C[T ] \ {0}. As a complex vector space, the resulting algebra Ĥ can be defined as
Ĥ � C(T )⊗ H , and then its algebra structure is determined by requiring C(T ) and
H to be subalgebras and by requiring the cross relations (2.7) and (2.8) to hold for
f ∈ C(T ).

The injective map ρ of Theorem 2.8 extends to an injective algebra homomorphism

ρ : Ĥ→ C(T )#q W

by setting ρ( f (X)) = f (X) for f ∈ C(T ). Note that ρ
(
c j (X)−1(Tj − b j (X))

) = s j

for 0 ≤ j ≤ N , which shows that ρ is surjective and therefore establishes an isomor-
phism Ĥ � C(T )#q W . Restricting the inverse ρ−1 to W gives a realization of W
inside Ĥ

×.
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The left multiplication map turns H into a left module over itself. The action of Ĥ

on the induced module IndĤ

H (H) = Ĥ⊗H H can be pushed forward along the linear
isomorphism Ĥ⊗H H � C(T )⊗ H to obtain an algebra homomorphism

π = πk : Ĥ→ End(C(T )⊗ H).

We regard C(T )#q W ⊗ H as a subalgebra of End(C(T ) ⊗ H) by letting C(T )#q W
act on C(T ) as in Sect. 2.2 and H on H by left multiplication. Then, the pullback
τx = τx,k := π ◦ ρ−1 of π along ρ−1 is an algebra homomorphism

τx : C(T )#q W → C(T )#q W ⊗ H ⊂ End(C(T )⊗ H),

which is explicitly given by

τx ( f ) = f (X)⊗ 1, f ∈ C(T ),

τx (s j ) = (c j (X)−1 ⊗ 1)(s j ⊗ Tj − b j (X)s j ⊗ 1), 0 ≤ j ≤ N ,

τx (ω) = ω ⊗ ω, ω ∈ �,

as can be verified by a direct computation using the formula for ρ−1 and the cross
relations (2.7).

Remark 3.1 The reason for the subscript x in τx will become apparent in the next
subsection when we discuss the bispectral story. Then, two copies of T will play a
role and x will denote the coordinate functions on one of them.

Note that τx (s j ) = Fs j (X)(s j⊗1) with Fs j (X) = (c j (X)−1⊗1)(1⊗Tj−b j (X)⊗
1) ∈ C(T )⊗H and trivially also τx (ω) = Fω(X)(ω⊗1)with Fω = 1⊗ω ∈ C(T )⊗H .
In fact, more generally, we have

τx (w) = Fw(X)(w ⊗ 1), w ∈ W,

where Fw are H -valued rational functions on T satisfying

Fe(t) = 1, Fvw(t) = Fv(t)Fw(v−1t) (3.1)

for all v,w ∈ W and t ∈ T . Viewed as elements of End(C(T ) ⊗ H) the Fw(X)

(w ∈ W ) are C(T )-linear and invertible (indeed F−1
w (X) = (w−1 ⊗ 1)τx (w

−1)). In
the language of non-abelian group cohomology, (3.1) means that w �→ Fw(X) consti-
tutes a cocycle W → GLC(T )(C(T )⊗H), where GLC(T )(C(T )⊗H) is a W -group via
the usual action of W on the first tensor leg of C(T )⊗End(H) � GLC(T )(C(T )⊗H).

Now let M be a left module over the affine Hecke algebra H . Then, MM(T ) =
M(T ) ⊗ M is a module over C(T )#q W ⊗ H , where C(T )#q W acts on M(T ) as
described in Sect. 2.2. Consequently, τx gives rise to a representation

τ M
x : W → GL

(
MM(T )

)
,
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defining τ M
x (w) (w ∈ W ) to be τx (w) ∈ C(T )#q W ⊗ H acting on MM(T ). Let F M

w

(w ∈ W ) denote the corresponding functions Fw ∈ C(T )⊗ H acting on MM(T ). For
simplicity, we write F M

λ = F M
t(λ) for λ ∈ P∨.

Definition 3.2 (Cherednik [1]) The q-difference equations

F M
λ (t) f (q−λt) = f (t), λ ∈ P∨ (3.2)

for f ∈ M(T ) ⊗ M , are called the quantum affine KZ (qKZ) equations for the
H -module M .

From the cocycle condition (3.1) and the fact that P∨ is an abelian subgroup of W , it
follows immediately that the qKZ equations form a holonomic system of q-difference
equations, that is,

F M
λ (t)F M

μ (q−λt) = F M
μ (t)F M

λ (q−μt)

for all λ,μ ∈ P∨.
In this paper, we will restrict our attention to a particular representation of H .

Recall that H � H0 ⊗ CY [T ] (cf. Theorem 2.6). Fix ζ ∈ T and let χζ : CY [T ] → C

be the evaluation character f (Y ) �→ f (ζ ) for f ∈ C[T ]. We define Mζ to be the
induced H -module Mζ := IndH

CY [T ](χζ ) = H ⊗χζ C. It is the minimal principal
series representation of H with central character ζ . As complex vector spaces we
identify Mζ � H0 via

Tw ⊗χζ 1 �→ Tw, (w ∈ W0, f ∈ C[T ]). (3.3)

The qKZ equations corresponding to Mζ thus can be viewed as a holonomic system
of q-difference equations for meromorphic functions f (t) on T with values in H0.
Now H � C[T ] ⊗ H , so that since H � H0⊗C[T ], the double affine Hecke algebra
H contains another copy of C[T ]. In view of Cherednik’s duality anti-automorphism,
one might ask, when ζ is considered as a variable γ on the second torus, whether
one can find a set of q-difference equations acting on this central character γ , such
that together with the original qKZ equations it makes up a holonomic system of
q-difference equations for meromorphic functions f (t, γ ) on T × T with values in
H0. The answer turns out to be positive. The idea is as follows.

The construction of the qKZ equations depended on the realization of W inside the
localization of H by sending the w to the so-called normalized intertwiners ρ−1(w).
Of course, we can multiply these intertwiners by appropriate factors from C[T ] to
obtain elements S̃w which do live in H. Clearly, the map W → H

×, w �→ S̃w will
no longer be a group homomorphism (like ρ−1), but the S̃w still serve as intertwining
elements from which a cocycle can be constructed. Then, Cherednik’s duality anti-
automorphism can be invoked to obtain Y -intertwining elements and extend the cocy-
cle to a ‘double cocycle’ which will give rise to the bispectral quantum KZ equations.
This is explained in the following subsection.
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3.2 Bispectral quantum KZ equations

The construction of the bispectral quantum KZ equations in the present setting is more
or less the same as in the GLN case, which was done in [18, §3]. Here, we repeat the
construction, but, since it is a matter of simply adapting the notations from [18], we
omit the proofs.

In view of the last paragraph of the previous subsection, we should first renormalize
the intertwiners so that they become members of H. We put

S̃i := (ki − k−1
i X−a∨i )si ∈ C(T )#q W, i = 0, . . . , N

S̃ω := ω ∈ C(T )#q W, ω ∈ �,

giving rise to the renormalized intertwiners S̃w (w ∈ W ), defined in the following
proposition (see also [5, §1.3]).

Proposition 3.3 Let w = si1 . . . sir ω be a reduced expression for w ∈ W , with
i1, . . . , ir ∈ {0, . . . , N }, ω ∈ �. Then,

(i) S̃w := S̃i1 . . . S̃ir S̃ω is a well-defined element of C(T )#W ;
(ii) S̃w ∈ H, in particular S̃i = (1− X−a∨i )Ti + (ki − k−1

i )X−a∨i (0 ≤ i ≤ N);
(iii) the S̃i (i = 0, . . . , N) satisfy the braid relations (cf. Definition 2.3(i));
(iv) S̃w f (X) = (w f )(X)S̃w for w ∈ W, f ∈ C[T ];
(v) S̃i S̃i = (ki − k−1

i Xa∨i )(ki − k−1
i X−a∨i ) for i = 0, . . . N.

For 0 ≤ i ≤ N define di ∈ C[T ] by di (t) := (ki − k−1
i t−a∨i ). Then for w ∈ W as in

the proposition, we have

S̃w = di1(X)(si1di2)(X) . . . (si1 . . . sir−1 dir )(X)w.

The proof of part (i) of the proposition relies on the fact that

dw := di1(si1di2) . . . (si1 . . . sir−1 dir )

is independent of the reduced expression for w (see e.g., [14, (2.2.9)]).
Now the ‘double cocycle’ we are going to construct is a cocycle of W ×W . In fact,

it turns out to be convenient to anticipate the role that the anti-involution of H will
play and extend W × W as follows. Note that the two-group Z2 acts on W × W by
ι(w,w′) = (w′, w), where ι ∈ Z2 denotes the nontrivial element. Then, we put

W := Z2 � (W ×W ).

Furthermore, the cocycle will act on H0-valued meromorphic functions on T × T .
Let us write K := M(T × T ) for the field of meromorphic functions on T × T .
Moreover, write L := C[T ] ⊗ C[T ] � C[T × T ] for the ring of complex-valued
regular functions on T × T . It acts on H via

( f ⊗ g) · h := f (X)hg(Y ) (3.4)
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for f, g ∈ C[T ] and h ∈ H. We will usually write (t, γ ) for a typical point of T × T .
Let x = (x1, . . . , xN ) denote the coordinate functions of the first copy of T in T × T
and y = (y1, . . . , yN ) the coordinate functions of the second copy. For f ∈ C[T ], we
define f (x) ∈ L by the rule (t, γ ) �→ f (t), and f (y) ∈ L by (t, γ ) �→ f (γ ). We use
the same conventions for f (x), f (y) ∈ K when f ∈M(T ).

An intermediate step in the construction of a W-action on HK = K⊗ H0 are the
complex linear endomorphisms σ(w,w′) (w,w′ ∈ W ) of H defined by

σ(w,w′)(h) = S̃whS̃∗w′ ,
σι(h) = h∗

for h ∈ H. As a corollary of Proposition 3.3, we have

Lemma 3.4 The complex linear endomorphisms σ(w,w′) and σι of H satisfy:

(i) the σ(si ,e) (i = 0, . . . , N) satisfy the braid relations;
(ii) σ 2

(si ,e)
= dsi (x)(si dsi )(x) · idH for i = 0, . . . , N;

(iii) σ(ω,e)σ(si ,e)σ(ω−1,e) = σ(sω(i),e) for i = 0, . . . , N and ω ∈ �;
(iv) σ 2

ι = idH and σ(e,w) = σισ(w,e)σι for w ∈ W ;
(v) σ(w,e)σ(e,w′) = σ(w,w′) = σ(e,w′)σ(w,e) for w,w′ ∈ W .

Let us investigate the behavior of these maps under the action of L. First consider
the group involution � : W → W given by w� = w for w ∈ W0 and λ� = −λ for
λ ∈ P∨. Then, W acts on T × T by

(w,w′)(t, γ ) = (wt, w′�γ ),

ι(t, γ ) = (γ−1, t−1)

for w,w′ ∈ W , where t−1 := (t−1
1 , . . . , t−1

N ) ∈ T . Transposition yields an action of
W on K by field automorphisms and is given by

(w f )(t, γ ) = f (w−1(t, γ )), w ∈W. (3.5)

Note that L = C[T ×T ] is a W-subalgebra of K. As a consequence of the intertwining
properties of the S̃w, we have

Lemma 3.5 For h ∈ H and f ∈ L we have

σ(w,w′)( f · h) = ((w,w′) f ) · σ(w,w′)(h),

σι( f · h) = (ι f ) · σι(h) (3.6)

for w,w′ ∈ W .

As L-modules we have HK

0 � K ⊗L H, so the lemma enables us to extend the
maps σ(w,w′) (w,w′ ∈ W ) and σι to complex linear endomorphisms of HK

0 for which
(3.6) holds for all f ∈ K and h ∈ HK

0 . Note that the properties of σ(w,w′) and σι as
described in Lemma 3.4 also hold true as identities between endomorphisms of HK

0 .
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We come to the main result of this subsection. It follows from the previous obser-
vations in the same way as the corresponding result for GLN (see [18, Thm. 3.3]).

Theorem 3.6 There is a group homomorphism

τ : W→ GLC(HK

0 )

satisfying

τ(w,w′)( f ) = dw(x)−1d�w′(y)−1 · σ(w,w′)( f ),

τ (ι)( f ) = σι( f ) (3.7)

for w,w′ ∈ W and f ∈ HK

0 . It satisfies τ(w)(g · f ) = wg · τ(w)( f ) for g ∈ K,

f ∈ HK

0 and w ∈W.

Remark 3.7 Fix ζ ∈ T . Let w ∈ W and recall that we write τ
Mζ
x (w) for τx (w) ∈

C(T )#q W viewed as endomorphism of M(T )⊗ Mζ as explained in Sect. 3.1. Then
for w ∈ W, f ∈M(T ) and h ∈ H0 � Mζ (see (3.3)), we have

τ
Mζ
x (w)( f ⊗ h) = τ(w, e)( f (x)⊗ h)(·, ζ )

as H0-valued meromorphic functions on T .

We are in position to define the W-cocycle with values in GLK(HK

0 ), which is a
W-group by the action of W on the first tensor leg of K⊗GL(H0) � GLK(HK

0 ) (cf.
Sect. 3.1). This W-action on GLK(HK

0 ) is denoted without mentioning the represen-
tation map (just as we do for the W-action on K, cf. (3.5)).

Corollary 3.8 The map w �→ Cw := τ(w)w−1 is a cocycle of W with values in the
W-group GLK(HK

0 ). In other words, Cw ∈ GLK(HK

0 ) and

Cww′ = CwwCw′w
−1

for all w, w′ ∈W.

In the same way as the cocycle Fw (w ∈ W ) in Sect. 3.1 gave rise to the quantum KZ
equations, the cocycle Cw (w ∈W) gives rise to a holonomic system of q-difference
equations for meromorphic functions on T × T with values in H0. By construction
we have

(τ (w) f )(t, γ ) = Cw(t, γ ) f (w−1(t, γ )) (3.8)

for w ∈ W and f ∈ HK

0 . For the sake of simplicity, write C(λ,μ) := C(t(λ),t(μ)) for
λ,μ ∈ P∨.
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Definition 3.9 We call the q-difference equations

C(λ,μ)(t, γ ) f (q−λt, qμγ ) = f (t, γ ) ∀ λ,μ ∈ P∨, (3.9)

the bispectral quantum KZ (BqKZ) equations. We write SOL for the set of solutions
f ∈ HK

0 of (3.9).

Let F ⊂ K denote the subfield consisting of f ∈ K satisfying (t(λ), t(μ)) f = f
for all λ,μ ∈ P∨. Furthermore, let W0 denote the subgroup Z2 � (W0 ×W0) of W.

Corollary 3.10 (i) The BqKZ equations (3.9) form a holonomic system of
q-difference equations, that is

C(λ,μ)(t, γ )C(ν,ξ)(q
−λt, qμγ ) = C(ν,ξ)(t, γ )C(λ,μ)(q

−ν t, qξ γ ) (3.10)

for λ,μ, ν, ξ ∈ P∨, as End(H0)-valued meromorphic functions in (t, γ ) ∈
T × T .

(ii) The solution space SOL of BqKZ is a τ(W0)-invariant F-subspace of HK

0 .

Now fix ζ ∈ T . By construction, BqKZ (in some sense) contains Cherednik’s
qKZ equation associated with the principal series module Mζ . Concretely, in view of
Remark 3.7, Cherednik’s quantum KZ equation (3.2) for M = Mζ is just

C(λ,e)(t, ζ ) f (q−λt) = f (t), ∀λ ∈ P∨, (3.11)

for H0-valued meromorphic functions f on T . In analogy with BqKZ, we write
SOLζ ⊂ HM(T )

0 for the set of solutions of (3.11). Regarding HM(T )
0 as a vector

space over E(T ) := { f ∈ M(T ) | t(λ) f = f, ∀λ ∈ P∨}, SOLζ is a τ
Mζ
x (W0)-

invariant subspace of HM(T )
0 .

4 Formal principal series representation and the cocycle values

In this section, we investigate the principal series representation Mζ of H , when the
(fixed) central character ζ ∈ T is regarded as a meromorphic variable. This allows us
to give explicit expressions for the cocycle values of the simple reflections.

4.1 Formal principal series representation

Recall that Mζ = IndH
CY [T ](χζ ). Now, we view CY [T ] as a left CY [T ]-module by

left multiplication, and we put M := IndH
CY [T ](CY [T ]). Let another copy of C[T ] �

C[{1} × T ] ⊂ L act on M via

f · (h ⊗CY [T ] g(Y )) = h ⊗CY [T ] ( f g)(Y ) f, g ∈ C[T ], h ∈ H.
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Note that M � C[{1} × T ] ⊗ H0 = HC[{1}×T ]
0 as modules over C[{1} × T ], hence

the representation map can be regarded as an algebra homomorphism

η : H → EndC[{1}×T ]
(

HC[{1}×T ]
0

)
.

Also note that EndC[{1}×T ](HC[{1}×T ]
0 ) � C[{1} × T ] ⊗ End(H0), so we can and

sometimes will regard η(h) (h ∈ H ) as an End(H0)-valued regular function on T
denoted by γ �→ η(h)(γ ). By extending the ground ring C[{1} × T ] to K, we can
extend η to an algebra homomorphism

η : H → EndK(HK

0 ).

Similarly, η(h) can be viewed as an End(H0)-valued function in (t, γ ) ∈ T × T . As
such it is constant in t , and in case h ∈ H0 it is also constant in γ .

Before being more specific about η, we need the following concept (cf. [14, §2.6]).
A subset X of P∨ is said to be saturated if for each λ ∈ X and α ∈ R we have
λ − rα∨ ∈ X for all 0 ≤ r ≤ 〈λ, α〉. For λ ∈ P∨ let �(λ) denote the smallest
saturated subset of P∨ that contains λ.

Lemma 4.1 For w ∈ W0 and 1 ≤ i ≤ N we have

η(Ti )Tw =
{

Tsi w if �(siw) = �(w)+ 1,

(ki − k−1
i )Tw + Tsi w if �(siw) = �(w)− 1,

(4.1)

and for p ∈ C[T ] we have

η(p(Y ))(γ )Te = p(γ )Te (4.2)

as regular H0-valued functions in γ . Moreover, for λ ∈ P∨ and w ∈ W0, we have

η(Y λ)(γ )Tw =
∑

u≤w

pλ
u,w(γ )Tu, (4.3)

where pλ
u,w(γ ) ∈ spanC{γ μ}μ∈�(λ+) and pλ

w,w(γ ) = γ w−1(λ).

Proof Only (4.3) requires proof. We use induction with respect to the length �(w) of
w, the case �(w) = 0 being (4.2). Next, consider Tsi w with �(siw) = �(w)+ 1. Using
(2.5), we find

η(Y λ)(γ )Tsi w = η(Y λTi )(γ )Tw

= η(Ti Y
si (λ))(γ )Tw + (ki − k−1

i )η

(
Y λ − Y si (λ)

1− Y−α∨i

)

(γ )Tw.



Bispectral quantum KZ equations 201

Considering the first term we use the induction hypothesis to find

η(Ti Y
si (λ))(γ )Tw = Ti

∑

u≤w

p̃si (λ)
u,w (γ )Tu =

∑

u≤w

p̃si (λ)
u,w (γ )Ti Tu,

with p̃si (λ)
u,w (γ )∈spanC{γ μ}μ∈�(si (λ)+) and p̃si (λ)

w,w (γ )=γ w−1(si (λ)). Since �(si (λ)+) =
�(λ+) and w−1(si (λ)) = (siw)−1(λ), we can rewrite this as

η(Ti Y
si (λ))(γ )Tw =

∑

u≤si w

pλ
u,si w

(γ )Tu,

with pλ
u,si w

(γ ) ∈ spanC{γ μ}μ∈�(λ+) and pλ
si w,si w

(γ ) = γ (si w)−1(λ).
We deal with the second term, the expansion of which will consist of terms only

involving Tu with u < siw. Set n := 〈λ, αi 〉. Note that

Y λ − Y si (λ)

1− Y−α∨i
=

⎧
⎨

⎩

Y λ + Y λ−α∨i + · · · + Y λ−(n−1)α∨i , n > 0,

0, n = 0,

−Y λ−nα∨i − Y λ−(n+1)α∨i − · · · − Y λ+α∨i , n < 0,

which is in spanC{Y μ}μ∈�(λ+) in all three cases. We can apply the induction hypothesis
to each of the Y μ (μ ∈ �(λ+)) to obtain

η(Y μ)(γ )Tw =
∑

u≤w

p̌μ
u,w(γ )Tu,

with coefficients p̌μ
u,w(γ ) ∈ spanC{γ ν}ν∈�(μ+). Since for each μ ∈ �(λ+), we have

μ+ ∈ �(λ+), and then by [14, (2.6.3)] �(μ+) ⊂ �(λ+), we obtain the desired
expansion. ��

We end this subsection by introducing a K-basis of HK

0 , consisting of common
eigenfunctions of η(CY [T ]). Note that S̃∗w ∈ H for w ∈ W0. Define

ξw := η
(
S̃∗
w−1

)
Te, w ∈ W0.

Just as we view η(h) as End(H0)-valued function in different ways, we will regard ξw

both as regular H0-valued function in γ ∈ T and as meromorphic H0-valued function
in (t, γ ) ∈ T × T (constant in t).

Lemma 4.2 {ξw}w∈W0 is a K-basis of HK

0 consisting of common eigenfunctions for
the η-action of CY [T ] on HK

0 . For p ∈ C[T ] and w ∈ W0 we have

η(p(Y ))(γ )ξw(γ ) = (w−1 p)(γ )ξw(γ ) (4.4)

as H0-valued regular functions in γ ∈ T .
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4.2 The cocycle values

Write

Ri (z; γ ) = c(z; ki )
−1(η(Ti )(γ )− b(z; ki )), 0 ≤ i ≤ N , (4.5)

viewed as a End(H0)-valued function that depends rationally on z and rationally on
γ ∈ T for i = 0 and is otherwise γ -independent.

Lemma 4.3 (i) We have

C(si ,e)(t, γ ) = Ri (t
a∨i ; γ ), 0 ≤ i ≤ N ,

C(ω,e)(t, γ ) = η(ω)(γ ), ω ∈ �,

and Cι is the K-linear extension of the involution of H0 determined by

Cι(Tw) = Tw−1 , w ∈ W0.

(ii) Ri (z; γ )Ri (z−1; γ ) = id for 0 ≤ i ≤ N.

Remark 4.4 Note that

C(e,w)(t, γ ) = CιC(w,e)(γ
−1, t−1)Cι, w ∈ W,

so part (i) of the previous lemma uniquely determines Cw for all w ∈W.

5 Solutions of BqKZ

The main result of this section is the construction of a particular meromorphic solution
� of BqKZ called the basic asymptotically free solution. The idea is as follows. We
first look for v ∈ H0 and G ∈ K such that Gv will be the leading term of a solution
of BqKZ in some asymptotic region. These are obtained by looking for a solution of
an asymptotic version of BqKZ, that is, BqKZ in which the q-connection matrices are
replaced by their limit values in the asymptotic region.

Next, we gauge BqKZ by G and look for a power series solution � of the gauged
BqKZ equation converging deep inside the asymptotic region and which has constant
term v. By meromorphic continuation, � can be extended to a meromorphic solution
of the gauged BqKZ equation, yielding the desired solution � = G� ∈ HK

0 of BqKZ.
Apart from the construction itself, we will derive various properties of � and give an
explicit F-basis of SOL, but we start with the computation of the leading term.

5.1 The leading term

In order to find these v and G, we first need to compute the asymptotic leading terms
of the q-connection matrices C(λ,e)(t, γ ) (λ ∈ P∨) as |t−α∨i | → 0 (1 ≤ i ≤ N ).
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Let A ⊂ C[T × {1}] = C[x±1
1 , . . . , x±1

N ] ⊂ C[T × T ] be the subring A :=
C[x−α∨1 , . . . , x−α∨N ]. Let Q(A) denote its quotient field and write Q0(A) for the sub-
ring of Q(A) consisting of rational functions which are regular at the point x−α∨i = 0
(1 ≤ i ≤ N ). We consider Q0(A)⊗C[T ] as subring of C(T × T ) in the natural way.

Lemma 5.1 Let λ ∈ P∨. We have

C(λ,e) ∈ (Q0(A)⊗ C[T ])⊗ End(H0). (5.1)

If we write C (0)
(λ,e) = C(λ,e)|x−α∨1 =0,...,x−α∨N=0

∈ C[T ] ⊗ End(H0), we have

C (0)
(λ,e) = δλ

k η
(

Tw0 Y w0(λ)T−1
w0

)
. (5.2)

Proof First we consider λ ∈ P∨+ . Suppose we have a reduced expression t(λ) =
si1 . . . sir ω (0 ≤ i1, . . . , ir ≤ N , ω ∈ �). Then

C(λ,e)(t, γ ) = Ri1

(
t
a∨i1 ; γ

)
Ri2

(
t
si1 (a∨i2 ); γ

)
. . . Rir

(
t si1 ...sir−1 (a∨ir ); γ

)
η(ω)(γ ).

(5.3)

It follows that C(λ,e) ∈ (Q(A) ⊗ C[T ]) ⊗ End(H0). Expanding C(−λ,e) along the
reduced expression t(−λ) = ω−1sir . . . si1 gives an expression similar to (5.3), from
which we conclude that also C(−λ,e) ∈ (Q(A)⊗C[T ])⊗End(H0). Since the Ri (z; γ )

are analytic at z = 0 and z = ∞, we have C(λ,e), C(−λ,e) ∈ (Q0(A) ⊗ C[T ]) ⊗
End(H0). Writing an arbitrary weight as the difference of two dominant weights and
using the cocycle property we conclude (5.1) for any λ ∈ P∨.

To prove (5.2), we will first compute the limit of C(λ,e)(t, γ ) as |tα∨i | → 0 for

1 ≤ i ≤ N and then use this together with the cocycle property to find C (0)
(λ,e)(γ ),

which is the limit as |t−α∨i | → 0 (1 ≤ i ≤ N ). Similarly as in the proof of (5.1), it
suffices to consider only dominant weights. Assume we have λ ∈ P∨+ a reduced expres-
sion for t(λ) as above and put u = si1 . . . sir . By formulas (2.2.9) and (2.2.5) from [14]
we have {ai1 , si1(ai2), . . . , si1 . . . sir−1(air )} = S(u−1) = S(ω−1u−1) = S(t(−λ)).
Because λ ∈ P∨+ we have

S(t(−λ)) = {α + mc | α ∈ R−, 1 ≤ m ≤ −〈λ, α〉}

(cf. [14, §2.4]), and thus, since w(a∨) = (wa)∨ (a ∈ S, w ∈ W ), we have |tb∨| → ∞
(b ∈ S(t(−λ))) as |tα∨i | → 0 (1 ≤ i ≤ N ). Observe that limz→∞ Ri (z; γ ) =
k−1

i η(Ti )(γ ) for 0 ≤ i ≤ N . It follows that

C(λ,e)(t, γ )→ k−1
i1

. . . k−1
ir

η(Y λ)(γ ) = k(t(λ))−1η(Y λ)(γ )

as |tα∨i | → 0 for all 1 ≤ i ≤ N . More generally, we conclude that

C(λ,e)(t, γ )→ δ−λ
k η(Y λ)(γ ), λ ∈ P∨ (5.4)
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as |tα∨i | → 0 for all 1 ≤ i ≤ N . In order to find C (0)
(λ,e), we use the cocycle property

to write

C(λ,e)(t, γ ) = C(w0,e)(t, γ )C(w0(λ),e)(w0t, γ )C(w0,e)

(
q−w0(λ)w0t, γ

)

and consider the limit as |t−α∨i | → 0 for 1 ≤ i ≤ N . Note that C(w0,e)(t, γ ) →
k(w0)

−1η(Tw0) as |t−α∨i | → 0 for 1 ≤ i ≤ N . Hence, using (5.4),

C (0)
(λ,e) = δ

−w0(λ)
k η

(
Tw0 Y w0(λ)T−1

w0

)
= δλ

k η
(

Tw0 Y w0(λ)T−1
w0

)
,

where the last equality follows from (2.3). ��

The previous lemma implies that the asymptotic form of the quantum KZ equations

C(λ,e)(t, γ ) f (q−λt, γ ) = f (t, γ ), λ ∈ P∨

in the asymptotic region |tα∨i | ! 0 (1 ≤ i ≤ N ) is

δλ
k η

(
Tw0 Y w0(λ)T−1

w0

)
(γ ) f (q−λt, γ ) = f (t, γ ), λ ∈ P∨. (5.5)

Let θq ∈ O(T ) denote the theta function associated with the root system R (see [11]),
defined by

θq(t) :=
∑

λ∈P∨
q

1
2 〈λ,λ〉tλ, (5.6)

for t ∈ T . Note that θq is invariant under the action of W0 on O(T ). Furthermore, it
satisfies θq(t−1) = θq(t) and

θq(qμt) = q−
1
2 〈μ,μ〉t−μθq(t), (5.7)

for all μ ∈ P∨.
Let G ∈ K be given by

G(t, γ ) := θq(tw0(γ )−1)

θq(δk t)θq

(
δ−1

k w0(γ )−1
) . (5.8)

Proposition 5.2 We have:

(i) ι(G) = G.
(ii) G(t, γ ) satisfies the q-difference equations
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G(q−λt, qμγ ) = δ
−λ−μ
k q−〈w0(λ),μ〉tw0(μ)γ−w0(λ)G(t, γ ) (5.9)

for λ,μ ∈ P∨.
(iii) f (0)(t, γ ) := G(t, γ )Tw0 is a solution of (5.5) and τ(ι) f (0) = f (0).

Proof By construction we have (i). From (5.7) it follows that G satisfies G(q−λt, γ ) =
δ−λ

k γ−w0(λ)G(t, γ ) for all λ ∈ P∨. In view of (i) this suffices to prove (ii). (iii) easily
follows from (i) and (ii). ��

5.2 The basic asymptotically free solution �

As indicated in the introduction of this section, we are now going to gauge BqKZ by
G. We obtain the gauged q-connection matrices

D(λ,μ)(t, γ ) = G(t, γ )−1C(λ,μ)(t, γ )G
(
q−λt, qμγ

)

= δ
−λ−μ
k q−〈μ,w0(λ)〉γ−w0(λ)tw0(μ)C(λ,μ)(t, γ ), (5.10)

for λ,μ ∈ P∨. It is clear that for f ∈ HK

0 , we have f ∈ SOL if and only if
g := G−1 f ∈ HK

0 satisfies the holonomic system of q-difference equations

D(λ,μ)(t, γ )g(q−λt, qμγ ) = g(t, γ ), λ, μ ∈ P∨ (5.11)

as H0-valued meromorphic functions in (t, γ ) ∈ T × T .
We write B for the analog of A corresponding to the second copy of T in T × T .

That is, B is the subring B := C[yα∨1 , . . . , yα∨N ] of C[{1} × T ] = C[y±1
1 , . . . , y±1

N ].
Similarly, we write Q(B) for its quotient field and Q0(B) for the subring of Q(B)

consisting of rational functions which are regular at the point yα∨j = 0 (1 ≤ j ≤ N ).
We consider Q0(A)⊗B and A⊗ Q0(B) as subrings of C(T × T ) in the natural way.

In the proof of the lemma below, we will need a partial order " on P∨. First recall
the dominance partial order ≥ on P∨+ , which is defined by

λ ≥ μ⇐⇒ λ− μ ∈ Q∨+,

for λ,μ ∈ P∨+ . We can extend this to a partial order on P∨ as follows. For λ ∈ P∨
write λ+ for the unique dominant coweight in the orbit W0λ and let vλ be the shortest
w ∈ W0 such that w(λ+) = λ. For λ,μ ∈ P∨, we say that λ " μ if either

(i) λ+ > μ+, or
(ii) λ+ = μ+ and vλ ≥ vμ (in the Bruhat order).

Note that with respect to this order, the anti-dominant coweight w0(λ+) is the largest
element in the orbit W0λ. More details can be found in [14, §2.7].

The following lemma describes the asymptotic behavior of the gauged
q-connection matrices. It allows us to put them in the context of the general the-
ory of solutions of q-difference equations as described in the appendix of [18] and is
therefore a key ingredient in the construction of �.
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Lemma 5.3 Set Ai = D(�∨i ,e) and Bi = D(e,�∨i ) for 1 ≤ i ≤ N.

(i) Ai ∈ (Q0(A)⊗ B)⊗ End(H0) and B j ∈ (A⊗ Q0(B))⊗ End(H0).

(ii) Write A(0,0)
i ∈ End(H0) and B(0,0)

i ∈ End(H0) for the value of Ai and Bi at

x−α∨r = 0 = yα∨s (1 ≤ r, s ≤ N). For w ∈ W0 we have

A(0,0)
i (Tw0 Tw) =

{
0 if w−1w0(�

∨
i ) �= w0(�

∨
i ),

Tw0 Tw if w−1w0(�
∨
i ) = w0(�

∨
i )

(5.12)

and

B(0,0)
i (Tw0 Tw) =

{
0 if w(�∨i ) �= �∨i ,

Tw0 Tw if w(�∨i ) = �∨i .
(5.13)

Proof We give the proof of (i), which differs substantially from the GLN case (cf. [18,
Lem. 5.2]), and omit the proof of (ii), which is similar. By (5.10) we have

Ai (t, γ ) = δ
−�∨i
k γ−w0(�∨i )C(�∨i ,e)(t, γ ).

Because of (5.1), we only need to worry about the γ -dependence of Ai (t, γ ).
Let t(�∨i ) = ωsi1 . . . sir (ω ∈ �, 0 ≤ i1, . . . , ir ≤ N ) be a reduced expression.

Then, in view of the cocycle condition, Lemma 4.3 and formula (4.5),

C(�∨i ,e)(t, γ ) = η(ω)(γ )C(si1 ...sir ,e)(ω
−1t, γ ) =

∑

w≤t (�∨i )

aw(t)η(Tw)(γ )

for certain aw ∈ Q0(A). Now consider such w ∈ W with w ≤ t(�∨i ). We have a
unique decomposition w = t(λ)w̃, with λ = w(0) ∈ P∨ and w̃ ∈ W0. Then,

t(λ) = t(vλ(λ+)) = vλt(λ+)v−1
λ ,

hence w = vλt(λ+)v−1
λ w̃. Multiple use of [14, (3.1.7)] yields Tw = hTt(λ+)h′ =

hY λ+h′ for some h, h′ ∈ H0, hence

η(Tw)(γ ) = η(h)η(Y λ+)(γ )η(h′).

It remains to show that γ−w0(�∨i )η(Y λ+)(γ ) ∈ B ⊗ End(H0). We can use (4.3) to
write

η(Y λ+)(γ )Tw =
∑

u≤w

pλ+
u,w(γ )Tu

with pλ+
u,w(γ ) ∈ spanC{γ μ}μ∈�(λ+) and pλ+

w,w(γ ) = γ w−1(λ+). Thus, we need to show
that

γ−w0(�+)+μ ∈ B ∀μ ∈ �(λ+),
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i.e., that −w0(�
∨
i ) + μ ∈ Q∨+ for all μ ∈ �(λ+). Since �(λ+) is W0-invariant

and w0(Q∨+) = −Q∨+, this is equivalent to showing that −�∨i + μ ∈ −Q∨+ for all
μ ∈ �(λ+), or

�∨i − μ ∈ Q∨+ ∀μ ∈ �(λ+).

Now the fact that w ≤ t(�∨i ) in the Bruhat order on W implies that λ # �∨i (cf. [14,
(2.7.11)]), and hence either λ+ = �∨i or λ+ < �∨i . Fix μ ∈ �(λ+). In the first case,
if λ+ = �∨i , we have μ ∈ �∨i − Q∨+, since

�(�∨i ) =
⋂

v∈W0

v(�∨i − Q∨+)

by [14, (2.6.2)]. Hence, �∨i − μ ∈ Q∨+. In the second case, if λ+ < �∨i , then
�(λ+) ⊂ �(�∨i ) by [14, (2.6.3)], and again μ ∈ �∨i − Q∨+. This concludes the
proof for Ai . For Bi , use that C(e,�∨i )(t, γ ) = CιC(�∨i ,e)(γ

−1, t−1)Cι. ��

Part (ii) of the previous lemma asserts that the endomorphisms A(0,0)
i and B(0,0)

i
are semisimple. Similarly as for GLN , the main theorem follows from the lemma
together with the general theory of solutions of q-difference equations as described in
the appendix of [18] (in particular [18, Thm. 8.6]).

For ε > 0, put Bε := {t ∈ T | |tα∨i | < ε for 1 ≤ i ≤ N } and B−1
ε := {t ∈ T |

t−1 ∈ Bε}.
Theorem 5.4 There exists a unique solution � ∈ HK

0 of the gauged equations (5.11)
such that, for some ε > 0,

(i) �(t, γ ) admits an H0-valued power series expansion

�(t, γ ) =
∑

α,β∈Q∨+

Kα,β t−αγ β, (Kα,β ∈ H0) (5.14)

for (t, γ ) ∈ B−1
ε × Bε which is normally convergent on compacta of B−1

ε × Bε .
In particular, �(t, γ ) is analytic at (t, γ ) ∈ B−1

ε × Bε;

(ii) K0,0 = Tw0 .

Proof We only remark that in order to match the present situation with the one consid-
ered in [18, §8], one should take in [18, §8]: M = 2N , Ai = A(0,0)

i , AN+i = B(0,0)
i

and qi = q2/‖αi‖2 for 1 ≤ i ≤ N and variables zi = x−α∨i and zN+ j = yα∨j for
1 ≤ i, j ≤ N . ��
Definition 5.5 We call � := G� ∈ SOL the basic asymptotically free solution of
BqKZ.

The τ(ι)-invariance of SOL, the ι-invariance of G and the uniqueness part of
Theorem 5.4 imply that � enjoys the following duality property.
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Theorem 5.6 (Duality) The basic asymptotically free solution � of BqKZ is self-dual,
in the sense that

τ(ι)� = �.

5.3 Singularities

In this subsection, we have a closer look at the analytic properties of �. Write qα :=
q2/‖α‖2 for α ∈ R and set

S+ :=
{

t ∈ T | tα
∨ ∈ k−2

α q−N
α for some α ∈ R+

}
.

Proposition 5.7 The H0-valued meromorphic function � is analytic on T \ S−1+ ×
T \ S+.

Proof Let λ,μ ∈ P∨+ . By (5.10) and the cocycle property, D(λ,μ)(t, γ ) is regular
at (t, γ ) = (s, ζ ) if C(�∨i ,�∨j )(q

−ν t, qξ γ ) is regular at (t, γ ) = (s, ζ ) for all 1 ≤
i, j ≤ N and ξ, ν ∈ P∨+ . This in turn holds, again by virtue of the cocycle property
together with (5.1), if C(ω∨j ,e)(q

−ν t, γ ) is regular at (t, γ ) = (s, ζ ) for all ν ∈ P∨+ and
1 ≤ j ≤ N .

Suppose we have a reduced expression t(�∨j ) = si1 . . . sir ω (1 ≤ j ≤ N ). Similarly
as in the proof of Lemma 5.1, we have

C(�∨j ,e)(t, γ ) = Ri1

(
t
a∨i1 ; γ

)
. . . Rir

(
t si1 ...sir−1 (a∨ir ); γ

)
η(ω)(γ ),

and

{
ai1 , si1(ai2), . . . , si1 . . . sir−1(air )

} = S
(

t(−�∨j )
)

=
{
α + mc | α ∈ R−, 1 ≤ m ≤ −〈�∨j , α〉

}

Now Ri (z; γ ) has only a simple pole at z = k−2
i , so C(�∨j ,e)(t, γ ) has possibly poles

at

ta∨ = k−2
a , a ∈ S

(
t(−�∨j )

)
.

Note that

t (α+mc)∨ = tα
∨+(2m/‖α‖2)c = qm

α tα
∨
,

hence there are possibly poles at

qm
α tα

∨ = k−2
α , α ∈ R−, 1 ≤ m ≤ −〈�∨j , α〉,



Bispectral quantum KZ equations 209

or, equivalently, at

t−α∨ = q−m
α k−2

α , α ∈ R+, 1 ≤ m ≤ 〈�∨j , α〉.

Consequently, C(�∨j ,e)(q
−ν t, γ ) is regular at t ∈ T \ S−1+ for all ν ∈ P∨+ . By the

considerations in the previous paragraph, we conclude that D(λ,μ)(t, γ ) is regular at
(t, γ ) ∈ T \ S−1+ × T \ S+ for all λ,μ ∈ P∨+ .

Let U × V be a relatively compact open subset of T \ S−1+ × T \ S+. Choose
λ,μ ∈ P∨+ such that the closure of q−λU × qμV is contained in B−1

ε × Bε . Then as
meromorphic H0-valued function in (t, γ ) ∈ U × V , we have

�(t, γ ) = D(λ,μ)(t, γ )�(q−λt, qμγ ), (5.15)

and by Theorem 5.4(i) the proof is now complete. ��

Remark 5.8 The previous proposition gives, in particular, information about the sin-
gularities of the basic asymptotic solution � = G�. Unfortunately, it is not possible
to precisely pinpoint the singularities of G. To overcome this issue, we could choose
a different theta function in the definition of G, namely one for which we have a
product formula available. The price we pay is that we have to enlarge the torus T .
Let ϑq ∈M(T ) denote the renormalized Jacobi theta function

ϑq(z) :=
∏

m≥0

(1− qm z)(1− qm+1/z) (5.16)

for z ∈ C
×. It satisfies

ϑq(qm z) = (−z)−mq−
1
2 m(m−1)ϑq(z), m ∈ Z. (5.17)

Let e ∈ N be the unique positive integer such that e〈P∨, P∨〉 = Z. For all a ∈ S, fix
k1/6e

a such that k1/6e
a = k1/6e

w(a) for all w ∈ W . Now put T ′ := HomZ( 1
6e P∨, C

×). The
canonical map T ′ � T gives rise to an embedding M(T × T ) ↪→M(T ′ × T ′). Now
define Ĝ ∈M(T ′ × T ′) by

Ĝ(t, γ ) :=
N∏

i, j=1

(
ϑq1/e(κ

−1/e
j tαi /e)ϑq1/e (κ

−1/e
i γ w0(α j )/e)

ϑq1/e(tαi /e γ w0(α j )/e)

)e〈�∨i ,�∨j 〉
, (5.18)

where κ
1/e
j :=∏

α∈R+ k
〈α j ,α〉/e
α . Then, Ĝ satisfies the properties of Proposition 5.2.

Corollary 5.9 (i) Write �(t, γ ) = ∑
α∈Q∨+ �α(γ )t−α for (t, γ ) ∈ B−1

ε × Bε ,

with �α (α ∈ Q∨+) the analytic H0-valued function �α(γ ) :=∑
β∈Q∨+ Kα,βγ β



210 M. van Meer

on Bε . Then each �α can uniquely be extended to a meromorphic H0-valued
function on T , analytic on T \ S+, such that for (t, γ ) ∈ B−1

ε × T \ S+

�(t, γ ) =
∑

α∈Q∨+

�α(γ )t−α,

converging normally on compacta of B−1
ε × T \ S+.

(ii) The leading term �0 satisfies

�0(γ ) = K (γ )Tw0 , (5.19)

for some K ∈M(T ).

Proof (i) See [18, Lemma 5.7].
(ii) This is also similar as in [18], but for the convenience of the reader we pro-

vide the details. � satisfies Ai (t, γ )�(q−�∨i t, γ ) = �(t, γ ) for 1 ≤ i ≤ N .

Considering the limit |t−α∨j | → 0, we obtain

γ−w0(�∨i )η(Tw0 Y w0(�∨i )T−1
w0

)(γ )�0(γ ) = �0(γ )

for 1 ≤ i ≤ N , and in view of Lemma 4.2 this forces

�0(γ ) = K (γ )η(Tw0)ξe(γ ) = K (γ )Tw0

for some K ∈M(T ). ��
Remark 5.10 In the following section, we will give an explicit formula for K (γ ). It
will follow immediately from an explicit formula for the leading term of the so-called
Harish-Chandra series solution of a bispectral problem corresponding to BqKZ. In
[18], for GLN , it is exactly the way around. There, the latter is found as a consequence
of an explicit formula for K (γ ), which in turn is due to rather explicit expressions for
the q-connection matrices of BqKZ.

From Proposition 5.7 and its corollary, we obtain the following result for specialized
spectral parameter.

Corollary 5.11 Fix ζ ∈ T \ S+.

(i) The H0-valued meromorphic function �(t, γ ) in (t, γ ) ∈ T × T can be spe-
cialized at γ = ζ , giving rise to a meromorphic H0-valued function �(t, ζ ) in
t ∈ T , which is regular at t ∈ T \ S−1+ .

(ii) For t ∈ B−1
ε we have the power series expansion

�(t, ζ ) =
∑

α∈Q∨+

�α(ζ )t−α,

converging normally on compacta of B−1
ε .
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(iii) �(t, ζ ) satisfies the system of q-difference equations

D(λ,e)(t, ζ )�(q−λt, ζ ) = �(t, ζ ), ∀λ ∈ P∨. (5.20)

5.4 Consistency

BqKZ is a holonomic system of first-order q-difference equations with connection
matrices depending rationally on (t, γ ) ∈ T × T , and therefore it is consistent (see
[6, Prop. 5.2]). This means that dimF(SOL) = dimC(H0), or, equivalently, that BqKZ
allows a so-called fundamental matrix solution U . In [6], such a fundamental matrix
solution was found by algebraic geometric arguments. A different approach, using the
asymptotic solution �, was taken in [18]. Here, we shortly repeat this latter approach
for arbitrary root systems. The advantage of this approach is that it produces a basis
of SOL in terms of asymptotically free solutions. For details, we refer to [18, §5.6].

We say that F ∈ End(H0)
K = K ⊗ End(H0) is an End(H0)-valued solution of

BqKZ, if

C(λ,μ)(t, γ )F(q−λt, qμγ ) = F(t, γ ), λ, μ ∈ P∨,

as End(H0)-valued meromorphic functions in (t, γ ) ∈ T × T .
Define U ∈ End(H0)

K by

U
(

k(w)−1Tw0 Tw−1

)
:= τ(e, w)� (5.21)

for w ∈ W0.

Proposition 5.12 We have

(i) U ∈ End(H0)
K is an invertible solution of BqKZ with values in End(H0).

In particular, identifying End(H0)
K � EndK(HK

0 ) as K-algebras, we have
U ∈ GLK(HK

0 ).
(ii) U ′ ∈ End(H0)

K is an End(H0)-valued meromorphic solution of BqKZ if and
only if U ′ = U F for some F ∈ End(H0)

F.
(iii) U, viewed as K-linear endomorphism of HK

0 , restricts to an F-linear isomor-
phism U : HF

0 → SOL.
(iv) {τ(e, w)�}w∈W0 is an F-basis of SOL.

Remark 5.13 The quantum KZ equations (3.11) form a consistent system of q-dif-
ference equations as well. For generic ζ ∈ T (that is, for ζ ∈ T where �(t, γ ) can
be specialized in γ = ζ and moreover U (·, ζ ) is invertible), this follows along the
same line as above, but of course one can use [6, Prop. 5.2] again, which applies for
all ζ ∈ T .
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6 Correspondence with bispectral problems

For the principal series representation Mζ (ζ generic) of H , Cherednik [2, Thm. 3.4]
constructed a map that embeds the associated solution space of the quantum affine KZ
equation (3.2) into the solution space of a system of q-difference equations, involv-
ing the Macdonald q-difference operator. This is a special case of a correspondence
between the solutions of the quantum affine KZ equations associated with an arbitrary
finite-dimensional H -module M and a more general system of q-difference equations
(see [3]).

We will consider the map when M is the formal principal series module M =
IndH

CY [T ](CY [T ]) (see Sect. 4.1). In this case, Cherednik’s correspondence yields
an embedding χ+ of SOL into the solution space of a bispectral problem for the
Macdonald q-difference operators.

6.1 The bispectral problem for the Macdonald q-difference operators

Using the action of W on C(T × T ) given by (3.5), we can form the smash
product algebra C(T × T )#W. It contains C(T )#q W � C(T × {1})#(W × {e})
and C(T )#q−1 W � C({1} × T )#({e} × W ) as subalgebras. In this interpretation,
Cherednik’s algebra homomorphism ρk−1,q : H(k−1) → C(T )#q W (see Theo-
rem 2.8) gives rise to an algebra homomorphism

ρx
k−1,q

: H(k−1)→ C(T × T )#W,

considered as q-difference reflection operators in the first torus variable, and similarly
ρk,q−1 : H(k)→ C(T )#q−1 W to an algebra homomorphism

ρ
y
k,q−1 : H(k)→ C(T × T )#W,

considered as q-difference reflection operators in the second torus variable. Note that
the images of ρx

k−1,q
and ρ

y
k,q−1 in C(T ×T )#W commute, so we can form the algebra

homomorphism

ρx
k−1,q

⊗ ρ
y
k,q−1 : H(k−1)⊗ H(k)→ C(T × T )#W.

The maps ρx
k−1,q

and ρ
y
k,q−1 are related as follows.

Lemma 6.1 Let ◦ : H(k−1)→ H(k) be defined as the unique algebra isomorphism
satisfying

T ◦i = T−1
i , ω◦ = ω,

for 0 ≤ i ≤ N and ω ∈ �. Then, we have

ρ
y
k,q−1(h

◦) = ιρx
k−1,q

(h)ι (6.1)

for all h ∈ H(k−1).
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Proof Since ρx
k−1,q

, ρ
y
k,q−1 and ◦ are algebra homomorphisms, the lemma follows by

verifying (6.1) for Ti (0 ≤ i ≤ N ) and ω ∈ �. Let 0 ≤ i ≤ N and f ∈ K. In H(k),
we have T−1

i = Ti + k−1
i − ki , hence, on the one hand,

(
ρ

y
k,q−1(T

−1
i ) f

)
(t, γ ) = k−1

i f (t, γ )+ cai ;k,q−1(γ )
(

f (t, s�i γ )− f (t, γ )
)
.

On the other hand,

(
ιρx

k−1,q
(Ti )ι f

)
(t, γ ) =

(
ρx

k−1,q
(Ti )ι f

)
(γ−1, t−1)

= k−1
i (ι f )(γ−1, t−1)+ cai ;k−1,q(γ−1)

(
(ι f )(siγ

−1, t−1)− (ι f )(γ−1, t−1)
)

= k−1
i f (t, γ )+ cai ;k,q−1(γ )

(
f (t, s�i γ )− f (t, γ )

)
,

where we used (2.4) for the last equality. The verification for ω ∈ � is easier and left
to the reader. ��

By means of the canonical action of C(T × T )#W on C(T × T ), the subalgebra
D := C(T × T )#(P∨ × P∨) ⊂ C(T × T )#W can be identified with the algebra of
q-difference operators on T × T with rational coefficients. Any element D ∈ C(T ×
T )#W has an expansion

D =
∑

w∈W0

Dww, (6.2)

with Dw ∈ D. Since this expansion is unique, we have a well-defined C(T ×T )-linear
map Res : C(T × T )#W→ D, determined by

Res(D) :=
∑

w∈W0

Dw,

with D ∈ C(T × T )#W given as in (6.2). Let C(T × T )W0 denote the field of W0-
invariant rational functions on T × T . Restricted to C(T × T )W0 , we have
D|

C(T×T )W0 = Res(D)|
C(T×T )W0 for all D ∈ C(T × T )#W.

It is well known (see e.g., [14, (4.2.10)]) that the center Z(H) of the affine Hecke
algebra H is CY [T ]W0 . For p ∈ C[T ]W0 , set

Lx
p := Res(ρx

k−1,q
(p(Y ))) ∈ D,

where p(Y ) is considered as element of Z(H(k−1)), and set

L y
p := Res(ρ y

k,q−1(p(Y ))) ∈ D,

where p(Y ) is considered as element of Z(H(k)). It is well known that the opera-
tors Lx

p (and hence L y
p) are pairwise commuting and (W0 × W0)-invariant, and by
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construction [Lx
p, L y

p′ ] = 0 in D for all p, p′ ∈ C[T ]W0 . The operators Lx
p and L y

p
are related as follows.

Lemma 6.2 For p ∈ C[T ]W0 , we have

L y
p = ιLx

pι. (6.3)

Proof Similarly as for GLN (see [18, §6.2]), the lemma follows from (6.1) together
with the fact that

p(Y )◦ = p(Y ), p ∈ C[T ]W0 (6.4)

with ◦ : H(k−1)→ H(k) as defined in Lemma 6.1. We elaborate on the proof of (6.4),
which is different than for GLN . Note that since p ∈ C[T ]W0 , the result follows if
we can prove that (Y λ)◦ = Tw0 Y w0(λ)T−1

w0
for λ ∈ P∨. Moreover, it suffices to show

this only for specific elements of P∨, as we demonstrate first. For any λ ∈ P∨, let
vλ be the shortest element of W0 such that vλ(λ) = w0(λ), and put uλ := t(λ)v−1

λ .
Then by [14, (2.5.4)] � = {e} ∪ {u�∨j } j∈J with J := {i ∈ 1, . . . , N | 〈�∨i , φ〉 = 1}.
If λ ∈ P∨ \ Q∨, we can write t(λ) = u�∨j w for some j ∈ J and w ∈ WQ∨ (using

W = � � WQ∨ ), and then t(λ) = t(�∨j )v−1
�∨j

w = t(�∨j )t(α)w′ for some α ∈ Q∨

and w′ ∈ W0 (using WQ∨ = Q∨ � W0). But then w′ = e and λ = �∨j + α.
In particular, {0} ∪ {�∨j } j∈J is a complete set of representatives of P∨/Q∨. Since

Q∨ = spanZ{w(φ∨) | w ∈ W0}, it thus suffices to show (Y λ)◦ = Tw0 Y w0(λ)T−1
w0

only
for λ = �∨j with j ∈ J and for λ = w(φ∨) (w ∈ W0).

Let j ∈ J and write u j := u�∨j and v j := v�∨j . By [14, (3.3.3)], we have

u j = TwY w−1(�∨j )T−1
v j w

for all w ∈ W0. Let • : H(k) → H(k−1) denote the inverse
of ◦. It follows that

(
Y w0(�∨j )

)• =
(

T−1
w0

u j Tv j w0

)• = Tw0 u j T
−1
w0v−1

j

= Tw0 u j

(
Tw0 T−1

v j

)−1 = Tw0 u j Tv j T
−1
w0

= Tw0 Y �∨j T−1
w0

,

since u j Tv j = Tu j v j = T
t
(
�∨j

) = Y �∨j . Hence,
(

Y �∨j
)◦ = Tw0 Y

w0

(
�∨j

)

T−1
w0

. Simi-

larly, we can use [14, (3.3.6)] to obtain (Y w(φ∨))◦ = Tw0 Y w0w(φ∨)T−1
w0

for w ∈ W0,
and the proof is complete. ��

In order to give more explicit formulas for Lx
p and L y

p, we need to introduce some
notation. For λ ∈ P∨, write W0,λ for the isotropy subgroup of λ in W0, and W λ

0
for a complete set of representatives of W0/W0,λ. We may assume that e ∈ W λ

0 .
Let mλ ∈ C[T ]W0 be the associated monomial symmetric function, that is,
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mλ(t) := ∑
μ∈W0λ tμ. Finally, set �0(λ) := �(λ) − W0λ (recall that �(λ) is the

smallest saturated subset of P∨ that contains λ, cf. Sect. 4.1).
Now fix λ ∈ P∨− = −P∨+ . By [14, (4.4.12)], we have for f ∈ K

(Lx
mλ

f )(t, γ ) =
∑

w∈Wλ
0

∏

a∈S(t(−λ))

cw(a),k,q(t−1) f (q−w(λ)t, γ )

+
∑

μ∈�0(λ)

gμ(t) f (q−μt, γ ) (6.5)

for some gμ ∈M(T ) (here we used (2.4)). In view of (6.3), one immediately obtains
a similar formula for L y

mλ
.

Remark 6.3 For λ = w0(�
∨
j ) with �∨j minuscule (that is, 〈�∨j , α〉 ∈ {0, 1} for all

α ∈ R+), we have �0(λ) = ∅, while for λ = −φ∨ we have �0(λ) = {0}. In both
cases, one obtains an explicit formula for Lx

mλ
, and the resulting operators are the

Macdonald q-difference operators [13].

We now define the following bispectral version of Macdonald’s eigenvalue prob-
lem.

Definition 6.4 We define BiSP as the set of solutions f ∈ K of the following bispec-
tral problem:

(Lx
p f )(t, γ ) = p(γ−1) f (t, γ ), ∀p ∈ C[T ]W0 ,

(L y
p f )(t, γ ) = p(t) f (t, γ ), ∀p ∈ C[T ]W0 . (6.6)

Remark 6.5 Note that BiSP is a W0-invariant F-linear subspace of K.

6.2 The correspondence

Consider the linear map χ+ : H0 → C defined by χ+(Tw) = k(w). By K-linear
extension, we obtain a K-linear map χ+ : HK

0 → K. It gives rise to the following
correspondence between SOL and BiSP.

Theorem 6.6 The K-linear functional χ+ : HK

0 → K restricts to an injective
W0-equivariant F-linear map

χ+ : SOL→ BiSP.

The theorem follows by restricting Cherednik’s correspondence mentioned in the intro-
duction of this section (for M the formal principal series module) to SOL. Indeed, if
f ∈ SOL, then for fixed γ ∈ T, f (t, γ ) can be viewed as a solution of qKZ for
the H -module Mγ , and then by Cherednik’s correspondence χ+( f ) satisfies the first
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system of equations of (6.6). This holds for all γ ∈ T . By (6.3) and the ι-invariance
of SOL, it then follows that

(L y
p f )(t, γ ) = (ιLx

pι f )(t, γ ) = (Lx
pι f )(γ−1, t−1)

= p(t)(ι f )(γ−1, t−1) = p(t) f (t, γ ),

so also the second equation of (6.6) is satisfied.
For GLN , a detailed proof can be found in [18, §6] and the arguments used there

can also be applied in the present setting.

7 Harish-Chandra series solutions

Application of χ+ to the basic asymptotic solution � leads to a meromorphic solu-
tion �+ of the bispectral problem, which can be viewed as a bispectral analog of the
difference Harish-Chandra solutions of the Macdonald difference equations [12]. For
root systems of type A, Harish-Chandra series solutions were studied before in [7]
and [10]. In [18, §6.4], the Harish-Chandra series solution of type A was reobtained
from �+(t, γ ), by specializing γ ∈ T , yielding new results on the convergence and
singularities of these solutions as a consequence of corresponding results for �. In the
final subsection, we extend this to arbitrary root systems.

7.1 Bispectral Harish-Chandra series

As announced, we apply the map χ+ to the basic asymptotically free solution � of
BqKZ to obtain a special meromorphic solution of the bispectral problem (see [18,
§6.3] for GLN ).

Definition 7.1 We call �+ := χ+(�) ∈ BiSP the basic Harish-Chandra series solu-
tion of the bispectral problem.

Put �+ := χ+(�). Then, �+ = G�+ and as a consequence of Proposition 5.7
and Corollary 5.9, �+ is analytic on T \S−1+ ×T \S+, and for (t, γ ) ∈ B−1

ε ×T \S+,
we have

�+(t, γ ) =
∑

α∈Q∨+

�+α (γ )t−α,

where �+α := χ+(�α) ∈ M(T ) for all α ∈ Q∨+. Recall that �0(γ ) = K (γ )Tw0 for
some K ∈M(T ) (see (5.19)).

Theorem 7.2 We have

�+0 (γ ) = k(w0)K (γ ), (7.1)
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with K ∈M(T ) given by

K (γ ) =
∏

α∈R+

(qαγ α∨; qα)∞
(qαk2

αγ α∨; qα)∞
, (7.2)

where qα = q2/‖α‖2 for α ∈ R+, as before.

Proof The definition of χ+ and the preceding remarks imply (7.1). Let L(γ ) denote the
right-hand side of (7.2). Then, L ∈M(T ) is uniquely characterized by the following
properties.

(i) There exists an ε > 0 such that for γ ∈ Bε, L admits a power series expansion

L(γ ) =
∑

α∈Q∨+

lαγ α,

converging normally on compacta of Bε .
(ii) l0 = 1.

(iii) L(γ ) satisfies the following system of q-difference equations:

⎛

⎝
∏

α∈R+

〈λ,α〉∏

r=1

1− qr
αγ α∨

1− qr
αk2

αγ α∨

⎞

⎠ L(qλγ ) = L(γ ), λ ∈ P∨+ .

From Theorem 5.4, it follows that K satisfies (i), and since K0,0 = Tw0 , K also
satisfies (ii). It thus suffices to show that K solves the q-difference equations in (iii).

Recall that in order to show that �0(γ ) = K (γ )Tw0 for some K ∈ M(T ), we
exploited the fact that � is a solution of the quantum KZ equation in t and investigated

what taking the limit |t−α∨j | → 0 had to mean for �0(γ ). We are now going to exploit
the fact that �+ satisfies the spectral problem

(L y
p�
+)(t, γ ) = p(t)�+(t, γ ), p ∈ C[T ]W0 , (7.3)

and consider the limit |t−α∨i | → 0 to obtain the desired q-difference equations for
�+0 , and hence for K .

Fix λ ∈ P∨− . From formula (6.5), we deduce

(L y
mλ

�+)(t, γ ) =
∑

w∈Wλ
0

∏

a∈S(t(−λ))

cw(a),k,q−1(γ )�+(t, qw(λ)γ )

+
∑

μ∈�0(λ)

gμ(γ−1)�+(t, qμγ )
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with gμ ∈ M(T ). Plugging in �+ = G�+, using (5.9) and dividing both sides by
G(t, γ ), the equality (L y

mλ
�+)(t, γ ) = mλ(t)�+(t, γ ) gives

mλ(t)�
+(t, γ ) =

∑

w∈Wλ
0

∏

a∈S(t(−λ))

cw(a),k(γ )δ
−w(λ)
k tw0w(λ)�+(t, qw(λ)γ )

+
∑

μ∈�0(λ)

gμ(γ−1)δ
−μ
k tw0(μ)�+(t, qμγ ).

Now we multiply both sides by t−w0(λ) and consider the limit |t−α∨j | → 0. By (7.1),
this will result in a q-difference equation for K . Note that:

(1) t−w0(λ)mλ(t) =∑
μ∈W0λ t−w0(λ)+μ → 1 since w0(λ) ∈ P∨+ and ν−w(ν) ∈ Q∨+

for all ν ∈ P∨+ and w ∈ W0.
(2) t−w0(λ)tw0w(λ) = t−w0(λ)+w0w(λ) which is equal to 1 if w(λ) = λ and tends to 0

otherwise. Considering w ∈ W λ
0 , we have w(λ) = λ only for w = e.

(3) t−w0(λ)tw0(μ) → 0 for all μ ∈ �0(λ). Indeed, by [14, (2.6.3)] we have

μ+ ∈ �(w0(λ))⇔ w0(λ)− μ+ ∈ Q∨+

and hence also w0(λ) − w0(μ) ∈ Q∨+ for μ ∈ �0(λ) ⊂ �(w0(λ)). Moreover,
w0(λ) �= w0(μ) since μ /∈ W0λ.

Consequently, K satisfies the following set of q-difference equations:

⎛

⎝
∏

a∈S(t(−λ))

ca;k,q−1(γ )

⎞

⎠ δ−λ
k K (qλγ ) = K (γ ), λ ∈ P∨− .

Equivalently, also setting μ := −λ ∈ P∨+ ,

⎛

⎝
∏

a∈S(t(μ))

k−1
a − ka(qμγ )a∨

1− (qμγ )a∨

⎞

⎠ δ
μ
k K (γ ) = K (qμγ ), μ ∈ P∨+ . (7.4)

Note that L y
mλ
∈ C(T )#q−1 W � C({1} × T )#({e} × W ), so γ (α+rc)∨ = q−r

α γ α∨ for
α ∈ R and r ∈ Z. Using

∏

a∈S(t(μ))

k−1
a − ka(qμγ )a∨

1− (qμγ )a∨ =
∏

α∈R+

〈μ,α〉−1∏

r=0

k−1
α − kαq〈μ,α〉

α q−r
α γ α∨

1− q〈μ,α〉
α q−r

α γ α∨

=
∏

α∈R+

〈μ,α〉∏

r=1

k−1
α − kαqr

αγ α∨

1− qr
αγ α∨
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and δ
μ
k =

∏
α∈R+ k〈μ,α〉

α , we obtain from (7.4)

⎛

⎝
∏

α∈R+

〈μ,α〉∏

r=1

1− k2
αqr

αγ α∨

1− qr
αγ α∨

⎞

⎠ K (γ ) = K (qμγ ), μ ∈ P∨+ ,

and the proof is complete. ��
In view of Remark 6.5, we obtain solutions �+w ∈ BiSP (w ∈ W0), given by

�+w(t, γ ) := �+(t, w−1γ ).

Setting �+w (t, γ ) := �+(t, w−1γ ), we have �+w(t, γ ) = G(t, w−1γ )�+w (t, γ ) and
by Corollory 5.11(ii), for ε > 0 sufficiently small, �+w has a power series expansion

�+w (t, γ ) =
∑

α∈Q∨+

�+α (w−1γ )t−α

for (t, γ ) ∈ Bε × T \w(S+), converging normally on compacta of Bε × T \w(S+).
The next result follows along the same line as [18, Prop. 6.20].

Proposition 7.3 The set {�+w}w∈W0 ⊂ BiSP is F-linearly independent.

We expect that the set {�+w}w∈W0 is in fact a basis of BiSP over F. This would follow,
for example, if we could prove that χ+ is an F-linear isomorphism SOL → BiSP
(rather than only an embedding). Both are still open problems.

7.2 Application to Harish-Chandra series solutions
of Macdonald’s difference equations

Let ζ ∈ T . The spectral problem of the Macdonald q-difference operators with spectral
parameter ζ is

Lx
p f = p(ζ−1) f, ∀p ∈ C[T ]W0 , (7.5)

for meromorphic functions f on T . Let SPζ ⊂M(T ) denote the set of solutions of
(7.5). It is a vector space over E(T ), invariant under the usual action of W0 on M(T ).

Recall the solution space SOLζ ⊂ HM(T )
0 of the quantum KZ equation (3.11) asso-

ciated with Mζ , also W0-invariant, but with respect to the τ
Mζ
x (W0)-action on HM(T )

0 .
We have the following special case of Cherednik’s correspondence from [2,3] (see
[18, Prop. 6.22]).

Proposition 7.4 For each ζ ∈ T, χ+ defines an W0-equivariant E(T )-linear map
χ+ : SOLζ → SPζ .

Remark 7.5 In Stokman’s paper [15], it is shown that χ+ is an isomorphism if ζ α∨ �=
k2
α, 1 for all α ∈ R.
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Recall that �+ = χ+(�) with �, as usual, the solution of the gauged bispec-
tral BqKZ Eqs. (5.11) obtained in Theorem (5.4). It follows from Corollary 5.11 that
�+(t, γ ) may be specialized at γ = ζ for ζ ∈ T \ S−1+ , yielding a meromorphic
function �+(·, ζ ) ∈M(T ) with poles at t ∈ S−1+ . Define G̃ ∈ K by

G̃(t, γ ) := θq(tw0(γ )−1)

θq(δk t)
.

Remark 7.6 Note that G̃(t, γ ) = θq(δ−1
k w0(γ )−1)G(t, γ ) and that G̃(t, γ ) can be

specialized in γ = ζ . Lacking the factor θq(δ−1
k w0(γ )−1) in the denominator, G̃ does

not satisfy ι(G̃) = G̃. Therefore, G̃� /∈ SOL, but we do have G̃(·, ζ )�(·, ζ ) ∈ SOLζ .

It follows that G̃(·, ζ )�+(·, ζ ) ∈ SPζ and hence �+(·, ζ ) is a solution of the spectral
problem for the gauged Macdonald q-difference operators with spectral parameter ζ ,
that is, a solution of

(L̃ x
p f )(t) = p(ζ−1) f (t), ∀p ∈ C[T ]W0 , (7.6)

with

L̃ x
p := G̃(·, ζ )−1 Lx

p G̃(·, ζ ).

At the end of the previous subsection, we introduced �+w (t, γ ) = �+(t, w−1γ ) for
w ∈ W0. Put S := ⋃

w∈W0
w(S+). The considerations of this section imply the

following.

Theorem 7.7 Fix ζ ∈ T \ S.

(i) For ε > 0 sufficiently small, �+w (·, ζ ) has a power series expansion

�+w (t, ζ ) =
∑

α∈Q∨+

�+α (w−1ζ )t−α

for t ∈ Bε , converging normally on compacta of Bε and with
�+0 (w−1ζ ) �= 0 explicitly given by (7.1).

(ii) �+w (t, ζ ) (w ∈ W0) is analytic in t ∈ T \ S−1+ .

(iii) The function �̃+w (·, ζ ) ∈M(T ) (w ∈ W0) defined by

�̃+w (t, ζ ) := G̃(t, w−1(ζ ))

G̃(t, ζ )
�+w (t, ζ ) = θq(t (w0w

−1)(ζ )−1)

θq(tw0(ζ )−1)
�+w (t, ζ ),

is a nonzero solution of the spectral problem (7.6) for the gauged
Macdonald q-difference operators for all w ∈ W0.

The functions �̃+w (·, ζ ) (w ∈ W0) are the Harish-Chandra series solutions of the
spectral problem (7.6). As already mentioned in the introduction of this section, for-
mal Harish-Chandra series solutions of Macdonald’s spectral problem were already
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obtained in [12], and earlier for the root system of type A in [7] and [10]. The upshot
here is that we obtain the Harish-Chandra series solutions as meromorphic functions
and are able to explicitly determine the leading term and the pole locations of �+w (·, ζ ).
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