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Abstract. We prove a compactness result related to G-convergence for autonomous evolutionary equations
in the sense of Picard. Compared to previouswork related to applications,we do not require any boundedness
or regularity of the underlying spatial domain; nor do we assume any periodicity or ergodicity assumption
on the potentially oscillatory part. In terms of abstract evolutionary equations, we remove any compactness
assumptions of the resolvent modulo kernel of the spatial operator. To achieve the results, we introduced a
slightly more general class of material laws. As a by-product, we also provide a criterion for G-convergence
for time-dependent equations solely in terms of static equations.
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1. Introduction

The theory of evolutionary equations was initiated by the seminal paper [6]. It com-
prises of a space-time Hilbert space framework for (predominantly) time-dependent
partial differential equations. The restriction to the Hilbert space case and the particu-
lar focus on non-homogeneous right-hand sides rather than on initial value problems
led to a fairly wide class of examples. This includes for instance mixed type problems
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with rough interfaces other more traditional approaches like semi-group theory failed
to cover. In a nutshell, evolutionary equations are operator equations of the form

(∂tM + A)u = f,

set in a suitable space-time Hilbert space to be introduced in detail below. For the time
being it is enough to think of ∂t as an operator realisation of the time-derivative, A
a skew-selfadjoint operator (usually comprising of first order spatial derivatives) in
a (separable) spatial Hilbert space H canonically extended to space-time, and M to
be a bounded linear operator in space-time assumed to be causal and invariant under
time-shifts. As a consequence, see [10, Theorem 8.2.1] and Theorem 2.3 below, there
exists a unique bounded, holomorphic operator-valued function M : CRe>ν → L(H)

defined on a half space CRe>ν :={z ∈ C;Re z > ν} for some ν > 0 such that

M = M(∂t ),

where the latter is meant in a sense of an explicit functional calculus by representing
the above introduced time-derivative as a multiplication operator. In applications,
the constitutive relations are encoded in M (and thus in M); therefore M is also
called material law and M (the associated) material law operator. The versatility of
evolutionary equations can in part also be explained by its easy solution criterion,
which is to show that there exist ρ ≥ ν and α > 0 such that

Re〈φ, zM(z)φ〉H ≥ α‖φ‖2H (z ∈ CRe>ρ, φ ∈ H). (1)

Given the latter condition, (∂tM + A) is continuously invertible with norm of the
inverse bounded by 1/α.

Since 2009 a great deal of research has been devoted to evolutionary equations and,
among other things, generalisations to non-autonomous and non-linear cases were
studied and the asymptotic behaviour of solutions was addressed, see the monographs
[7,8] for the theory mainly focussing on the presentation of various examples and the
survey paper [9] as well as the recent book [10] for a wrap up not only of examples but
also of the various other aspects of the theory. Among these is the study of homogeni-
sation problems associated to the theory of evolutionary equations, which started with
the PhD Thesis [17] and has been further developed since then. Within the theory of
evolutionary equations, (autonomous) homogenisation problems are of the form

(∂t Mn(∂t ) + A)un = f,

for a sequence of holomorphic functions (Mn)n defined on a common half space.
Following Spagnolo [12,13] and given a skew-selfadjoint operator A on H , we say
that a (locally bounded) sequence of material laws (Mn)n satisfying (1), α being
fixed throughout the paper, G-converges to a (holomorphic, operator-valued) M , if M
satisfies (1) and

(∂t Mn(∂t ) + A)
−1 → (∂t M(∂t ) + A)

−1
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in the weak operator topology. The question of G-compactness in the present setting
can now be written as follows.

Problem 1.1. For any bounded sequence of material laws (Mn)n satisfying (1) can we
find a subsequence (Mπ(n))n and a material law M satisfying (1) such that (Mπ(n))n

G-converges to M?

In several research contributions, this problem has been addressed. We refer to the
references [18,20] for situations with A = 0, to [19,21] for A �= 0 with compact
resolvent and to [22] for a hybrid of these two cases; see also the example concerning
Maxwell’s equations in [24] and [25, Sections 5 and 6]; we particularly refer to [1]
for the most general situation up-to-date. In these references the overarching strategy
always is the same: firstly identify suitable criteria for the convergence of (Mn)n and for

the operator A to have (∂t Mn(∂t ) + A)
−1 → (∂t M(∂t ) + A)

−1
in the weak operator

topology and, then secondly, use an operator-valued analogue of Montel’s theorem
(see Theorem 3.14 below) in order to guarantee the satisfaction of the derived criteria
for a subsequence of (Mn)n . This strategy of proof seemingly necessitates conditions
on A.More precisely, all of the results available in the literature share that A is assumed
to have compact resolvent modulo kernel, that is,

dom(A) ∩ ker(A)⊥ ↪→↪→ H. (2)

In some cases [22] additional structural assumptions on the sequence (Mn)n were
necessary to obtain the satisfaction of (1) also for the G-limit M . Altogether, the
interplayof conditions for (Mn)n and A is rather involved and the respective proofsmay
be considered quite technical with demanding computations, see [22], or necessitate
the involvement of more (abstract) theory, see [1]. In any case, the techniques applied
do not work without condition (2).

It is the aim of the present contribution to entirely remove these intricacies and
subtleties and to completely change the point of view: Instead of finding conditions
for (Mn)n (and A) to obtain a continuous dependence result (see also [1,23]), we
take a step back and assume weak operator topology convergence of the solution

operators (∂t Mn(∂t ) + A)
−1

to some space-time operator B right away and then,
from there, try to derive the existence of a material law M satisfying (1) such that

B = (∂t M(∂t ) + A)
−1

. The G-compactness statement can then be obtained by apply-
ing sequential compactness of bounded sets of bounded linear operators defined on
separable Hilbert spaces. For this strategy to work we enlarge the usually considered
class of holomorphic functions M by allowing for M to be unbounded at ∞, so that
M is then a generalised material law; see the next section for the precise definition.
The G-compactness statement will be obtained within this bigger class.
The strategy of proof is based on the proof of a similar result for so-called Friedrichs

systems in a Hilbert space setting, see [2,3]. These results are conveniently formulated
for predominantly static partial differential equations. The abstract nature of the result
in [2], however, also allows for time-dependence.
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Finally, themain contribution of the present article,G-compactness for evolutionary
equations, reads as follows; recall ρ ≥ ν > 0 (see also Theorem 3.3).

Theorem 1.2. Let (Mn)n be a locally bounded sequence of generalised material laws
all satisfying (1)and let A be skew-selfadjoint. Then there exist a subsequence (Mπ(n))n

and a generalised material law M satisfying (1) such that, in the weak operator
topology,

(∂t Mπ(n)(∂t ) + A)
−1 → (∂t M(∂t ) + A)

−1;
that is, (Mπ(n))n G-converges to M.

Note that any bounded sequence (Mn)n of material laws is also a locally bounded
sequence of generalised material laws (see Sect. 2) so that Theorem 1.2 applies to all
the cases discussed in the literature so far.
We briefly comment on the consequences of the removal of the additional condi-

tions on A and (Mn)n that were previously used in the literature. To start off with, we
generalise all G-compactness statements available for evolutionary equation simulta-
neously. The very technical proof of a condition similar to (1) for the limit material
law in [22] can be omitted and the present result can be used instead. The involved
conditions for A can also be lifted in this reference. Even in the case of A satisfying
condition (2), the material laws are not required to a priori converge in the so-called
parametrised Schur topology (see [1] for a corresponding definition) in order to apply
a corollary of one of the main results in [1]. In fact, a combination of the results pre-
sented here and [1] even implies convergence of the material laws in the parametrised
Schur topology, if they G-converged in the first place.

For applications, the removal of conditions on A implies that the main theorem of
the present contribution now applies similarly to all open subsets of Rd as underlying
spatial domain and no regularity conditions are needed anymore. Moreover, we shall
see that it suffices to consider time-independent(!) problems to deduce G-convergence
for time-dependent problems on arbitrary underlying spatial domains. The missing
structural assumptions on (Mn)n now immediately yield G-compactness statements
also for highly oscillatory mixed type equations for high-dimensional equations.
In passing of the proof of G-compactness, we also provide a criterion for G-

convergence, which is the second main contribution of the manuscript at hand. The
result can be shortened to the following (see also Theorem 3.17).

Theorem 1.3. Let (Mn)n be a locally bounded sequence of generalised material laws
all satisfying (1). Then the following conditions are equivalent:

(i) There exists a generalised material law M with (Mn)n G-converging to M.
(ii) For all sufficiently large μ > 0 and all ψ ∈ H, the sequence (φn)n in dom(A)

given by

μMn(μ)φn + Aφn = ψ

is weakly convergent.
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We sketch out the plan of the paper. The next section summarises the functional
analytic framework of evolutionary equations and provides the precise definitions and
notions needed in the following. In Sect. 3 we state and prove the main results of the
paper and in Sect. 4 we apply our finding to transport equations with highly oscillatory
coefficients. We conclude with Sect. 5 adding some closing remarks.

2. Preliminaries–evolutionary equations

This section is devoted to briefly summarise the notion of evolutionary equations.
For the details, we shall frequently refer to the recent monograph [10].
Throughout this section, let H be a Hilbert space. Let ρ ∈ R. Then we define

L2,ρ(R; H), an exponentially weighted H -valued L2-space, as follows

L2,ρ(R; H):={ f ∈ L1,loc(R; H);
∫
R

‖ f (s)‖2He−2ρs ds < ∞}

with the obvious norm and scalar product. It is not difficult to see that L2,ρ(R; H)

actually is a Hilbert space, see [10, Proposition 3.1.4 and p. 42].
We define

∂t : H1
ρ (R; H) ⊆ L2,ρ(R; H) → L2,ρ(R; H), f

∂t→ f ′

the (weak) derivative with maximal domain

H1
ρ (R; H):={ f ∈ L2,ρ(R; H); f ′ ∈ L2,ρ(R; H)}.

For convenience, we shall often refrain from writing an additional ρ in the index of
∂t as the particular value of ρ is mostly clear from the context (or, if any fixed ρ will
do). If the particuar value of ρ is of some concern, we shall however also write ∂t,ρ .
In any case, for all ρ �= 0, ∂t,ρ is continuously invertible; for ρ > 0, we have

∂−1
t f (s) =

∫ s

−∞
f (r) dr ( f ∈ L2,ρ(R; H)),

see [10, p. 43 and Proposition 4.1.1].
The so-defined derivative operator has an explicit spectral representation, which can

be found using the Fourier–Laplace transformation Lρ : L2,ρ(R; H) → L2(R; H).
This operator is the unitary extension of the mapping assigning to each continuous
function with compact support f ∈ Cc(R; H) its Fourier–Laplace transform Lρ f
given by

Lρ f (t) = 1√
2π

∫
R

e−(it+ρ)s f (s) ds;

see also [10, Remark 5.2.1]. Introducing

m : dom(m) ⊆ L2(R; H) → L2(R; H), f
m→ (t → t f (t))
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with maximal domain, we find

∂t = L∗
ρ(i m + ρ)Lρ

for allρ ∈ R; see [10, Theorem5.2.3]. The latter spectral representation yields ameans
to define operator-valued functions of ∂t . As it was highlighted in the introduction,
already autonomous and causal operators dictate the consideration of holomorphic
(operator-valued) functions of ∂t .

We say that M is a generalised material law, if M : dom(M) ⊆ C → L(H) is
holomorphic and there exists ρ ∈ R such that CRe>ρ ⊆ dom(M). The infimum over
all such ρ ∈ R is called abscissa of holomorphicity (of M) and denoted by sh(M). A
generalised material law is calledmaterial law, if, in addition, there exists ρ > sh(M)

such that

‖M‖ρ,∞:= sup
z∈CRe>ρ

‖M(z)‖ < ∞,

i.e. if M is bounded on some CRe>ρ . The infimum over all ρ with the said properties
defines the abscissa of boundedness (of M) and will be denoted by sb(M), see [10,
Section 5.3] for details. For a generalised material law M , we define the associated
material law operator M(∂t ) for ρ > sh(M) via

M(∂t,ρ) = L∗
ρ M(i m + ρ)Lρ,

where M(i m+ρ) defines a (potentially unbounded) multiplication operator endowed
with maximal domain uniquely determined by

(
M(i m + ρ)φ

)
(ξ):=M(iξ + ρ)φ(ξ) ((a.e.) ξ ∈ R, φ ∈ Cc(R; H)).

For a bounded material law M , the material law operator M(∂t ) is independent of the
particular choice of ρ in the sense that

L∗
ρ M(i m + ρ)Lρ f = L∗

μM(i m + μ)Lμ f

as long as f ∈ L2,ρ(R; H)∩ L2,μ(R; H) for ρ,μ > sb(M), see [10, Theorem 5.3.6].
For later purposes we introduce the spaces

Mg(H, ν) := {M generalised material law; ν ≥ sh(M)}, and

M(H, ν) := {M material law; ν ≥ sb(M)}.
Let us note that then the above introduced mapping ‖ · ‖ν,∞ represents a norm on
M(H, ν). The fundamental theorem forming the foundation of the theory of evolu-
tionary equations is Picard’s theorem, which we will provide next in a slightly more
general form. For this we remark that for a closed and densely defined linear operator A
on H , we denote its canonical extension to L2,ρ(R; H) by the same name; the domain
is then L2,ρ(R; dom(A)). Note that the canonical extension inherits the properties of
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being closed and densely defined. Moreover, if A is skew-selfadjoint on H , then so is
its extension; see [10, Exercise 6.1]. A bounded linear operator S on L2,ρ(R; H) is
called causal, if for all a ∈ R and f ∈ L2,ρ(R; H) we have

1(−∞,a]S1(−∞,a] f = 1(−∞,a]S f.

Theorem 2.1. (Picard’s Theorem, see e.g. [10, Theorem 6.2.1 and Remark 6.3.3]) Let
M be a generalised material law and assume there exist μ ≥ sh(M) and α > 0 such
that

Re〈φ, zM(z)φ〉 ≥ α‖φ‖2 (φ ∈ H, z ∈ CRe>μ).

Let A : dom(A) ⊆ H → H be skew-selfadjoint.
Then for ρ > μ the operator B:=∂t M(∂t ) + A with domain dom(∂t M(∂t )) ∩

L2,ρ(R; dom(A)) is closable in L2,ρ(R; H). The closure of B is continuously invert-

ible, S:=B
−1

with ‖S‖ ≤ 1/α and S is causal.

Remark 2.2. In Picard’s Theorem, by composition, the mapping

N : z → (zM(z) + A)−1

is L(H)-valued, bounded onCRe≥μ, and holomorphic onCRe>ρ for all ρ > μ. Hence,
N itself is a material law with sb(N ) ≤ μ. It is part of the proof of Picard’s Theorem
in [10] to show that actually

S = N (∂t )

holds. For this note that the proof provided in [10] does not require M to be bounded
(cf. [10, Remark 6.3.3]).

For later purposes, we also recall a representation theorem for causal and au-
tonomous operators on L2,ρ(R; H). A bounded linear operator N on L2,ρ(R; H)

is called autonomous, if for h ∈ R, τhN = N τh , where τh f (t):= f (t + h).

Theorem 2.3. ([10, Theorem 8.2.1], see also [5]) Let ν ∈ R and N ∈ L(L2,ν(R; H))

autonomous and causal. Then for all ρ > ν, N |L2,ν∩L2,ρ admits a unique continuous
extension Nρ to L2,ρ(R; H) and there exists a unique holomorphic and bounded
N : CRe>ν → L(H) such that for all ρ > ν

Nρ = N (∂t,ρ).

Remark 2.4. Note that the converse of Theorem 2.3 is also true: Every holomorphic
and bounded N : CRe>ν → L(H) defines via N (∂t,ρ) a causal and autonomous opera-
tor on L2,ρ(R; H), the restriction ofwhich to L2,ρ∩L2,ν admits a (unique) continuous,
causal and autonomous extension to L2,ν(R; H). For the proof note that the operator
in question being autonomous is easy by observing that τh is multiplication by an
exponential in the Fourier–Laplace transformed side. Causality follows with the help
of [10, Theorem 5.3.6].

Having had set the stage of evolutionary equations, we may now move on to the
main body of the present manuscript.
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3. A G-compactness theorem for evolutionary equations

Throughout this section, we let H be a separable Hilbert space. Furthermore,
throughout this section we let A : dom(A) ⊆ H → H be a skew-selfadjoint op-
erator.

Remark 3.1. Quickly recall that since H is separable, so is H × H . Thus, as a metric
subspace A (considered as a relation) is also separable. Finally, as the latter is unitarily
equivalent to dom(A) endowed with the graph norm, dom(A) is separable as well.

Recalling the setsM(H, ν) andMg(H, ν), we define the notion of G-convergence
next. For this, we call a sequence (Mn)n inMg(H, ν) locally bounded, if for all K ⊆
CRe>ν compact, supz∈K ,n∈N ‖Mn(z)‖ < ∞. Furthermore, it is called bounded if the
same holds uniformly in z ∈ CRe>ν , i.e. supz∈CRe>ν,n∈N ‖Mn(z)‖ = supn∈N ‖Mn‖ν,∞
< ∞. Of course, we then have Mn ∈ M(H, ν), n ∈ N. For α > 0 we introduce the
sets

M(g)(H,ν,α):=
{

M ∈M(g)(H,ν); Re〈zM(z)φ, φ〉≥α‖φ‖2 (z ∈CRe>ν, φ ∈ H)
}
.

A locally bounded sequence of generalised material laws (Mn)n from Mg(H, ν, α)

is said to G-converge (with respect to A) to some M ∈ Mg(H, ν, α), if

∂t Mn(∂t ) + A
−1 → ∂t M(∂t ) + A

−1

in the weak operator topology of L(L2,ρ(R; H)) for all ρ > ν.

Remark 3.2. The results gathered in [25] show that whether or not any sequence
of material laws G-converges to some limit is heavily dependent on the considered
operator A. In fact, it can also happen that the material laws do G-converge but to a
limit, which depends on properties of A and can differ for different A. As we have
fixed the operator A in this section we do not mention this dependence in the following
to avoid unnecessary clutter in the notation.

Our main result now reads as follows (also cp. Theorem 1.2).

Theorem 3.3. Letν ∈ R, α > 0. Then, every locally bounded sequence inMg(H, ν, α)

has a G-convergent subsequence with limit in Mg(H, ν, α).

Remark 3.4. The results available in the literature (see again [25] for a good overview)
state the existenceofG-convergent subsequences for bounded sequences inM(H, ν, α)

(and require additional information about A). On the other hand, the limit in this case
will also be bounded. Thus, compared to the literature the assumptions here are weaker
in that there is no additional condition on A and that the material laws are allowed
to diverge at infinity. The price to pay is that, even when starting from a bounded
sequence of material laws, one cannot conclude boundedness of the limit generalised
material law here. A more precise description of the results we are able to get under
additional assumptions is given in the following corollary (see also Remark 3.18).
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Corollary 3.5. Let ν ∈ R, α > 0. If a bounded sequence (Mn)n in M(H, ν, α)

G-converges to M ∈ Mg(H, ν, α), then

‖M(z)‖ ≤ supn∈N ‖Mn‖2ν,∞
α

|z| (z ∈ CRe>ν). (3)

Furthermore, if, in addition for some c > 0,

‖Mn(z)‖ ≤ c√|z| (z ∈ CRe>ν), (4)

then M ∈ M(H, ν, α), i.e. ‖M‖ν,∞ ≤ c2
α

.

Remark 3.6. One can see that for bounded material laws we do not have a satisfactory
result. Indeed, at this moment for bounded sequences inM(H, ν, α)we are not able to
either prove or disprove that a G-limit is a material law, i.e. contained inM(H, ν, α)

(note the linear growth appearing in (3)). On the other hand, the additional growth
assumption (4) of the corollary is too restrictive (e.g. an important class of constant (in
z) material laws is not covered, and so neither of two examples presented in Sect. 4).
Since we do not have any evidence that our result given in the corollary is optimal,
an open question of minimal requirements needed to ensure boundedness of the G-
limits is left to be addressed (see also Remark 3.18). Our conjecture is that solely
boundedness of material laws in M(H, ν, α) should not be sufficient, and we hope
that the results of the corollary can help in constructing a suitable counterexample.

The proof of Theorem 3.3 is based on the interconnected application of several
compactness statements. To start with, we provide one of the main ingredients next,
which is a result originally proved for (partial differential type) Friedrichs systems (in
real Hilbert spaces) from [3], and recently generalised in [2]. Since we are interested
in A skew-selfadjoint only, the condition (K1) in [3] is trivially satisfied and, thus,
also allows for some simplifications in the proof. As the result is already contained in
[2, Corollary 2.11] and requires only some minor modifications of the corresponding
result in [3], we only sketch its proof below. To present the respective result we
introduce, for 0 < α < β,

F(α, β, H) :=
{

C ∈ L(H);Re〈φ, Cφ〉≥α‖φ‖2, 1
β

‖Cφ‖2≤Re〈φ, Cφ〉 (φ∈ H)
}
.

Remark 3.7. Let C ∈ F(α, β, H). Then the operator C + A is continuously invertible
with (C + A)−1 ∈ L(H) and (C + A)−1 ∈ L(H, dom(A)) with ‖(C + A)−1‖L(H) ≤
1/α and ‖(C + A)−1‖L(H,dom(A)) ≤ 1+α+β

α
, see also [4, Lemma 2.12].

Theorem 3.8. (see also [2, Theorem 2.10 and Corollary 2.11]) Let A be a skew-
selfadjoint operator on H and (Cn)n in F(α, β, H). If

(Cn + A)−1 → B
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in the weak operator topology of L(H, dom(A)), then there exists C ∈ F(α, β, H)

such that

B = (C + A)−1.

Moreover, for all ψ ∈ H and φn :=(Cn + A)−1ψ we obtain

Re〈Cnφn, φn〉 → Re〈Cφ, φ〉 and Cnφn → Cφ weakly,

where φ:=(C + A)−1ψ .

Remark 3.9. We recall that bounded sets of L(H1, H2) for separable Hilbert spaces
H1 and H2 are sequentially compact under the weak operator topology. In fact, either
one proves this fact by a Banach–Alaoglu type argument and a standard proof for
metrisability or one simply resorts to a diagonal procedure.

Remark 3.10. The assumption on
(
(Cn+A)−1

)
n to be convergent in theweak operator

topology of L(H, dom(A)) is amere convenience for the subsequent proof. A formally
stronger statement would be an analogous result only assuming weak operator topol-
ogy convergence in L(H). However, this implies the same for L(H, dom(A)). Indeed,(
(Cn + A)−1

)
n is uniformly bounded in L(H, dom(A)) by Remark 3.7. Then we may

choose by Remark 3.9 a subsequence converging in the weak operator topology, by
continuous embedding dom(A) ↪→ H , it follows that the limits in L(H, dom(A)) and
L(H) coincide. A subsequence principle concludes convergence of

(
(Cn + A)−1

)
n

in the weak operator topology of L(H, dom(A)) without the need to choose subse-
quences; see also Remarks 3.1 and 3.9.

Proof of Theorem 3.8. We define K ∈ L(H) via Kψ :=ψ − ABψ for all ψ ∈ H . Let
ψ ∈ H and define φn :=(Cn + A)−1ψ . One has Aφn → ABψ weakly in H and, using
the equations satisfied by ψ , Cnφn → Kψ weakly in H . Skew-selfadjointness of A,
weak convergence of (Cn + A)−1 and the equations for ψ yield Re〈Cnφn, φn〉 →
Re〈Kψ, Bψ〉. Then, the second inequality in the definition of F(α, β, H) used for
Cn helps to show that B is one-to-one. Next, ran(B) ⊆ H dense is shown by taking
ψ ∈ ran(B)⊥ and proving ψ = 0 by injectivity of B and the first inequality in the
definition of F(α, β, H). Finally, defining C : ran(B) ⊆ H → H by C(Bψ):=Kψ ,
we infer that C is densely defined and well-defined as B is one-to-one with dense
range. It is then not difficult to confirm C ∈ F(α, β, H). �
Remark 3.11. Theorem 3.8 is a compactness theorem. Indeed, due to the separability
of H , from an arbitrary sequence (Cn)n a subsequence can be chosen such that

(
(Cn +

A)−1
)

n converges in the weak operator topology of L(H, dom(A)); see Remark 3.9
and for the separability of dom(A) see Remark 3.1.

Remark 3.12. The operator constructed in Theorem 3.8 is uniquely determined. In-
deed, let C1, C2 ∈ F(α, β, H) be such that (C1 + A)−1 = (C2 + A)−1. The latter is
equivalent to C1 + A = C2 + A on dom(A). Hence, C1 = C2 on dom(A). Since A
is skew-selfadjoint, it is densely defined and as C1 and C2 are both continuous linear
operators, C1 = C2 on H .
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Next, we recall a compactness result for operator-valued holomorphic functions
originally from [17]. For this, we define for ω ⊆ C open and (separable) Hilbert
spaces H1, H2

H(ω; L(H1, H2)):={M : ω → L(H1, H2); M holomorphic}.
In correspondence toSect. 2, a subsetB ⊆ H(ω; L(H1, H2)) is called locallybounded,
if for all K ⊆ ω compact supM∈B,z∈K ‖M(z)‖ < ∞; a sequence (Mn)n is locally
bounded, if {Mn; n ∈ N} is. We say that a sequence (Mn)n inH(ω; L(H1, H2)) con-
verges to some M ∈ H(ω; L(H1, H2)) in the compact openweak operator topology
(in co-τw for short), if for all φ ∈ H2, ψ ∈ H1 we have

〈φ, Mn(z)ψ〉 → 〈φ, M(z)ψ〉
uniformly in z on compact subsets of ω. Since the asserted convergence is a conver-
gence of scalar-valued holomorphic functions, Vitali’s Theorem (see [11, Theorem
6.2.8]) immediately applies and we obtain the following result:

Proposition 3.13. Let ω ⊆ C be open, and H1, H2 be Hilbert spaces. Let (Mn)n be a
locally bounded sequence in H(ω; L(H1, H2)) and let M ∈ H(ω; L(H1, H2)). Then
the following conditions are equivalent:

(i) Mn → M in the compact open weak operator topology;
(ii) for all z ∈ ω, Mn(z) → M(z) in the weak operator topology;

and, if ω is connected, (i) and (ii) are further equivalent to

(iii) there exists a sequence (zk)k in ω with an accumulation point in ω such that
Mn(zk) → M(zk) in the weak operator topology for all k ∈ N.

The remarkable property of convergence in the compact open weak operator topol-
ogy is a Montel type result, that is, the (sequential) compactness of locally bounded
sets. An analogous result also holds for non-separable Hilbert spaces; we shall how-
ever stick to the separable case in order to avoid too much additional notions from
topology.

Theorem 3.14. ([18, Theorem 3.4] and [17]; see also [1, Corollary 4.7]) Let H1, H2

be separable Hilbert spaces, ω ⊆ C open. Let (Mn)n be a locally bounded sequence
in H(ω; L(H1, H2)). Then (Mn)n contains a co-τw-converging subsequence.

Corollary 3.15. Let ω ⊆ C open, H1, H2 separable Hilbert spaces. Let (Mn)n be a
locally bounded sequence in H(ω; L(H1, H2)) and M : ω → L(H1, H2).

If, for all z ∈ ω, Mn(z) → M(z) in the weak operator topology, then M is holo-
morphic.

Proof. The claim follows with a subsequence principle using the compactness state-
ment in Theorem 3.14 together with Proposition 3.13. �
A last preparatory result for the second main theorem of this section is the fol-

lowing continuity statement, which essentially follows from Lebesgue’s dominated
convergence theorem in the Fourier–Laplace transformed side.
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Theorem 3.16. ([18, Lemma 3.5]) Let ν ∈ R and (Mn)n be a bounded sequence in

M(H, ν) and M ∈ M(H, ν). If Mn
co-τw→ M, then, ‖M(z)‖ ≤ lim infn→∞ ‖Mn(z)‖

for all z ∈ CRe>ν and, for all ρ > ν, Mn(∂t ) → M(∂t ) in the weak operator topology
of L(L2,ρ(R; H)).

The decisive step for the proof of Theorem 3.3 is the following characterisation
result, which also proves useful for applications; cp. Theorem 1.3.

Theorem 3.17. Let ν > 0, α > 0 and (Mn)n be a locally bounded sequence in
Mg(H, ν, α). Then the following conditions are equivalent:

(i) There exists M ∈ Mg(H, ν, α) such that (Mn)n G-converges to M with respect
to A.

(ii) For all ρ > ν, there exists Tρ ∈ L(L2,ρ(R; H)) such that ∂t Mn(∂t ) + A
−1 →

Tρ in the weak operator topology of L(L2,ρ(R; H)).
(iii) For all ρ > ν and ψ ∈ H, the sequence (φn)n given by

(ρMn(ρ) + A)φn = ψ

is weakly convergent.

If either of the above is satisfied, M from (i) is uniquely determined via

(ρMn(ρ) + A)−1 → (ρM(ρ) + A)−1

for all ρ > ν in the weak operator topology of L(H).

Proof.

(i)⇒(ii): The claim follows by setting Tρ :=∂t,ρ M(∂t,ρ) + A
−1

for ρ > ν.
(ii)⇒(iii): By Picard’s Theorem (and its proof cp. Remark 2.2), (Nn)n given by

Nn : z → (zMn(z) + A)−1

defines a bounded sequence in M(H, ν) and we have ∂t Mn(∂t ) + A
−1 =

Nn(∂t ) on L2,ρ(R; H) for ρ > ν. By Remark 2.4, we obtain that Nn(∂t ) is
autonomous and causal. As a limit in the weak operator topology, it is not
difficult to see that Tρ is, thus, also autonomous and causal for all ρ > ν.
Hence, we find a material law T : CRe>ν → L(H) such that Tρ = T (∂t,ρ)

for all ρ > ν. By Theorem 3.14 we find a subsequence of (Nn)n (we shall
re-use the index n for this subsequence) and T̃ ∈ H(CRe>ν; L(H)) with
‖T̃ (z)‖ ≤ 1/α for all z ∈ CRe>ν such that Nn → T̃ in the compact open
weak operator topology. Theorem 3.16 yields that Nn(∂t,ρ) → T̃ (∂t,ρ)

in the weak operator topology. By uniqueness of limits in the weak oper-
ator topology, we obtain that T (∂t,ρ) = T̃ (∂t,ρ) and, by the uniqueness
statement in the representation Theorem 2.3, we deduce that T = T̃ as
holomorphic mappings. A subsequence principle now leads to the whole
sequence (Nn)n converging to T in the compact open weak operator topol-
ogy. Proposition 3.13 ((i)⇒(ii)), now implies (iii).
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(iii)⇒(i) By Theorem 3.14, we find (Nπ(n))n , a subsequence of Nn : z → (zMn(z)+
A)−1, in H(CRe>ν; L(H)) converging in the compact open weak opera-
tor topology. Denote its limit by N . Next, we uniquely identify this limit
to deduce that Nn itself converges to N . For this, note that by connected-
ness of CRe>ν and Proposition 3.13, N (ρ)ψ is the weak limit of (φπ(n))n

given by ρMπ(n)(ρ)φπ(n) + Aφπ(n) = ψ . Since N is holomorphic, it is
uniquely determined by its values on (ν,∞) by the identity theorem and
the connectedness of CRe>ν . As the whole sequence (φn)n converges to
N (ρ)ψ , a subsequence principle concludes that Nn indeed converges to N
in the compact open weak operator topology. (The details are: assume that
(Nn)n contains a subsequence not converging to N . Then we find a further
subsequence converging to some Ñ . By what we have seen above, N and
Ñ coincide on (ν,∞); which, by the identity theorem implies N = Ñ ,
which is a contradiction.) Applying Theorem 3.16 we get that, for any

ρ > ν, ∂t Mn(∂t ) + A
−1 = Nn(∂t ) converges to N (∂t ) in the weak oper-

ator topology of L(L2,ρ(R; H)). Thus, it is left to prove that N (z) equals
(zM(z) + A)−1 for some M ∈ Mg(H, ν, α).

Let us take an arbitrary z ∈ CRe>ν . Again resorting to Propostion 3.13, we deduce
that

Ln(z)−1 := (zMn(z) + A)−1 → N (z)

in the weak operator topology of L(H). Remark 3.10 implies that (Ln(z)−1)n in fact
converges in the weak operator topology of L(H, dom(A)). Next, defining

β(z) := |z|2 sup
n∈N

‖Mn(z)‖2 < ∞,

we compute (see also [10, Proposition 6.2.3 (b)])

Re〈ψ, (zMn(z))−1ψ〉 ≥ α

‖zMn(z)‖2 ‖ψ‖2 ≥ α

β(z)
‖ψ‖2 (ψ ∈ H),

where we have used that Re〈φ, zMn(z)φ〉 ≥ α‖φ‖2, which holds since Mn ∈ Mg(H,

ν, α). Thus, substituting φ = (zMn(z))−1ψ in the latter inequality we obtain

zMn(z) ∈ F(α, β(z)/α; H)

for all n ∈ N. In fact, by the arbitrariness of z, the same holds for all z ∈ CRe>ν .
Hence, by Theorem 3.8, for all z ∈ CRe>ν there exists M(z) ∈ L(H) such that

zM(z) ∈ F(α, β(z)/α; H) and

Ln(z)−1 = (zMn(z) + A)−1 → N (z) = (zM(z) + A)−1

in the weak operator topology of L(H, dom(A)) for all z ∈ CRe>ν . Note that zM(z) ∈
F(α, β(z)/α; H) implies ‖zM(z)‖ ≤ β(z)/α, i.e.

‖M(z)‖ ≤ β(z)

|z|α (z ∈ CRe>ν) . (5)
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Hence, M : CRe>ν → L(H) is locally bounded. Next, we show that M is holomor-
phic. For this, recall that since z → Ln(z)−1 is bounded and holomorphic (see Remark
2.2), we deduce with Corollary 3.15 that N is holomorphic. As a consequence (since
inversion preserves holomorphicity), z → zM(z) + A ∈ L(dom(A), H) is holomor-
phic. Further on, z → zM(z) = zM(z) + A − A is scalarly holomorphic in the sense
that z → 〈φ, zM(z)ψ〉 is holomorphic for all φ ∈ H and ψ ∈ dom(A). By the
local boundedness of M , this implies holomorphicity with values in L(H) as dom(A)

is dense in H , by a variant of Dunford’s theorem, see, e.g., [10, Exercise 5.3 (v)].
Therefore, M ∈ Mg(H, ν, α).

Finally, for the last statement of the theorem, we have shown that

(ρMn(ρ) + A)−1 → (ρM(ρ) + A)−1 (ρ > ν)

in the weak operator topology. By Remark 3.12, ρM(ρ) ∈ L(H) is uniquely deter-
mined by this convergence. By the identity theorem, this is enough to uniquely identify
M ∈ M(H, ν). �

Wefinally are in the position to prove the compactness statement from the beginning
of this section.

Proof of Theorem 3.3. By definition, Nn : z → (zMn(z) + A)−1 is a bounded se-
quence of material laws. By Theorem 3.14, we choose a weakly convergent subse-
quence in the compact open weak operator topology. Then, the assertion follows from
Theorem 3.17. �

Proof of Corollary 3.5. From the proof of Theorem 3.17 (see (5)) the limit operator
M , for any z ∈ CRe>ν , satisfies ‖M(z)‖ ≤ |z|

α
supn∈N ‖Mn(z)‖2. Thus, applying

additional boundedness assumption on (Mn)n the claim follows. �

Remark 3.18. Wehave commented inRemark 3.6 that the resultwe have for a bounded
sequence of material laws (see Corollary 3.5) is not satisfactory from the point of view
of possible applications. One can remark the same from the theoretical point of view
since the limit operator does not belong (i.e. we are not able to prove) to the class
we started with, as we have with a locally bounded sequences of generalised material
laws (see Theorem 3.3). In this remark we will address a refinement of the second
part of Corollary 3.5 for which a family contained inM(H, ν, α) that is closed under
G-convergence will be given.
For this purpose we introduce the set (here we take ν, β, α > 0)M(H, ν, α, β) of

all M ∈ M(H, ν, α) satisfying

Re〈φ, zM(z)φ〉 ≥ 1

β|z| ‖zM(z)φ‖2 (z ∈ CRe>ν, φ ∈ H). (6)

Note that this set is well-defined since |z| > ν > 0. Moreover, applying the Cauchy–
Schwarz inequality to both inequalities defining M(H, ν, α, β) we get

β ≥ ‖M(z)‖ ≥ α

|z| (z ∈ CRe>ν).
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Thus, the information that M is bounded given inM(H, ν) is redundant, as it is also
encoded in (6). Additionally, in order to have that conditions are compatible, i.e. that
M(H, ν, α, β) is not empty, it should be satisfied βν ≥ α.
If in Theorem 3.17 we start with Mn ∈ M(H, ν, α, β), then the statement of the

theorem remains true, with M ∈ M(H, ν, α, β), and consequently for the compact-
ness: every sequence in M(H, ν, α, β) has a G-convergent subsequence with the
limit in M(H, ν, α, β). Indeed, this is an easy consequence of the fact that M be-
longs to M(H, ν, α, β) if and only if for any z ∈ CRe>ν the operator zM(z) belongs
to F(α, β|z|, H). Since we are interested in the limit of

(
(zMn(z) + A)−1

)
n in the

weak operator topology of L(H, dom(A)), under which is F(α, β|z|, H) closed (see
Theorem 3.8), the statement easily follows.
Let us note that any M ∈ M(H, ν, α) satisfying (4) is contained inM(H, ν, α, c2/α).

Thus, the result presented here is indeed a refinement of the second part of Corol-
lary 3.5, i.e. here we have the most general setting in which the limit operator is a
bounded material law. However, condition (6) still eliminates many interesting exam-
ples (e.g. material laws constant in z are still not covered).

We provide some examples illustrating the theory just developed.

4. Applications

In this section,we focus on some applications. It has been found thatG-compactness
results are particularly interesting in cases, where the operator containing the spatial
derivatives lack compactness of the resolvent, see [18,20] in the context of evolution-
ary equations, but also see [14–16] and the references given there. We particularly
refer to the introductory part of [14], where among other things the intricacies of
homogenisation of transport equations are highlighted.

4.1. A transport equation with longitudinal oscillations

Here we consider a transport type equation with oscillations in the same direction
as the transport occurs. Let a ∈ L∞(R) with a ≥ α for some α > 0 and consider
finding u ∈ L2,ρ(R; L2(R)) (for some ρ > 0) such that for f ∈ Cc(R×R) we have

∂t u(t, x) + a(x)∂x u(t, x) = a(x) f (t, x) ((t, x) ∈ R × R).

A convenient setting can be found within the framework of evolutionary equations,
where ∂x = A : H1(R) ⊆ L2(R) → L2(R) is the implementation of the spatial
derivative and readily confirmed to be skew-selfadjoint. Multiplying by a(x)−1 from
the left, we have

(∂t a
−1 + ∂x )u = f.

Then it is not difficult to see that Picard’s Theorem applies to A = ∂x and M(z) = a−1

for all z ∈ C. Hence, M is a material law with sb(M) = −∞.
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Next, consider a bounded sequence (an)n in L∞(R) with an ≥ α for some α > 0
independently of n. Assume that (a−1

n ) converges to some b in σ(L∞, L1), the weak-
∗-topology of L∞(R) (apply [10, Proposition 13.2.1(c)] to obtain convergence of the
respective multiplication operators in the weak operator topology). To apply Theorem
3.17, it suffices to consider, for ρ > 0, the equation

(ρa−1
n + ∂x )φn = ψ

for some ψ ∈ L2(R). It is not difficult to see that

φn(x) =
∫ x

−∞
e−ρ

∫ x
ξ a−1

n (s) ds
ψ(ξ) dξ.

By Lebesgue’s dominated convergence theorem, the pointwise limit of (φn)n is the
weak limit given by

φ(x) =
∫ x

−∞
e−ρ

∫ x
ξ b(s) ds

ψ(ξ) dξ.

The latter is the solution of the equation

(ρb + ∂x )φ = ψ.

Hence, Mn : z → a−1
n G-converges to M : z → b, by Theorem 3.17. Note that M is a

(standard) material law, i.e. bounded, despite the fact that none of our results guarantee
that.

Remark 4.1. (a) It is not difficult to see that one can also consider ∂t un(t, x) +
an(x)∂x u(t, x) = f (t, x) instead of the above. A similar computation (albeit
Theorem 3.17 is not directly applicable) confirms that (un)n weakly converges
to the unique solution of

∂t u(t, x) + b(x)−1∂x u(t, x) = f (t, x).

(b) Note that the formulation presented here does not require fixing an initial value.
In fact, the exponential weight in the time-direction somewhat asks implicitly
for homogeneous initial values at −∞ (hence the formula for ∂−1

t,ρ for ρ > 0).

4.2. A transport equation with orthogonal oscillations

This application concerns an equation more related to the one hinted at in [14] (see
also [16, Ch. 24]). We consider for f ∈ Cc(R×R×R) and a ∈ L∞(R) an equation
of the form

∂t u(t, x, y) + a(y)u(t, x, y) + ∂x u(t, x, y) = f (t, x, y).

Here, we assume that ρ > (‖a‖∞ + 1). Then, Picard’s Theorem applies with

∂x = A : H1(R; L2(R)) ⊆ L2(R; L2(R)) → L2(R; L2(R))
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(easily seen to be skew-selfadjoint) and M(z):=1 + 1
z a.

Now, we consider a bounded sequence (an)n in L∞(R). Then (Mn)n is a bounded
sequence inM(L2(R×R), supn ‖an‖∞+1, 1). ByTheorem3.3,wefind a generalised
material law M ∈ Mg(L2(R × R), supn ‖an‖∞ + 1, 1) such that

(∂t + an(y) + ∂x )
−1 → (∂t M(∂t ) + ∂x )

−1

in the weak operator topology of L(L2,ρ(R; L2(R × R))) for ρ > supn ‖an‖∞ + 1.
In the following we shall compute the limit material law, M(∂t ). For this, note that,

by Picard’s theorem, the (closure of the) operator ∂t + ∂x is continuously invertible
in L2,ρ(R; L2(R × R)) with norm bounded by 1/ρ for all ρ > 0. We shall assume
that a subsequence of (an)n (without relabelling) has been chosen in order that, for
all k ∈ N, ak

n → bk ∈ L∞(R) in the weak-∗-topology of L∞(R). It follows that
ak

n → bk in the weak operator topology as multiplication operators in L(L2(R)),
see also [10, Proposition 13.2.1(c)] (by the tensor-product structure, it follows that
ak

n → bk also in the weak operator topology of L(L2,ρ(R; L2(R × R))). We assume
that ρ > 4(supn ‖a‖∞ +1)=:4κ . Thus, we may now compute the limit expression of

(
(∂t + an(y) + ∂x )

−1
)

n

in L(L2,ρ(R; L2(R × R))). We use a similar strategy as exemplified already in [18],
see also the more recent [10, Theorem 13.3.1 and subsequent example]. Defining

un :=(∂t + an(y) + ∂x )
−1

f

as well as S:=(∂t + ∂x )
−1 ∈ L(L2,ρ(R; L2(R × R))). Recall that ‖S‖ ≤ 1/ρ. Fac-

toring out S in the equation for un , we obtain

un = (1 + San)−1S f =
∞∑

k=0

(−San)k S f =
∞∑

k=0

(−S)kak
n S f,

where we used a Neumann series argument. Note that for n ∈ N

∥∥∥
∞∑

k=1

(−S)kak
n

∥∥∥ ≤
∞∑

k=1

(κ

ρ

)k ≤
∞∑

k=1

(1
4

)k = 1

3/4
− 1 = 1

3
. (7)

By dominated convergence (interchanging limits and summation), we may deduce
that (un)n is weakly convergent to u given by

u =
∞∑

k=0

(−S)kbk S f = (1 +
∞∑

k=1

(−S)kbk)S f.

Using a Neumann series argument, which is possible by lower semi-continuity of the
norm under weak operator topology convergence and estimate (7), we obtain

∞∑
�=0

(
−

∞∑
k=1

(−S)kbk

)�

u = S f,
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and, hence,

u − S
∞∑

k=1

(−S)k−1bku − S
∞∑

�=2

(−S)�−1
(

−
∞∑

k=1

(−S)k−1bk

)�

u = S f.

By inspection, it follows that u ∈ ran(S) and, thus,

(∂t + ∂x )u −
∞∑

k=1

(−S)k−1bku −
∞∑

�=2

(−S)�−1
(

−
∞∑

k=1

(−S)k−1bk

)�

u = f.

It follows that

Mn(∂t ) = 1 + ∂−1
t an

G→

1 − ∂−1
t

∞∑
k=1

(−S)k−1bku − ∂−1
t

∞∑
�=2

(−S)�−1
(

−
∞∑

k=1

(−S)k−1bk

)�

.

It is not difficult to see that this limit defines a boundedmaterial law.We emphasise that
we confirmed that both amemory effect and due to the spatial part also a nonlocal effect
after the homogenisation process occur simultaneously. Indeed, since S is the solution
operator of the transport equation in space-time given by the variations of constants
formula (i.e. temporal convolution) of the shift-semigroup (i.e. spatial non-locality),
and since the limit material law contains all iterates of S the non-locality shows up
in both temporal as well as spatial variables. We conclude with a slight subtlety, our
main compactness theorem confirms convergence to a generalised material law for
all ρ > κ; in our derivation however, we needed larger ρ to guarantee existence of
the second Neumann series. This implies that the limit material law can actually be
holomorphically extended to CRe>ρ .

5. Conclusion

We have addressed G-compactness for evolutionary equations without additional
assumptions on the skew-selfadjoint part A. Even though our results also apply to a
wider class of material laws in that it is allowed for them to diverge at ∞, the price
to pay is that the limit generalised material law cannot be shown to be bounded even
though the whole material law sequence we started out with was. We provided two
applications of our results. These examples aswell as the general result itself re-confirm
statements made in [24] that memory effects are due to a lack of compactness in the
equations. However, the spatial operator being non-compact alone does not imply the
occurrence of memory effects, oscillations orthogonal to the occurring derivatives do
trigger nonlocal effects, though. We conclude the manuscript with an open problem,
which so far we did not manage to resolve.

Problem 5.1. Let (Mn)n be a bounded sequence of material laws G-converging to
some M with respect to A (which in turn does not satisfy any compactness condition).
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(a) Prove or disprove that then M is bounded.
(b) Find an easily applicable criterion for (Mn)n, so that M is bounded.
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