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Abstract. The quasilinear Keller–Segel system
{
ut = ∇ · (D(u)∇u) − ∇ · (S(u)∇v),

vt = �v − v + u,

endowed with homogeneous Neumann boundary conditions is considered in a bounded domain � ⊂ R
n ,

n ≥ 3, with smooth boundary for sufficiently regular functions D and S satisfying D > 0 on [0, ∞), S > 0
on (0, ∞) and S(0) = 0. On the one hand, it is shown that if S

D satisfies the subcritical growth condition

S(s)

D(s)
≤ Csα for all s ≥ 1 with some α <

2

n

and C > 0, then for any sufficiently regular initial data there exists a global weak energy solution such
that ess supt>0 ‖u(t)‖L p(�) < ∞ for some p > 2n

n+2 . On the other hand, if S
D satisfies the supercritical

growth condition

S(s)

D(s)
≥ csα for all s ≥ 1 with some α >

2

n

and c > 0, then the nonexistence of a global weak energy solution having the boundedness property stated
above is shown for some initial data in the radial setting. This establishes some criticality of the value α = 2

n
for n ≥ 3, without any additional assumption on the behavior of D(s) as s → ∞, in particular without
requiring any algebraic lower bound for D. When applied to the Keller–Segel system with volume-filling
effect for probability distribution functions of the type Q(s) = exp(−sβ), s ≥ 0, for global solvability the
exponent β = n−2

n is seen to be critical.

1. Introduction

In this work, we consider the quasilinear Keller–Segel system
⎧⎪⎪⎨
⎪⎪⎩

ut = ∇ · (D(u)∇u) − ∇ · (S(u)∇v), x ∈ �, t > 0,
vt = �v − v + u, x ∈ �, t > 0,
D(u) ∂u

∂ν
− S(u) ∂v

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(1.1)
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where � ⊂ R
n , n ≥ 3, is a bounded domain with smooth boundary and outward unit

normal ν on ∂�,
{
D ∈ C2([0,∞)) is such that D > 0 on [0,∞) and
S ∈ C2([0,∞)) satisfies S(0) = 0 and S > 0 on (0,∞),

(1.2)

and where {
u0 ∈ W 1,∞(�) is such that u0 > 0 in � and
v0 ∈ W 1,∞(�) is nonnegative.

(1.3)

Systems of this type are quite often used to model the dynamics of chemotactically
moving biological populationswith density u = u(x, t) that are attracted by a chemical
signal v = v(x, t) which they produce themselves. The analytical study of these
systems was initiated by Keller and Segel in [19]. Particular variants of the quasilinear
system (1.1) are the volume-filling models introduced in [22], which reflect that the
ability of cells to move is decreased in regions with high cell densities as there is less
space available due to the positive cell volume. For more details about the modeling
of Keller–Segel systems, we refer to [30] and the surveys [1,15,16].
Concerning the question whether classical solutions to (1.1) are global and bounded

or blow-up phenomena occur, it is known that the quotient S
D of the chemotactic

sensitivity function S and the diffusion rate D is important. More precisely, assuming
that n ≥ 3 and (1.2) and (1.3) are satisfied, the following results have been established.
If

S(s)

D(s)
≤ Csα for all s ≥ 1 with some α <

2

n
, (1.4)

and C > 0, then any solution to (1.1) is global and bounded, provided that the diffu-
sivity D(s) has an algebraic lower bound as s → ∞ in the sense that

D(s) ≥ cs−p for all s ≥ 1 (1.5)

with some p > 0 and c > 0 (see [18,24] and also [2,7,20,21,23]).
However, if S

D grows faster than s2/n as s → ∞ in the sense that, e.g.,

lim inf
s→∞

s
( S
D

)′
(s)( S

D

)
(s)

>
2

n
or lim

s→∞ s−α S(s)

D(s)
= c0 with some α >

2

n

(1.6)

and c0 > 0, then in the radial setting unbounded solutions to (1.1) exist without any
restriction on the behavior of D as s → ∞ (see [26]); in such cases, only some small-
data solutions are known to exist globally ([12,13]). In addition, for the prototypical
choice D(s) = (s + 1)−p and S(s) = s(s + 1)q−1, s ≥ 0, a regime for the parameters
p, q ∈ R forwhich the blow-up takes place in finite time, and another regime leading to
blow-up in infinite time, have been identified (see [8,9,28]). Various results in a similar
flavor have been obtained for some parabolic–elliptic simplifications ([3,5,6,14,21]).
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Concerning the question whether in case of (1.4) the solution to (1.1) is still global
and bounded if (1.5) is violated, only some partial answers are available in the liter-
ature. If (1.4) and

K1e
−β−s ≤ D(s) ≤ K2e

−β+s for all s ≥ 0

for some K1, K2 > 0 and β− ≥ β+ are fulfilled, then in case of n = 2 and β+ > 0
all solutions to (1.1) are global and bounded, while in case of n ≥ 3 and β+ > 0
the global existence and boundedness has only be shown if the initial mass

∫
�
u0 is

small enough (see [10,11]). In addition, if β− > 0 and there is γ ≤ 0 such that
γ ∈ [(β+ − β−)/2, β+/2) and

S(s)

D(s)
≤ Ceγ s for all s ≥ 0,

i.e. (1.4) is satisfied, only the global existence, but not the boundedness of the classical
solution to (1.1) has been shown in [27].

In view of these results for exponentially decaying D, it seems to be questionable
that in case of n ≥ 3 and (1.4) the global existence and boundedness of any classical
solution to (1.1) are valid without any restriction on the behavior of D for s large.
Hence, it is the purpose of the present work to establish a type of global solvability
for (1.1) which is valid for all initial data as soon as (1.4) holds and which is violated
for some initial data if S

D grows at least like sα with some α > 2
n as s → ∞. We

prove that in fact these results are true for the global weak energy solutions defined in
Definition 2.2 below. To the best of our knowledge these are the first results showing
that α = 2

n is critical in (1.4) for global solvability without any assumption on the
behavior of D for s large and in particular without assuming an algebraic lower
bound for D. By applying our results to the volume-filling model introduced in [22],
we further identify a critical exponent for global solvability in case of exponentially
decreasing probability distribution functions.

Main results.
In order to state our main results, we define the functions

h(s) := S(s)

D(s)
, s ≥ 0, (1.7)

and

G(s) :=
∫ s

1

∫ σ

1

dτdσ

h(τ )
, s > 0, (1.8)

as well as

�(s) :=
∫ s

1

σdσ

h(σ )
, s > 0. (1.9)

If (1.10) and (1.12) hold, our first result establishes the existence of a global weak
energy solution for all initial data without any assumption on the behavior of D for s
large.
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Theorem 1.1. Let n ≥ 3 and � ⊂ R
n be a bounded domain with smooth boundary,

and let D and S be such that besides (1.2) we have

S(s)

D(s)
≤ kSDs

α for all s ≥ 1, (1.10)

and

D(s) ≤ KD for all s ≥ 0 (1.11)

with some kSD > 0, KD > 0 and

α <
2

n
. (1.12)

Then for any choice of (u0, v0) fulfilling (1.3), the problem (1.1) possesses at least
one global weak energy solution in the sense of Definition 2.2 below, which has the
additional properties that

{
u ∈ ⋂

p≥1 L
p
loc(� × [0,∞)) ∩ L2

loc([0,∞);W 1,2(�)) and

v ∈ L2
loc([0,∞);W 2,2(�)),

(1.13)

that

u > 0 and v ≥ 0 a.e. in � × (0,∞), (1.14)

and that

ess sup
t>0

∫
�

u2−α(·, t) < ∞ (1.15)

as well as

ess sup
t>0

∫
�

|∇v(·, t)|q < ∞ for all q ∈
[
1,

n(2 − α)

n + α − 2

)
, (1.16)

Moreover, if � = BR(0) with some R > 0 and

u0 and v0 are radially symmetric with respect to x = 0, (1.17)

then (u, v) even is a radial global weak energy solution of (1.1) according to Defini-
tion 2.2.

Let us remark that the assumption (1.11) of the boundedness of D can be relaxed
(by using some more involved arguments in some of the proofs). However, as we
are focused on functions D decaying fast as s → ∞, (1.11) does not seem to be a
restriction of our result.
If (1.18) instead of (1.10) is satisfied, we establish the nonexistence of a global weak

energy solution satisfying (1.21) for some initial data in the radial setting.
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Theorem 1.2. Let n ≥ 3, R > 0 and � = BR(0) ⊂ R
n, and suppose that D and S

comply with (1.2) and are such that

S(s)

D(s)
≥ KSDs

α for all s ≥ 1, (1.18)

and that the functions � and G defined in (1.9) and (1.8) satisfy

�(s) ≤ n − 2 − μ

n
G(s) + K�G s for all s ≥ 1 (1.19)

with some

α >
2

n
(1.20)

and some μ > 0, KSD > 0 and K�G > 0. Then there exist initial data (u0, v0) such
that (1.3) and (1.17) hold, but that (1.1) does not possess any radial global weak
energy solution (u, v) which is such that

ess sup
t>0

∫
�

u p(·, t) < ∞ (1.21)

for some p > 2n
n+2 .

In view of n ≥ 3, we have 2−α > 2n
n+2 for all α < 2

n . Hence, Theorems 1.1 and 1.2

show that α = 2
n is indeed critical for the existence of global weak energy solutions

to (1.1) satisfying (1.21) for all initial data.
Next we apply these results to concrete choices of D and S with D decaying faster

than algebraically.

Corollary 1.3. Let n ≥ 3 and � ⊂ R
n be a bounded domain with smooth boundary,

and let

D(s) := a(s + 1)−pe−bsβ , S(s) := cs(s + 1)q−1e−dsδ , s ≥ 0, (1.22)

with some constants p, q ∈ R, β > 0, δ ≥ 0, and a, b, c, d > 0.

(i) If either β = δ, b = d and p+ q < 2
n or β = δ and b < d or β < δ is satisfied,

then for any choice of (u0, v0) fulfilling (1.3), the problem (1.1) possesses at
least one global weak energy solution which satisfies in addition (1.13)–(1.16)
as well as (1.21) for some p > 2n

n+2 .

(ii) If either β = δ, b = d and p+ q > 2
n or β = δ and b > d or β > δ is satisfied,

then for � = BR(0) with some R > 0 there exist initial data (u0, v0) such that
(1.3) and (1.17) hold, but that (1.1) does not possess any radial global weak
energy solution (u, v) which satisfies (1.21) for some p > 2n

n+2 .

If the two exponential terms in (1.22) coincide, the exponent p + q = 2
n is critical

for the existence of global weak energy solutions. The same exponent is known to be
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critical in case of β = δ = 0 for the existence of global bounded solutions (see, e.g.,
[18,24,26]).
We further consider the case of Keller–Segel systems with volume-filling effect,

which are particularly relevant in applications and were introduced in [22]. This cor-
responds to the choice

D(s) := Q(s) − sQ′(s), S(s) := sQ(s), s ≥ 0, (1.23)

where Q(s) represents the probability that a cell, which is located at a spatial position
with cell density s, finds space in some neighboring site. In view of the original choice
of Q in [22] such that Q(s) = 0 for all s large, it is favorable to choose Q decaying
fast as s → ∞ in order to reflect that cells can hardly move in presence of large cell
densities. For exponentially decaying Q, we have the following result.

Corollary 1.4. Let n ≥ 3 and � ⊂ R
n be a bounded domain with smooth boundary,

and let D and S satisfy (1.23) with Q(s) := ae−bsβ with some positive constants a, b
and β, i.e.,

D(s) := ae−bsβ (
1 + bβsβ

)
, S(s) := ase−bsβ , s ≥ 0. (1.24)

(i) If β > n−2
n , then for any choice of (u0, v0) fulfilling (1.3), the problem (1.1)

possesses at least one global weak energy solution which satisfies in addition
(1.13)–(1.16) as well as (1.21) for some p > 2n

n+2 .

(ii) If β ∈ (0, n−2
n ), then for � = BR(0) with some R > 0 there exist initial data

(u0, v0) such that (1.3) and (1.17) hold, but that (1.1) does not possess any radial
global weak energy solution (u, v) which satisfies (1.21) for some p > 2n

n+2 .

This shows that for exponentially decreasing Q the decay Q(s) := ae−bsβ with
β = n−2

n is critical in the volume-filling model for the existence of global weak
energy solutions in case of n ≥ 3. The situation is quite different for n = 2, since
there the algebraic decay Q(s) = (1+s)−γ has been shown to be critical for arbitrary
γ > 0 (see [9]).

This paper is structured as follows: In Sect. 2, we give the definition of global weak
energy solutions of (1.1). In particular, these solutions satisfy a slightly different energy
inequality as compared to the energy identity commonly used in related problems. In
Sect. 3, we prove the existence of a global weak energy solution of (1.1) as claimed
in Theorem 1.1. To this end, we use approximate problems for (1.1) depending on
a parameter ε ∈ (0, 1) such that the diffusivity Dε is uniformly positive for fixed ε.
For the global classical solutions to the approximate problem, we prove a series of
estimates which do not depend on ε. In order to establish some of these estimates on
the whole time interval (0,∞), properties of the energy are proved and used. Finally,
we establish the existence of a global weak energy solution to the original problem by
a compactness argument relying on the Aubin–Lions lemma. In Sect. 4, we prove the
nonexistence of a global weak energy solution satisfying (1.21) in the radial setting
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as claimed in Theorem 1.2. Assuming the existence of such a solution, we prove its
convergence to a generalized stationary solution of (1.1) as t → ∞ and use this to
show that the initial energyF(u0, v0) is bounded from below by a constant depending
on the initial mass m = ∫

�
u0. As the existence of initial data with initial energy

smaller than this lower bound is already known, a global weak energy solution having
the claimed properties cannot exist for these initial data.

2. Definition of global weak energy solutions

In order to define global weak energy solutions of (1.1), we start with the following
elementary observation concerning some terms used in Definition 2.2 below.

Lemma 2.1. Assume (1.2), and let

�(s) :=
⎧⎨
⎩

K�

√
S(s)

S(s)+1 , s ∈ [0, 1],√
S(s)

S(s)+1 · h(s)
h(s)+1 , s > 1,

(2.1)

where h is defined in (1.7) and K� := h(1)
h(1)+1 ∈ (0, 1). Then � ∈ C0([0,∞)) with

�(s) > 0 for all s > 0, and we have

�2(s) ≤ S(s) and �(s) ≤ 1 for all s ≥ 0 (2.2)

as well as

�(s)

h(s)
≤ 1 for all s > 1 (2.3)

and

sup
s∈(0,1)

h(s)

�(s)
< ∞. (2.4)

Proof. In view of (1.2) and (1.7), we have h > 0 in (0,∞) and h(0) = 0. Hence, we
immediately obtain (2.2), (2.3), � > 0 in (0,∞), and the continuity of � in view of
the choice of K� . Moreover, the positivity of D in [0, 1] and

h(s)

�(s)
=

√
S(s)(S(s) + 1)

K�D(s)
, s ∈ (0, 1),

imply (2.4). �

Next we define global weak energy solutions of (1.1) with a concept similar to the
one in [29, Definition 4.2]. Let us remark that the dissipation rateD used in the energy
inequality (2.7) slightly differs from that commonly used in related problems (see,
e.g., [26]), as we use � instead of

√
S in (2.9).
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Definition 2.2. Assume (1.2) and let u0 ∈ L1(�) and v0 ∈ W 1,2(�) be nonnegative,
and suppose that

{
u ∈ L1

loc([0,∞);W 1,1(�)) and

v ∈ L1
loc([0,∞);W 1,2(�))

are nonnegative functions such that

D(u) ∈ L1
loc(� × [0,∞)),

that

D(u)∇u and S(u)∇v lie in L1
loc(� × [0,∞);Rn)

and

�(u)

h(u)
∇u ∈ L2

loc(� × [0,∞);Rn),

and that

vt ∈ L2
loc(� × [0,∞)),

and that there exists a null set N� ⊂ (0,∞) such that

v(·, t) ∈ W 1,2(�), u(·, t)v(·, t) ∈ L1(�)

and G(u(·, t)) ∈ L1(�) for all t ∈ (0,∞) \ N�.

Then, (u, v) will be called a global weak energy solution of (1.1) if

−
∫ ∞

0

∫
�

uϕt −
∫

�

u0ϕ(·, 0) = −
∫ ∞

0

∫
�

D(u)∇u · ∇ϕ +
∫ ∞

0

∫
�

S(u)∇v · ∇ϕ

(2.5)

and ∫ ∞

0

∫
�

vtϕ = −
∫ ∞

0

∫
�

∇v · ∇ϕ −
∫ ∞

0

∫
�

vϕ +
∫ ∞

0

∫
�

uϕ (2.6)

for all ϕ ∈ C∞
0 (� × [0,∞)), if ess limt↘0 ‖v(·, t) − v0‖L2(�) = 0, and if

F(u(·, t), v(·, t)) +
∫ t

0
D(s)ds ≤ F(u0, v0) for all t ∈ (0,∞) \ N�, (2.7)

where

F(φ,ψ) := 1

2

∫
�

|∇ψ |2 + 1

2

∫
�

ψ2 −
∫

�

φψ +
∫

�

G(φ)

for φ ∈ L1(�) and ψ ∈ W 1,2(�) such that φ > 0 a.e. in �, (2.8)
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and where

D(t) :=
∫

�

v2t (·, t) +
∫

�

∣∣∣∣�(u(·, t)) ∇u(·, t)
h(u(·, t)) − �(u(·, t))∇v(·, t)

∣∣∣∣
2

, t > 0.

(2.9)

If furthermore u(·, t) and v(·, t) are radially symmetric with respect to x = 0 for all
t ∈ (0,∞) \ N�, then we say that (u, v) is a radial global weak energy solution of
(1.1).

3. Global existence. Proof of Theorem 1.1

In this section, we prove the existence of a global weak energy solution of (1.1),
provided that the requirements stated in Theorem 1.1 are satisfied. Without loss of
generality, we may assume that (1.10) is satisfied with some α ∈ [0, 2

n ), since in case
of α < 0 it is fulfilled for α = 0 as well. In order to have a uniformly parabolic PDE
for u, we consider the approximate problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uεt = ∇ ·
(
(D(uε) + ε)∇uε

)
− ∇ · (S(uε)∇vε), x ∈ �, t > 0,

vεt = �vε − vε + uε, x ∈ �, t > 0,
∂uε

∂ν
= ∂vε

∂ν
= 0, x ∈ ∂�, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ �,

(3.1)

for ε ∈ (0, 1).
The existence of a global classical solution to (3.1) satisfying the usual energy

identity (3.3) below is a well-known result. We emphasize the difference between the
definition of the dissipation rates Dε in (3.5) and D in (2.9).

Lemma 3.1. Suppose that (1.2), (1.10) and (1.11) holdwith someα ∈ [0, 2
n ), kSD > 0

and KD > 0, and assume (1.3). Then for each ε ∈ (0, 1), the problem (3.1) admits a
global classical solution (uε, vε) with

{
uε ∈ C0(� × [0,∞)) ∩ C2,1(� × (0,∞)) and
vε ∈ ⋂

q≥1 C
0([0,∞);W 1,q(�)) ∩ C2,1(� × (0,∞)),

which is such that uε > 0 and vε ≥ 0 in � × [0,∞), that
∫

�

uε(·, t) =
∫

�

u0 for all t > 0, (3.2)

and such that if� = BR(0)with some R > 0, and if (1.17) holds, then (uε(·, t), vε(·, t))
is radially symmetric with respect to x = 0 for all t > 0 and ε ∈ (0, 1).
Moreover, this solution satisfies

Fε(uε(·, t), vε(·, t)) +
∫ t

0
Dε(s)ds = Fε(u0, v0) for all t > 0, (3.3)
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with

Fε(φ, ψ) := 1

2

∫
�

|∇ψ |2 + 1

2

∫
�

ψ2 −
∫

�

φψ +
∫

�

Gε(φ),

for φ ∈ L1(�) and ψ ∈ W 1,2(�) such that φ > 0 a.e. in �, (3.4)

and

Dε(t) :=
∫
�

v2εt (·, t) +
∫
�

∣∣∣∣
√
S(uε(·, t) ∇uε(·, t)

hε(uε(·, t)) − √
S(uε(·, t))∇vε(·, t)

∣∣∣∣
2
, t > 0,

(3.5)

where

Gε(s) :=
∫ s

1

∫ σ

1

dτdσ

hε(τ )
, s > 0, ε ∈ (0, 1), (3.6)

with

hε(s) := S(s)

D(s) + ε
, s > 0, ε ∈ (0, 1). (3.7)

Proof. Since for each fixed ε ∈ (0, 1) the function 0 ≤ s �→ D(s) + ε is bounded
from above and below by positive constants, in view of the observation that clearly
S(s)

D(s)+ε
≤ kSDsα for all s > 1 and ε ∈ (0, 1) the statements concerning existence

follow from awell-established approach toward global existence in quasilinearKeller–
Segel systems ([24], [18]). The identities (3.2) and (3.3) can thereafter be derived by
straightforward computation (see, e.g., [26, Lemma 2.1]). �

3.1. Estimates for the approximate problems

We prove several estimates, which do not depend on ε ∈ (0, 1), for the solutions to
(3.1) and start with a standard estimate for vε.

Lemma 3.2. Suppose that (1.2), (1.10) and (1.11) holdwith someα ∈ [0, 2
n ), kSD > 0

and KD > 0, and assume (1.3). Then, for all q ∈ [1, n
n−2 ) there exists C(q) > 0 such

that

‖vε(·, t)‖Lq (�) ≤ C(q) for all t > 0 and ε ∈ (0, 1). (3.8)

Proof. This follows from (3.2) andwell-known regularization features of theNeumann
heat semigroup in a standard manner (cf. e.g. [17, Lemma 4.1]). �

In conjunction with an appropriate testing procedure and smoothing properties of
the Neumann heat semigroup, the previous result implies bounds for uε.
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Lemma 3.3. Suppose that (1.2), (1.10) and (1.11) holdwith someα ∈ [0, 2
n ), kSD > 0

and KD > 0, and assume (1.3). Then there exists p0 > 2 with the property that for
all p > p0 and each T > 0 one can find C(p, T ) > 0 such that

∫ T

0

∫
�

u p−2
ε |∇uε|2 ≤ C(p, T ) for all ε ∈ (0, 1) (3.9)

and ∫ T

0

∫
�

u p
ε ≤ C(p, T ) for all ε ∈ (0, 1). (3.10)

Proof. We pick any r > max{ n2 , 2} with 1
r > α − 1

n and may then use our assumption
α < 2

n to choose p0 > 2 such that

α <
2

n
− 2(r − 1)

r(2 − n + np)
for all p > p0 (3.11)

and

2(r − 1)

r(2 − n + np)
<

1

n
for all p > p0 (3.12)

as well as

2r

p
<

2n

n − 2
for all p > p0 (3.13)

and

p > 3 − 2

r
for all p > p0 (3.14)

as well as

(n − 2)(p + 2α − 2)

np
< 1 + 2

n
− 2

r
− 4(r − 1)

r(2 − n + np)
for all p > p0.

(3.15)

Then fixing any p > p0, from the restriction p0 > 2 we particularly know that

λ := r(2 − n + np)

n(r − 1)
(3.16)

satisfies λ > 1, whereas (3.12) and (3.11) along with our requirement r > 2 warrant
that

1 + 2

n
− 2

r
− 4(r − 1)

r(2 − n + np)
> 1 + 2

n
− 2

r
− 2

n
= 1 − 2

r
= r − 2

r
> 0

and that

2α − 2

n
+ 1 − 2

r
<

{4
n

− 4(r − 1)

r(2 − n + np)

}
− 2

n
+ 1 − 2

r
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= 1 + 2

n
− 2

r
− 4(r − 1)

r(2 − n + np)
.

As, moreover, (3.14) together with α ≥ 0 implies that

2α − 2

n
+ 1 − 2

r
< p + 2α − 2

as well as

r − 2

r
< p − 2 ≤ p + 2α − 2,

in view of (3.15) and 1
r > α − 1

n it is possible to select some θ > 1 fulfilling θ < r
r−2

as well as

max
{
2α − 2

n
+ 1 − 2

r
,

(n − 2)(p + 2α − 2)

np

}
<

1

θ

< min
{
1 + 2

n
− 2

r
− 4(r − 1)

r(2 − n + np)
, p + 2α − 2

}
. (3.17)

We now rely on (1.10) and the fact that α < 2
n ≤ 1 to find c1 > 0 such that

S(s)

D(s)
≤ c1s

α for all s ≥ 0,

and introducing

�(s) :=
∫ s

0

∫ σ

0

τ p−2

D(τ )
dτdσ, s ≥ 0,

we integrate by parts in (3.1) and use Young’s inequality to see that

d

dt

∫
�

�(uε) = −
∫

�

�′′(uε)(D(uε) + ε)|∇uε|2 +
∫

�

�′′(uε)S(uε)∇uε · ∇vε

= −
∫

�

D(uε) + ε

D(uε)
u p−2

ε |∇uε|2 +
∫

�

u p−2
ε

S(uε)

D(uε)
∇uε · ∇vε

≤ −
∫

�

u p−2
ε |∇uε|2 +

∫
�

u p−2
ε

S(uε)

D(uε)
∇uε · ∇vε

≤ −1

2

∫
�

u p−2
ε |∇uε|2 + c21

2

∫
�

u p+2α−2
ε |∇vε|2 for all t > 0 and ε ∈ (0, 1).

Since � is nonnegative, fixing T > 0 we thus infer that with c2 := p2

2

∫
�

�(u0) and

c3 := p2c21
4 we have

∫ T

0

∫
�

|∇u
p
2
ε |2 ≤ c2 + c3

∫ T

0

∫
�

u p+2α−2
ε |∇vε|2 for all ε ∈ (0, 1), (3.18)

where we use that θ > 1 in applying the Hölder inequality to obtain that
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∫ T

0

∫
�
u p+2α−2
ε |∇vε|2

≤
∫ T

0
‖uε(·, t)‖p+2α−2

L(p+2α−2)θ (�)
‖∇vε(·, t)‖2

L
2θ

θ−1 (�)

dt

≤
{

sup
t∈(0,T )

‖∇vε(·, t)‖2
L

2θ
θ−1 (�)

}
·
∫ T

0
‖uε(·, t)‖p+2α−2

L(p+2α−2)θ (�)
dt for all ε ∈ (0, 1).

(3.19)

Wenext rely on the inequality θ < r
r−2 in employingwell-known smoothing properties

of the Neumann heat semigroup (et�)t≥0 on � as well as again the Hölder inequality
to find c4 > 0 such that

‖∇vε(·, t)‖2
L

2θ
θ−1 (�)

=
∥∥∥∥∇et (�−1)v0 +

∫ t

0
∇e(t−s)(�−1)uε(·, s)ds

∥∥∥∥
2

L
2θ

θ−1 (�)

≤ c4 + c4 ·
{∫ t

0
(t − s)−

1
2− n

2 ( 1r − θ−1
2θ )‖uε(·, s)‖Lr (�)ds

}2

≤ c4 + c4 ·
{∫ t

0
(t − s)[−

1
2− n

2 ( 1r − θ−1
2θ )]· λ

λ−1 ds

} 2(λ−1)
λ ·

{∫ t

0
‖uε(·, s)‖λ

Lr (�)ds

} 2
λ

≤ c4 + c5(T ) ·
{ ∫ T

0
‖uε(·, s)‖λ

Lr (�)ds

} 2
λ

for all ε ∈ (0, 1), (3.20)

with

c5(T ) := c4 ·
{∫ T

0
σ [− 1

2− n
2 ( 1r − θ−1

2θ )]· λ
λ−1 dσ

} 2(λ−1)
λ

being finite, because by (3.16) and the second inequality in (3.17),
{1
2

+ n

2

(1
r

− θ − 1

2θ

)}
−

{
1 − 1

λ

}

= −1

2
+ n

2r
− n

4
+ n

4θ
+ n(r − 1)

r(2 − n + np)

< −1

2
+ n

2r
− n

4
+ n

4
·
{
1 + 2

n
− 2

r
− 4(r − 1)

r(2 − n + np)

}

+ n(r − 1)

r(2 − n + np)
= 0.

We now observe that by (3.13),

2

p
<

2r

p
<

2n

n − 2
,
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and that due to both inequalities in (3.17) and the fact that p > 2,

2

p
<

2(p + 2α − 2)θ

p
<

2(p + 2α − 2)

p
· np

(n − 2)(p + 2α − 2)
= 2n

n − 2
.

Therefore, two applications of the Gagliardo–Nirenberg inequality together with (3.2)
provide c6 > 0, c7(T ) > 0 and c8 > 0 such that

{ ∫ T

0
‖uε(·, s)‖λ

Lr (�)ds

} 2
λ

=
{ ∫ T

0
‖u

p
2
ε (·, s)‖

2λ
p

L
2r
p (�)

ds

} 2
λ

≤ c6 ·
{ ∫ T

0

{
‖∇u

p
2
ε (·, s)‖2L2(�)

‖u
p
2
ε (·, s)‖

2λ
p −2

L
2
p (�)

+ ‖u
p
2
ε (·, s)‖

2λ
p

L
2
p (�)

}
ds

} 2
λ

≤ c7(T ) ·
{ ∫ T

0
‖∇u

p
2
ε (·, s)‖2L2(�)

ds + 1

} 2
λ

for all ε ∈ (0, 1) (3.21)

and that, similarly,

∫ T

0
‖uε(·, t)‖p+2α−2

L(p+2α−2)θ (�)
dt =

∫ T

0
‖u

p
2
ε (·, t)‖

2(p+2α−2)
p

L
2(p+2α−2)θ

p (�)

dt

≤ c8

∫ T

0

{
‖∇u

p
2
ε (·, t)‖κ

L2(�)
+ 1

}
dt for all ε ∈ (0, 1)

(3.22)

with κ := 2n[(p+2α−2)θ−1]
(2−n+np)θ . Since (3.16) along with the first restriction contained in

(3.17) ensures that

4

λ
+ κ = 4n(r − 1)

r(2 − n + np)
+ 2n(p + 2α − 2)

2 − n + np
− 2n

2 − n + np
· 1
θ

<
4n(r − 1)

r(2 − n + np)
+ 2n(p + 2α − 2)

2 − n + np
− 2n

2 − n + np
·
{
2α − 2

n
+ 1 − 2

r

}

= 2,

and that particularly also κ < 2, we may combine (3.19)-(3.22) with the Hölder
inequality and Young’s inequality to infer the existence of positive constants c9(T ),

c10(T ) and c11(T ) such that

c3

∫ T

0

∫
�

u p+2α−2
ε |∇vε|2

≤ c9(T ) ·
{ ∫ T

0
‖∇u

p
2
ε (·, t)‖2L2(�)

dt + 1

} 2
λ ·

{∫ T

0
‖∇u

p
2
ε (·, t)‖κ

L2(�)
dt + 1

}
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≤ c10(T ) ·
{∫ T

0
‖∇u

p
2
ε (·, t)‖2L2(�)

dt + 1

} 2
λ
+ κ

2

≤ 1

2

∫ T

0
‖∇u

p
2
ε (·, t)‖2L2(�)

dt + c11(T ) for all ε ∈ (0, 1).

Consequently, (3.18) implies that
∫ T

0

∫
�

|∇u
p
2
ε |2 ≤ 2c2 + 2c11(T ) for all ε ∈ (0, 1)

and thus, in view of a Poincaré inequality and (3.2), establishes both (3.10) and
(3.9). �

Using once more the properties of the heat semigroup, we obtain a bound for ∇vε

in L∞.

Lemma 3.4. Suppose that (1.2), (1.10) and (1.11) holdwith someα ∈ [0, 2
n ), kSD > 0

and KD > 0, and assume (1.3). Then for all T > 0 there exists C(T ) > 0 such that

|∇vε(x, t)| ≤ C(T ) for all x ∈ �, t ∈ (0, T ) and ε ∈ (0, 1). (3.23)

Proof. We fix any p > n + 2 and once more recall known smoothing properties of
the Neumann heat semigroup (et�)t≥0 on � to find c1 > 0 such that for all t > 0 and
ε ∈ (0, 1),

‖∇vε(·, t)‖L∞(�) =
∥∥∥∥∇et (�−1)v0 +

∫ t

0
∇e(t−s)(�−1)uε(·, s)ds

∥∥∥∥
L∞(�)

≤ c1‖v0‖W 1,∞(�) + c1

∫ t

0
(t − s)−

1
2− n

2p ‖uε(·, s)‖L p(�)ds.

Here by the Hölder inequality, for all t > 0 and ε ∈ (0, 1) we have
∫ t

0
(t − s)−

1
2− n

2p ‖uε(·, s)‖L p(�)ds

≤
{ ∫ t

0
(t − s)(−

1
2− n

2p )· p
p−1 ds

} p−1
p ·

{ ∫ t

0
‖uε(·, s)‖p

L p(�)ds

} 1
p

,

whence observing that
∫ T
0 σ

(− 1
2− n

2p )· p
p−1 dσ is finite due to our restriction on p we

obtain (3.23) as a consequence of Lemma 3.3. �

This further implies a bound for the cross-diffusion term.

Lemma 3.5. Suppose that (1.2), (1.10) and (1.11) hold with some α ∈ [0, 2
n ), kSD >

0 and KD > 0, and assume (1.3). Then for all p > 1 and T > 0 one can find
C(p, T ) > 0 such that

∫ T

0

∫
�

|S(uε)∇vε|p ≤ C(p, T ) for all ε ∈ (0, 1). (3.24)
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Proof. Since (1.10) along with (1.11) asserts that with some c1 > 0 we have

S p(s) ≤ c1 · (s pα + 1) for all s ≥ 0,

this is an immediate consequence of Lemma 3.3 and Lemma 3.4. �

3.2. Further estimates involving the energy

In order to obtain estimates for uε and vε on the whole time interval (0,∞), we
use the energy identity. The next two results provide a lower bound for the Lyapunov
functional Fε.

Lemma 3.6. Suppose that (1.2), (1.10) and (1.11) holdwith someα ∈ [0, 2
n ), kSD > 0

and KD > 0, and assume (1.3). Then there exists C > 0 such that with (Gε)ε∈(0,1) as
in (3.6),

Gε(s) ≥ 1

C
· s2−α − C · (s + 1) for all s > 0 and ε ∈ (0, 1). (3.25)

Proof. According to (3.6) and (1.10), for each s ≥ 1 and ε ∈ (0, 1) we have

Gε(s) ≥ 1

kSD

∫ s

1

∫ σ

1
τ−αdτdσ

= 1

kSD(1 − α)
·
{ s2−α − 1

2 − α
− s + 1

}

≥ c1s
2−α − c2 · (s + 1)

with c1 := 1
kSD(1−α)(2−α)

and c2 := 1
kSD(1−α)

. As furthermore

Gε(s) − c1s
2−α ≥ −c1s

2−α ≥ −c1 for all s ∈ (0, 1) and any ε ∈ (0, 1),

this entails (3.25) with C := max{ 1
c1

, c1 , c2}. �

Lemma 3.7. Suppose that (1.2) (1.10) and (1.11) hold with some α ∈ [0, 2
n ), kSD > 0

and KD > 0, and assume (1.3). Then there exists C > 0 such that with (Fε)ε∈(0,1)

and (Gε)ε∈(0,1) taken from (3.4) and (3.6), we have

Fε(uε(·, t), vε(·, t)) ≥ 1

2

∫
�

Gε(uε(·, t)) − C for all t > 0 and ε ∈ (0, 1).

(3.26)

Proof. We first employ Lemma 3.6 to find c1 > 0 and c2 > 0 such that for all
ε ∈ (0, 1),

Gε(s) ≥ c1s
2−α − c2(s + 1) for all s > 0, (3.27)

and use Young’s inequality to fix c3 > 0 such that

ξη ≤ c1
2

ξ2−α + c3η
2−α
1−α for all ξ ≥ 0 and η ≥ 0. (3.28)
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We then note that our assumption α < 2
n < 1 warrants that αn

2(1−α)
< 2−α

1−α
< 2n

n−2 and
αn

2(1−α)
< n

n−2 , and that hence we may fix q > 1 simultaneously fulfilling q < n
n−2

and q < 2−α
1−α

as well as q > αn
2(1−α)

, the latter implying that

(2 − α)n

(1 − α)q
− n < 2 − n + 2n

q
.

This, namely, ensures that

a :=
n
q − n(1−α)

2−α

1 − n
2 + n

q

belongs to (0, 1) and moreover satisfies

2 − α

1 − α
· a =

(2−α)n
(1−α)q − n

1 − n
2 + n

q

< 2,

and that hence combining theGagliardo–Nirenberg inequalitywithYoung’s inequality
provides c4 > 0 and c5 > 0 such that

c3‖ψ‖
2−α
1−α

L
2−α
1−α (�)

≤ c4‖∇ψ‖
2−α
1−α

·a
L2(�)

‖ψ‖
2−α
1−α

·(1−a)

Lq (�) + c4‖ψ‖
2−α
1−α

Lq (�)

≤ 1

2
‖∇ψ‖2L2(�)

+ c5‖ψ‖
2(2−α)(1−a)

2(1−α)−(2−α)a
Lq (�) + c4‖ψ‖

2−α
1−α

Lq (�) for all ψ ∈ W 1,2(�).

(3.29)

Finally, due to the restriction q < n
n−2 we may invoke Lemma 3.2 to fix c6 > 0

fulfilling

‖vε(·, t)‖Lq (�) ≤ c6 for all t > 0 and ε ∈ (0, 1). (3.30)

Now successive application of (3.28), (3.29), (3.30) and (3.27) shows that for all t > 0
and ε ∈ (0, 1) we have

∫
�
uεvε ≤ c1

2

∫
�
u2−α
ε + c3

∫
�

v
2−α
1−α
ε

≤ c1
2

∫
�
u2−α
ε + 1

2

∫
�

|∇vε|2 + c5‖vε‖
2(2−α)(1−a)

2(1−α)−(2−α)a
Lq (�)

+ c4‖vε‖
2−α
1−α

Lq (�)

≤ c1
2

∫
�
u2−α
ε + 1

2

∫
�

|∇vε|2 + c5c
2(2−α)(1−a)

2(1−α)−(2−α)a
6 + c4c

2−α
1−α

6

≤ 1

2

∫
�
Gε(uε) + c2

2

∫
�

(uε + 1) + 1

2

∫
�

|∇vε|2 + c5c
2(2−α)(1−a)

2(1−α)−(2−α)a
6 + c4c

2−α
1−α

6 ,

so that recalling (3.2) and our definition (3.4) of Fε we obtain (3.26). �
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In view of the energy identity (3.3), the previous estimate implies further useful
bounds on the time interval (0,∞).

Lemma 3.8. Suppose that (1.2), (1.10) and (1.11) holdwith someα ∈ [0, 2
n ), kSD > 0

and KD > 0, and assume (1.3). Then, there exists C > 0 such that with hε as in (3.7)
we have ∫

�

u2−α
ε (·, t) ≤ C for all t > 0 and ε ∈ (0, 1) (3.31)

and ∫ t

0

∫
�

v2εt ≤ C for all t > 0 and ε ∈ (0, 1) (3.32)

as well as
∫ t

0

∫
�

∣∣∣∣
√
S(uε)

∇uε

hε(uε)
− √

S(uε)∇vε

∣∣∣∣
2

≤ C for all t > 0 and ε ∈ (0, 1)

(3.33)

and
∫ t

0

∫
�

∣∣∣∣�(uε)
∇uε

hε(uε)
− �(uε)∇vε

∣∣∣∣
2

≤ C for all t > 0 and ε ∈ (0, 1).

(3.34)

Proof. According to (3.3), for all t > 0 and ε ∈ (0, 1) we have

Fε(uε(·, t), vε(·, t)) +
∫ t

0

∫
�

v2εt +
∫ t

0

∫
�

∣∣∣√S(uε)
∇uε

hε(uε)
− √

S(uε)∇vε

∣∣∣∣
2

= Fε(u0, v0), (3.35)

where by (3.6), writing c1 := minx∈� u0(x) > 0 and c2 := maxx∈� u0(x) we can
estimate

Fε(u0, v0) ≤ c3 := 1

2
‖v0‖2W 1,2(�)

+|�|·max

{ ∫ 1

c1

∫ 1

σ

D(τ ) + 1

S(τ )
dτdσ ,

∫ c2

1

∫ σ

1

D(τ ) + 1

S(τ )
dτdσ

}

for all ε ∈ (0, 1), with c3 being finite by positivity of S on (0,∞). Since furthermore,
by Lemma 2.1,

∣∣∣∣�(uε)
∇uε

hε(uε)
− �(uε)∇vε

∣∣∣∣
2

≤
∣∣∣∣
√
S(uε)

∇uε

hε(uε)
− √

S(uε)∇vε

∣∣∣∣
2

in � × (0,∞)

for each ε ∈ (0, 1), by using Lemma 3.7 and Lemma 3.6 we readily obtain (3.31)–
(3.34) from (3.35). �
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Once again the smoothing properties of the Neumann heat semigroup yield an
improved estimate for ∇vε.

Lemma 3.9. Suppose that (1.2), (1.10) and (1.11) holdwith someα ∈ [0, 2
n ), kSD > 0

and KD > 0, and assume (1.3). Then for each q ∈ [1, n(2−α)
n+α−2 ) one can find C(q) > 0

such that ∫
�

|∇vε(·, t)|q ≤ C(q) for all t > 0 and ε ∈ (0, 1). (3.36)

Proof. Since α < 2 and hence n(2−α)
n+α−2 > 2−α, we may assume that q > 2−α. Then

once more relying on known regularization features of the Neumann heat semigroup
(et�)t≥0 on �, with some c1 > 0 we have

‖∇vε(·, t)‖Lq (�) =
∥∥∥∥∇et (�−1)v0 +

∫ t

0
∇e(t−s)(�−1)uε(·, s)ds

∥∥∥∥
Lq (�)

≤ c1‖v0‖W 1,∞(�) + c1

∫ t

0

(
1 + (t − s)−

1
2− n

2 ( 1
2−α

− 1
q )

)
e−(t−s)‖uε(·, s)‖L2−α(�)ds

for all t > 0 and ε ∈ (0, 1). As
∫ ∞
0 (1 + σ

− 1
2− n

2 ( 1
2−α

− 1
q )

)e−σdσ is finite due to the
fact that

1

2
+ n

2

( 1

2 − α
− 1

q

)
<

1

2
+ n

2

( 1

2 − α
− n + α − 2

n(2 − α)

)
= 1,

the boundedness property in (3.31) thus directly implies (3.36). �

The previous results enable us to obtain another bound for ∇uε.

Lemma 3.10. Suppose that (1.2), (1.10) and (1.11) hold with some α ∈ [0, 2
n ), kSD >

0 and KD > 0, and assume (1.3). Then for all T > 0 there exists C(T ) > 0 such
that

∫ T

0

∫
�

|∇uε|2 ≤ C(T ) for all ε ∈ (0, 1). (3.37)

Proof. According to (2.4), there exists c1 > 0 such that h(s)
�(s) ≤ c1 for all s ∈ (0, 1),

and that thus, since hε ≤ h,

h2ε(s)

�2(s)
≤ c21 for all s ∈ (0, 1) and ε ∈ (0, 1).

Therefore,
∫ ∫

(�×(0,T ))∩{uε<1}
|∇uε|2

=
∫ ∫

(�×(0,T ))∩{uε<1}
h2ε(uε)

�2(uε)

∣∣∣∣�(uε)
∇uε

hε(uε)

∣∣∣∣
2
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≤ c21

∫ T

0

∫
�

∣∣∣∣�(uε)
∇uε

hε(uε)

∣∣∣∣
2

≤ 2c21

∫ T

0

∫
�

∣∣∣∣�(uε)
∇uε

hε(uε)
− �(uε)∇vε

∣∣∣∣
2

+ 2c21

∫ T

0

∫
�

∣∣∣∣�(uε)∇vε

∣∣∣∣
2

≤ 2c21

∫ T

0

∫
�

∣∣∣∣�(uε)
∇uε

hε(uε)
− �(uε)∇vε

∣∣∣∣
2

+ 2c21

∫ T

0

∫
�

|∇vε|2

for all T > 0 and ε ∈ (0, 1), because �2 ≤ 1 due to Lemma 2.1. As a consequence of
(3.34) and Lemma 3.9 when applied to q := 2, we thus infer the existence of c2 > 0
such that∫ ∫

(�×(0,T ))∩{uε<1}
|∇uε|2 ≤ c2 · (T + 1) for all T > 0 and ε ∈ (0, 1),

so that (3.37) readily results upon employing (3.9) in Lemma 3.3 with an arbitrary
fixed p > 2. �

The next estimate will imply the positivity of our solution to (1.1).

Lemma 3.11. Suppose that (1.2), (1.10) and (1.11) hold with some α ∈ [0, 2
n ), kSD >

0 and KD > 0, and assume (1.3). Then for all T > 0 there exists C(T ) > 0 such that∫
�

ln uε(·, t) ≥ −C(T ) for all t ∈ (0, T ) and any ε ∈ (0, 1). (3.38)

Proof. By means of the first equation in (3.1) and Young’s inequality, we see that

− d

dt

∫
�

ln uε = −
∫

�

D(uε) + ε

u2ε
|∇uε|2 +

∫
�

S(uε)

u2ε
∇uε · ∇vε

≤ 1

4

∫
�

S2(uε)

u2ε(D(uε) + ε)
|∇vε|2 for all t > 0 and ε ∈ (0, 1),

(3.39)

where we note that according to (1.10) and (1.11),

S2(s)

s2(D(s) + ε)
≤ S2(s)

s2αD(s)
≤ k2SDD(s) ≤ c1 := k2SDKD for all s > 1 and ε ∈ (0, 1),

and where since S ∈ C1([0,∞)) with S(0) = 0,

S2(s)

s2(D(s) + ε)
≤ c2 := ‖S′‖2L∞((0,1))

minσ∈[0,1] D(σ )
for all s ∈ [0, 1] and ε ∈ (0, 1).

Therefore, (3.39) implies that

− d

dt

∫
�

ln uε ≤ 1

4
max{c1, c2} ·

∫
�

|∇vε|2 for all t > 0 and ε ∈ (0, 1),

whence (3.38) follows upon a time integration using, e.g., Lemma 3.4. �
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In order to ensure an appropriate compactness property of uε, we finally need an
estimate for its time derivative.

Lemma 3.12. Suppose that (1.2), (1.10) and (1.11) hold with some α ∈ [0, 2
n ), kSD >

0 and KD > 0, and assume (1.3). Then there exists C > 0 such that
∫ T

0
‖uεt (·, t)‖2(W 1,∞(�))�

dt ≤ C for all T > 0 and ε ∈ (0, 1). (3.40)

Proof. For fixed ψ ∈ W 1,∞(�), from (3.1) we obtain that thanks to the Cauchy–
Schwarz inequality,

∣∣∣∣
∫
�
uεtψ

∣∣∣∣ =
∣∣∣∣ −

∫
�

{
(D(uε) + ε)∇uε − S(uε)∇vε

}
· ∇ψ

∣∣∣∣
=

∣∣∣∣ −
∫
�

√
S(uε)

{√
S(uε)

∇uε

hε(uε)
− √

S(uε)∇vε

}
· ∇ψ

∣∣∣∣

≤
{∫

�
S(uε)

} 1
2 ·

{ ∫
�

∣∣∣∣
√
S(uε)

∇uε

hε(uε)
− √

S(uε)∇vε

∣∣∣∣
2} 1

2 · ‖∇ψ‖L∞(�)

(3.41)

for all t > 0 and ε ∈ (0, 1). Since according to (1.10), (1.11) and the fact that α ≤ 1
we can find c1 > 0 and c2 > 0 such that

S(s) ≤ c1D(s)(s + 1) ≤ c2 · (s + 1) for all s ≥ 0 and ε ∈ (0, 1),

and therefore∫
�

S(uε) ≤ c2

∫
�

u0 + c2|�| for all t > 0 and ε ∈ (0, 1)

due to (3.2), from (3.41) we thus infer the existence of c3 > 0 such that

‖uεt (·, t)‖2(W 1,∞(�))�

≤ c3

∫
�

∣∣∣∣
√
S(uε)

∇uε

hε(uε)
− √

S(uε)∇vε

∣∣∣∣
2

for all t > 0 and ε ∈ (0, 1).

The claim hence results from (3.33). �

3.3. Proof of Theorem 1.1

We are now in a position to prove the existence of a global weak energy solution to
(1.1) with a compactness argument.

Lemma 3.13. Suppose that (1.2), (1.10) and (1.11) hold with some α ∈ [0, 2
n ), kSD >

0 and KD > 0, and assume (1.3). Then there exists (ε j ) j∈N ⊂ (0, 1) such that ε j ↘ 0,
and such that as ε = ε j ↘ 0 we have

uε → u a.e. in � × (0,∞) and in L p
loc(� × [0,∞)) for all p ≥ 1, (3.42)
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uε(·, t) → u(·, t) a.e. in � and in L p(�) for all p ≥ 1 and a.e. t > 0,

(3.43)

∇uε ⇀ ∇u in L2
loc(� × [0,∞)), (3.44)

vε → v a.e. in � × (0,∞) and in L2
loc(� × [0,∞)), (3.45)

∇vε → ∇v a.e. in � × (0,∞) and in L2
loc(� × [0,∞)), (3.46)

vε(·, t) → v(·, t) in W 1,2(�) for a.e. t > 0, (3.47)

vε ⇀ v in L2
loc([0,∞);W 2,2(�)), (3.48)

S(uε)∇vε ⇀ S(u)∇v in L2
loc(� × [0,∞)) and (3.49)

vεt ⇀ vt in L2
loc(� × [0,∞)) (3.50)

with some functions u and v on � × (0,∞) which are such that (1.13), (1.14), (1.15)
and (1.16) hold, that (u, v) is a global weak energy solution of (1.1) and that if
� = BR(0) with some R > 0 and (u0, v0) satisfies (1.17), then (u, v) even is a radial
global weak energy solution of (1.1).

Proof. From Lemma 3.10 and Lemma 3.3, we know that

(uε)ε∈(0,1) is bounded in L2((0, T );W 1,2(�)) for all T > 0,

while Lemma 3.12 asserts that

(uεt )ε∈(0,1) is bounded in L2((0, T ); (W 1,∞(�))�) for all T > 0.

Apart from that, (3.32) along with Lemma 3.3, Lemma 3.9 and (3.1) shows that

(vε)ε∈(0,1) is bounded in L2((0, T );W 2,2(�)) for all T > 0

and that

(vεt )ε∈(0,1) is bounded in L2(� × (0,∞)).

Two applications of an Aubin–Lions lemma ( [25, Theorem III.2.1]) thus provide
(ε j ) j∈N ⊂ (0, 1) such that ε j ↘ 0 as j → ∞, and that as ε = ε j ↘ 0 we have (3.44),
(3.45), (3.46), (3.47), (3.48), (3.50) as well as uε → u a.e. in � × (0,∞) with some
nonnegative functions u ∈ L2

loc([0,∞);W 1,2(�)) and v ∈ L2
loc([0,∞);W 2,2(�)).

The completion of (3.42), (3.43) and (1.13) can thereafter be achieved by combining
(3.10) with the Vitali convergence theorem, whereas (3.49) follows from Lemma 3.5
and the Egorov theorem due to the fact that S(uε)∇vε → S(u)∇v a.e. in�×(0,∞) as
ε = ε j ↘ 0 by (3.42) and (3.46).Moreover, Lemma 3.11 alongwith (3.42) guarantees
that

ess inf
t∈(0,T )

∫
�

ln u(·, t) > −∞ for all T > 0,

implying that ln u > −∞ and hence u > 0 a.e. in � × (0,∞). The bounds in (1.15)
and (1.16) are consequences of Lemma 3.8 and Lemma 3.9 when combined with
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(3.42), (3.46) and Fatou’s lemma, whereas the claim on radial symmetry is evident
from Lemma 3.1, (3.42) and (3.45).
The verification of (2.5) is quite straightforward: Given ϕ ∈ C∞

0 (� × [0,∞)), from
(3.1) we obtain that

−
∫ ∞

0

∫
�

uεϕt −
∫

�

u0ϕ(·, 0) = −
∫ ∞

0

∫
�

(D(uε) + ε)∇uε · ∇ϕ

+
∫ ∞

0

∫
�

S(uε)∇vε · ∇ϕ (3.51)

for all ε ∈ (0, 1), where by (3.42) and (3.49),

−
∫ ∞

0

∫
�

uεϕt → −
∫ ∞

0

∫
�

uϕt as ε = ε j ↘ 0

and
∫ ∞

0

∫
�

S(uε)∇vε · ∇ϕ →
∫ ∞

0

∫
�

S(u)∇v · ∇ϕ as ε = ε j ↘ 0.

Since (1.11) along with (3.42) and the dominated convergence theorem ensures that
D(uε) + ε → D(u) in L2

loc(� × [0,∞)) as ε = ε j ↘ 0, we furthermore have

−
∫ ∞

0

∫
�

(D(uε) + ε)∇uε · ∇ϕ → −
∫ ∞

0

∫
�

D(u)∇u · ∇ϕ as ε = ε j ↘ 0.

Therefore, (2.5) results from (3.51), while (2.6) can be derived similarly using (3.50),
(3.45), (3.46) and (3.42). Moreover, ess limt↘0 ‖v(·, t) − v0‖L2(�) = 0 is a conse-
quence of (3.47).
Finally, from (3.3) and (2.2) we know that

Fε(uε(·, t), vε(·, t)) +
∫ t

0

∫
�

v2εt +
∫ t

0

∫
�

∣∣∣∣�(uε)
∇uε

hε(uε)
− �(uε)∇vε

∣∣∣∣
2

≤ Fε(u0, v0) for all t > 0 and ε ∈ (0, 1), (3.52)

where clearly

Fε(u0, v0) → F(u0, v0) as ε ↘ 0 (3.53)

according to the positivity of u0 in � and, e.g., the monotone convergence theorem,
because Gε(s) ↘ G(s) for all s > 0 as ε ↘ 0. Moreover, (3.47) together with (3.43)
warrants that for a.e. t > 0,

1

2

∫
�

|∇vε(·, t)|2 + 1

2

∫
�

v2ε (·, t) −
∫

�

uε(·, t)vε(·, t)

→ 1

2

∫
�

|∇v(·, t)|2 + 1

2

∫
�

v2(·, t) −
∫

�

u(·, t)v(·, t) (3.54)
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as ε = ε j ↘ 0, and that thanks to Fatou’s lemma,

∫
�

G(u(·, t)) ≤ lim inf
ε=ε j↘0

∫
�

Gε(uε(·, t)) for a.e. t > 0, (3.55)

because clearly Gε(uε(·, t)) → G(u(·, t)) a.e. in � for a.e. t > 0 as ε = ε j ↘ 0 due
to (1.13) and (1.14). Since, apart from that,

∫ t

0

∫
�

v2t ≤ lim inf
ε=ε j↘0

∫ t

0

∫
�

v2εt for all t > 0

by (3.50) and lower continuity of the norms in L2 spaces with respect to weak con-
vergence, the energy property (2.7) will thus result from (3.52)-(3.55) as soon as we
have shown that for all t > 0,

∫ t

0

∫
�

∣∣∣∣�(u)
∇u

h(u)
− �(u)∇v

∣∣∣∣
2

≤ lim inf
ε=ε j↘0

∫ t

0

∫
�

∣∣∣∣�(uε)
∇uε

hε(uε)
− �(uε)∇vε

∣∣∣∣
2

.

(3.56)

To accomplish this, we fix (χδ)δ∈(0,1) ⊂ C∞([0,∞)) such that 0 ≤ χδ ≤ 1 in [0,∞),
χδ ≡ 0 in [0, δ

2 ] ∪ [ 2
δ
,∞) and χδ ≡ 1 in [δ, 1

δ
] for δ ∈ (0, 1), and that χδ ↗ 1 on

(0,∞) as δ ↘ 0, and note that then for each fixed δ ∈ (0, 1),

χδ(uε)�(uε)

hε(uε)
∇uε ⇀

χδ(u)�(u)

h(u)
∇u in L2

loc(� × [0,∞)) as ε = ε j ↘ 0.

(3.57)

Indeed, since

0 ≤ χδ(s)�(s)

hε(s)
≤ χδ(s)(D(s) + 1)�(s)

S(s)

≤ c1(δ) := max
σ∈[ δ

2 , 2
δ
]
(D(σ ) + 1)�(σ)

S(σ )
for all s ≥ 0 and ε ∈ (0, 1),

with c1(δ) being finite by continuity of D, S and �, and by positivity of S on (0,∞),
it firstly follows from the dominated convergence theorem and (3.42) that

χδ(uε)�(uε)

hε(uε)
→ χδ(u)�(u)

h(u)
in L2

loc(� × [0,∞)) as ε = ε j ↘ 0,

which in conjunction with (3.44) ensures that

χδ(uε)�(uε)

hε(uε)
∇uε ⇀

χδ(u)�(u)

h(u)
∇u in L1

loc(� × [0,∞)) as ε = ε j ↘ 0.

The observation that due to Lemma 3.10,
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sup
ε∈(0,1)

∫ T

0

∫
�

∣∣∣∣χδ(uε)�(uε)

hε(uε)
∇uε

∣∣∣∣
2

≤ c21(δ) sup
ε∈(0,1)

∫ T

0

∫
�

|∇uε|2 < ∞ for all T > 0

therefore shows that indeed (3.57) holds. Since furthermore

χδ(uε)�(uε)∇vε → χδ(u)�(u)∇v in L2
loc(� × [0,∞)) as ε = ε j ↘ 0

by (3.42), (3.46) and the fact that 0 ≤ χδ(uε)�(uε) ≤ 1 due to Lemma 2.1, again
based on an argument based on lower semicontinuity of the norm in L2(� × (0, t)),
t > 0, with respect to weak convergence, we infer from (3.57) that

∫ t

0

∫
�

χ2
δ (u)

∣∣∣∣�(u)
∇u

h(u)
− �(u)∇v

∣∣∣∣
2

≤ lim inf
ε=ε j↘0

∫ t

0

∫
�

χ2
δ (uε)

∣∣∣∣�(uε)
∇uε

hε(uε)
− �(uε)∇vε

∣∣∣∣
2

≤ lim inf
ε=ε j↘0

∫ t

0

∫
�

∣∣∣∣�(uε)
∇uε

hε(uε)
− �(uε)∇vε

∣∣∣∣
2

for all δ ∈ (0, 1) and t > 0.

Once more thanks to Beppo Levi’s theorem, on taking δ ↘ 0 we conclude that

∫ ∫
(�×(0,t))∩{u>0}

∣∣∣∣�(u)
∇u

h(u)
− �(u)∇v

∣∣∣∣
2

= lim
δ↘0

∫ t

0

∫
�

χ2
δ (u)

∣∣∣∣�(u)
∇u

h(u)
− �(u)∇v

∣∣∣∣
2

≤ lim inf
ε=ε j↘0

∫ t

0

∫
�

∣∣∣∣�(uε)
∇uε

hε(uε)
− �(uε)∇vε

∣∣∣∣
2

for all t > 0,

and that thus indeed (3.56) holds according to (1.14). �

Proof of Theorem 1.1. The claim actually is a by-product of Lemma 3.13. �

4. Nonexistence. Proof of Theorem 1.2

In this section, we prove that for some initial data there does not exist a global
weak energy solution of (1.1) satisfying (1.21) for some p > 2n

n+2 , provided that the
requirements stated in Theorem 1.2 are satisfied.

We first show that each global weak energy solution has the property of mass
conservation.

Lemma 4.1. Assume that � ⊂ R
n is a bounded domain with smooth boundary, (1.2)

is fulfilled, and let (u, v) be a global weak energy solution of (1.1) with some (u0, v0)
fulfilling (1.3). Then, ∫

�

u(·, t) =
∫

�

u0 for a.e. t > 0. (4.1)
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Proof. Let t0 > 0 be a Lebesgue point of 0 < t �→ ∫
�
u(·, t). Then since u and

J := D(u)∇u− S(u)∇v are locally integrable in �×[0,∞), by means of a standard
approximation argument it is possible to show that (2.5) continues to hold for ϕ = ϕδ ,
δ > 0, where ϕδ(x, t) := ζδ(t), (x, t) ∈ � × [0,∞), with ζδ(t) := 1 for t ∈ [0, t0],
ζδ(t) := 1− t−t0

δ
for t ∈ (t0, t0 + δ) and ζδ(t) := 0 for t ≥ t0 + δ, δ > 0. From (2.5),

we thereby obtain that

1

δ

∫ t0+δ

t0

∫
�

u −
∫

�

u0 = −
∫ t0+δ

t0

∫
�

J · ∇ϕδ = 0, (4.2)

where the Lebesgue point property of t0 ensures that 1
δ

∫ t0+δ

t0

∫
�
u → ∫

�
u(·, t0) as

δ ↘ 0. Therefore, (4.2) yields the claim due to the fact that the complement in (0,∞)

of the set of all such Lebesgue points has measure zero. �

The main step toward the claimed nonexistence result is an a priori lower bound
for F(u0, v0) if a global weak energy solution evolves from (u0, v0). We use the
strategy from [29, Sect. 5.2] which continues to hold in spite of a slightly different
solution concept. For the reader’s convenience, we give below the lemmata leading
to the announced estimate, and refer to [29] for their proofs. Next we show that v

satisfies an appropriate weak formulation of the respective PDE in (1.1) which allows
an evaluation at almost any time.

Lemma 4.2. Assume that � ⊂ R
n is a bounded domain with smooth boundary, (1.2)

is fulfilled, and let (u, v) be a global weak energy solution of (1.1) with some (u0, v0)
fulfilling (1.3). Then, there exist (ψl)l∈N ⊂ C1(�) and a null set N ⊂ (0,∞) such
that {ψl | l ∈ N} is dense in W 1,2(�), and such that

∫
�

vt (·, t)ψl = −
∫

�

∇v(·, t) · ∇ψl −
∫

�

v(·, t)ψl

+
∫

�

u(·, t)ψl for all t ∈ (0,∞) \ N and any l ∈ N. (4.3)

Proof. see [29, Lemma 5.2] �

From now on, we only consider radial solutions in � = BR(0) ⊂ R
n for some

n ≥ 3 and R > 0. By relying on the energy, we next show that (u, v)(t) converges in
an appropriate large time limit to some (u∞, v∞) which is a stationary weak solution
to the second PDE in (1.1).

Lemma 4.3. Assume that � = BR(0) ⊂ R
n for some n ≥ 3 and R > 0, that (1.2),

(1.3) and (1.17) are satisfied, and suppose that (u, v) is a radial global weak energy
solution of (1.1) such that

ess sup
t>0

∫
�

u p(·, t) < ∞ (4.4)
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for some p > 2n
n+2 . Then with N� ⊂ (0,∞) taken from Definition 2.2, we can find

(tk)k∈N ⊂ (0,∞)\N� and nonnegative radially symmetric functions u∞ ∈ L p(�)

and v∞ ∈ W 2,p(�) such that tk → ∞ as k → ∞, that

u(·, tk) ⇀ u∞ in L p(�) as k → ∞ (4.5)

and

sup
k∈N

∫
�

G(u(·, tk)) < ∞, (4.6)

that

v(·, tk) ⇀ v∞ in W 2,p(�) as k → ∞ (4.7)

and

v(·, tk) → v∞ in W 1,2(�) as k → ∞, (4.8)

and that

�(u(·, tk)) ∇u(·, tk)
h(u(·, tk)) − �(u(·, tk))∇v(·, tk) → 0 in L2(�) as k → ∞.

(4.9)

Moreover,
∫

�

u∞ =
∫

�

u0 (4.10)

and ∫
�

∇v∞ · ∇ψ +
∫

�

v∞ψ =
∫

�

u∞ψ for all ψ ∈ W 1,2(�). (4.11)

Proof. see [29, Lemma 5.3] �

In order to show that (u∞, v∞) is also a stationary generalized solution to the first
PDE in (1.1), we need two regularity properties of functions in Sobolev spaces.

Lemma 4.4. Assume that � = BR(0) ⊂ R
n for some n ≥ 3 and R > 0, let p > 1

and q ≥ 1 be such that (n−2p)q < np. Then, there exist C(p) > 0 and C(p, q) > 0
such that if ψ ∈ W 2,p(�) is radially symmetric, then ψ ∈ C1(� \ {0}) with

|∇ψ(x)| ≤ C(p) · ‖ψ‖W 2,p(�) · |x |− n−p
p for all x ∈ � \ {0} (4.12)

and ∫
�

|x · ∇ψ |q ≤ C(p, q) · ‖ψ‖q
W 2,p(�)

. (4.13)
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Proof. see [29, Lemma 5.4] �

Lemma 4.5. Let I ⊂ R be an open interval, and suppose that (ψk)k∈N ⊂ W 1,1(I ) is
such that as k → ∞ we have ψk(r) → ψ(r) for all r ∈ I and ψ ′

k → φ in L1(I ) with
some ψ : I → R and some φ ∈ C0(I ). Then ψ ∈ C1(I ) with ψ ′ ≡ φ in I .

Proof. By [4, Theorem 8.2], we have (up to the choice of a continuous representative)
ψk ∈ C0(I ) and

ψk(x) − ψk(y) =
∫ x

y
ψ ′
k(r)dr for all x, y ∈ I

and any k ∈ N. In the limit k → ∞ this implies

ψ(x) − ψ(y) =
∫ x

y
φ(r)dr for all x, y ∈ I.

In view of φ ∈ C0(I ), the claim is proved. �

We now show additional properties of (u∞, v∞) as announced above.

Lemma 4.6. Assume that � = BR(0) ⊂ R
n for some n ≥ 3 and R > 0, that (1.2),

(1.3) and (1.17) are satisfied, and that (u, v) is a radial global weak energy solution of
(1.1) such that (4.4) holds for some p > 2n

n+2 , and let (tk)k∈N as well as u∞ and v∞ be

as in Lemma 4.3. Then, u∞ ∈ C0(� \ {0}; [0,∞]) and u∞ ∈ C1((� \ {0}) ∩ {u∞ <

∞}) with
∇u∞ = h(u∞)∇v∞ in (� \ {0}) ∩ {u∞ < ∞}. (4.14)

Moreover, G(u∞) ∈ L1(�) and

F(u∞, v∞) ≤ F(u0, v0). (4.15)

Proof. see [29, Lemma 5.6] �

Next we show that the initial energyF(u0, v0) is bounded from below by a constant
depending on the initial massm = ∫

�
u0. To this end, we need two preliminary results,

the first being a useful identity, for which the condition p > 2n
n+2 is important.

Lemma 4.7. Assume that � = BR(0) ⊂ R
n for some n ≥ 3 and R > 0 and suppose

that p > 2n
n+2 and that ψ ∈ W 2,p(�) is radially symmetric with ∂ψ

∂ν
= 0 on ∂�. Then

�ψ(x · ∇ψ) ∈ L1(�) with
∫

�

�ψ(x · ∇ψ) = n − 2

2

∫
�

|∇ψ |2. (4.16)

Proof. see [29, Lemma 5.8] �

For the next estimate, we particularly need condition (1.19).
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Lemma 4.8. Assume that � = BR(0) ⊂ R
n for some n ≥ 3 and R > 0, that (1.2),

(1.3) and (1.17) are satisfied and suppose that (1.19) holds with some μ > 0 and
K�G > 0. Moreover, assume that (u, v) is a radial global weak energy solution of
(1.1) such that (4.4) holds for some p > 2n

n+2 , and let (tk)k∈N as well as u∞ and v∞
be as in Lemma 4.3. Then u∞(x · ∇v∞) belongs to L1(�) with

−
∫

�

u∞(x · ∇v∞) ≤ n
∫

{u∞≥1}
�(u∞) + 2R

∫
�

|∇v∞|. (4.17)

Proof. see [29, Lemma 5.7] and notice that (1.19) implies [29, (1.20)] �

Finally, we are in a position to prove that the initial energy F(u0, v0) is bounded
from below by a constant depending on the initial mass m = ∫

�
u0.

Lemma 4.9. Assume that � = BR(0) ⊂ R
n for some n ≥ 3 and R > 0, that (1.2),

(1.3) and (1.17) are satisfied, and suppose that (1.19) holds with some μ > 0 and
K�G > 0. Then for all m > 0 there exists C(m) > 0 with the property that if (u0, v0)
complies with (1.3) and (1.17) and is such that

∫
�
u0 = m, and if (1.1) admits a

radial global weak energy solution of (1.1) fulfilling (4.4) with some p > 2n
n+2 , then

necessarily

F(u0, v0) ≥ −C(m). (4.18)

Proof. With μ > 0 and K�G > 0 taken from (1.19), we fix η ∈ (0, 1) small enough
such that n − 2− μ ≤ (n − 2)(1− η), and employ a Poincaré inequality in choosing
c1 > 0 suitably large such that

( 2R2

(n − 2)2η
+ 1 − η

2

) ∫
�

ψ2 ≤ η

8

∫
�

|∇ψ |2 + c1 ·
{∫

�

|ψ |
}2

for all ψ ∈ W 1,2(�).

(4.19)

We then suppose that m > 0 and that (1.3) and (1.17) hold with
∫
�
u0 = m, and that

(u, v) is a radial global weak energy solution of (1.1) which satisfies (4.4) with some
p > 2n

n+2 . Letting (u∞, v∞) be as provided by Lemma 4.3, we first observe upon
taking ψ ≡ 1 in (4.11) that due to (4.10) we have

∫
�

v∞ =
∫

�

u∞ =
∫

�

u0 = m, (4.20)

and that since v∞ ∈ W 2,p(�), a standard argument applied to (4.11) shows that
�v∞ = v∞ − u∞ a.e. in �. As a consequence of Lemma 4.7, multiplying this by
x · ∇v∞ and integrating over � yields the identity

n − 2

2

∫
�

|∇v∞|2 =
∫

�

v∞(x · ∇v∞) −
∫

�

u∞(x · ∇v∞), (4.21)
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in which thanks to Lemma 4.8 and Young’s inequality,

−
∫

�

u∞(x · ∇v∞) ≤ n
∫

{u∞≥1}
�(u∞) + 2R

∫
�

|∇v∞|

≤ n
∫

{u∞≥1}
�(u∞) + (n − 2)η

4

∫
�

|∇v∞|2 + 4R2|�|
(n − 2)η

.

As furthermore, again by Young’s inequality, and by (4.19) and (4.20),

1

n − 2

∫
�

v∞(x · ∇v∞) + 1 − η

2

∫
�

v2∞

≤ η

8

∫
�

|∇v∞|2 +
( 2R2

(n − 2)2η
+ 1 − η

2

) ∫
�

v2∞

≤ η

4

∫
�

|∇v∞|2 + c1 ·
{∫

�

v∞
}2

≤ η

4

∫
�

|∇v∞|2 + c1m
2,

from (4.21) we thus obtain that

1

2

∫
�

|∇v∞|2 + 1 − η

2

∫
�

v2∞ = 1

n − 2

∫
�

v∞(x · ∇v∞) + 1 − η

2

∫
�

v2∞

− 1

n − 2

∫
�

u∞(x · ∇v∞)

≤ η

4

∫
�

|∇v∞|2 + c1m
2

+ n

n − 2

∫
{u∞≥1}

�(u∞) + η

4

∫
�

|∇v∞|2

+ 4R2|�|
(n − 2)2η

,

which is equivalent to the inequality

1

2

∫
�

|∇v∞|2 + 1

2

∫
�

v2∞ ≤ n

(n − 2)(1 − η)

∫
{u∞≥1}

�(u∞) + c1m2

1 − η

+ 4R2|�|
(n − 2)2η(1 − η)

.

Since (4.11) ensures that

∫
�

u∞v∞ =
∫

�

|∇v∞|2 +
∫

�

v2∞,

through (4.15), (1.19) and (4.20) this reveals that
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F(u0, v0) ≥ F(u∞, v∞)

= −1

2

∫
�

|∇v∞|2 − 1

2

∫
�

v2∞ +
∫

�

G(u∞)

≥ − n

(n − 2)(1 − η)

∫
{u∞≥1}

�(u∞) − c1m2

1 − η

− 4R2|�|
(n − 2)2η(1 − η)

+
∫

�

G(u∞)

≥
(
1 − n − 2 − μ

(n − 2)(1 − η)

) ∫
�

G(u∞) − nK�Gm

(n − 2)(1 − η)

− c1m2

1 − η
− 4R2|�|

(n − 2)2η(1 − η)
,

because G is nonnegative. As 1 − n−2−μ
(n−2)(1−η)

≥ 0 according to our restriction on η,

this establishes (4.18) with C(m) := nK�Gm
(n−2)(1−η)

+ c1m2

1−η
+ 4R2|�|

(n−2)2η(1−η)
. �

In contrast to the previous result, it is already known that there are initial data such
that F(u0, v0) is arbitrarily small provided that (1.18) is fulfilled with some α > 2

n .

Lemma 4.10. Assume that � = BR(0) ⊂ R
n for some n ≥ 3 and R > 0, and

suppose that (1.18) holds with some α > 2
n and KSD > 0. Then for each m > 0 and

C > 0 one can find functions u0 and v0 fulfilling (1.3) and (1.17) as well as
∫
�
u0 = m

and

F(u0, v0) < −C.

Proof. This has been verified by means of an explicit construction in [26, Lemma
4.1]. �

The previous two results finally show that Theorem 1.2 is valid.

Proof of Theorem 1.2. This statement is an immediate consequence of Lemma 4.9
when combined with Lemma 4.10. �
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