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A critical exponent in a quasilinear Keller-Segel system with
arbitrarily fast decaying diffusivities accounting for volume-filling
effects

CHRISTIAN STINNER AND MICHAEL WINKLER

Abstract. The quasilinear Keller-Segel system

ur =V - (Dw)Vu) — V- (S(u)Vv),
vy =Av—v+u,

endowed with homogeneous Neumann boundary conditions is considered in a bounded domain Q C R”,
n > 3, with smooth boundary for sufficiently regular functions D and S satisfying D > 0 on [0, c0), S > 0
on (0, c0) and S(0) = 0. On the one hand, it is shown that if % satisfies the subcritical growth condition

S 2
© <Cs* foralls >1 withsomea < —
D(s) n

and C > 0, then for any sufficiently regular initial data there exists a global weak energy solution such

that ess sup;~ o lu(®)llLr (@) < oo for some p > 2—”2 On the other hand, if % satisfies the supercritical

n+
growth condition

56) >cs®  foralls >1  with some o > %

D(s) n
and ¢ > 0, then the nonexistence of a global weak energy solution having the boundedness property stated
above is shown for some initial data in the radial setting. This establishes some criticality of the value @ = %
for n > 3, without any additional assumption on the behavior of D(s) as s — 00, in particular without
requiring any algebraic lower bound for D. When applied to the Keller—Segel system with volume-filling
effect for probability distribution functions of the type Q(s) = exp(—sﬁ ), s > 0, for global solvability the
exponent B = =

- 2 is seen to be critical.

1. Introduction

In this work, we consider the quasilinear Keller—Segel system

uy =V-(Dw)Vu) = V- (Sw)Vv), x € 2, t > 0,
vy =Av—v+u, xe, >0,
D)3 — Sw)dr =& =0, x €0Q, t >0,
u(x,0) =up(x), v(x,0)=wvo(x), x €,

(1.1)
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where Q@ C R”, n > 3, is a bounded domain with smooth boundary and outward unit
normal v on 0€2,

D € C%([0, 00)) is such that D > 0 on [0, 00)  and (1.2)
S € C2([0, 00)) satisfies S(0) = 0 and S > 0 on (0, c0), '
and where
up € WHo°(Q) is such that ug > 0 in 2 and (13)
vg € W1 (Q) is nonnegative. '

Systems of this type are quite often used to model the dynamics of chemotactically
moving biological populations with density u = u(x, ) that are attracted by a chemical
signal v = v(x, ) which they produce themselves. The analytical study of these
systems was initiated by Keller and Segel in [19]. Particular variants of the quasilinear
system (1.1) are the volume-filling models introduced in [22], which reflect that the
ability of cells to move is decreased in regions with high cell densities as there is less
space available due to the positive cell volume. For more details about the modeling
of Keller—Segel systems, we refer to [30] and the surveys [1,15,16].

Concerning the question whether classical solutions to (1.1) are global and bounded
or blow-up phenomena occur, it is known that the quotient % of the chemotactic
sensitivity function S and the diffusion rate D is important. More precisely, assuming
thatn > 3 and (1.2) and (1.3) are satisfied, the following results have been established.
If

S 2
(5) <Cs* foralls >1 withsomea < —, (1.4)
D(s) n

and C > 0, then any solution to (1.1) is global and bounded, provided that the diffu-
sivity D(s) has an algebraic lower bound as s — oo in the sense that

D(s) >cs™? foralls > 1 (1.5)
with some p > 0 and ¢ > 0 (see [18,24] and also [2,7,20,21,23]).

However, if % grows faster than s?/” as s — oo in the sense that, e.g.,

lim inf
§—>00

S /!

s(5) (s 2

%>— =co Wwithsomeoa > —
) (s) n s—oo  D(s) n

(1.6)

and ¢y > 0, then in the radial setting unbounded solutions to (1.1) exist without any
restriction on the behavior of D as s — 00 (see [26]); in such cases, only some small-
data solutions are known to exist globally ([12,13]). In addition, for the prototypical
choice D(s) = (s+ 1) 7 and S(s) = s(s + )7~ 1,5 > 0, aregime for the parameters
P, q € Rfor which the blow-up takes place in finite time, and another regime leading to
blow-up in infinite time, have been identified (see [8,9,28]). Various results in a similar
flavor have been obtained for some parabolic—elliptic simplifications ([3,5,6,14,21]).
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Concerning the question whether in case of (1.4) the solution to (1.1) is still global
and bounded if (1.5) is violated, only some partial answers are available in the liter-
ature. If (1.4) and

Kie ™S < D(s) < Kpe ?™S  foralls >0

for some K1, K, > 0 and B~ > B are fulfilled, then in case of n = 2 and 8% > 0
all solutions to (1.1) are global and bounded, while in case of n > 3 and B+ > 0
the global existence and boundedness has only be shown if the initial mass fQ uop is
small enough (see [10,11]). In addition, if 5~ > 0 and there is ¥y < 0 such that

y € (BT —B7)/2,B7/2) and

5() < Ce’® foralls >0,

D(s)
i.e. (1.4) is satisfied, only the global existence, but not the boundedness of the classical
solution to (1.1) has been shown in [27].

In view of these results for exponentially decaying D, it seems to be questionable
that in case of n > 3 and (1.4) the global existence and boundedness of any classical
solution to (1.1) are valid without any restriction on the behavior of D for s large.
Hence, it is the purpose of the present work to establish a type of global solvability
for (1.1) which is valid for all initial data as soon as (1.4) holds and which is violated
for some initial data if > > grows at least like s* with some o > 3 as s — oo. We
prove that in fact these results are true for the global weak energy solutlons defined in
Definition 2.2 below. To the best of our knowledge these are the first results showing
that @ = % is critical in (1.4) for global solvability without any assumption on the
behavior of D for s large and in particular without assuming an algebraic lower
bound for D. By applying our results to the volume-filling model introduced in [22],
we further identify a critical exponent for global solvability in case of exponentially

decreasing probability distribution functions.

Main results.
In order to state our main results, we define the functions

_SG)
h(s) := D)’ s >0, (1.7)
and
G(s) —/ / ‘ch‘; 5 >0, (1.8)
as well as
= [ 24 0 (1.9)
s .—/; o) s > 0. .

If (1.10) and (1.12) hold, our first result establishes the existence of a global weak
energy solution for all initial data without any assumption on the behavior of D for s
large.
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Theorem 1.1. Let n > 3 and Q C R" be a bounded domain with smooth boundary,
and let D and S be such that besides (1.2) we have

S
D((ss)) < ksps® foralls > 1, (1.10)
and
D(s) < Kp foralls >0 (1.11)

with some ksp > 0, Kp > 0 and

o< —. (1.12)
n
Then for any choice of (ug, vo) fulfilling (1.3), the problem (1.1) possesses at least
one global weak energy solution in the sense of Definition 2.2 below, which has the
additional properties that

u € Npsy L (@ x[0,00) N LE, ([0, 00); WH(Q))  and (1.13)
v € L, ([0, 00); W>3(Q)), '
that
u>0andv > 0a.ce in Q2 x (0, 00), (1.14)
and that
ess sup/ (1) < 00 (1.15)
t>0 Q
as well as
9
esssup/ Vo, 0|7 <oo  forallg € [1, ”(—O‘)) (1.16)
>0 Q n+oa-—2
Moreover, if 2 = Br(0) with some R > 0 and
ug and vg are radially symmetric with respect to x = 0, (1.17)

then (u, v) even is a radial global weak energy solution of (1.1) according to Defini-
tion 2.2.

Let us remark that the assumption (1.11) of the boundedness of D can be relaxed
(by using some more involved arguments in some of the proofs). However, as we
are focused on functions D decaying fast as s — o0, (1.11) does not seem to be a
restriction of our result.

If (1.18) instead of (1.10) is satisfied, we establish the nonexistence of a global weak
energy solution satisfying (1.21) for some initial data in the radial setting.
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Theorem 1.2. Letn > 3, R > 0 and Q = Br(0) C R", and suppose that D and S
comply with (1.2) and are such that

S
D((SS)) > Ksps®  foralls > 1, (1.18)

and that the functions £ and G defined in (1.9) and (1.8) satisfy

n—2—u
L(s) < ————G(s)+ Kegs  foralls > 1 (1.19)
n
with some
2
o> — (1.20)
n

and some u > 0, Ksp > 0 and K¢g > 0. Then there exist initial data (ug, vo) such
that (1.3) and (1.17) hold, but that (1.1) does not possess any radial global weak
energy solution (u, v) which is such that

esssup/ uf (-, 1) < 00 (1.21)
Q

t>0

2n
for some p > =55,

In view of n > 3, wehave2 — o > 112% foralla < % Hence, Theorems 1.1 and 1.2
show that o = % is indeed critical for the existence of global weak energy solutions
to (1.1) satisfying (1.21) for all initial data.

Next we apply these results to concrete choices of D and S with D decaying faster

than algebraically.

Corollary 1.3. Letn > 3 and Q2 C R" be a bounded domain with smooth boundary,
and let

D(s) :=a(s + 1) Pe ™" Ss)i=ess+ DT e, s3>0, (1.22)

with some constants p,q € R, 8 > 0,8 >0,and a,b,c,d > 0.

(i) Ifeither B =6, b=dand p+q < %orﬂ =d8andb < d or B < 4§ is satisfied,
then for any choice of (ug, vo) fulfilling (1.3), the problem (1.1) possesses at
least one global weak energy solution which satisfies in addition (1.13)—(1.16)
as well as (1.21) for some p > HZ%

(ii) Ifeither B =6, b=dand p+q > %orﬂ =S8andb > d or B > 4 is satisfied,
then for Q = Br(0) with some R > 0 there exist initial data (ug, vo) such that
(1.3) and (1.17) hold, but that (1.1) does not possess any radial global weak

energy solution (u, v) which satisfies (1.21) for some p > ’12%

If the two exponential terms in (1.22) coincide, the exponent p + g = % is critical
for the existence of global weak energy solutions. The same exponent is known to be
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critical in case of B = § = 0 for the existence of global bounded solutions (see, e.g.,
[18,24,26]).

We further consider the case of Keller—Segel systems with volume-filling effect,
which are particularly relevant in applications and were introduced in [22]. This cor-
responds to the choice

D(s) := Q(s) —sQ(s), S(s) :=s50(s), s >0, (1.23)

where Q(s) represents the probability that a cell, which is located at a spatial position
with cell density s, finds space in some neighboring site. In view of the original choice
of Q in [22] such that Q(s) = O for all s large, it is favorable to choose Q decaying
fast as s — oo in order to reflect that cells can hardly move in presence of large cell
densities. For exponentially decaying Q, we have the following result.

Corollary 1.4. Let n > 3 and 2 C R" be a bounded domain with smooth boundary,
and let D and S satisfy (1.23) with Q(s) := ae=" with some positive constants a, b
and B, i.e.,

D(s) :=ae ™" (1+b8sP),  S(s):=ase™®’, s3>0 (1.24)

(i) If B > %, then for any choice of (ug, vo) fulfilling (1.3), the problem (1.1)
possesses at least one global weak energy solution which satisfies in addition
(1.13)—(1.16) as well as (1.21) for some p > nz%

(ii) If B € (0, ”n;z), then for Q = Bg(0) with some R > 0 there exist initial data
(uo, vo) such that (1.3) and (1.17) hold, but that (1.1) does not possess any radial
global weak energy solution (u, v) which satisfies (1.21) for some p > nz%

This shows that for exponentially decreasing Q the decay Q(s) := ae?" with
B = ”n;z is critical in the volume-filling model for the existence of global weak
energy solutions in case of n > 3. The situation is quite different for n = 2, since
there the algebraic decay Q(s) = (1+s)~" has been shown to be critical for arbitrary
y > 0 (see [9)]).

This paper is structured as follows: In Sect. 2, we give the definition of global weak
energy solutions of (1.1). In particular, these solutions satisfy a slightly different energy
inequality as compared to the energy identity commonly used in related problems. In
Sect. 3, we prove the existence of a global weak energy solution of (1.1) as claimed
in Theorem 1.1. To this end, we use approximate problems for (1.1) depending on
a parameter ¢ € (0, 1) such that the diffusivity D, is uniformly positive for fixed ¢.
For the global classical solutions to the approximate problem, we prove a series of
estimates which do not depend on ¢. In order to establish some of these estimates on
the whole time interval (0, co), properties of the energy are proved and used. Finally,
we establish the existence of a global weak energy solution to the original problem by
a compactness argument relying on the Aubin—Lions lemma. In Sect. 4, we prove the
nonexistence of a global weak energy solution satisfying (1.21) in the radial setting
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as claimed in Theorem 1.2. Assuming the existence of such a solution, we prove its
convergence to a generalized stationary solution of (1.1) as t — oo and use this to
show that the initial energy F (ug, vo) is bounded from below by a constant depending
on the initial mass m = fQ uo. As the existence of initial data with initial energy
smaller than this lower bound is already known, a global weak energy solution having
the claimed properties cannot exist for these initial data.

2. Definition of global weak energy solutions

In order to define global weak energy solutions of (1.1), we start with the following
elementary observation concerning some terms used in Definition 2.2 below.

Lemma 2.1. Assume (1.2), and let

Ks .| W s e [0, 1],
3(s) = 2.1
(s) SO e @1
S(s)+1  h(s)+1° 4

where h is defined in (1.7) and Ks := % € (0,1). Then = € C°([0, 00)) with
2(s) > Oforall s > 0, and we have

Ez(s) <S8(s) and X(s) <1 foralls >0 2.2)
as well as
2(s)
o) <1 foralls > 1 2.3)
and
h(s)

sup < 00. 2.4)
se(0,1) 2(5)

Proof. In view of (1.2) and (1.7), we have & > 0 in (0, c0) and #(0) = 0. Hence, we
immediately obtain (2.2), (2.3), £ > 0 in (0, 00), and the continuity of X in view of
the choice of Kx. Moreover, the positivity of D in [0, 1] and

h(s)  /S(s)(S(s)+ 1)
S(s) K D(s)

. se(0 1),

imply (2.4). 0

Next we define global weak energy solutions of (1.1) with a concept similar to the
one in [29, Definition 4.2]. Let us remark that the dissipation rate D used in the energy
inequality (2.7) slightly differs from that commonly used in related problems (see,
e.g., [26]), as we use X instead of VS in (2.9).
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Definition 2.2. Assume (1.2) and let ug € L'(2) and vy € W2(Q) be nonnegative,

and suppose that

([0, 00); WEH(Q))  and
(10, 00); W12(Q))

1
u e Lloc

1
v E Lloc

are nonnegative functions such that

D(u) € L},.(2 x [0, 00)),

that
D(u)Vu and S(u)Vv liein L} (2 x [0, 00); R")
and
X (u) ) =
mvu € Ll()c(Q x [0, 00); Rn),
and that

v € L7.(Q2 x [0, 00)),
and that there exists a null set N, C (0, co) such that

v(, 1) € WhA(Q), u(, v, 1) e LY(RQ)
and Gu(-,1) € L'(Q) foralls € (0,00) \ N,.

Then, (u, v) will be called a global weak energy solution of (1.1) if

—/Oofuw,—/u()(p(',O):—/w/D(u)Vu-V(p—i—/oofS(u)Vv-
0 Ja Q 0o Ja 0 Ja

and

00 00 0 00
I A A A0 VT
0 Q 0 Q 0 Q 0 Q

forall ¢ € C§°(Q x [0, 00)), if esslim;\ o [[v(-, 1) — voll 12(qy = O, and if

t
Fu(-,t),v(-, 1)) +/ D(s)ds < F(ug, vg) for all t € (0, 00) \ Ny,
0

where

1 1
f(¢,w):=—/|W|2+—/w2—/¢w+/6<¢>
2 Q 2 Q Q Q

for ¢ € L'(Q) and v € W2(Q) such that ¢ > 0 a.e. in 2,

<

%
2.5)

(2.6)

2.7)

2.8)
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and where

Vu(-, 1) 2
D(t) —/ 2 (., t)+/ 'w( t))h(( oy~ SWe Vo)L 1> 0,
2.9)

If furthermore u(-, t) and v (-, t) are radially symmetric with respect to x = 0 for all
t € (0,00) \ N,, then we say that (u, v) is a radial global weak energy solution of

(1.1).

3. Global existence. Proof of Theorem 1.1

In this section, we prove the existence of a global weak energy solution of (1.1),
provided that the requirements stated in Theorem 1.1 are satisfied. Without loss of
generality, we may assume that (1.10) is satisfied with some « € [0, %), since in case
of o < 0 it is fulfilled for @ = 0 as well. In order to have a uniformly parabolic PDE
for u, we consider the approximate problem

Uy =V - ((D(ug) + 8)Vu8) — V(S V). x €Q, 1> 0,

Ug[ZAUg_Ug+ug, XGQ, t>0, (3 1)
dug _ dve _ x€ed,t>0 '
v v ’ ’ ’
ug(x,0) =up(x),  ve(x,0) =vp(x), x € Q,

fore € (0, 1).

The existence of a global classical solution to (3.1) satisfying the usual energy
identity (3.3) below is a well-known result. We emphasize the difference between the
definition of the dissipation rates D, in (3.5) and D in (2.9).

Lemma 3.1. Supposethat(1.2),(1.10)and(1.11)holdwithsome o € [0, r%), ksp >0
and Kp > 0, and assume (1.3). Then for each € € (0, 1), the problem (3.1) admits a
global classical solution (ug, ve) with

uy € COUQ x [0,00) N CE(Q x (0,00)) and
ve € =1 €210, 00); WH(2)) N C>1(Q x (0, 00)),

which is such that u, > 0 and v, > 0in Q x [0, 00), that
/ ug(-, 1) = / ug forallt > 0, 3.2)
Q Q

and suchthat if Q = Br(0) withsome R > 0, and if (1.17) holds, then (us (-, t), ve (-, t))
is radially symmetric with respect to x = 0 forallt > 0 and ¢ € (0, 1).
Moreover, this solution satisfies

t
Feus (-, 1), v (-, 1)) +f De(s)ds = Fe(uo,vo)  forallt >0,  (3.3)
0
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with
1 2 1 2
Felo, ¥) =3 V| +§ Yo = | oY+ | G:(¢),
Q Q Q Q
for ¢ € LY(2) and v € WH(Q) such that ¢ > 0 a.e. in Q, (3.4)
and
. 2
D (t) :=/ vﬁ,(-,t)+/ ‘JS(ug(-,t)M—\/S(ug(-,t))Vvsc,t) . t>0,
Q Q he(ug (-, 1))
(3.5)
where
G.(s) :=/ / drdo 0. ec 0. 1), (3.6)
1 J1 he(T)
with
S
he(s) = tors 0, £ € (0, 1). (3.7)

Proof. Since for each fixed ¢ € (0, 1) the function 0 < s +— D(s) + ¢ is bounded
from above and below by positive constants, in view of the observation that clearly
% < ksps® forall s > 1 and ¢ € (0, 1) the statements concerning existence
follow from a well-established approach toward global existence in quasilinear Keller—
Segel systems ([24], [18]). The identities (3.2) and (3.3) can thereafter be derived by

straightforward computation (see, e.g., [26, Lemma 2.1]). O

3.1. Estimates for the approximate problems

We prove several estimates, which do not depend on ¢ € (0, 1), for the solutions to
(3.1) and start with a standard estimate for v,.

Lemma 3.2. Suppose that (1.2), (1.10) and (1.11) hold with some a € [0, %), ksp >0
and Kp > 0, and assume (1.3). Then, forall q € [1, n”Tz) there exists C(q) > 0 such
that

lveC.DllLa@y < Clq)  forallt >0 ande € (0, 1), (3.8)

Proof. This follows from (3.2) and well-known regularization features of the Neumann
heat semigroup in a standard manner (cf. e.g. [17, Lemma 4.1]). O

In conjunction with an appropriate testing procedure and smoothing properties of
the Neumann heat semigroup, the previous result implies bounds for u;.
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Lemma 3.3. Suppose that (1.2), (1.10) and (1.11) hold with some o € [0, %), ksp >0
and Kp > 0, and assume (1.3). Then there exists po > 2 with the property that for
all p > po and each T > 0 one can find C(p, T) > 0 such that

T
f f ul=2\Vu)?> < C(p,T) foralle € (0,1) (3.9)
0 Q
and
T
/ / u? < C(p,T) foralle € (0,1). (3.10)
0 Q

Proof. We pick any r > max{7, 2} with % > o — % and may then use our assumption
o< % to choose pg > 2 such that

222D 3.11)
= v ora > .
« n  r(2—n+np) p=ro
and
20D 1 (3.12)
= Z ora > .
r(2—n+np) n b=1ro
as well as
2 2
il < " for all p > po (3.13)
p n-—
and
2
p>3—~- for all p > po (3.14)
-
as well as
) 200 — 2 2 2 4(r — 1
(n )(p +2a )<1+————L for all p > py.
np n r r2—n+np)
(3.15)

Then fixing any p > po, from the restriction py > 2 we particularly know that

_r(2—n+np)

no—1) (3.16)

satisfies A > 1, whereas (3.12) and (3.11) along with our requirement » > 2 warrant
that

2 2 40r —1) 2 2 2 2 r—2
I+---—— > 14+ - — - =1--= >0
n r r2—n+np) n r n r r
and that
2 4 4(r — 1) 2 2
20— —+1—-< ———}—— 1—-
r n r(2—n+np) n r
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2 2 4(r—1)
=1+--—--——
n r r2—n+np)

As, moreover, (3.14) together with o > 0 implies that
2 2
20 ——+1——-<p+20—-2
n r

as well as

r—2

<p—2<p+2a-2,

in view of (3.15) and % >o— % itis possible to select some 6 > 1 fulfilling 6 < -5
as well as

2 2 -2 200 — 2 1
max{2a——+1——,(n )(p + 20 )}<5
n

r np
'{1+2 2 dr—1 ) 2} (.17
< min - a—2f. .
n or r(2—n+np)p

We now rely on (1.10) and the fact that o < % < 1to find ¢; > 0 such that

S(s) <cy1s¢ foralls > 0,
D(s)

and introducing

s ro .p—2
D (s) ::/ / ‘C dtdo, s >0,
o Jo D(1)

we integrate by parts in (3.1) and use Young’s inequality to see that

4 P (ue) = —/ <1>”(ua)(D(us)+8)|Vua|2+/ " (ue)S(us) Vg - Ve
Q Q

dt Jq
D S
- _/ 7(”8)+8u§*2|w8|2+/ w220 g gy,
o D(u) Q D(ue)

_ _o S(ug)
- =2y, 2 P28 gy
/;_zug [Vug| +/;’% D(us) Ug e

1 2
—ff uf_2|Vu5\2+c—1/ ult2¢=21yy, > forallz > Oande € (0, 1).
2 Ja 2 Ja

IA

Since @ is nonnegative, fixing 7 > 0 we thus infer that with ¢; := ”72 fQ ®(up) and

2.2
C
c3 = p4—1 we have

T » T
[ IVul|? < e +C3/ / ult22=2 vy 12 foralle € (0, 1), (3.18)
0 Q 0 Q

where we use that 6 > 1 in applying the Holder inequality to obtain that
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T

/ /ué’“""ﬂvmz

0 JQ

T
+2a—2
< /0 llue -, 17

2
L(])+2a72)0(Q)”Vv8( s Z)”L%(Q)dl
T
200—2
s{ sup Ve, DII% 5 }f lue G, OIET>
1€(0,T) LO-T(Q) 0

L(p+2a72)9(9)d1 forall e € (0, 1).
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We nextrely on the inequality < -* in employing well-known smoothing properties
of the Neumann heat semigroup (e’“);>¢ on € as well as again the Holder inequality
to find ¢4 > 0 such that
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forall e € (0, 1), (3.20)
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being finite, because by (3.16) and the second inequality in (3.17),
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and that due to both inequalities in (3.17) and the fact that p > 2,

2 2(p+2a—20 2(p+2a-—-2) np 2n
—_ < < . = .
p p P n=2)(p+2a—-2) n-2

Therefore, two applications of the Gagliardo—Nirenberg inequality together with (3.2)
provide c¢ > 0, ¢7(T) > 0 and cg > 0 such that
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and that, similarly,
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with x := %. Since (3.16) along with the first restriction contained in

(3.17) ensures that

4 N 4n(r —1) 2n(p +2a —2) 2n 1
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and that particularly also ¥ < 2, we may combine (3.19)-(3.22) with the Holder
inequality and Young’s inequality to infer the existence of positive constants co(7),
c10(T) and c11(T) such that
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Consequently, (3.18) implies that

T 2
/ / [Vu? |2 <2c)+2c11(T) foralle € (0,1)
0 Q
and thus, in view of a Poincaré inequality and (3.2), establishes both (3.10) and
3.9). O

Using once more the properties of the heat semigroup, we obtain a bound for Vv,
in L.

Lemma 3.4. Suppose that (1.2), (1.10) and (1.11) hold with some o € [0, %), ksp >0
and Kp > 0, and assume (1.3). Then for all T > 0 there exists C(T) > 0 such that
[Vug(x, )| < C(T) forallx € 2,t € (0,T)ande € (0, 1). (3.23)

Proof. We fix any p > n + 2 and once more recall known smoothing properties of
the Neumann heat semigroup (e’ ) >0 on 2 to find ¢; > 0 such that for all # > 0 and
g€ (0,1),

t
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0
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A

Here by the Holder inequality, for all # > 0 and ¢ € (0, 1) we have

2 lug (-, )l Lr(yds
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t (_l_i)‘L pT ! p v
< (t —s) 27w 1 s : e Co N ppds
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_l_ny _p_ . . .
whence observing that fOT o272 77140 is finite due to our restriction on p we
obtain (3.23) as a consequence of Lemma 3.3. O

This further implies a bound for the cross-diffusion term.

Lemma 3.5. Suppose that (1.2), (1.10) and (1.11) hold with some o € [0, %), ksp >
0 and Kp > 0, and assume (1.3). Then for all p > 1 and T > 0 one can find
C(p,T) > 0 such that

T
/ / |S(ue)Voe|? < C(p, T) foralle € (0,1). (3.24)
0 Q
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Proof. Since (1.10) along with (1.11) asserts that with some ¢; > 0 we have
SP(s) <cy-(sP*+1) foralls >0,
this is an immediate consequence of Lemma 3.3 and Lemma 3.4. O
3.2. Further estimates involving the energy
In order to obtain estimates for u. and v, on the whole time interval (0, co), we

use the energy identity. The next two results provide a lower bound for the Lyapunov
functional F.

Lemma 3.6. Suppose that (1.2), (1.10) and (1.11) hold with some o € [0, %), ksp >0
and Kp > 0, and assume (1.3). Then there exists C > 0 such that with (G¢)ec(0,1) aS
in (3.6),

1
Ge(s) > el L (s+1) foralls >0ande € (0,1). (3.25)
Proof. According to (3.6) and (1.10), for each s > 1 and ¢ € (0, 1) we have
1 s o
Gels) > — f / tdrdo
ksp Ji ' Ji
1 s ]

~ ksp( —a) { 2—«
>cos2 = (s+ 1)

—s+1}

: N 1 N 1
with Ccl = Tsp(—a)2—a) and Ccy) = Tsp(—a)° As furthermore

2—«a

Go(s) —c1s7% > —¢ys > —c; foralls € (0,1) and any ¢ € (0, 1),

this entails (3.25) with C := max{i c1, ¢} ]

c’?

Lemma 3.7. Suppose that (1.2) (1.10) and (1.11) hold with some o € [0, %), ksp >0
and Kp > 0, and assume (1.3). Then there exists C > 0 such that with (F¢)ee(0,1)
and (G¢)ee(0,1) taken from (3.4) and (3.6), we have

Fe(ue(-, 1), v:(-, 1)) > %/ Ge(ug(-,1)) —C  forallt > 0ande € (0, 1).
Q
(3.26)

Proof. We first employ Lemma 3.6 to find ¢; > 0 and ¢ > 0 such that for all
ee(0,1),

Go(s) > cis7 % —ca(s+1) foralls >0, (3.27)

and use Young’s inequality to fix ¢3 > 0 such that

Cl . »_ 2—a
— &7 eyt

> forall ¢ > 0and n > 0. (3.28)

&n <
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We then note that our assumption & < 2 < 1 warrants that 54— < 2=¢ < 2 apq
n 2(1—a) 1—« n—2

% < -, and that hence we may fix ¢ > 1 simultaneously fulfilling ¢ < -%5
and ¢ < %_;g aswell as ¢ > 5775 a), the latter implying that
2—a)n 2n
Goam a2
(1 —a)g q
This, namely, ensures that
n _ n(l-a)
q 2—a
a:=
-5+ 3
belongs to (0, 1) and moreover satisfies
2—
2-«a (g — "
1 cd = n n < 2,
—o -5+ ¢

and that hence combining the Gagliardo—Nirenberg inequality with Young’s inequality
provides ¢4 > 0 and ¢5 > 0 such that

2— — 2—«a
= e -(1—a) e
C3||1ﬂ||£ £ o) < C4||V1/f||L2(Q)||¢||Lq(Q) + C4||1/f||£q(g)
2 g %* 12
< EHVTﬂlle(Q) +osllVlia  tealvlglg forally e WHa(Q).

(3.29)

Finally, due to the restriction ¢ < "5 we may invoke Lemma 3.2 to fix ¢ > 0
fulfilling

lve (-, DllLa) <cs forallt >0ande € (0, 1). (3.30)

Now successive application of (3.28), (3.29), (3.30) and (3.27) shows that forall > 0
and € € (0, 1) we have
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so that recalling (3.2) and our definition (3.4) of F, we obtain (3.26). O
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In view of the energy identity (3.3), the previous estimate implies further useful
bounds on the time interval (0, 00).

Lemma 3.8. Supposethat(1.2),(1.10)and(1.11)holdwithsome o € [0, %), ksp >0
and Kp > 0, and assume (1.3). Then, there exists C > 0 such that with h, as in (3.7)
we have

/ ug_“(~, t)<C forallt >0ande € (0,1) (3.31)
Q
and
t
/ / v, <C forallt >0ande € (0,1) (3.32)
0 JQ
as well as
S(ug -/ S(ug) va <C forallt >0ande € (0,1)
(3.33)
! Vi, 2
Y (ug) — X(ug)Vug| <C  forallt > 0ande € (0, 1).
Q hs( 8)
(3.34)

Proof. According to (3.3), forall # > 0 and ¢ € (0, 1) we have

2
Foltts( 1), e 1) + f f vl + / / VS /S v,

h e(Ug)
= Fe(uo, vo), (3.35)
where by (3.6), writing ¢; := min, g uo(x) > 0 and ¢z := max, g uo(x) we can
estimate
1 2
Fe(uo, vo) < ¢3:= —||v0||W1 2@)

D 1 D 1
+|€2|- max / / (T)+ / f (T)+
Sty S S(r)
for all € € (0, 1), with c3 being finite by positivity of S on (0, 00). Since furthermore,
by Lemma 2.1,

2
—VSug)Vug

Y(Ug)—— — E(”s)vvs

h(s) in Q x (0, c0)

h(g)

< [Vt

for each ¢ € (0, 1), by using Lemma 3.7 and Lemma 3.6 we readily obtain (3.31)-
(3.34) from (3.35). O
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Once again the smoothing properties of the Neumann heat semigroup yield an
improved estimate for Vu,.

Lemma 3.9. Supposethat(1.2),(1.10)and(1.11)holdwithsome o € [0, %), ksp >0

and Kp > 0, and assume (1.3). Then for each q € [1, Z:i;f%) one can find C(q) > 0
such that

/ Vo (-, )9 < C(q) forallt > 0ande € (0, 1). (3.36)
Q

Proof. Since o < 2 and hence % > 2 —«a, we may assume that g > 2 —«. Then

once more relying on known regularization features of the Neumann heat semigroup
(e’A),Zo on 2, with some ¢; > 0 we have

t
||Vv8(.,t)||Lq(Q) — HVe’(Al)vo—i-/ Ve(”s)(A*“us(~,s)ds
0

L9(S2)
1

! _lom L LN
saMwwwm+q/'@+u—wzzﬁwqﬁe“”WAumpwmw
0

1 _no_1 1
forall7 > 0and & € (0, 1). As [°(1 + 0~ 27277 ¢))e % dq is finite due to the

fact that
1 n 1 1 1 n 1 n+a-—2
b Db D -
2 2\2—a ¢ 2 2\2—-—a n2-aw
the boundedness property in (3.31) thus directly implies (3.36). O

The previous results enable us to obtain another bound for Vu,.

Lemma 3.10. Suppose that (1.2), (1.10) and (1.11) hold with some « € [0, %), ksp >
0and Kp > 0, and assume (1.3). Then for all T > 0 there exists C(T) > 0 such
that

T
/ / |Vug|? < C(T) foralle € (0, 1). (3.37)
0 Q

Proof. According to (2.4), there exists ¢; > 0 such that g(&)) <cjforalls € (0, 1),

and that thus, since h, < h,

h2
LECS @ foralls € (0,1)and ¢ € (0, 1).
%2(s)

Therefore,

f/ |Viue|?
(Qx(0,T)N{us<1}

_/f h2(u)
@xO0.T)Nue <1} B2 (Uts)

2

Vug
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T \V4 . 2
SC%/ /‘Z(us)h(l)

E(us)h( ) — Z(ug)Vue

~|—2c1/ /'E(us)Vvs
~|—2c1/ /Iva|

forall T > Oand e € (0, 1), because »2 < I duetoLemma?.1. Asa consequence of
(3.34) and Lemma 3.9 when applied to g := 2, we thus infer the existence of ¢, > 0
such that

<2C1

<2Cl

(ue)

— X (ug)Vug

f/ |Vu£|2§cz~(T+l) forall T > Oand ¢ € (0, 1),
Qx(0,T)N{ue <1}

so that (3.37) readily results upon employing (3.9) in Lemma 3.3 with an arbitrary
fixed p > 2. O
The next estimate will imply the positivity of our solution to (1.1).
Lemma 3.11. Suppose that (1.2), (1.10) and (1.11) hold with some o € [0, %), ksp >
Oand Kp > 0, and assume (1.3). Then for all T > 0 there exists C(T) > 0 such that
/ Inug(-,t) > —C(T) forallt € (0,T) and any ¢ € (0, 1). (3.38)
Q

Proof. By means of the first equation in (3.1) and Young’s inequality, we see that

d D +é
— _f lnug — _/ %'VMEP +/ (us) Vug . va
dt Jq Q Ug Q I/ta

1 52
< -/ #WUSF forallz > Oand ¢ € (0, 1),
Q uz;(D(ue) + ¢)

(3.39)
where we note that according to (1.10) and (1.11),

S2(s) - S2(s)
s2(D(s) +¢&) ~ s2¢D(s) ~

kSDD(s) <cy:= kSDKD foralls > 1l and ¢ € (0, 1),

and where since S € C!([0, 00)) with S(0) = 0,

Sz(S) ”S ||L°°((O 1)
- < ()= forall s € [0, 1]and € € (0, 1).
S2(D() +e) ~ 17 mingeo Do) o1 ©D

Therefore, (3.39) implies that

d

1
7 ln U, < Zmax{cl o} / Iva| forallz > Oand e € (0, 1),

whence (3.38) follows upon a time integration using, e.g., Lemma 3.4. 0
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In order to ensure an appropriate compactness property of u., we finally need an
estimate for its time derivative.

Lemma 3.12. Suppose that(1.2), (1.10) and (1.11) hold with some o € [0, %), ksp >
Oand Kp > 0, and assume (1.3). Then there exists C > O such that

T
/O liter (D2 yroeiqyyedt <€ forall T >0ande € (0,1).  (3.40)

Proof. For fixed ¥ € W°°(Q), from (3.1) we obtain that thanks to the Cauchy—
Schwarz inequality,

'/usﬂﬁ‘ ‘ (D(Ms)+8)VMs—S(Me)VUe Vl/f‘
:\ /m{mh( ) m%}-w\
1
2
5{/95%)} {f ’w( o = VS Ve } AVl
(3.41)

forallt > 0 and ¢ € (0, 1). Since according to (1.10), (1.11) and the fact that ¢ < 1
we can find ¢; > 0 and ¢, > 0 such that

SG)<c1DBs)s+1)<cy-(s+1) foralls >0ande € (0, 1),

and therefore
/ S(ug)icz/ ug+ c2|2|  forallt > 0Oande € (0, 1)
Q Q
due to (3.2), from (3.41) we thus infer the existence of ¢3 > 0 such that

2
”uat('v t) ||(W1(X)(Q))*

\V 2
< Cgf 'N/S(u h (us) vV Sue) Vo forallr > Oand ¢ € (0, 1).
8

The claim hence results from (3.33). O

3.3. Proof of Theorem 1.1

We are now in a position to prove the existence of a global weak energy solution to
(1.1) with a compactness argument.

Lemma 3.13. Suppose that (1.2), (1.10) and (1.11) hold with some « € [0, r%), ksp >
Oand Kp > 0, and assume (1.3). Then there exists (£) jen C (0, 1) suchthatej 0,
and such that as ¢ = g \( 0 we have

g = u  ae in 2 x (0,00) andin LY (Q x [0, 00)) forall p > 1, (3.42)

loc
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(-, t) > u(-, 1) ae inQandin LP(Q) forall p > 1 and a.e. t > 0,

(3.43)
Vue = Vu  in L3, (S x [0, 00)), (3.44)
ve > v ae inQx (0,00) and in L3, (R x [0, 00)), (3.45)
Vv, > Vv a.e. in Q2 x (0,00) and in leoc(ﬁ x [0, 00)), (3.46)
Ve, 1) > v(, 1) in WhA(Q) forae t > 0, (3.47)
ve = v in L3 ([0, 00); WH(RQ)), (3.48)
S(ue)Vve = Sw)Vv  in L2 (2 x [0,00))  and (3.49)
ver = v, in L3, (Q x [0, 00)) (3.50)

with some functions u and v on Q2 x (0, 00) which are such that (1.13), (1.14), (1.15)
and (1.16) hold, that (u, v) is a global weak energy solution of (1.1) and that if
Q = Bgr(0) with some R > 0 and (uq, vo) satisfies (1.17), then (u, v) even is a radial
global weak energy solution of (1.1).

Proof. From Lemma 3.10 and Lemma 3.3, we know that

(tte)ee0.1y is bounded in L2((0, T); W'2(Q)) forall T > 0,
while Lemma 3.12 asserts that

(tter)ec(o.1) is bounded in L2((0, T); (W'°(2))*) forall T > 0.

Apart from that, (3.32) along with Lemma 3.3, Lemma 3.9 and (3.1) shows that

(Ve)ec(o.1) is bounded in L2((0, T); W>2(Q)) forall T > 0
and that

(Ver)ee(0,1) 1s bounded in LZ(Q x (0, 00)).

Two applications of an Aubin—Lions lemma ( [25, Theorem II1.2.1]) thus provide
(¢j)jen C (0, 1) suchthate; N Oas j — oo, and thatas e = ¢; N\ 0 we have (3.44),
(3.45), (3.46), (3.47), (3.48), (3.50) as well as u, — u a.e. in 2 x (0, co) with some
nonnegative functions u € LIZOC([O, 00); Wh2(Q)) and v € L%OC([O, 00): W22(Q)).
The completion of (3.42), (3.43) and (1.13) can thereafter be achieved by combining
(3.10) with the Vitali convergence theorem, whereas (3.49) follows from Lemma 3.5
and the Egorov theorem due to the fact that S(u,) Vv, — S(u)Vva.e.in Q2 x (0, 0o) as
& =g \( 0by (3.42) and (3.46). Moreover, Lemma 3.11 along with (3.42) guarantees
that

essinf/ Inu(-,t) > —oo  forall T > 0,
1e(0,7) Jo

implying that Inu > —oo and hence u > 0 a.e. in 2 x (0, co). The bounds in (1.15)
and (1.16) are consequences of Lemma 3.8 and Lemma 3.9 when combined with



J. Evol. Equ. A critical exponent in a quasilinear Keller—Segel Page 23 of 33 26

(3.42), (3.46) and Fatou’s lemma, whereas the claim on radial symmetry is evident
from Lemma 3.1, (3.42) and (3.45).

The verification of (2.5) is quite straightforward: Given ¢ € C{° (€ x [0, 00)), from
(3.1) we obtain that

—/ /um—/ 0@ (-, 0) = —/ /(D(u8>+s>wg-w
0 Q Q 0 Q

+/Oo/ S(ug)Vvg - Vo (3.51)
0 Q

for all ¢ € (0, 1), where by (3.42) and (3.49),

o0 o0
—/ /uggpt—>—/ /u(p, ase=1¢; (0
0o Ja 0o Ja

o0 o0
/ / S(us)Vve - Vo — / / S@)Vv-Ve ase=¢; \(0.
0 Ja 0 Ja

Since (1.11) along with (3.42) and the dominated convergence theorem ensures that
D(u,)+¢ — D(u)in L? (€ x [0, 00)) as & = €j \¢ 0, we furthermore have

loc

and

—/w/(D(u£)+£)Vu£-V¢—>—/OO/D(u)Vu~V(p ase =¢; (0.
0 Q 0 Q

Therefore, (2.5) results from (3.51), while (2.6) can be derived similarly using (3.50),
(3.45), (3.46) and (3.42). Moreover, esslim/\o [[v(-,7) — voll 2¢q) = 0 is a conse-
quence of (3.47).

Finally, from (3.3) and (2.2) we know that

t 5 t Vu, 2
Felug(-, 1), ve(-, 1)) + Vg + > (ug) — X (ug)Vue
0 Ja 0 Ja he(ue)
< Fe(ug,vg) forallt >0ande € (0, 1), (3.52)
where clearly
Fe(ug, vo) = F(ug,vg) ase (0 (3.53)

according to the positivity of ug in  and, e.g., the monotone convergence theorem,
because G, (s) \( G(s) forall s > 0 as ¢ \( 0. Moreover, (3.47) together with (3.43)
warrants that for a.e. t > 0,

1 2 1 2
_/ |VU8(7I)| +_/ vs("t)_/ ue(',t)vs(',t)
2 Ja 2 Ja Q

s Jrwveor g [ e |
= = | Vv, D+ = | v 0 — | u, v, 1) (3.54)
2 Ja 2 Ja Q
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as ¢ = ¢; \ 0, and that thanks to Fatou’s lemma,

/ G(u(,1)) < hmmf/ Ge(ug(-,1)) forae.t >0, (3.55)

8—61

because clearly G, (ue(-, 1)) — Gu(-, 1)) a.e.in Qforae.r > 0ase =¢; \  0due
to (1.13) and (1.14). Since, apart from that,

t
//v <hm1nf/ fvft forallr > 0
e=e;\0 Q

by (3.50) and lower continuity of the norms in L? spaces with respect to weak con-
vergence, the energy property (2.7) will thus result from (3.52)-(3.55) as soon as we
have shown that for all t > 0,

2
— X (ug) Ve

< liminf
e=¢;\0 Jo

(ua)

(3.56)

To accomplish this, we fix (xs)sc0,1) € C*°([0, 00)) such that0 < x5 < 1in [0, c0),
xs =0in [0, 3] U[3,00) and x5 = lin [8, ;] for 8 € (0, 1), and that x5 ' 1 on
(0, 00) as § N\ 0, and note that then for each fixed § € (0, 1),

X5 (ue) X (ue) x5 () X (u)

Vu, -~ ———=V Q =¢&; .
o (o) Ug 70 u loc( x[0,00)) ase=¢; (O
(3.57)
Indeed, since
0 < X5 ()X (s) - Xxs()(D(s) + DX (s)

T he(s) T S(s)

<c1(§) == max M foralls > 0and e € (0, 1),
oeld.2] S()

with ¢1(8) being finite by continuity of D, § and X, and by positivity of S on (0, c0),
it firstly follows from the dominated convergence theorem and (3.42) that

Xs(ue)Xue) x5 ()X (u)
—
he(ue) h(u)

which in conjunction with (3.44) ensures that

Xsu)Ee) o xs (W) Eu)
he(ug) ‘ h(u)

The observation that due to Lemma 3.10,

inLi (@ x[0,00) ase=¢; \/0,

Vu in L}, (2 x[0,00) ase=¢g; \,0.
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/ /‘X{S(”F)E(Us) "
se(() 1) he (ue) ’

therefore shows that indeed (3.57) holds. Since furthermore

2

T
= C%(‘S) sup / / |V145|2 <oo forallT >0
£€(0,1)J0 Q

xs(Ue)X(ug)Vo, — xs(u)X(m)Vu in L,zac(ﬁ x [0,00)) ase=¢; (O

by (3.42), (3.46) and the fact that 0 < xs(us) X (1) < 1 due to Lemma 2.1, again
based on an argument based on lower semicontinuity of the norm in L2(Q x (0, 1)),
t > 0, with respect to weak convergence, we infer from (3.57) that

' 2
5 Vu
/ fx5 (u) E(u) — X(u)Vv
0 Jo h(u)
2
<1l lmlnf/ f X3 (u,s) E(ug) — X (ug)Vug
s=¢ ( )
.. Vug
< lim inf > (u — Y (us)Vu forall § € (0,1) and ¢t > 0.
<liminf || |25 = 5 = Z) Vo, 0. 1)

Once more thanks to Beppo Levi’s theorem, on taking § N\, 0 we conclude that

//(Qx(o,t))m{u>0}
! 2

= lim/ [ ()
s Jo Jo 0

'
(ue)
Q

2

Vu
> (u) o

— X))V

2

E(u)m — X))V

< liminf forallt > O,

e=¢;\0 Jo

and that thus indeed (3.56) holds according to (1.14). O

he(ug) — Z(ug)Vue

Proof of Theorem 1.1. The claim actually is a by-product of Lemma 3.13. 0

4. Nonexistence. Proof of Theorem 1.2

In this section, we prove that for some initial data there does not exist a global
weak energy solution of (1.1) satisfying (1.21) for some p > nz% provided that the
requirements stated in Theorem 1.2 are satisfied.

We first show that each global weak energy solution has the property of mass
conservation.

Lemma 4.1. Assume that Q C R" is a bounded domain with smooth boundary, (1.2)

is fulfilled, and let (u, v) be a global weak energy solution of (1.1) with some (ug, vo)
fulfilling (1.3). Then,

f u(-, 1) =/ uy forae.t>0. “.1)
Q Q



26 Page 26 of 33 C. STINNER AND M. WINKLER J. Evol. Equ.

Proof. Let tp > 0 be a Lebesgue point of 0 < ¢ fQ u(-, t). Then since u and
J := D(u)Vu — S(u)Vv are locally integrable in Q x [0, 00), by means of a standard
approximation argument it is possible to show that (2.5) continues to hold for ¢ = g,
S > 0, where ¢s(x,t) := ¢s5(2), (x,1) € Q % [0, 00), with ¢s5(r) := 1 for ¢ € [0, fo],
Ls(t) =1— % fort € (tg, to +8) and ¢5(¢) := 0 fort > 19+ 5, § > 0. From (2.5),
we thereby obtain that

1 to+6 to+6
Ef fu—/u():—f /J~V<p5=0, 4.2)
1o Q Q to Q

where the Lebesgue point property of # ensures that % tg’“ Jou = [qu(-, 1) as

8 \¢ 0. Therefore, (4.2) yields the claim due to the fact that the complement in (0, co)
of the set of all such Lebesgue points has measure zero. O

The main step toward the claimed nonexistence result is an a priori lower bound
for F(ug, vg) if a global weak energy solution evolves from (ug, vg). We use the
strategy from [29, Sect. 5.2] which continues to hold in spite of a slightly different
solution concept. For the reader’s convenience, we give below the lemmata leading
to the announced estimate, and refer to [29] for their proofs. Next we show that v
satisfies an appropriate weak formulation of the respective PDE in (1.1) which allows
an evaluation at almost any time.

Lemma 4.2. Assume that Q@ C R" is a bounded domain with smooth boundary, (1.2)
is fulfilled, and let (u, v) be a global weak energy solution of (1.1) with some (ug, vo)
fulfilling (1.3). Then, there exist (Y1)jeny C CY(Q) and a null set N C (0, 00) such
that {Y; | | € NY is dense in W'2(2), and such that

/v,(-,rm:—/ Vv(-,n-vtm—/ o DY
Q Q Q

—i—/ u(-, )y forallt € (0,00)\ N andanyl € N. (4.3)
Q

Proof. see [29, Lemma 5.2] O

From now on, we only consider radial solutions in 2 = Bg(0) C R” for some
n > 3 and R > 0. By relying on the energy, we next show that (u, v)(¢) converges in
an appropriate large time limit to some (¢, Vso) Which is a stationary weak solution
to the second PDE in (1.1).

Lemma 4.3. Assume that 2 = Br(0) C R” for some n > 3 and R > 0, that (1.2),
(1.3) and (1.17) are satisfied, and suppose that (u, v) is a radial global weak energy
solution of (1.1) such that

ess sup/ uf (-, 1) < oo (4.4)
Q

t>0
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for some p > nz% Then with N, C (0, 0o) taken from Definition 2.2, we can find

(tt)keny C (0, 00)\ N, and nonnegative radially symmetric functions us, € LP(2)
and veo € WP (Q) such that t, — oo as k — oo, that

U, 1) = Uge inLP(Q) ask — oo 4.5)
and
supf Gu(-, t)) < oo, 4.6)
keNJQ
that
Ve, 1) = Veo in WHP(Q)  ask — oo 4.7
and
V(1) = v in WHE(Q)  ask — oo, (4.8)
and that
Vu(, ) 2
Xu(,ty)—— — Z(u(-, tx))Vo(-,tr) > 0 in L“() ask — oo.
h(u(-, 1))
4.9)
Moreover,
/ Uso = / ug (4.10)
Q Q
and
/ Ve - VI +/ Voo ¥ = f usoy  forally € WH(Q). (4.11)
Q Q Q
Proof. see [29, Lemma 5.3] Il

In order to show that (¢, Vo) is also a stationary generalized solution to the first
PDE in (1.1), we need two regularity properties of functions in Sobolev spaces.

Lemma 4.4. Assume that Q@ = Br(0) C R”" for somen >3 and R > 0, let p > 1
and g > 1 be such that (n —2p)q < np. Then, there exist C(p) > 0and C(p,q) > 0
such that if y € W>P(Q) is radially symmetric, then € C'(Q \ {0}) with

n—

VY ) = C(p) - 1V lw2r ) - W77 forallx € R\ (0) (4.12)

and

[V < Co ) 1y (4.13)
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Proof. see [29, Lemma 5.4] O

Lemma 4.5. Let I C R be an open interval, and suppose that (Y )ren C whicryis
such that as k — oo we have Yry.(r) — ¥ (r) forallr € I and W;Q — ¢in LY(I) with
some . I — R and some ¢ € CO(I). Then € C'(I) with ' = ¢ in I.

Proof. By [4, Theorem 8.2], we have (up to the choice of a continuous representative)
Y € CO(I) and
X
Yr(x) — Y (y) = / Yu(r)dr  forallx,y el
)7
and any k € N. In the limit £ — oo this implies

I/I(X)—I//(y)zfxqb(r)dr forall x,y € 1.
y

In view of ¢ € CO(I), the claim is proved. U
We now show additional properties of (¢, Vo) as announced above.

Lemma 4.6. Assume that 2 = Br(0) C R” for some n > 3 and R > 0, that (1.2),
(1.3) and (1.17) are satisfied, and that (u, v) is a radial global weak energy solution of
(1.1) such that (4.4) holds for some p > +2, and let (ty)ren as well as uso and v be
as in Lemma 4.3. Then, us € Co(ﬁ\ {0}; [0, o)) and u € clqQ \ {0D) N{ueo <
oo}) with

Vitoo = h(Uioo)Vse i (2\ {0}) N {us < 00}. (4.14)
Moreover, G(uso) € LY() and
Fioo, Voo) < F(ug, vo). (4.15)

Proof. see [29, Lemma 5.6] O

Next we show that the initial energy JF (uq, vo) is bounded from below by a constant
depending on the initial mass m = [, uo. To this end, we need two preliminary results,

the first being a useful identity, for which the condition p > 2n

) is important.

Lemma 4. 7 Assume that Q = Br(0) C R" for some n > 3 and R > 0 and suppose
that p > n+2 and that € W>P(Q) is radially symmetric with ’// = 0o0n 0. Then
Ay (x - V) € LY(Q) with

-2
/ AY(x-Vy) = HT/ V|2 (4.16)
Q Q

Proof. see [29, Lemma 5.8] ]

For the next estimate, we particularly need condition (1.19).
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Lemma 4.8. Assume that Q2 = Br(0) C R” for some n > 3 and R > 0, that (1.2),
(1.3) and (1.17) are satisfied and suppose that (1.19) holds with some > 0 and
K¢ > 0. Moreover, assume that (u, v) is a radial global weak energy solution of
(1.1) such that (4.4) holds for some p > % and let (ty)ren as well as us and v
be as in Lemma 4.3. Then ux(x - Vuso) belongs to LY(Q) with

—/ Uso (X - Vo) < n/ L(Uoso) +2R/ [Vusol. 4.17)
Q {uco>1} Q
Proof. see [29, Lemma 5.7] and notice that (1.19) implies [29, (1.20)] O

Finally, we are in a position to prove that the initial energy F(uo, vo) is bounded
from below by a constant depending on the initial mass m = [, o Uo-

Lemma 4.9. Assume that Q@ = Br(0) C R” for some n > 3 and R > 0, that (1.2),
(1.3) and (1.17) are satisfied, and suppose that (1.19) holds with some u > 0 and
K¢g > 0. Then for all m > 0 there exists C(m) > 0 with the property that if (ug, vo)
complies with (1.3) and (1.17) and is such that fQ ug = m, and if (1.1) admits a

radial global weak energy solution of (1.1) fulfilling (4.4) with some p > then

et
necessarily

F(uo, vo) = —C(m). (4.18)

Proof. With u > 0 and Ky > 0 taken from (1.19), we fix n € (0, 1) small enough
such thatn —2 — u < (n — 2)(1 — n), and employ a Poincaré inequality in choosing
c1 > 0 suitably large such that

2R - 2 =
((n_2)2 /‘/’ /Q|Vl//| +61-{/;2|1//|} forall € W*(Q).
(4.19)

We then suppose that m > 0 and that (1.3) and (1.17) hold with fQ uy = m, and that
(u, v) is aradial global weak energy solution of (1.1) which satisfies (4.4) with some
p > =5. Letting (4o, Voo) be as provided by Lemma 4.3, we first observe upon

n+2
taking ¥ = 1 in (4.11) that due to (4.10) we have

/vmzfuwz/uozm, (4.20)
Q Q Q

and that since voo € W>P(), a standard argument applied to (4.11) shows that
AvVso = Voo — Uoo a.€. In Q2. As a consequence of Lemma 4.7, multiplying this by
x - Vv, and integrating over 2 yields the identity

=/ voo(x-Vvoo)—f Uoo (X - VUso), 421
Q Q
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in which thanks to Lemma 4.8 and Young’s inequality,

—/uoo(x-woo)sn/ z(uoo>+2R/ Vool
Q (too>1) Q
4R%|Q|

(n—2)77/ 2
<n Lloo) + ————— | Vol + ——F—.
/{umzl} oo 4 Q (n—2)n

As furthermore, again by Young’s inequality, and by (4.19) and (4.20),

5 et v 5 [0
Voo(X - VU _— v
1’1—2900 o0 2 Qoo

2
n 2 ( 2R 1—n>/ 2
<11 wv
_S/gzl Voo |” + (n—2)2n+ ) QUOO
2
53/|Vvoo|2+c1-{[voo}
4 Jo Q
<

2/ |Vueo|® + cim?,
4 Ja
from (4.21) we thus obtain that

1 s, 1—=n 5 1 1—n 5
5/;2|Vvoo| + ) /S;Uoo:n_Z/QUoo(x'vvoo)‘i‘ ) /Qvoo

1
fuoo(x~Vvoo)
n—2 Q

Q/ |Vvoo|2—i—c1m2
4 Ja

n T] 2
+ f E(uoo)+—/ Vvl
n =2 Jlug=1 4 Jao

IA

4R?|Q|
(n—2)%n’
which is equivalent to the inequality
1/IV I2+1/ o < g Olue) + S
— v - v e —— u
2Jo T 2] T =20 =) Jusyy 0 1—n
4R?|Q

(n =21 —n)

Since (4.11) ensures that

/uoovoo=/ |vvoo|2+/ Ugo,
Q Q Q

through (4.15), (1.19) and (4.20) this reveals that
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.7:(”0, UO) Z f(uOCh vOO)

1 ) 1 2
=—= [ Vol == | vio+ | Guoo)
2 Ja 2 Ja Q
" 2

. E( ) cym
Z Uoo) —
n =201 =) Jussyy o 1-—

4R?|Q

e s E— G(uso
<n—m%a—nYﬁé (t00)
ZO_JlLEZﬁ_)/wayﬂ_ﬁﬁgl_
(n-2)1-n/Jq (n—2)(1 —n)
_c1m2 B 4R%|Q
l—-n (-2 -n)’

n—2—u
(n=2)(1-n)

this establishes (4.18) with C(m) := 15(6" + ;T’": + W‘;‘f% O

because G is nonnegative. As 1 — > 0 according to our restriction on 7,

In contrast to the previous result, it is already known that there are initial data such
that F (1o, vg) is arbitrarily small provided that (1.18) is fulfilled with some « > %

Lemma 4.10. Assume that Q@ = Bgr(0) C R" for some n > 3 and R > 0, and
suppose that (1.18) holds with some o > % and Ksp > 0. Then for each m > 0 and
C > 0 one can find functions ug and vy fulfilling (1.3) and (1.17) as well as fQ uy =m
and

F(ug, vg) < —C.

Proof. This has been verified by means of an explicit construction in [26, Lemma
4.1]. O

The previous two results finally show that Theorem 1.2 is valid.

Proof of Theorem 1.2. This statement is an immediate consequence of Lemma 4.9
when combined with Lemma 4.10. g
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