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Abstract. We consider the nonlocal Cahn-Hilliard equation with constant mobility and singular potential
in three dimensional bounded and smooth domains. This model describes phase separation in binary fluid
mixtures. Given any global solution (whose existence and uniqueness are already known), we prove the
so-called instantaneous and uniform separation property: any global solution with initial finite energy is
globally confined (in the L∞ metric) in the interval [−1 + δ, 1 − δ] on the time interval [τ, ∞) for any
τ > 0, where δ only depends on the norms of the initial datum, τ and the parameters of the system. We then
exploit such result to improve the regularity of the global attractor for the dynamical system associated to
the problem.
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1. Introduction and main results

We study the nonlocal Cahn-Hilliard equation (see [13,17,18])

∂tφ = �
(
F ′(φ) − J ∗ φ

)
in � × (0,∞), (1)

where � is a smooth and bounded domain in R
3. The state variable φ represents the

difference of the concentrations of two fluids. This equation is commonly rewritten
as

∂tφ = �μ, μ = F ′(φ) − J ∗ φ in � × (0,∞), (2)
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which is equipped with the following boundary and initial conditions

∂nμ = 0 on ∂� × (0, T ), φ(·, 0) = φ0 in �, (3)

where n is the outward normal vector on ∂�. The physically relevant form of the
nonlinear function F is given by the convex part of the Flory-Huggins (also known as
Boltzmann-Gibbs entropy) potential

F(s) = θ

2

[
(1 + s) ln(1 + s) + (1 − s) ln(1 − s)

]
, s ∈ [−1, 1]. (4)

The function J : R
3 → R is a (sufficiently smooth) interaction kernel such that

J (x) = J (−x). The notation (J ∗ φ)(x) stands for
∫
�
J (x − y)φ(y) dy. The system

(2–3) is a gradient flow with respect to the metric of H1
(0)(�)′, namely the dual of

H1(�) with zero mean value, associated to the free energy

ENL(φ) = −1

2

∫

�×�

J (x − y)φ(y)φ(x) dx dy +
∫

�

F(φ(x)) dx

= 1

4

∫

�×�

J (x − y)|φ(y) − φ(x)|2 dx dy

+
∫

�

F(φ(x))− a(x)

2
φ2(x) dx, (5)

where a(x) = (J ∗ 1)(x) = ∫
�
J (x − y) dy for x ∈ �. The function μ appearing in

(2) is the so-called chemical potential, which corresponds to δENL (φ)
δφ

.
The analysis of the nonlocal Cahn-Hilliard equation with logarithmic potential (20)

(actually a more general class of singular potentials) has been firstly studied in [13]
(see also [11] for another proof of existence and [15] for the viscous case). In particular,
the authors in [13] proved the existence and uniqueness of global weak solutions and
their propagation of regularity for positive times (see proof of Theorem 1 below for
more details). Such solutions satisfy

φ ∈ L∞(� × (0,∞)) with |φ(x, t)| < 1 for a.e. x ∈ �, ∀ t > 0. (6)

Such property has an important physical meaning since the solution φ takes value
in the significant interval [−1, 1] (cf. definition of φ). Concerning the regularity of
the global solutions, a main task consists in establishing L p estimates of F ′′(φ) and
F ′′′(φ), which are needed to prove the existence of classical solutions. This is a difficult
question due to the growth conditions

F ′′(s) ≤ CeC|F ′(s)|, |F ′′′(s)| ≤ CF ′′(s)2, (7)

which prevent the possibility to control F ′′(φ) or F ′′′(φ) in L p spaces in terms of some
L p norms of F ′(φ) (as possible in the case of potential with polynomial growth). How-
ever, although L p estimates of F ′′(φ) and F ′′′(φ) can be useful, this is not sufficient
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(in many cases) to prove higher order regularity, and it is necesssary to show the
instanteneous (also called strict) separation property: for any τ > 0, there exists
δ = δ(τ ) ∈ (0, 1) such that

|φ(x, t)| ≤ 1 − δ, for all (x, t) ∈ � × (τ,∞). (8)

We point out that the separation property is expected due to the gradient flow structure
of the Cahn-Hilliard model, which drives the dynamics towards stationary states con-
sisting of separated functional minima of the free energy ENL(φ). A first proof of (8)
has been established in [13, Theorem 5.2] in the two dimensional case. The argument
hinges upon an iterative Alikakos-Moser argument for the powers of |F ′(φ)| com-
bined with Gagliardo-Nirenberg interpolation inequalities and the Trudinger-Moser
inequality. A new proof of such result admitting a more general class of singular po-
tentials has been proposed in [14, Sect. 4]. The latter relies on a De Giorgi’s iterative
argument. This method is usually employed to obtain an L∞ estimate of the solution
to a second order PDE, thereby the main achievement in [14] was to recast the method
in order to get a specific bound (cf. (8) with (6)). More recently, the separation property
has been proven in three dimensions in [28], which allowed to show the convergence
to stationary states. The author in [28] improved the method in [14] in two ways: the
truncated functions φn (see proof of Theorem 1 below) are shown to be bounded by 2δ
(instead of 1 as in [14]), and a Poincaré type inequality for time-dependent functions
is employed to avoid the integrals of φn (see term Z2 in [14, Sect. 4]). However, a main
drawback of the argument, which is due to the latter ingredient, is that the value of δ in
(8) depends on the particular solution. More precisely, δ cannot be estimated only in
terms of norm of the initial data and the parameters of the system. The purpose of this
work is to demonstrate that the De Giorgi iterative scheme in [14] and the observation
‖φn‖L∞ ≤ 2δ are sufficient to achieve (8) with a value δ which depends on τ , the
initial energy ENL(φ0) and the parameters of the system (e.g. F,�, J ). Beyond its
intrinsic interest, this allows us to improve the regularity of the global attractor for the
dynamical system associated to the system (2–3).

In order to present the main results of this work, let us formulate the assumptions
for the admissible class of potentials:

(A1) F ∈ C ([−1, 1]) ∩ C2 (−1, 1) such that lim|s|→1 F ′ (s) = ±∞ and F ′′(s) ≥
θ > 0 for all s ∈ (−1, 1).

(A2) There exists ε0 > 0 such that F ′′ is monotone non-decreasing on [1− ε0, 1) and
non-increasing in (−1, 1 + ε0].

(A3) There exist ε1 ∈ (0, 1
2

)
and CF ≥ 1 such that

1

F ′(1 − 2δ)
≤ CF

| ln(δ)| ,
1

F ′(−1 + 2δ)
≤ CF

| ln(δ)| , ∀ 0 < δ ≤ ε1 (9)

and

1

F ′′(1 − 2δ)
≤ CFδ,

1

F ′′(−1 + 2δ)
≤ CFδ, ∀ 0 < δ ≤ ε1. (10)
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Remark 1. The assumptions (A1–A3) are satisfied by the convex part of the Flory-
Huggins potential (4).

The main result reads as follows

Theorem 1. Assume that (A1–A3) hold. Let J be W 1,1
loc (R3) such that J (x) = J (−x)

for all x ∈ R
3. Assume that φ0 ∈ L∞(�) such that ‖φ0‖L∞(�) ≤ 1 and |φ0| =

|�|−1
∣∣∫

�
φ0(x) dx

∣∣ < 1. Then, for any τ > 0, there exists δ ∈ (0, 1) such that the
unique global solution to (2–3) satisfies

|φ(x, t)| ≤ 1 − δ, for a.e. (x, t) ∈ � × [τ,∞). (11)

In addition, there exists three positive constants C1,C2,C3 and α ∈ (0, 1) such that

sup
t≥τ

‖μ(t)‖L∞(�) ≤ C1, sup
t≥τ

‖∂tμ‖L2(t,t+1;L2(�) ≤ C2, (12)

and

|φ(x1, t1) − φ(x2, t2)| ≤ C3

(
|x1 − x2|α + |t1 − t2| α

2

)
, (13)

for any (x1, t1), (x2, t2) ∈ �t = � × [t, t + 1], for any t ≥ τ . The values of δ,
C1,C2,C3 and α only depend on τ , δ, the initial energy ENL(φ0), the initial mean φ0

and the parameters of the system (i.e. F, J , �).

Remark 2. A combination of the separation property (11) and the Hölder regularity
(13) gives the following stronger result

|φ(x, t)| ≤ 1 − δ, ∀ (x, t) ∈ � × [τ,∞). (14)

As a direct consequence of Theorem 1, we infer additional features for the longtime
behavior of the solutions to system (2–3). Let us introduce the dynamical system
associated with problem (2–3). For any given m ∈ (0, 1), we define the phase space

Hm = {
φ ∈ L∞(�) : ‖φ‖L∞(�) ≤ 1 and − 1 + m ≤ φ ≤ 1 − m

}
(15)

endowed with the metric

d(φ1, φ2) = ‖φ1 − φ2‖L2(�). (16)

The pair (Hm, d) is a complete metric space. Then, we define the map

S(t) : Hm → Hm, S(t)φ0 = φ(t), ∀ t ≥ 0,

where φ is the global (weak) solution (see [13, Theorem 3.4]) originating from the
initial condition φ0. It was shown in [13, Sect. 4] that (Hm, S(t)) is a dissipative
dynamical system and S(t) is a closed semigroup on the phase spaceHm (see [27] for
the definition). Furthermore, the existence of the global attractor Am was proven in
[13, Theorem 4.4]. In particular, it is shown thatAm is a bounded set inHm ∩ H1(�).
Our next result is concerned with the regularity of the global attractor Am .
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Theorem 2. Let (A1–A3) hold. Assume that J ∈ W 1,1
loc (R3) such that J (x) = J (−x)

for all x ∈ R
3. Consider the connected global attractor Am associated with the

dynamical system (Hκ , S(t)). Then, Am ⊂ BL∞(�)(0, 1 − δ) and is bounded in
Cα(�).

Before proceeding with the proofs of the main results, it worth presenting a wider
picture concerning the validity of the separation property for other Cahn-Hilliard
equations. First, we recall the nonlocal Cahn-Hilliard equation with non-constant
degenerate mobility

∂tφ = div
(
(1 − φ2)∇μ

)
, μ = F ′(φ) − J ∗ φ in � × (0,∞), (17)

which is completed with (3). In this case, the separation property has been previously
proven by [23] in both two and three dimensions (see also [10]). Next, we consider
the (local) Cahn-Hilliard equation [2–4] (see also [9,26]) with constant mobility

∂tφ = �
(−�φ + � ′(φ)

)
in � × (0, T ), (18)

subject to the classical boundary and initial conditions

∂nφ = ∂n�φ = 0 on ∂� × (0, T ), φ(·, 0) = φ0 in �, (19)

where � is the Flory-Huggins potential defined by

�(s) = F(s) − θ0

2
s2

= θ

2

[
(1 + s) ln(1 + s) + (1 − s) ln(1 − s)

]
− θ0

2
s2, s ∈ [−1, 1], (20)

with constant parameters θ and θ0 fulfilling the conditions 0 < θ < θ0. The Cahn-
Hilliard system (18) is the gradient flow with respect to the H1

(0)(�)′ metric of the
total free energy

EL(φ) =
∫

�

1

2
|∇φ|2 + �(φ(x)) dx . (21)

The separation property (8) for (18–19) was first established in [7] and [25] in one
and two dimensions, respectively. The argument has been subsequently simplified in
[19] and [20]. More recently, it was extended to a more general class of potential in
[14]. In three dimensions, the separation property has been shown only in [1] on the
time interval [TSP ,∞), where TSP cannot be computed explicitly (see also [23] for
a class of singular potentials different from (20)). However, it still remains a major
challenge to demonstrate the separation property for (18–19) for all positive times
in three dimensions. Finally, we mention the recent results regarding the nonlocal-
to-local asymptotics obtained in [5,6,16]. That is, the weak solution to the nonlocal
Cahn-Hillliard equation converges to the weak solution of the local Cahn-Hilliard
equation, under suitable conditions on the data of the problem and a rescaling of the
interaction kernel J .
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2. Separation property and Hölder regularity

In this section we provide an improved proof of the separation property for the
nonlocal Cahn-Hilliard equation in three dimensional domains. Then, we derive some
consequences on the regularity of the solution.
Let us first recall the following well-known result.

Lemma 1. Let {yn}n∈N0 ⊂ R+ satisfy the relation

yn+1 ≤ Cbn y1+ε
n ,

for some C > 0, b > 1 and ε > 0. Assume that y0 ≤ C− 1
ε b

− 1
ε2 . Then, we have

yn ≤ y0b
− n

ε , ∀ n ≥ 1.

In particular, yn → 0 as n → ∞.

Proof of Theorem 1. Let us report the well-posedness results from [13, Theorems 3.4
and 4.1]: there exists a unique weak solution φ : �×[0,∞) → R to the system (2–3)
satisfying

φ ∈ L∞(� × (0,∞)) : |φ(x, t)| < 1 a.e. in �, ∀ t > 0,

φ ∈ L2
loc(0,∞; H1(�)) ∩ H1

loc(0,∞; H1(�)′),
μ ∈ L2

loc(0,∞; H1(�)), F ′(φ) ∈ L2
loc(0,∞; H1(�)),

(22)

such that

〈∂tφ, v〉 + (∇μ,∇v) = 0 ∀ v ∈ H1(�), a.e. in (0,∞), (23)

μ = F ′(φ) − J ∗ φ a.e. in � × (0,∞), (24)

and φ(·, 0) = φ0(·) in �. Furthermore, for any τ ∈ (0, 1),

ess sup
t≥τ

‖∂tφ(t)‖(H1(�))′ + sup
t≥τ

‖∂tφ‖L2(t,t+1;L2(�)) ≤ C0√
τ

, (25)

ess sup
t≥τ

‖μ(t)‖H1(�) + sup
t≥τ

‖φ(t)‖H1(�) ≤ C0√
τ

,

ess sup
t≥τ

‖F ′(φ)‖H1(�) + sup
t≥τ

‖μ‖L2(t,t+1;H2(�)) ≤ C0√
τ

, (26)

sup
t≥τ

‖∇μ‖Lq (t,t+1;L p(�)) + ‖∇φ‖Lq (t,t+1;L p(�)) ≤ C1(τ ),

with
3p − 6

2p
= 2

q
, ∀ p ∈ [2, 6], (27)

where the positive constant C0 only depends on ENL(φ0), φ0, � and the parameters
of the system. The positive constant C1(τ ) also depends on the same quantities as C0,
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in addition to τ . Furthermore, the constants C0 and C1 are uniformly bounded in φ0

if φ0 lies in a compact set of (−1, 1).
In the first part of the proof, we show the separation property (11). To this end, we

now introduce the iteration scheme à la De Giorgi devised in [14, Sect. 4]. Let τ > 0
be fixed. We consider three positive parameters T , τ̃ and δ such that (cf. assumption
(A2)-(A3))

T − 3τ̃ ≥ τ

2
and δ ∈

(
0,min{ε0

2
, ε1}

)
.

The precise value of τ̃ and δ will be chosen afterwards. We define two sequences
{
t−1 = T − 3τ̃

tn = tn−1 + τ̃
2n

∀ n ≥ 0, and kn = 1 − δ − δ

2n
, ∀ n ≥ 0. (28)

Notice that

t−1 < tn < tn+1 < T − τ̃ , ∀ n ≥ 0, tn → t−1 + 2τ̃ = T − τ̃ as n → ∞,

(29)

and

1 − 2δ ≤ kn < kn+1 < 1 − δ, ∀ n ≥ 0, kn → 1 − δ as n → ∞.

(30)

For n ≥ 0, we introduce ηn ∈ C1(R) such that

ηn(t) =
{
1, t ≥ tn

0, t ≤ tn−1
and |η′

n(t)| ≤ 2
2n

τ̃
. (31)

Next, for n ≥ 0, we consider the function

φn(x, t) = max{φ(x, t) − kn, 0} = (φ − kn)+.

Consequently, we introduce the sets

In = [tn−1, T ] and An(t) = {x ∈ � : φ(x, t) − kn ≥ 0}, ∀ t ∈ In .

If t ∈ [0, tn−1), we set An(t) = ∅. We observe that we have

In+1 ⊆ In, ∀ n ≥ 0, In → [T − τ̃ , T ] as n → ∞, (32)

and

An+1(t) ⊆ An(t), ∀ n ≥ 0, t ∈ In+1. (33)

The last ingredient is

yn =
∫

In

∫

An(s)
1 dx ds, ∀ n ≥ 0.
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For any n ≥ 0, we choose as test function v = φnη
2
n in (23). Integrating over [tn−1, t],

where tn ≤ t ≤ T , we obtain the relation
∫ t

tn−1

〈
∂tφ, φn η2n

〉
ds +

∫ t

tn−1

∫

An(s)
∇F ′(φ) · ∇φn η2n dx ds

=
∫ t

tn−1

∫

An(s)
(∇ J ∗ φ) · ∇φn η2n dx ds. (34)

Since F ′(φ) ∈ L∞(τ,∞; H1(�)) and |{x ∈ � : |φ(x, t)| = 1}| = 0 for all t ≥ τ ,
we deduce from [24] that hk(F ′(φ)) ∈ L∞(τ,∞; H1(�) ∩ L∞(�)), where

hk : R → R, hk(s) =

⎧
⎪⎪⎨

⎪⎪⎩

k, s ≥ k,

s, s ∈ (−k, k),

k, s ≤ −k,

∀ k ∈ N.

Then, it follows that hk(F ′(φ)) → F ′(φ) almost everywhere in� and for all t ≥ τ , and
∇(hk(F ′(φ))) = F ′′(φ)∇φ 1{|F ′(φ)|<k}(·) → F ′′(φ)∇φ almost everywhere in � and
for all t ≥ τ . Thus, by themonotone convergence theorem,

∫
�

|F ′′(φ(t))∇φ(t)|2 dx ≤
limk→∞ ‖hk(F ′(φ(t)))‖2

H1(�)
= ‖F ′(φ(t))‖2

H1(�)
< ∞, for all t ≥ τ . As conse-

quence, it is easily seen that ∇F ′(φ) = F ′′(φ)∇φ in distributional sense. Thanks to
this, we rewrite (34) as

∫ t

tn−1

〈
∂tφ, φn η2n

〉
ds +

∫ t

tn−1

∫

An(s)
F ′′(φ)∇φ · ∇φn η2n dx ds

=
∫ t

tn−1

∫

An(s)
(∇ J ∗ φ) · ∇φn η2n dx ds.

Notice that
∫ t

tn−1

〈
∂tφ, φnη

2
n

〉
ds = 1

2
‖φn(t)‖2L2(�)

−
∫ t

tn−1

‖φn(s)‖2L2(�)
ηn ∂tηn ds.

Also, by the choice of δ, the assumption (A2) and the fact An(t) ⊆ A0(t) for t ≥ tn−1,
we have
∫ t

tn−1

∫

An(s)
F ′′(φ)∇φ · ∇φn η2n dx ds ≥ F ′′ (1 − 2δ)

∫ t

tn−1

‖∇φn‖2L2(�)
η2n ds.

Thus, we end up with

1

2
‖φn(t)‖2L2(�)

+ F ′′ (1 − 2δ)
∫ t

tn−1

‖∇φn‖2L2(�)
η2n ds

≤
∫ t

tn−1

∫

An(s)
(∇ J ∗ φ) · ∇φnη

2
n dx ds

︸ ︷︷ ︸
I1
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+
∫ t

tn−1

‖φn(s)‖2L2(�)
ηn∂tηn ds

︸ ︷︷ ︸
I2

, ∀ t ∈ [tn, T ].

We now observe that

sup
x∈�

|(∇ J ∗ φ)(x)| = sup
x∈�

∣∣
∣∣

∫

�

∇ J (x − y)φ(y) dy

∣∣
∣∣ ≤ sup

x∈�

∫

�

|∇ J (x − y)| dy

= sup
x∈�

∫

x−�

|∇ J (z)| dz.

Since � is bounded, there exists M > 0 such that � ⊆ BM (0). Also, diam(�) < ∞.
Then, there exists M1 such that the set x −� ⊂ BM1(0) for any x ∈ �. It follows that

‖∇ J ∗ φ‖L∞(�) ≤
∫

BM1 (0)

|∇ J (z)| dz = ‖∇ J‖L1(BM1 (0)). (35)

For simplicity of notation, we will use BM1 to denote BM1(0). A similar argument
applies for ‖J ∗ φ‖L∞(�). Concerning the first term I1, we obtain as in [14, Sect. 4]
that

I1 =
∫ t

tn−1

∫

An(s)
(∇ J ∗ φ) ηn · ∇φ ηn dx ds

≤ 1

2
F ′′(1 − 2δ)

∫ t

tn−1

‖∇φn‖2L2(�)
η2n ds + 1

2

1

F ′′(1 − 2δ)

∫ t

tn−1

∫

An(s)
|∇ J ∗ φ|2 η2n dx ds

≤ 1

2
F ′′(1 − 2δ)

∫ t

tn−1

‖∇φn‖2L2(�)
η2n ds + 1

2

1

F ′′(1 − 2δ)

∫ t

tn−1

‖∇ J ∗ φ‖2L∞(�)

∫

An(s)
1 dx ds

≤ 1

2
F ′′(1 − 2δ)

∫ t

tn−1

‖∇φn‖2L2(�)
η2n ds + 1

2

‖∇ J‖2
L1(BM1 )

F ′′(1 − 2δ)

∫

In

∫

An(s)
1 dx ds

≤ 1

2
F ′′ (1 − 2δ)

∫ t

tn−1

‖∇φn‖2L2(�)
η2n ds + 1

2

‖∇ J‖2
L1(BM1 )

F ′′ (1 − 2δ)
yn .

This is actually a correction of the argument in [13] and [28] where ‖∇ J‖L1(�) appears
in the estimate analogous to the one above, instead of ‖∇ J‖L1(BM1 ). In order to handle
the term I2, we recall the main observation in [28]:

0 ≤ φn ≤ 2δ a.e. in �, ∀ t ∈ [T − 2τ̃ , T ]. (36)

By exploiting (31) and (36), we simply have

I2 ≤ 2n+1

τ̃

∫ t

tn−1

∫

An(s)
φ2
n dx ds ≤ 2n+1

τ̃

∫

In

∫

An(s)
(2δ)2 dx ds = 2n+3

τ̃
δ2yn .

Collecting the above estimates together, we infer that

‖φn(t)‖2L2(�)
+ F ′′ (1 − 2δ)

∫ t

tn−1

‖∇φn‖2L2(�)
η2n ds
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≤
‖∇ J‖2

L1(BM1 )

F ′′ (1 − 2δ)
yn + 24

2n

τ̃
δ2yn, ∀ t ∈ [tn, T ]. (37)

As a consequence,

max
t∈In+1

‖φn(t)‖2L2(�)
≤ Xn, F ′′ (1 − 2δ)

∫

In+1

‖∇φn‖2L2(�)
ds ≤ Xn, (38)

where

Xn := 2n max

⎧
⎨

⎩

‖∇ J‖2
L1(BM1 )

F ′′ (1 − 2δ)
,
24δ2

τ̃

⎫
⎬

⎭
yn . (39)

Now, in light of (A3), we observe that
‖∇ J‖2

L1(BM1
)

F ′′(1−2δ) ≤ CFδ‖∇ J‖2
L1(BM1 )

, thereby

Xn = 2n
‖∇ J‖2

L1(BM1 )

F ′′ (1 − 2δ)
yn, provided that τ̃ ≥ 24δ

CF‖∇ J‖2
L1(BM1 )

. (40)

The latter constraint will be verified later on.

Next, for t ∈ In+1 and for almost every x ∈ An+1(t), following [14, Sect. 4], we
observe that

φn(x, t) = φ(x, t) −
[
1 − δ − δ

2n

]

= φ(x, t) −
[
1 − δ − δ

2n+1

]

︸ ︷︷ ︸
=φn+1(x,t)≥0

+δ

[
1

2n
− 1

2n+1

]
≥ δ

2n+1 ,

which implies that

∫

In+1

∫

�

|φn| 103 dx ds ≥
∫

In+1

∫

An+1(s)
|φn| 103 dx ds

≥
(

δ

2n+1

) 10
3
∫

In+1

∫

An+1(s)
1 dx ds

=
(

δ

2n+1

) 10
3

yn+1. (41)

In order to proceed with the next step, we recall the following Gagliardo-Nirenberg
inequality in three dimensions

‖u‖
L

10
3 (�)

≤ C�‖u‖
2
5
L2(�)

‖u‖
3
5
H1(�)

, ∀ u ∈ H1(�). (42)
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Exploiting the definition of yn , (32) and (42), we have

yn+1

(
δ

2n+1

) 10
3 ≤

∫

In+1

∫

An(s)
|φn| 103 dx ds

≤ C�

∫

In+1

‖φn‖
4
3
L2(�)

(
‖∇φn‖2L2(�)

+ ‖φn‖2L2(�)

)
ds

≤ C�

∫

In+1

‖φn‖
4
3
L2(�)

‖∇φn‖2L2(�)
ds

︸ ︷︷ ︸
A

+ C�

∫

In+1

‖φn‖
4
3
L2(�)

‖φn‖2L2(�)
ds

︸ ︷︷ ︸
B

.

As in [14], we infer from (38) that

A ≤ 1

F ′′ (1 − 2δ)
max
t∈In+1

‖φn(t)‖
4
3
L2(�)

F ′′ (1 − 2δ)
∫

In+1

‖∇φn‖2L2(�)
ds ≤ 1

F ′′(1 − 2δ)
X

5
3
n .

On the other hand, by using (32) and (36), we notice that

B ≤ max
t∈In+1

‖φn(t)‖
4
3
L2(�)

∫

In
‖φn‖2L2(�)

ds ≤ (2δ)2X
2
3
n

∫

In

∫

An(s)
1 dx ds = (2δ)2X

2
3
n yn .

The above estimate of B is a major change compared to the argument in [28] which is
based on a Poincareé-type inequality. Thus, thanks to (40), and making use of (A3),
we find

yn+1

(
δ

2n+1

) 10
3 ≤

⎡

⎢
⎣
C�‖∇ J‖

10
3
L1(BM1 )

(F ′′(1 − 2δ))
8
3

2
5
3 n +

4C�δ2‖∇ J‖
4
3
L1(BM1 )

(F ′′(1 − 2δ))
2
3

2
2
3 n

⎤

⎥
⎦ y

5
3
n

≤ 4C�C
8
3
F max

{
‖∇ J‖

10
3
L1(BM1 )

, ‖∇ J‖
4
3
L1(BM1 )

}

︸ ︷︷ ︸
CJ

δ
8
3 2

5
3 n y

5
3
n ,

which is equivalent to

yn+1 ≤ 2
16
3 C�C

8
3
FCJ

δ
2
3

25n y
5
3
n .

An application of Lemma 1 with

C = 2
16
3 C�C

8
3
FCJ

δ
2
3

, b = 25, ε = 2

3

entails that yn → 0 provided that

y0 ≤ δ

28C
3
2
�C

4
FC

3
2
J

1

2
45
4

= δ

2
77
4 C

3
2
�C

4
FC

3
2
J

. (43)
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We conclude from yn → 0 and yn →
∣∣∣
{
(x, t) ∈ � × [T − τ̃ , T ] : φ(x, t) ≥ 1− δ

}∣∣∣,
as n → ∞, that

‖(φ − (1 − δ))+‖L∞(�×(T−τ̃ ,T )) = 0. (44)

Weare left to show that (43) is satisfied.Recalling (A3), (26) and y0 = ∫ T
T−3τ̃

∫
A0(s)

1 dx
ds, we notice that (cf. [14,28])

∫ T

T−3τ̃

∫

A0(s)
1 dx ds ≤

∫ T
T−3τ̃ ‖F ′(φ(s))‖L1(�) ds

|F ′(1 − 2δ)|
≤ 3τ̃‖F ′(φ)‖L∞( τ

2 ,∞;L1(�))

CF

| ln(δ)|
≤ 3CF C(ENL(φ0), τ )̃τ

| ln(δ)| .

(45)

Thus, we impose that

3CF C(ENL(φ0), τ )̃τ

| ln(δ)| ≤ δ

2
77
4 C

3
2
�C

4
FC

3
2
J

. (46)

In light of (40) and (46),we choose δ sufficiently small such that τ̃ satisfies the relations

24δ

CF‖∇ J‖2
L1(BM1 )

≤ τ̃ ≤ δ| ln(δ)|
3 2

77
4 C

3
2
�C

5
FC

3
2
J C(ENL(φ0), τ )

. (47)

Now, set T = τ + τ̃
2 . Up to eventually reducing δ to get τ̃ even smaller, we clearly have

τ − 5τ̃
2 ≥ τ

2 . Therefore, by (44), we deduce that ‖(φ − (1− δ))+‖L∞(�×(τ− τ̃
2 ,τ+ τ̃

2 )) =
0. We point out that the value of τ̃ is independent of the choice of T . Thus, re-
peating the same argument on intervals of size τ̃ , we conclude that ‖(φ − (1 −
δ))+‖L∞(�×(τ− τ̃

2 ,∞) = 0. Finally, repeating the same argument for (φ + (−1+ δ))−,
we arrive at the desired conclusion (11). It is important to highlight that the value of
δ only depends on F , J , �, ENL(φ0) and τ .
The rest of the proof is devoted to the additional regularity results (12) and (13).

Firstly, by definition of μ in (2), we observe that

‖μ(t)‖L∞(�×[τ,∞)) ≤
(

‖F ′(φ(t))‖L∞(�×[τ,∞)) + sup
t≥τ

‖J ∗ φ(t)‖L∞(�)

)

≤ |F ′(1 − δ)| + ‖J‖L1(BM1 ) =: C1.

Let us observe that

∂ht μ(·) = ∂ht φ(·)
(∫ 1

0
F ′′(sφ(· + h) + (1 − s)φ(·)) ds

)
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−J ∗ ∂ht φ(·), 0 < t ≤ T − h. (48)

By (11), ‖sφ(· + h) + (1 − s)φ(·)‖L∞(�×(τ,∞)) ≤ 1 − δ for all s ∈ (0, 1). Then,
exploiting that ‖∂ht φ‖L2(0,T−h;L2(�)) ≤ ‖∂tφ‖L2(0,T ;L2(�)), we infer from (25) that
supt≥τ ‖∂ht μ‖L2(t,t+1;L2(�)) ≤ C2, where C2 > 0 depends on C0, τ , δ and J , but
is independent of h,. This implies that ∂tμ ∈ L2(0, T ; L2(�)) for any T > 0, and
supt≥τ ‖∂tμ‖L2(t,t+1;L2(�) ≤ C2.
Secondly, we study the Hölder continuity in both time and space. We notice that

(1) is a quasi-linear equation with principal part in divergence form. Following the
notation in the book [21], we define al(x, t, u, p) = F̃ ′′(u)pl − (∂l J ∗ φ(·, t))(x),
where F̃ is the restriction of F in [−1 + δ, 1 − δ]. In light of the convexity of F and
|F̃ ′′(s)| ≤ |F ′′(1 − δ)|, for all s ∈ [−1 + δ, 1 − δ], we deduce that

al(x, t, u, p)pl ≥ θ

2
|p|2 − 1

2θ
‖∇ J‖L1(BM1)

,

|al(x, t, u, p)| ≤ |F ′′(1 − δ)||p| + ‖∇ J‖L1(BM1)
.

Wealso note that the solutionφ satisfying (22–27) is a bounded generalized solution
in the sense of [21, Chapter V]. Thus, by [21, Theorem 1.1, Chapter V], we deduce
that (13) holds in �′ × [t, t + 1], for any t ≥ τ and �′ ⊂ � separated from ∂�. In
order to achieve (13) up to the boundary, we make use of [8, Corollary 4.2], which
provides the desired conclusion under the same assumptions. It is worth noticing that
the constant C3 and the parameter α from both [21] and [8] only depends on δ, θ ,
‖∇ J‖L1(BM1 ) and �. This completes the proof. �

3. On the regularity of the global attractor

This section is devoted to some regularity properties of the global attractor Am for
the dynamical system (Hm, S(t)) stated in Theorem 2.

Proof of Theorem 2. Let us consider φ� ∈ Am . It is clear that ‖φ�‖L∞(�) ≤ 1 such
|φ�| ≤ 1−m and ‖φ�‖H1(�) ≤ N1, where N1 is a universal constant (namely, it does
not depend on φ�). We observe that |ENL(φ�)| ≤ N2, where N2 is a universal con-
stant depending only on ‖J‖L1(BM1 ) (cf. (35)) and maxs∈[−1,1] |F(s)|. Then, applying
Theorem 1, we deduce that

‖S(t)φ�‖L∞(�) ≤ 1 − δ, ∀ t ≥ [1,∞). (49)

Here, δ depends on the constants in (47). In particular, since |φ�| ≤ 1−m, it is easily
seen that C(ENL(φ�), 1) ≤ N3, where N3 is a universal constant. This implies that δ
is a universal constant. Since φ� is arbitrary in the above argument, we deduce that

Am = S(1)Am ⊂ BL∞(�)(0, 1 − δ).
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Next, by the second part of Theorem 1, we infer from (13) and (14) that

‖S(t)φ�‖Cα(�) = ‖S(t)φ�‖C(�) + sup
x,y∈�,x �=y

|(S(t)φ�)(x) − (S(t)φ�)(y)|
|x − y|α

≤ 1 − δ + C3 =: N4.

Notice that N4 is a universal constant which depends only on N2, δ, m and the param-
eters of the system (namely, F , J , �). Thus, the constant N4 is independent of φ�, so
we conclude that Am = S(1)Am ⊂ BCα(�)(0, N4). The proof is complete.
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