
J. Evol. Equ.           (2024) 24:27 
© 2024 The Author(s)
https://doi.org/10.1007/s00028-024-00949-8

Journal of Evolution
Equations

A perturbative approach to Hölder continuity of solutions
to a nonlocal p-parabolic equation
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Abstract. Westudy local boundedness andHölder continuity of a parabolic equation involving the fractional
p-Laplacian of order s, with 0 < s < 1, 2 ≤ p < ∞, with a general right-hand side. We focus on obtaining
precise Hölder continuity estimates. The proof is based on a perturbative argument using the already known
Hölder continuity estimate for solutions to the equation with zero right-hand side.

1. Introduction

In this paper, we study the local boundedness and Hölder regularity of solutions to the
inhomogeneous equation

ut + (−�p)
su = f (x, t), (1.1)

where f ∈ Lr
loc(I ; Lq

loc(�)) with q ≥ 1, r ≥ 1, p ≥ 2 and s ∈ (0, 1). Here, (−�p)
s

is the fractional p-Laplacian, arising as the first variation of the Sobolev–Slobodeckiı̆
seminorm

(−�p)
su(x) := 2 P.V.

∫
Rn

|u(x) − u(y)|p−2(u(x) − u(y))

|x − y|n+s p
dy.

Nonlocal equations involving operators of the above type, with a singular kernel, were
first considered in [31] to the best of our knowledge.
In this study, continuing the work in [7], we perform a perturbative argument to

obtain Hölder continuity estimates, with explicit exponents for the equations with a
right-hand side. Our approach closely follows the arguments in [47] and [6]. In such
perturbative arguments, it is often possible to establish Hölder regularity results for
bounded solutions using only L∞ estimates for the equations with zero right-hand
side. Here, to estimate the Hölder seminorms of certain functions in the proof of
Theorem 1.2 as well as to prove Theorem 3.6, we are led to prove Proposition 3.4. As
a by-product, by combining Proposition 3.4with the existing local boundedness results
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we obtain an L∞ bound for equations with right-hand sides. This is Theorem 1.1. The
proof is inspired by the work [5].

Below, we state the main results. For the definition of the tail and relevant function
spaces, see Sect. 2. We use the following notation of parabolic cylinders

QR,r (x, T ) := BR(x0) × (T − r, T ].
The exponent p�

s = np
n−sp is the critical exponent for the Sobolev embedding theorem,

see Proposition 2.5. We denote by p′, the Hölder conjugate of p, that is p′ = p
p−1 .

Theorem 1.1. Let� ⊂ R
n be a bounded and open set, I = (t0, t1], p ≥ 2, 0 < s < 1.

Consider q and r such that

1

r
+ n

spq
< 1.

In addition, assume that r ≥ p′,

q ≥ 1 if sp �= n, and q > 1 if sp = n.

Suppose u is a local weak solution of

ut + (−�p)
su = f in � × I,

such that

u ∈ L p
loc(I ; L p−1

sp (Rn)) and f ∈ Lr
loc(I ; Lq

loc(�)).

then u is locally bounded in �. More specifically, if Q2R,(2R)sp(x0,T0) � � × I , u is
bounded in QR/2,(R/2)sp (x0, T0), and in the case sp �= n, the estimate reads

‖u‖
L∞

(
Q R

2 ,( R2 )sp
(x0,T0)

) ≤ C

[
1 +

(
−
∫
QR,Rsp (x0,T0)

|u|p dx dt

) 1
p

+
(

−
∫ T0

T0−Rsp
Tailp−1,sp

(
u( �, t); x0, R

2

)p

dt

) 1
p

+ ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + Rspν‖ f ‖Lq,r (QR,Rsp (x0,T0))

)]
,

where C = C(n, s, p), ν = 1 − 1
r − n

spq and ϑ = 1 + spν
n .

In the case sp = n, given any l such that p
r ′ (1 − 1

r − 1
q )−1 < l < ∞ we get

‖u‖
L∞

(
Q R

2 ,( R2 )sp
(x0,T0)

) ≤ C

[
1 +

(
−
∫
QR,Rsp (x0,T0)

|u|p dx dt

) 1
p

+
(

−
∫ T0

T0−Rsp
Tailp−1,sp

(
u( �, t); x0, R

2

)p

dt

) 1
p

+ ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + Rspν‖ f ‖Lq,r (QR,Rsp (x0,T0))

)]
,
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where C = C(n, s, p, q, l), ϑ = 2 − 1
r − 1

q − p
lr ′ and ν = 1 − 1

r − 1
q .

Theorem 1.2. Let� ⊂ R
n be a bounded and open set, I = (t0, t1], p ≥ 2, 0 < s < 1.

Consider q and r such that

1

r
+ n

spq
< 1.

In addition, assume that r ≥ p′,

q ≥ 1 if sp �= n, and q > 1 if sp = n.

Define the exponent

�(s, p) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s p

p − 1
, if s <

p − 1

p
,

1, if s ≥ p − 1

p
.

(1.2)

Suppose u is a local weak solution of

ut + (−�p)
su = f in � × I,

such that

u ∈ L∞
loc(I ; L∞

loc(�)) ∩ L∞
loc(I ; L p−1

sp (Rn)), and f ∈ Lr
loc(I ; Lq

loc(�)).

Then

u ∈ Cα
x,loc(� × I ) ∩ C

α
sp−(p−2)α
t,loc (� × I ), for every 0 < α

≤ r(spq − n) − spq

q(r(p − 1) − (p − 2))
such that α < �.

More precisely, given α < � satisfying

α ≤ r(spq − n) − spq

q(r(p − 1) − (p − 2))
,

for every R > 0, x0 ∈ � and T0 such that

QR,2Rs p (x0, T0) � � × (t0, t1],
there exists a constant C = C(n, s, p, q, r, α) > 0 such that

|u(x1, t1)−u(x2, t2)| ≤ C

[
M
( |x2 − x1|

R

)α + Mp−1
( |t2 − t1|

Rs p

) α
sp−(p−2)α

]

(1.3)

for any (x1, t1), (x2, t2) ∈ QR/2,(R/2)s p (x0, T0), with

M = 1 + ‖u‖L∞(QR,2Rsp (x0,T0)) + sup
T0−2Rsp≤t≤T0

Tailp−1,sp(u( �, t); x0, R)

+(Rsp− n
q − sp

r ‖ f ‖Lq,r (QR,2Rsp (x0,T0))
) 1

1+ p−2
r ′ .
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1.1. Known results

Recently, there has been a growing interest in nonlocal problems of both elliptic and
parabolic types. For studies of fractional p-Laplace operators with different (continu-
ous) kernels, see [4]. Parabolic equations of the type (1.1) were first considered in [42]
with a slightly different diffusion operator. See also [1,39,48] and [49] for studies of
the existence, uniqueness and long time behavior of solutions.
A noteworthy area of investigation has been devoted to adapting the classical De

Giorgi–Nash–Moser theory for nonlocal equations. Local boundedness, Hölder esti-
mates and Harnack inequalities have been established in the elliptic case under general
assumptions on the kernels; see, for instance, [19,23,24,32].
Here we seize the opportunity to mention [16–18] and [51] which contain regularity

results for parabolic nonlocal equations.
Local boundedness for parabolic nonlocal equations has been studied, for instance,

in [11,22,33,45]. In particular, the local boundedness of the solutions to equations
modeled on (1.1) with zero right-hand side was obtained in [45]. The results concern
operators of the form

LK = P.V .

∫
Rn

K (x, y, t)|u(x) − u(y)|p−2(u(x) − u(y)) dy, (1.4)

where K is ameasurable kernel, which is symmetric in the space variables and satisfies
the ellipticity condition

	−1

|x − y|n+sp
≤ K (x, y, t) ≤ 	

|x − y|n+sp
.

Later in [22], local boundedness for certain right-hand sides of the form f (x, t, u)

was established. See also [3] for a recent boundedness result in the setting of nonlocal
kinetic Kolmogorov–Fokker–Planck equations. All the aforementioned local bound-
edness results have a particular unnatural assumption, u ∈ L∞(I ; L p−1

sp (Rn)). It is

more natural to assume u ∈ L p−1(I ; L p−1
sp (Rn)). This difficulty has been completely

resolved in [34] when p = 2 and generalizes to the nonlinear setting in [10].
[46] contains aHarnack inequality for nonlinear parabolic equationswith zero right-

hand side, see also [34] for a full Harnack inequality with optimal tail assumption for
p = 2. Hölder regularity has also been established in [13,27] for p = 2 and for
locally bounded solutions in [2] and [37] for all 1 < p < ∞ for equations with zero
right-hand side.
The question of higher regularity of solutions to nonlocal equations has also been

a subject of intensive study during the past few years. For instance, see [28,43] for
a nonlocal Schauder-type theory. We also refer to [14,15] for nonlocal analogs of
Krylov–Safanov and Evans–Krylov theorems. We refer to [6,7,11,12,26,40,41] for
studies of higher regularity in the variational setting. In particular, in [7] they prove
Hölder continuity of the solutions to (1.1) with explicit exponents (for f = 0 and
K = |x − y|−n−sp). Recently in [29], the same type of result has been established
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for nonlocal equations with double phase that is for diffusion operators involving two
different degrees of homogeneity and differentiability.
Perturbative arguments have been very successful in obtaining sharp boundedness

and Hölder regularity estimate at least in the elliptic setting, see, for instance, [25,35].
See also [36] for an overview of the local theory. In this study, continuing the work
in [7], we perform a perturbative argument to obtain Hölder continuity estimates with
explicit exponents for equations with a right-hand side. However, we have to say that
the current work has some unnatural assumptions that have yet to be overcome.

1.1.1. Discussion of the results and comparison to some previous works

Our results contain an unnatural assumption r ≥ p′, as well as the assumption u ∈
L p(I ; L p−1

sp (Rn)) in Theorem 1.1. We use these assumptions in two places. First and
foremost these assumptions are needed to ensure the existence of a solution to (3.1), the
so-called (s, p)-caloric replacement of our solution. This limitation comes from the
regularity assumption on the boundary condition in Theorem 2.12 which is essentially
the same as [7, Theorem A.3] see Remark 2.13. We also use the assumption r ≥ p′ in
obtaining the estimates in Lemma 3.2. We believe it is possible to overcome this issue
by an interpolation argument, see Remark 3.3. It has to be mentioned that we also use
the assumption u ∈ L p(I ; L p−1

sp (Rn)) to justify testing the equation with powers of
the solution in Appendix B. Having said this, it is reasonable to expect Theorem 1.1
to hold for any weak solution under the assumption

1

r
+ n

spq
< 1, (1.5)

as this is the only assumption that appears in the estimates. The same extra assumptions
on q and r are present in Theorem 3.6 due to the same reason as in Theorem 1.1.
Furthermore, we assume our solutions to have bounded tail in time, that is, u ∈
L∞(I ; L p−1

sp (Rn)). In light of the recent developments in [10,34], one can actually
weaken the assumptions on the tail. In particular, by using [10, Theorem 1.2] instead
of [7, Theorem 1.2] in the proof of Theorem 3.6, with some small modifications
in the argument one should be able to obtain the Hölder continuity of the solutions
under the assumption u ∈ L p(I ; L p−1

sp (Rn)), and the same assumptions on q, r as in
Theorem 3.6. We also believe that it is possible to avoid using Proposition 3.4 in the
proof ofTheorem3.6, byusing [10,Theorem1.1 andTheorem1.2].As improvingupon
this assumption does not improve our main result, Theorem 1.2, we do not complicate
the article by going through the details of this issue. Furthermore, we actually expect
the result to be true under the weaker assumption u ∈ Ll(I ; L p−1

sp (Rn)) for some
l > p−1 and without the assumption r ≥ p′, but the current restrictions in the article
especially with respect to the existence of the (s, p)-caloric replacement do not allow
us to obtain such a result.
Let us also mention that the local boundedness and Hölder regularity results men-

tioned above hold for a more general class of equations with measurable coefficient
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ut + Lku = 0, where Lk is as in 1.4. Although we write our results for the equation
ut + (−�p)

su = f , the arguments in the proofs of Theorem 1.1 and Theorem 3.6 can
be adapted to the equations ut + Lku = f with measurable, asymmetric, uniformly
elliptic coefficients easily. The only difference is that a dependence on the ellipticity
coefficients will appear in the constants. But the question of what assumption is needed
on the kernel to get higher Hölder regularity is subtle. We refer to [11,25,40] for a
study of this issue.

The equation ut − �pu = f can be seen as a limit of the equation ut + (1 −
s)c(n, p)(−�p)

su = f as s ↗ 1. A relevant question is whether the estimates
provided here in the article are stable with respect to s as s ↗ 1. We have to admit that
we did not keep track of the dependence of the constants on s while writing this article,
and we wrote the article for the operator ∂t + (−�p)

s instead of ∂t + (1 − s)(−�p)
s .

Still, we can say a few words on the dependence of our constants on s for those
who might be interested in pursuing this question. The proofs of Theorem 1.1 and
Theorem 3.6 are combinations of local boundedness estimates in [10, Theorem 1.1]
and the Holder continuity result [7, Theorem 1.2] for the equations with zero right-
hand side, together with the comparison estimates of Lemma 3.2 and Proposition 3.4.
[7, Theorem 1.2] is stable as s ↗ 1 see [7, Remark 1.7], as for [10, Theorem 1.1] they
did not specify the dependence of their constants on s in their article. In Lemma 3.2
and Proposition 3.4, the dependence of the constants on s comes from the Sobolev
and Morrey inequalities. The constants in these inequalities behave like s(1− s) with
respect to s, but it has to be mentioned that we update the constants to be greater than
one in several places. It might be the case that if one considers the operator ∂t + (1−
s)(−�p)

s instead, the estimates in Lemma 3.2 and Proposition 3.4 would become
robust as s ↗ 1. We cannot specify the dependence of the constant in Theorem 1.2
on s specifically. The main difficulty lies in the proof of Lemma 3.7, which is proved
by contradiction.

Now we compare the main results of the article to some other works.

Local boundedness and continuity In the recent work [11], they address the issue of
local boundedness when p = 2 for a more general class of operators by a direct proof.
By avoiding the difficulty of the existence of the caloric replacement, their result does
not contain the extra assumption r ≥ p′, although they assumeu ∈ L∞(I ; L p−1

sp (Rn)).

We compare our boundedness result to [22]. Their result concerns more general
right-hand sides depending on the solution as well. In the limiting case of s → 1, they
reproduce the local boundedness result contained in [21] for the evolution p-Laplacian
equation. To compare the results, if we restrict their result to right-hand sides that are u-
independent, their assumption on the integrability becomes q, r >

n+sp
sp (

p(n+2 s)
2sp+(p−1)n ).

Their analysis is done with the same integrability assumption in time and space. Our
local boundedness result, Theorem 1.1, contains this range of exponents.

In the limiting case when s goes to 1, 1.5 become 1 − 1
r − n

pq > 0. This is in
accordance with the classical condition for boundedness of the evolution p-Laplace
equation, see, for example, Remark 1 in [38], there they have a finer assumption
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formulated in terms of the Lorentz norm of the right-hand side, and moreover, they
obtained estimates in terms of a parabolic version of Wolf potentials. It would be
interesting to obtain finer estimates beyond L p spaces, although we do not pursue
this question in this article. If we assume the same integrability in time and space,
the condition 1 − 1

r − n
spq > 0 reduces to f ∈ Lq̂ with q̂ >

n+p
p . This matches the

condition in [50].
Now we turn our attention to the nonlocal elliptic (time-independent) case. For

r = ∞, the condition for boundedness and basic Hölder continuity becomes

q >
n

sp
, if sp < n, and q > 1 , if sp = n, and q ≥ 1 , if sp = n.

In the case sp < n, this is the same condition for local boundedness and continuity
contained in [8,35]. When sp > n and q ≥ 1, the boundedness and Hölder continuity
for the time-independent equation is automatic using Morrey’s inequality. The ques-
tion of whether the solutions are locally bounded under the equality case of (1.5) is
subtle. On the one hand, if r = ∞ even in the time-independent (elliptic) setting one
requires the strict inequality q > n

sp to obtain boundedness; on the other hand, local
boundedness is obtained in the case r = 1 and q = ∞ in [34], see also [10].
There are actually local boundedness and Hölder continuity results available for the

equations with zero right-hand side if p < 2. One could try to prove local boundedness
and basic Hölder regularity of the solutions for the solutions of the equations with
right-hand side in the singular case p < 2 as well. We have to warn the reader that
some of the arguments in this article do not carry over to the singular case as they are
written here. We use the condition p ≥ 2 extensively, in particular in the Pointwise
inequalities (2.1) and (2.3). We feel that it is better if we leave the study of the singular
case to another work. We also have to mention that if one is only interested in local
boundedness estimates, doing a nonperturbative argument is more suitable, as one can
also deal with sub- and supersolutions.
Hölder continuity exponent: In the case r = ∞, the critical Hölder continuity

exponent

min

{
�,

r(spq − n) − spq

q(r(p − 1) − (p − 2))

}
= min

{
�, sp

1 − 1
r − n

spq

p − 1 − p−2
r

}
, (1.6)

reduces to min {�,
sp
p−1 (1 − n

spq )} which matches the results in [6]. Although the

results reported in [6] require a strict inequality α < min {�,
sp
p−1 (1 − n

spq )}, an
inspection of the proofs reveals that the strict inequality is only needed when the
minimum corresponds to �. The assumptions needed for their proof are actually
α ≤ sp

p−1 (1− n
spq ) and α < �. Through a finer estimate in [25], they have addressed

this issue further and proved that given α ≤ �, if the right-hand side f belongs to the

Marcinkiewicz space L
n

sp−α(p−1) ,∞(�) then the solution is Cα
loc(�).

Let us also compare our results to the local p-parabolic equation studied in [47]
where precise Hölder continuity exponents are obtained. If we send s to 1, (1.6)
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becomes

min

{
1,

r(pq − n) − pq

q(r(p − 1) − (p − 2))

}
,

which is in accordance with the result in [47].
In [29], explicit Hölder continuity exponents for the more general case of double

phase nonlocal diffusion operators were obtained. The ideas explored there are similar
to the ones in [7], but their result allows for a bounded right-hand side instead of just
zero. Their result implies the Hölder continuity exponent that we get in the case of
f ∈ L∞, although with a slightly different estimate of the Hölder constants. Let us
also mention that in the recent work [11] the conclusions of Theorem 1.2 have been
obtained when p = 2, for a more general class of operators and kernels. Although
[11, Theorem 1.2] does not contain the extra assumption r ≥ p′, their argument is
similar to our proof of Theorem 1.2 and the same difficulty regarding the existence
of the (s, p)-caloric replacement is present in their proof. This difficulty has not been
addressed properly in their article. In the assumptions [11, (A.1)] for their existence
theorem, the regularity assumption ξt ∈ L2((0, T );Ws,2(�′))� is present. We are not
able to verify this assumption when ξ is a solution of

ξt + (−�)sξ = f,

for f ∈ Lq,r such that n
2sq + 1

r < 1 as it is claimed by [11, Remark 6]. See Remark 2.13
for a possible strategy for resolving this issue.
Let us close this section with the question of howmuch regularity one should expect

if the solution has a lower integrability of the tail in time. Namely given aweak solution
u of the equation

ut + (−�p)
su = 0,

such that u ∈ Ll(L p−1
sp (Rn)) how much Hölder regularity does the solution have.

Let us first mention that an example in [34, Example 5.2] shows that the assumption
u ∈ L p−1(L p−1

sp (Rn)) does not ensure the Hölder regularity of the solution. On the
other hand, it is proved in [34] and [10] that if l > p − 1 then the solution is Hölder
continuous, and the general strategy in these works is to treat the following nonlocal
term

G(t) =
∫
Rn\BR(x0)

|u(y, t)|p−1

|x0 − y|n+sp
dy,

which appears in theCaccioppoli inequalities, as a right-hand side in L
l

p−1 (I ; L∞(B)).
See [10, Section 1.2] for more details. Following this general philosophy, one can

expect the solution to be Cα
x and C

α
sp−(p−2)α
t with

α = min

{
sp

1 − p−1
l

p − 1 − (p−2)(p−1)
l

, 1

}
.
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However, at the moment we do not have a definite answer to how this can be shown
rigorously.

1.2. Plan of the paper

In Sect. 2, we introduce some notations and preliminary lemmas. We also restate
and adapt a result on the existence of solutions to our setting.
In Sect. 3, we establish basic local Hölder regularity and boundedness for local weak

solutions.
Section 4 is devoted to proving Theorem 1.2. A so-called tangential analysis is

performed to get specific Hölder continuity exponents in terms of q, r, s and p.
The article is also accompanied by two appendices. In the first one, Appendix A, we

work out the details for a modified version of [7, Theorem 1.1]. The aim is to bound
the Hölder seminorm of the solution in terms of the tail quantity.
In Appendix B, we justify using certain test functions in the weak formulation of

(1.1).

2. Preliminaries

2.1. Notation

We define the monotone function Jp : R → R by

Jp(t) = |t |p−2t.

We use the notation BR(x0) for the open ball of radius R centered at x0. If the center
is the origin, we simply write BR . We use the notation of ωn for the surface area of the
unit n-dimensional ball. For parabolic cylinders, we use the notation Qr,T (x0, t0) :=
Br (x0) × (t0 − T, t0]. If the center is the origin, we write Qr,T .
We will work with the fractional Sobolev space extensively:

Wβ,q(Rn) := {ψ ∈ Lq(Rn) : [ψ]Wβ,q (Rn) < ∞}, 0 < β < 1, 1 ≤ q < ∞,

where the seminorm [ψ]Ws,p(Rn) is defined as below

[ψ]q
Wβ,q (Rn)

=
∫∫

Rn×Rn

|ψ(x) − ψ(y)|q
|x − y|n+βq

dx dy.

We also need the space Wβ,q(�) for a subset � ⊂ R
n , defined by

Wβ,q(�) := {ψ ∈ Lq(�) : [ψ]Wβ,q (�) < ∞}, 0 < β < 1, 1 ≤ q < ∞,

where

[ψ]q
Wβ,q (�)

=
∫∫

�×�

|ψ(x) − ψ(y)|q
|x − y|n+βq

dx dy.
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In the following, we assume that � ⊂ R
n is a bounded open set in Rn . We define the

space of Sobolev functions taking boundary values g ∈ Lq−1
sp (Rn) by

Xβ,q
g (�,�′) = {ψ ∈ Wα,q(�′) ∩ Lq−1

sp (Rn) : ψ = g on R
n \ � },

where �′ is an open set such that � � �′.
We recall the definition of tail space

Lq
α(Rn) =

{
u ∈ Lq

loc(R
n) :

∫
Rn

|u|q
1 + |x |n+α

dx < +∞
}

, q ≥ 1 and α > 0,

which is endowed with the norm

‖u‖Lq
α(Rn) =

(∫
Rn

|u|q
1 + |x |n+α

dx

) 1
q

.

For every x0 ∈ R
n , R > 0 and u ∈ Lq

α(Rn), the following quantity

Tailq,α(u; x0, R) =
[
Rα

∫
Rn\BR(x0)

|u|q
|x − x0|n+α

dx

] 1
q

plays an important role in regularity estimates for solutions to fractional problems.
Let I ⊂ R be an interval and let V be a separable, reflexive, Banach space endowed

with a norm ‖ �‖V . We denote by V � its topological dual space. Suppose that v is
a mapping such that for almost every t ∈ I , we have v(t) ∈ V . If the function
t → ‖v(t)‖V is measurable on I and 1 ≤ p ≤ ∞, then v is an element of the Banach
space L p(I ; V ) if and only if

∫
I
‖v(t)‖V dt < ∞.

By [44, Theorem 1.5], the dual space of L p(I ; V ) can be characterized according
to (L p(I ; V ))� = L p′

(I ; V �). We write v ∈ C(I ; V ) if the mapping t → v(t) is
continuous with respect to the norm on V .

2.2. Pointwise inequalities

Wewill need the following pointwise inequality: Let p ≥ 2, then for every A, B ∈ R

we have

|A − B|p ≤ C
(
Jp(A) − Jp(B)

)
(A − B). (2.1)

For a proof look at [7, Remark A.4], a close inspection of the proof reveals that the
constant can be taken as C = 3 · 2p−1. Before stating the next inequality, we recall
[8, Lemma A.2].
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Lemma 2.1. Let 1 < p < ∞ and g : R → R be an increasing function, and define

G(t) =
∫ t

0
g′(τ )

1
p dτ, t ∈ R.

Then

Jp(a − b)
(
g(a) − g(b)

) ≥ ∣∣G(a) − G(b)
∣∣p.

Lemma 2.2. For p ≥ 2 and β ≥ 1,

(
Jp(a − b) − Jp(c − d)

)(
((a − c)+M + δ)β − ((b − d)+M + δ)β

)

≥ 1

3 · 2p−1

βpp

(β + p − 1)p

∣∣∣((a − c)+M + δ)
β+p−1

p − ((b − d)+M + δ)
β+p−1

p

∣∣∣p,
(2.2)

where (t)+M := min {max {t, 0}, M}.
Proof. Weconsider three cases according to the sign of a−b−c+d. If a−b−c+d = 0
both the left-hand side and the right-hand side of (2.2) are zero. Now we verify the
inequality for a − b − c + d > 0

First notice that using (2.1) with A = a − b and B = c − d:

3 · 2p−1(a − b − c + d)(Jp(a − b) − Jp(c − d)) ≥ |a − b − c + d|p ,

using the fact that a − b − c + d > 0, we arrive at

Jp(a − b) − Jp(c − d) ≥ 1

3 · 2p−1

|a − b − c + d|p
a − b − c + d

= 1

3 · 2p−1 Jp((a − c) − (b − d)).

(2.3)

Now we use Lemma 2.1 with g(t) = ((t)+M + δ)β . Then with G = ∫ t
0 g

′(τ )
1
p dτ ,

G(t) = pβ
1
p

β + p − 1

(
(t+M + δ)

β+p−1
p − δ

β+p−1
p

)
.

By Lemma 2.1,

Jp
(
(a − c) − (b − d)

)(
g(a − c) − g(b − d)

) ≥ |G(a − c) − G(b − d)|p.

Hence,

Jp
(
(a − c) − (b − d)

)(
((a − c)+M + δ)β − ((b − d)+M + δ)β

)

≥ βpp

(β + p − 1)

∣∣∣((a − c)+M + δ)
β+p−1

p − ((b − d)+M + δ)
β+p−1

p

∣∣∣p.
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Using (2.3) in the above inequality concludes the proof. It only remains to verify the
case a−b−c+d < 0, nowwe are in the previous position and can usewith (b, a, d, c)
instead of (a, b, c, d) to obtain

(
Jp(b − a) − Jp(d − c)

)(
((b − d)+M + δ)β − ((a − c)+M + δ)β

)

≥ 1

3 · 2p−1

βpp

(β + p − 1)p

∣∣∣∣((b − d)+M + δ)
β+p−1

p − ((a − c)+M + δ)
β+p−1

p

∣∣∣∣
p

.

As

Jp(b − a) − Jp(d − c) = −(Jp(a − b) − Jp(c − d)
)
,

((b − d)+M + δ)β − ((a − c)+M + δ)β = −
(
((a − c)+M + δ)β − ((b − d)+M + δ)β

)
,

and

∣∣∣∣((b − d)+M + δ)
β+p−1

p − ((a − c)+M + δ)
β+p−1

p

∣∣∣∣
=
∣∣∣∣((a − c)+M + δ)

β+p−1
p − ((b − d)+M + δ)

β+p−1
p

∣∣∣∣

we obtain (2.2) �

The following pointwise inequality is a direct consequence of the convexity of the
mapping t → |t |α for α ≥ 1.

|aα − bα| ≥ αmin{a, b}α−1|a − b|, for a, b ≥ 0. (2.4)

2.3. Functional inequalities

We need the following basic inequalities for the tail.

Lemma 2.3. Let α > 0, 1 ≤ q < ∞, and u, v ∈ Lq
α(Rn) such that u = v on

R
n \ BR(x0). Then for any σ < 1,

Tailα,q(v; x0, σ R) ≤ 2Tailα,q(u; x0, σ R) + 2σ
−n
q

(
−
∫
BR(x0)

|u − v|q dx
) 1

q
.
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Proof.

Tailα,q(v; x0, σ R)q

= (σ R)α
∫
Rn\Bσ R(x0)

|v|q
|x − x0|n+α

dx

= (σ R)α
(∫

Rn\BR(x0)

|v|q
|x − x0|n+α

dx +
∫
BR(x0)\Bσ R(x0)

|v|q
|x − x0|n+α

dx
)

= (σ R)α
(∫

Rn\BR(x0)

|u|q
|x − x0|n+α

dx +
∫
BR(x0)\Bσ R(x0)

|v|q
|x − x0|n+α

dx
)

≤ (σ R)α
(∫

Rn\BR(x0)

|u|q
|x − x0|n+α

dx + 2q−1
∫
BR(x0)\Bσ R(x0)

|u|q + |u − v|q
|x − x0|n+α

dx
)

≤ 2q−1(σ R)α
(∫

Rn\Bσ R(x0)

|u|q
|x − x0|n+α

dx +
∫
BR(x0)\Bσ R(x0)

|u − v|q
|x − x0|n+α

dx
)

≤ 2q−1Tailα,q(u; x0, σ R)q + 2q−1σ−n −
∫
BR(x0)

|u − v|q dx .

�

For a proof of the following result, see [6, Lemma 2.3].

Lemma 2.4. Let α > 0, 0 < q < ∞. Suppose that Br (x0) ⊂ BR(x1). Then for every
u ∈ Lq

α(Rn), we have

Tailq,α(u; x0, r)q≤
( r

R

)α( R

R − |x − x0|
)n+α

Tailq,α(u; x1, R)q + r−n‖u‖qLq (BR(x1))
.

If in addition u ∈ Lm
loc(R

n) for some q < m ≤ ∞, then

Tailq,α(u; x0, r)q ≤
( r

R

)α( R

R − |x − x0|
)n+α

Tailq,α(u; x1, R)q

+
( (nωn)m − q

αm + nq

)m−q
m

r− qn
m ‖u‖Lm (BR(x1)),

where ωn is the measure of the n-dimensional open ball of radius 1.

We also recall the following Sobolev- and Morrey-type inequalities:

Proposition 2.5. Suppose 1 < p < ∞ and 0 < s < 1. Let � ⊂ R
n be an open and

bounded set. Define p�
s as

p�
s := np

n − sp
. (2.5)

For every u ∈ Ws,p(Rn) vanishing almost everywhere in R
n\�, we have

‖u‖p

L p�s (�)
≤ C1(n, s, p) [u]pWs,p(Rn)

, i f sp < n (2.6)

‖u‖p
L∞(�) ≤ C2(n, s, p)|�| spn −1[u]pWs,p(Rn)

, i f sp > n (2.7)
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‖u‖p
Ll (�)

≤ C3(n, s, p, l)|�| p
l [u]pWs,p(Rn)

, for every 1 ≤ l < ∞, i f sp = n.

(2.8)

In particular, the following Poincaré inequality holds true

‖u‖p
L p(�) ≤ C |�| spn [u]Ws,p(Rn), (2.9)

for some C = C(n, s, p). Furthermore, in the supercritical range of exponents func-
tions in Ws,p(Rn) are Hölder continuous and the following inequality holds true:

[u]
C
s− n

p (�)
≤ C4(n, s, p)[u]Ws,p(Rn), if sp > n. (2.10)

Remark 2.6. The above Sobolev-type inequalities are also valid for functions u ∈
Xs,p
0 (�,�′), where � is a bounded open set and �′ is an open set such that � � �′.

This can be seen using the fact that there is an extension domain containing � and
included in �′.

We will often use the following special application of Hölder’s inequality

‖u(x, t)‖Lq1,r1 (�×J ) ≤ ‖|�| 1
q1

− 1
q2 ‖u( �, t)‖Lq2 (�)‖Lr1 (J )

≤ |�| 1
q1

− 1
q2 |J | 1

r1
− 1

r2 ‖u‖Lq2,r2 (�×J ), (2.11)

where q1 < q2 , r1 ≤ r2. The following interpolation inequality (see, e.g., [5]) will be
useful.

Lemma 2.7. If w is contained in Lq1,r1(�× J )∩ Lq2,r2(�× J ), then w is contained
in Lq̃,r̃ (� × J ), where

1

r̃
= λ

r1
+ 1 − λ

r2
,

1

q̃
= λ

q1
+ 1 − λ

q2
, (0 ≤ λ ≤ 1).

Moreover,

‖w‖Lq̃,r̃ (�×J ) ≤ ‖w‖λ
Lq1,r1 (�×J )‖w‖1−λ

Lq2,r2 (�×J )
.

The following three lemmas will be needed in the proof of our local boundedness
result (Proposition 3.4).

Lemma 2.8. Let sp �= n and assume that w is in L p
(
(T0 − Rsp, T0);Ws,p(Rn)

) ∩
L p,∞(QR,Rsp (x0, T0)) and w(x, t) is zero for all x ∈ R

n\BR(x0), for almost every
t ∈ (T0 − Rsp, T0]. Then w is in L pq ′,pr ′

(QR,Rsp (x0, T0)) as long as q, r satisfy

1 − 1

r
− n

spq
≥ 0.

Moreover,

‖w‖p

L pq′,pr ′ (QR,Rsp (x0,T0))
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≤ CRsp(1− 1
r − n

spq )
(
‖w‖p

L p,∞(QR,Rsp (x0,T0))
+
∫ T0

T0−Rsp
[w]pWs,p(Rn)

dt
)
,

where C depends on n, s and p. In particular, in the case of 1
r + n

spq = 1 we have

‖w‖p

L pq′,pr ′ (QR,Rsp (x0,T0))

≤ C(n, s, p)

(
‖w‖p

L p,∞(QR,Rsp (x0,T0))
+
∫ T0

T0−Rsp
[w]pWs,p(Rn)

dt

)
.

Proof. Consider a pair of exponents r̃ = ( 1
r ′ − (1 − 1

r − n
spq ))−1 = spq

n , and q̃ = q ′

such that 1
r̃ ′ + n

spq̃ ′ = 1. Using Hölder’s inequality (2.11), we obtain

‖w‖p

L pq′,pr ′ (QR,Rsp (x0,T0))
≤ (Rsp)

1
r ′ − 1

r̃ ‖w‖p
L pq̃,pr̃ (QR,Rsp (x0,T0))

= Rsp(1− 1
r − n

spq )‖w‖p
L pq̃,pr̃ (QR,Rsp (x0,T0))

.

Now we split the proof into two cases depending on whether sp < n or not.
Case sp < n: We use Lemma 2.7 with the choice

1

pr̃
= λ

p
and

1

pq̃
= λ

p�
s

+ 1 − λ

p
, (0 ≤ λ ≤ 1).

This yields

‖w‖L pq̃,pr̃ (QR,Rsp (x0,T0)) ≤ ‖w‖λ

L p�s ,p(QR,Rsp (x0,T0))
‖w‖1−λ

L p,∞(QR,Rsp (x0,T0))
.

The above relations hold for λ = 1
r̃ = n

spq̃ ′ , and using Sobolev’s inequality 2.6, we
arrive at

‖w‖p
L pq̃,pr̃ (QR,Rsp (x0,T0))

≤ ‖w‖pλ

L p�s ,p(QR,Rsp (x0,T0))
‖w‖p(1−λ)

L p,∞(QR,Rsp (x0,T0))

≤ C‖w‖p(1−λ)

L p,∞(QR,Rsp (x0,T0))

(∫ T0

T0−Rsp
[w]pWs,p(Rn)

dt

)λ

.

By using Young’s inequality, we get

‖w‖p
L pq̃,pr̃ (QR,Rsp (x0,T0))

≤ C‖w‖p(1−λ)

L p,∞(QR,Rsp (x0,T0))

(∫ T0

T0−Rsp
[w]pWs,p(Rn)

dt

)λ

≤ C

(
(1 − λ)‖w‖p

L p,∞(QR,Rsp (x0,T0))
+ λ

∫ T0

T0−Rsp
[w]pWs,p(Rn)

dt

)

≤ C(n, s, p)

(
‖w‖p

L p,∞(QR,Rsp (x0,T0))
+
∫ T0

T0−Rsp
[w]pWs,p(Rn)

dt

)
.
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Case sp > n: In this case, we use the following interpolation between Hölder and L p

spaces:

‖w‖L∞(BR(x0)) ≤ C‖w‖χ

L p(BR(x0))
[w]1−χ

Cα(BR(x0))
, with χ = α

α + n
p

.

See [9, Lemma 2.2] for a proof. In light of the Morrey-type inequality (2.10), for
almost every t ∈ (T0 − Rsp, T0) we arrive at

‖w( �, t)‖L∞(BR(x0)) ≤ C‖w( �, t)‖1−
n
sp

L p(BR(x0))
[w( �, t)]

n
sp

C
s− n

p (BR(x0))

≤ C‖u( �, t)‖1−
n
sp

L p(BR(x0))
[w( �, t)]

n
sp

Ws,p(Rn)
. (2.12)

Now we interpolate once more between L p and L∞ to obtain

‖w( �, t)‖L pq̃ (BR(x0)) ≤ ‖w( �, t)‖
1
q̃

L p(BR(x0))
‖w( �, t)‖

1
q̃′
L∞(BR(x0))

by (2.12) ≤ C‖w( �, t)‖
1
q̃

L p(BR(x0))
‖w( �, t)‖

1
q̃′ (1− n

sp )

L p(BR(x0))
[w( �, t)]

n
spq̃′
Ws,p(Rn)

≤ C‖w( �, t)‖1−
n

spq̃′
L p(BR(x0))

[w( �, t)]
n

spq̃′
Ws,p(Rn)

.

We raise both sides to the power pr̃ and integrate with respect to t . Recalling that
1
r̃ = n

spq̃ ′ , we obtain

‖w‖pr̃
L pq̃,pr̃ (QR,Rsp (x0,T0))

≤ C pr̃
∫ T0

T0−Rsp
‖w( �, t)‖p(r̃−1)

L p(BR(x0))
[w( �, t)]pWs,p(Rn)

dt

≤ C pr̃ sup
T0−Rsp≤t≤T0

‖w( �, t)‖p(r̃−1)
L p(BR(x0))

×
∫ T0

T0−Rsp
[w( �, t)]pWs,p(Rn)

dt.

Taking the r̃ root and applying Young’s inequality, we obtain the desired estimate:
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‖w‖p
L pq̃,pr̃ (QR,Rsp (x0,T0))

≤ C p‖w‖p( r̃−1
r̃ )

L p,∞(QR,Rsp (x0,T0))

(∫ T0

T0−Rsp
[w]pWs,p(Rn) dt

) 1
r̃

≤ C(n, s, p)

(
‖w‖p

L p,∞(QR,Rsp (x0,T0))
+
∫ T0

T0−Rsp
[w]pWs,p(Rn)

dt

)
.

�

Lemma 2.9. Let sp = n, q ≥ 1, and r ≥ 1 such that

1 − 1

r
− 1

q
> 0.

Assume that w ∈ Ll,p(QR,Rsp (x0, T0))∩ L p,∞(QR,Rsp (x0, T0)) for some l such that

l = p

r ′

(
1 − 1

r
− 1

q

)−1

.

Then w belongs to L pq ′,pr ′
(QR,Rsp (x0, T0)) and

‖w‖p

L pq′,pr ′ (QR,Rsp (x0,T0))
≤R

np
lr ′
(
‖w‖p

L p,∞(QR,Rsp (x0,T0))
+R

−np
l ‖w‖p

Ll,p(QR,Rsp (x0,T0))

)
.

Proof. We use Lemma 2.7 with the choice

1

pr ′ = λ

p
and

1

pq ′ = λ

l
+ 1 − λ

p
, (0 ≤ λ ≤ 1).

Due to the assumption 1
l = r ′

p (1− 1
r − 1

q ), the above equalities hold for λ = 1
r ′ . Hence,

we get

‖w‖L pq′,pr ′ (QR,Rsp (x0,T0))
≤ ‖w‖λ

Ll,p(QR,Rsp (x0,T0))
‖w‖1−λ

L p,∞(QR,Rsp (x0,T0))
.

Therefore, recalling that λ = 1
r ′

R
−np
lr ′ ‖w‖p

L pq′,pr ′ (QR,Rsp (x0,T0))
= R

−λnp
l ‖w‖p

L pq′,pr ′ (QR,Rsp (x0,T0))

≤
(
R

−np
l ‖w‖p

Ll,p(QR,Rsp (x0,T0))

)λ(‖w‖p
L p,∞(QR,Rsp (x0,T0))

)1−λ

.

Using Young’s inequality for the right-hand side, we can conclude

‖w‖p

L pq′,pr ′ (QR,Rsp (x0,T0))
≤R

np
lr ′
(
‖w‖p

L p,∞(QR,Rsp (x0,T0))
+R

−np
l ‖w‖p

Ll,p(QR,Rsp (x0,T0))

)
.

�
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2.4. Weak solutions

Definition 2.10. For any t0, t1 ∈ R with t0 < t1, we define I = (t0, t1]. Let

f ∈
(
L p(I ; Xs,p

0 (K ,�)) ∩ L∞(I ; L2(K))
)�

,

for any openK such thatK � �. We say that u is a local weak solution to the equation

∂t u + (−�p)
su = f, in � × I,

if for any closed interval J = [T0, T1] ⊂ I , the function u is such that

u ∈ L p(J ;Ws,p
loc (�)) ∩ L p−1(J ; L p−1

s p (Rn)) ∩ C(J ; L2
loc(�)),

and it satisfies

−
∫
J

∫
�

u(x, t) ∂tϕ(x, t) dx dt +
∫
J

∫∫
Rn×Rn

Jp(u(x, t) − u(y, t)) (ϕ(x, t) − ϕ(y, t))

|x − y|n+s p
dx dy dt

=
∫

�

u(x, T0) ϕ(x, T0) dx −
∫

�

u(x, T1) ϕ(x, T1) dx + 〈 f, ϕ〉,
(2.13)

for any ϕ ∈ L p(J ;Ws,p(�)) ∩ C1(J ; L2(�)) which has spatial support compactly
contained in �. In equation (2.13), the symbol 〈 �, �〉 stands for the duality pairing
between Ws,p(�) and its dual space (Ws,p(�))∗.

Now, we define the notion of a weak solution to an initial boundary value problem.

Definition 2.11. Let I = [t0, t1], p ≥ 2, 0 < s < 1, and � � �′, where �′ is a
bounded open set in Rn . Assume that the functions u0, f and g satisfy

u0 ∈ L2(�),

f ∈
(
L p(I ; Xs,p

0 (� ,�′)) ∩ L∞(I ; L2(�))
)�

,

g ∈ L p(I ;Ws,p(�′)) ∩ L p−1(I ; L p−1
s p (Rn)).

We say that u is a weak solution of the initial boundary value problem

⎧⎨
⎩

∂t u + (−�p)
su = f, in � × I,
u = g, on (Rn \ �) × I,

u( �, t0) = u0, on �,

(2.14)

if the following properties are verified:

• u ∈ L p(I ;Ws,p(�′)) ∩ L p−1(I ; L p−1
sp (Rn)) ∩ C(I ; L2(�));

• u ∈ Xg(t)(�,�′) for almost every t ∈ I , where (g(t))(x) = g(x, t);
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• limt→t0 ‖u( �, t) − u0‖L2(�) = 0;
• for every J = [T0, T1] ⊂ I and every ϕ ∈ L p(J ; Xs,p

0 (�,�′))∩C1(J ; L2(�))

−
∫
J

∫
�

u(x, t) ∂tϕ(x, t) dx dt

+
∫
J

∫∫
Rn×Rn

Jp(u(x, t) − u(y, t)) (ϕ(x, t) − ϕ(y, t))

|x − y|n+sp
dx dy dt

=
∫

�

u(x, T0) ϕ(x, T0) dx −
∫

�

u(x, T1) ϕ(x, T1) dx

+ 〈 f, ϕ〉.
Let us mention that given a local weak solution in a cylinder I × �′, where I =

(t0, t1] and �′ is a bounded, open subset of Rn , by considering a smaller cylinder
J × � such that � � �′ and J is a closed interval compactly contained in I we end
up a weak solution in the smaller cylinder J × �.
Throughout the article,weworkwith right-hand sides f ∈ L p′

(I ; L(p�
s )

′
(�)), where

p�
s is the Sobolev exponent and we consider it to be infinity if sp > n. An application

of Hölder’s inequality together with the Sobolev–Morrey inequalities ensures that
f ∈ f ∈ L p′

(I ; (Xs,p
0 (�,�′))∗) ⊂ (

L p(I ; Xs,p
0 (� ,�′)) ∩ L∞(I ; L2(�))

)�
with

the duality pairing

〈 f, ϕ〉 =
∫
I

∫
�

f (x, t)ϕ(x, t) dx dt.

Theorem 2.12. Let p ≥ 2, let I = (T0, T1] and suppose that g satisfies

g ∈ L p(I ;Ws,p(�′)) ∩ L p(I ; L p−1
s p (Rn)) ∩ C(I ; L2(�)),

∂t g ∈ L p′
(I ; (Xs,p

0 (�,�′))∗),
lim
t→t0

‖g( �, t) − g0‖L2(�) = 0, for some g0 ∈ L2(�).

Suppose also that

f ∈ L p′
(I ; (Xs,p

0 (�,�′))∗).

Then for any initial datum g0 ∈ L2(�), there exists a unique weak solution u to
problem

⎧⎪⎪⎨
⎪⎪⎩
ut + (−�p)

su = f in � × I

u = g in (Rn \ �) × I

u(x, T0) = g(x, T0) in �.

(2.15)

Proof. In [7, Theorem A.3], the same result is proved with a stronger condition gt ∈
L p′

(I ;Ws,p(�′)�). The stronger condition is not needed in the proof. This condition
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can be replaced with gt ∈ L p′
(I, Xs,p

0 (�;�′)�) in all of the steps in the proof, except
that the construction gives us a C(I ; L2(�)) solution. There, the stronger assumption
is used only to show that the boundary condition is in C(I ; L2(�)), which we assume
here. �

Remark 2.13. The condition ∂t g ∈ L p′
(I ; (Xs,p

0 (�,�′))∗) is too strong. This con-

dition forces us to assume r ≥ p′, q ≥ (p�
s )

′ and u ∈ L p(I ; L p−1
sp (Rn)) in Propo-

sition 3.1 and hence in all our results. A more natural condition would be to assume
∂t g ∈ (

L p(I ; Xs,p
0 (� ,�′)) ∩ L∞(I ; L2(�))

)�
. We believe it is possible to overcome

this difficulty by pursuing an approximation procedure in the spirit of [35, Theorem
1.1 and Lemma 4.1].

3. Basic Hölder regularity and stability

Throughout the rest of the article, we assume 0 < s < 1 and 2 ≤ p < ∞.
Here, we argue that the norm of the (s, p)-caloric replacement of u is close to u if

f is small enough. By the (s, p)-caloric replacement of u in a cylinder Bρ(x0) × I ,
we mean the solution to the following

⎧⎪⎪⎨
⎪⎪⎩

vt + (−�p)
sv = 0 in Bρ(x0) × I

v = u in (Rn \ Bρ(x0)) × I

v(x, τ0) = u(x, τ0) in Bρ(x0).

(3.1)

Here τ0 is the initial point of the interval I . First we show the existence of a (s, p)-
caloric replacement using Theorem 2.12

Proposition 3.1. Let u be a local weak solution of ut + (−�p)
su = f in the cylinder

Bσ × J , for some interval J = (t1, t2] with f ∈ Lq,r
loc (Bσ × J ) such that r ≥ p′,

q ≥ (p�
s )

′ if sp < n, q ≥ 1 if sp > n, and q > 1 if sp = n.

In addition, we assume that u ∈ L p(J ; L p−1
sp (Rn)). Then for any 0 < ρ < σ , and

closed interval I � J , the (s, p)-caloric replacement of u in Bρ(x0)× I (weak solution
to (3.1)) exists.

Proof. We shall check the conditions in Theorem 2.12. If they are satisfied, there exists
a unique weak solution v ∈ L p(I,Ws,p(Bσ )) ∩ L p(I ; L p−1

sp (Rn)) ∩ C(I ; L2(Bρ))

to the problem (3.1). The only condition on u that is not immediate from the fact that
u is weak solution is ∂t u ∈ L p′

(I ; Xs,p
0 (Bρ , Bσ )�). We have to show that for every

function ψ ∈ L p(I ; Xs,p
0 (Bρ , Bσ ))

∣∣∣
∫
I
〈ut , ψ〉 dx dt

∣∣∣ ≤ C
∫
I
‖ψ‖p

Ws,p(Bσ ) dt. (3.2)

Here we only write the proof for the case sp < n, the case of sp ≥ n is similar, except
that one has to use the critical case of Sobolev inequality and the Morrey inequality
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instead of using the Sobolev inequality. We shall verify (3.2) for test functions be-
longing to the dense subspace, ψ ∈ L p(I ; Xs,p

0 (Bρ , Bσ )) ∩ C1
0(I ; L2(B)). We use

the equation to do so. We have∫
I
〈ut , ψ〉 dx dt =

∫
I

∫
Bρ

uψt dx dt

= −
∫
I

∫∫
Rn×Rn

Jp(u(x, t)−u(y, t))(ψ(x, t)−ψ(y, t))

|x − y|n+sp
dx dy dt

+
∫
I

∫
Br

f (x, t)ψ(x, t) dx dt

= −
∫
I

∫∫
Bσ ×Bσ

Jp(u(x, t)−u(y, t))(ψ(x, t)−ψ(y, t))

|x − y|n+sp
dx dy dt

− 2
∫
I

∫
Rn\Bσ

∫
Bρ

Jp(u(x, t) − u(y, t))ψ(x, t)

|x − y|n+sp
dx dy dt

+
∫
I

∫
Bρ

f (x, t)ψ(x, t) dx dt.

By Hölder’s inequality, we have∫
I

∫∫
Bσ ×Bσ

|Jp(u(x, t) − u(y, t))(ψ(x, t) − ψ(y, t))|
|x − y|n+sp

dx dy dt

≤
∫
I

∥∥∥ Jp(u(x, t) − u(y, t))

|x − y| n
p′ +s(p−1)

∥∥∥
L p′ (Bσ ×Bσ )

∥∥∥ψ(x, t) − ψ(y, t)

|x − y| np +s

∥∥∥
L p(Bσ ×Bσ )

dt

≤ [u]p−1
L p(I ;Ws,p(Bσ ))

[ψ]L p(I ;Ws,p(Bσ )). (3.3)

For the other nonlocal term, we note that for every x ∈ Bρ and y ∈ R
n \ Bσ we have

|y| ≤ σ
σ−ρ

|x − y|. Hence,
∫
Rn\Bσ

|Jp(u(x, t) − u(y, t))|
|x − y|n+sp

dy

≤
(

σ

σ − ρ

)n+sp

C(p)
∫
Rn\Bσ

|u(x, t)|p−1 + |u(y, t)|p−1

|y|n+sp
dy

≤ C(σ, ρ, s, p, n)
(
|u(x, t)|p−1 + ‖u( �, t)‖p−1

L p−1
sp

)
.

Therefore, ∫
I

∫
Bρ

∫
Rn\Bσ

|Jp(u(x, t) − u(y, t))ψ(x, t)|
|x − y|n+sp

dy dx dt

≤ C(σ, ρ, s, p, n)
(∫

I

∫
Bρ

|ψ(x, t)||u(x, t)|p−1 dx dt

+
∫
I
‖ψ( �, t)‖L1(Bρ)‖u( �, t)‖p−1

L p−1
sp (Rn)

dt
)
.

By Hölder’s inequality, we have
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∫
I

∫
Bρ

|ϕ(x, t)||u(x, t)|p−1 dx dt ≤
∫
I
‖ψ( �, t)‖L p(Bρ)‖u( �, t)‖p−1

L p(Bρ)

≤ ‖ψ‖L p(I ;L p(Bρ))‖u‖p−1
L p(I ;L p(Bρ))

. (3.4)

For the other term,
∫
I
‖ψ( �, t)‖L1(Bρ)‖u( �, t)‖p−1

L p−1
sp (Rn)

dt ≤ ‖ψ‖L p(I ;L1(Bρ))‖u( �, t)‖p−1

L p(I ;L p−1
sp (Rn))

.

(3.5)

Since f ∈ L p′
(I ; L(p�

s )
′
(Bρ)), by Hölder’s inequality and Sobolev’s inequality we

obtain ∫
I

∫
Bρ

| f ψ | dx dt ≤
∫
I
‖ f ‖L(p�s )′ (Bρ)

‖ψ‖L p�s (Bρ)
dt

≤
∫
I
‖ f ‖L(p�s )′ (Bρ)

‖ψ‖Ws,p(Bσ ) dt

≤ ‖ f ‖L((p�s )′,p′)(Bρ×I )‖ψ‖L p(I ;Ws,p(Bσ )).

(3.6)

Therefore, combining with (3.3), (3.4), and (3.5) we obtain

∣∣∣
∫
I
〈vt , ψ〉 dt

∣∣∣ ≤ C(σ, ρ, s, p, n, u, f )‖ψ‖L p(I ;Ws,p(Bσ )).

�

Lemma 3.2. Assume that f ∈ Lq,r
loc (Qσ,σ sp (x0, T0)) with r ≥ p′,

q ≥ (p�
s )

′ if sp < n, q ≥ 1 if sp > n, and q > 1 if sp = n.

Let u be a local weak solution of ∂t u + (−�p)
su = f in Qσ,σ sp (x0, T0), such that

u ∈ L p
loc((T0−σ sp, T0]; L p−1

sp (Rn)). Let ρ < σ and consider v to be the (s, p)-caloric
replacement of u in Qρ,ρsp (x0, T0). Then we have

−
∫
Qρ,ρs p (x0,T0)

|u − v|p dx dt ≤ Cρξ ‖ f ‖p′
Lq,r (Qρ,ρs p (x0,T0))

(3.7)

and

‖u − v‖Lq′,r ′ (Qρ,ρsp (x0,T0))
≤ Cρξ+n‖ f ‖

1
p−1
Lq,r (Qρ,ρsp (x0,T0))

, (3.8)

with ξ = spp′(1 − 1
r − n

spq ) and C = C(n, s, p), in the case sp �= n. In the case

sp = n, we can take ξ = spp′(1 − 1
r − 1

q ), with C = C(n, s, p, q) also depending
on q.
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Proof. Let J := [T0 − ρsp, T0], throughout the proof, we drop the dependence
of the balls on the center and write Bρ instead of Bρ(x0), and Qρ,ρsp instead of
Qρ,ρsp (x0, T0).
By subtracting the weak formulation of the equations (2.13) for u and v with the

same test function ϕ(x, t) ∈ L p(J ; Xs,p
0 (Bρ, Bσ )) ∩ C1(J ; L2(Bρ)), we get

−
∫
J

∫
Bρ

(u(x, t) − v(x, t))
∂

∂t
ϕ(x, t) dx dt

+
∫
J

∫
Rn

∫
Rn

[
Jp
(
u(x, t) − u(y, t)

)− Jp
(
v(x, t) − v(y, t)

)]
(ϕ(x, t) − ϕ(y, t))

|x − y|n+sp
dx dy dt

=
∫
Bρ

((u(x, T0 − ρsp) − v(x, T0 − ρsp))ϕ(x, T0 − ρsp) dx

−
∫
Bρ

((u(x, T0) − v(x, T0))ϕ(x, T0) dx

+
∫
J

∫
Bρ

f (x, t)ϕ(x, t) dx dt.

Now we take ϕ := u − v, which belongs to L p(J ; Xs,p
0 (Bρ; Bσ )), but it may not

be in C1(J ; L2(Bρ)). We justify taking this as a test function in Appendix B. By
Proposition 6.1 with F(t) = t , we get
∫
J

∫∫
Rn×Rn

[
Jp
(
u(x, t)−v(x, t)

)−Jp
(
u(y, t)−v(y, t)

)][(
u(x, t)−u(y, t)

)−(v(x, t)−v(y, t)
)]

|x − y|n+sp
dx dy dt

=
∫
J

∫
Bρ

f (x, t)(u(x, t) − v(x, t)) dx dt

− 1

2

∫
Bρ

((u(x, T0) − v(x, T0))
2 − ((u(x, T0 − ρsp) − v(x, T0 − ρsp))2 dx

=
∫
J

∫
Bρ

f (x, t)(u(x, t) − v(x, t)) dx dt − 1

2

∫
Bρ

((u(x, T0) − v(x, T0))
2 dx

≤
∫
J

∫
Bρ

| f (x, t)(u(x, t) − v(x, t))| dx dt, (3.9)

where in the third line we have used u(x, T0 − ρsp) = v(x, T0 − ρsp). The left-hand
side is essentially the Ws, p seminorm. By the pointwise inequality (2.1),
∫
J
[u − v]pWs,p(Rn )

dt

=
∫
J

∫∫
Rn×Rn

|u(x, t) − v(x, t) − (u(y, t) − v(y, t))|p
|x − y|n+sp

dx dy dt

≤ C(p)
∫
J

∫∫
Rn×Rn

×
[
Jp
(
u(x, t) − u(y, t)

)− Jp
(
v(x, t) − v(y, t)

)][
u(x, t) − u(y, t) − (

v(x, t) − v(y, t)
)]

|x − y|n+sp
dx dy dt.

Therefore, by (3.9) and Hölder’s inequality
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∫
J
[u − v]pWs,p(Rn)

dt ≤ C(p)
∫
J

∫
Bρ

| f (x, t)(u(x, t) − v(x, t))| dx dt

≤ C(p)
∫
J
‖ f ( �, t)‖Lq (Bρ)‖(u − v)( �, t)‖Lq′(Bρ) dt

≤ C(p)‖ f ‖Lq,r (Qρ,ρsp )‖u − v‖Lq′,r ′(Qρ,ρsp ). (3.10)

Now we consider three cases: sp < n, sp > n and sp = n.
Case sp < n. By Hölder’s inequality (2.11) and Sobolev’s inequality (2.6), we have

‖u − v‖Lq′,r ′ ≤ |Bρ |
1
q′ − 1

p�s

(∫
J
‖u − v‖r ′

L p�s (Bρ)
dt
) 1

r ′

≤ C(n, s, p)|Bρ |
1
q′ − 1

p�s

(∫
J
[u − v]r ′Ws,p(Rn) dt

) 1
r ′

≤ C(n, s, p)|Bρ |
1
q′ − 1

p�s |J | 1
r ′ − 1

p

(∫
J
[u − v]pWs,p(Rn)

dt
) 1

p
.

(3.11)

Combined with (3.10), this yields

(∫
J
[u − v]pWs,p(Rn)

dt
) p−1

p ≤ C |Bρ |
1
q′ − 1

p�s |J | 1
r ′ − 1

p ‖ f ‖Lq,r (Qρ,ρsp )

= C |Bρ | 1
q′ − n−sp

np |J | 1
r ′ − 1

p ‖ f ‖Lq,r (Qρ,ρsp ),

(3.12)

where C = C(n, s, p). By the Poincaré inequality,

−
∫
J

−
∫
Bρ

|u − v|p dx dt ≤ C |Bρ | p′
q′ −p′ (n−sp)

np + sp
n −1|J | p′

r ′ − p′
p −1‖ f ‖p′

Lq,r (Qρ,ρsp ).

Also from (3.12) and (3.11), we get

‖u − v‖Lq′,r ′(Qρ,ρsp ) ≤ C(n, s, p)|Bρ | p′
q′ −p′ n−sp

np |J | p′
r ′ − p′

p ‖ f ‖
1

p−1
Lq,r (Qρ,ρsp ).

Case sp > n. In this case, we use Morrey’s inequality (2.7) and Hölder’s inequality
and obtain

‖u − v‖Lq′,r ′(Qρ,ρsp ) ≤ C |Bρ | 1
q′
(∫

J
‖u − v‖r ′L∞(Bρ) dt

) 1
r ′

≤ C |Bρ | 1
q′ |J | 1

r ′ − 1
p

(∫
J
‖u − v‖p

L∞(Bρ) dt
) 1

p

≤ C |Bρ | 1
q′ + sp−n

np |J | 1
r ′ − 1

p

(∫
J
[u − v]pWs,p(Rn)

dt
) 1

p
.

(3.13)
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Together with (3.10), this implies

(∫
J
[u − v]pWs,p(Rn)

dt
) p−1

p ≤ C |Bρ | 1
q′ − n−sp

np |J | 1
r ′ − 1

p ‖ f ‖Lq,r (Qρ,ρsp ). (3.14)

By the Poincaré inequality,

−
∫
J

−
∫
Bρ

|u − v|p dx dt ≤ C |Bρ | p′
q′ −p′ (n−sp)

np + sp
n −1|J | p′

r ′ − p′
p −1‖ f ‖p′

Lq,r (Qρ,ρsp ).

Combining (3.13) and (3.14), we get

‖u − v‖Lq′,r ′(Qρ,ρsp ) ≤ C(n, s, p)|Bρ | p′
q′ −p′ n−sp

np |J | p′
r ′ − p′

p ‖ f ‖
1

p−1
Lq,r (Qρ,ρsp ).

Case sp = n. In this case, we use the critical case of Sobolev’s inequality (2.8) for
l = q ′ and obtain

‖u − v‖p

Lq′
(Bρ)

≤ C(n, s, p, q)|Bρ |
p
q′ [u − v]pWs,p(Rn)

.

Hence, using Hölder’s inequality, we have for any r ≥ p′

‖u − v‖Lq′,r ′(Qρ,ρsp ) =
(∫

J
‖u − v‖r ′

Lq′
(Bρ)

dt
) 1

r ′

≤ C |Bρ | 1
q′
(∫

J
[u − v]r ′Ws,p(Rn) dt

) 1
r ′

≤ C |Bρ | 1
q′ |J | 1

r ′ − 1
p

(∫
J
[u − v]pWs,p(Rn) dt

) 1
p
.

The above constant C = C(n, s, p, q) does blow up as q goes to 1. In a similar way
as in the prior cases, we get for q > 1 and r ≥ p′

−
∫
J

−
∫
Bρ

|u − v|p ≤ C(n, s, p, q)|Bρ | p′
q′ |J | p′

r ′ − p′
p −1‖ f ‖p′

Lq,r (Qρ,ρsp )

and

‖u − v‖Lq′,r ′(Qρ,ρsp ) ≤ C(n, s, p, q)|Bρ | p′
q′ |J | p′

r ′ − p′
p ‖ f ‖

1
p−1
Lq,r (Qρ,ρsp ).

Using that |Bρ | ∼ ρn and |I | ∼ ρsp, we can conclude that

−
∫
Qρ,ρs p (x0,T0)

|u − v|p dx dt ≤ Cρξ ‖ f ‖p′
Lq,r (Qρ,ρs p ),

and

‖u − v‖Lq′,r ′ (Qρ,ρsp )
≤ Cρξ+n‖ f ‖

1
p−1
Lq,r (Qρ,ρsp ).
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Here in the case of sp �= n,

ξ = np′

q ′ − p′ n − sp

p
+ sp − n + spp′

r ′ − spp′

p
− sp

= p′
(
n

q ′ − n

p′ − n − sp

p
+ sp

r ′ − sp

p

)

= p′
(
n

q ′ − n + sp

r ′

)
= p′

(
sp

r ′ − n

q

)
= spp′

(
1 − 1

r
− n

spq

)
,

and in the case sp = n,

ξ = p′
(
n

q ′ + sp

r ′ − sp

p
− sp

p′

)
= spp′

(
1

q ′ + 1

r ′ − 1

p
− 1

p′

)

= spp′
(
1 − 1

q
+ 1 − 1

r
− 1

)

= spp′
(
1 − 1

r
− 1

q

)
.

�

Remark 3.3. In Lemma 3.2, we assume the same conditions as in Proposition 3.1.
These assumptions are used in the proof not only to ensure the existence of the (s, p)-
caloric replacement but also to derive (3.11) and (3.13). Asmentioned in Remark 2.13,
one can expect the existence of the (s, p)-caloric replacement under a more general
condition for the right-hand side. If such an existence theorem is available, one can
expect the estimates in Lemma 3.2 to hold true for more general right-hand sides. In
the proof of Lemma 3.2, we only used the diffusion term in (3.9), but the stronger
estimate

sup
t∈J

‖(u − v)( �, t)‖2L2(Bρ(x0))
+
∫
J
[(u − v)( �, t)]pWs,p(Rn)

dt

≤ C
∫
J

∫
Bρ(x0)

| f (x, t)(u − v)(x, t)| dx dt,

holds true. Itmight bepossible to utilize an interpolation argument similar toLemma2.8
to replace the equations (3.11) and (3.13) and relax the assumptions on q and r . See
also [12, Lemma 2.2]. However, the nonhomogeneity of the equation is for sure a
challenge in pursuing this line of reasoning.

Next, we perform a Moser iteration to get an L∞ bound for the difference between
the solution and its (s, p)-caloric replacement.

Proposition 3.4. Let u be a local weak solution of

∂t u + (−�p)
su = f, in Qσ,σ sp (x0, T0),
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with f ∈ Lq,r
loc (Qσ,σ sp (x0, T0)) such that

1

r
+ n

spq
< 1.

In addition, assume that u ∈ L p
loc

(
(T0 − σ sp, T0]; L p−1

sp (Rn)
)
, r ≥ p′,

q ≥ 1 if sp �= n, and q > 1 if sp = n.

Let v be the (s, p)-caloric replacement of u in QR,Rsp (x0, T0), with R < σ . Then in
the case of sp �= n, we have

‖(u − v)+‖L∞(QRRsp (x0,T0)) ≤ C(n, s, p)ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + Rspν‖ f ‖Lq,r(QR,Rsp (x0,T0))

)
,

where ν = 1 − 1
r − n

spq and

ϑ = 1 + spν

n
.

In the case of sp = n, given any l such that p
r ′ (1 − 1

r − 1
q )−1 < l < ∞ we get

‖(u−v)+‖L∞(QR,Rsp (x0,T0))≤C(n, s, p, q, l)ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + Rspν‖ f ‖Lq,r (QR,Rsp (x0,T0))

)
,

where ϑ = 2 − 1
r − 1

q − p
lr ′ and ν = 1 − 1

r − 1
q .

Proof. Throughout the proof, we write QR,Rsp instead of QR,Rs,p (x0, T0) and BR

instead of BR(x0). We also define the interval J to be J := (T0 − Rsp, T0]. First, we
verify that our assumptions ensure that the (s, p)-caloric replacement of u exists. If
sp ≥ n, we have explicitly assumed what is needed to use Proposition 3.1. If sp < n,
we have to verify that q ≥ (p�

s )
′. This follows from the assumption 1

r + n
spq < 1.

Indeed

n

sp
≤ q

(
1 − 1

r

)
≤ q,

and it is straightforward to verify that n
sp ≥ (p�

s )
′. This shows that v, the (s, p)-caloric

replacement of u exist. Let us also mention that the assumptions in Lemma 3.2 are the
same as in Proposition 3.1, and we can use this lemma. Now, we test the equations
with powers of u − v and perform a Moser iteration. Using Proposition 6.1 with

F(t) = (min {t+ , M} + δ)β − δβ,

and

δ = max
{
1, Rspν‖ f ‖Lq,r (QR,Rsp )

}
, (3.15)

we get

sup
t∈J

∫
BR

F(u − v) dx +
∫
J

∫∫
Rn×Rn

Jp(u(x, t) − u(y, t)) − Jp(v(x, t) − v(y, t))

|x − y|n+sp
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×(F(u(x, t) − v(x, t)) − F(u(y, t) − v(y, t))) dx dy dt

≤
∫
J

∫
BR

| f (x, t)|F(u(x, t) − v(x, t))

≤ ‖ f ‖Lq,r (BR×J )‖((u − v)+M + δ)β‖Lq′,r ′ (BR×J )
. (3.16)

In the last line, we have used Hölder’s inequality. Here F(t) = ∫ t
0 F(t) dt is

F(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t ≤ 0,
1

β+1 (t + δ)β+1 − δβ+1

β+1 − tδβ if 0 ≤ t ≤ M,

1
β+1 (M + δ)β+1 − δβ+1

β+1 − tδβ + (t − M)(M + δ)β if t ≥ M.

Notice that by Young’s inequality, for t ≥ 0

(t + δ)β+1

2(β + 1)
+ β

β + 1
2δβ+1 ≥ t + δ

2
1

β+1

2
β

β+1 δβ ≥ tδβ .

In particular, for 0 ≤ t ≤ M

F(t) ≥ (t + δ)β+1

2(β + 1)
− 2β + 1

β + 1
δβ+1 ≥ (t + δ)β+1

2(β + 1)
− 2δβ+1,

and for t ≥ M

1

β + 1
(M + δ)β+1 − δβ+1

β + 1
− tδβ + (t − M)(M + δ)β

= 1

β + 1
(M + δ)β+1 − δβ+1

β + 1
− Mδβ + (t − M)

(
(M + δ)β − δβ

) ≥ F(M)

≥ (M + δ)β+1

2(β + 1)
− 2δβ+1.

Hence,

F(t) ≥ (t+M + δ)β+1

2(β + 1)
− 2δβ+1. (3.17)

Using Lemma 2.2 for the second term in the left-hand side of (3.16) and (3.17) in the
first term, we obtain

1

2(β + 1)
sup
t∈J

∫
BR

((u − v)+M + δ)β+1 dx

+ 1

3 · 2p−1

βpp

(β + p − 1)p

∫
J

[
((u − v)+M + δ)

β+p−1
p

]p

Ws,p(Rn)

dt

≤ sup
t∈J

∫
BR

F(u − v) dx + 2δβ+1|BR |

+
∫
J

∫∫
Rn×Rn

Jp(u(x, t) − u(y, t)) − Jp(v(x, t) − v(y, t))

|x − y|n+sp
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× (F(u(x, t) − v(x, t)) − F(u(y, t) − v(y, t))) dx dy dt

≤ ‖ f ‖Lq,r (BR×J )‖((u − v)+M + δ)β‖Lq′,r ′ (BR×J )
+ 2δβ+1|BR |. (3.18)

Let w(x, t) = ((u − v)+M + δ)
β
p . Since δ ≤ (u − v)+M + δ, we see that

δβ ≤
‖w‖p

L pq′,pr ′ (QR,Rsp )

|BR |1− 1
q |J |1− 1

r

. (3.19)

Using (3.19) in (3.18), we get

δ

2(β + 1)
‖w‖p

L p,∞(BR×J ) + 1

3 · 2p−1

βpp

(β + p − 1)p

∫
J

[
w

β+p−1
β

]p

Ws,p(Rn)

dt

≤ ‖ f ‖Lq,r (BR×J )‖w‖p

L pq′,pr ′ (BR×J )
+ 2δ|BR |

‖w‖p

L pq′,pr ′ (BR×J )

|BR |1− 1
q |J |1− 1

r

. (3.20)

By (2.4), we have

p
Ws,p(Rn)

=
∫∫

Rn×Rn

|w(x)
β+p−1

β − w(y)
β+p−1

β |p
|x − y|n+sp

dx dy

≥
(

β + p − 1

β

)p

min{w(x), w(y)}p( β+p−1
β

−1)

×
∫∫

Rn×Rn

|w(x) − w(y)|p
|x − y|n+sp

dx dy

≥
(

β + p − 1

β

)p

δ p−1[w]pWs,p(Rn)
.

Using this in (3.20) and since J has length Rsp, we arrive at

δ

2(β + 1)
‖w‖p

L p,∞(QR,Rsp ) + 1

3 · 2p−1

δ p−1 pp

β p−1

∫
J
[w]pWs,p(Rn)

dt

≤ ‖w‖p

L pq′,pr ′ (QR,Rsp )

(
‖ f ‖Lq,r (QR,Rsp ) + 2(nωn)

1
q δRn

Rn(1− 1
q )+sp(1− 1

r )

)
.

Upon multiplying both sides by 3·2p−1·β p−1

δ
, this implies

3 · 2p−2 β p−1

β + 1
‖w‖p

L p,∞(QR,Rsp ) + δ p−2 pp
∫
J
[w]pWs,p(Rn)

dt

≤ 3 · 2p−1 × β p−1

δ
‖w‖p

L pq′,pr ′ (QR,Rsp )

(‖ f ‖Lq,r (QR,Rsp ) + 2(nωn)
1
q δR−spν).

(3.21)
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Since δ ≥ 1 and p ≥ 2, for β ≥ 1 we have

‖w‖p
L p,∞(QR,Rsp ) +

∫
J
[w]pWs,p(Rn)

dt

≤ 3 · 2p−2 β p−1

β + 1
‖w‖p

L p,∞(QR,Rsp ) + δ p−2 pp
∫
J
[w]pWs,p(Rn) dt.

Using this in (3.21), we get

‖w‖p
L p,∞(QR,Rsp ) +

∫
J
[w]pWs,p(Rn)

dt

≤ 3 · 2p−1β p−1‖w‖p

L pq′,pr ′ (QR,Rsp )

(‖ f ‖Lq,r (QR,Rsp )

δ
+ 2(nωn)

1
q R−spν

)

≤ Cβ p−1‖w‖p

L pq′,pr ′ (QR,Rsp )

(‖ f ‖Lq,r (QR,Rsp )

δ
+ R−spν

)
, (3.22)

where C = C(n, p). Now we consider two cases depending on whether sp �= n or
sp = n.
Case sp �= n: Notice that since ν > 0, if we take ϑ = 1 + spν

n , the exponents
(ϑr ′)′, (ϑq ′)′ satisfy the condition of Lemma 2.8. Indeed,

1 − 1

(ϑr ′)′
− n

sp(ϑq ′)′
= 1

ϑr ′ + n

spϑq ′ − n

sp

= 1

ϑ

(
1

r ′ + n

spq ′ − ϑn

sp

)
= 1

ϑ

(
ν + n

sp
− ϑn

sp

)
= 0.

As w − δ
β
p does vanish in BR(x0)c, using Lemma 2.8 for the exponents (ϑq ′)′ and

(ϑr ′)′ we get

‖w − δ
β
p ‖p

Lϑpq′,ϑpr ′ (QR,Rsp )

≤ C(n, s, p)

(
‖w − δ

β
p ‖p

L p,∞(QR,Rsp ) +
∫ T0

T0−Rsp
[w − δ

β
p ]pWs,p(Rn)

dt

)

≤ C(n, s, p)

(
‖w‖p

L p,∞(QR,Rsp ) +
∫ T0

T0−Rsp
[w]pWs,p(Rn)

dt

)

by (3.22) ≤ C(n, s, p)β p−1‖w‖p

L pq′,pr ′ (QR,Rsp )

(‖ f ‖Lq,r (QR,Rsp )

δ
+ R−spν

)
. (3.23)

Here we have used thatw− δ
β
p is nonnegative as well as the fact that [w]Ws,p(Rn) does

not change by subtracting a constant from w. Hence, by (3.19) and (3.23) we obtain

‖wϑ‖
p
ϑ

L pq′,pr ′ (QR,Rsp )

= ‖w‖p

Lϑpq′,ϑpr ′ (QR,Rsp )
≤
(

‖w − δ
β
p ‖Lϑpq′,ϑpr ′ (QR,Rsp )

+ δ
β
p R

n
ϑpq′ + sp

ϑpr ′
)p
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≤ 2p−1
(

‖w − δ
β
p ‖p

Lϑpq′,ϑpr ′ (QR,Rsp )
+ δβ R

n
ϑq′ + sp

ϑr ′
)

≤ Cβ p−1‖w‖p

L pq′,pr ′ (QR,Rsp )

(‖ f ‖Lq,r (QR,Rsp )

δ
+ R−spν

)

+2p−1δβ R
n

ϑq′ + sp
ϑr ′

≤ Cβ p−1‖w‖p

L pq′,pr ′ (QR,Rsp )

(‖ f ‖Lq,r (QR,Rsp )

δ
+ R−spν

)

+2p−1(nωn)
1
q −1

‖w‖p

L pq′,pr ′ (QR,Rsp )

R
n
q′ + sp

r ′ − n
ϑq′ − sp

ϑr ′

≤ Cβ p−1‖w‖p

L pq′,pr ′ (QR,Rsp )

(‖ f ‖Lq,r (QR,Rsp )

δ
+ R−spν + R( 1

ϑ
−1)(spν+n)

)
.

(3.24)

Observe that ( 1
ϑ

− 1)(spν + n) = −ϑ−1
ϑ

(spν + n) = −spν. Furthermore, recalling
the definition of δ (3.15) whenever δ > 1 we have

‖ f ‖Lq,r (QR,Rsp )

δ
= R−spν .

When δ = 1, it is straightforward to verify that

‖ f ‖Lq,r (QR,Rsp )

δ
≤ R−spν .

Inserting these into (3.24), we arrive at

‖wϑ‖
p
ϑ

L pq′,pr ′ (QR,Rsp )
≤ Cβ p−1R−spν‖w‖p

L pq′,pr ′ (QR,Rsp )
. (3.25)

Now we iterate this inequality with the following choice of exponents

β0 = 1, βm+1 = ϑβm = ϑm+1.

With the notation

ϕm := ‖((u − v)+M + δ)
βm
p ‖

p
βm

L pq′,pr ′ (QR,Rsp )
= ‖(u − v)+M + δ‖Lβmq′,βmr ′ (QR,Rsp )

,

(3.25) reads

ϕm+1 ≤ (
C R−spν) 1

ϑm ϑ
(p−1)m

ϑm ϕm .

Iterating this yields

ϕm+1 ≤ (
C R−spν)∑m

j=0 ϑ− j

ϑ
(p−1)

∑m
j=0 jϑ− j

ϕ0. (3.26)

Since ϑ > 1, we have the following convergent series

∞∑
j=0

ϑ− j = ϑ

ϑ − 1
= n + spν

spν
,
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and

∞∑
j=0

jϑ− j = ϑ

(ϑ − 1)2
= n2 + nspν

s2 p2ν2
.

By (3.8) in Lemma 3.2,

ϕ0 = ‖(u − v)+M+δ‖Lq′,r ′ (QR,Rsp )
≤C(n, s, p)Rspp′ν+n‖ f ‖

1
p−1
Lq,r (QR,Rsp )+δ(nωn)

1
q′ R

n
q′ + sp

r ′

= C(n, s, p)Rn+spν(R
spν
p−1 ‖ f ‖

1
p−1
Lq,r (QR,Rsp ) + δ) ≤ C(n, s, p)Rn+spν

(
δ

1
p−1 + δ

)

≤ C(n, s, p)Rn+spνδ. (3.27)

In the last line, we have used that p − 1 ≥ 1 and δ ≥ 1. Inserting (3.27) to (3.26) and
sending m to infinity, we obtain

‖(u − v)+M + δ‖L∞(QR,Rsp ) ≤ Cϑ
(p−1)ϑ
(ϑ−1)2 R−n−spνRspν+nδ

= Cϑ
(p−1)ϑ
(ϑ−1)2 δ

≤ Cϑ
(p−1)ϑ
(ϑ−1)2 max {1, Rspν‖ f ‖Lq,r (QR,Rsp )}

≤ C(n, s, p)ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + Rspν‖ f ‖Lq,r (QR,Rsp )

)
.

Since the above estimate is independent of M , we get

‖(u − v)+‖L∞(QR,Rsp ) ≤ C(n, s, p)ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + Rspν‖ f ‖Lq,r (QR,Rsp )

)
,

which is the desired result.
Case sp=n. Here we use the critical case of Sobolev–Morrey inequality, (2.8) with

max

{
p

r ′

(
1 − 1

r
− 1

q

)−1

, q ′
}

< l < ∞. (3.28)

This applied for the second term in the left-hand side of (3.22) implies

‖w‖p
L p,∞(QR,Rsp ) +

(
C(n, s, p, l)R

np
l

)−1 [‖w‖p
Ll,p(QR,Rsp ))

− δβ |BR | p
l |J |

]

≤ ‖w‖p
L p,∞(QR,Rsp )) +

(
C(n, s, p, l)R

np
l

)−1
∫
J
‖w − δ

β
p ‖p

Ll (BR)

≤ ‖w‖p
L p,∞(QR,Rsp ) +

∫
J
[w − δ

β
p ]pWs,p(Rn)

dt

= ‖w‖p
L p,∞(QR,Rsp ) +

∫
J
[w]pWs,p(Rn)

dt

≤ C(n, p)β p−1‖w‖p

L pq′,pr ′ (QR,Rsp )

(‖ f ‖Lq,r (QR,Rsp )

δ
+ R−spν

)
.
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We replace the constant C(n, s, p, l) with max {1,C(n, s, p, l)}, and multiply both
sides with it to arrive at

‖w‖p
L p,∞(QR,Rsp ) + R

−np
l ‖w‖p

Ll,p(QR,Rsp )

≤ C(n, s, p, l)β p−1‖w‖p

L pq′,pr ′ (QR,Rsp )

(‖ f ‖Lq,r (QR,Rsp )

δ
+R−spν

)
+C(n, p, l)δβ |J |

(using β ≥ 1) ≤ C(n, s, p, l)β p−1
(

‖w‖p

L pq′,pr ′ (QR,Rsp )

(‖ f ‖Lq,r (QR,Rsp )

δ
+ R−spν

)
+ δβ Rsp

)

using (3.19) ≤ C(n, s, p, l)β p−1‖w‖p

L pq′,pr ′ (QR,Rsp )

(‖ f ‖Lq,r (QR,Rsp )

δ
+ R−spν + Rsp

R
n
q′ + sp

r ′

)

≤ C(n, s, p, l)β p−1‖w‖p

L pq′,pr ′ (QR,Rsp )
R−spν .

(3.29)

In the last line, we have used that since sp = n we have

sp − n

q ′ − sp

r ′ = sp − n

(
1 − 1

q

)
− sp

(
1 − 1

r

)
= sp

(
1

r
+ 1

q
− 1

)
= −spν.

We have also used the following inequality which we have discussed in the case
sp �= n:

‖ f ‖Lq,r (QR,Rsp )

δ
≤ R−spν .

Now we choose ϑ = 2 − 1
r − 1

q − p
lr ′ . Notice that due to the choice of l, (3.28), we

have ϑ > 1. Then the exponents (ϑr ′)′ and (ϑq ′)′ satisfy

1 − 1

(ϑr ′)′
− 1

(ϑq ′)′
= p

lϑr ′ .

Therefore, we can apply Lemma 2.9 with the exponents (ϑr ′)′ and (ϑq ′)′ to (3.29) to
arrive at

‖wϑ‖
p
ϑ

L pq′,pr ′ (QR,Rsp )
= ‖w‖p

L pϑq′,pϑr ′ (QR,Rsp )
≤ R

sp(1− 1
(ϑr ′)′ − 1

(ϑq′)′ )

×
(
‖w‖p

L p,∞(QR,Rsp ) + R
−np
l ‖w‖p

Ll,p(QR,Rsp )

)

= R
np
lϑr ′

(
‖w‖p

L p,∞(QR,Rsp ) + R
−np
l ‖w‖p

L∞,p(QR,Rsp )

)

≤ C(n, s, p, l)β p−1R
np
lϑr ′ −spν‖w‖p

L pq′,pr ′ (QR,Rsp )
.

(3.30)

We apply (3.30) with the exponents

β0 = 1, βm+1 = ϑβm = ϑm+1.

Let

ϕm := ‖((u − v)+M + δ)
βm
p ‖

p
βm

L pq′,pr ′ (QR,Rsp )
= ‖(u − v)+M + δ‖Lβmq′,βmr ′ (QR,Rsp )

.
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Then (3.30) reads

ϕm+1 ≤ (
C R

np
lϑr ′ −spν) 1

ϑm θ
(p−1)m

ϑm ϕm .

By iterating the above inequality, we get

ϕm+1 ≤ (
C R

np
lϑr ′ −spν)∑m

j=0 ϑ− j

ϑ
(p−1)

∑m
j=0 jϑ− j

ϕ0. (3.31)

Since ϑ > 1, we have the following convergent series

∞∑
j=0

ϑ− j = ϑ

ϑ − 1

and

∞∑
j=0

jϑ− j = ϑ

(ϑ − 1)2
.

By (3.8) in Lemma 3.2, we obtain

ϕ0 = ‖(u − v)+M‖Lq′,r ′ (QR,Rsp )
≤ C(n, s, p, q)Rspp′ν+n‖ f ‖

1
p−1
Lq,r (QR,Rsp ) + δR

n
q′ + sp

r ′

≤ C(n, s, p, q)Rn+spνδ.

Inserting this into (3.30), and sending m to infinity, we get

‖(u − v)+M + δ‖L∞(QR,Rsp ) ≤ C(n, s, p, q, l)ϑ
(p−1)ϑ
(ϑ−1)2 R

ϑ
ϑ−1

(
np
lϑr ′ −spν

)
Rn+spνδ

= C(n, s, p, q, l)ϑ
(p−1)ϑ
(ϑ−1)2 R

np
(ϑ−1)lr ′ −

spν
ϑ−1+n

δ

= C(n, s, p, q, l)ϑ
(p−1)ϑ
(ϑ−1)2 R

n
(ϑ−1) (ϑ−1+ p

lr ′ )−
spν
ϑ−1 δ

= C(n, s, p, q, l)ϑ
(p−1)ϑ
(ϑ−1)2 R

nν
(ϑ−1) − spν

ϑ−1 δ

≤ C(n, s, p, q, l)ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + Rspν‖ f ‖Lq,r (QR,Rsp )

)
.

Hence, we arrive at the desired estimate

‖(u − v)+‖L∞(QR,Rsp ) ≤ C(n, s, p, q, l)ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + Rspν‖ f ‖Lq,r (QR,Rsp )

)
.

�

Notice that−u is a solution to the same type of problem, andwe can apply the above
proposition to −u. Since −v is the (s, p)-caloric replacement of −u, we get the same
bound on ‖(−u+v)+‖L∞(QR,Rsp ); as a result, we get a bound on the ‖u−v‖L∞(QR,Rsp ).
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Corollary 3.5. Let u be a solution of ∂t u + (−�p)
su = f in Qσ,σ sp (x0, T0) with

f ∈ Lq,r
loc (Qσ,σ sp (x0, T0)) such that

1

r
+ n

spq
< 1.

In addition, assume that r ≥ p′,

q ≥ 1 if sp �= n, and q > 1 if sp = n.

Let v be the (s, p)-caloric replacement of u in QR,Rsp (x0, T0), with R < σ .
If sp �= n, then

‖u − v‖L∞(QR,Rsp (x0,T0)) ≤ C(n, s, p)ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + Rspν‖ f ‖Lq,r (QR,Rsp (x0,T0))

)
,

where ν = 1 − 1
r − n

spq and ϑ = 1 + spν
n .

If sp = n, then for any l such that p
r ′ (1 − 1

r − 1
q )−1 < l < ∞, we have

‖u − v‖L∞(QR,Rsp (x0,T0)) ≤ C(n, s, p, q, l)ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + Rspν‖ f ‖Lq,r (QR,Rsp (x0,T0))

)
,

where ϑ = 2 − 1
r − 1

q − p
lr ′ and ν = 1 − 1

r − 1
q .

Now we combine the local boundedness results for the equations with zero right-
hand side (see [45] and also [22]) with Proposition 3.4 to prove local boundedness for
the equation with nonzero right-hand side.
By [10, Theorem 1.1] with q = p and σ = 1

2 , we have

‖v‖L∞(Q R
2 ,( R2 )sp

(x0,T0)) ≤ C

[
1 +

(
−
∫
QR,Rsp (x0,T0)

|v|2 dx dt
) 1

p

+
(
2sp −

∫ T0

T0−Rsp
Tailp−1,sp(v( �, t); x0, R

2
)p
) β

(β−1)p2

⎤
⎦ ,

where β = 2 s+3n− 2n
p

n+s and C depends on n, s and p. By Hölder’s inequality, we have

(
−
∫
QR,Rsp (x0,T0)

|v|2 dx dt

) 1
p

≤
(

−
∫
QR,Rsp (x0,T0)

|v|p dx dt

) 2
p2

As p ≥ 2, we have 2
p2

≤ 1
p and β

(β−1)p2
≤ 1

p . Hence, we arrive at

‖v‖L∞(Q R
2 ,( R2 )sp

(x0,T0)) ≤ C

⎡
⎢⎣1 +

(
−
∫
QR,Rsp (x0,T0)

|v|p dx dt
) 1

p

+
(

−
∫ T0

T0−Rsp
Tailp−1,sp

(
v( �, t); x0, R

2

)p) 1
p

⎤
⎥⎦ . (3.32)
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Proof of Theorem 1.1. For u, a local weak solution of

∂t u + (−�p)
su = f (x, t), in Q2R,(2R)sp (x0, T0),

we consider v to be the (s, p)-caloric replacement in QR,Rsp (x0, T0),⎧⎪⎪⎨
⎪⎪⎩

vt + (−�p)
sv = 0 in QR,Rsp (x0, T0),

v = u in (Rn \ BR(x0)) × [T0 − Rsp, T0],
v(x, T0 − Rsp) = u(x, T0 − Rsp) in BR(x0).

As mentioned in the proof of Proposition 3.5, our assumptions ensure that we can use
Proposition 3.1 and v exists. Using (3.32), we arrive at

‖u‖L∞(Q R
2 ,( R2 )sp

(x0,T0)) ≤ ‖u − v‖L∞(Q R
2 ,( R2 )sp

(x0,T0)) + ‖v‖L∞(Q R
2 ,( R2 )sp

(x0,T0))

≤ C

⎡
⎣1 +

(
−
∫
QR,Rsp (x0,T0)

|v|p dx dt
) 1

p +
(

−
∫ T0

T0−Rsp
Tailp−1,sp

(
v( �, t); x0, R

2

)p
dt

) 1
p
⎤
⎦

+ ‖u − v‖L∞(QR,Rsp (x0,T0))

≤ C

[
1 +

(
2p−1 −

∫
QR,Rsp (x0,T0)

|u|p dx dt + 2p−1 −
∫
QR,Rsp (x0,T0)

|u − v|p dx dt
) 1

p

+
(

−
∫ T0

T0−Rsp
Tailp−1,sp

(
v( �, t); x0, R

2

)p
dt

) 1
p ]

+ ‖u − v‖L∞(QR,Rsp (x0,T0))

≤ C

[
1 +

(
2p−1 −

∫
QR,Rsp (x0,T0)

|u|p dx dt + 2p−1‖u − v‖pL∞(QR,Rsp (x0,T0))

) 1
p

+
(

−
∫ T0

T0−Rsp
Tailp−1,sp

(
v( �, t); x0, R

2

)p
dt

) 1
p ]

+ ‖u − v‖L∞(QR,Rsp (x0,T0))

≤ C

[
1 +

(
−
∫
QR,Rsp (x0,T0)

|u|p dx dt

) 1
p

+
(

−
∫ T0

T0−Rsp
Tailp−1,sp

(
v( �, t); x0, R

2

)p
dt

) 1
p

+ ‖u − v‖L∞(QR,Rsp (x0,T0))

]
.

(3.33)

Using Lemma 2.3 in (3.33), we arrive at

‖u‖L∞(Q R
2 ,( R2 )sp

)

≤ C

[
1 +

(
−
∫
QR,Rsp (x0,T0)

|u|p dx dt

) 1
p

+ ‖(u − v)‖L∞(QR,Rsp (x0,T0))

+
(

−
∫ T0

T0−Rsp

(
2Tailp−1,sp

(
u( �, t); x0, R

2

)
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+21+
n

p−1

(
−
∫
BR(x0)

|u − v|p−1 dx

) 1
p−1

)p

dt

) 1
p ]

≤ C

[
1 +

(
−
∫
QR,Rsp (x0,T0)

|u|p dx dt

) 1
p

+ ‖(u − v)‖L∞(QR,Rsp (x0,T0))

+
(

−
∫ T0

T0−Rsp
2pTailp−1,sp

(
u( �, t); x0, R

2

)p

dt + 2p+
n

p−1 ‖u − v‖p
L∞(QR,Rsp (x0,T0))

) 1
p
]

≤ C

[
1 +

(
−
∫
QR,Rsp (x0,T0)

|u|p dx dt

) 1
p

+
(

−
∫ T0

T0−Rsp
Tailp−1,sp

(
u( �, t); x0, R

2

)p

dt

) 1
p

+ ‖u − v‖L∞(QR,Rsp (x0,T0))

]
, (3.34)

where C = C(n, s, p). Finally, using Proposition 3.4 to estimate the term ‖u −
v‖L∞(QR,Rsp ), in (3.34) we get the desired result. Here the estimate is written in the
case sp �= n

‖u‖L∞(Q R
2 ,( R2 )sp

(x0,T0)) ≤ C

⎡
⎢⎣1 +

(
−
∫
QR,Rsp (x0,T0)

|u|p dx dt

) 1
p

+
(

−
∫ T0

T0−Rsp
Tailp−1,sp

(
u( �, t); x0, R

2

)p

dt

) 1
p

+ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + Rspν‖ f ‖Lq,r (QR,Rsp (x0,T0))

)
⎤
⎥⎦ .

�

Theorem 3.6. Let f ∈ Lq,r (QR1,R
sp
1

(z, T1)) with

1

r
+ n

spq
< 1.

In addition, assume that r ≥ p′,

q ≥ 1 if sp �= n, and q > 1 if sp = n.

If u is a weak solution of the equation

∂t u + (−�p)
su = f in QR1,R

sp
1

(z, T1),

such that

u ∈ L p(I ;Ws,p(BR1(z))) ∩ C(I ; L2(BR1(z))) ∩ L∞(I ; L p−1
sp (Rn))



   27 Page 38 of 76 A. Tavakoli J. Evol. Equ.

∩L∞(QR1,R
sp
1

(z, T1)),

then u is locally Hölder continuous in time and space. In particular, there exists a
ζ > 0, such that for σ < 1, (x1, t1), (x2, t2) ∈ Qσ R1,(σ R1)sp (z, T1), there holds

|u(x1, t1) − u(x2, t2)| ≤ CM(|x1 − x2|ζ + |t1 − t2|
ζ
sp ),

with C depending on n, s, p and σ , and

M :=
[
1 + ‖u‖L∞(Q

R1,R
sp
1

(z,T1)) + ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + dspν‖ f ‖Lq,r (Q

R1,R
sp
1

(z,T1))
)

+ sup
T1−Rsp

1 <t≤T1

Tailp−1,sp(u( �, t); z, R1)

]p−1

+ min{1, d}−1‖u‖L∞(Q
R1,R

sp
1

(z,T1)) + ‖ f ‖
1

p−1
Lq,r (Q

R1,R
sp
1

(z,T1))
.

Proof. Take a cylinder Qσ R1,(σ R1)sp (z, T1) ⊂ QR1,R
sp
1

(z, T1) and let d := min

{R1(1 − σ), R1(1 − σ sp)
1
sp } > 0. For any point, (x0, T0) ∈ Qσ R1,(σ R1)sp (z, T1)

consider the (s, p)-caloric replacement of u in the cylinder QR,Rsp (x0, T0) with
R ≤ min {1, d}. The choice of d implies that QR,Rsp (x0, T0) ⊂ QR1,R

sp
1

(z, t). First,
we observe that:

−
∫
Qρ,ρsp (x0,T0)

|u − ū(x0,T0),ρ |p dx dt ≤ C(p)−
∫
Qρ,ρsp (x0,T0)

|u − v|p dx dt

+ C(p)−
∫
Qρ,ρsp (x0,T0)

|ū(x0,T0),ρ − v̄(x0,T0),ρ |p dx dt

+ C(p)−
∫
Qρ,ρsp (x0,T0)

|v − v̄(x0,T0),ρ |p dx dt

≤ 2C(p)−
∫
Qρ,ρsp (x0,T0)

|u − v|p dx dt

+ C(p)−
∫
Qρ,ρsp (x0,T0)

|v − v̄(x0,T0),ρ |p dx dt. (3.35)

For ρ ≤ R
2 , v is Hölder continuous in Qρ,ρsp (x0, T0) by Theorem 5.1, and by the

mean value theorem, there is a point (x̃0, t̃0) ∈ Qρ,ρsp such that v̄x0,t0 = v(x̃0, t̃0).
With the notation

M := 1 + ‖v‖L∞(QR,(R)sp ) + sup
T0−Rsp<t≤T0

Tailp−1,sp(v( �, t); x0, R),

Theorem 5.1 implies:

|v(x, t) − v̄(x0,t0),ρ | ≤ C
(
M
( x − x̃0

R

)�
2 + Mp−1

( t − t̃0
Rsp

) �
2
)

≤ CMp−1
((2ρ

R

)�
2 +(( ρ

R
)sp
) �
2
)
, for (x, t)∈Qρ,ρsp (x0, T0)
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with C = C(n, s, p). Therefore,

−
∫
Qρ,ρsp (x0,T0)

|v − v̄(x0,t0),ρ |p dx dt

≤ CMp(p−1) −
∫
Qρ,ρsp (x0,T0)

(2ρ
R

)�p
2 + (

(
ρ

R
)sp
) �p

2 dx dt

≤ CMp(p−1)
(( ρ

R

)�p
2 + ( ρ

R

) �p
2
)

≤ C
( ρ

R

)δp[
1 + ‖v‖p

L∞(QR,Rsp (x0,T0))

+ sup
T0−Rsp<t≤T0

Tailp−1,sp(v( �, t); x0, R)p
]p−1

, (3.36)

where the constants C depends on n, s and p, and we have defined δ := min
{

�
2 , �

2

}
.

Moreover, by Lemma 3.2

−
∫
Qρ,ρsp (x0,T0)

|u − v|p dx dt ≤
( R

ρ

)n Rsp

ρsp
−
∫
QR,Rsp

|u − v|p dx dt

≤ C(n, s, p)
( R
ρ

)n+sp
Rξ ‖ f ‖p′

Lq,r (QR,Rsp (x0,T0))
,

(3.37)

where ξ is defined in Lemma 3.2. Notice that ξ > 0 by our assumptions on q and r .
Inserting (3.37) and (3.36) in (3.35), we arrive at

−
∫
Qρ,ρsp (x0,T0)

|u − ū(x0,T0),ρ |p dx dt ≤ C(n, s, p)
( R
ρ

)n+sp
Rξ ‖ f ‖p′

Lq,r (QR,Rsp (x0,T0))

+ C(n, s, p)
( ρ

R

)δp(1+‖v‖p
L∞(QR,Rsp (x0,T0))

+ sup
T0−Rsp≤t≤T0

Tailp−1,sp(u( �, t); x0, R)p
)p−1

≤ C(n, s, p)
( R
ρ

)n+sp
Rξ ‖ f ‖p′

Lq,r (QR,Rsp (x0,T0))
+ C(n, s, p)

( ρ

R

)δp(‖u‖p
L∞(QR,Rsp (x0,T0))

+ ‖u − v‖p
L∞(QR,Rsp (x0,T0))

+ sup
T0−Rsp≤t≤T0

Tailp−1,sp(u( �, t); x0, R)p
)p−1

.

Using Corollary 3.5, we get:

−
∫
Qρ,ρsp (x0,T0)

|u − ū(x0,T0),r |p dx dt ≤ C(n, s, p)

(
R

ρ

)n+sp

Rξ‖ f ‖p′
Lq,r (QR,Rsp (x0,T0))

+ C(n, s, p)
( ρ

R

)δp [‖u‖p
L∞(QR,Rsp (x0,T0))

+ sup
T0−Rsp≤t≤T0

Tailp−1,sp(u( �, t); x0, R)p

+ C(n, s, p)
(
ϑ

(p−1)ϑ
(ϑ−1)2

(
1 + Rspν‖ f ‖Lq,r (QR,Rsp (x0,T0))

))p]p−1
,

with ϑ and ν defined in Corollary 3.5; here, the estimate is only written in the case
sp �= n for simplicity. Since QR,Rsp (x0, T0) ⊂ QR1,R

sp
1

(z, T1), the above expression
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is less than

≤ C(n, s, p)

(
R

ρ

)n+sp

Rξ‖ f ‖p′
Lq,r (Q

R1,R
sp
1

(z,T1))

+ C(n, s, p)
( ρ

R

)δp [
1 + ‖u‖p

L∞(Q
R1,R

sp
1

(z,T1))

+ sup
T0−Rsp<t≤T0

Tailp−1,sp(u( �, t); x0, R)p

+
(
ϑ

(p−1)ϑ
(ϑ−1)2

(
1 + dspν‖ f ‖Lq,r (Q

R1,R
sp
1

(z,T1))
))p]p−1

.

Concerning the tail term, since BR(x0) ⊂ BR1(z), using Lemma 2.4 we have

Tailp−1,sp(u( �, t); x0, R)p−1

≤
( R

R1

)sp( R1

R1 − |x0 − z|
)n+s p

Tailp−1,sp(u( �, t); z, R1)
p−1+‖u( �, t)‖p−1

L∞(BR1 (z)),

(3.38)

and by the choice of the radii, we have

R

R1
<

d

R1
< 1 − σ and

R1

R1 − |x0 − z| ≤ R1

R1 − σ R1
≤ 1

1 − σ
.

Hence, taking the supremum in time and using Minkowski’s inequality in (3.38), we
arrive at

sup
T0−Rsp<t≤T0

Tailp−1,sp(u; x0, R)p

≤ C
1

(1 − σ)n

(
sup

T0−Rsp<t≤T0
Tailp−1,sp(u( �, t); z, R1)

p + ‖u‖p
L∞([T0−Rsp,T0]×BR1 (z)

)

≤ C
1

(1 − σ)n

(
‖u‖p

L∞(Q
R1,R

sp
1

(z,T1))
+ sup

T1−Rsp
1 <t≤T1

Tailp−1,sp(u( �, t); z, R1)
p
)
,

where the above constant C depends on n, sand p. In conclusion,

−
∫
Qρ,ρs p (x0,T0)

|u − ū(x0,T0),ρ |p dx dt ≤ C(n, s, p)
( R
ρ

)n+s p
Rξ‖ f ‖p′

Lq,r (Q
R1,R

s p
1

(z,T1))

+ C(n, s, p, σ )
( ρ

R

)δp [
1 + ‖u‖p

L∞(Q
R1,R

sp
1

(z,T1))

+ sup
T1−Rsp

1 <t≤T1

Tailp−1,sp(u( �, t); z, R1)
p

+
(
ϑ

(p−1)ϑ
(ϑ−1)2

(
1 + dspν‖ f ‖Lq,r (Q

R1,R
sp
1

(z,T1))
))p]p−1

.

Now we make the choice ρ = Rθ

2 with

θ := 1 + ξ

δp + n + sp
.
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This yields

ρ−ζ p −
∫
Qρ,ρs p (x0,T0)

|u − ū(x0,T0),ρ |p dx dt ≤ C(n, s, p, σ )
[(

1 + ‖u‖p
L∞(Q

R1,R
sp
1

(z,T1))

+
(
ϑ

(p−1)ϑ
(ϑ−1)2

(
1 + dspν‖ f ‖Lq,r (Q

R1,R
sp
1

(z,T1))
))p

+ sup
T1−Rsp

1 <t≤T1

Tailp−1,sp(u( �, t); z, R1)
p
)p−1

+ ‖ f ‖p′
Lq,r (Q

R1,R
sp
1

(z,T1))

]
,

for any 0 < ρ <
min {1,d}θ

2 , where

ζ = ξδ

n + sp + δp + ξ
.

For values of ρ ≥ min {1,d}θ
2 ,

ρ−ζ p −
∫
Qρ,ρsp (x0,T0)∩Q

R1,R
sp
1

(z,T1)
|u − ū(x0,T0),ρ |p dx dt

≤ 2(1+ζ )p min {1, d}−θζ p‖u‖p
L∞(Q

R1,R
sp
1

(z,T1))
.

We can then conclude that for any cylinder of arbitrary size we have

ρ−ζ p −
∫
Qρ,ρsp (x0,T0)∩Q

R1,R
sp
1

(z,T1)
|u − ū(x0,T0),ρ |p dx dt ≤ C ,

with C depending on

n, s, p, R1, σ, sup
T1−Rsp

1 <t≤T1

Tailp−1,sp(u( �, t); z, R1), ‖ f ‖Lq,r (Q
R1,R

sp
1

(z,T1)),

and ‖u‖L∞(Q
R1,R

sp
1

(z,T1)).

In particular, one can obtain

ρ−ζ

⎛
⎝−
∫
Qρ,ρsp (x0,T0)∩Q

R1,R
sp
1

(z,T1)
|u − ū(x0,T0),ρ |p dx dt

⎞
⎠

1
p

≤ C(n, s, p, σ )M,

where M :=
[
1 + ‖u‖L∞(Q

R1,R
sp
1

(z,T1)) + ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + dspν‖ f ‖Lq,r (Q

R1,R
sp
1

(z,T1))
)

+ sup
T1−Rsp

1 <t≤T1

Tailp−1,sp(u( �, t); z, R1)

]p−1

+ min{1, d}−1‖u‖L∞(Q
R1,R

sp
1

(z,T1))

+ ‖ f ‖
1

p−1
Lq,r (Q

R1,R
sp
1

(z,T1))
.

(3.39)
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Now we use the characterization of the Campanato spaces in R
n+1 with a general

metric in [30], see also [20]. Our setting does not fit directly in the context considered
there, since we only work with cylinders that are one-sided in the time direction that
is (t − rsp, t] × Br (x) instead of (t − rsp, t + rsp) × Br (x). Still, if you follow the
proof in [30] with small modifications, you can also conclude the result in this setting.
In the case of sp ≥ 1, using [30, Theorem 3.2] we get the Hölder continuity of u

with exponent ζ in Qσ R,(σ R)sp with respect to the metric

d((x, τ1), (y, τ2)) = max {|x − y|, |τ2 − τ1|
1
sp },

for which the balls of radius r are of the form (t −rsp, t +rsp)× Br (x), which means

|u(x1, t1) − u(x2, t2)| ≤ CM(|x1 − x2| + |t1 − t2|
1
sp
)ζ

≤ CM(|x1 − x2|ζ + |t1 − t2|
ζ
sp

)
.

Here C depends on n, s, p and σ . In the case of sp < 1, we use the metric

d((x, τ1), (y, τ2)) = max {|x − y|sp, |τ2 − τ1|}.
The balls of radius r are of the form (t − r, t + r) × B

r
1
sp

(x). Hence, we have a decay

of order r
ξ
sp p of the average of u on the half balls. [30, Theorem 3.2] implies the

following Hölder continuity on Qσ R1,(σ R1)sp

|u(x1, t1) − u(x2, t2)|≤C
(|x1 − x2|sp+|t1−t2|

) ζ
sp ≤C

(
(|x1 − x2|ζ + |t1 − t2|

ζ
sp

)
.

�

Lemma 3.7. (Stability in L∞) Let f ∈ Lq,r
loc (Q2R,(2R)sp ) with

1

r
+ n

spq
< 1.

In addition, assume that r ≥ p′,

q ≥ 1 if sp �= n, and q > 1 if sp = n.

Let u be a local weak solution to the equation

ut + (−�p)
su = f in Q2R,(2R)sp ,

with

‖u‖L∞(QR,Rsp ) + sup
−Rsp<t≤0

Tailp−1,sp(u( �, t); 0, R) ≤ M,

and

‖ f ‖Lq,r (QR,Rsp ) ≤ ω.
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Consider the (s, p)-caloric replacement
⎧⎪⎪⎨
⎪⎪⎩

ϕt + (−�p)
sϕ = 0 in QR,Rs p

ϕ = u in (Rn \ BR) × [−Rs p, 0]
ϕ(x,−Rs p) = u(x,−Rsp) in BR .

Then for σ < 1, there is a δM,R,σ (ω) such that

‖u − ϕ‖L∞(Qσ R,(σ R)s p ) < δM,R,σ (ω),

and δM,R,σ (ω) converges to 0 as ω goes to 0.

Proof. The existence of such a bound follows immediately from Corollary 3.5.
To show the convergence of σM,R,σ to zero, we argue by contradiction, suppose

that there is a sequence fn ∈ Lq,r (QR,Rs p ) and un such that

‖un‖L∞(QR,Rs p ) + sup
T0−Rs p≤t≤T0

Tailp−1,sp(un( �, t); 0, R) ≤ M

and ‖ fn‖Lq,r (QR,Rs p ) → 0,

but

‖un − ϕn‖L∞(Qσ R,(σ R)s p ) > ε > 0. (3.40)

Using (3.12) from Lemma 3.2, we have

lim
n→∞

∫ 0

−Rsp
[un − ϕn]pWs,p(Rn)

dt ≤ C(n, s, p, q, r, R) lim
n→∞ ‖ fn‖p′

Lq,r (QR,Rs p ) = 0.

(3.41)

By assumption, un is uniformly bounded in L∞(QR,Rsp ). Now we show that ϕn is
also uniformly bounded in L∞(QR,Rsp ).

‖ϕn‖L∞(QR,Rs p ) ≤ ‖un‖L∞(QR,(σ R)s p ) + ‖un − ϕn‖L∞(QR,Rs p )

≤ M + ‖un − ϕn‖L∞(QR,Rs p ).
(3.42)

By Corollary 3.5,

‖un − ϕn‖L∞(QR,Rs p ) ≤ C(n, s, p)ϑ
(p−1)ϑ
(ϑ−1)2

(
1 + Rspν‖ fn‖Lq,r (QR,Rsp )

)
. (3.43)

Since ‖ fn‖p′
Lq,r (QR,Rs p ) is uniformly bounded, (3.43) and (3.42) give us a uniform

bound on ‖ϕn‖L∞(QR,Rs p ).
Now we are in a position to use Theorem 3.6 for both of the sequences un and ϕn ,

which gives us a uniform bound on the Hölder seminorms of un and ϕn in Qσ R,(σ R)sp .
Therefore, by Arzela–Ascoli’s theorem un − ϕn has a uniformly convergent subse-
quence in Qσ R,(σ R)sp . By (3.41), the limit is 0, contradicting (3.40). �
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4. Improved Hölder regularity for nonhomogeneous equation

Proposition 4.1. Let f ∈ Lq,r (Q1,2) with q, r satisfying

1

r
+ n

spq
< 1.

In addition, assume that r ≥ p′,

q ≥ 1 if sp �= n, and q > 1 if sp = n.

Let u be a weak solution of ut + (−�p)
su = f in Q1,2 that satisfies

‖u‖L∞(Q1,2) ≤ 1 , sup
−2≤t≤0

Tailp−1,sp(u; 0, 1) ≤ 1.

Then there exists ω such that if

‖ f ‖Lq,r (Q1,2) ≤ ω(n, s, p, q, r, α),

u is locally Hölder continuous in Q 1
2 , 1

2sp
with exponents α in space and α

sp−(p−2)α in

time, as long as

α ≤ r(spq − n) − spq

q(r(p − 1) − (p − 2))
and α < �. (4.1)

Recall that � = min
{

sp
p−1 , 1

}
.

More precisely, for (x1, t1), (x2, t2) ∈ Q 1
2 , 1

2sp
we have

|u(x2, t2) − u(x1, t1)| ≤ C(n, s, p, q, r, α)
(
|x2 − x1|α + |t2 − t1|

α
sp−(p−2)α

)
.

Proof. Step 1: Decay at the origin.
For this part, we prove a decay at the origin for u under the assumptions

‖u‖L∞(Q1,1) ≤ 1 , sup
−1≤t≤0

Tailp−1,sp(u; 0, 1) ≤ 1, and ‖ f ‖Lq,r (Q1,1) ≤ ω.

(4.2)

Here ω > 0 is a small number to be determined later which depends on n, s, p and α.
We introduce the parabolic cylinder

Gr := Br (0) × (−rβ, 0],

with β = sp − (p − 2)α. We show that for any exponent α satisfying (4.1), the
following holds for r < 1

‖u(x, t) − u(0, 0)‖L∞(Gr ) ≤ Crα.
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It is enough to prove the inequality for a sequence of radii (rk)∞k=0, rk = λk , for some
λ < 1. Without loss of generality, we assume u(0, 0) = 0. Consider the rescaled
functions

vk(x, t) := u(λk x, λkβ t)

λαk
,

with λ small enough to be determined later. We will prove the following by induction,

‖vk(x, t)‖L∞(G1) ≤ 1 and sup
−1≤t≤0

∫
Rn\B1

|vk(x, t)|
|x |n+s p

dx ≤ 1. (4.3)

For k = 0, (4.3) follows from our assumptions (4.2).
Observe that

{
∂vk (x,t)

∂t = λβk−αkut (λk x, λβk t)

(−�p)
svk(x, t) = λk[sp−(p−1)α](−�p)

su(λk x, λβk t).

With β = sp − (p − 2)α, vk(x, t) solves

∂vk

∂t
+ (−�p)

svk = λk[sp−(p−1)α] f (λk x, λβk t) =: fk(x, t) in Q 1
λk

, 1
λβk

.

Moreover,

‖ fk‖rLq,r (G1)
=
∫ 0

−1

(∫
B1

| fk(x, r)|q dx
) r

q
dt

=
∫ 0

−1

(∫
B

λk

λkq[sp−(p−1)α]−kn| f (x, λβk t)|q dx
) r

q
dt

=
∫ 0

−1
λ
rk[sp−(p−1)α]− krn

q

(∫
B

λk

| f (x, λβk t)|q dx
) r

q
dt

= λ
rk[sp−(p−1)α]− krn

q −βk‖ f ‖Lq,r (G
λk ).

Since λ < 1, and the exponent of λ is nonnegative by (4.1), we get ‖ fk‖Lq,r (G1) ≤ ω.
Assume that (4.3) holds for k. Now we prove that it holds for k + 1. Consider the

(s, p)-caloric replacement of vk(x, t) in Q1,1, say ϕk(x, t). Then

|vk(x, t)| ≤ |vk(x, t) − ϕk(x, t)| + |ϕk(x, t) − ϕk(0, t)| + |ϕk(0, t) − vk(0, t)|.
By Theorem 5.1, ϕk is locally Hölder continuous in Q1,1, and for (x, t) ∈ Q 1

2 , 1
2sp

,

|ϕk(x, t) − ϕk(0, 0)| ≤ C1|x |�−ε + C2|t |�− ε
β .

Here we take ε = �−α
2 . Since ‖ fk‖Lq,r (Q1,1) ≤ ω, Lemma 3.7 implies

|vk(x, t)| ≤ 2δ(ω) + C1|x |�−ε + C2|t |�− ε
β , in Q 1

4 , 1
4sp

. (4.4)
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In Theorem 5.1, the Hölder constants are bounded by

(C2)
1

p−1 ≤ C1 ≤ C
(
1 + ‖ϕk‖L∞(Q1,1) + sup

− 1
2sp ≤t≤0

Tailp−1,sp(ϕk; 0, 1)
)

≤ C
(
1 + ‖ϕk‖L∞(Q1,1) + sup

−1≤t≤0
Tailp−1,sp(vk; 0, 1)

)

≤ C
(
1 + ‖vk − ϕk‖L∞(Q1,1) + ‖vk‖L∞(Q1,1)

+ sup
−1≤t≤0

Tailp−1,sp(vk; 0, 1)
)
.

Therefore, by (4.3) we have

(C2)
1

p−1 ≤ C1 ≤ C(n, s, p, α)(3 + ‖vk − ϕk‖L∞(Q1,1)).

By Corollary 3.5,

C1 ≤ C
(
3 + C(n, s, p, q, r)(1 + ‖ fk‖Lq,r (Q1,1))

) ≤ C(3 + C(n, s, p, q, r)(1 + ω)).

This is a bound independent of k. We can take ω to be less than 1 and take C1 =
C(n, s, p)(3+2C(n, s, p, q, r), with the C(n, s, p, q, r) coming from Corollary 3.5,
so that the constants C1, C2 are independent of ω as well.
Now we proceed and prove (4.3) for k + 1. First, we state our choice of λ

λ ≤ min
{1
4
,

1

4
sp
β

,

× 1

(2C1 + 2C2)
2

�−α

,
(
1 + ωn(4sp − 1)

sp
+ (1 + C1 + C2)

p−1

(p − 1)(� − α)/2

) 2
(p−1)(�−α)

}
.

(4.5)

Since λ < 1
4 , and λβ < 1

4s p , Qλ,λβ ⊂ Q 1
4 , 1

4s p
. Therefore, from (4.4) we obtain

‖vk(x, t)‖L∞(Gλ) ≤ δ(ω) + C1λ
�−ε + C2λ

β(�− ε
β
)
.

Notice that β� ≥ �, by the above choice of β. Thus,

‖vk(x, t)‖L∞(Gλ) ≤ δ(ω) + (C1 + C2)λ
�−ε. (4.6)

Recall that ε = �−α
2 and by the assumption (4.5)

(C1 + C2)λ
�−ε <

1

2
λα.

Now we choose ω so that

2δ(ω) ≤ 1

2
λ� ≤ 1

2
λα.



J. Evol. Equ. A perturbative approach to Hölder Page 47 of 76    27 

This is possible since δ(ω) converges to zero as ω → 0. Then, (4.6) implies

‖vk(x, t)‖L∞(Gλ) ≤ λα,

which translates to

‖vk+1(x, t)‖L∞(G1) =
∥∥∥vk(λx, λβ t)

λα

∥∥∥
L∞(G1)

≤ 1, (4.7)

which is the first part of (4.3). For the second part, we want to show

sup
−1<t<0

∫
Rn\B1

|vk+1(x, t)|p−1

|x |n+sp
dx ≤ 1.

We split the integral into three parts. Using the induction hypothesis,

sup
−1<t<0

∫
Rn\B 1

λ

|vk+1(x, t)|p−1

|x |n+sp
dx ≤ sup

−λ−β≤t≤0

∫
Rn\B 1

λ

|vk+1(x, t)|p−1

|x |n+sp
dx

= λsp−α(p−1) sup
−1<t<0

∫
Rn\B1

|vk(x, t)|p−1

|x |n+sp
dx

(
using � ≤ sp

p − 1

)
≤ λ(p−1)(�−α).

Moreover, ‖vk‖L∞(G1) ≤ 1, and hence,

sup
−1<t<0

∫
B 1

λ
\B 1

4λ

|vk+1(x, t)|p−1

|x |n+sp
dx ≤ λsp−α(p−1) sup

−λβ<t<0

∫
B1\B 1

4

|vk(x, t)|p−1

|x |n+sp
dx

≤ λsp−α(p−1)
∫
B1\B 1

4

1

|x |n+sp
dx

≤ λ(p−1)(�−α) ωn(4sp − 1)

sp
:= C3λ

2(p−1)ε.

For remaining part, we transfer the estimate (4.4) to vk+1 and obtain

|vk+1(x, t)| ≤ δ(ω)λ−α + C1λ
�−ε−α|x |�−ε + C2λ

β�−ε−α|t |�− ε
β in Q 1

4λ , 1
4spλβ

.

In particular, since λβ ≤ 1
4sp , Q 1

4λ ,1 ⊂ Q 1
4λ , 1

4spλβ
, and δ(ω) ≤ λ� ≤ λ�−ε we get

sup
−1≤t≤0

|v(x, t)| ≤ λ�−ε−α(1 + C2λ
β�−� + C1|x |�−ε).
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Therefore,

sup
−1<t<0

∫
B 1
4λ

\B1
|vk+1(x, t)|p−1

|x |n+sp dx

≤ λ(p−1)(�−ε−α)

∫
B 1
4λ

\B1
|1 + C2λ

β�−� + C1|x |�−ε|p−1

|x |n+sp dx

(using |x | ≥ 1) ≤ (1 + C2λ
β�−� + C1)

p−1λ(p−1)(�−ε−α)

×
∫
B 1
4λ

\B1
1

|x |n+sp−(p−1)(�−ε)
dx

(using sp ≥ (p − 1)�) ≤ (1 + C2 + C1)
p−1λ(p−1)(�−ε−α)

∫
Rn\B1

1

|x |n+ε(p−1)
dx

≤ (1 + C1 + C2)
p−1

ε(p − 1)
λ(p−1)(�−ε−α) := C4λ

(p−1)ε.

Hence,

sup
−1<t<0

∫
Rn\B1

|vk+1(x, t)|p−1

|x |n+sp
dx ≤ λ2(p−1)ε + C3λ

2(p−1)ε + C4λ
(p−1)ε

≤ λ(p−1)ε
(
1 + C3 + (1 + C1 + C2)

p−1

ε(p − 1)

)
.

Using the assumption (4.5) on λ, we obtain

sup
−1<t<0

∫
Rn\B1

|vk+1(x, t)|p−1

|x |n+sp
dx ≤ 1.

Step 2: Regularity in a cylinder. We choose α as in (4.1) and let ω be as in Step 1. For
a point (x0, t0) ∈ Q 1

2 , 1
2sp

, define

ũ(x, t) = 1

L
u(

x

2
+ x0, L

2−p 1

2sp
t + t0),

where L = 2
n

p−1 (1 + |B1|)
1

p−1 . Then ũ is a solution of

∂t ũ + (−�p)
s ũ = L−(p−1)

2sp
f
( x
2

+ x0, L
2−p 1

2sp
t + t0

)
:= f̃ in Q1,2sp−1L p−2 .

By the choice of L , ũ satisfies the conditions (4.2) in Step 1. Since L ≥ 1, we
immediately have

‖ũ‖L∞(Q1,1(0,0)) ≤ 1

L
‖u‖L∞(Q 1

2 , L
2−p
2sp

(x0,t0)) ≤ ‖u‖L∞(Q1,2) ≤ 1,
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since Q 1
2 , L

2−p
2sp

(x0, t0) ⊂ Q1,2. As for the Lq,r norm of f̃ , we have

‖ f̃ ‖Lq,r (Q1,1) = L−(p−1)

2sp
(
2

n
q + sp

r L
p−2
r ‖ f ‖Lq,r (Q 1

2 , L
2−p
2sp

(x0,t0))
)

≤ L−(p−1)(1/2)sp(1−
1
r − n

spq )‖ f ‖Q1,2

≤ L−(p−1)(1/2)sp(1−
1
r − n

spq )
ω ≤ ω.

Here we have used 1− 1
r − n

spq > 0. Notice that in the case of sp ≥ n, we are assuming

1− 1
r − 1

q > 0 which is a stronger assumption. Now we verify the assumption on the
tail.

sup
−1≤t≤0

∫
Rn\B1

|ũ|p−1

|x |n+sp
dx = 2−sp

L p−1 sup
t0− L2−p

2sp ≤t≤t0

∫
Rn\B 1

2 (x0)

|u(y)|p−1

|y − x0|n+sp
dy

≤ 1

L p−1 sup
−2≤t≤0

Tailp−1,sp(u( �, t); x0, 1
2
)p−1

≤ 1

L p−1 (
1

2
)sp

(
1

1 − |x − x0|
)n+sp

× sup
−2≤t≤0

Tailp−1,sp(u( �, t); 0, 1)p−1

+ 2n

L p−1 sup
−2≤t≤0

‖u( �, t)‖p−1
L p−1(B1(0))

≤ 2n

L p−1

(
1 + |B1|‖u‖L∞(Q1,2)

) ≤ 2n(1 + |B1|)
L p−1 ≤ 1.

Now we can apply Step 1 to ũ and we get the decay

‖ũ − ũ(0, 0)‖L∞(Gr ) ≤ Crα, for 0 < r < 1

or in other words

|ũ(x, t) − ũ(0, 0)| ≤ C(|x |α + |t | α
β ), for (x, t) ∈ Q1,1.

In terms of u, this means

|u(x, t) − u(x0, t0)| ≤ CL(2α|x − x0|α + (2spL p−2)
α
β |t − t0|

α
β ), for

(x, t) ∈ Q 1
2 , 1

2sp L p−2
(x0, t0). (4.8)

Now take two points (x1, t1) , (x2, t2) ∈ Q 1
2 , 1

2sp
and split the line joining them

into 1 + [L p−2] pieces, say (yi , τi )
1+[L p−2]
i=0 with (x1, t1) = (y0, τ0), (x2, t2) =

(y1+[L p−2], τ1+[L p−2]), |yi+1 − yi | = |x2−x1|
1+[L p−2] < 1

2 and |τi+1 − τi | = |t2−t1|
1+[L p−2] <

1
2sp L p−2 so that (yi+1, τi+1) ∈ Q 1

2 , 1
2sp L p−2

(yi , τi ). By (4.8) applied in each of
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Q 1
2 , 1

2sp L p−2
(yi , τi ) obtain

|u(x2, t2) − u(x1, t1)| ≤
[L p−2]∑
i=0

|u(yi+1, τi+1) − u(yi , τi )|

≤ CL
[L p−2]∑
i=0

2α|yi+1 − yi |α + (2spL p−2)
α
β |τi+1 − τi |

α
β

≤ C(1+L)p−1
((

2
|x2−x1|
1+[L p−2]

)α+
(
2spL p−2 |t2 − t1|

1+�L p−2�
) α

β
)

≤ C(n, s, p, q, r, α)(|x2 − x1|α + |t2 − t1|
α
β ).

�

Now we prove the Hölder regularity at any scale.

Proof of Theorem 1.2. We will consider the rescaled functions

ũι(x, t) = 1

μ
u(Rx + x0, μ

2−p Rspt + ι + T0)

with

μ =1 + ‖u‖L∞(QR,2Rsp (x0,T0)) + sup
T0−2Rsp≤t≤T0

Tailp−1,sp(u( �, t); x0, R)

+
⎛
⎝ Rsp− n

q − sp
r ‖ f ‖Lq,r (QR,2Rsp (x0,T0))

ω

⎞
⎠

1

p−1+ p−2
r

,

where ω = ω(n, s, p, q, r, α) is the same as in the proof of Proposition 4.1 and
ι ∈ [−(R/2)sp(1−μ2−p), 0]. The interval [−(R/2)sp(1−μ2−p), 0] is chosen so that
the cylinders Q R

2 ,
μ2−p Rsp

2sp
(x0, T0 + ι) cover all of Q R

2 ,( R
2 )sp

(x0, T0) by varying ι over.

Note that for these choices of ι we have QR,2μ2−p Rsp (x0, T0 + ι) ⊂ QR,2Rsp (x0, T0).
Then ũ is a solution of

∂t ũι + (−�s
p)ũι = Rsp f (Rx + x0, μ2−p Rspt + ι + T0)

μp−1 , in Q1,2.

We now verify that ũι satisfies the conditions of Proposition 4.1. The Lq,r norm of the
right-hand side is

∥∥∥Rsp f (Rx, μ2−p Rspt + ι)

μp−1

∥∥∥
Lq,r (Q1,2)

= μ
p−2
r

2
1
r μ(p−1)

Rsp− n
q − sp

r ‖ f ‖Lq,r (QR,2μ2−p Rsp (x0,T0+ι))

≤ Rsp− n
q − sp

r ‖ f ‖Lq,r (QR,2Rsp (x0,T0))

2
1
r μp−1− p−2

r

≤ ω

2
1
r

< ω.
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The L∞ norm of ũι satisfies

‖ũι‖L∞(Q1,2(0,0)) = 1

μ
‖u‖L∞(QR,2μ2−p Rsp (x0,T0+ι)

) ≤ 1

μ
‖u‖L∞(QR,2Rsp ) ≤ 1.

Similarly

sup
−2≤t≤0

Tailp−1,sp(ũ( �, t); 0, 1) ≤ 1

μ
sup

T0+ι−2μ2−p Rsp≤t≤T0+ι

Tailp−1,sp(u( �, t); x0, R)

≤ 1

μ
sup

T0−2Rsp≤t≤T0
Tailp−1,sp(u( �, t); x0, R) ≤ 1.

Hence, using Proposition 4.1 for ũι, we get

|ũι(x̃2, t̃2) − ũι(x̃1, t̃1)| ≤ C(|x̃2 − x̃1|α + |t̃2 − t̃1|
α

sp−(p−2)α )

for (x̃1, t̃1), (x̃2, t̃2) ∈ Q 1
2 , 1

2s p
(0, 0),

with C = C(n, s, p, q, r, α). This translates to

|u(x2, τ2) − u(x1, τ1)| ≤ μC
[( |x2 − x1|

R

)α +
( |τ2 − τ1|
Rs pμ2−p

) α
sp−(p−2)α

]
, (4.9)

for (x1, τ1), (x2, τ2) ∈ Q R
2 ,

Rs pμ2−p

2s p
(x0, T0 + ι). Now we vary ι to obtain an estimate

in thewhole Q R
2 ,( R

2 )s p
. Specifically we split the interval [t1, t2] into 1+�μp−2� pieces,

say [τi+1, τi ], with τi − τi+1 = |t2−t1|
1+�μp−2� , τ0 = t2, and τ�1+μp−2� = t1. Using (4.9),

we obtain

|u(x2, t2) − u(x1, t1)| ≤ |u(x2, t1) − u(x1, t1)| + |u(x2, t2) − u(x2, t1)|

≤ μC
( |x2 − x1|

R

)α +
�μp−2�∑
i=0

|u(x2, τi ) − u(x2, τi+1)|

≤ μC
[( |x2 − x1|

R

)α +
�μp−2�∑
i=0

( |τi − τi+1|
Rs pμ2−p

) α
sp−(p−2)α

]

= μC
[( |x2−x1|

R

)α+
�μp−2�∑
i=0

( |t2−t1|
Rs pμ2−p(1 + �μp−2�)

) α
sp−(p−2)α

]

≤ μC
[( |x2 − x1|

R

)α +
�μp−2�∑
i=0

( |t2 − t1|
Rs p

) α
sp−(p−2)α

]

≤ μC
[( |x2 − x1|

R

)α + 2μp−2
( |t2 − t1|

Rs p

) α
sp−(p−2)α

]
,

which concludes the desired result. �
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5. Appendix A

In this section, we spell out the necessary modifications to prove the following theo-
rem5.1which is amodifiedversionof [7,Theorem1.2].As it is explained in [7,Remark
1.4] one can obtain the conclusions of [7, Theorem 1.2] under the weaker assumptions
u ∈ L∞

loc(I ; L∞
loc(�)) ∩ L∞

loc(I ; L p−1
sp (Rn)), instead of u ∈ L∞

loc(I ; L∞(Rn)).

Theorem 5.1. Let � ⊂ R
n be a bounded and open set, I = (t0, t1], p ≥ 2 and

0 < s < 1. Suppose u is a local weak solution of

ut + (−�p)
su = 0 in � × I,

such that

u ∈ L∞
loc(I ; L∞

loc(�)) ∩ L∞
loc(I ; L p−1

sp (Rn)). (5.1)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Define the exponents

�(s, p) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s p

p − 1
, if s <

p − 1

p
,

1, if s ≥ p − 1

p
,

and �(s, p) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if s <
p − 1

p
,

1

s p − (p − 2)
, if s ≥ p − 1

p
.

(5.2)

Then

u ∈ Cδ
x,loc(� × I ) ∩ Cγ

t,loc(� × I ), for every 0 < δ < �(s, p) and 0 < γ < �(s, p).

More precisely, for every 0 < δ < �(s, p), 0 < γ < �(s, p), R > 0, x0 ∈ � and T0
such that

QR,Rs p (x0, T0) � � × (t0, t1],

there exists a constant C = C(n, s, p, δ, γ, σ ) > 0 such that

|u(x1, τ1)−u(x2, τ2)| ≤ C
(‖u‖L∞(QR,Rsp (x0,T0))

+ sup
t∈[T0−Rsp,T0]

Tailp−1,sp(u; x0, R) + 1
) ( |x1 − x2|

R

)δ

+ C
(‖u‖L∞(QR,Rsp (x0,T0)

+ sup
t∈[T0−Rsp,T0]

Tailp−1,sp(u; x0, R) + 1
)p−1

( |τ1 − τ2|
Rs p

)γ

,

(5.3)

for any (x1, τ1), (x2, τ2) ∈ Qσ R,(σ R)s p (x0, T0).

First we reproduce a modified version of [7, Proposition 4.1], where instead of a
global L∞ bound we assume ‖u‖L∞(B1×[−1,0]) +supt∈[−1,0] Tailp−1,sp(u; 0, 1)) ≤ 1.
Before stating the proposition, let us recall the following notations from [7]:

uh(x, t) := u(x + h, t), δhu(x, t) := uh(x, t) − u(x, t),

and

δhu(x, t) := δh(δhu(x, t)) = u2h(x, t) + u(x, t) − 2uh(x, t).
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Proposition 5.2. Assume p ≥ 2 and 0 < s < 1. Let u be a local weak solution of
ut + (−�p)

su = 0 in B2 × (−2, 0]. We assume that
‖u‖L∞(B1×[−1,0]) + sup

t∈[−1,0]
Tailp−1,sp(u( �, t); 0, 1) ≤ 1,

and that, for some q ≥ p and 0 < h0 < 1/10, we have

∫ T1

T0
sup

0<|h|<h0

∥∥∥∥∥
δ2hu

|h|s
∥∥∥∥∥
q

Lq (BR+4 h0 )

dt < +∞,

for a radius 4 h0 < R ≤ 1− 5 h0 and two time instants −1 < T0 < T1 ≤ 0. Then we
have

∫ T1

T0+μ

sup
0<|h|<h0

∥∥∥∥∥
δ2hu

|h|s
∥∥∥∥∥
q+1

Lq+1(BR−4 h0 )

dt + 1

q + 3 − p
sup

0<|h|<h0

∥∥∥∥∥
δhu( �, T1)

|h| (q+2−p) s
q+3−p

∥∥∥∥∥
q+3−p

Lq+3−p(BR−4 h0 )

≤ C
∫ T1

T0

⎛
⎝ sup

0<|h|<h0

∥∥∥∥∥
δ2hu

|h|s
∥∥∥∥∥
q

Lq (BR+4h0 )

+ 1

⎞
⎠ dt, (5.4)

for every 0 < μ < T1 − T0. Here C = C(n, s, p, q, h0, μ) > 0 and C ↗ +∞ as
h0 ↘ 0 or μ ↘ 0.

Proof. In the proof of [7, Proposition 4.1], the L∞(Rn × [0, 1]) boundedness is only
used in Step 3, in the estimation of the nonlocal terms I2 and I3, which are defined
by

I2(t) :=
∫
B R+r

2
×(Rn\BR)

(
Jp(uh(x) − uh(y)) − Jp(u(x) − u(y))

)

|h|1+ϑ β

× Jβ+1(uh(x) − u(x)) η(x)p dμ,

and

I3(t) := −
∫∫

(Rn\BR)×B R+r
2

(
Jp(uh(x) − uh(y)) − Jp(u(x) − u(y))

)

|h|1+ϑ β

× Jβ+1(uh(y) − u(y)) η(y)p dμ.

We also recall the definition of Ĩ2 and Ĩ3

Ĩi :=
∫ T1

T0
Ii (t) τ (t) dt, i = 2, 3,

where τ is smooth function 0 ≤ τ ≤ 1 such that

τ ≡ 1 on [T0 + μ,+∞), τ ≡ 0 on (−∞, T0], τ ′ ≤ C

μ
.
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The general argument is the same, but instead of using the L∞ norm of u(y) we can
keep the inequality as it is and write∣∣(Jp(uh(x) − uh(y)) − Jp(u(x) − u(y)))Jβ+1(δhu(x))

∣∣
≤ C(1 + |uh(y)|p−1 + |u(y)|)|δhu(x)|β,

where x ∈ BR−2h0 and 4h0 < R < 1 − 5h0. Therefore, |x − y| ≥ (1 − R−2h0
R )|y| ≥

C(h0)|y| and we get
∫
Rn\BR

1 + |u(y)|p−1 + |uh(y)|p−1

|x − y|n+sp
dy

≤ C(n, s, p, h0) + (C(h0))
n+sp

∫
Rn\BR

|u(y)|p−1

|y|n+sp
dy + (C(h0))

n+sp

×
∫
Rn\BR

|uh(y)|p−1

|y|n+sp
dy.

Now ∫
Rn\BR

|u(y)|p−1

|y|n+sp
dy ≤

∫
Rn\B1

|u(y)|p−1

|y|n+sp
dy + R−n−sp

∫
B1

|u|p−1 dy

≤ 1 + nωn R
−n−sp ≤ 1 + nωn(4h0)

−n−sp,

and for uh∫
Rn\BR

|u(y + h)|p−1

|y|n+sp
dy

≤
∫
Rn\BR(h)

|u(y)|p−1

|y − h|n+sp
dy ≤

(
3

2

)n+sp ∫
Rn\BR(h)

|u(y)|p−1

|y|n+sp
dy

≤
(
3

2

)n+sp [∫
Rn\B1

|u(y)|p−1

|y|n+sp
dy + R−n−sp

∫
B1

|u(y)|p−1 dy
]

≤ (3
2

)n+sp
(1 + nωn R

−n−sp) ≤ (3
2

)n+sp
(1 + nωn(4h0)

−n−sp).

Here we have used BR(h) ⊂ B1, and
|y−h|

|y| = | y
|y| − h

|y| | ≥ | y
|y| |−| h

|y| | ≥ 1−| h0
R−h0

| ≥
2
3 . Using this, we get∫

Rn\BR

1 + |u(y)|p−1 + |uh(y)|p−1

|x − y|n+sp
dy ≤ C(n, s, p, h0),

and we can conclude

|Ĩ2| + |Ĩ3| ≤ C(n, s, p, h0)
∫ T1

T0

∫
B R+r

2

|δhu|β
|h|1+ϑ β

τ dx dt ≤ C(h0, n, s, p, q, β)

∫ T1

T0

(
1 +

∫
BR

∣∣∣ δhu

|h| 1+ϑ β
β

∣∣∣
βq

q−p+2
)
τ dt,

which is the same as equation (4.6) in [7]. �
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We can estimate theWs,p seminorm of a solution as follows. The proof follows the
argument in [7, Lemma 7.1].

Lemma 5.3. Let p ≥ 2 and 0 < s < 1. Let u be a local weak solution of

∂t u + (−�p)
su = 0, in B2R × (−2 Rs p, 0],

such that u ∈ L∞(B2R × [−Rs p, 0]). Then
(
R−n

∫ 0

− 7
8 Rs p

[u]pWs,p(BR(x0))
dt

) 1
p

≤ C
(
‖u‖L∞(B2R×[−Rs p,0]) + sup

t∈[−Rsp,0]
Tailp−1,sp(u; 0, 2R) + 1

)
,

for some C = C(n, s, p) > 0.

Proof. Without loss of generality, we may suppose that x0 = 0. Let

k=‖u‖L∞(B2R×[−Rs p,0])+ sup
t∈[−Rsp,0]

Tailp−1,sp(u( �, t); 0, 2R)+1 and ũ = u+k.

Then ũ is a local weak solution in B2 × (−2 Rs p, 0] and ũ ≥ 1 in B2R × [−Rs p, 0].
We choose ϕ and ψ exactly as in [7, Lemma 7.1], that is,

η ∈ C∞
0 (2R), η ≡ 1 in BR, |∇η| ≤ C

R
and η ≡ 0 in Rn \ B 3

2 R
;

and

ψ ∈ C∞(R), ψ(t)=0 for t≤ − Rs p, ψ ≡ 1 in

[
−7

8
Rs p, 0

]
and |ψ ′| ≤ C

Rs p
.

Then for ϕ(x, t) = η(x)ϕ(t), we get
∫ 0

− 7
8 R

s p
[ũ( �, t)]pWs,p(BR) dt ≤

∫ 0

−Rs p

[
ũ( �, t) ϕ( �, t)

]p
Ws,p(B2R)

dt

≤ C
∫ 0

−Rs p

∫∫
B2R×B2R

max
{
ũ(x, t), ũ(y, t)

}p |ϕ(x, t) − ϕ(y, t)|p dμ dt

+ C

(
sup

x∈supp η

∫
Rn\B2R

dy

|x − y|n+s p

)(∫ 0

−Rs p

∫
B2R

ũ(x, t)p ϕ(x, t)p dx dt

)

+ C
(

sup
t∈[−Rs p,0]

sup
x∈supp η

∫
Rn\B2R

(u(y, t)+)p−1

|x − y|n+s p
dy
)

×
∫ 0

−Rs p

∫
B2R

ũ(x, t) ϕ(x, t)p dx dt

+ 1

2

∫ 0

−Rs p

∫
B2R

ũ(x, t)2
(

∂ϕ p

∂t

)+
dx dt +

∫
B2R

ũ(x, 0) dx

≤ C Rn (k p + k2 + k) ≤ C Rn k p.
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The only difference in the proof is in estimating the term

sup
x∈supp η

∫
Rn\B2R

(u(y, t)+)p−1

|x − y|n+s p
dy.

Noticing that for x ∈ supp η ⊂ B 3
2 R

we have |x−y|
|y| ≥ 1 − |x |

|y| ≥ 1 − 3/2R
2R = 1

4 , we
get

∫
Rn\B2R

(u(y, t)+)p−1

|x − y|n+s p
dy ≤ 4n+s p R−s p Tailp−1

p−1,sp(u; 0, 2R) ≤ C R−s pk p−1.

�

We can now prove the following modified version of [7, Theorem 4.2].

Theorem 5.4. (Spatial almost Cs regularity) Let � ⊂ R
n be a bounded and open

set, I = (t0, t1], p ≥ 2 and 0 < s < 1. Suppose u is a local weak solution of

ut + (−�p)
su = 0 in � × I,

such that u ∈ L∞
loc(I ; L∞(�))∩L∞

loc(I ; L p−1
sp (Rn)). Then u ∈ Cδ

x,loc(�× I ) for every
0 < δ < s.
More precisely, for every 0 < δ < s, R > 0 and every (x0, T0) such that

Q2R,2Rs p (x0, T0) � � × (t0, t1],
there exists a constant C = C(n, s, p, δ) > 0 such that

sup
t∈
[
T0− Rs p

2 ,T0
][u( �, t)]Cδ(BR/2(x0))

≤ C

Rδ

(
1 + ‖u‖L∞(B2R(x0)×[T0−Rs p,T0]) + sup

t∈[T0−Rsp,T0]
Tailp−1,sp(u; x0, 2R)

)

(5.5)

Proof. The proof is essentially the same as the proof of [7, Theorem 4.2]. We assume
for simplicity that x0 = 0 and T0 = 0, and set

MR = ‖u‖L∞(B2R×[−Rs p,0]) + sup
t∈[−Rsp,0]

Tailp−1,sp(u; 0, R)

+
(
R−n

∫ 0

− 7
8 Rs p

[u]pWs,p(BR) dt

) 1
p

+ 1.

Notice that by Lemma 5.3 we have

MR ≤ C
(
‖u‖L∞(B2R×[−Rs p,0]) + sup

t∈[−Rsp,0]
Tailp−1,sp(u; 0, 2R)

)
+ 1.
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Let α ∈ [−Rs p(1 − M2−p
R ), 0] and define

uR,α(x, t) := 1

MR
u

(
R x,

1

Mp−2
R

Rs p t + α

)
, for x ∈ B2, t ∈ (−2, 0].

Then uR,α(x, t) is a local weak solution of

ut + (−�p)
su = 0, in B2 × (−2, 0],

that satisfies

‖uR,α‖L∞(B2×[−1,0]) + sup
t∈[−1,0]

Tailp−1,sp(u( �, t); 0, 1) ≤ 1,

∫ 0

− 7
8

[uR,α]pWs,p(B1)
dt ≤ 1.

This function satisfies the assumption of Proposition 5.2, and we can do the same
argument as in [7] to obtain

sup
t∈[−1/2,0]

[uR,α( �, t)]Cδ(B1/2) ≤ C(n, s, p, δ),

for a C independent of α and by scaling back we get

sup
α− 1

2M
2−p
R Rs p≤t≤0

[u( �, t)]Cδ(BR/2)
≤ C

Rδ
MR .

By varying α ∈ [−Rs p(1 − M2−p
R ), 0], we get the desired result. �

We now address the improved regularity and start with the following modified
version of [7, Proposition 5.1].

Proposition 5.5. Assume p ≥ 2 and 0 < s < 1. Let u be a local weak solution of
ut + (−�p)

su = 0 in B2 × (−2, 0], such that

‖u‖L∞(B2×[−1,0]) + sup
t∈[−1,0]

Tailp−1,sp(u; 0, 2) ≤ 1.

Assume further that for some 0 < h0 < 1/10 and ϑ < 1, β ≥ 2 such that (1 +
ϑ β)/β < 1, we have

∫ T1

T0
sup

0<|h|≤h0

∥∥∥∥∥
δ2hu

|h| 1+ϑ β
β

∥∥∥∥∥
β

Lβ(BR+4 h0 )

dt < +∞,

for a radius 4 h0 < R ≤ 1 − 5 h0 and two time instants −1 < T0 < T1 ≤ 0. Then

∫ T1

T0+μ

sup
0<|h|<h0

∥∥∥∥∥
δ2hu

|h| 1+s p+ϑ β
β−1+p

∥∥∥∥∥
β−1+p

Lβ−1+p(BR−4 h0 )

dt+ 1

β + 1
sup

0<|h|<h0

∥∥∥∥∥
δhu( �, T1)

|h| 1+ϑ β
β+1

∥∥∥∥∥
β+1

Lβ+1(BR−4 h0 )
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≤ C
∫ T1

T0
sup

0<|h|<h0

⎛
⎝
∥∥∥∥∥

δ2hu

|h| 1+ϑ β
β

∥∥∥∥∥
β

Lβ (BR+4 h0 )

+ 1

⎞
⎠ dt, (5.6)

for every 0 < μ < T1 − T0. Here C depends on the n, h0, s, p, μ and β.

Proof. The onlymajor difference from the proof of Proposition 5.2 is in the estimation
of term I11 and it can be treated in the exact sameway as in the proof of [7, Proposition
5.1]. �

Using the previous proposition with the same type of modifications as in the proof
of Theorem 5.4, we can state the following version of [7, Theorem 5.2].

Theorem 5.6. Let� be a bounded and open set, let I = (t0, t1], p ≥ 2 and 0 < s < 1.
Suppose u is a local weak solution of

ut + (−�p)
su = 0 in � × I,

such that u ∈ L∞
loc(I ; L∞

loc(�)) ∩ L∞
loc(I ; L p−1

sp (Rn)). Then u ∈ Cδ
x,loc(� × I ) for

every 0 < δ < �(s, p), where �(s, p) is defined in (5.2).
More precisely, for every 0 < δ < �(s, p), R > 0, x0 ∈ � and T0 such that

B2R(x0) × [T0 − 2 Rs p, T0] � � × (t0, t1],
there exists a constant C = C(n, s, p, δ) > 0 such that

sup
t∈
[
T0− Rs p

2 ,T0
][u( �, t)]Cδ(BR/2(x0))

≤ C

Rδ

(
‖u‖L∞(B2R×[T0−Rs p,T0]) + sup

t∈[T0−Rsp,T0]
Tailp−1,sp(u; x0, 2R) + 1

)
.

(5.7)

Now we modify the argument regarding the regularity in time (see [7, Proposition
6.2]).

Proposition 5.7. Suppose that u is a local weak solution of

∂t u + (−�p)
su = 0, in B2 × (−2, 0],

such that

‖u‖L∞(B2×[−1,0]) + sup
t∈[−1,0]

Tailp−1,sp(u; 0, 2) ≤ 1,

and

sup
t∈[−1/2,0]

[u( �, t)]Cδ(B1/2) ≤ Kδ, for any s < δ < �(s, p), (5.8)
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where�(s, p) is the exponent defined in (5.2). Then there is a constant C = C(n, s, p,
Kδ, δ) > 0 such that

|u(x, t) − u(x, τ )| ≤ C |t − τ |γ , for every (x, t), (x, τ ) ∈ Q 1
4 , 14

,

where

γ = 1
s p

δ
− (p − 2)

.

In particular, u ∈ Cγ
t (Q 1

4 , 14
) for any γ < �(s, p), where �(s, p) is the exponent

defined in (5.2).

Proof. The only part that needs to be modified is the estimation of the nonlocal term
J2

J2 :=
∫ T1

T0

∫∫
(Rn\Br (x0))×Br/2(x0)

Jp(u(x, τ ) − u(y, τ )) η(x) dμ(x, y) dτ,

here T0, T1 ∈ (t0 − θ, t0) with T0 < T1. We recall that 0 < θ < 1
8 , x0 ∈ B 1

4
, and

r < 1
8 . Thus, x ∈ Br

2
(x0) implies x ∈ B 5

16
.

For y ∈ B 1
2
(0), assumption (5.8) implies

|u(x, τ ) − u(y, τ )| ≤ Kδ|x − y|δ.
For y ∈ B2(0) \ B 1

2
(0), the L∞ bound on u implies

|u(x, τ ) − u(y, τ )| ≤ 2 ≤ C(δ)|x − y|δ.
Also notice that for x ∈ Br/2(x0) and y ∈ R

n\Br (x0), we have |x − y| ≥ 1
2 |y − x0|.

Using these, we obtain

J2 ≤ 2 (T1 − T0) ‖η‖L∞(Br/2(x0)) sup
t∈[− 1

2 ,0]

∫∫
(Rn\Br (x0))×Br/2(x0)

|u(x, t) − u(y, t)|p−1

|x − y|n+s p
dy dx

≤ 2 (T1 − T0) ‖η‖L∞(Br/2(x0))

(
sup

t∈[− 1
2 ,0]

∫∫
(Rn\B2)×Br/2(x0)

|u(x, t) − u(y, t)|p−1

|x − y|n+sp
dy dx

+ C(δ, Kδ)

∫∫
(B2\Br (x0))×Br/2(x0))

|x − y|δ(p−1)−n−sp dy dx
)

≤ Cθ
(

sup
t∈[− 1

2 ,0]

∫∫
(Rn\B2)×Br/2(x0)

1 + |u(y, t)|p−1

|x0 − y|n+sp
dy dx

+
∫∫

(B2(0)\Br (x0)×Br/2(x0))
|x0 − y|δ(p−1)−n−sp dy dx

)

≤ Cθ

∫
Br/2(x0)

(
sup

t∈[− 1
2 ,0]

∫
Rn\B2

1 + |u(y, t)|p−1

|y|n+sp
dy
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+
∫
B2\Br (x0)

|x0 − y|δ(p−1)−n−sp dy
)
dx

≤ C θ rn
(
2−sp + 1 + r δ(p−1)−sp

)
≤ C θ rn−sp+δ(p−1).

(since δ(p − 1) − sp is not positive)

�

Finally, we are ready to prove a modified version of [7, Theorem 1.1], which is
Theorem 5.1.

Proof of Theorem 5.1. Consider a cylinder Q2ρ,2ρsp (x̃, τ ) � � × I , first, we prove
the following type of bound on the Hölder seminorm in Qρ/4,ρs p/4(x̃, τ ), and later
with the aid of a covering argument, we conclude the claim of the theorem.

Claim: For any (x1, τ1), (x2, τ2) ∈ Qρ/4,ρs p/4(x̃, τ ) we have

|u(x1, τ1) − u(x2, τ2)| ≤ C
(‖u‖L∞(B2ρ×[T0−ρs p,T0])

+ sup
t∈[T0−ρsp,T0]

Tailp−1,sp(u; x0, 2ρ) + 1
) ( |x1 − x2|

ρ

)δ

+ C
(‖u‖L∞(B2ρ×[T0−Rs p,T0])

+ sup
t∈[T0−ρsp,T0]

Tailp−1,sp(u; x0, 2ρ) + 1
)p−1

( |τ1 − τ2|
ρs p

)γ

. (5.9)

The regularity in space variable has been proved in Theorem 5.6. To prove the part on
time regularity, we set

Mρ(x̃, τ ) := 1 + ‖u‖L∞(Q2ρ,ρsp (x̃,τ )) + sup
τ−ρs≤t≤τ

Tailp−1,sp(u; x̃, 2ρ)

and consider the rescaled functions

ũρ,ι(x, t) := 1

Mρ(x̃, τ )
u(ρx + x̃,Mρ(x̃, τ )2−pρspt + τ + ι),

for ι ∈ (−ρsp

4 (1 − M2−p
ρ ), 0). Then ũρ,ι(x, t) is a solution of

∂t ũρ,ι + (−�p)ũρ,ι = 0, in Q2,2.

Moreover, ũρ,ι(x, t) satisfies the conditions of Proposition 5.7. Indeed by construction

‖ũρ,ι‖L∞(B2×[−1,0]) + sup
t∈[−1,0]

Tailp−1,sp(ũρ,ι; 0, 2) ≤ 1

and the estimate (5.8) follows from (5.7) in Theorem 5.6. From Proposition 5.7, we
obtain

sup
x∈B 1

4

[ũρ,ι(x, �)]Cγ [− 1
4 ,0] ≤ C,
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with C = C(n, s, p, γ ) for every 0 < γ < �(s, p). By scaling back, this translates
to

|u(x, t1) − u(x, t2)| ≤ Mρ(x̃, τ )C
( |t1 − t2|
ρspM2−p

ρ

)γ

for

(x, t1), (x, t2) ∈ Q ρ
4 ,

ρsp
4 M2−p

ρ
(x̃, τ + ι). (5.10)

By varying ι with an argument similar to the proof of Theorem 1.2, we arrive at the
claim (5.9). We have to point out that the Hölder constant does change, unlike what is
suggested in the proof of [7, Theorem 1.1]. Here is a detailed computation

We split the time interval [t1, t2] into 1 + �Mρ(x̃, τ )p−2� pieces, say [τi+1, τi ],
with τi − τi+1 = |t2−t1|

1+�Mρ(x̃,τ )p−2� , τ0 = t2, and τ�1+μp−2� = t1. Then using (5.10) and

the triangle inequality, we get

|u(x, t2) − u(x, t1)| ≤ |u(x, t2) − u(x, t1)|

≤
�Mp−2

ρ �∑
i=0

|u(x2, τi ) − u(x2, τi+1)|

≤ CMρ

�Mp−2
ρ �∑

i=0

( |τi − τi+1|
Rs pM2−p

ρ

)γ

= CMρ(x̃, τ )

�Mp−2
ρ �∑

i=0

( |t2 − t1|
Rs pM2−p

ρ (1 + �Mp−2
ρ �)

)γ

≤ CMρ

�Mp−2
ρ �∑

i=0

( |t2 − t1|
Rs p

)γ

≤ CMρ

[
Mp−2

ρ

( |t2 − t1|
Rs p

)γ ] ≤ CMp−1
ρ

( |t2 − t1|
Rs p

)γ

.

Now use (5.9) in cylinders of the form

Q r
4 , r

sp
4

(y, t), for (y, t) ∈ Qσ R,(σ R)sp ,

where the radius r = R
C(n,s,p,σ )

is so small, such that

Q2r,2rs p (y, t) ⊂ QR,Rsp .

Consider a sequence of points (x̃i , τ̃i ) on the segment joining (x1, τ1) and (x2, τ2)
such that

(x̃i , τ̃i ) ∈ Q r
4 , r

sp
4

(xi−1, τi−1).
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Using (5.9) together with the triangle inequality, we obtain

|u(x1, τ1)−u(x2, τ2)| ≤ C
(‖u‖L∞(QR,Rsp (x0,T0))

+ sup
t∈[T0−Rsp,T0]

Tailp−1,sp(u; x0, R) + 1
) ( |x1 − x2|

R

)δ

+ C
(‖u‖L∞(QR,Rsp (x0,T0)

+ sup
t∈[T0−Rsp,T0]

Tailp−1,sp(u; x0, R) + 1
)p−1

( |τ1 − τ2|
Rs p

)γ

,

with C = C(n, s, p, δ, γ, σ ), which is the desired result. �

6. Appendix B

Here we will justify the insertion of u − v and |u − v|p−2(u − v) as test functions.

Proposition 6.1. Let B = BR(x0) be a ball of radius r , B2 = Bσ R(x0) with σ > 1,
and I = (τ0, τ1] be an interval. Let f ∈ L(p�

s )
′,p′

(B × I ) and assume that u ∈
L p(I,Ws,p(B2)) ∩ L p−1(I ; L p−1

sp (Rn)) ∩ C(I ; L2(B)) is a local weak solution of

ut + (−�p)
su = f, in B2 × I

with

Tailp−1,sp(u( �, t); x0, R) ∈ L p(I ).

(in particular, this will be the case under the stronger assumption supt∈I Tailp,sp
(u( �, t); x0, R) < ∞ that we use in this article.) Let [T0, T1] � I and let v ∈
L p([T0, T1],Ws,p(B2))∩L p−1([T0, T1]; L p−1

sp (Rn))∩C([T0, T1]; L2(B)) be a weak
solution to ⎧⎪⎪⎨

⎪⎪⎩
vt + (−�p)

sv = 0 in B × [T0, T1]
v = u in (Rn \ B) × [T0, T1]
v(x, T0) = u(x, T0) in B.

In addition, assume that F is a globally Lipschitz function with F(0) = 0, which is
either bounded or F(a) = a. Then we have:

∫ T1

T0

∫∫
Rn×Rn

(
Jp(u(x, t) − u(y, t)) − Jp(v(x, t) − v(y, t))

)

×
(
F(u(x, t) − v(x, t)) − F(u(y, t) − v(y, t))

)
dμ dt

+
∫
B
F(u(x, t) − v(x, t)) dx

∣∣T1
T0

=
∫ T1

T0

∫
B
F(u − v) f dx dt,

where F(a) := ∫ a
0 f (t) dt is the primitive function of F.
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Proof. The proof is essentially the same as [7, Lemma 3], except that here we do not
use a cutoff function and do not have the global boundedness of u in the ball. For
simplicity, we assume x0 = 0, R = 1 and σ = 2.

For a function ϕ ∈ C((T0, T1); L2(B)) ∩ L p((T0, T1); Xs,p
0 (B, B2)), we use the

following regularization of functions

ϕε(x, t) := 1

ε

∫ t+ ε
2

t− ε
2

ζ

(
t − �

ε

)
ϕ(x, �) d� =

∫ 1
2

− 1
2

ζ(−σ)ϕ(x, t + εσ ) dσ,

where ζ(σ ) is a smooth function with compact support in (− 1
2 ,

1
2 ) satisfying

|ζ | ≤ 1, and |ζ ′| ≤ 8.

This regularization process gives us a test function ϕε ∈ C1((T0+ε, T1−ε); L2(B))∩
L p((T0 + ε, T1 − ε); Xs,p

0 (B, B2)). Let t0 = T0 + ε0 and t1 = T1 − ε0 and we test the
equation with ϕε as above, for ε < ε0

2 . First, we will show the claim for the smaller
interval [t0, t1] ⊂ [T0, T1], and then through a limiting argument, prove the result for
the whole interval. As in equation (3.5) in [7], we get

∫ t1

t0

∫∫
Rn×Rn

(
Jp(u(x, t) − u(y, t))(ϕε(x, t) − ϕε(y, t)

)
dμ dt

+
∫
B

∫ t1− ε
2

t0+ ε
2

∂t u
ε(x, t)ϕ(x, t) dt dx + �u(ε)

=
∫
B

[
u(x, t0)ϕ(x, t0) − uε

(
x, t0 + ε

2

)
ϕ(x, t0 + ε

2
)
]
dx

−
∫
B

[
u(x, t1)ϕ(x, t1) − uε(x, t1 − ε

2
)ϕ(x, t1 − ε

2
)
]
dx +

∫ t1

t0

∫
B

ϕε f dx dt,

and we obtain a similar identity for v without
∫ t1
t0

∫
B ϕε f dx dt in the right-hand side.

Here �u is defined by

�u(ε) = −
∫
B

∫ t0+ ε
2

t0− ε
2

(
1

ε

∫ �+ ε
2

t0
u(x, t) ζ

(
� − t

ε

)
dt

)
∂�ϕ(x, �) d� dx

−
∫
B

∫ t1+ ε
2

t1− ε
2

(
1

ε

∫ t1

�− ε
2

u(x, t) ζ

(
� − t

ε

)
dt

)
∂�ϕ(x, �) d� dx .

Observe that by using an integration by parts, the term �u(ε) can be rewritten as

�u(ε) = −
∫
B

(
1

ε

∫ T0+ε

T0
u(x, t) ζ

(
T0 − t

ε
+ 1

2

)
dt

)
ϕ
(
x, T0 + ε

2

)
dx

+
∫
B

∫ T0+ ε
2

T0− ε
2

(
1

ε2

∫ �+ ε
2

T0
u(x, t) ζ ′

(
� − t

ε

)
dt

)
ϕ(x, �) d� dx
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+
∫
B

(
1

ε

∫ T1

T1−ε

u(x, t) ζ

(
T1 − t

ε
− 1

2

)
dt

)
ϕ
(
x, T1 − ε

2

)
dx

−
∫
B

∫ T1+ ε
2

T1− ε
2

(
1

ε2

∫ T1

�− ε
2

u(x, t) ζ ′
(

� − t

ε

)
dt

)
ϕ(x, �) d� dx, (6.1)

where we also used that ζ has compact support in (−1/2, 1/2). By subtracting the
identities for u and v, we obtain

∫ t1

t0

∫∫
Rn×Rn

(
Jp(u(x, t) − u(y, t)) − Jp(v(x, t) − v(y, t))

)
(ϕε(x, t) − ϕε(y, t)) dμ dt

+
∫
B

∫ t1− ε
2

t0+ ε
2

∂t (u − v)ε(x, t)ϕ(x, t) dt dx + �u(ε) − �v(ε)

=
∫
B

[
(u − v)(x, t0)ϕ(x, t0) − (u − v)ε(x, t0 + ε

2
)ϕ(x, t0 + ε

2
)
]
dx

−
∫
B

[
(u − v)(x, t1)ϕ(x, t1) − (u − v)ε(x, t1 − ε)ϕ(x, t1 − ε

2
)
]
dx

+
∫ t1

t0

∫
B

ϕε(x, t) f (x, t) dx dt.

Now we take ϕ to be F(uε − vε). Observe that

∂t (u − v)εF(uε − vε) = ∂tF(uε − vε).

After an integration by parts, we get

∫ t1

t0

∫∫
Rn×Rn

(
Jp(u(x, t) − u(y, t)) − Jp(v(x, t) − v(y, t))

)

× ([F(uε − vε)(x, t)]ε − [F(uε − vε)(y, t)]ε) dμ dt

+
∫
B
F(uε − vε) dx

]t1− ε
2

t0+ ε
2

+ �u(ε) − �v(ε)

=
∫
B

[
(u − v)(x, t0)F(uε − vε)(x, t0) − (u − v)ε

(
x, t0 + ε

2

)

× F(uε − vε)
(
x, t0 + ε

2

)]
dx

−
∫
B

[
(u − v)(x, t1)F(uε − vε)(x, t1)

− (u − v)ε
(
x, t1 − ε

2

)
F(uε − vε)

(
x, t1 − ε

2

)]
dx

+
∫ t1

t0

∫
B
(F(uε − vε))ε(x, t) f (x, t) dx dt := I1 − I2 + I3. (6.2)

We now wish to pass to the limit in I1, I2 and I3. Let w = u − v, we now treat I1.
The fact that F is globally Lipschitz together with F(0) = 0 implies |F(t)| ≤ C |t |.
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Therefore,

|w(x, t0)F(wε)(x, t0) − wε(x, t0 + ε

2
)F(wε(x, t0 + ε

2
))|

≤ |
(
w(x, t0) − wε

(
x, t0 + ε

2

))
F(wε(x, t0))|

+ |wε
(
x, t0 + ε

2

) (
F(wε(x, t0)) − F

(
wε

(
x, t0 + ε

2

)))
|

≤ C
[ |(w(x, t0) − wε(x, t0 + ε

2
))wε(x, t0)|

+ |wε(x, t0 + ε

2
)
(
wε(x, t0) − wε

(
x, t0 + ε

2

))
|],

whereC is the Lipschitz constant of F . After integrating and usingHölder’s inequality,
we obtain

I1 =
∫
B

[
w(x, t0)F(wε)(x, t0) − wε(x, t0 + ε

2
)F(wε)(x, t0 + ε)

]
dx

≤ C
[
‖w( �, t0) − wε

(
�, t0 + ε

2

)
‖L2(B)‖wε ( �, t0) ‖L2(B)

+ ‖wε
(

�, t0 + ε

2

)
‖L2(B)‖wε( �, t0) − wε( �, t0 + ε

2
)‖L2(B)

]
.

Since wε ∈ C((T0 + ε0, T1 − ε0); L2(B)), uniformly, we have

lim
ε→0

‖wε( �, t0 + ε

2
)‖L2(B) = ‖w( �, t0)‖L2(B).

Observe that∫
B

|w(x, t0) − wε(x, t0 + ε

2
)|2 dx

=
∫
B

∣∣∣
∫ 1

2

− 1
2

ζ(−σ)
[
w(x, t0) − w

(
x, t0 + ε

2
+ εσ

)]
dσ
∣∣∣2 dx

≤
∫
B

∫ 1
2

− 1
2

∣∣ζ(−σ)[w(x, t0) − w(x, t0 + ε

2
+ εσ )]∣∣2 dσ dx

=
∫ 1

2

− 1
2

∫
B

∣∣ζ(−σ)[w(x, t0) − w(x, t0 + ε

2
+ εσ )]∣∣2 dx dσ

≤
∫ 1

2

− 1
2

∫
B

∣∣w(x, t0) − w(x, t0 + ε

2
+ εσ )

∣∣2 dx dσ

≤ sup
0≤t≤ε

∫
B

∣∣w(x, t0) − w(x, t0 + t)
∣∣2 dx

(6.3)

which tends to zero since w is in C([T0, T1], L2(B)). In a similar way, one can argue
that

lim
ε→0

‖wε( �, t0) − wε( �, t0 + ε

2
)‖L2(B) = 0. (6.4)
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Using the triangle inequality, we get

‖wε( �, t0) − wε
(

�, t0 + ε

2

)
‖L2(B)

≤ ‖wε( �, t0) − w( �, t0)‖L2(B) + ‖w( �, t0) − wε( �, t0 + ε

2
)‖L2(B),

using a computation similar to (6.3), we obtain

‖wε( �, t0) − w( �, t0)‖L2(B) ≤ sup
− ε

2≤t≤ ε
2

‖w( �, t0 + t) − w( �, t0)‖L2(B)

and

‖w( �, t0) − wε( �, t0 + ε

2
)‖L2(B) ≤ sup

0≤t≤ε

‖w( �, t0 + t) − w( �, t0)‖L2(B).

These two expressions converge to zero, since w ∈ C([T0, T1], L2(B)) and (t0 −
ε, t1 + ε) � (T0, T1). This shows that I1 converges to zero. In a similar way, one can
argue that I2 tends to zero. For the term I3, we have

∣∣∣
∫ t1

t0

∫
B

[
(F(wε))ε f − F(w) f

]
dx dt

∣∣∣

=
∣∣∣
∫ t1

t0

∫
B

(
F(wε))ε − F(wε)

)
f + (

F(wε) − F(w)
)
f dx dt

∣∣∣

≤
∫ t1

t0

∫
B

|(F(wε))ε − F(wε)|| f (x, t)| + C |wε − w|| f (x, t)| dx dt.

The sequence wε is bounded in L p�
s ,p(B × (t0, t1)); therefore, it has a weakly con-

vergent subsequence. Using the pointwise convergence of wε to w, we get the weak
convergence of wε − w to zero. By the assumptions on q, r together with Hölder’s
inequality (2.11), f (x, t) belongs to the dual space L(p�

s )
′,p′

(B × (t0, t1)). Therefore,

lim
ε→0

∫ t1

t0

∫
B

|wε − w|| f (x, t)| dx dt = 0.

On the other hand,
∫ t1

t0

∫
B

|(F(wε))ε − F(wε)|| f (x, t)| dx dt

=
∫ t1

t0

∫
B

∣∣∣∣
∫ 1

2

− 1
2

ζ(−σ)(F(wε(x, t + εσ ))) − F(wε(x, t)) dσ

∣∣∣∣| f (x, t)| dx dt

≤
∫ t1

t0

∫
B

∫ 1
2

− 1
2

ζ(−σ)|(F(wε(x, t + εσ )) − F(wε(x, t))|| f (x, t)| dσ dx dt

≤ C
∫ t1

t0

∫
B

∫ 1
2

− 1
2

ζ(−σ)|(wε(x, t + εσ ) − wε(x, t)|| f (x, t)| dσ dx dt
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≤ C
∫ 1

2

− 1
2

∫ t1

t0

∫
B

|(wε(x, t + εσ ) − wε(x, t)|| f (x, t)| dx dt dσ

≤ C
∫ 1

2

− 1
2

∥∥ ‖wε(x, t + εσ ) − wε(x, t)‖L p�s (B)

∥∥
L p(t0,t1)

‖ f ‖L(p�s )′,p′ (B×(t0,t1))
dσ.

Recall that the shift operator,

T (a)(g) := ‖g(t + a)‖L p((t0,t1))

for a function g ∈ L p(t0 − ε0, t1 + ε0) is continuous for −ε0 ≤ a ≤ ε0. Hence, we
get

lim
ε→0

‖wε(x, t)‖L p�s ,p(B×(t0,t1))
= lim

ε→0
‖wε(x, t + εσ )‖L p�s ,p(B×(t0,t1))

= ‖w‖L p�s ,p(B×(t0,t1))
.

Upon passing to a subsequence wε(x, t + εσ ) and wε(x, t) converge weakly in
L p�

s ,p(B × (t0, t1)), since they converge to w(x, t) pointwise, we get the weak con-
vergence

wε(x, t) ⇀ w(x, t) and wε(x, t + εσ ) ⇀ w(x, t) in L p�
s ,p(B × (t0, t1)).

Combined with the convergence of the norms, this implies the strong convergence in
the norm; in particular, we have

∥∥ ‖wε(x, t + εσ ) − wε(x, t)‖L p�s (B)

∥∥
L p(t0,t1)

→ 0.

Now we turn our attention to the terms on the left-hand side of (6.2). The terms �u(ε)

and �v(ε) converge to zero. To show this, we start with the following computation,
borrowed from [7, Lemma 3.3]. Using a suitable change of variables in (6.1) and
recalling ϕ = F(wε), we can also write

�u(ε) = −
∫
B

(∫ 1
2

− 1
2

u(x, t0 − ερ + ε

2
) ζ(ρ) dρ

)
F(wε)

(
x, t0 + ε

2

)
dx

+
∫
B

∫ 1
2

− 1
2

(∫ ρ

− 1
2

u(x, ε ρ + t0 − ε σ ) ζ ′ (σ ) dσ

)
F(wε)(x, ε ρ + t0) dρ dx

+
∫
B

(∫ 1
2

− 1
2

u(x, t1 − ερ − ε

2
) ζ(ρ) dρ

)
F(wε)

(
x, t1 − ε

2

)
dx

−
∫
B

∫ 1
2

− 1
2

(∫ ρ

1
2

u(x, ε ρ + T1 − ε σ ) ζ ′ (σ ) dσ

)
F(wε)(x, ε ρ + T1) dρ dx

:= �1
u(ε) + �2

u(ε) + �3
u(ε) + �4

u(ε).

(6.5)

In a similar way to the argument for convergence of I1, we can see that

lim
ε→0

�1
u(ε) = −

∫
B
u(x, t0)F(w)(x, t0) dx .
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We spell out the details of the arguments for convergence of �2
u(ε).

∣∣∣�2
u(ε) −

∫
B
u(x, t0)F(w)(x, t0) dx

∣∣∣

=
∣∣∣∣
∫
B

∫ 1
2

− 1
2

(∫ ρ

− 1
2

(u(x, ε ρ + t0 − ε σ ) − u(x, t0)) ζ ′ (σ ) dσ

)
F(wε)(x, ε ρ + t0) dρ dx

+
∫
B

∫ 1
2

− 1
2

(∫ ρ

− 1
2

u(x, t0)ζ
′(σ ) dσ

)(
F(wε)(x, ερ + t0) − F(w)(x, t0)

)
dρ dx

∣∣∣∣

≤
∫ 1

2

− 1
2

∫ ρ

− 1
2

(∫
B

∣∣∣u(x, ερ + t0 − εσ ) − u(x, t0))F(wε)(x, ερ + t0)ζ
′(σ )

∣∣∣ dx
)

dσ dρ

+
∫ 1

2

− 1
2

∫
B

|ζ(ρ)|
∣∣∣u(x, t0)

(
F(wε)(x, ερ + t0) − F(w)(x, t0)

)∣∣∣ dx dρ

≤ 8
∫ 1

2

− 1
2

∫ ρ

− 1
2

‖u( �, ερ + t0 − εσ ) − u( �, t0)‖L2(B)‖F(wε)( �, ερ + t0)‖L2(B) dσ dρ

+
∫ 1

2

− 1
2

‖u( �, t0)‖L2(B)‖F(wε)( �, ερ + t0) − F(w)( �, t0)‖L2(B) dρ

≤ 8 sup
t0≤t≤t0+ε

‖u( �, t0 + t) − u( �, t0)‖L2(B) sup
t0− ε

2≤t≤t0+ ε
2

‖F(wε)( �, t0 + t)‖L2(B)

+ C‖u( �, t0)‖L2(B) sup
t0− ε

2≤t≤t0+ ε
2

‖wε( �, t0 + t) − w( �, t0)‖L2(B),

where C is the Lipschitz constant of F . We have used |ζ | ≤ 1 and |ζ ′| ≤ 8 in the
computation. Since u ∈ C([T0, T1]; L2(B)), we get

lim
ε→0

sup
t0≤t≤t0+ε

‖u( �, t0 + t) − u( �, t0)‖L2(B) = 0.

Using a computation similar to (6.3), we obtain

sup
t0− ε

2≤t≤t0+ ε
2

‖wε( �, t0 + t) − w( �, t0)‖L2(B)

≤ sup
t0−ε≤t≤t0+ε

‖w( �, t0 + t) − w( �, t0)‖L2(B).

This converges to zero since w ∈ C([T0, T1]; L2(B)), and (t0 − ε, t1 + ε) � (T0, T1)
due to the choice of ε. In conclusion,

lim
ε→0

�1
u(ε) + �2

u(ε) = 0.

In a similar way, one can argue that

lim
ε→0

�3
u(ε) + �4

u(ε) = 0.

Hence, limε→0 �u(ε) = 0. The treatment of �v(ε) is similar.
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The term

∫
B
F(uε − vε) dx

]t1− ε
2

t0+ ε
2

=
∫
B
F(wε)

(
x, t1 − ε

2

)
dx −

∫
B
F(wε)

(
x, t0 + ε

2

)
dx

converges to

∫
B
F(w)(x, t1) dx −

∫
B
F(w)(x, t0) dx .

To show this, we consider two cases.

Case A: F is bounded. In this case,F is globally Lipschitz, that is, |F(a)−F(b)| ≤
C |a − b|; therefore,

∣∣∣
∫
B
F
(
wε

(
x, t0 + ε

2

))
− F(w(x, t0)) dx

∣∣∣
≤
∫
B
C |wε(x, t0 + ε

2
) − w(x, t0)| dx

≤ C |B| 12 ‖wε
(

�, t0 + ε

2

)
− w( �, t0)‖L2(B) dx,

which converges to zero as was explained before, see (6.4).

Case B: In this case, we have F(a) = a2. Therefore,

∣∣∣
∫
B
F
(

wε(x, t0 + ε

2

))
− F(w(x, t0)) dx

∣∣∣

≤
∫
B

|wε

(
x, t0 + ε

2

))2

− w(x, t0)
2| dx

≤
∫
B

|wε

(
x, t0 + ε

2

))
− w(x, t0)||wε

(
x, t0 + ε

2

))
− w(x, t0)| dx

≤ ‖wε

(
�, t0 + ε

2

))
− w( �, t0)‖L2(B)‖wε

(
�, t0 + ε

2

))
+ w( �, t0)‖L2(B)

and since w ∈ C([T0, T1]; L2(B)), with an argument similar to the treatment of I1,
as we let ε go to zero this term converges to zero.

Now we discuss the convergence of the nonlocal term. Our treatment is similar to
the argument in [7, Appendix B]. The aim is to show that the following converges to
zero.

∫ t1

t0

∫∫
Rn×Rn

(Jp(u(x) − u(y)) − Jp(v(x) − v(y))) × [
(F(wε(x, t)))ε − F(w(x, t)

− (
(F(wε(y, t)))ε − F(w(y, t))

)]
dμ dt.
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We split it into the two parts

∫ t1

t0

∫∫
B2×B2

(Jp(u(x) − u(y)) − Jp(v(x) − v(y))) × [
(F(wε(x, t)))ε − F(w(x, t)

− (
(F(wε(y, t)))ε − F(w(y, t))

)]
dμ dt

+ 2
∫ t1

t0

∫∫
B× (Rn\B2)

(Jp(u(x) − u(y)) − Jp(v(x) − v(y)))

× [
(F(wε(x, t)))ε − F(w(x, t)

]
dμ dt

:= �1(ε) + 2�2(ε).

Here we have used the boundary condition u = v(w = 0) for y ∈ R
n\B. Since

|F(a) − F(b)| ≤ C |a − b|, we have
∫ t1

t0
‖(F(wε))ε‖p

Ws,p(B2)
dt ≤ C

∫ t1

t0
‖wε‖p

Ws,p(B2)
dt.

After passing to a subsequence this sequence converges weakly in L p((t0, t1);
Ws,p(B2)) to F(w(x, t)) or in another words

(F(wε(x, t))ε − (F(wε(y, t)))ε

|x − y| np +s

converges weakly in L p
(
(t0, t1); L p(B2 × B2)

)
, and since

Jp(u(x) − u(y)) − Jp(v(x) − v(y))

|x − y| n
p′ +(p−1)s

belongs to L p′(
(t0, t1); L p′

(B2 × B2)
)
, we get the desired convergence for �1(ε).

Now for �2(ε) consider

G(x, t) :=
∫
Rn\B2

Jp(u(x) − u(y)) − Jp(v(x) − v(y))

|x − y|n+sp
dy.

Then for almost every x ∈ B,

|G(x, t)| ≤ C(n, s, p)
∫
Rn\B2

|u(x, t)|p−1 + |u(y, t)|p−1 + |v(x, t)|p−1 + |v(y, t)|p−1

|y|n+sp
dy

≤ C
(
2Tailp−1,sp(u( �, t); 0, 2)p−1 + |u(x, t)|p−1 + |v(x, t)|p−1).

(6.6)

The terms |u(x, t)|p−1 and |v(x, t)|p−1 belongs to L p′(
(t0, t1); L p′

(B)
)
since u, v ∈

L p((t0, t1); L p(B)). The tail term its independent of x and belongs to L p′
(t0, t1) by

the assumption

∫ T1

T0

(
Tailp−1,sp(u( �, t); 0, 2)))p′

dt ≤ ∞.
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Thus, G(x, t) ∈ L p′
([T0, T1]; L p′

(B2)) and as before after extracting a subsequence:

F(wε(x, t))ε ⇀ F(w(x, t) in L p([t0, t1]; L p(B)).

This shows that

�2(ε) =
∫ t1

t0

∫
B
G(x, t)

(
F(wε(x, t))ε − F(w(x, t)

)

converges to zero.
Finally, we let ε0 go to zero to get the desired result for [T0, T1]. We need to show

that the following converge to zero as ε0 tends to 0.

J1 :=
∫
B
F(w(x, T0)) − F(w(x, T0 + ε0)) dx ,

J2 :=
∫
B
F(w(x, T1)) − F(w(x, T1 − ε0)) dx,

J3 :=
∫ T0+ε0

T0

∫
B
F(w(x, t)) f (x, t) dx dt,

J4 :=
∫ T1

T1−ε0

∫
B
F(w(x, t)) f (x, t) dx dt,

and

N1 :=
∫ T0+ε0

T0

∫∫
Rn×Rn

( Jp(u(x, t) − u(u, t)) − Jp(v(x, t) − v(y, t))

|x − y|n+sp

)

×
(
F(w(x, t)) − F(w(y, t))

)
dx dy dt,

and

N2 :=
∫ T1

T1−ε0

∫∫
Rn×Rn

( Jp(u(x, t) − u(u, t)) − Jp(v(x, t) − v(y, t))

|x − y|n+sp

)

×
(
F(w(x, t)) − F(w(y, t))

)
dx dy dt.

The arguments will be reminiscent of the ideas in the previous part.
We start with J2, in the case of a bounded F , F is globally Lipschitz and we have

∣∣J2
∣∣ ≤

∫
B

∣∣F(w(x, T1)) − F(w(x, T1 − ε0))
∣∣ dx ≤ C

∫
B

|w(x, T1) − w(x, T1 − ε0)| dx

≤ C |B| 12 ‖w( �, T1) − w( �, T1 − ε0)‖L2(B).

This converges to 0 since w ∈ C([T0, T1]; L2(B)), in the case of F(a) = a, we have
∣∣J2

∣∣ ≤
∫
B

∣∣F(w(x, T1)) − F(w(x, T1 − ε0))
∣∣ dx ≤

∫
B

∣∣w(x, T1)
2 − w(x, T1 − ε0)

2
∣∣ dx

≤
∫
B

∣∣w(x, T1) − w(x, T1 − ε0)
∣∣∣∣w(x, T1) + w(x, T1 − ε0)

∣∣ dx
≤ ‖w( �, T1) − w( �, T1 − ε0)‖L2(B)‖w( �, T1) + w( �, T1 − ε0)‖L2(B).
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Again since w ∈ C([T0, T1]; L2(B)), this term converges to 0.
J1 can be treated in a similar way. For the term J4, using |F(a)| ≤ C |a| we get

∣∣J4
∣∣ ≤ C

∫ T1

T1−ε0

∫
B

|w(x, t)|| f (x, t)| dx dt.

Since w ∈ L p�
s ,p(B × [T0, T1]) and f ∈ L(p�

s )
′,p′

(B × [T0, T1]), using Hölder’s
inequality (2.11), one can see that

w(x, t) f (x, t) ∈ L1(B × [T0, T1]).
Now using the absolute continuity of the integral for integrable functions, we can
conclude that J4 converges to 0. The reasoning for convergence of J3 is similar.

Now we turn our attention to the nonlocal terms.

N2 =
∫ T1

T1−ε0

∫∫
B2×B2

( Jp(u(x, t) − u(y, t)) − Jp(v(x, t) − v(y, t))

|x − y|n+sp

)

×
(
F(w(x, t)) − F(w(y, t))

)
dx dy dt

+ 2
∫ T1

T1−ε0

∫∫
B×(Rn\B2)

Jp(u(x, t) − u(y, t)) − Jp(v(x, t) − v(y, t))

|x − y|n+sp

F(w(x, t)) dx dy dt := �1 + 2�2.

First, we treat �1. Notice that since u, v ∈ L p([T0, T1];Ws,p(B2)) we have

Jp(u(x, t) − u(y, t)) − Jp(v(x, t) − v(y, t))

|x − y| n
p′ +(p−1)s

∈ L p′
([T0, T1]; L p′

(B2 × B2)]),

and using Lipschitz continuity of F and the fact thatw ∈ L p([T0, T1];Ws,p(B2)), we
have

F(w(x, t)) − F(w(y, t))

|x − y| np +s
∈ L p([T0, T1]; L p(B2 × B2)).

This implies that the integrand involved in �1 belongs to L1([T0, T1]; L1(B2 × B2)).
And similar to the treatment of J4, since the volume of the integration region is
shrinking to 0, �1 converges to 0. To deal with �2, notice that

F(w(x, t)) ∈ L p([T0, T1]; L p(B))

and define

G(x, t) :=
∫
Rn\B2

Jp(u(x, t) − u(y, t)) − Jp(v(x, t) − v(y, t))

|x − y|n+sp
dy.

We can estimate this integration in terms of the tail, that is,

∣∣G(x, t)
∣∣ ≤ C(n, s, p)

(
Tailp−1,sp(u( �, t); 0, 2) + |u(x, t)|p−1 + |v(x, t)|p−1

)
,
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see, for example, (6.6). Therefore, G(x, t) ∈ L p′
([T0, T1]; L p′

(B)). Hence, using
Hölder’s inequality

G(x, t)F(x, t) ∈ L1([T0, T1]; L1(B)).

This concludes the result. N1 can be treated in an exactly similar manner. �
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