J. Evol. Equ. (2024)24:27 .
© 2024 The Author(s) Journal of Evolution

https://doi.org/10.1007/500028-024-00949-8 Equations

®

Check for
updates

A perturbative approach to Holder continuity of solutions
to a nonlocal p-parabolic equation

ALIREZA TAVAKOLI

Abstract. We study local boundedness and Holder continuity of a parabolic equation involving the fractional
p-Laplacian of order s, with0 < s < 1,2 < p < oo, with a general right-hand side. We focus on obtaining
precise Holder continuity estimates. The proof is based on a perturbative argument using the already known
Holder continuity estimate for solutions to the equation with zero right-hand side.

1. Introduction

In this paper, we study the local boundedness and Holder regularity of solutions to the
inhomogeneous equation

ur+ (=Ap)'u = f(x, 1), (1.1)

where f € Li .(1; L?OC(Q)) withg > 1,7 > 1, p > 2and s € (0, 1). Here, (—A))*
is the fractional p-Laplacian, arising as the first variation of the Sobolev—Slobodeckif

seminorm

lu(x) — u(IP 2@ (x) — u(y)) d
n |x_y|n+sp Y-

(—Ap) u(x) = 2P.V./

Nonlocal equations involving operators of the above type, with a singular kernel, were
first considered in [31] to the best of our knowledge.

In this study, continuing the work in [7], we perform a perturbative argument to
obtain Holder continuity estimates, with explicit exponents for the equations with a
right-hand side. Our approach closely follows the arguments in [47] and [6]. In such
perturbative arguments, it is often possible to establish Holder regularity results for
bounded solutions using only L°° estimates for the equations with zero right-hand
side. Here, to estimate the Holder seminorms of certain functions in the proof of
Theorem 1.2 as well as to prove Theorem 3.6, we are led to prove Proposition 3.4. As
aby-product, by combining Proposition 3.4 with the existing local boundedness results
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we obtain an L°° bound for equations with right-hand sides. This is Theorem 1.1. The
proof is inspired by the work [5].

Below, we state the main results. For the definition of the tail and relevant function
spaces, see Sect.2. We use the following notation of parabolic cylinders

ORr,r(x,T) :=Br(xp) x (T —r,T].

The exponent p} = nf’; m is the critical exponent for the Sobolev embedding theorem,
see Proposition 2.5. We denote by p’, the Holder conjugate of p, thatis p’ = -2

p—1"
Theorem 1.1. Let 2 C R" be a bounded and open set, [ = (to,t1], p > 2,0 <s < 1.

Consider q and r such that
1 n
-+ — <1
r o spq

In addition, assume thatr > p/,
qg>1 ifsp#n, and g >1 ifsp=n.
Suppose u is a local weak solution of
ur+ (A 'u=f inQxI,
such that

we LD (I; LI (R™) and f e L (I; LY ().

loc loc loc
then u is locally bounded in Q2. More specifically, if Q2r, 2Ry (xo, 7o) € 2 % I, uis
bounded in Q2 (r/2) (X0, To), and in the case sp # n, the estimate reads

1

V4
lul sC[1+ ][ Jul? dx dr
L°O<Q§,(§);p ()C(),T())) QR’RS‘[) (x0,T0)
To R P %
+ <][ Tail ,—1 5p <u(-, 1); X0, —) dt)
To—R*? 2

(p—1Hv

+ ) @-1? (1 + RSpU||f”L‘f"'(QR,RSP(xO*TO)))i|’

where C = C(n,s, p),v =1~} — Joand 9 = 1 + %2,

In the case sp = n, given any [ such that 5(1 — % - é)’l <l < oo we get

1
P
[[ee]| 5C[l+ ][ |u|? dx dt
L°°<Q§_(§):p (XO»TO)) Q. rsp (x0,T0)

To R\?” 117
+ (f Taﬂpfl,sp <u(',t);x0’ _> dt)
To—R*P 2

(p=1)p

F2 0 (14 RSP“||f||w<QR,Rsp<xo,To>>)}v
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whereC:C(n,s,p,q,l),1?:2—%—é—%andv:l—%—%.

Theorem 1.2. Let Q2 C R” be a bounded and open set, I = (ty, t1], p >2,0<s < 1.
Consider q and r such that

1 n

-+ — < 1.

r o spq

In addition, assume that r > p/,

q=>1 ifsp#n, and g >1 ifsp=n.

Define the exponent

O(s, p) = (1.2)

Suppose u is a local weak solution of
ur+ (A 'u=f inQxI,
such that

we LI L)) N LS. LY (RY), and  f € Li, (I; LY ().

loc loc loc

Then
ueCye(@xDn Ctxj;c(p_z)a (QxI), forevery0 <a
r(spq —n) — spq
Tqr(p—=1D—(p—2))

More precisely, given a < © satisfying

such that o < ©.

r(spq —n) —spq
Tqr(p—=1D—=(p—-2)’
forevery R > 0, xo € Q2 and Ty such that

OR.2rsr (x0, Tp) € Q x (to, 111,

there exists a constant C = C(n, s, p, q,r,a) > 0 such that

2 — xi[\« p—1 (12— 11\ =2
lu(xy, 1) —uxy, )] < C [M(T) M (W)

(1.3)
forany (x1, 11), (x2,12) € QRry2,(r/2)s 7 (X0, To), with

M=1+ ||”||L°°(QR.2Rsp(xo,T0)) + sup Tail p—1,5p (-, 1); X0, R)
To—2RP<t<Ty
1
RPN e g arer o 7on) -
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1.1. Known results

Recently, there has been a growing interest in nonlocal problems of both elliptic and
parabolic types. For studies of fractional p-Laplace operators with different (continu-
ous) kernels, see [4]. Parabolic equations of the type (1.1) were first considered in [42]
with a slightly different diffusion operator. See also [1,39,48] and [49] for studies of
the existence, uniqueness and long time behavior of solutions.

A noteworthy area of investigation has been devoted to adapting the classical De
Giorgi—Nash—Moser theory for nonlocal equations. Local boundedness, Holder esti-
mates and Harnack inequalities have been established in the elliptic case under general
assumptions on the kernels; see, for instance, [19,23,24,32].

Here we seize the opportunity to mention [16—18] and [51] which contain regularity
results for parabolic nonlocal equations.

Local boundedness for parabolic nonlocal equations has been studied, for instance,
in [11,22,33,45]. In particular, the local boundedness of the solutions to equations
modeled on (1.1) with zero right-hand side was obtained in [45]. The results concern
operators of the form

Lx = P.V-/I;n K(x,y, Dlu(x) —u()P~>ux) — u(y)) dy, (1.4)

where K is a measurable kernel, which is symmetric in the space variables and satisfies
the ellipticity condition

-1

_— < < _
|x _y|n+sp - K(x,y,t) - |x _y|n+sp'

Later in [22], local boundedness for certain right-hand sides of the form f(x, 7, u)
was established. See also [3] for a recent boundedness result in the setting of nonlocal
kinetic Kolmogorov—Fokker—Planck equations. All the aforementioned local bound-
edness results have a particular unnatural assumption, u € L*(I; Lf,,_l(]R”)). It is
more natural to assume u € LP~1(I; Lf;l (R™)). This difficulty has been completely
resolved in [34] when p = 2 and generalizes to the nonlinear setting in [10].

[46] contains a Harnack inequality for nonlinear parabolic equations with zero right-
hand side, see also [34] for a full Harnack inequality with optimal tail assumption for
p = 2. Holder regularity has also been established in [13,27] for p = 2 and for
locally bounded solutions in [2] and [37] for all 1 < p < oo for equations with zero
right-hand side.

The question of higher regularity of solutions to nonlocal equations has also been
a subject of intensive study during the past few years. For instance, see [28,43] for
a nonlocal Schauder-type theory. We also refer to [14,15] for nonlocal analogs of
Krylov—Safanov and Evans—Krylov theorems. We refer to [6,7,11,12,26,40,41] for
studies of higher regularity in the variational setting. In particular, in [7] they prove
Holder continuity of the solutions to (1.1) with explicit exponents (for f = 0 and
K = |x — y|7"7°P). Recently in [29], the same type of result has been established
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for nonlocal equations with double phase that is for diffusion operators involving two
different degrees of homogeneity and differentiability.

Perturbative arguments have been very successful in obtaining sharp boundedness
and Holder regularity estimate at least in the elliptic setting, see, for instance, [25,35].
See also [36] for an overview of the local theory. In this study, continuing the work
in [7], we perform a perturbative argument to obtain Holder continuity estimates with
explicit exponents for equations with a right-hand side. However, we have to say that
the current work has some unnatural assumptions that have yet to be overcome.

1.1.1. Discussion of the results and comparison to some previous works

Our results contain an unnatural assumption r > p’, as well as the assumption u €
Lr; LY p_l (R™)) in Theorem 1.1. We use these assumptions in two places. First and
foremost these assumptions are needed to ensure the existence of a solution to (3.1), the
so-called (s, p)-caloric replacement of our solution. This limitation comes from the
regularity assumption on the boundary condition in Theorem 2.12 which is essentially
the same as [7, Theorem A.3] see Remark 2.13. We also use the assumption r > p’ in
obtaining the estimates in Lemma 3.2. We believe it is possible to overcome this issue
by an interpolation argument, see Remark 3.3. It has to be mentioned that we also use
the assumption u € LP(I; LY ;1 (R™)) to justify testing the equation with powers of
the solution in Appendix B. Having said this, it is reasonable to expect Theorem 1.1
to hold for any weak solution under the assumption

1 n

-+ — <1, (1.5)
r o spq
as this is the only assumption that appears in the estimates. The same extra assumptions
on g and r are present in Theorem 3.6 due to the same reason as in Theorem 1.1.
Furthermore, we assume our solutions to have bounded tail in time, that is, u €
L°°(I,; pr_l (R™)). In light of the recent developments in [10,34], one can actually
weaken the assumptions on the tail. In particular, by using [10, Theorem 1.2] instead
of [7, Theorem 1.2] in the proof of Theorem 3.6, with some small modifications
in the argument one should be able to obtain the Holder continuity of the solutions
under the assumption u € LP (I, Lf,,_l (R™)), and the same assumptions on ¢, r as in
Theorem 3.6. We also believe that it is possible to avoid using Proposition 3.4 in the
proof of Theorem 3.6, by using [ 10, Theorem 1.1 and Theorem 1.2]. Asimproving upon
this assumption does not improve our main result, Theorem 1.2, we do not complicate
the article by going through the details of this issue. Furthermore, we actually expect
the result to be true under the weaker assumption u € LI(I; pr_l (R™)) for some
[ > p — 1 and without the assumption r > p’, but the current restrictions in the article
especially with respect to the existence of the (s, p)-caloric replacement do not allow
us to obtain such a result.

Let us also mention that the local boundedness and Holder regularity results men-

tioned above hold for a more general class of equations with measurable coefficient
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u; + Lyu = 0, where Ly is as in 1.4. Although we write our results for the equation
u; +(—Ap)°u = f, the arguments in the proofs of Theorem 1.1 and Theorem 3.6 can
be adapted to the equations u; + Lxu = f with measurable, asymmetric, uniformly
elliptic coefficients easily. The only difference is that a dependence on the ellipticity
coefficients will appear in the constants. But the question of what assumption is needed
on the kernel to get higher Holder regularity is subtle. We refer to [11,25,40] for a
study of this issue.

The equation u; — A,u = f can be seen as a limit of the equation u, + (1 —
s)c(n, p)(—=Ap)°u = fass / 1. A relevant question is whether the estimates
provided here in the article are stable with respectto s as s ' 1. We have to admit that
we did not keep track of the dependence of the constants on s while writing this article,
and we wrote the article for the operator d; + (—A ,)® instead of d; + (1 — 5)(—A ).
Still, we can say a few words on the dependence of our constants on s for those
who might be interested in pursuing this question. The proofs of Theorem 1.1 and
Theorem 3.6 are combinations of local boundedness estimates in [10, Theorem 1.1]
and the Holder continuity result [7, Theorem 1.2] for the equations with zero right-
hand side, together with the comparison estimates of Lemma 3.2 and Proposition 3.4.
[7, Theorem 1.2] is stable as s ' 1 see [7, Remark 1.7], as for [10, Theorem 1.1] they
did not specify the dependence of their constants on s in their article. In Lemma 3.2
and Proposition 3.4, the dependence of the constants on s comes from the Sobolev
and Morrey inequalities. The constants in these inequalities behave like s(1 — s) with
respect to s, but it has to be mentioned that we update the constants to be greater than
one in several places. It might be the case that if one considers the operator d; + (1 —
s)(—Ap)* instead, the estimates in Lemma 3.2 and Proposition 3.4 would become
robust as s ' 1. We cannot specify the dependence of the constant in Theorem 1.2
on s specifically. The main difficulty lies in the proof of Lemma 3.7, which is proved
by contradiction.

Now we compare the main results of the article to some other works.

Local boundedness and continuity In the recent work [11], they address the issue of
local boundedness when p = 2 for a more general class of operators by a direct proof.
By avoiding the difficulty of the existence of the caloric replacement, their result does
not contain the extra assumptionr > p’, although they assumeu € L>(I; LY p_l (R™)).

We compare our boundedness result to [22]. Their result concerns more general
right-hand sides depending on the solution as well. In the limiting case of s — 1, they
reproduce the local boundedness result contained in [21] for the evolution p-Laplacian
equation. To compare the results, if we restrict their result to right-hand sides that are u-
independent, their assumption on the integrability becomes g, r > ";L;p (%).
Their analysis is done with the same integrability assumption in time and space. Our
local boundedness result, Theorem 1.1, contains this range of exponents.

In the limiting case when s goes to 1, 1.5 become 1 — % — ;—q > 0. This is in

accordance with the classical condition for boundedness of the evolution p-Laplace
equation, see, for example, Remark 1 in [38], there they have a finer assumption
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formulated in terms of the Lorentz norm of the right-hand side, and moreover, they
obtained estimates in terms of a parabolic version of Wolf potentials. It would be
interesting to obtain finer estimates beyond L” spaces, although we do not pursue
this question in this article. If we assume the same integrability in time and space,
the condition 1 — % — & > 0 reduces to f € L7 with § > %. This matches the
condition in [50].

Now we turn our attention to the nonlocal elliptic (time-independent) case. For

r = 00, the condition for boundedness and basic Holder continuity becomes
n
q>—, if sp<n, and ¢g>1, if sp=n, and g=>1, if sp=n.
sp

In the case sp < n, this is the same condition for local boundedness and continuity
contained in [8,35]. When sp > n and ¢ > 1, the boundedness and Holder continuity
for the time-independent equation is automatic using Morrey’s inequality. The ques-
tion of whether the solutions are locally bounded under the equality case of (1.5) is
subtle. On the one hand, if r = oo even in the time-independent (elliptic) setting one
requires the strict inequality g > % to obtain boundedness; on the other hand, local
boundedness is obtained in the case r = 1 and ¢ = oo in [34], see also [10].

There are actually local boundedness and Holder continuity results available for the
equations with zero right-hand side if p < 2. One could try to prove local boundedness
and basic Holder regularity of the solutions for the solutions of the equations with
right-hand side in the singular case p < 2 as well. We have to warn the reader that
some of the arguments in this article do not carry over to the singular case as they are
written here. We use the condition p > 2 extensively, in particular in the Pointwise
inequalities (2.1) and (2.3). We feel that it is better if we leave the study of the singular
case to another work. We also have to mention that if one is only interested in local
boundedness estimates, doing a nonperturbative argument is more suitable, as one can
also deal with sub- and supersolutions.

Holder continuity exponent: In the case r = oo, the critical Holder continuity
exponent

—_n) — 1—1_-
min {@, r(qu n) Pq } = min ®, Sp—— r spPq , (16)
g(r(p == (p—2) o122

reduces to min {®, %( 1-— ﬁ)} which matches the results in [6]. Although the

results reported in [6] require a strict inequality ¢ < min {©, %(1 — %)}, an
inspection of the proofs reveals that the strict inequality is only needed when the
minimum corresponds to ®. The assumptions needed for their proof are actually
Iff (1 — %) and o < O. Through a finer estimate in [25], they have addressed
this issue further and proved that given o < O, if the right-hand side f belongs to the
Marcinkiewicz space Lﬁ’m(Q) then the solution is C; .(2).

Let us also compare our results to the local p-parabolic equation studied in [47]

where precise Holder continuity exponents are obtained. If we send s to 1, (1.6)

o=
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becomes

{ r(pqg —n) — pq }
min { 1 ,

Tq(r(p—1—(p=2)

which is in accordance with the result in [47].

In [29], explicit Holder continuity exponents for the more general case of double
phase nonlocal diffusion operators were obtained. The ideas explored there are similar
to the ones in [7], but their result allows for a bounded right-hand side instead of just
zero. Their result implies the Holder continuity exponent that we get in the case of
f € L%, although with a slightly different estimate of the Holder constants. Let us
also mention that in the recent work [11] the conclusions of Theorem 1.2 have been
obtained when p = 2, for a more general class of operators and kernels. Although
[11, Theorem 1.2] does not contain the extra assumption r > p’, their argument is
similar to our proof of Theorem 1.2 and the same difficulty regarding the existence
of the (s, p)-caloric replacement is present in their proof. This difficulty has not been
addressed properly in their article. In the assumptions [11, (A.1)] for their existence
theorem, the regularity assumption &; € L2((0, T); WS2(Q2))* is present. We are not
able to verify this assumption when £ is a solution of

&+ (—A)'E=f,

for f € L9"" such that ﬁ + % < lasitisclaimed by [11, Remark 6]. See Remark 2.13
for a possible strategy for resolving this issue.

Let us close this section with the question of how much regularity one should expect
if the solution has a lower integrability of the tail in time. Namely given a weak solution
u of the equation

Us + (—Ap)su = 0,

such that u € Ll(pr_1 (R™)) how much Holder regularity does the solution have.
Let us first mention that an example in [34, Example 5.2] shows that the assumption
ue LP! (pr_l (R™)) does not ensure the Holder regularity of the solution. On the
other hand, it is proved in [34] and [10] that if [ > p — 1 then the solution is Holder
continuous, and the general strategy in these works is to treat the following nonlocal

term
u(y, r)|P~1
I N C
R\ Bg(xg) 1X0 — y["1*P

!
which appears in the Caccioppoli inequalities, as aright-hand side in L »=T (I; L°°(B)).
See [10, Section 1.2] for more details. Following this general philosophy, one can

o

expect the solution to be C% and C,”~ "~ with

1 — 21

: l
o =min{sp o |
{ p—1-— » )l<p )
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Howeyver, at the moment we do not have a definite answer to how this can be shown
rigorously.

1.2. Plan of the paper

In Sect.2, we introduce some notations and preliminary lemmas. We also restate
and adapt a result on the existence of solutions to our setting.

In Sect. 3, we establish basic local Holder regularity and boundedness for local weak
solutions.

Section 4 is devoted to proving Theorem 1.2. A so-called tangential analysis is
performed to get specific Holder continuity exponents in terms of ¢, , s and p.

The article is also accompanied by two appendices. In the first one, Appendix A, we
work out the details for a modified version of [7, Theorem 1.1]. The aim is to bound
the Holder seminorm of the solution in terms of the tail quantity.

In Appendix B, we justify using certain test functions in the weak formulation of

(1.1).

2. Preliminaries
2.1. Notation

We define the monotone function J, : R — R by
Jp(t) = [t1P 7%t

We use the notation By (xg) for the open ball of radius R centered at xg. If the center
is the origin, we simply write Bg. We use the notation of w,, for the surface area of the
unit n-dimensional ball. For parabolic cylinders, we use the notation Q, 7(xo, ty) :=
B, (x0) x (to — T, to]. If the center is the origin, we write Q. .

We will work with the fractional Sobolev space extensively:

WPIR?) = (¥ € LYR") : [Ylypagny <00}, 0<p<1, 1=<g<oo,

where the seminorm [/ Jys.»rr) is defined as below

@) — Y1
oy = [ O ax dy,

We also need the space W44 (Q) for a subset @ C R”, defined by
WhI(Q) ==y € LYQ) : [Wlwpa <) 0<p<1, 1=g<oo,

where

[ (x) — ()|
[1/f]W,gq(Q) //slzxsz P—TE dx dy.
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In the following, we assume that 2 C R” is a bounded open set in R”. We define the
space of Sobolev functions taking boundary values g € L?p_ ! (R™) by

xPUQ, Q) =y e WHQ)NLE ' RY) 1 ¢y =gon R\ Q},

where €' is an open set such that Q € €.
We recall the definition of zail space
loc

q
LZ(R"):{ueLq (R”):/ de<+oo}, g>1landa > 0,
R

a1 =+ |x|”+"‘

which is endowed with the norm

1
ul? q
g = ([t a)
o R~ 14+ |x|"+°‘

For every xo € R", R > 0 and u € L (R"), the following quantity

1

. '

Bm%dmme)z[R“/, -—JKL——de
R

" Br(xg) X — Xo["te

plays an important role in regularity estimates for solutions to fractional problems.

Let I C Rbe an interval and let V be a separable, reflexive, Banach space endowed
with a norm ||-|y. We denote by V* its topological dual space. Suppose that v is
a mapping such that for almost every ¢t € I, we have v(t) € V. If the function
t — |Jv(?)]ly is measurable on / and 1 < p < oo, then v is an element of the Banach
space L?(1; V) if and only if

ﬁwmwm<w.

By [44, Theorem 1.5], the dual space of L”(I; V) can be characterized according
to (LP(I; V))* = L”,(I; V*). We write v € C(I; V) if the mapping t — v(¢) is
continuous with respect to the norm on V.

2.2. Pointwise inequalities

We will need the following pointwise inequality: Let p > 2, then forevery A, B € R
we have

|A = BI” < C(J,(A) — J,(B))(A — B). 2.1)

For a proof look at [7, Remark A.4], a close inspection of the proof reveals that the
constant can be taken as C = 3 - 27—, Before stating the next inequality, we recall
[8, Lemma A.2].
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Lemma 2.1. Let 1 < p < o0 and g : R — R be an increasing function, and define

G(t) = /Ot ()7 dr, 1R
Then
Tp(a —b)(g(a) — gb)) = |G(a) — Gb)|".
Lemma 2.2. For p >2and 8 > 1,

(Jpla=b) = Jp(c = D) (@ = o)y +OF = (b - D)y +0)F)

1 Bp?
—3 2L (B+p—1)P

—1 —1

‘((a—c)M—i-S) (I A e

’

2.2)

where ()}, := min {max {z, 0}, M}.

Proof. We consider three cases according to the signofa—b—c+d. Ifa—b—c+d =0
both the left-hand side and the right-hand side of (2.2) are zero. Now we verify the
inequality fora —b —c+d >0

First notice that using (2.1) with A =a —band B = ¢ — d:

320" N a—b—c+d)(Jpla—b)— Jylc—d) > la—b—c+d|,

using the fact thata — b — ¢ +d > 0, we arrive at

I Ja—b—c+d? 1

Jp(a—b)— Jpc—d
@) = e = e T Cerd T 3o

Jp(la—c) = (b—a)).
(2.3)

1
Now we use Lemma 2.1 with g(t) = ((t)}, + 8)P. Then with G = [; ¢/(7)7 dr,

p‘B +p-—1 /3+p)71
G@t) = ﬁ+—((zM+a) —5 ),

By Lemma 2.1,
Jp((@—¢)— b —d)(ga—c) — glb—d)) = |Gla— ) — Gb— ).
Hence,
hla=o = b-d)((@-of+8 - (& -y +9")

= P N a—ol 40 -y 9
SRR Y " ‘
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Using (2.3) in the above inequality concludes the proof. It only remains to verify the
casea—b—c+d < 0,now we are in the previous position and can use with (b, a, d, c)
instead of (a, b, ¢, d) to obtain

(Jp(b—a) — J,(d — c))(((b L +8f — (@a—of, + 5)5)

1 pp”
3.2l (B4+p—-Dp

Btp— prp=t |P

(b —ay, +5)T1 —(@—co)f+8 7

Jpb—a)—Jpd—c) = —(Jp(a —b)—Jy(c— d)),

(b= +8F = (@ =y + 8 = —((@ = ofy +9F = (0 - )y +0)P),

and

B+ Bt+p—1

‘((b—d)LM) pl—((a—c)jﬂta) »

B+p—1 B+p—1
u

(@=o)f+8) 7 —((b-—d)j+8 7

we obtain (2.2) O

The following pointwise inequality is a direct consequence of the convexity of the
mapping ¢ — |t]* fora > 1.

la® — b%| > a min{a, b}* Ya — b|, for a,b > 0. (2.4)
2.3. Functional inequalities

We need the following basic inequalities for the tail.

Lemma23. Letax > 0,1 < g < 0o, and u, v € LI@®R™) such that u = v on
R"™\ Br(x0). Then for any o < 1,

1
Taily 4 (v; X0, 0 R) < 2Taily ¢ (u; X0, oR) +20 ¢ <][ lu — v|? dx)q.

Br(x0)
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Proof.

Taily, 4 (v; x0, 0 R)?

U q
S A s
R™\ B, r(xg) [X — X0
:(OR)Ol(/ Lq_i_dx—i-/ Lq_‘rdx)
R\ Bg(xo) 1X — Xo[" T Br(xo)\Bor(xg) [X — Xo["™¥

o 1] [v|4
= (O‘R) —n—l-ot dx + —n—Hx dx
R\ Bg(xo) 1¥ — Xol Br(x0)\Bsr(x0) X — X0
ul? ul? + \u —vl4
S(GR)"‘(/ _ . dx+2‘1_1/ Jul® + Ju = vt +| x)
R\ Bg(xo) 1X — Xo[" T Br(x0)\Bor(xp) X — Xo["™¢

1 o ]9 lu — |4
<297 Y(oR) ———dx + ———dx
R\ By r(xg) [X — Xo["™¢ Br(xo)\Byg(xg) 1* — Xo|"™*

< 2‘7_1Taila,q(u; x0, 0 R)? + 2‘7_10_”][ lu —v|? dx.
Bg(x0)

For a proof of the following result, see [6, Lemma 2.3].
Lemma 2.4. Leta > 0,0 < g < o0o. Suppose that B, (xg) C Bg(x1). Then for every

u € LL®R™, we have

. A\ R nto -~
Tallq,a(u; X0, r)qS<E) (m) Tallq,a(u; x1, R +r n”””%‘I(BR(xl))'

If in addition u € L]} .(R") for some g < m < oo, then

o R n+a
Tail, o (u; x0,7)? < (L) (—) Tail, o (u; x1, R)?

R R — |x — xo|
(nw)m — g\ "5t _qn
(L) T :
am +ng lwll Lm Bk (x1))

where wy, is the measure of the n-dimensional open ball of radius 1.
We also recall the following Sobolev- and Morrey-type inequalities:

Proposition 2.5. Suppose 1 < p <ococand0 < s < 1. Let Q C R" be an open and
bounded set. Define p} as

* n
pri= P (2.5)
n—sp

For every u € WP (R") vanishing almost everywhere in R"\ 2, we have

P
L7 (Q)

P .
Il iy < Caln, s, pIQL™ ' Wdfyspny» if sp>n 2.7)

lull? o < Ci(uos, p) Wllyspnye if sp<n 2.6)
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» .
]l s ) = C3(n. 5. P DIQUT [Uiyspgny,  forevery 1 <1 < oo, if sp=n.
(2.8)
In particular, the following Poincaré inequality holds true
M
lull}pqy < C 1917 [ulwsr@ny, 2.9)

for some C = C(n, s, p). Furthermore, in the supercritical range of exponents func-
tions in WP (R™) are Holder continuous and the following inequality holds true:

[”]CS*%(Q) < C4(n,s, p)ulwsrwry, if sp>n. (2.10)

Remark 2.6. The above Sobolev-type inequalities are also valid for functions u €
X7 (22, @), where Q is a bounded open set and €' is an open set such that @ € €.
This can be seen using the fact that there is an extension domain containing €2 and
included in &'

We will often use the following special application of Holder’s inequality

1_1
lwCx, Ol Larri@xsy < NI 2 |ule, D)l L2 @)llL o
1 _1 1 _ 1
< |Qu alJ|n 2 ull o @xr, (2.11)
where g1 < g2, r1 < ry. The following interpolation inequality (see, e.g., [5]) will be

useful.

Lemma 2.7. Ifw is contained in L9 (2 x J) N L92"2(Q2 x J), then w is contained
in L97(Q2 x J), where

A I -2

1 A 1=
, —=—+ , 0O<Aa<.
r 19 9 q 92

N o=

Moreover,

A 1-2
||w”L¢?f(Q><j) = ||w||1/11,"1 (QxJ) ||w||qu,r2(g2Xj)-
The following three lemmas will be needed in the proof of our local boundedness
result (Proposition 3.4).

Lemma 2.8. Let sp # n and assume that w is in LP((TO — R, Ty); WX’P(R")) N
LP%°(QRg rsr (x0, To)) and w(x, t) is zero for all x € R™"\ Br(xo), for almost every
t € (To — R°P, Ty). Then w is in qu/’pr,(QR’Rsp (x0, To)) as long as q, r satisfy

1
1———"" >

r spq
Moreover,

p

0N 00 (0 s (x000)
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To

sp(1—1—) p p
< CR Pq (Hw”LP'OO(QR,RSP(XO»TO)) + /TO_RSP[U)]WS,p(Rn) d[)»

where C depends on n, s and p. In particular, in the case of + W = 1 we have

lwi? ., .
LP4' 7 (Q o (50.T0)
To
=C s, p) <”w||€Pv°°<QR,Rsp<xo,To>> +/T ol df)'
-
~ !

Proof. Consider apair of exponents 7 = (l -(1—-4 - qu)) I = l ,andg = ¢
= 1. Using Holder’s inequality (2.11), we obtain

1
such that =7 + sp~, =

P < Rsp TTF
Wl Ok pr G0, To) = ( ) IIwIIqu PP (Qg psp (50.T0))

_ psp(l— TS )
=R P “w”qu pr(QR rp (x0,70))"

Now we split the proof into two cases depending on whether sp < n or not
Case sp < n: We use Lemma 2.7 with the choice

1 A 1 A 1—A
—=—- ad —=—+—, O=<A=D.
pr p pq Ps p

This yields
”w” q,pi =< ”w”}L * ”w” oo
LPa-Pr(Qp gsp (x0,70)) LP3P(Qp gsp (x0,T0)) LP-(Qp gsp(x0,70))"

;, and using Sobolev’s inequality 2.6, we

1
f_wq

The above relations hold for A =
arrive at
p(1=2)

I, llwl|
LP-°(Qp gsp (x0,T0))

”L”" PF(Qp grsp (x0,T0)) — = llw LPs P(Qp. gsp (x0,T0))

(1-3) " '
p(l— P
< C”w”LP’OO(QR’RIP (x0,T0)) (_/;‘O_Rs'p [‘UJ]WS,I’(Rn) dt) .

By using Young’s inequality, we get

L”" PE(Q g gsp (x0,To))

p(1=3) fo
p
< ClIWIZp(Qy gop o, 7o) < /TO_ o P TWr ) dt)

To
p p
=€ <(1 B k)”w”L”‘w(QR,RSP(Xo,To)) + )L/T R?P[W]W&p(Rn) dt)
O— R

To
4
< Clus, p) (nwu”m(gk oty + f lh dr).

A



27 Page 16 of 76 A. TAVAKOLI J. Evol. Equ.

Case sp > n: In this case, we use the following interpolation between Holder and L?
spaces:

1- . o
||w||L°°(BR(x())) =< C”w”{p(BR(XO))[w]caé(BR(xo))’ with X = o+ n-
p

See [9, Lemma 2.2] for a proof. In light of the Morrey-type inequality (2.10), for
almost every ¢ € (Ty — R*P, Ty) we arrive at

-
w(e, )] Lo < Cllw(s,t o w(e, t »
lw(e, HllLeBrxg) =< Cllw( )”LP(BR(XO))[ (. D] = (Brtio)

n

S C”u(‘, t)”Lp(SgR(XO))[w('v t)];{[;sp(Rn)

(2.12)
Now we interpolate once more between L” and L* to obtain

1 ]

lwCes DNl Lri By xgy = llw(e, t)”LI’(BR(xO))”w( t)HLoo(BR(xO))
1

1(1 n
by (212) = C”w(‘ t)”LP(BR(xo))”w(' t)”LP(BR(xo))[w(' t)]ws P (RM)
< Cllw(., I)HLPW

(Brron W+ ”ng&"

We raise both sides to the power pr and integrate with respect to ¢. Recalling that
1 — e obtain
r spq

To

pr . AP . AP
L7 ot = € frow 1w DL (B gy 1 (> Dl oy dE

<cP o osup Jlw, n)PYLD
TR =Ty LP(Bg (x0))

To
X / ['LU(', t)]ﬁ/s,p(]Rn) dt-
To— RSP

Taking the 7 root and applying Young’s inequality, we obtain the desired estimate



J. Evol. Equ. A perturbative approach to Holder Page 17 of 76 27

~i—

F— To
p (5 =1 P
10N 1070 gop 0,70 = € TN L0200 g 0,700 TO_RSp[w]WS-P(R”) dr

(W] @y dt) :

To

P
<Cn,s, p) (”w”LPW(QR.Rsp(xo’To)) +/r R
-

Lemma 2.9. Letsp =n, g > 1, andr > 1 such that

I 1
l———->0.

roq

Assume that w € Ll’p(QR,Rxp (x0, T0)) N LP>°(Q g, rsr (x0, Tp)) for some | such that

11\
=P (1 . _> .
r’ roq
Then w belongs to LP4"P" (Qg. gsv (xo, To)) and

P
| ”LP‘?’J’*’(QR,W(xo,To»— (||w||L"°°<QRRw<xo To>>+R ”w”leP<QR,Rw<xo,To))>'

Proof. We use Lemma 2.7 with the choice

—=—and —=—-+——, 0=<A<1).
p

Due to the assumption % = %(1 — % — é), the above equalities hold for A = r—l/ Hence,
we get

11 Lo (0 o Gi0n00) = W17 (0 g 20,7 NN L7220 o 30700

Therefore, recalling that A = %

R [lw])?
r ||w||qu pr’ (QR Rsp(X() TO))

Ll"l,v/”/(QR’Rsp(XO,TO))

B 1—A
—np p p

= (R 1 ”w”LI»P(QR,Rxp(xo.To))) (”w||LP’OO(QR*RSP(XO’TO)>) ‘

Using Young’s inequality for the right-hand side, we can conclude

p
v 0 g o0 oy = (”w”LPO"(QR w0y TR T ”“"'W(QR,Rsp<xo,To))>'

O
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2.4. Weak solutions

Definition 2.10. For any 7y, 1; € R with 7y < #;, we define [ = (¢, #1]. Let
f e (LPa xyPec, ) LR 1200))
for any open K such that C € Q. We say that u is a local weak solution to the equation
ou+ (=Ap)'u = f, inQx I,

if for any closed interval J = [Ty, T1] C I, the function « is such that

we LP(J; WoP@)nLP='(J: LY, (R™) N C(J; L} (),

oc loc

and it satisfies

—//u(x,t)aﬂp(x,t) dx dt—l—///
JJQ J xR

Jpu(x,t) —u(y, 1) (px, 1) — @y, 1))
|x — y|rtsp

dx dy dr

= f u(x, To) p(x, Tp) dx — / u(x, Ty) o(x, T1) dx + (f, @),
Q Q
(2.13)
for any ¢ € LP(J; WSP(Q)) N C'(J; L?(Q)) which has spatial support compactly

contained in €2. In equation (2.13), the symbol (-, ) stands for the duality pairing
between W97 (Q2) and its dual space (W*P(£2))*.

Now, we define the notion of a weak solution to an initial boundary value problem.

Definition 2.11. Let I = [79,11], p > 2,0 < s < 1,and Q € €/, where Q' is a
bounded open set in R”. Assume that the functions ug, f and g satisfy
ug € L*(9),
fe(Lrasxyr@, e n Lo L @))’
g € LP(I; WP (@) nLP= (15 LT, (RY).

We say that u is a weak solution of the initial boundary value problem

u+ (=Ap)'u=f, inQxI,
u=g, on(R"\Q)xI, (2.14)
u(e, 10) = ug, on £2,

if the following properties are verified:
o ue LP(I; WeP(Q)) N LP=1(1; LYy (R™) N C(I; LA(Q));
o u € Xg()(2, ') for almost every t € I, where (g(1))(x) = g(x, 1);
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o limy ¢ [[u(e, 1) — uoll2q) = 0;
e forevery J = [Tp, T1] C I andevery ¢ € LP(J; Xg’p(SZ, QNHNCLJ; LA (Q))

—//u(x,t)at(p(x,t) dx dt

JJQ

+/// Jp(u(x, 1) —u(y, 1) (p(x, 1) — @(y, 1)) dx dy dr
J xR

r = yprr

= / u(x, To) ¢(x, Tp) dx — / u(x, Ty) (x, Ty) dx
Q Q
+(f. 9).

Let us mention that given a local weak solution in a cylinder I x €', where I =
(to, 1] and €' is a bounded, open subset of R”, by considering a smaller cylinder
J x Q such that @ € Q' and J is a closed interval compactly contained in / we end
up a weak solution in the smaller cylinder J x .

Throughout the article, we work with right-hand sides f € L?'(I; LP?)'(2)), where
py is the Sobolev exponent and we consider it to be infinity if sp > n. An application
of Holder’s inequality together with the Sobolev—Morrey inequalities ensures that
fefelLl; Xy (Q, )" C (LPU; XyP (2, 2) N L®(I; L2(Q)))" with
the duality pairing

(f,¢>=// f(x,He(x,t) dx dr.
1Ja

Theorem 2.12. Let p > 2, let I = (Ty, T1] and suppose that g satisfies
g € LP(I; WSP(Q)) N LP(I; LY, (R™) N C(I; LA(Q)),
dhg e LV (I; (X3P (@, 2)%),

Jim (- 1) = goll 2@y =0, for some go € L*(<).

Suppose also that
fe LI (Xp" (@, 2)").

Then for any initial datum gy € L*(2), there exists a unique weak solution u to
problem

ur+ (=Ap)u=f in Qx1
u=g in (R"\ Q) x1I (2.15)
u(x, To) = g(x, To) in Q.

Proof. In [7, Theorem A.3], the same result is proved with a stronger condition g; €
Lp/(I ; WS P(Q)*). The stronger condition is not needed in the proof. This condition
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can be replaced with g; € LY (I, Xg’p(SZ; Q')*) in all of the steps in the proof, except
that the construction gives us a C(/; LZ(Q)) solution. There, the stronger assumption
is used only to show that the boundary condition is in C(/; L?(2)), which we assume
here. O

Remark 2.13. The condition d,g € L” (I; (Xy (2, 2))*) is too strong. This con-
dition forces us to assume r > p’, g > (p¥) andu € LP(I; pr_l(R”)) in Propo-
sition 3.1 and hence in all our results. A more natural condition would be to assume
dhg e (LP(I; X577 (R, @) N L®(I; L*(R)))". We believe it is possible to overcome
this difficulty by pursuing an approximation procedure in the spirit of [35, Theorem
1.1 and Lemma 4.1].

3. Basic Holder regularity and stability

Throughout the rest of the article, we assume 0 < s < l and 2 < p < oo.

Here, we argue that the norm of the (s, p)-caloric replacement of u is close to u if
f is small enough. By the (s, p)-caloric replacement of u in a cylinder B, (xo) x 1,
we mean the solution to the following

v+ (=Ap)'v=0 in By(xp) x I
vV=1u in (R"\ By(x0)) x I 3.1
v(x, 79) = u(x, 9) in B,(xp).

Here 7 is the initial point of the interval /. First we show the existence of a (s, p)-
caloric replacement using Theorem 2.12

Proposition 3.1. Let u be a local weak solution of u; + (—Ap)°u = f in the cylinder

By x J, for some interval J = (t1, ] with f € Lf’o’cr (By x J) such thatr > p/,

g>(p)) if sp<n, g>1if sp>n, and q>1 if sp=n.

In addition, we assume that u € LP(J; Lf;l (R™)). Then for any 0 < p < o, and
closedinterval I € J, the (s, p)-caloric replacement of u in B, (xo) x I (weak solution
to (3.1)) exists.

Proof. We shall check the conditions in Theorem 2.12. If they are satisfied, there exists
a unique weak solution v € L?(I, WP (B,)) N LP(I; Lf,;l(R")) NnC; Lz(Bp))
to the problem (3.1). The only condition on u that is not immediate from the fact that
u is weak solution is d;u € Ll’/(I; XS’p(Bp , B5)*). We have to show that for every
function ¢ € L”(I; Xy”(B, , By))

| [1 (. ) dx de| = € /] 19 s, (32)

Here we only write the proof for the case sp < n, the case of sp > n is similar, except
that one has to use the critical case of Sobolev inequality and the Morrey inequality
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instead of using the Sobolev inequality. We shall verify (3.2) for test functions be-
longing to the dense subspace, ¥ € LP([; X(S)’p(Bp ,Bs)) N Cé I LZ(B)). We use
the equation to do so. We have

/(ut,wdxdr:/f W dx dr
1 1JB,

:_/// Tpux, )—uy, D)W H=Y . 0) dy dr
1 xR

=yl

+// Flx, )Y (x, 1) dx dr

1JB,

:_/// Jpu(x, )—u(y, ) (x, )=y (y, 1)) dx dy dr
1JJB,xB,

=y

_ 2// / Tplux, ) —u@y, DY, 0 dy dr
f s, Js, |x _ y|n+sp

+f fx, O (x, t) dx dr.
1JB,

By Holder’s inequality, we have

/// [Jpu(x, ) —uly, ))(W(x, 1) — ¥ (y, 1)l dx dy dr
1JJB,xB,

|x — y|ntsp
5/ I/f(x,t)—lﬂ(y,t)‘
1

e — ylo ™
—1
< (1] ooy W 1 Lr W (B, ))- (3.3)

Jpu(x, ) —u(y, 1))
y|ﬁ+s(p—l)

LP (By X By) LP(By X By)

lx —

For the other nonlocal term, we note that for every x € B, and y € R" \ B, we have
ly| < =%—|x — y|. Hence,

<:5
/ [Jp(u(x, 1) —u(y, )| d
R\ B, |x — y|ntsp
o \"P e, P~ + [uy, P!
= <—> C(p) n+sp dy
o—p R™\ By |yl

< Co.p.s, pom) (e, DI+ e, 0117 ).

sp

// /' [ Jp(u(x, 1) —u(y, )y (x,1)] dy dx dr
1JB, Jr\B, lx — ylrtsp

<c@ oo ([ [ e ol o axar

Therefore,

p—1
+f[||w<-,r)||L1(Bp)||u(-,r>||L§,p,1(Rn) dr).

By Holder’s inequality, we have
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// (e, D)lluCr, )P~ dx dr</||w< Olle s, luCe, DIl )

< ”w”LP(l;LP(Bp)) ”u”LP(I;LI’(BP))' (34)

For the other term,

p—1
dr < (KX A0 )] LACH t)”LP(I LI @y’

(3.5)

/nw( DllLis)luC Ol”

Lp 1 (]R"

Since f € LY (I: L(p»:)/(Bp)), by Holder’s inequality and Sobolev’s inequality we
obtain

/I /B R /1 L1t 19t

< [ 1y 0 iy

= WA oty g, e 1¥ lLe s wer )
(3.6)

Therefore, combining with (3.3), (3.4), and (3.5) we obtain

[ vy at| = coposponw P Nsawern .
1

Lemma 3.2. Assume that f € quocr(QU,gsp (x0, To)) withr > p/,

g>(py) if sp<n, ¢g>1if sp>n, and q>1 if sp=n.

Let u be a local weak solution of d;u + (—Ap)°u = f in Qg v (x0, To), such that
u e Ll’z)c((To —o’?, Tol; pr_l (R™)). Let p < o and consider v to be the (s, p)-caloric
replacement of u in Q, psr (x0, To). Then we have

ju—vl? dx dr < Cof 1 1 ario. o (3.7)
][Qp o (x0.T0) (Q,,ps p (x0,T0))
and
£+ =
. =
e = ””Lq’*’(Qp,psp(xo,To)) = Co> S Lar o, o (x0T (3.8)
with & = spp'(1 — - — %) and C = C(n,s, p), in the case sp # n. In the case

sp = n, we can take & = spp’ (1 — ; — 5), with C = C(n, s, p, q) also depending
ongq.
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Proof. Let J = [Ty — p°P, To], throughout the proof, we drop the dependence
of the balls on the center and write B, instead of B,(xo), and Q, ,s» instead of
Qp.psp (x0, To)-

By subtracting the weak formulation of the equations (2.13) for u and v with the
same test function ¢(x, t) € LP(J; Xg’p(Bp, By))NCl(J; Lz(Bp)), we get

—// (u(x, 1) —v(x,l))iw(x,t) dx dr
JJB, at

+// / [Jp(ux, ) —u(y,0) = Jp(v(x, 1) —v(y. )] (@(x, 1) — @(y, 1))
J n n

b =yl

dx dy dr
= /B ((u(x, To — p°F) —v(x, To — p*P))e(x, Ty — p*P) dx
— | ((u(x, To) — v(x, To)p(x, To) dx

B,
+// fx,He(x,t) dx dr.
JJB,

Now we take ¢ := u — v, which belongs to L?(J; X" (B,; B,)), but it may not
be in C'(J; LZ(BP)). We justify taking this as a test function in Appendix B. By
Proposition 6.1 with F(t) = ¢, we get
//f [Jp(u@x, —v(x, D)= Jp (u(y, )—v (. D) ][(uCx, H—u(y, ) — (v, H—v(y, )]
J n xRN

|)C _ y|n+sp

dx dy dt
:// flx,0)(m(x, 1) —v(x, 1)) dx dr
JJB,
1
- 5/3 ((u(x, To) — v(x, To)* — ((u(x, Ty — p*P) — v(x, Ty — p*))* dx
=/f FO, O, 1) — v(x, 1) dx d,_lf ((u(x, To) — v(x, Tp))* dx
78, 2 /B,

5// [f e, ) ulx, 1) —v(x, )] dx dt, 3.9)
JJB,

where in the third line we have used u(x, Ty — p°P) = v(x, Tp — p*P). The left-hand
side is essentially the W* ” seminorm. By the pointwise inequality (2.1),

/’[u — 0lsp ey A

_ / // lu(x, 1) —v(x, 1) = @y, n) —v(y,D)|” dx dy dr
J HXRH

‘X _ yIn-HP
o]
J " xR"

. [Jp(ux,t) —u(y,0) = Jp(v@x, ) — vy, ) [utx, ) —uly, 1) — (v(x, 1) — v(y, )]

|x _ y|n+sp

dx dy dz.

Therefore, by (3.9) and Holder’s inequality
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J 1=t 0t < ) | /B 1 D@, 1) — v, )] de dr

< C(P)/ £ Co O llLas) I —v)(o DllLas,) di
7
= CDIISflLar o, spllu = vliLar g, - (3.10)

Now we consider three cases: sp < n, sp > n and sp = n.
Case sp < n. By Holder’s inequality (2.11) and Sobolev’s inequality (2.6), we have

— ?77 —
o= ol < 1Bl ([ =i 0 )

1
< COns. BT ([ 1= 0l o)
J

1
P

L 11
< Cln.s. BT 7| 1]7 ﬂ(f[u—v]ﬁvs,p(w) ar)
J
G.11)

Combined with (3.10), this yields

p—1

4 L,*% 1_1
(f 1=y &) 7 = CUBNT V7R s,

1 _n=sp 1_1
= C|Bplo m [J17 7\ fllLerco, )
(3.12)

where C = C(n, s, p). By the Poincaré inequality,
o /(n sp) p71 7p/71 ’
f f I/i —_ U|p dx dt < C|B |4/ P + |J| T P ”f”ZI’(Q,J pfp)'
B, :

Also from (3.12) and (3.11), we get

]71

lu —vllzaro, o) = Cn,s, p)IB, IV "||f||Lqr(Q )"

Case sp > n. In this case, we use Morrey’s inequality (2.7) and Holder’s inequality
and obtain

1
1 ¥
lu = vlizarro, oy < CIBpl¥ (f] lu = vliZoes,) dt)
- ) ;
< C|B,|7 |J|" ,,(/J e = vllzoop,) dl)

1
1sp=n 11 =
< C|B |7t W 1) (/ [ = V135 @y dt)’ .
J
(3.13)
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Together with (3.10), this implies

p—1

> 1 _n=sp 1_1
([J [ = 0y A1) 7= CLBoI 7 T 17T I f e g, e (Bi14)

By the Poincaré inequality,

Pl (n=sp) »_ P_p /

ul + g

f]fB lu —v|? dx dr < C|B,|v P |J| 7P ”f”Z‘i”"(QprsP)'
0

Combining (3.13) and (3.14), we get

P pnsse o p 2
lu =vllgarg, o) = Cl,s, p)Bple = v |J[7» ||f||Lq~f(Qp,pr)'

Case sp = n. In this case, we use the critical case of Sobolev’s inequality (2.8) for
[ = ¢’ and obtain

lu=2ll}y 5 ) = COs. P, @IB, 17l = 01y

Hence, using Holder’s inequality, we have for any r > p’
lu = vllario, ) = / e = v )
il
< C|B,|7 /[u VT dt)
1

< CIBIII ([ 1= oy )"
J

The above constant C = C(n, s, p, g) does blow up as g goes to 1. In a similar way
as in the prior cases, we get forg > 1 and r > p’

A ]
| o < cosp s P15 5 g, )
7B,

and

1
L L
it = vz, oy < COLS, P @IBA T I ar g, -

Using that | B,| ~ p" and |I| ~ p*P, we can conclude that

ju— vl dx dt < CoF I flgrig
‘pr p”’(x() To) (Qp,p p)

and

1
— o Etn o
”I/l U”Lq s (Qp,p*"l’) S C,O ”f”Lq,r(Qp_psp).
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Here in the case of sp # n,

np’ n—s spp’ spp’
c‘E:i—p/Tp—i-sp—n—i- pp_ PP —sp

r/

,(n n n—sp Sp Sp
= ST Tt
q p p r p

Remark 3.3. In Lemma 3.2, we assume the same conditions as in Proposition 3.1.
These assumptions are used in the proof not only to ensure the existence of the (s, p)-
caloric replacement but also to derive (3.11) and (3.13). As mentioned in Remark 2.13,
one can expect the existence of the (s, p)-caloric replacement under a more general
condition for the right-hand side. If such an existence theorem is available, one can
expect the estimates in Lemma 3.2 to hold true for more general right-hand sides. In
the proof of Lemma 3.2, we only used the diffusion term in (3.9), but the stronger
estimate

sup ”(u - U)('s t)”iz(Bp(xo)) + f,[(u - U)(-, t)]IV)VS,p(]Rn) dr

teJ

SC// | f(x,t)(u —v)(x, )| dx dt,
J J Bp(x0)

holds true. It might be possible to utilize an interpolation argument similar to Lemma 2.8
to replace the equations (3.11) and (3.13) and relax the assumptions on g and r. See
also [12, Lemma 2.2]. However, the nonhomogeneity of the equation is for sure a
challenge in pursuing this line of reasoning.

Next, we perform a Moser iteration to get an L°° bound for the difference between
the solution and its (s, p)-caloric replacement.

Proposition 3.4. Let u be a local weak solution of

du+ (—Ap'u=f, in Qgow(xo, To),
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with f € LI (Qg. o5 (x0, To)) such that
1 n

—— <1
r spq

In addition, assume that u € Lﬁc((TO —o*P, Ty, prfl(R”)), r>p,

qg>1if sp#n, and q>1 if sp=n.
Let v be the (s, p)-caloric replacement of u in Qg grsr(xo, Tp), with R < o. Then in
the case of sp # n, we have

(p=1¥

1@t = )T 2200 ggsp (ro. 7o)y < C i, 5, p)B 012 (1 + RS’”||fIIqu(QR.Rsp(xo,To)))’

—1_1_ n
wherev = 1 F T spg and

spv
g =1+22
n
In the case of sp = n, given any [ such that %(1 - } - %)_1 <l < oo we get

(p—Dv

=) L0 o Ton SC 1 5. P2 0, DD T (14 RPN f (0 g 0.1 )

—_»Hh_1_1_p —1-_1_1
where 9 = 2 F T g lr/andv—l F T

Proof. Throughout the proof, we write Qg gs» instead of Qg gs.»(xg, To) and Bpg
instead of Bg(xp). We also define the interval J to be J := (Typ — R°?, Tp]. First, we
verify that our assumptions ensure that the (s, p)-caloric replacement of u exists. If
sp > n, we have explicitly assumed what is needed to use Proposition 3.1. If sp < n,
we have to verify that g > (p})’. This follows from the assumption % + L <1

spq
Indeed
n 1
— =q (1 - —) =q,
sp r

*

and it is straightforward to verify that % > (p})'. This shows that v, the (s, p)-caloric
replacement of u exist. Let us also mention that the assumptions in Lemma 3.2 are the
same as in Proposition 3.1, and we can use this lemma. Now, we test the equations
with powers of u — v and perform a Moser iteration. Using Proposition 6.1 with

F(t) = (min {t*, M} + §)F — &P,
and
8 = max {1, R fllar (o pom | (3.15)

we get

sup [ Flu—v) dx—l—/// Jpu(x, 1) —u(y, 1)) — Jp(v(x, 1) —v(y, 1))
Br J nxR"

red |x — y|r+sp
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X (F(u(x, 1) — v(x, 1)) — F(u(y, 1) — v(y, 1)) dx dy dt
< / f 1 Ce DI F (e 1) — v(x, 1)
J JBg
< I o Breny 10 = )37 + 8PNl gt (g - (3.16)

In the last line, we have used Holder’s inequality. Here F () = fé F(t) dris

0 if +<0,
B+1 .
Fa) =1 g+ = e —iof it 0=r=M,
ﬁ(MJrg)ﬁH_%T_,aﬂJr(;_M)(MJrs)ﬁ if 1> M.

Notice that by Young’s inequality, for > 0

C+O B et
28+ B "o

In particular, for0 <t < M

E+OP 2B+ (O

FOZ56 D v T 2B+ ’
and fort > M
! pri_ S B
m(M+5) ) — 18P + (t — M)(M + )
1 +1 8!
= m(z\ua)ﬁ rreee M5P + (1 — M)((M +6)° —87) = F(M)
S MAH s
- 2(B4+1)
Hence,
+ B+1
F(t) > U 27 gp1, (3.17)

2B+ 1)

Using Lemma 2.2 for the second term in the left-hand side of (3.16) and (3.17) in the
first term, we obtain

——sup | ((u—v)f, + 8! dx
2B+ 1) ey JBy M

1 Bp? / [ n ﬁ+1)li|p
+ (w—=v)y +8) 7 dr
3.2 L (B4+p—1P ), M W (&)

<sup [ F(u—v)dx+ 28! By
teJ JBg

+/ /f Jpu(x, 1) —u(y, 1) = Jp(wx, 1) —v(y. 1))
J nxR"

|x — y|+sp




J. Evol. Equ. A perturbative approach to Holder Page 29 of 76 27

X (F(ux,1) = v(x, 1)) = F(u(y.1) — v(y, 1)) dx dy dt
< W lzar s 1@ = V)3 + 8P g g sy + 2877 BRI (3.18)

B
Let w(x, 1) = ((u — v)}; +8)7. Since 8§ < (u — v)}; + 8, we see that

P
< Il g N ' 319
| B ‘6|J|1—?

Using (3.19) in (3.18), we get

R} T Fp /[ Bt ‘]" di
——|W p,00 w
24 1) TLPTBrXD T3 op=1 (B4 p —1)P W (R1)

lwl?,
Lrd ' (BrxJ
< 1 Mo Bexn W1 +28|BR|T|;I;”) (3.20)
Rl ¢ r

By (2.4), we have

Bt+p—1 B+p
Iw(X) F—w(y) 7 |P dr d
WS P (RM) n R Ix — y|n+sp y

—1\” .
> <%) minfw(o), w(y))PF Y

w(x) — wy)|?
x f/R oyt X

+p =1\,
(Y

Using this in (3.20) and since J has length R*?, we arrive at

—”w”pPOO 1 Sp lpp/[w]pxp n dt
208+ 1) Lp (QR,Rsp) 3.op-1 gr=1 [t W@

1
2(nwy)48R"
< P - ).
N o (”f”” @rpr) F R—Hsp-1)

Upon multiplying both sides by & , this implies
32P2'6p1|| Iy +8772pP | [wl} dr
B+ 1" ILreQg p) P ) Y ws e ey
o1, BT 1o
=32 LM 0y IF I8 @ o) + 2 TERTT").

(3.21)
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Since § > 1 and p > 2, for § > 1 we have

p p
||w||LP‘00(QR’RSp) + [][w]w.r,p(Rn) dt

2B 487207 [ [wl?e e dt
Bt 1" NLre Qg o) 0w ey A1

<3.2

Using this in (3.21), we get

p p
100 gy g+ 00
1 ppe I fllLar Qg pspr)
<3.2r lgp 1||w||€"q""’/(QRRsp)<%

(”f”Lq’r(QR,Rsp)
1)

1
+ 2(nwn)aR—S1’”)

< cpP Nw|?

Lrd" - (Qp psp)

+ R_SP”>, (3.22)

where C = C(n, p). Now we consider two cases depending on whether sp # n or
sp =n.

Case sp # n: Notice that since v > 0, if we take ¥ = 1 + SZ—”, the exponents
@r'"), (¥q") satisfy the condition of Lemma 2.8. Indeed,

1 n 1 n n

11— - 4+
@ry " spogy o7 | sppg  sp
1 /1 n n vn 1 n n on 0
= -\ I = — |V _—— = 0.
O \r" spqg’ sp 0 sp  sp

B
As w — §7 does vanish in Bg(xp)¢, using Lemma 2.8 for the exponents (#¢g’)" and
®Or") we get

£ p
”w - 8 p "Lﬁpq/’ﬁprl(QRqRSP)

8 To 8
<C(n,s, p) <||w —4r ”Zp,oo(QR 250) +/ [w— 5P]'s[/&l’(]R") dt)
’ Tt

0—R°P

To
< C(n,s, p) <||w||§p,w(QW> + / (W15, ) dt)
? Ti

0—R*P
I fllzar Qg gsp)

by (3.22) < Cn.s. p)B" " Jwl)? (——

Lrd" P (Qp psp)

+ R—SPV). (3.23)

B
Here we have used that w — 6 7 is nonnegative as well as the fact that [w ]ys.» rny does
not change by subtracting a constant from w. Hence, by (3.19) and (3.23) we obtain

P
w7
LPa' P (Qp gsp)

8 g no v \P
= ”w”p = (”w — 47 ”Ll’pq’,l’pr’(QR RSP) + SPRZ?pq/ ﬂl’r/)

Lﬂp‘l/vﬂl"/(QR'Rsp) -
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B n sp
-1 S oq Tor
<2r <||w =871, gy ORI )
| fllLar(Qp rsp)
p—1 pr R, RSP —spv
= CBT W g (0 o) <—5 + R )

or-lgB Ry o0

I fllzar Qg psp)
T N NEST(Qr pop). —spv
=Cp ”w”LP‘!’vW’(QR,R-VP) < 8 o )
w)” .
1 LPa-PT(Qp gsp)

1
+2P N nawy) e~

Lo Sp_  no_ Sp
Rq/ ro0q v

S Cﬁ[’—lnw”P <”f||Lq’r(QR,RSP) + R—spv + R(é—l)(spv+n)> .

Lra" P (Qp gsp) 8
(3.24)
Observe that (% — D(spv+n) = —%(spv + n) = —spv. Furthermore, recalling
the definition of § (3.15) whenever § > 1 we have
I fllLar Qg gsp) _ sy
B S— .
When § = 1, it is straightforward to verify that
”f”Lq’r(QR_RSp) < R—SPV.
s =
Inserting these into (3.24), we arrive at
D g p—1 Ny p
- < R - . 3.25
N v (0 gy = P U a0 (0 o (3.25)

Now we iterate this inequality with the following choice of exponents
Bo=1, By =0Bn=0"""
With the notation

i
Bm

/3"7
o + e
om = |1 ((u — v)M +48) ”qu’,pr’(QR,Rs’p)

= [(u — U)-’A;[ + 8||Lﬁmq/ﬂmr’(QR,Rxp)v
(3.25) reads
1 (p=bm
Oms1 < (CRTP) Ty 557" .
Iterating this yields
fma1 = (C R0 DT 0 g (3.26)

Since ¢ > 1, we have the following convergent series

iﬂ_j _ 0 _ n—}—spv’
i 9 —1

spv
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and

D n + nspv
9 = .
ZJ (9_1)2 spv2

By (3.8) in Lemma 3.2,

sp.

, Z43
@0 = ||[(u — v)M—I—(SHLq N Rsp)_C(n s, p)RSPP "vtn ”f”i‘ll’(QR Rvp)—i—cS(nwn)q Ra
1
—C,s, p)Rn-HPV(Rh 1 ||f”£‘1|'(QR oy T8 =Cln,s, PRSPV (SW +8)
< C(n,s, p)R"PVS. (3.27)

In the last line, we have used that p — 1 > 1 and § > 1. Inserting (3.27) to (3.26) and
sending m to infinity, we obtain
(p=D?
1 = v) 37 + 81l L2(Qg pop) < CO -2 RTTSPVRIPVERS
(=1
=Cy0-D*§
(p=1p
< Cv @-12 max {] Rspv ”f”Lq’r(QR RA'P)}
(p—DY

< C(}'l s, p)ﬁ -7 (1 + Répv”f”l‘q T(Qg. ij))

Since the above estimate is independent of M, we get

(p=1)9

[ = 0) "l Lo(0p gop) < Cln, 5, p)9 =17 (1 + R‘Yp”||f||qur(QR_Rsp)),

which is the desired result.
Case sp=n. Here we use the critical case of Sobolev—Morrey inequality, (2.8) with

p ot
max | — 1—;—6—1 ,q <l <oo. (3.28)
r

This applied for the second term in the left-hand side of (3.22) implies

np )3
100y oy + (€52 DRE) ™ [0~ BRI 1]
np\ ~1 8
Vg + (€ DRF) [ 1
B
= ”w”IL)p,w(QRwRS,,) + /;[w - Sp]ﬁ/:,p(Rn) dr

— p p
- ”w”LP‘OO(QR_RS[I) + /;[w]w.v,[)(Rn) dt

(&i@f:ngzz4_R—wv)

< C@n, p)BPwll? ;

Lra" P (Qp gsp)



J. Evol. Equ. A perturbative approach to Holder Page 33 of 76 27

We replace the constant C(n, s, p, ) with max {1, C(n, s, p,[)}, and multiply both
sides with it to arrive at

Hw“Lpoc(QR rP) +R Hw”Llp(QR’RSp)

(”f”L‘”(QRvap)

< Cn,s, p.DB" Hwl” 5

Lra" P (Qp psp)

+R’”’”>+C(n, 2. D8P

I fllLar (g gspr)
: p—1 p R, RSP —spv B psp
sing = 1) = COs p 0BT (101 (FEFEE 4 o) a7 )

Il fllLar s RsP
using (3.19) < C(n, 5, p, DAP " wl? ((Q’““) SR 4

Lpd' P (Qp gsp) 7

) R
<C(n,s, p, )P~ l||wHqu . (QRR‘F)R_Spv.

(3.29)

In the last line, we have used that since sp = n we have

n sp 1 1 1 1
sp—— ——=sp—n|l-—=)—spll—=)=sp|-+—-—1)=—spv.
q r q r roq

We have also used the following inequality which we have discussed in the case
sp # n:
I fllzarog gsp)
8
Now we choose ¥ = 2 — % —-1_ %. Notice that due to the choice of [, (3.28), we

q
have ¥ > 1. Then the exponents (r')" and (9q’) satisfy

< RSPV,

1 1 p

Sy gy or”

Therefore, we can apply Lemma 2.9 with the exponents (") and (9¢") to (3.29) to
arrive at

v Z? = p Sp(l—%— 1/ 7)
llw ”LP‘I 2 (Qpsp) ”w”Lpﬂq/,pW(Q ) <R @ (q")

(”w”LP (O, rsP) +RT ”w”U P(Qg,gsr) )
:RW (”U)”Lpoo(QR RY[7)+R ”w”LOOP(QR Ryp))
< C(n.s. p.DEP~ R =" |w])?

Lrd'spr' (Qp
(3.30)

We apply (3.30) with the exponents
Bo=1.  Bur1=0py=0"""
Let

om = (=t + 8 P

_ +
Lrd'-r (Qp =l —vyy + 8||Lﬁ’"q/'ﬁ””/(QR,R»‘P)'
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Then (3.30) reads

p 1 (p=Dm
Om+1 = (CRmr ?pv) "o o Pm-
By iterating the above inequality, we get
Pmi1 < (C Riny =) Zi=0? g (=D X0 107 g (3.31)

Since ¥ > 1, we have the following convergent series

o0

Zﬂ—j — L
= B —1
and
o0
Zjﬁi]_ ” 2
pord @ -1

By (3.8) in Lemma 3.2, we obtain

n oy sp
»o = “(u — v)?l_l”L‘I r Qg rp) = C(l’l S, P, q)RYP[’ ”+n||f||L‘7’(QR RP) +6R / 7
<Cn,s, p,qQ)R"P"s.
Inserting this into (3.30), and sending m to infinity, we get
+ (=12 L(L/ spv) nebsp
[ —v)yy + 8llLo(og gsp) < Cnys, p,g, Y =02 RV RMspvs
(=1 v
=C(n,s, p,q,[)9 ?-D2 RG-DI7 9T
(p l)l? 37\)
= Cn, s, p,q, o 012 RE O35 5
(=1 spv
=C(n,s,p,q,)0 - DI R@-D 1§
2=y
<Cn,s,p,q, D0 (1+ Rspv||f||L‘f"‘(QR,Rsp))-
Hence, we arrive at the desired estimate
n (p=1?
I = 0) Tl Lo p o) < €5, pg, DO O (14 RPY|| fll 107 (g on))-
]

Notice that —u is a solution to the same type of problem, and we can apply the above
proposition to —u. Since —v is the (s, p)-caloric replacement of —u, we get the same
bound on || (—u+v)T l2oo(Qg gsp): @S aresult, we getabound on the |Ju —v lLoo(0g gsr)-
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Corollary 3.5. Let u be a solution of d;u + (=Ap)’u = f in Qg s (xo, To) with
f e L (Qg.50 (x0, To)) such that

loc

1 n

In addition, assume that r > p/,

qg>1 ifsp#n, and g >1 ifsp=n.
Let v be the (s, p)-caloric replacement of u in Qg rsr (x9, Tp), with R < o.
If sp # n, then

(p=Dv

= vllLoo(g gop ro. 7o) < C 0,5, )0 -2 (14 RPVI fll Lar (0 gop (0, ToD) )

—1-1_n - spv
wherev =1 — - Spqandl‘}—l—i—n.

If sp = n, then for any [ such that 5(1 — % - ql)f1 <l < 00, we have

(p—1Hv

lu = vllLo(0g gspxo. 7)) < C 1,5, p, g, DY @17 (1+ Rspu”f||L‘1*’"(QR1Rsp(x0,T0)))a

whered =2 -1 -1 _ P gpgy—=1-1_1
r q r r q

Now we combine the local boundedness results for the equations with zero right-
hand side (see [45] and also [22]) with Proposition 3.4 to prove local boundedness for
the equation with nonzero right-hand side.

By [10, Theorem 1.1] withg = pand o = %, we have

1
”v”LOO(QR (R);p(XO»TO)) <C|1+ (f |v|2 dx dZ)P
277 QR rsp (x0,To)

B
o [T , R )\ @
+ 2 Ta]lp—l,sp(v(" t); X0, E) ’
Ti

0—R*P
2543n—2 .. . .
where f = — " and C depends on n, s and p. By Holder’s inequality, we have
1 2
p p2
][ >dxdr] < ][ lv|? dx dt
OR,rsp (x0,T0) Qg rsp (x0,To)
2 1 _B 1 i
As p > 2, we have 2 < > and -7 < > Hence, we arrive at

<=

vl g0 =€ | 1+ (f oI? dr dr
2(2)

Og. grsp (x0,To)

To R\?” %
+ <][ Tail 1 5p <v(-, 1); X0, —) ) . (3.32)
To—RP 2
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Proof of Theorem 1.1. For u, alocal weak solution of
ou—+ (—Ap)°u= f(x,1), in Qar 2ryr(x0, To),

we consider v to be the (s, p)-caloric replacement in Q g, gs» (x0, Tp),

v+ (=Ap)°v=0 in Qg rsr(x0, o),
v=u in (R"\ Bg(xo)) x [To — R°”, Tp],
v(x, To — R*P) = u(x, Ty — R*P) in Bpr(xp).

As mentioned in the proof of Proposition 3.5, our assumptions ensure that we can use
Proposition 3.1 and v exists. Using (3.32), we arrive at

lullzoe(Q & (Rysp (30.T0)) = llu = vllLoo(g g (R ysp (60,70)) +llvlize(opg (B ysp (060, T0))
7:(3 77 7:(3

1
l 1 To 1
<C|1+ ( [v|” dx dt)p ’ Iailpfl,sp (v(., 1); X0, —) dr
QR,RXP (x0,70) Tn— RSP 2

+llu = vliLeo(og gsp (x0.T0))

1
§C[1+<2”_1][ u|? dx dz+2f’—1][ lu — v|P dx dt)”
Qg rsp (x0,10) O r.rsp (x0,Tp)

1
To R\? P

+ Tail ,, _ v(e, 1); X0, = dr
][;"O—RW P l,sp( (s, 1); x0 2) :|

+ llu = vl Qg psp (x0,T0))

p—1 P =1y, _ P )
- C[l i <2 ][QR &P (x0,To) el dhdr 25 e v||L°°(QR.RSp (x0,T0))

1
To R\? P

+ Tail ,_ v(e, 1); X0, — dr
Fo o Titomtor (00520, 5 ) )|

+ 1l = V1l L% (0 gop (x0, To)

1
? To R\P %
= C[l + J[ lu|P dx dt + ][ Tailp,l’sp (v(., 1); X0, f> dr
QR,R*"P(XOaTO) To— RSP 2

+llu — vl Qg psp (xo,To))]‘

S

Using Lemma 2.3 in (3.33), we arrive at

”u”Loo(Q%.(g)m)

>
< C[l + ][ [ul? dx dt |+ [ — V)L psp (0.To)
Og, gsp (x0,T0)

To R
+ (][ <2Tailp,1,5p (u(-, 1); xo, *)
To—RsP 2
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N
n_ =
25 <][ lu —v|P~! dx) dz ]
Br(xo)
»
< C[l + ][ [ul? dx de |+ l[(u = v)llLo(0g gsp (x0.T0)
Qg rsp (x0.T0)

o PTaj R\" P4 P ’
+ (fT( 2 Tallpfl,sp (“('7 1); X0, 5) dr + 277 =T lu — U||L°°(QR,RJP(X0’T0))> ]

y—RsP
7 1
P To R p H
=< C|:1 + ][ |u|P dx dt + <][ Tailp,l.ysp (u(., 1): X0, f> dt)
QR,RJ'I7 (x0,To) To— RSP 2
+ llu — U||L°°(QR.R:p(x0,T()))i|, (3.34)
where C = C(n, s, p). Finally, using Proposition 3.4 to estimate the term |u —

V|| Lo (Qg gsp)» iN (3.34) we get the desired result. Here the estimate is written in the
case sp #n

1

>
|u|? dx dt
R, 5P (x0,70)

To R\? %
+(][ Tail, ) (u(-,r>;xo,—) dr)
To—RP 2

(p=1)?

+9 00 (1+ RV flLar (g gop (x0.T0)))

”u”Lw(QE (E)Sp(xo,To)) <C|1+ (f
22 0

Theorem 3.6. Let f € Lq’r(QRl,R‘{” (z, Ty)) with

1 n
-+ —<1.
ro spq

In addition, assume that r > p’,
qg>1if sp#n, and g >1 if sp=n.
If u is a weak solution of the equation
du+ (—=Ap)'u=f in QRI’RIYI’(Z, T,
such that

u € LP(I; W™P (B, (2))) N C(I; LA(Bg, (2))) N L5 LYy ' (R™))
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mLOO(QRl’R‘IYp (Zv Tl))7

then u is locally Holder continuous in time and space. In particular, there exists a
¢ > 0, such that for o < 1, (x1,t1), (x2,12) € QgRy, @R (2, T1), there holds

s
u(xi, 1) — u(x2, )| < CM(x1 — 22 + |11 — 12| 7),

with C depending on n, s, p and o, and

(p—1v
M = [1 Fllullzy ety + 90 (L+d I f o0 porrin)

p—1
+ sup Tail 1 5p(u(-, 1); z, Rl)i|

Ti—RP<t<T
1
. —1 p—1
+ min{l, d} ||u||L°°(QRl,R.;p(z,T|)) + ||f||Lq,r(QR1,R{,,(Z,Tl)y

Proof. Take a cylinder QuRr, . orr (2, T1) C QRl,Rf"(Z’ T1) and let d := min

{R1(1 —0o), Ri(1 —a”’)ﬁ} > 0. For any point, (xo, 7o) € QoRry,(0Rr;)? (2 T1)
consider the (s, p)-caloric replacement of u in the cylinder Qg gs»(xo, Tp) with
R < min {1, d}. The choice of d implies that Qg rsr (x0, Tp) C QRl,Rip (z, t). First,
we observe that:

][ lu — i(xy, 10),p" dx dt < C(p) lu — v|P dx dt
Q,, 57 (x0,To) Q. p57 (x0,T0)

+ C(p) |t (x0,T0),p — D(xo, To),p |7 dx di
Q.57 (x0,T0)

+C(p) |U_77(xo,To),p|P dx dr
Q.57 (x0,T0)

<2C(p) lu — v|? dx dr
Q. p57 (x0,T0)

+ C(p) [V — V(xg, Tp).p |7 dx dr. (3.35)
Q,, 57 (x0,T0)

For p < g, v is Holder continuous in Q, ,s»(xg, To) by Theorem 5.1, and by the
mean value theorem, there is a point (X0, 7)) € Q. pw such that vy, ,, = v(Xo, 1o).
With the notation

M:=1+ ”U”Lw(QR,(R)sp) + sup Taﬂpfl,sp(v(‘v 1); xo, R),
To— R <t<Ty
Theorem 5.1 implies:

o
2

_ X —X L t—To\ T
)l <€) a0 (2R
_1/,2p.8 R
< CMP 1<(?)2+((E) 7)), for (x,0E€Qp (o, To)
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with C = C(n, s, p). Therefore,

f v — I_J(xOJO),p|p dx dt
Q,, 057 (x0,To)

< CMp(p—l)][ (2/’)

Q.57 (x0,To) R

< CMp(p—l)((%)% i (%)%”)

PP »
= C(E) [1 F VN0 (0 gop (0. To))

p—1
+  sup Tailp_l,xp(v(-,t);xo,R)p] , (3.36)
To—R*? <t<Tp

o
2

+ ((%)S")% dx di

where the constants C depends on n, s and p, and we have defined § := min {%, g}
Moreover, by Lemma 3.2

R\" RSP
][ |u—v|pdxdt§(—) . ][ i — v|? dx di
0, p5p (x0.Tp) 7 PP Jog ks
R n+sp V4
<C(n,s, p)(;) RENF 00 pon GrouTo)*

(3.37)

where £ is defined in Lemma 3.2. Notice that £ > 0 by our assumptions on ¢g and r.
Inserting (3.37) and (3.36) in (3.35), we arrive at

_ R n+sp /
][ lu = it ag, 7,17 dx dt < Cnys, PY(=)"PRENF N 00, o 0,700
Q,.pp (x0,To) p '
+C(n,s,p)(ﬁ)‘”’(1+llvllﬁm(g oyt sup Taﬂ,,,l_xp(u(.,z);xo,R)P)‘F1
R RRPIZ0:20D) o psp<i<T
R\ n+sp 4 P\ép r
<Cs. () RENF 1200 pop oo + €5 P () (”“”L“(QR,Rwuo.To»
—1

p
+ llu — vl . + osup Tailpo (e, 1): X0, R)”)
T L

Using Corollary 3.5, we get:

n+sp ,
— p
f |u - u(XO,TO),r|p dx dt S C(”l, S, P) (_> RE”f“Lq’r(QR,RW(x(),TO))
Q. p5r (x0,T0) P

P\oP .
+C(n,s, p) <E) [”””io"(QR,Rsp(xo,To))_" sup  Tail,_15p (s, 1); x0, R)P

To—R?<t<Ty
(p=Dhy

ppr—1
+COns, p) (900 (L4 R I fll o o)) |

with ¢ and v defined in Corollary 3.5; here, the estimate is only written in the case
sp # n for simplicity. Since Qg gs» (x0, To) C Q RiRY (z, T1), the above expression
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is less than

n+sp ,
<C@,s,p|— REN £ 11 o
<C(n,s, p) <,0> 117 (QR,.RT"(Z’TI))

P\ | »
+ C(}'l, S, P) <E> I: + ”uHLOO(QRl.RTP(Z’TI))

+ sup Tailp—l,sp(”(‘a 1); x0, R)?
To— RSP <t<Ty

(p=1)p

pyp—1
=+ ('l? ®—1)2 (1 —+ dSPV“f“Lq,r(QR]YR_;p (Z,Tl)))) ] .

Concerning the tail term, since Br(xg) C Bg,(z), using Lemma 2.4 we have
Tail 1,5 (s, 1); X0, R)P™!

- R \sp Ry n+SpT i ) p—1 p—1
—<R_1) <m) ailp—1,5p (e, 13 20 ROT A Ces Doy, (210
(3.38)

and by the choice of the radii, we have

R d R R 1
< < )
Ry Ry Ri—|xo—2z| " Ri—oRy ~ 1—-0

Hence, taking the supremum in time and using Minkowski’s inequality in (3.38), we
arrive at

sup Tail 1 5 (u; x0, R)”
To—RSP <t<Ty

1
. . P
= C—(l — O‘)n (TO_RSYI;EI<TO Tallp—l,sp(u(-, t)» Z, Rl)p + “M“Loo([TO—RJp,TO]XBRI (Z))

1
<Cq—i(Mlfng, emyt S0P Tailyoy g0z RDP),
(1—o) (QRI_Rlz (z,11)) Ti—RP <t<T,

where the above constant C depends on n, sand p. In conclusion,

5 n+spRg

U = figao, 1) " dx i < Cln. 5. p) () W00 v
][Qp,pxl’(xOvTO) P (QRllep(Z’ 1)

PN, p
+C0sp.0) (B) [T+~ e

+ sup Tailpfl,xp(u(':t);zy Ry
T1—R <t<T

(p*l)l; v pip—1
+ (19 -0 (1 +d°P ”f”L‘i*'(QRlvRip(Z,Tl)))) ] .

. 0.
Now we make the choice p = RT with

TN S
Sp+n+sp
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This yields

~tp . » »
P ][ |t — txp,T0).p" dx dtSC(n,s,p,o)[<1+||u|| . )
Q.05 P (x0,T0) 0. Top L (QRl-Rlp(Z’Tl))

(p=Dv

p
—+ (ﬁ ®—1)2 (1 + dSPU ||f”Lq1r(QR1,RTP(Z’TI))))

p—1
+osup Taily (e 0iz R)?)

T1—R\’ <t<Ty

p/
+ |IfIILq,r(QRl,Riza(z,Tl))] ’

min {1,d}?
2

forany 0 < p < , where

¢ = 52
Cn+sp+Sp+E
For values of p > M

s

p—ipf | — i (xy,10).p]7 dx dt
Qp,pw(XO,To)ﬂQRlyR.:p(Z,Tl)

< 2(1+§)p min{l, d}79§p||u”ioo(QRl 2P @T))"
i |

We can then conclude that for any cylinder of arbitrary size we have

p*fl’][ |t — (g, 7). |7 dx dr < C,
Qp,psp(xOvTO)kal,Rip (z.T1)

with C depending on

n, s, p, Ry, o, sup  Tail g p(u(e, ) 2, RO, N fllLar, psr 1)
T —R\ <1<T bt

and ||M||L°°(QRIYR.:/7(Z,T1))'

In particular, one can obtain

p~¢ ][ lu — t(xy, 1,017 dx dt <C(n,s, p,o)M,
Qp’psﬁ(xo,To)ﬂQRlvRip(z,Tl)

(p=Dp

where M= [1 el riemy +9 07 (L +d7" I flLar oy, porterin)
’ M

p—1
+  sup  Tailp_y (s, 1); 2, Rl):| +min{17d}_1||u||L°°(QR o @ T1)
T1—R{Y <t<Ty 1R

1
1

+ ”fHZ;J(QRl,R‘;” (z,T1))"
(3.39)
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Now we use the characterization of the Campanato spaces in R"*! with a general
metric in [30], see also [20]. Our setting does not fit directly in the context considered
there, since we only work with cylinders that are one-sided in the time direction that
is (t — P, t] x B,(x) instead of (t — 7, + r’) x B,(x). Still, if you follow the
proof in [30] with small modifications, you can also conclude the result in this setting.

In the case of sp > 1, using [30, Theorem 3.2] we get the Holder continuity of u
with exponent ¢ in Qg g, (o r)s» With respect to the metric

d((x, 1), (y, ©2)) = max {lx — y|, |©2 — 7 7},
for which the balls of radius r are of the form (r — 57, t +r%7) x B, (x), which means
juCxr. 1) — (e, )] < CM(xy = xal + |1y — 12]7)°
< CM(n =l +In —nl7).
Here C depends on n, s, p and o. In the case of sp < 1, we use the metric
d((x, 71), (v, 2)) = max {|lx — y|'’, |2 — 7}
The balls of radius r are of the form (¢t —r, t +r) X Br 5 (x). Hence, we have a decay

&
of order 37" of the average of u on the half balls. [30, Theorem 3.2] implies the
following Holder continuity on Qg g, (o R;)*»

s I
lu(xi, 1) — u(xz, )| <C(|x1 — x2|"P+]61—12]) 7 <C((Ix1 — x2|° + |11 — f2|”’)~

a
Lemma 3.7. (Stability in L) Let f € L (Qar.2r)s») with

loc

1 n
-+ — <1
r o spq

In addition, assume that r > p/,
q=>1if sp#n, and g >1 if sp=n.
Let u be a local weak solution to the equation
ur +(=Ap)'u=f in Qar ryr,
with

”u”LOO(QRYRA'p) + sup Taﬂp—l,sp(u(" 1);0,R) <M,

— RSP <t<0

and

I fllLar g gep) < @-
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Consider the (s, p)-caloric replacement

o+ (=Ap)°p=0 in QR.Rsp
p=u in (R"\ Bg) x [-R°?,0]
@o(x, —RP) = u(x, —R*?) in Bg.

Then for o < 1, there is a 81, R o (w) such that

= @llL=(Q, g ryr) < OM.R,0 (@),
and §p R () converges to 0 as w goes to 0.

Proof. The existence of such a bound follows immediately from Corollary 3.5.
To show the convergence of oy r.» to zero, we argue by contradiction, suppose
that there is a sequence f, € L9 (Qg gsr) and u, such that

||Mn||Loo(QRYR”,) + sup Tailp—15p(un(+,1); 0, R) < M
To—RSP<t<Ty

and [ fullLar(og gsp) = 0.

but

||l,t” — ¢"||L°°(QGR,(0R)SP) >e>0. (340)

Using (3.12) from Lemma 3.2, we have

O 4
. _ P : p _
lim Sp[un @nlyysp@ny dt < C(n, s, p.q,r, R) nlgl;o IIntILq,r(QR’R”,) =0.

n—oo J_p
(3.41)

By assumption, u,, is uniformly bounded in L°°(Qg gsr). Now we show that ¢, is
also uniformly bounded in L>*°(Q g gs»).

lonllLooog psp) < NunllLooQp oryr) T 1tn = @allLoo(Qp gsp)

(3.42)
=M+ llup — @nllLoo(Qg gsp)-

By Corollary 3.5,

(p—1v

ltn = @ullLoop pepy < C. s, pYO @0 (14 R\ full Lar (g o)) 43

Since || f,,||€;_, (O per) is uniformly bounded, (3.43) and (3.42) give us a uniform
bound on ||y || L>(Qp gsp)-

Now we are in a position to use Theorem 3.6 for both of the sequences u,, and ¢,,
which gives us a uniform bound on the Holder seminorms of u,, and ¢, in Qs g (o R)? -
Therefore, by Arzela—Ascoli’s theorem u,, — ¢, has a uniformly convergent subse-
quence in Qg R, (s Ry»- By (3.41), the limit is 0, contradicting (3.40). O
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4. Improved Holder regularity for nonhomogeneous equation

Proposition 4.1. Let f € L9"(Q12) with q, r satisfying

1 n
-+ — < 1.
r spq

In addition, assume thatr > p/,
q=>1if sp#n, and g >1 if sp=n.
Let u be a weak solution of u; + (—=Ap)*u = f in Q) that satisfies

”u”L“’(Ql,z) <1, sup Tailpfl,xp(u; 0,1)<1.
—2<t<0

Then there exists w such that if

I fllLaro,,) <@, s, p,qg,r a),

u is locally Holder continuous in Q1 _1_ with exponents a in space and ——="—— in
22 25p sp—(p—2)a

time, as long as

r(spq —n) —spq

< and o < ©. “.n
qr(p—1) —=(p—2)

_1 £
More precisely, for (x1,t1), (x2,t2) € Q1 1 we have
23

257

Recall that ® = min { p”’ 1 }

o
lu(x2, 12) —u(xy, )| < C(n,s, p,q,r,a) (IX2 —x1|*+ | — lllj"”“””") .

Proof. Step 1: Decay at the origin.
For this part, we prove a decay at the origin for «# under the assumptions

lullLogy <1, sup OTailp—l,sp(u; 0,1) <1, and || fllLercg, ) < .
—l<t<

4.2)

Here w > 0 is a small number to be determined later which depends on n, s, p and «.
We introduce the parabolic cylinder

G, := B.(0) x (—r”, 0],

with B = sp — (p — 2)a. We show that for any exponent « satisfying (4.1), the
following holds for r < 1

luCx, ) = u(0,0)|L>@,) < Cre.
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Itis enough to prove the inequality for a sequence of radii (rx)72, 7% = Ak, for some
A < 1. Without loss of generality, we assume u(0, 0) = 0. Consider the rescaled
functions

u(kkx, )Lkﬂt)

vr(x,t) = Sk

’

with A small enough to be determined later. We will prove the following by induction,

, 1
loeGe, Dl <1 and sup/ e Oy w3
R™\ By

—1<t<0 |x|ﬂ+SP

For k = 0, (4.3) follows from our assumptions (4.2).
Observe that

3Uk8(;5yl) — )Lﬂk—akut()hkx, )\.ﬂkt)
(—Ap) o x, 1) = AKEP=P=Dal(— A ysu (Wb, 2P,
With 8 = sp — (p — 2)«, vk (x, t) solves

d
T (=A== D p ke PRy = fi(e ) in Q.
at PURSY:3

Moreover,

0 r
1 felar G, =/ (/B fee. I dx)” ar
- 1

1
0 r
:/ (/ akalsp=(p=Del=kn| ¢y 5 Pkgy)a dx)“ dr
—1 B

A

krn L
= )\”‘[“f"(f’”)"‘]—T(/ |f(x, 2 PRe)e dx)" dr
k

—1 B,

klsp—(p—1a]—E2 gk
— [sp—(p—De] 7 B ”f”Lq'r(Gkk)-

Since A < 1, and the exponent of A is nonnegative by (4.1), we get || fxllLa7(G,) < w.
Assume that (4.3) holds for k. Now we prove that it holds for £ 4 1. Consider the
(s, p)-caloric replacement of vi (x, f) in Q1,1, say ¢k (x, ¢). Then

lok (e, )] < o (x, 1) — o (x, D] + i (x, 1) — (0, )] + @ (0, 1) — ve (0, )]

By Theorem 5.1, ¢y is locally Holder continuous in Q1 1, and for (x, ) € Q 1o
’ 2.8‘ D

gk (x, 1) — @k (0,0)] < Cy[x|97¢ + Cale|" 7.

)

Here we take ¢ = =5*. Since || fk||Lsr (0, ) < @, Lemma 3.7 implies

G 0l £ 28@) + QO+ Gl im0y 4L @)

iy
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In Theorem 5.1, the Holder constants are bounded by

1 .
(C)7 T < Cr < C(1+ llgxllecoy +  sup  Tailp_y p(x; 0, 1))
—szgtso

< C(l =+ ||(pk||Loo(Ql‘l) + sup Tailp_l,sp(l)k; 0, l))

—1<r<0
< C(1+ llve — @kllzoe oy + lvllzeco, 1
+ sup Tail, 15, (vi; 0, 1)).

—1=<r<0

Therefore, by (4.3) we have

1
(CHr T <Cr=Cn,s,p, )3+ vk — @llLe(o; ))-
By Corollary 3.5,
Cl =< C (3 + C(l’l, s, P,q, V)(l + ”fk”Lq”'(Ql’]))) =< C(3 + C(VL, s, P.q, V)(l + w))

This is a bound independent of k. We can take w to be less than 1 and take C; =
C(n,s, p)(3+2C(n,s, p,q,r), withthe C(n, s, p, g, r) coming from Corollary 3.5,
so that the constants Cy, C; are independent of w as well.

Now we proceed and prove (4.3) for k + 1. First, we state our choice of A

11
A= mm{—, —5
47
» 1 (1 Lo =D A+C+ Cz)l’—1>m}
Q2C) +2Cy) o7 sp (p— 1O —)/2
(4.5)
Since A < All’ and Af < ﬁ, ;.8 C Q% - Therefore, from (4.4) we obtain
. .
lve (x, D oG, < 8(w) + C1A97¢ + Co P8,
Notice that SI" > ©, by the above choice of 8. Thus,
e Cx, Dl e (G,) < 8(w) + (C1 4+ C2)AO7¢, (4.6)

Recall that ¢ = ®2_ ¢ and by the assumption (4.5)

1
(C1 + C)A®~F < E,\“.
Now we choose w so that

1o 1
28(w) < =19 < -2,
2 2
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This is possible since §(w) converges to zero as w — 0. Then, (4.6) implies

g (x, D)llLG,) < A%,
which translates to

Uk (Ax 21 ”

vt G Dl = | <1, A7

L®(Gy) —

which is the first part of (4.3). For the second part, we want to show

-1
Vi1 (x, D|P

w [ mcort,

—1<i<0JR"\ B, x| Hsp

We split the integral into three parts. Using the induction hypothesis,

g1 (x, )P g1 (x, )P~
sup T por dXs sw —aprr &
—1<1<0 JRM\ B, x| Hsp R"\B x| Fsp
A A

-2 P<t<0

-1
—a(p— v (x, )P

= 5P=er=D gyp / —| n+s| dx
“l<i<0Jrm\B,  |x|*TSP

<using ® < %) < )\’(pfl)(@*a)
p—

Moreover, ||vkllz>~(G,) < 1, and hence,

p—1 p—1
sup / [vk1(x, )] dy < 25P==D o / [ve Cx, )| dx
“1<t<0JB1\B |x [P aBei<0JB\B,  |X]"TSP

< aspe(=D f ! — dx
Bi\B; |-x|n P
1

< A (P=DO-) o@D _ 32—
sp

For remaining part, we transfer the estimate (4.4) to vx4 and obtain

o1 (e, )] < S(@)A™ + CIAO % |x |0~ 4 CuufT—¢~""F  in @,

4> 4:]);\;‘3

In particular, since A< 4‘}7, Q% 1 C Q41 1 L ,and §(w) < A€ < 292 we get
A A2 48P )

sup |U()C, t)l =< )\'@_S_a(l + Cz)»ﬂr_@ + C; |x|®_8),

—1<t<0
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Therefore,
v x, 1)|P~1
wp [ lmneortl,
—1<t<0JB | \B x| r
.
r-e O—¢|p—1

sxw—l)(@—s—a)/ |1+ Coaf o

B 1 \Bi [x[*TsP

vy

(using |x] = 1) < (1 + CAPT=9 4¢P~ 1p(p=D(O——0)

1
g /B 5y e
vy

1

i _ D@ r—1, (p—D(O—e—a)
(using sp>(p—1)®) <(1+Cr+ Cy) A " |x|n+s(p71) dx

- (1+Cy 4 CyP~1 J(P—D(O—¢—0a) .

— (P,
e(p—1

Hence,

v x,0)P7!
sup / M d < 2207D8 4 02018 4 0,5 (0D
—1<t<0 JR"\ By | x| Hsp

p—1
< alp=De (1 PRI Gl Bk )

e(p—1

Using the assumption (4.5) on A, we obtain

~1
Vg1 (x, DIP
sup / % dx < 1.
—1<t<0JRM\ B, | x| Hsp

Step 2: Regularity in a cylinder. We choose « as in (4.1) and let w be as in Step 1. For

a point (xo, fp) € Q%’z%p, define

N 1 x 2_pl
u(x,r) = ZM(E + xo, L ZTPt + 19),

n 1
where L = 2»-1(1 + |B{|)?~I. Then u is a solution of

L—(=D

X 1 -
ZTf<_ +x09 L2 p_t + [()) = f m Ql’zsp—ll‘p—z.

it + (=Ap)'i = 2 2sp

By the choice of L, u satisfies the conditions (4.2) in Step 1. Since L > 1, we
immediately have

N 1
lallzo(10.0) = FlluliLo, o) oto)) < lullLecn =1,
L 27
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since Q, ;2-p (x0,f0) C Q1,2. As for the LY" norm of f, we have

2P
- L—([’_l) +vp p—2
I fllzar o) = 27(2" "L N fllerco, oy (o))
2725
1 n

< LD fllg,

< L0120 0w < o,
Here we have used 1 — % - % > (. Notice thatin the case of sp > n, we are assuming

11— % - % > (0 which is a stronger assumption. Now we verify the assumption on the
tail.

a7~ 27k lu ()P~
sup e = e s = ¥
“1<1<0JR\B; || L L2p e TRN\BY ) |y — xol

L1 sup Tailp—q sp (s, t); xOv_)p !
—2<t<0

n+sp
RN Y
Lp=1°2 1 —|x — x|

x sup Tailp_y s, (u(s,1); 0, )P~!

IA

IA

—2<t<0
n
pP—
T 2eteo e, DU, - I(Bl(o))
2" 2"(1+|B1])
< -1 (1 + |Bl|||u||L°°(Q1.z)) < T <1

Now we can apply Step 1 to & and we get the decay
la —4(0,0)| Lo,y < Cr*, for 0<r <1
or in other words
jii(x, 1) — (0, 0)] < C(Ix|* + [¢]%), for (x,1) € Qu1.
In terms of u, this means

Ju(x, 1) — u(xo. 10)] < CLQ2%|x — xo|® + @PLP 25|t —10]7),  for
(x,0) € Q1 __1__(xo,10)- (4.8)
20 9sprp—2

Now take two points (xp, 1), (x2,%) € Q1 _1and split the line joining them
2:25p

into 1 + [LP~2] pieces, say (yi. 1) 71 with (x1.11) = (o 70). (x2.12) =
l p—
(y1+[Lpfz], TH_[Lpr]), |y;+1 yl| = ll—iiL;*g] < 3 and |'L'l'+1 — ‘[,'| = l—tELPll’lz]

i, Ti). By (4.8) applied in each of

1
————— so that (yji1, T; € 1 1
P2 (Yit15 Tit1) Qi’zwL/?—Z
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01 (i, Ti) obtain
2> 2APLP*
(Lr2
uxa, 1) —u(xr, i)l < Y luyist, Tien) — u(yi, 7))
i=0
[Lp_Z] o o
<CL Y 2lyip1 = yil* + @PLP g — 5l
i=0
- [ra—xi| \@ o I —nl \F
O () (o
=+l L) * 1+ LP=2]

<C(n,s,p,q.r,a)(|x2 —x1|* +|ta — 11| 7).

Now we prove the Holder regularity at any scale.

Proof of Theorem 1.2. We will consider the rescaled functions
1
i(x,1) = —u(Rx + xo, u”> PRt + 1 + Tp)
n

with

=1+ llullLoe (g opsp (x0,T0)) + sup Tail 1 5p (u(e, 1); x0, R)
To—2RP<t<Tp

1
p—H—pT_2

sp—1 32
R4 T fllLar Qg opsr (x0.To))
w

where w = w(n,s, p,q,r, o) is the same as in the proof of Proposition 4.1 and

L € [-(R/2)*? (1 —u?~P), 0]. The interval [— (R /2)*P (1 — u>~P), 0] is chosen so that

the cylinders Q 8 /Lz v Rvp (x0, To + t) cover all of Q r R (B)sp (x0, Tp) by varying ¢ over.

Note that for these ch01ces of ¢ we have Qg 5,2-p gsp (xo, To + 1) C Qr.arsr(x0, Tp).

Then u is a solution of

F(Rx + x0, W> PRt + 1+ To)
pr=!

dyil, + (—AS)il, = RP 012.
We now verify that i, satisfies the conditions of Proposition 4.1. The L?-" norm of the
right-hand side is

p=2

S (Rx, > PRSPt + 1) o
wup=! L97(Q12) 27 (=D

H RSP

sp—n_2
R 4 ’||flqu-"(QRYZsz,,RS,,(xo,To+z>)

sp—2L -2
R 7 7 ”f”Lq"(QR,zRJI>(X07TO))
2t

IA
|
A
S
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The L®° norm of i, satisfies

~ 1 1
il Lo 200,00 = ;“u”LOO(QR_QMZ_I’R‘YP(XO_TOJH)) < ;”u”Lm(QR.ZRxp) <1

Similarly
. . 1 .
sup Tail,_y sp((+,1);0,1) < — sup Tail 1 5p (s, 1); X0, R)
—2<1<0 M Ty41—2u2-P RSP <t <Ty+1
- 1

- sup Tailp—l,sp(u('s t); x0, R) < 1.
M Ty—2RsP<t<Ty

Hence, using Proposition 4.1 for i,, we get
lit, (X2, 12) — i, (X1, )| < C(|1¥2 — X1|% + |l — 11| 7= r7D)
for (X1,11), (¥2.0) € Q1 10,0,

=P

with C = C(n, s, p, q, r, «). This translates to

2 —xil\e /1=l \ 5o
G, ) =l = 0| (F )+ (a) ] @9

for (x1, 1), (x2,72) € Q4 gsp,2-» (X0, To + ¢). Now we vary ¢ to obtain an estimate
77

7
in the whole Q B (Ryp- Specifically we split the interval [11, £2] into 14 [ 1”2 ] pieces,
say [Tit+1, ti], with t; — 1541 = %, To = tp, and T pr-2) = H. Using (4.9),

we obtain

lu(xz, 1) — u(xy, )| < |u(xz, t1) —uxy, 1| + |lu(xz, £2) — u(xz, 11)|

P2

o
) + )l m) — ux, 1i41))|
i=0

lx2 — x1]

S“C( R

< C[<|x2—X1|)“+UgJ<ITi—Ti+1|>sp<§§z)a]
=M R — RspM2—p
i=
P2 o
|xo—x1[\ |t2—11] ==
=ne[ () X ( )]
TR §0 R PP (1 [P =2))

J—ZJ

[? o
lx2 — x1]\« [t — 11|\ 7=G—2a
SMC[< R )+Z<R”’> ]

lxa — xi]\@ ==
=uc[(F7) 2w (5m) T

which concludes the desired result. O
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5. Appendix A

In this section, we spell out the necessary modifications to prove the following theo-
rem 5.1 which is amodified version of [7, Theorem 1.2]. Asitis explained in [7, Remark
1.4] one can obtain the conclusions of [7, Theorem 1.2] under the weaker assumptions
ue Ly (I; L (2)) N Ly (1; pr_l(R”)), instead of u € Ly (I; L(R")).

Theorem 5.1. Let @ C R”" be a bounded and open set, I = (to,t1], p > 2 and
0 < s < 1. Suppose u is a local weak solution of

ur+(=A)'u=0 inQxlI,
such that

u € Lig(I; Lis.(S)) N L. (I pr_l(R”)). 5.1
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Define the exponents

—1
: , ifs < )
O, p) = .
17 l:f‘s = ;5
. 1
1, ifs < ,
and T'(s,p):= 5.2)
1 . p—1
—_—  ifs > —.
sp—(p—2) p

Then

u e Cg’loc(Q x )NCY, (L x1I), forevery0 <8 < @(s, p) and 0 <y < T'(s, p).

t,loc

More precisely, for every) <6 < O(s, p),0 <y <I'(s,p), R> 0, x0 € Qand Ty
such that

ORr.rsr(x0, To) € Q2 X (t0, 1],
there exists a constant C = C(n, s, p, 8, v, o) > 0 such that

lu(xy, 1) —ulxz, )| = C (||M||L°0(QR1R5,;(XO,TO))

§
+  sup  Tailp_ 5 (; x0, R) + 1) (M)
telTo—R, Ty R

+ C (llull Qg gsp

(x0:Tp)

Y
] -1 71— 72
+ sup Tallp—],sp(u;x()vR) + 1)p (| N |> ’

te[To—R*P,Tp] kv

(5.3)

forany (x1,71), (x2,72) € Qor, @Ry » (X0, To).

First we reproduce a modified version of [7, Proposition 4.1], where instead of a
global L bound we assume ||u || 1o¢(B, x[~1,0]) +8Up,c[—1.0] Tail, 1 5p(u; 0, 1)) < 1.
Before stating the proposition, let us recall the following notations from [7]:

up(x,t) :=ulx+h,t), Spulx,t) :=up(x,t) —ulx,1),
and

Shu(x, 1) .= 68,Spu(x,t)) = upp(x,t) +u(x,t) — 2up(x,t).
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Proposition 5.2. Assume p > 2 and 0 < s < 1. Let u be a local weak solution of
u; + (=Ap)*u =0in By x (=2, 0]. We assume that

lullzoog xj—1,0p + sup Tailp_y pu(s,1);0,1) <1,
te[—1,0]

and that, for some g > p and 0 < ho < 1/10, we have

T
/ sup
To O<|h|l<hg

foraradius4hy < R < 1—5hg and two time instants —1 < Ty < T1 < 0. Then we
have

2 q
Sju

W dr < +OO,

L4 (BRr+4hgy)

g+1 q+3-p
T 57u 1 Spu(es, Tn)
sup W dt—i—T S T @r2—ps
To-+u 0<Ihl<ho LY Brang) Pro<iui<ho | |n| a0 1l Lgssp gy
—ang
T Sﬁu !
<C sup o + 1] dt, G4
7o \o<tui<ho [ ] Ly g s

forevery0 < u < Ty — Tp. Here C = C(n, s, p,q, ho, t) > 0and C / 400 as
ho N\ 0or 0.

Proof. In the proof of [7, Proposition 4.1], the L>°(IR" x [0, 1]) boundedness is only
used in Step 3, in the estimation of the nonlocal terms Z, and 73, which are defined
by

o (7p@n @) = () = Jp () = u ()
2(0):= \/BR-H X (R"\BR) |h|l+ﬂﬂ
2

X g1 (up (x) — u(x) n(x)” dpu,

and

. (T = () = Jp(w@) = u(:))
0= _ff( "\BR)X B pir |h|1+0 B
2
X Jp1(un(y) —u(y) n(»)?” du.

‘We also recall the definition of fz and f3

~ Tl
Zi ::/ Zi (1) t(r) dt, i=2,3,
T

0

where 7 is smooth function 0 < 7 < 1 such that

=1 on[Ty+p,+00), 1=0 on(-o0,Tyl,

IA

=10
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The general argument is the same, but instead of using the L°° norm of u(y) we can
keep the inequality as it is and write
| (Jp(un(x) = un(y) = Jp@(x) = u())) Jp+1Gpue(x)]
< CA+ [unOIP™" + JuMDI8ru )1,

where x € Br_n, and 4hg < R < 1 — Shq. Therefore, |x — y| > (1 — 8210 y| >
C(hg)|y| and we get

/ 1+ [u)IP™ + fup(0)[P!
R\ Bg |x — y|ntsp

dy

—1
< C(n,s, p, ho) + (C(ho))" TP / M

r\Bg |YI"TSP
lup(y)P~!
x Ty O
R\Bg |Y|"TP

u p-l u p-l
[ | (y)JIr dy S[ | (y)JIr dy_i_R_n_sp/ P dy
R\Bp Y[ ri\B, |y["TP B

<1+nw,R7"°P <1+ nw,(4ho) " P,

dy + (C(ho))"™*P

Now

and for uy,

/ uG + M
rR\Bp  |YI"TP
p—1 3\ Hsp p—1
5/ lu(y)] —dy= (_) / Ibt(y)JIr dy
R1\Bg(h) |y — B|"T5P 2 R\Br(h) |YI"TP

3 ”“”/ lu(y)|P~!
<= 2 dy4+ R uy)|Ptd
(2) []R”\B| |y|n+Sp Y B Y y]

3 3
< (5)"7 A4 oy RTP) < (5)" (A ne (4ho) ).
—h
Here we have used Bg(h) C B],and% = Ii_\_lg_ﬁ > ||§—,||—||’;—,|| > 1—|R}i°h0| >

%. Using this, we get

/ L+ [uW)IP~ + Jup ()P~
R\ Bg |x — y|ntsp

dy = C(ns s, P, ho)v

and we can conclude

N - T |8pu|P

|Z2| + 73] < C(n, s, p, ho) gt A dt < Clho,n, 5, p.q, B)
o JBry 1A
2

h Spu |
/ (1 "’/ —?fﬂﬂ ! pH)T dr,
To BR'|\p|"F

which is the same as equation (4.6) in [7]. O
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We can estimate the W**” seminorm of a solution as follows. The proof follows the
argument in [7, Lemma 7.1].

Lemma 5.3. Let p > 2and 0 < s < 1. Let u be a local weak solution of
du+ (—Ap)°u=0, inBypx(=2R°F, 0],

such that u € L°°(Byg x [—R*?,0]). Then

0 P
—n p
(R /_; Rsp[u]ws'p(BR(XO)) dl)

<C (llulle(Bsz[—RW,O]) + sup Tail,_q 4, (u; 0,2R) + l),
e[~ R5P,0]

for some C = C(n, s, p) > 0.

Proof. Without loss of generality, we may suppose that xo = 0. Let

k=l|lullLooBygx[—rsP,0op+ sup  Tail,_i (-, 1);0,2R)+1 and U = u+k.
sP.0]

te[—R

Then # is a local weak solution in By x (=2 R*?,0]and % > 11in Bogp x [—R*?, 0].
We choose ¢ and ¢ exactly as in [7, Lemma 7.1], that is,

C
n€CFR2R), n=1in Bg, |Vn| < = and nEOian\B%R;

and

7
Y e CPM), y(1)=0fort<—R°?, Yy =1 in |:—§R”’,O] and |y/| < P

Then for ¢(x, t) = n(x)e(t), we get

0 0
7 p
o ar= [ »Hel t] dr
/gRU’[M( )]WHP(BR) - ,/7Rs u( )(P( ) WS:P(BaR)
’ p
< C/ // max {E(X, 1), u(y, t)} lo(x, 1) — oy, )P du dt
RSP Byr X Bag
sup #) </ / W0, )P @(x, )P dx dr
xesuppn R”\BZR |x — ylrese Rs? JBog
( sup s / w(y, HyHr-! d )
u up R —
—RSP 0] xesuppn JRM\ By X — YI"TIP

x/ / u(x, 1) e(x,n)? dx dr
—Rs? JByp

1[0 - 5 (3P \ T ~
— ulx, )| — dx dr + u(x,0) dx
2 —RSP JBop 3[ Bor

<CR" (k" +k*+k) < CR"kP.
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The only difference in the proof is in estimating the term

[ u(y, HyHHr-! q

sup
R\Byg X — Y["TSP

Xxesuppn

Noticing that for x € suppn C B%R we have ‘x‘;ly‘ >1-— @ >1— % = 4-11, we
get

ot +yp—1 _
/R —(T;(y y)|")+sp dy < 4" PRV Taill "] (u:0,2R) < CR™PkP™L.
"\Bag -

We can now prove the following modified version of [7, Theorem 4.2].

Theorem 5.4. (Spatial almost C* regularity) Let Q2 C R" be a bounded and open
set, I = (t9,11], p > 2and 0 < s < 1. Suppose u is a local weak solution of

ur+(=A)'u=0 inQxI,

suchthatu € LS .(I; L*®°(Q)NLX (I pr_l(R”)). Thenu € C%, (Q2x 1) forevery

loc loc x,loc
0<d<s.

More precisely, for every 0 < § < s, R > 0 and every (xg, Ty) such that
Q2r,2rs 7 (x0, To) € 2 X (10, 111,

there exists a constant C = C(n, s, p, §) > 0 such that

sup [u(e, f)]ca(BR/z(XO))
IE[TQ— R;p ,To]

C .
== (1 + llull Lo Bog oy xiro—Rs P, 7o)+ sup  Tailp—q 55 (u; x0, 2R)>
R te[To—R*P . Ty

(5.5)

Proof. The proof is essentially the same as the proof of [7, Theorem 4.2]. We assume
for simplicity that xo = 0 and Ty = 0, and set

Mpg = lullpoBogxj—rer,0p) +  sup  Tail, y5,(u; 0, R)
te[—RP,0]
1

0 r
- P
+ (R n / SR 1 dt) +1.
-3 RSP
Notice that by Lemma 5.3 we have

Mg < c(||u||LOO(BZRX[,Rsp,0,) + sup  Tail,_y g (u; 0, 2R)) +1.
1e[—RP,0]
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Leta € [-R*7(1 — M% ?), 0] and define

uR,ot(X,t) = ?

1
u Rx,—_zR”’t—l—(x , forx € By, t € (—2,0].
Mg

1
Mg
Then ur o (x, t) is a local weak solution of

ur+ (=Ap)'u =0, in By x (=2, 0],

that satisfies

lurallLom,x(—1,0p + sup Tail,_y g, (e, 1);0,1) <1,
1e[~1,0]

0
/ [MR,Oz][‘j[/s.p(Bl) dr < 1.

ool

This function satisfies the assumption of Proposition 5.2, and we can do the same
argument as in [7] to obtain

sup [uR,Ol("t)]C‘S(B]/Z) =< C(n’ S, pvs)y
te[—1/2,0]

for a C independent of o and by scaling back we get

C
sup [u(.,t)]ca(BR/z) < FMR.
a— L MEP RS P<1<0

By varying o € [-R*P (1 — M?{p), 0], we get the desired result. O

We now address the improved regularity and start with the following modified
version of [7, Proposition 5.1].

Proposition 5.5. Assume p > 2 and 0 < s < 1. Let u be a local weak solution of

ur + (=Ap)*u =0in By x (=2, 0], such that

llull LooByx[—1,0p + sup Tailp_y5p(u; 0,2) < 1.
te[—1,0]

Assume further that for some 0 < hg < 1/10and 9 < 1, B > 2 such that (1 +
v B)/B < 1, we have

T 8iu g
/ sup —h dr < 400,
To O<lh|<hg |h| p Lﬁ(BR+4hO)

for aradius 4 hy < R <1 — 5 hg and two time instants —1 < Ty < T1 < 0. Then

B—14p B+1
h Sju 1 Spu(s, Tr)
sup I4+sp+9 B d[+ﬂ + 1 sup 1+9 8
To+un 0<|h|<ho |h| B—1+p LA+ (Bp_ap ) 0<|h|<hg |h| B+1
—4ho

LA+Y(Br_4ny)
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T 5214 g
SC/ sup | | —fr7 e o
To O<lh|<hg |]’l|T L’S(BR+4hO)

forevery 0 < u < Ty — Ty. Here C depends on the n, hy, s, p, u and f.

Proof. The only major difference from the proof of Proposition 5.2 is in the estimation
of term 71 and it can be treated in the exact same way as in the proof of [7, Proposition
5.11. O

Using the previous proposition with the same type of modifications as in the proof
of Theorem 5.4, we can state the following version of [7, Theorem 5.2].

Theorem 5.6. Let 2 be a bounded and open set, let I = (ty, t1], p > 2and0 < s < 1.
Suppose u is a local weak solution of

ur+(=Ap)'u=0 inQxI,

such that u € Ly (I3 Lo (2)) N LS. (I pr_l(R")). Then u € Cﬁ

every 0 < 6 < O(s, p), where O (s, p) is defined in (5.2).
More precisely, for every 0 < § < O(s, p), R > 0, xo € Q and Ty such that

(R x I) for

,loc

Bor(xo) x [To —2R*P, To] € Q x (19, 111,
there exists a constant C = C(n, s, p, 8) > 0 such that

sup [ (e, t)]C‘S(BR/z(XO))
te[Tofg,To]

C .
< =5 | Nl Bogxio—ro P, 19D + sup  Tailp_15p(u; x0,2R) + 1] .
R telTo— R, Ty

(5.7)

Now we modify the argument regarding the regularity in time (see [7, Proposition
6.2]).

Proposition 5.7. Suppose that u is a local weak solution of

u+ (—Ap)°u=0, in By x (=2,0],

such that
lullLoo(Byx[—1,0p + sup Tailp_q 5p(u;0,2) <1,
re[—1,0]
and
sup [u(., t)]C“(Bl/z) < Ks, foranys < 8§ < O(s, p), (5.8)

re[—1/2,0]
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where O (s, p) is the exponent defined in (5.2). Then there is a constant C = C(n, s, p,
Ks, 8) > 0 such that

|I/l(x,t) - I/i(x, T)' S C|t - T|y1 fOreVery (-x9 t)a (xs T) S Q% %1

where

1

-5 ~ - 2)

In particular, u € C,)/(Q% %) for any y < T'(s, p), where T'(s, p) is the exponent
defined in (5.2).

Proof. The only part that needs to be modified is the estimation of the nonlocal term
J2

- _,/ // Jpu(x, v) —u(y, 1)) n(x) du(x, y) dz,
To ( "\B,(xo))XB,/z(xO)

here To, T) € (tg — 0, ty) with Tp < T7. We recall that 0 < 6 < %, Xo € B%, and
r < g.Thus, x € B (xo) implies x € Bs .

For y € B (O) assumptlon (5.8) 1mphes
ux, 7) — u(y, )| < Kslx — y|°.

Fory € B>(0) \ B 1 (0), the L°° bound on u implies

lu(x, ) —u(y, )] <2< C@)|x — yl’.

Also notice that for x € B,/»(xo) and y € R"\B,(xp), we have |x — y| > %ly — Xo.
Using these, we obtain

luCx, ) — u(y, )|~

Jo =2(Th — To) InliLeB,jp(x0))  SUP /_/ - dy dx
rel= 01 S BB o) B ) = YT

lux, 1) —uly, 0P~
<2(Ti — To) lln\lLoo(B,/z(xo)) sup o dy dx
,e[,l 014 J®"\B2)x B2 (x0) lx =l

veo.k ff = yPD dy dx)
(B2\ By (x0)) % Br/2(x0))
1 P!
< C@ sup // +luly n)+|s dy dx
te[ 101/ ®N\B2)x By 2 (x0) lxo — y|" 5P

[ lxo — Y0P dy dr )
(B2(0)\ By (x0) X Br/2(x0))

1 S|Pl
< ce/ ( sup / % dy
Bp(xo) M- Lo JRNE Y
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+/ Ixo — ylé(p—l)—n—.rp dy) dx
B2\ By (x0)
<Co rn (2—x17 +14+ rB(p—l)—xp) <CH rn—sp+6(p—1).
(since 6(p — 1) — sp is not positive)
0

Finally, we are ready to prove a modified version of [7, Theorem 1.1], which is
Theorem 5.1.

Proof of Theorem 5.1. Consider a cylinder Q25205 (X, T) € Q x [, first, we prove
the following type of bound on the Holder seminorm in Q /4, psr/4(X, T), and later
with the aid of a covering argument, we conclude the claim of the theorem.

Claim: For any (x1, 71), (x2, 72) € Qp/4,psr/4(X, T) We have

lu(xr, 71) — u(x2, )| < C (lullLoo By x[To—ps 7. 1))

: lxr — xal\°
+ sup Tallpfl,sp (u; x0,2p) + 1) EE—
te[To—p*? . To] P

+ C (llull oo (B x[To—RS 2. To))

) ) =1 (lt—wl\’
+ sup Tail 1 5p (u; X0, 20) + 1) — ) - 5.9
telTo—p*? Ty PP

The regularity in space variable has been proved in Theorem 5.6. To prove the part on
time regularity, we set

My (X, 1) i= 1+ lullzec,, ooy +  sup  Tailpg g (u; X, 20)

T—pS<t<t

and consider the rescaled functions

Up, (x,1) = u(px—i—)?,/\/lp()?,t)z*pp”’t—i—r—i—t),

1
My (X, 1)
fori e (—%(1 - /\/lffp), 0). Then i, (x, t) is a solution of

lip, + (—=Apiip, =0, in Qo
Moreover, i, , (x, t) satisfies the conditions of Proposition 5.7. Indeed by construction

||lzp’l||Loo(32><[,],0]) + sup Tailp,l,sp(ﬁp,L; 0, 2) < 1
te[—1,0]

and the estimate (5.8) follows from (5.7) in Theorem 5.6. From Proposition 5.7, we
obtain

sup [up, (x, ')]CV[—l,O] =<C,
XE€B| 4
i
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with C = C(n, s, p,y) forevery 0 < y < I'(s, p). By scaling back, this translates
to

f—t
lu(x, 1) —u(x, )| < Mp(x, T)C< i 22—|17)V for
PP M
(x.11), (x,12) € @ pr  2-p (X, T +1). ©-10)
77 My

By varying ¢ with an argument similar to the proof of Theorem 1.2, we arrive at the
claim (5.9). We have to point out that the Holder constant does change, unlike what is
suggested in the proof of [7, Theorem 1.1]. Here is a detailed computation

We split the time interval [f1, ] into 1 4+ [M, (X, T)P72] pieces, say [Ti1, Ti],
With & — Tis1 = G
the triangle inequality, we get

To = tp, and T ppr-2) = 1. Then using (5.10) and

lu(x, 1) —ux, t)| < ux, 12) —u(x, )]

M2
< D luCo. ) — ua. i)l
i=0
LM"TZJ T, [\Y
i — Titl
<CM (;)
" & Gerae
LM”TZJ |t ] 4
~ 2 — 11
=CMp(E, 1) Z ( 2= ) )
i CREPM,TPA A+ IMETT))
LMﬁ’ZJ |t tl\Y
2 — 1
= CM, Z ( RSP )
i=0
o/l —1l\Y _1/ | —nl\Y
= oMMy (Ft) = ey ()

Now use (5.9) in cylinders of the form

O, pr(y,t), for(y,t) € Qor, (oR)P;

.

17

where the radius r = ~—&—— is s0 small, such that
C(n,s,p,0)

Q2r2rsp(y, 1) C QR Rsp-

Consider a sequence of points (X;, 7;) on the segment joining (x;, 71) and (x2, 72)
such that
(%, 7)€ Q

r oo (Xi—1, Tiz1).
77
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Using (5.9) together with the triangle inequality, we obtain

|M(X1, rl)—u(xz, T2)| < C (”u”Lm(QR,RW(xo»TO))
8
. X1 — X2
+ sup Tal]p_l,sp(u;x()’ R) + 1) <| |>
te[To—RsP, Ty k
+C (”u”Lw(QR,RSp(XO,T())
v
) —1 1 — T2
+ sup Tallpfl,yp(u;x(% R) + l)p <| N |> ’
te[To—R*P,To] ke

with C = C(n, s, p, 8, y, ), which is the desired result. O

6. Appendix B

Here we will justify the insertion of u — v and |u — v|P~2(u — v) as test functions.

Proposition 6.1. Let B = Br(xo) be a ball of radius r, By = Bsr(xo) witho > 1,
and I = (79, T1] be an interval. Let f € L@D"P (B x 1) and assume that u €
LP(I, WSP(By)) N LP~1(I; pr‘l (R™) N C(I; L*(B)) is a local weak solution of

ur+ (—A))'u=f, inByxI
with
Tail 1, (. 1): x0. R) € LP (D).

(in particular, this will be the case under the stronger assumption sup,.; Tail, s,
(u(s,1); x0, R) < o0 that we use in this article.) Let [Ty, T1] € I and let v €
LP([To. Ty], WSP (B2) VLY~ ([T, Ty): LY, (RD) N C ([ Ty, T11; LA(B)) be a weak
solution to

v+ (=Ap)°v=0 in B x [Ty, T]

v=u in (R"\ B) x [Ty, T1]

v(x, Ty) = u(x, Ty) in B.
In addition, assume that F is a globally Lipschitz function with F(0) = 0, which is

either bounded or F (a) = a. Then we have:
T

1
JLL (0 = .0 = 1w, = 065,10

x (F(u(x, 1) — v(x, 1)) — F(u(y, 1) — v(y, z))) du dr

To

+ / Flulx, 1) — v(x, 1)) dx|§(‘)
B

T
:/ /F(u—v)fdxdt,
To B

where F(a) = f(f f(t) dt is the primitive function of F.
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Proof. The proof is essentially the same as [7, Lemma 3], except that here we do not
use a cutoff function and do not have the global boundedness of u in the ball. For
simplicity, we assume xo =0, R =1l and o0 = 2.

For a function ¢ € C((To, Th); L>(B)) N LP((To, T1); X" (B, B2)), we use the
following regularization of functions

£

2

L[S (- :
0 (x,1) = E/ s (T) o(x,0) dt = / 1 L(—o0)e(x,t +¢eo) do,
! -2

where ¢ (o) is a smooth function with compact support in (—%, %) satisfying
lgl<1, and [¢| <8.

This regularization process gives us a test function ¢ € C'((To+e, T1 —¢); L*(B))N

LP((To+e¢, T —e); Xé’p(B, By)).Lettg = To+ &g and 11 = T1 — &g and we test the

equation with ¢ as above, for ¢ < %0 First, we will show the claim for the smaller

interval [#g, t1] C [To, T1], and then through a limiting argument, prove the result for
the whole interval. As in equation (3.5) in [7], we get

41
[ (e a0 o = 020 dear
10 UPING
//‘1_7 Oruf (x, He(x, t) dt dx + X, (e)
o+
=/[u(x,to)g0(x,to)—u (x fo + ) (x,20+ = )]
B
t
—/[u(x,t1)<p(x,t1)—u‘°‘(x,t1 ~ Do, n - 9] dx+/lf ¢ f dx dr,
B 2 2 n JB

and we obtain a similar identity for v without ft;' [ @° f dx dt in the right-hand side.
Here X, is defined by

0t+5 (1] 0+5 {—t¢
Y, (e) = / / - / u(x,t)¢ <—) dr ) 9e(x, €) de dx
fo— & o &
f+% f
//1 ’ (1/ u(x, t)g( ) dt) e (x, £) de dx.
131 & —£

2

Observe that by using an integration by parts, the term X, (¢) can be rewritten as

1 To+¢ 1 c
u(e) = f <_f u(x, t);( +§) dt> gD(x,To—FE) dx
To+5 ( 0+5 (—1¢
f / / u(x, )¢’ (—) dr ) ¢(x,£) d¢ dx
To—5 &2 To &
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1 [h -t 1
+/<—/;18u(xt)§< —§>dt) (le—E)dx
Ti+ _
f/TI 2(—/ Su(x,z);’<£8—’> dt) o(x,0) de dx,  (6.1)
-2 2

where we also used that ¢ has compact support in (—1/2, 1/2). By subtracting the
identities for u# and v, we obtain

n
/ // (I = 03 0) = 00 = 05, 10) @ ) = 9 1) e
-
f / 1 Bt(u —0)°(x, He(x, t) dt dx + Z,(e) — 2, (¢)
fo

= /B[(u — V)X 1)@ (x. f0) — (1 — V) (x. 1o + %)w(x, o+ g)] dx

- /B[(u —0)(x, 1)e(x, 1) — ( —v)* (x, 11 — &)p(x, 1] — g)] dx

+fl/908(x,t)f(x,t) dx dr.
10 B

Now we take ¢ to be F(u® — v®). Observe that
0:(u —V)°F(u® —v%) = 0, F(u® —v%).

After an integration by parts, we get

n
f /f (@0 = a0 = Iy 0 = v.)
o xR
x ([Fu® —v)(x, D] = [F@® —v")(y, D) dpu dr

/f(u — ) dx] (o) — Tu(e)

10+5
=/ [(u—v)(x, 10) F(u® —v*)(x, f0) — (u — v)* (x, fo + %)
B
x Fu® —v%) (x, to + %)] dx
- /I;[(M =), ) F @ —v)(x, 1)
— =) (v = 5) F = v%) (.11 = 5 )] dx
13
+/ 1 / (F(u® —v*)°(x, 1) f(x,1) dx dt :==T1 — I + Is. (6.2)
0 B

We now wish to pass to the limit in Z1, 7 and Z3. Let w = u — v, we now treat 7.
The fact that F' is globally Lipschitz together with F(0) = 0 implies |F ()| < C|t|.
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Therefore,
lw(x. 10) F(w) (x. f0) — w* (x. fo + %)F(wf(x, 0+ §>)|
= | (wex10) = w* (x.10 + %)) F(w' (x. 10))]
+ |w® (x, to + %) (F(ws(x, 1)) — F (ws (x, to + %))) |
= LI, 10) = w10 + S)w' (. 0)]

1w (et + 3) (e t0) = (104 5) ) 1]

where C is the Lipschitz constant of F. After integrating and using Holder’s inequality,
we obtain

I, = f [wx, 1) F(w®)(x, 10) — w®(x, o + g)F(wE)(X, fo+¢)] dx
B
e
< €[l 10) = w* (10 + ) 2 w° G 0) s,
& € & & €
+ [lw” (-, f0 + 5 2y lw” (e, 10) — w™ (e, 10 + E)HLZ(B) .
Since w® € C((Ty + €9, T1 — €0); L*>(B)), uniformly, we have
, e
Elg% lw® (s, 20 + §)||L2<B) = [lw(, 10) | 2(p)-
Observe that

/ lw(x, tg) — w®(x, 10 + i)I2 dx
B 2

= /;‘/_i ¢(—o) [w(x, o) — w (x, to + % + 80‘)] da‘2 dx

< / /71 |t (—o)w(x, 10) — w(x, 1o + % + 80)]!2 do dx
Bi - (6.3)
2
= / . / |§(—U)[w(x, to) — w(x, ty + g + 80)]|2 dx do
-1JB

[~]

D=

5/1/|w(x,t0)—w(x,t0+§+sa)|2 dx do
-1JB

[~}

< sup f‘w(x,to)—w(x,to+t)|2 dx
B

0<t<e

which tends to zero since w is in C([Ty, 711, L2(B)). In a similar way, one can argue
that

. £
lim lw® (e, 10) — w (e, o + P2z =0 (6.4)
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Using the triangle inequality, we get
& & €
I (oo t0) = w (w10 + 3 ) lrzam)
e
< w® (-, t0) — w(s, 1)l 2 + llw(s, o) — w (e, 10 + §)||L2(B)v
using a computation similar to (6.3), we obtain

[w® (e, t0) — w(e, 1)l L2y = sup  [w(e, 1o +1) — w(+, t0) [l 12(p)

—5=I=3

and

£
lw(-, to) —w*(+, f0 + ez = sup flwle. to+1) —w-, fo)ll12(p)-

O<t<e

These two expressions converge to zero, since w € C([Ty, T1], L%(B)) and (19 —
e, 11 +¢) € (Tp, T1). This shows that Z; converges to zero. In a similar way, one can
argue that 7, tends to zero. For the term Z3, we have

! (F(w®)*f — F(w)f | dx dt
10 JB

n
/ /B(F(wa))g — F(®)) f 4+ (F(w®) — F(w)) f dx dt‘
fo

1
5/ /B|<F<w8)>8 ~ F@OIIf . 0] + Clwf — wllf(x. 1) dx dr.
10

The sequence w® is bounded in LPP(B x (19, 11)); therefore, it has a weakly con-
vergent subsequence. Using the pointwise convergence of w® to w, we get the weak
convergence of w® — w to zero. By the assumptions on ¢, r together with Holder’s
inequality (2.11), f(x, t) belongs to the dual space L@D"p (B x (tp, t1)). Therefore,

1
lim/ f lw® — w||f(x, )] dx dt = 0.
to B

e—0

On the other hand,

n
/ f (Fw®))® — F@)||f(x, 1)) dx dr
to B
¢ 1
= / l / ‘ 21 L(—=o)(F(w(x,t +€0))) — F(w’(x,1)) do|| f(x, )] dx dr
to BlJ—3

t 1
< [V [ ol e - ot il ol do d ar
10 B J—

2

1 1
SC[ / ’ L(=o)|(wh(x, t +e0) — we(x, || f(x, )| do dx dr
n JBJ-1

2
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1 t
SC/Z /l/ |(w€(x,t+sa)—wg(x,t)||f(x,t)|dx dr do
— ) B

(ST,

& &
<C f_ e+ e0) = w Ol ot gy g, 1 12080 (Bt )y 99
2

Recall that the shift operator,

T(a)(g) = llgt +a)llLr(ug.n)

for a function g € L (ty — &g, t] + &) is continuous for —ey < a < &9. Hence, we
get

. e T e .
ggr%) ”w (x9 t)”LpS’p(BX([(),Il)) - 51% ”w (x7 t + 80)||Lp5'1’(BX(10,t1))

= ”w”LP?-P(Bx(toJl))'

Upon passing to a subsequence w®(x,t + o) and w?(x, ) converge weakly in
LP5P(B x (1o, 11)), since they converge to w(x, t) pointwise, we get the weak con-
vergence

we(x, 1) = w(x, ) and wé(x,t+e0) — w(x,t) in LPP(B x (to, 11)).

Combined with the convergence of the norms, this implies the strong convergence in
the norm; in particular, we have

| 1w (x, t 4+ e0) — w*(x, Ol Lot (m) ”L”(mv“) -0

Now we turn our attention to the terms on the left-hand side of (6.2). The terms X, (¢)
and X, (¢) converge to zero. To show this, we start with the following computation,
borrowed from [7, Lemma 3.3]. Using a suitable change of variables in (6.1) and
recalling ¢ = F(w?), we can also write

T, (e) = : £ P €
u(é’)——/B /_ ux,to—ep+3)¢(p) dp F(w)(x,t0+§)dx

2
oy
+/ X (/ 1 u(x,ep+ty—eo)l (o) da) Fw®)(x,ep+19) dp dx
BJ-1\J-1
1

ATk

-2

e . e
u(x, ty —ep — E)C(P) dp) F(w )(x,t1 — 5) dx

1
_//21 (ﬁpu(x’gp“LTl_”)f/((’) df’) Fw®)(x,ep+T1) dp dx
BJ—3 \/3

=%l e) + 22(e) + 23 (e) + T o).
(6.5)

In a similar way to the argument for convergence of 77, we can see that

111% e = —/ u(x, to) F(w)(x, to) dx.
E—> B
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We spell out the details of the arguments for convergence of 25(8).

22(e) —fBu(x,zo)F(w)(x,zo) dx’

1
- '_/ /21 (/ﬂ’l (ux,ep+ty—eo)—u(x,ty)) {/(g) da) Fw®)(x, € p +10) dp dx
BJ—3 \V—2

1 0
+/ /21 </ . u(x, to)g/(a) dcr) (F(ws)(x, ep +ty) — F(w)(x, to)) dp dx
BJ—3 \/=2

Y
5/21 / . (/ ‘u(x,s,o—i—to—80)—u(x,to))F(wS)(x,sp—l—to);/(a)‘dx) do dp
1)1 \Up
2 2
1
+/21/B|¢(p>|\u(x,zo)(F(wsxx,epﬂo)—F(w)(x,zo))\dx dp
-2

1
2 P
= 8/ ) / . llu(e, ep + 10 — €0) —M(%f0)||L2(B)||F(w8)(°,8P+IO)||L2(B) do dp
—2v72

1

2
+f e 10) 12 I F @), 20 + 10) = Fw) (o, 10) 12 dp
-2

<8 sup  NuCeodg+0—uCilag b NF@O) i+ Dl
fo<t<to+e to—5<t<to+5
+ Cllu(s, t0)ll 12y sup ||w8(-,t0+t)—w(-,l())||Lz(B),

fo—5<r<to+5

where C is the Lipschitz constant of F. We have used |[¢| < 1 and [¢’| < 8 in the
computation. Since u € C([To, T1]; L*>(B)), we get

lim  sup flu(e, t0+1) —u(e, 00) 25 = 0.
e—~>0r<t<to+e

Using a computation similar to (6.3), we obtain

sup lwé (e, t0 +1) —w(s, 0)ll12(p)
ty—5=<r<to+5
< sup JwC,to+1) —w(,t0)l2p)-

fo—e<t<to+e¢

This converges to zero since w € C([Tp, T1]; L%2(B)),and (1o — &, 11 + &) € (Ty, T})
due to the choice of ¢. In conclusion,

lim ) + 22 = 0.
In a similar way, one can argue that
lim T3 (e) + i (e) = 0.

Hence, lim,_,9 X, (¢) = 0. The treatment of ¥, (¢) is similar.
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The term

/I;}'(ue — ) dx]:);é = /l;}'(wg) (x,t1 — %) dx — /B}'(ws) (x, to + %) dx

converges to

/ Fw)(x, 1) dx — / F(w)(x, tg) dx.
B B

To show this, we consider two cases.

Case A: F is bounded. In this case, F is globally Lipschitz, thatis, | F(a) — F (b)| <
Cla — b|; therefore,

‘/B}—<w8 (x, o+ %)) — F(w(x, 1)) dx
5/ Clw® (x, 1o + =) — w(x, fo)] dx
B 2

1 £
< CIBIF (0 + 5 ) = w(e. 10)ll 2 dx.

which converges to zero as was explained before, see (6.4).

Case B: In this case, we have F(a) = a?. Therefore,

’/ ]:(wg(x, to + f)) — F(w(x, 1)) dx‘
5 2
2
< / |w® <x, to + E)) — w(x, 19)% dx
B 2
< / w? <x, o+ 5)) —wix, to)||w8(x, o+ 5)) — w(x, )] dx
B 2 2

€ €
=< ||w8(°, o + 5)) —w(e, f0)||L2(B)||w£<°, fo + 5)) + w(e, 0)ll22(p)

and since w € C([Ty, T1]; L2(B)), with an argument similar to the treatment of 77,
as we let € go to zero this term converges to zero.

Now we discuss the convergence of the nonlocal term. Our treatment is similar to
the argument in [7, Appendix B]. The aim is to show that the following converges to
zero.

1
/ // N (Jpu(x) —u(y)) — Jp(x) —v(y) x [(Fw’(x, 1)) — F(w(x, 1)
10 xR

— ((Fw(y,0)* = F(w(y,n))] dp dr.
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We split it into the two parts

1
/ // (Jpu(x) —u(y) — J,(wx) —v(y) x [(Fw*(x, 1) — F(w(x,1)
to By x B
— ((Fw* (3, ) — Flw(y, )] du dt

3l

+2/ // (Jp(x) —u(y) — Jpv(x) —v(y))
1o Bx (R*\By)

X [(Fw (v, ) — Fw(x, )] du d

= 01(e) +202(e).

Here we have used the boundary condition u = v(w = 0) for y € R"\B. Since
|F(a) — F(b)| < Cla — b|, we have

1 1
U@ Wiy = € [0 iy
To fo
After passing to a subsequence this sequence converges weakly in L?((fo, t1);

W$P(B3)) to F(w(x, t)) or in another words

(F(w(x, 1) = (F(w*(y,1))*

lx —y|# ™

converges weakly in Lp((to, t); LP(By x Bz)), and since

Jpu(x) —u(y)) — Jp(w(x) —v(y))
y|§+(p—1)s

lx —

belongs to L”/((to, 1); Lp/(Bz X Bz)), we get the desired convergence for ®1(¢).
Now for ®;,(¢e) consider

g&J%:/ JAMM—u@»—Zﬁmm—v@»dy
R™\ B, |x — y|rtsp

Then for almost every x € B,

e, 1P~ lu(p 1P+ e DI ol P!
IG(x, D) < Cln, s, p) Y s 2 dy
R\ B> |y[Fsp

< C(2Tail p—15p(u(e, 1); 0,2)P7  Ju(x, O~ + Jox, P,

(6.6)

The terms |u(x, £)|P~" and |v(x, 1)|”~! belongs to Lf’/((to, 1); LP/(B)) since u, v €
LP((ty, t1); L?(B)). The tail term its independent of x and belongs to LY (to, 11) by
the assumption

T /
f (Tailp—1,5p (-, 1); 0,2)))" dr < oco.
Tt

0
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Thus, G(x, 1) € Lp/([To, T1]; Lpl(Bz)) and as before after extracting a subsequence:
F(w®(x,1))* = F(w(x,t) in L”([to, ti]; L?(B)).

This shows that
n
O (e) = / / G, ) (F(w (e, 1)) — F(w(x. 1)
to B

converges to zero.
Finally, we let gy go to zero to get the desired result for [7p, 71]. We need to show
that the following converge to zero as &g tends to 0.

J = / F(wx, To)) — F(w(x, Ty + €o)) dx,
B

5 ;:/f(w(x,Tl))—]:(w(X,Tl —£0)) dx,
B
To+eo

T3 = / F(w(x, 1)) f(x,t) dx dr,
B

Ty
T

\74:=/1 /F(w(x,t))f(x,t) dx dr,
T]*é‘() B

and

A e /TWO // (Jp(u(x, 0 —uu, 1) — J(v(x, 1) — v(y, r)))
Ti nxR"

s e =y

x (F(w(x, 1) — F(w(y, t))) dx dy dr,

hi Jpu(x, 1) —uu, 1)) — Jp,(wx, 1) —v(y, 1))
vl L :
? Ti—¢o "XR"( |x - yl"“p )

X(F(w(x, 1) — F(w(y, z))) dx dy dr.

and

The arguments will be reminiscent of the ideas in the previous part.
We start with 7>, in the case of a bounded F', F is globally Lipschitz and we have

|7 < /B|f(w(x, ) — F(w(x, T — &) | dx < C/B lw(x, T1) —w(x, Ty —&o)| dx
< CIBITw(s, T) — w(, Ty — 0) | 25,

This converges to 0 since w € C([Ty, T1]; L?(B)), in the case of F(a) = a, we have

| 72| < /Blf(w(x, ) — F(w(x, T1 — £0))| dx < /Blw(x,Tl)z—w(x,Tl — &0)?| dx

< f |w(x, T1) —wx, Ty — 80)||w(x, ) +wkx, T — 80)| dx
B

< llw(e, T1) —w(e, Tt — el 2 llw. T1) + w(e, Ti — g0)ll 12(p)-
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Again since w € C([Tp, T1]; LZ(B)), this term converges to 0.
J1 can be treated in a similar way. For the term 74, using | F (a)| < Cla| we get

T

| T4 SC/ /Iw(x,t)llf(x,t)|dx dr.
Ty—eo Y B

Since w € LPP(B x [Ty, T1]) and f € LWD"P (B x [Ty, T1]), using Holder’s
inequality (2.11), one can see that

w(x, 1) f(x,1) € L'(B x [Ty, T1)).

Now using the absolute continuity of the integral for integrable functions, we can
conclude that J4 converges to 0. The reasoning for convergence of 73 is similar.
Now we turn our attention to the nonlocal terms.

o n Jpu(x, 1) —u(y, 1)) — Jp(v(x, 1) —v(y, 1))
N2 B L /\/1\3’sz2< |.X - )’|n+sp )

1—¢€0

X (F(w(x, 1) — F(w(y, t))) dx dy dt

+ 2/T1 // Jpu(x, 1) — u(y, 1) — Jy(v(x, 1) — v(y, 1))
T1—¢o Bx(R"\By) |x — y|n+sp

F(w(x,t)) dx dy df := O] 4+ 20,.

First, we treat ®;. Notice that since u, v € LP([Ty, T1]; W¥P(B;)) we have

Jpu(x, 1) —u(y, 1)) — Jp(v(x, 1) —v(y, 1))

n
24 (p—1
Ix — yl o H(p=Ds

€ LY ([To, Ty]; L (By x B))),

and using Lipschitz continuity of F and the fact that w € L?([Tp, T1]; W*P(B3)), we
have

Fw(x, 1) — F(w(y, 1))

n
lx —y|»*

€ LP([Ty, T1); L? (B2 x By)).

This implies that the integrand involved in ®; belongs to L'([Ty, T11; LY (B x B)).
And similar to the treatment of J4, since the volume of the integration region is
shrinking to 0, ®; converges to 0. To deal with ®,, notice that

F(w(x,1) € LP([To, Th]; L7 (B))

and define

G(x, 1) = / Jpu(x, t) —u(y, 1)) —r;’fs(v(x, 1) —v(y, 1)) .
R"\ B, |x — y|rtsp

We can estimate this integration in terms of the tail, that is,

G(x, )| < C(n,s,p)(Thﬂpqup<u(ur);o,2>-%|u<x,rnp'4-+|v(x,rnp—l),
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see, for example, (6.6). Therefore, G(x,t) € L”,([To, Ti1; Lp/(B)). Hence, using
Holder’s inequality

G(x,1)F(x,1) € L' ([Ty, T11; L' (B)).

This concludes the result. Nj can be treated in an exactly similar manner. 0
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