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Abstract. This paper is concerned with the Neumann problem for a class of doubly nonlinear equations for
the 1-Laplacian,

∂v

∂t
− �1u � 0 in (0, ∞) × �, v ∈ γ (u),

and initial data in L1(�), where � is a bounded smooth domain inRN and γ is a maximal monotone graph
in R × R. We prove that, under certain assumptions on the graph γ , there is existence and uniqueness of
solutions. Moreover, we proof that these solutions coincide with the ones of the Neumann problem for the
total variational flow. We show that such assumptions are necessary.

1. Introduction

Consider the doubly nonlinear diffusion problem:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂v
∂t (t, x) = div(α(∇u(t, x))), in (0,∞) × �,

v ∈ γ (u), in (0,∞) × �,

v(0, x) = v0(x), x ∈ �,

(1.1)

completed with boundary conditions, being � a bounded domain inRN , γ a maximal
monotone graph (possiblymultivalued) inR×R andα : RN → R

N . Typical examples
are α(ξ) = αp(ξ) := |ξ |p−2ξ , p > 1, and γ (r) = |r |m−1r ,m > 0. In these particular
cases, for p = 2 and m = 1 the equation reduces to the classical heat equation, while
for 0 < m < 1 it is the porous medium equation (see, e.g., [26]) and the p-Laplacian
diffusion equation for p > 1 andm = 1. In a general framework, case 0 < m < p−1
is known as a doubly nonlinear equation with slow diffusion, while the casem > p−1
is named a fast diffusion equation (see, e.g., [22]). Therefore, owing to the choice of
α and the graph γ , this equation may arise a variety of different situations and it
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possess a wide spectrum of applications, for instance, in fluid dynamics, soil science
and filtration, see [11] and [25]. Observe that, for p = 2, other typical examples are

γ (r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r if r < 0,

0 if 0 ≤ r ≤ 1,

r − 1 if r > 1,

for a Stefan type problem, or

γ (r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if r < 0,

[0,1] if r = 0,

1 if r > 0.

for a Hele-Shaw-type problem.
From a mathematical point of view, there is an extensive literature related to prob-

lem (1.1). Existence, uniqueness, regularity and asymptotic behavior of solutions
are treated under different restrictions on γ and α, and we refer some literature:
[1,2,16,21,23,24,26] and the literature therein.
Our main aim is to deal with existence and uniqueness for the limit case p = 1 for

the function αp, that is, α1(ξ) := ξ

|ξ | , γ amaximal monotone graph and homogeneous

Neumann boundary conditions. More precisely, by means of Crandall–Liggett’s the-
orem we obtain existence and uniqueness of entropy solution (see Definition 4.5) of
the doubly nonlinear problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂v
∂t − �1u � 0 in (0,∞) × �,

v = γ (u) in (0,∞) × �,

∂u
∂η

= 0 on (0,∞) × ∂�,

v(0, x) = v0(x) x ∈ �,

(1.2)

under the condition
{

γ is a non-decreasing continuous function such that γ (0) = 0 and

Rang(γ ) = R.
(1.3)

For this purpose, first of all we deal with the following elliptic problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v − �1u � f in �,

v ∈ γ (u) in �,

∂u
∂η

= 0 on ∂�.
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In Theorems 3.8 and 3.9, we prove the existence of solutions under the condition
{

γ is a maximal monotone graph such that γ (0) � 0 and

Rang(γ ) = R,
(1.4)

and we prove uniqueness for continuous γ in Theorem 3.7, that is, under assump-
tion (1.3). Note that (1.3) implies (1.4). Moreover, we see that for non-continuous
maximal monotone graphs there is non-uniqueness (Example 3.6). We also show that
condition Rang(γ ) = R is necessary for the existence of solutions (Example 3.12).

Remark 1.1. On account of our approach to solve problem (1.2) and the above com-
ments, condition (1.3) is natural for the study of such evolution problem. �

In [5] (see also [6]), it was studied the well-posedness of the Neumann problem
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂v
∂t − �1v � 0 in (0,∞) × �,

∂v
∂η

= 0 on (0,∞) × ∂�,

v(0, x) = v0(x) x ∈ �,

(1.5)

bymeans of theNonlinear Semigroup Theory. For that purpose, the following operator
A, defined in L1(�)×L1(�), was introduced to givemathematical sense to the formal

expression of �1v := div
( ∇v

|∇v|
)
(jointly with the homogenous Neumann boundary

conditions).

Definition 1.2.

(v,w) ∈ A ⇐⇒ v ∈ L1(�), Tk(v) ∈ BV (�) for all k > 0,

and there exists z ∈ X1(�), ‖z‖∞ ≤ 1, such that

w = − div(z) in D′(�),
∫

�

(z, DTk(v)) =
∫

�

|DTk(v)| ∀k > 0,

and

[z, ν] = 0 HN−1-a.e. on ∂�,

(see notation in Sects. 2.1 and 2.2).

Moreover, it was shown thatA is the closure in L1(�) × L1(�) of the subdifferential
of the energy functional 
 : L2(�) → (−∞,+∞] defined by


(v) =

⎧
⎪⎨

⎪⎩

∫

�

|Dv| if v ∈ BV (�) ∩ L2(�),

+∞ if v ∈ L2(�) \ BV (�).
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Since
 is a proper convex and lower semi-continuous function, then ∂
 is a maximal
monotone operator with dense domain, generating a contraction semigroup in L2(�)

that solves problem (1.5) for L2-data. Entropy solutions for L1-data v0 were introduced
to characterize mild solutions of the abstract Cauchy problem

⎧
⎨

⎩

vt + A(v) � 0,

v(0) = v0,

(1.6)

given by the Crandall–Liggett’s semigroup generation theorem ( [19]).

Remark 1.3. We show that the solutions of (1.2) are given by the solutions of (1.5)
(Theorem 4.4). This is a non-trivial result; we first need to prove directly existence
and uniqueness of solutions of problem (1.2). Observe that, at the level of elliptic
problems, we first prove Theorem 3.9 and afterward we can prove Theorem 3.11.
The fact that solutions of (1.5) are solutions of (1.2) gives a kind of invariance prop-

erty for the diffusion evolution problem via the 1-Laplacian, i.e., changing variables,

the solutions of wt − �1w � 0 and the solutions of wt − �1γ
−1(w) � 0

are the same provided that γ satisfies (1.3).

Observe that, written in this way, γ −1 can be a non-continuous maximal monotone
graph, hence not necessarily Lipschitz-continuous. When γ −1 is an increasing and
Lipschitz-continuous function, solutions of (1.5) are solutions of (1.2), see Proposi-
tion 3.10 at the level of the elliptic problems. �

2. Preliminaries

2.1. Functions of bounded variation

We will denote byM(�) the set of all Lebesgue measurable functions in �.
The natural energy space to study problem (1.2) is the space of functions of bounded

variation. For further information concerning functions of bounded variation, we refer
to [4] and [20]. Recall that if � is an open subset of RN , a function u ∈ L1(�)

whose gradient Du in the sense of distributions is a vector valued Radon measure
with finite total variation in � is called a function of bounded variation. The class of
such functions will be denoted by BV (�). The total variation of Du in � is defined
by the formula

|Du|(�) = sup

{ ∫

�

u div(φ) : φ ∈ C∞
0 (�,RN ), ‖φ‖ ≤ 1

}

.

The space BV (�) is endowed with norm

‖u‖BV (�) = ‖u‖L1(�) + |Du|(�).

Recall that anLN -measurable subset E ofRN has finite perimeter ifχE ∈ BV (RN ).
The perimeter of E is defined by Per(E) = |DχE |(RN ).
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2.2. A generalized Green’s formula

Let � be an open bounded set in R
N with Lipschitz boundary. Following [10], for

1 ≤ p ≤ ∞ let

X p(�) = {z ∈ L∞(�,RN ) : div(z) ∈ L p(�)}.
If z ∈ X p(�) and w ∈ BV (�) ∩ L p′

(�), we define the functional (z, Dw) :
C∞
0 (�) → R by the formula

〈(z, Dw), ϕ〉 = −
∫

�

w ϕ div(z) dx −
∫

�

w z · ∇ϕ dx .

Then, (z, Dw) is a Radon measure in �,
∫

�

(z, Dw) =
∫

�

z · ∇w dx ∀ w ∈ W 1,1(�) ∩ L p′
(�)

and
∣
∣
∣
∣

∫

B
(z, Dw)

∣
∣
∣
∣ ≤

∫

B
|(z, Dw)| ≤ ‖z‖∞

∫

B
|Dw| (2.1)

for any Borel set B ⊆ �.
Moreover, when z ∈ X p(�) and w ∈ BV (�) ∩ L p′

(�), we have the following
integration by parts formula

∫

�

w div (z) dx +
∫

�

(z, Dw) =
∫

∂�

[z, ν]w dHN−1, (2.2)

where [z, ν] is the weak trace on ∂� of the normal component of z (see [10]).
By (2.1), the measures (z, Du) and |(z, Du)| are absolutely continuous with respect

to the measure |Du| in �.
Thus, there is a density function

θ(z, Dw, ·) = d(z, Dw)

d|Dw| ∈ L∞(�, |Dw|),

satisfying

|θ(z, Dw, x)| ≤ 1 for |Dw|-a.e. x ∈ �.

The function θ(z, Dw, ·) is called the Radon–Nikodým derivative of (z, Dw) with
respect to |Dw|. Moreover, the following results hold.

Proposition 2.1. ([10], Chain rule for (z, D(·))) Let � be a bounded domain with
a Lipschitz-continuous boundary ∂�, and, for 1 ≤ p ≤ N and p′ its conjugate
exponent, let z ∈ X p(�) and w ∈ BV (�) ∩ L p′

(�). Then, for every Lipschitz-
continuous, monotonically increasing function T : R → R, one has that

θ(z, D(T ◦ w), x) = θ(z, Dw, x) for |Dw|-a.e. x ∈ �.
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We shall denote

sign0(r) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if r > 0,

0, if r = 0,

−1, if r < 0.

sign(r) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if r > 0,

[ − 1, 1], if r = 0,

−1, if r < 0,

and sign+(r) := (sign(r))+, and Tk(r) := [k − (k − |r |)+]sign0(r), k ≥ 0.

Remark 2.2. Let us point out that although Tk is only non-decreasing, we also have
the following result

θ(z, D(Tku), x) = θ(z, Du, x) for |DTk |-a.e. x ∈ �.

�

2.3. Accretive operators and nonlinear semigroups

An operator A on X is a possibly nonlinear and multivalued mapping A : X → 2X .
It is standard to identify an operator A on X with its graph

A :=
{
(u, v) ∈ X × X

∣
∣
∣ v ∈ Au

}
in X × X

and so, one sees A as a subset of X × X . The set D(A) := {u ∈ X | Au �= ∅} is called
the domain of A, and R(A) := ⋃

u∈D(A)

Au the range of A.

Definition 2.3. An operator A on X is called m-accretive operator on X if A is
accretive, that is, for every (u, v), (û, v̂) ∈ A and every λ > 0,

‖u − û‖X ≤ ‖u − û + λ(v − v̂)‖X
and if for all λ > 0 the range condition

R(I + λA) = X

holds.

Note that A is accretive if the resolvent Jλ := (I + λA)−1 are contractions for all
λ > 0. The Yosida approximation of A is defined as

Aλ := 1

λ
(I − Jλ), for λ > 0.

We have that

Aλ : D(Jλ) → X is Lipschitz-continuous with Lipschitz constant
2

λ
.

Moreover,

Aλu ∈ AJλu, u = Jλu + λAλu and ‖Aλu‖ ≤ inf{‖v‖ : v ∈ Au}.
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In the case that the Banach space is L1(�), with � ⊂ R
N an open set and norm

‖u‖1 :=
∫

�

|u(x)|dx, u ∈ L1(�),

it is well known (see [14]) that

an operator A on L1(�) is accretive ⇐⇒ for every (u, v), (û, v̂) ∈ A

there exists ξ ∈ sign(u − û) such that
∫

�

(v − v̂)ξdx ≥ 0.

Definition 2.4. We say that an operator A on L1(�) is T -accretive if for every (u, v),
(û, v̂) ∈ A and every λ > 0,

‖(u − û)+‖1 ≤ ‖(u − û + λ(v − v̂))+‖1.

If A is anm-accretive operator on a Banach space X , then by the classical existence
theory (see, e.g., [14, Theorem 6.5], or [12, Corollary 4.2]), the first-order Cauchy
problem

⎧
⎪⎨

⎪⎩

du

dt
+ A(u(t)) � g(t) on (0, T ),

u(0) = u0,

(2.3)

is well-posed for every u0 ∈ D(A)
X , and g ∈ L1(0, T ; X) in the followingmild sense.

Definition 2.5. For given u0 ∈ D(A)
X and g ∈ L1(0, T ; X), a function u ∈

C([0, T ]; X) is called a mild solution of Cauchy problem (2.3) if u(0) = u0 and
for every ε > 0, there is a partition 0 = t0 < t1 < · · · < tN = T and a step function

uε,N (t) = u0 χ{t=0}(t) +
N∑

i=1

ui χ(ti−1,ti ](t), t ∈ [0, T ],

satisfying

• ti − ti−1 < ε for all i = 1, . . . , N ,

•
N∑

N=1

∫ ti

ti−1

‖g(t) − gi‖X dt < ε, where gi := 1

ti − ti−1

∫ ti

ti−1

g(t) dt,

• ui − ui−1

ti − ti−1
+ Aui � gi for all i = 1, . . . , N ,

and

sup
t∈[0,T ]

‖u(t) − uε,N (t)‖X < ε.
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In the case g = 0, the unique mild solution is given by the Crandall–Liggett’s
exponential formula

u(t) = e−t Au0 := lim
n→∞

(

I + t

n
A

)−n

u0.

Mild solutions are limits of step functions which are not necessarily differentiable
in time. This leads to the notion of strong solution of the Cauchy problem (2.3).

Definition 2.6. For given u0 ∈ D(A)
X and g ∈ L1(0, T ; X), a function u ∈

C([0, T ]; X)∩W 1,1
loc ((0, T ); X) is called a strong solution of the Cauchy problem (2.3)

if u(0) = u0 and, for a.e. t ∈ (0, T ), u(t) ∈ D(A) and Au(t) � g(t) − du
dt (t).

We now recall a Bénilan–Crandall relation between functions u, v ∈ L1(�, ν).
Denote by J0 and P0 the following sets of functions:

J0 := { j : R → [0,+∞] : j is convex, lower semi-continuous and j (0) = 0},
P0 := {

ρ ∈ C∞(R) : 0 ≤ ρ′ ≤ 1, supp(ρ′) is compact and 0 /∈ supp(ρ)
}
.

Assume that ν(�) < +∞ and let u, v ∈ L1(�, ν). The following relation between u
and v is defined in [15]:

u � v if
∫

�

j (u) dν ≤
∫

�

j (v) dν for every j ∈ J0.

Moreover, the following equivalences are proved in [15, Proposition 2.2]:
∫

�

vρ(u)dν ≥ 0 ∀ρ ∈ P0 ⇐⇒ u � u + λv ∀λ > 0,
∫

�

vρ(u)dν ≥ 0 ∀ρ ∈ P0 ⇐⇒
∫

{u<−h}
vdν ≤ 0 &

0 ≤
∫

{u>h}
vdν ∀h > 0.

The following result is given in [15]

Proposition 2.7. Let � ⊂ R
N be an open bounded set.

(i) For any u, v ∈ L1(�), if
∫

�
up(u)dx ≤ ∫

�
vp(u)dx for all p ∈ P0, then u � v.

(ii) If u, v ∈ L1(�) and u � v, then ‖u‖p ≤ ‖v‖p for all 1 ≤ p ≤ ∞.
(iii) If v ∈ L1(�), then {u ∈ L1(�) : u � v} is a weakly compact subset of L1(�).
(iv) If un, u ∈ L1(�) satisfy un � u and un → u weakly in L1(�), then un → u in

L1(�).

Let γ ⊂ R × R be a maximal monotone graph. We denote by γ 0(r) the element
of γ (r) of minimal absolute value. Then, for the Yosida approximations of γ we have
that ([18, Proposition 2.6])

for r ∈ D(γ ) : lim
λ↓0 γλ(r) = γ 0(r) and |γλ(r)| ↑ |γ 0(r)| as λ ↓ 0.
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3. The elliptic problem

From [4, Theorem 2], given f ∈ L1(�) there exists a unique entropy solution v of
the elliptic problem

⎧
⎨

⎩

v − �1v � f in �,

∂v
∂η

= 0 on ∂�,

defined as follows: v ∈ L1(�) with Tk(v) ∈ BV (�) for all k > 0 and such that there
exists z ∈ X1(�) with ‖z‖∞ ≤ 1,

−div(z) = f − v in D′(�),

(z, DTk(v)) = |DTk(v)| as measures for all k > 0

and

[z, ν] = 0 HN−1-a.e. on ∂�.

Let γ be a maximal monotone graph in R × R with 0 ∈ γ (0). Following such
concept, we give the following concept of entropy solution of the following elliptic
problem

(Sγ

f )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v − �1u � f in �,

v ∈ γ (u) in �,

∂u
∂η

= 0 on ∂�.

Definition 3.1. For f ∈ L1(�), we say that v is an entropy solution of problem (Sγ

f )

if v ∈ L1(�) and there exist u ∈ M(�) with Tk(u) ∈ BV (�) for all k > 0 and
z ∈ X1(�) with ‖z‖∞ ≤ 1 such that

v ∈ γ (u) a.e. in �, (3.1)

−div(z) = f − v in D′(�),

(z, DTk(u)) = |DTk(u)| as measures for all k > 0,

[z, ν] = 0 HN−1-a.e. on ∂�. (3.2)

For data in f ∈ L∞(�), we also define the following concept of weak solution of
problem (Sγ

f ).

Definition 3.2. For f ∈ L∞(�), we say that v is a weak solution of problem (Sγ

f ) if
v ∈ L∞(�) and there exist u ∈ BV (�) ∩ L∞(�) and z ∈ X1(�) with ‖z‖∞ ≤ 1
such that

v ∈ γ (u) a.e. in �,

−div(z) = f − v in D′(�),

(z, Du) = |Du| as measures,

[z, ν] = 0 HN−1-a.e. on ∂�. (3.3)
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We have that every weak solution is an entropy solution.
Working as in [6, Lemma 2.4], it is easy to see the two following results.

Lemma 3.3. For f ∈ L∞(�), the following assertions are equivalent:

(a) v is weak solution of problem (Sγ

f );
(b) there exist u ∈ BV (�) ∩ L∞(�) and z ∈ X∞(�) with ‖z‖∞ ≤ 1 satisfying

(3.1), (3.2) and
∫

�

(ϕ − u)( f − v) dx ≤
∫

�

z · ∇ϕ dx −
∫

�

|Du|,
∀ϕ ∈ W 1,1(�) ∩ L∞(�);

(3.4)

(c) there exist u ∈ BV (�) ∩ L∞(�) and z ∈ X∞(�) with ‖z‖∞ ≤ 1 satisfying
(3.1), (3.2) and

∫

�

(ϕ − u)( f − v) dx ≤
∫

�

(z, Dϕ) −
∫

�

|Du|,
∀ϕ ∈ BV (�) ∩ L∞(�);

(3.5)

(d) there exist u ∈ BV (�) ∩ L∞(�) and z ∈ X∞(�) with ‖z‖∞ ≤ 1 satisfying
(3.1), (3.2) and

∫

�

ϕ( f − v) dx =
∫

�

(z, Dϕ), ∀ϕ ∈ BV (�) ∩ L∞(�).

Lemma 3.4. For f ∈ L1(�), the following assertions are equivalent:

(a) v is an entropy solution of problem (Sγ

f );
(b) there exist u ∈ M(�) with Tk(u) ∈ BV (�) for all k > 0 and z ∈ X1(�) with

‖z‖∞ ≤ 1 satisfying (3.1), (3.2) and
∫

�

(ϕ − Tk(u))( f − v) dx ≤
∫

�

z · ∇ϕ dx −
∫

�

|DTk(u)|,
∀ϕ ∈ W 1,1(�) ∩ L∞(�);

(c) there exist u ∈ M(�) with Tk(u) ∈ BV (�) for all k > 0 and z ∈ X1(�) with
‖z‖∞ ≤ 1 satisfying (3.1), (3.2) and

∫

�

(ϕ − Tk(u))( f − v) dx ≤
∫

�

(z, Dϕ) −
∫

�

|DTk(u)|,
∀ϕ ∈ L∞(�) ∩ BV (�);

(3.6)

As can be verified in the above lemma, the notion of entropy solution for the 1-
Laplacian defined here is analogous to the concept of entropy solution for the p-
Laplacian (1 < p < N ) introduced in the pioneering paper [13].

Remark 3.5. Let v be an entropy solution of problem (Sγ

f ). Then, there exist u ∈
M(�) with Tk(u) ∈ BV (�) for all k > 0 and z ∈ X1(�) with ‖z‖∞ ≤ 1 such that
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v ∈ γ (u) and (3.6) holds true. Then, if we take Tk(u) ± 1 as test function in (3.6), it
follows that

∫

�

f (x)dx =
∫

�

v(x)dx .

Therefore, denoting

γ − := inf Ran(γ ) and γ + := supRan(γ ),

the following condition must be satisfied

γ −LN (�) ≤
∫

�

f (x)dx ≤ γ +LN (�).

Therefore, in the case Rang(γ ) = R this is always true for any f ∈ L1(�). �

It is worthy to mention that if γ is a multivalued maximal monotone graph, the
corresponding problem (Sγ

f ) has more than one weak solution, as we show in the next
example.

Example 3.6. Let γ be a multivalued graph such that

γ (0) = [0, 1].
Consider � :=]− 1, 1[ and f (x) := 1

2 for all x ∈]− 1, 1[. We define z :]− 1, 1[→ R

as

z(x) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if x ∈ ]−1,− 1
2

] ∪ [ 1
2 , 1

[
,

1
2 x + 1

4 , if x ∈ [− 1
2 ,− 1

4

]

− 1
2 x, if x ∈ [− 1

4 ,
1
4

]
,

1
2 x − 1

4 , if x ∈ [ 1
4 ,

1
2

]
.

Then, ‖z‖∞ ≤ 1, [z, ν] = 0 and

v(x) := div z(x) + f (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
2 , if x ∈ ]−1,− 1

2

] ∪ [ 1
2 , 1

[
,

1, if x ∈ [− 1
2 ,− 1

4

]

0, if x ∈ [− 1
4 ,

1
4

]
,

1, if x ∈ [ 1
4 ,

1
2

]
.

Clearly, v ∈ γ (0). Therefore, v is a weak solution of problem (Sγ

f ). Now, taking z = 0,

it follows that f is also a weak solution of problem (Sγ

f ). In particular, for the Stefan

type problem, there is not uniqueness of weak solution of problem (Sγ

f ).
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Due to the above example, we need to impose some restriction to the maximal
monotone graph γ in order to get uniqueness of entropy solution of problem (Sγ

fi
).

In this direction, we have the following result for graphs satisfying (1.3) without the
range condition.

Theorem 3.7. Assume that γ : D(γ ) ⊂ R → R is a non-decreasing continuous
function with γ (0) = 0. Given fi ∈ L1(�) and vi entropy solutions of (Sγ

fi
), for

i = 1, 2, then

‖(v1 − v2)
+‖1 ≤ ‖( f1 − f2)

+‖1. (3.7)

In particular,

‖v1 − v2‖1 ≤ ‖ f1 − f2‖1. (3.8)

Proof. For i = 1, 2, we have that there exists ui ∈ L1(�) with Tk(ui ) ∈ BV (�) for
all k > 0 and there exists zi ∈ X1(�) with ‖zi‖∞ ≤ 1 such that vi = γ (ui ) and

− div(zi ) = fi − vi in D′(�),

(zi , DTk(ui )) = |DTk(ui )| as measures for all k > 0,

[zi , ν] = 0 HN−1-a.e. on ∂�. (3.9)

Let pε be a smooth strictly monotone approximation of the sign function. Then,
applying integration by parts formula (2.2), we have

∫

�

( fi − vi )pε(Tk(u1) − Tk(u2))dx = −
∫

�

div(zi )pε(Tk(u1) − Tk(u2))dx

=
∫

�

(zi , Dpε(Tk(u1) − Tk(u2))).

Thus,
∫

�

(v1 − v2)pε(Tk(u1) − Tk(u2))dx = −
∫

�

(z1 − z2, Dpε(Tk(u1) − Tk(u2)))

+
∫

�

( f1 − f2)pε(Tk(u1) − Tk(u2))dx

≤ −
∫

�

(z1 − z2, Dpε(Tk(u1) − Tk(u2)))

+‖ f1 − f2‖1
Now, from (3.9) and (2.1), we have

∫

B
(z1 − z2, D(Tk(u1) − Tk(u2))) ≥ 0, for all Borel set B ⊂ �.

This implies that

θ(z1 − z2, D(Tk(u1) − Tk(u2)), x) ≥ 0 |D(Tk(u1) − Tk(u2))|-a.e.
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Since, according to Proposition 2.1, we have

θ(z1 − z2, Dpε(Tk(u1) − Tk(u2)), x) = θ(z1 − z2, D(Tk(u1) − Tk(u2)), x)

|D(Tk(u1) − Tk(u2))|-a.e. and |Dpε(Tk(u1) − Tk(u2))|-a.e., we get
∫

�

(z1 − z2, Dpε(Tk(u1) − Tk(u2)))

=
∫

�

θ(z1 − z2, Dpε(Tk(u1) − Tk(u2)), x)d|Dpε(Tk(u1) − Tk(u2))| ≥ 0.

Therefore,
∫

�

(v1 − v2)pε(Tk(u1) − Tk(u2))dx ≤ ‖ f1 − f2‖1.

Taking limit as k → ∞, we get
∫

�

(v1 − v2)pε(u1 − u2)dx ≤ ‖ f1 − f2‖1.

Taking now limit as ε → 0+, we have that there exists ξ(x) ∈ sign((u1(x) − u2(x))
LN -a.e. x ∈ � such that

∫

�

(v1 − v2)ξ(x)dx ≤ ‖ f1 − f2‖1.

Now, since vi = γ (ui ), i = 1, 2, and γ is non-decreasing and γ (0) = 0, we have
ξ(x) ∈ sign((v1(x) − v2(x)), if v1(x) �= v2(x). Hence, since γ is continuous, which
for a maximal monotone graph is equivalent to say that γ (r) is always univalued for
any r ∈ D(γ ),

‖v1 − v2‖1 =
∫

{v1 �=v2}
(v1 − v2)ξ(x)dx ≤ ‖ f1 − f2‖1,

and (3.8) holds.
The proof of (3.7) is similar but using a smooth monotone approximation of the

sign+. �

Let us now prove existence for problem (Sγ

f ) for graphs satisfying condition (1.4).

Theorem 3.8. Let γ be a graph satisfying (1.4) and f ∈ C∞
c (�). Then, there exists

v f weak solution of problem (Sγ

f ) with v f � f.

Moreover, for any f̃ ∈ C∞
c (�), it follows

‖(v f − v f̃ )
+‖1 ≤ ‖( f − f̃ )+‖1,

for the weak solutions constructed here.



67 Page 14 of 26 J. M. Mazon et al. J. Evol. Equ.

Proof. Given f ∈ C∞
c (�), we must find v ∈ L∞(�) and u ∈ BV (�)∩ L∞(�)with

v ∈ γ (u) a.e. in �,

and z ∈ X1(�), with ‖z‖∞ ≤ 1, satisfying (3.2) and (3.4).
By [8, Theorem 3.9 (i)], for any p > 1, there exist u p ∈ W 1,p(�) and vp ∈ γ (u p) ∈

L1(�) such that
∫

�

|∇u p|p−2∇u p · ∇ϕdx +
∫

�

vpϕdx =
∫

�

f ϕdx, (3.10)

for all ϕ ∈ W 1,p(�) ∩ L∞(�). Moreover,

vp � f, for all p > 1, (3.11)

and, since Rang(γ ) = R,

‖u p‖∞ ≤ M1, for all p > 1.

Taking ϕ = u p ∈ W 1,p(�)∩ L∞(�) as a test function and taking into account that
u pvp ≥ 0 it follows that

∫

�

|∇u p|p =
∫

�

u p( f − vp) ≤
∫

�

f u p ≤ M2. (3.12)

Therefore, by Hölder inequality we get
∫

�

|∇u p| ≤ M3.

Thus, there exists u ∈ BV (�) ∩ L∞(�) such that, up to a subsequence (no rela-
beled),

u p → u in Lq(�), for 1 ≤ q < 1∗ := N

N − 1
. (3.13)

Moreover, inequality (3.12) allows to establish the following statements (see [5]):
There exists a bounded vector field z ∈ L∞(�;RN ) with ||z||∞ ≤ 1 such that

|∇u p|p−2∇u p ⇀ z, in Lr (�;RN ), for all 1 ≤ r < ∞, (3.14)

as p → 1+. In particular,

−div(z) = f − v, in D′(�).

On the other hand, by (3.11) we obtain that

vp ⇀ v, in Lq(�), 1 ≤ q < ∞, (3.15)
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being v � f . This result, in addition to (3.13), implies that

v ∈ γ (u) a.e. in �.

In order to show that v is a weak solution of problem (Sγ

f ), for each ϕ ∈ W 1,1(�)

∩ L∞(�) we consider the sequence {ϕn} ⊂ C∞(�̄) such that ϕn → ϕ in W 1,1(�).
Now, taking ϕn − u p as a test function in (3.10) and taking limits it follows

lim
p→1+

∫

�

|∇u p|p = lim
p→1+

∫

�

|∇u p|p−2∇u p∇ϕn

− lim
p→1+

∫

�

( f − vp)(ϕn − u p). (3.16)

By (3.13) and (3.15), we get
∫

�

( f − vp)(ϕn − u p) →
∫

�

( f − v)(ϕn − u),

and by (3.14)
∫

�

|∇u p|p−2∇u p∇ϕn →
∫

�

z∇ϕn .

In addition, using Young’s inequality and the weak lower semi-continuity of the total
variation, we obtain

lim
p→1+

∫

�

|∇u p|p ≥ lim
p→1+

(

p
∫

�

|∇u p| − (p − 1)|�|
)

≥ lim
p→1+ inf

(∫

�

|∇u p| − (p − 1)|�|
)

=
∫

�

|Du|.

Therefore, expression (3.16) yields
∫

�

|Du| ≤
∫

�

z∇ϕn −
∫

�

( f − v)(ϕn − u).

Finally, taking limits as n → ∞ we obtain inequality (b) from Lemma 3.3, which
means that v is a weak solution of problem (Sγ

f ).
The second part is a consequence of [8, Theorem 3.9 (ii)] and the above

construction. �

Theorem 3.9. Assume that γ satisfies condition (1.4). Then, for any f ∈ L1(�) there
exists an entropy solution of problem (Sγ

f ).

Proof. Given f ∈ L1(�), let fn ∈ C∞
c (�) be such that fn → f in L1(�). For any

n ∈ N, by Theorem 3.8 there exists a weak solution vn of problem (Sγ

fn
) such that
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vn � fn . Thus, there exists un ∈ BV (�) ∩ L∞(�) and there exists zn ∈ X1 with
‖zn‖∞ ≤ 1 such that

vn ∈ γ (un) a.e. in �,

−div(zn) = fn − vn, in D′(�), (3.17)

and
∫

�

( fn − vn)(ϕ − un) + ‖Dun‖ ≤
∫

�

(zn, Dϕ), ∀ϕ ∈ BV (�) ∩ L∞(�). (3.18)

Taking ϕ = un − Tk(un) in (3.18), we have

−
∫

�

( fn − vn)Tk(un) +
∫

�

|Dun| ≤
∫

�

(zn, Dun) −
∫

�

|DTk(un)|.

Then, by (2.1) and since vnTk(un) ≥ 0, we get
∫

�

|DTk(un)| ≤
∫

�

fnTk(un) ≤ k‖ f ‖1.

Then, by the compact embedding, taking subsequences and using a diagonal process,
we have

Tk(un) → σk, n → ∞, in Lq(�) and a.e. for 1 ≤ q < 1∗,

with

|σk | ≤ k.

Let us see now that (remark that this argument is not needed if [0,+∞[⊂ D(γ ),
similarly for the argument with the negative part)

LN ({x ∈ � : σ+
k (x) = k}) → 0, as k → ∞. (3.19)

In fact, since γ 0 is lower semi-continuous and Rang(γ 0) = R, by applying Fatou’s
lemma it follows that

LN ({x ∈ � : σ+
k (x) = k}) =

∫

{x∈�:σ+
k (x)=k}

γ 0(σ+
k (x))

γ 0(k)
≤ 1

γ 0(k)
lim inf
n→∞

∫

�

γ 0(Tk(un)
+)

≤ 1

γ 0(k)
lim inf
n→∞

∫

�

v+
n ≤ 1

γ 0(k)
‖ f ‖1 → 0, k → ∞.

Similarly, it is shown that

LN ({x ∈ � : σ−
k (x) = k}) → 0, k → ∞. (3.20)

By (3.19) and (3.20), if we define

u(x) := σk(x) on {x ∈ � : |σk(x)| = k},
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we have that u is measurable and

un converges to u a.e. in �.

Now, by using the second part in Theorem 3.8, we get

‖vn − vm‖1 ≤ ‖ fn − fm‖1 for all n,m ∈ N.

Therefore,

vn → v in L1(�), (3.21)

and

v ∈ γ (u) a.e. in �.

On the other hand, since zn ∈ X1(�) with ‖zn‖∞ ≤ 1, we may assume that

zn → z in the weak∗ topology of L∞(�,RN ). (3.22)

Then, from (3.17),

−div(z) = f − v, in D′(�).

Given now ϕ ∈ W 1,1(�) ∩ L∞(�) and taking ϕ + un − Tk(un) as test function in
(3.18), we obtain

∫

�

( fn − vn)(ϕ − Tk(un)) + ‖Dun‖ ≤
∫

�

(zn, D(ϕ + un − Tk(un))

≤
∫

�

zn · ∇ϕ dx +
∫

�

(zn, D(un − Tk(un))

≤
∫

�

zn · ∇ϕ dx +
∫

�

|D(un − Tk(un))|.

Thus, applying [5, Lemma 3], we arrive to
∫

�

( fn − vn)(ϕ − Tk(un)) + ‖DTk(un)‖ ≤
∫

�

zn · ∇ϕ dx .

Then, taking limit as n → ∞ and having in mind (3.21), (3.22) and the lower semi-
continuity of the total variation, we get

∫

�

( f − v)(ϕ − Tk(u)) + ‖DTk(u)‖ ≤
∫

�

z · ∇ϕ dx . �

Let us now prove that, under assumption (1.3), the unique solution of problem (Sγ

f )

coincides by the unique solution of (SIdf ). Let us first see an easy situation.
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Proposition 3.10. Let γ −1 be an increasing and Lipschitz-continuous function with
γ (0) = 0 and Rang(γ ) = R. Let v ∈ BV (�) ∩ L∞(�) be the unique weak solution
of (SIdf ) for f ∈ L∞(�). Then, v is also a weak solution of problem (Sγ

f ).

Proof. By setting u := γ −1(v) (which is well defined since Rang(γ ) = R), we have

u ∈ BV (�) ∩ L∞(�)

and

|Du| � |Dv|

(see [4, Theorems 3.101 and 3.99]). Now, by Proposition 2.1 and (3.3) it follows

θ(z, Du, .) = θ(z, Dγ −1(v), .) = θ(z, Dv, .) = 1 |Dv|-a.e., hence |Du|-a.e.;

consequently,

(z, Du) = |Du| as measures.

Therefore, v is a weak solution of problem (Sγ

f ). �

Theorem 3.11. Under condition (1.3), the entropy solution of problem (Sγ

f ) is given

by the entropy solution of problem (SIdf ), i.e., of problem

⎧
⎨

⎩

v − �1v � f in �,

∂v
∂η

= 0 on ∂�.

Proof. By Theorem 3.7, it is enough to prove it for data f ∈ C∞
c (�). So, our aim is

to see that the (weak) solution v to
⎧
⎨

⎩

v − �1v � f in �,

∂v
∂η

= 0 on ∂�,
(3.23)

is the (weak) solution of
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v − �1u � f in �,

v = γ (u) in �,

∂u
∂η

= 0 on ∂�.

(3.24)

Let γ̃n(r) = γ1/n(r)+ 1
n r , where γ1/n is the Yosida approximation of γ (and where

1
n r can be deleted if the graph of γ has not flat zones). Then, γ̃n(r) is a Lipschitz-
continuous and increasing function also satisfying Rang(γ̃n) = R. Therefore, from
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Theorem 3.8, there exist vn ∈ L∞(�), un ∈ BV (�) ∩ L∞(�) and zn ∈ X1(�) with
‖zn‖∞ ≤ 1 such that

vn = γ̃n(un) in �,

vn � f,

−div(zn) = f − vn in D′(�), (3.25)

(zn, Dun) = |Dun| as measures,

[zn, ν] = 0 HN−1-a.e. on ∂�. (3.26)

Moreover by (3.5), we have
∫

�

(ϕ − un)( f − vn) dx ≤
∫

�

(zn, Dϕ) −
∫

�

|Dun|,
∀ϕ ∈ BV (�) ∩ L∞(�).

(3.27)

Since vn := γ̃n(un), we have

vn ∈ BV (�)

and

|Dvn| � |Dun|.
By (3.26) and Proposition 2.1, we have

θ(zn, Dvn, .) = θ(zn, Dγ̃n(un), .) = θ(zn, Dun, .) = 1 |Dun|-a.e., hence |Dvn|-a.e.,
consequently,

(zn, Dvn) = |Dvn| as measures,

and, therefore, we get that vn is a (weak) solution of problem (3.23) with vector field
zn . Therefore, by uniqueness of problem (3.23), we have

vn = v.

And, by (3.27), we have
∫

�

(ϕ − un)( f − v) dx ≤
∫

�

(zn, Dϕ) −
∫

�

|Dun|,
∀ϕ ∈ BV (�) ∩ L∞(�).

(3.28)

Now, since γ̃n(un) = v � f , we get

‖γ1(un)‖qq ≤ ‖γ1/n(un)‖qq ≤ ‖γ̃n(un)‖qq ≤ ‖ f ‖qq ,
for q ∈ [1,∞]. In particular, ‖un‖∞ ≤ C1 := max{−γ −1

1 (−‖ f ‖∞), γ −1
1 (‖ f ‖∞)},

for all n ∈ N.
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Finally, taking ϕ = 0 as a test function in (3.28) we obtain
∫

|Dun| ≤
∫

un( f − v) ≤ C2, for all n ∈ N,

so that {un} is bounded in BV (�). It follows that there exists u ∈ BV (�) such that
up to a subsequence (no relabeled)

un → u in Lm(�), for 1 ≤ m <
N

N − 1
,

and

un(x) → u(x) for almost every x ∈ �.

This implies that v = γ (u).
On the other hand, since zn ∈ X1(�) with ‖zn‖∞ ≤ 1, we may assume that

zn → z in the weak∗ topology of L∞(�,RN ).

In particular, from (3.25)

−div(z) = f − v, in D′(�).

Then, by [6, Proposition C.12] and having in mind the lower semi-continuity of the
total variation, taking limits in (3.28) as n → ∞, we get

∫

�

(ϕ − u)( f − v) dx ≤
∫

�

(z, Dϕ) −
∫

�

|Du|, ∀ϕ ∈ BV (�) ∩ L∞(�).

Therefore, by Lemma 3.3, we have that v is a solution of (3.24). �

In the next example will be see that the condition Rang(γ ) = R is necessary in the
above theorem.

Example 3.12. Let, for n ∈ N, βn(r) = 1
n arctan(r), and let f ∈ L1(�),

∫

�
f = 0.

If (Sβn
f ) has a solution for all n ∈ N, then there exists un ∈ M(�), Tk(un) ∈ BV (�)

for all k > 0, βn(un) ∈ L1(�), and there exists zn ∈ X1(�) with ‖zn‖∞ ≤ 1, such
that

− div(zn) = f − βn(un) in D′(�). (3.29)

Now, since

− π

2n
≤ βn(un) ≤ π

2n
,

taking limits in (3.29) we find z ∈ X1(�), ‖z‖∞ ≤ 1, such that

− div(z) = f in D′(�), (3.30)
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and we get a contradiction with the well-known fact that there exist f ∈ L1(�),
∫

�
f = 0, such that the above equation has not solution in X1(�) (see, for instance,

[17]). Nevertheless, let us see, with an easy example, that there are L∞-functions for
which (3.30) has no solution in X1(�) with ‖z‖∞ ≤ 1. In fact, (3.30) implies that

∣
∣
∣
∣

∫

�

f (x)ϕ(x)dx

∣
∣
∣
∣ ≤

N∑

i=1

∫

�

∣
∣
∣
∣
∂ϕ

∂xi
(x)

∣
∣
∣
∣ dx ∀ϕ ∈ W 1,1

0 (�). (3.31)

Take � = B1(0) the ball in R
N centered at 0 of radius 1, and, for k > 0,

f (x) =
⎧
⎨

⎩

−k, |x | ≤ 1/2,

k
2N−1

, 1/2 < |x | < 1,

which satisfies
∫

�
f = 0. Take now ϕ(x) = 1−|x |, which belongs toW 1,1

0 (�). Then,
on the one hand,

N∑

i=1

∫

�

∣
∣
∣
∣
∂ϕ

∂xi
(x)

∣
∣
∣
∣ dx ≤ N |�|,

and, on the other hand, since
∫

�
f = 0,

∣
∣
∣
∣

∫

�

f (x)ϕ(x)dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

�

|x | f (x)dx
∣
∣
∣
∣ = N |�|k

2(N + 1)(2N − 1)
,

which, for k > 2(N + 1)(2N − 1), contradicts (3.31). �

4. The evolution problem

In this section, we study the evolution problem (1.2).
We do this through the Nonlinear Semigroup Theory, and therefore, we introduce

an operator B in L1(�) that allows to rewrite problem (1.2) as the abstract Cauchy
problem

⎧
⎪⎨

⎪⎩

dv

dt
+ B(v(t)) � 0 on (0, T ),

v(0) = v0.

(4.1)

Definition 4.1. (v,w) ∈ B if and only if v,w ∈ L1(�) and there exist u ∈ M(�)

such that Tk(u) ∈ BV (�) for all k > 0 and v ∈ γ (u) a.e. in �, and there exists
z ∈ X1(�) with ‖z‖∞ ≤ 1, satisfying:

−div(z) = w in D′(�)

and
∫

�

(ϕ − Tk(u))wdx ≤
∫

�

z · ∇ϕdx −
∫

�

|DTk(u)|, ∀ϕ ∈ BV (�) ∩ L∞(�).
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Note that for f ∈ L1(�), we have that

(I + B)−1 f = v ⇐⇒ v is an entropy solution of problem (Sγ

f ).

By Theorems 3.7 and 3.9, we have the following result.

Theorem 4.2. Under condition (1.3),B is a T -accretive and m-accretive operator on
L1(�).

As a consequence of the above result, by Crandall–Liggett’s theorem, it follows

that, for every initial data v0 ∈ D(B)
L1(�)

, the abstract Cauchy problem (4.1) has a
unique mild solution v(t) given by the exponential formula

v(t) = e−tBv0 = lim
n→∞

(

I + t

n
B

)−n

v0.

In [5] (see also [6]), it is shown that the operator A given in Definition 1.2 is an
m-completely accretive operator in L1(�) and that for every initial data v0 ∈ L1(�)

the mild solution

v(t) = e−tAv0 = lim
n→∞

(

I + t

n
A

)−n

v0

is a strong solution.

Theorem 4.3. The following equality holds

D(B)
L1(�) = L1(�).

Proof. It is enough to prove that C∞
c (�) ⊂ D(B)

L1(�)
. So, take f ∈ C∞

c (�) and

take fn = (
I + 1

nB
)−1

f . Observe that fn ∈ D(B) and it is a (weak) solution of

(Sγ

f )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

v − 1
n�1u � f in �,

v ∈ γ (u) in �,

∂u
∂η

= 0 on ∂�.

Therefore, by Theorem 3.8 and Lemma 3.3 (d), fn ∈ L∞(�), fn � f , and there exist
un ∈ BV (�) ∩ L∞(�) and zn ∈ X1(�) with ‖z‖∞ ≤ 1 satisfying (3.1), (3.2) and

∫

�

ϕ( f − fn) dx = 1

n

∫

�

(zn, Dϕ), ∀ϕ ∈ BV (�) ∩ L∞(�).

Now, for ϕ ∈ BV (�) ∩ L∞(�), since

lim
n

1

n

∫

�

(zn, Dϕ) = 0,
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we have that

lim
n

∫

�

ϕ( f − fn) dx = 0.

Now, since fn � f , by (iv) in Proposition 2.7 we get

lim
n

fn = f in L1(�).

�

Then, as a consequence of Theorem 3.11, we obtain the following result:

Theorem 4.4. Under condition (1.3) and for every initial data v0 ∈ L1(�), the ab-
stract Cauchy problem (4.1) has a unique strong solution v(t). Moreover, this solution
coincides with the unique strong solution of problem (1.6).

We introduce the following concept of solution of problem (1.2).

Definition 4.5. A measurable function v : (0, T ) × � → R is an entropy solution of
(1.2) in (0, T ) × � if v ∈ C([0, T ], L1(�)) ∩ W 1,1

loc (0, T ; L1(�)), v(0) = v0, and,
for almost all t ∈ (0, T ), there exists u(t) ∈ M(�) with Tk(u(t)) ∈ BV (�) for all
k > 0, and there exists z(t) ∈ L∞(�) with ‖z(t)‖∞ ≤ 1, such that

v(t, x) ∈ γ (u(t, x)) a.e. x ∈ �,

vt (t) = div(z(t)) in D′(�)

and
∫

�

(Tk(u(t)) − w) vt (t) dx ≤
∫

�

z(t) · ∇w dx −
∫

�

|DTk(u(t))|

for every w ∈ W 1,1(�) ∩ L∞(�).

As a consequence of the above result, we have the following existence and unique-
ness result.

Theorem 4.6. Under condition (1.3) and for every initial data v0 ∈ L1(�), there
exists a unique entropy solution of (1.2) in (0, T ) × � for every T > 0 such that
v(0) = v0. Moreover, if v(t) and v̂(t) are entropy solutions corresponding to initial
data v0 and v̂0, respectively, then

‖(v(t) − v̂(t))+‖1 ≤ ‖(v0 − v̂0)
+‖1 for all t ≥ 0.

In particular,

‖v(t) − v̂(t)‖1 ≤ ‖v0 − v̂0‖1 for all t ≥ 0.



67 Page 24 of 26 J. M. Mazon et al. J. Evol. Equ.

Acknowledgements

The first and third authors have been partially supported by Conselleria d’Innovació,
Universitats, Ciència i Societat Digital, project AICO/2021/223, and by Ministerio
de Ciencia e Innovación (Spain), project PID2022-136589NB-I00. The second au-
thor is supported by Grant PID2021-122122NB-I00 funded byMCIN/AEI/ 10.13039/
501100011033 and by “ERDFAway ofmakingEurope,” by theEuropeanUnion-Next
Generation EU (ref. RR-B-2021-03), by Junta de Andalucía FQM-116, by UAL2020-
FQM-B2046 (UAL/CTEICU/FEDER), by Junta de Andalucía, Consejería de Trans-
formaciónEconómica, Industria, Conocimiento yUniversidades-UniónEuropea grant
P18-FR-667, and by Ministerio de Ciencia, Innovación y Universidades (MCIU),
Agencia Estatal de Investigación (AEI), (FEDER) Fondo Europeo de Desarrollo Re-
gional under Research Project PGC2018-096422-B-I00.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with
Springer Nature.

Data availability statement This manuscript has no associated data.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Publisher’sNote SpringerNature remains neutralwith regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES

[1] G. Akagi and U. Stefanelli, A variational principle for doubly nonlinear evolution, Applied Math-
ematics Letters 23 (2010), 1120–1124.

[2] G. Akagi and G. Schimperna, A Subdifferential calculus and doubly nonlinear evolutions equations
in Lp-spaces with variable exponents, Journal of Functional Analysis 267 (2014), 173–213.

[3] L. Alvarez, P.L. Lions and J.M. Morel, Image selective smoothing and edge detection by nonlinear
diffusion, SIAM J. Numer. Anal. 29 (1992), 845–866.

[4] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity
Problems. Oxford Mathematical Monographs, 2000.

[5] F. Andreu, C. Ballester, Caselles and J.M. Mazón, Minimizing total variation flow, Differential
Integral Equations 14, no 3 (2001), 321–360.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


J. Evol. Equ. Doubly nonlinear equations for the 1-Laplacian Page 25 of 26 67

[6] F.Andreu,V.Caselles, and J.M.Mazón, ParabolicQuasilinearEquationsMinimizingLinearGrowth
Functionals. Progress in Mathematics, vol. 223, 2004. Birkhauser.

[7] F. Andreu, N. Igbida, J.M. Mazón and J. Toledo A degenerate elliptic-parabolic problem with
nonlinear dynamical boundary conditions. Interfaces and Free Boundaries 8 (2006), 447–479.

[8] F. Andreu, N. Igbida, J.M.Mazón and J. Toledo L1 existence and uniqueness results for quasi-linear
elliptic equations with nonlinear boundary conditions. Ann. Inst. Poincaré. Analyse Non Linéaire
24 (2007), 61–89.

[9] F. Andreu, N. Igbida, J.M. Mazón and J. Toledo Degenerate elliptic equations with nonlinear
boundary conditions and measures datas. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Vol. VIII (2009),
767–803.

[10] G. Anzellotti, Pairings between measures and bounded functions and compensated compactness,
Ann. Mat. Pura Appl. (4) 135 (1983), 293–318.

[11] D.G. Aronson, Regularity properties of flows through porous media: The interface, Arch. Rational
Mech. Anal. 37 (1970), 1–10.

[12] V. Barbu, Nonlinear differential equations of monotone types in Banach spaces, Springer Mono-
graphs in Mathematics, Springer, New York, 2010.

[13] Ph. Bénilan, L. Boccardo, Th. Gallouët, R. Gariepy, M. Pierre and J. L. Vázquez, An L1-theory of
existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa,
Cl. Sci., 22 (1995), 241–273.

[14] P. Bénilan, M. G. Crandall and A. Pazy, Evolution problems governed by accretive operators, book
in preparation, 1994.

[15] P. Bénilan and M. G. Crandall, Completely accretive operators, in Semigroup theory and evolution
equations (Delft, 1989), vol. 135 of Lecture Notes in Pure and Appl. Math., Dekker, New York,
1991, pp. 41–75.

[16] V. Bögelein, F. Duzaar, P.Marcellini and Ch. Schev,Doubly Nonlinear Equations of PorousMedium
Type. Arch. Rational Mech. Anal. 229 (2018), 503–545.

[17] J. Bourgain and H. Brezis. On the equation div Y = f and application to control of phases. J. Amer.
Math. Soc. 16 (2002), 393–426.

[18] H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de
Hilbert, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co.,
Inc., New York, 1973. North-Holland Mathematics Studies, No. 5. Notas de Matemática (50).

[19] M. G. Crandall and T. M. Liggett, Generation of Semigroups of Nonlinear Transformations on
General Banach Spaces, Amer. J. Math. 93 (1971), 265–298.

[20] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Ad-
vanced Math., CRC Press, 1992.

[21] O. Grange and F. Mignot, Sur la Résolution d’une Équation et d’une Inequation Paraboliques non
Linéaires, Journal of Functional Analysis 11 (1972), 77–92.

[22] A.V. Ivanov,Regularity for doubly nonlinear parabolic equations, J.Math. Sci. 83(1) (1997), 22–37.
[23] A. Mielke, R. Rossi and G. Savaré Nonsmooth analysis of doubly nonlinear evolutions equations,

Calculus of Variations 46 (2013), 253–310.
[24] Z. Peng Existence and regularity results for doubly nonlinear inclusions with nonmonotone pertur-

bation, Nonlinear Analysis 115 (2015), 71–88.
[25] R. Showalter and N.J. Walkington, Diffusion of fluid in a fissured medium with microstructure,

SIAM J. Math. Anal. 22(6) (1991), 1702–1722.
[26] J. L. Vázquez, The porous medium equation. Mathematical theory. Oxford Mathematical Mono-

graphs. The Clarendon Press, Oxford University Press, Oxford, 2007. xxii+624 pp.
[27] W. P. Ziemer, Weakly Differentiable Functions, GTM 120, Springer–Verlag, 1989.



67 Page 26 of 26 J. M. Mazon et al. J. Evol. Equ.

J. M. Mazón and J. Toledo
Departamento de Análisis Matemático
Universitat de València
Dr. Moliner 50
46100 Burjassot
Spain
E-mail: mazon@uv.es

J. Toledo
E-mail: toledojj@uv.es

A. Molino
Departamento de Matemáticas,
Facultad de Ciencias Experimentales
Universidad de Almeria
Ctra. de Sacramento sn. 04120,
La Cañada de San Urbano
Almería
Spain
E-mail: amolino@ual.es

Accepted: 10 September 2023


	Doubly nonlinear equations for the 1-Laplacian
	Abstract
	1. Introduction
	2. Preliminaries
	2.1. Functions of bounded variation
	2.2. A generalized Green's formula
	2.3. Accretive operators and nonlinear semigroups

	3. The elliptic problem
	4. The evolution problem
	Acknowledgements
	REFERENCES




