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Abstract. We consider a class of degenerate equations in non-divergence form satisfying a parabolic Hör-
mander condition, with coefficients that aremeasurable in time andHölder continuous in the space variables.
By utilizing a generalized notion of strong solution, we establish the existence of a fundamental solution
and its optimal Hölder regularity, as well as Gaussian estimates. These results are key to study the backward
Kolmogorov equations associated to a class of Langevin diffusions.

1. Introduction

Westudy existence and optimal regularity properties of the fundamental solution to a
Kolmogorov operator that satisfies a parabolic Hörmander condition. The coefficients
of the operator are Hölder continuous in the space variables, but only measurable in
time.
Precisely, for fixed d ≤ N and T0 > 0, we consider the second order operator in

non-divergence form A + Y with

A = 1

2

d∑

i, j=1

ai j (t, x)∂xi x j +
d∑

i=1

ai (t, x)∂xi + a(t, x), (t, x) ∈ ST0 := ]0, T0[×R
N ,

Y = ∂t + 〈Bx,∇〉 = ∂t +
N∑

i, j=1

bi j x j∂xi , x ∈ R
N ,

(1.1)

where B is a constant matrix of dimension N × N . Here, A is an elliptic operator
on R

d and Y is a first order differential operator on R × R
N , also called transport or

drift term. The focus of this paper is mainly on the case d < N , that is when A + Y
is fully degenerate, namely no coercivity condition on RN is satisfied.

Throughout the paper, A + Y verifies the following two structural

Assumption 1.1. (Coercivity on R
d ) For 1 ≤ i, j ≤ d, the coefficients ai j , ai , a are

in L∞([0, T0];Cb(R
N )), where Cb(R

N ) denotes the space of bounded continuous
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functions on R
N . The diffusion matrix

(
ai j

)
i, j=1,...,d is symmetric and there exists a

positive constant μ such that

μ−1|ξ |2 ≤
d∑

i, j=1

ai j (t, x)ξiξ j ≤ μ|ξ |2, x ∈ R
N , ξ ∈ R

d ,

for almost every t ∈ [0, T0].
Assumption 1.2. (Hörmander condition) The vector fields ∂x1, . . . , ∂xd and Y satisfy

rank Lie(∂x1 , . . . , ∂xd ,Y ) = N + 1. (1.2)

We refer to (1.2) as a parabolic Hörmander condition since the drift term Y plays
a key role in the generation of the Lie algebra. Under Assumption 1.2, the prototype
Kolmogorov operator

δ

2

d∑

i=1

∂xi xi + Y (1.3)

is hypoelliptic for any δ > 0. Kolmogorov [19] (see also [15]) constructed the explicit
Gaussian fundamental solution for (1.3), which is the transition density of a linear
stochastic differential equation.
Motivations for the study of A + Y come from physics and finance. In its most

basic form, with N = 2 and d = 1,

1

2
∂x1x1 + x1∂x2 + ∂t (1.4)

is the backward Kolmogorov operator of the system of stochastic equations

{
dVt = dWt

dXt = Vtdt
(1.5)

whereW is a real Brownianmotion. In the classical Langevin model, (V, X) describes
the velocity and position of a particle in the phase space and it is the prototype of more
general kineticmodels (cf. [17,18,22]). Inmathematical finance, (V, X) represents the
log-price and average processes used inmodeling path-dependent financial derivatives,
such as Asian options (cf. [2,31]).

1.1. Overview of the results: motivations and comparison with the literature

The study of the fundamental solution and its regularity properties is a relevant
task in the theory of partial differential equations. In this regard, we point out that
the global Schauder estimates recently proved in [25] strongly rely on the results of
this paper (see Sect. 4 for a brief anticipation of the results in [25]). The study of
the fundamental solution is also crucial in tackling the martingale problem for the
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corresponding stochastic differential equations (SDEs) (see [29]). For instance, it is
known that uniform bounds on the first and second order derivatives of the solutions to
the Cauchy problem can be utilized to prove weak and pathwise well-posedness of the
SDE, respectively. We point out that the matter of pathwise uniqueness for the SDE
is still partially open in the Hölder setting (see [5]). These issues will be addressed in
a future work.
The innovative aspects of our contribution revolve around the regularity assumptions

on the coefficients and the regularity properties that we prove for the solutions. For
Kolmogorov operators with coefficients that are Hölder continuous (in both space and
time) in a classical sense, the study of the existence of a fundamental solution goes
back to the early papers [16,28,38,39]. More modern and natural approaches make
use of different Hölder spaces, which better adapt to the geometric properties of the
operator and of the underlying diffusion processes. Deferring the precise definitions
until Sect. 1.2, we may identify two main notions of Hölder space:

– Anisotropic these are the Hölder spaces utilized in [26] and later adopted by sev-
eral authors (see [24,37] among others). They comprise functions g : RN → R

that are Hölder continuous with respect to an anisotropic norm | · |B related to
the scaling properties of the underlying diffusion process (cf. [6,21]). For exam-
ple, the anisotropic norm for the Langevin operator (1.4) reads as |(v, x)|B =
|v|+|x | 13 for (v, x) ∈ R

2 and reflects the time-scaling behavior of the stochastic
system (1.5), i.e. (�V )2 ≈ �t and (�X)2 ≈ (�t)3.

– Intrinsic these are the Hölder spaces introduced in [36] and then studied by
several authors (see [30] among others). They are defined for functions f :
R × R

N → R, by specifying the regularity along the Hörmander vector fields
∂x1, . . . , ∂xd andY . TheHörmander condition then allows to recover joint Hölder
regularity in both time and space with respect to an intrinsic distance onR×R

N ,
which reduces to the anisotropic distance when restricted toRN , i.e. |t − s|1/2 +
|x − e(t−s)B y|B for (t, x), (s, y) ∈ R × R

N (cf. Remarks 1.1 and 1.2).

In regards to these Hölder spaces, we recognize two main streams of literature that
consider anisotropic or intrinsic regularity for both the data and the solutions:

– Anisotropic-to-anisotropic in this approach, initiated in [26], the coefficients of
the operator are assumed anisotropically Hölder continuous in space and only
measurable in time, and the same type of regularity is proved for the solutions.
These are typically defined in the distributional sense and do not benefit from the
time-smoothing effect that is typical of parabolic equations (see, for instance,
Theorem 4.3 in [37]). In particular, no regularity along Y , and thus in the time-
variable, is provided.

– Intrinsic-to-intrinsic in this approach, initiated by [36] and then developed by
several authors (e.g. [1,7,13,32] among others), the data are typically assumed
to be intrinsically Hölder continuous in time-space. Solutions are defined in the
Lie sense, regarding Y as a directional derivative. In this approach, regularity
properties in space and time are strictly intertwined: this allows to fully exploit
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the smoothing effect of the equation. However, the regularity assumptions on
the data makes the analysis less suitable for applications to stochastic equations.

Only recently (see [3,10]), the last two approaches have been combined into a third
one, which we refer to as anisotropic-to-intrinsic and provides intrinsic regularity
of the solutions under anisotropic regularity of the coefficients. Our contributions go
exactly in this direction. In particular:

– Theorem 1.1 establishes the existence of the fundamental solution, together with
Gaussian estimates for the solution and its derivatives. It generalizes the results
in [7] by relaxing the regularity hypotheses on the coefficients: as pointed out
in [10], intrinsic Hölder continuity is a rather restrictive assumption and simple
smooth bounded functions like f (t, x1, x2) = sin x2 fail to satisfy this condition.
Theorem 1.1 is also comparable with the results in [6]: however, in the latter
reference, it is not proved that the kernel constructed with the parametrix method
is a fundamental solution, which would require careful potential estimates; on
the other hand, the framework considered in [6] is more general because the drift
Y is not necessarily linear in x .

– Theorem 1.2 contains global intrinsic Hölder estimates on the fundamental so-
lution. At the level of the fundamental solution, this result extends some partial
results in [8, Theorem 3.2] obtained for Hölder continuous coefficients in the
intrinsic sense. Most importantly, the estimates of Theorem 1.2, together with
the intermediate estimates their proof rely on, are key to obtain the optimal
global Schauder estimates in [25] (cf. Sect. 4 below). The latter are stronger than
previous results obtained in the anisotropic-to-anisotropic and the intrinsic-to-
intrinsic settings (e.g. [9,14,17,24,26,37] among others) and also refine the
estimates of intrinsic-to-intrinsic type recently obtained in [3,10]. We refer to
[25, Section 1] for a detailed comparison for the literature on Schauder estimates
for degenerate Kolmogorov equations.

Finally, the anisotropic Hölder regularity of solutions to A + Y unveils the full
smoothing effect of the the differential operator in both the space and time variables.
A notable implication is the possibility to prove intrinsic Taylor formulas like those
proved in [30] (cf. Remark 1.2), on which stochastic tools like the Itô formula rely (see
[21]). Furthermore, the setting of coefficients that are rough in the time variable nat-
urally arises in the study of stochastic partial differential equations (see, for example,
[20,35]).

1.2. Anisotropic and intrinsic Hölder spaces

We start by noticing that condition (1.2) is equivalent to the well-known Kalman
rank condition for controllability in linear systems theory (cf., for instance, [33]). Also,
it was shown in [23] that (1.2) is equivalent to B having the block-form
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B =

⎛

⎜⎜⎜⎜⎜⎝

∗ ∗ · · · ∗ ∗
B1 ∗ · · · ∗ ∗
0 B2 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · Bq ∗

⎞

⎟⎟⎟⎟⎟⎠
(1.6)

where the ∗-blocks are arbitrary and Bj is a (d j−1 × d j )-matrix of rank d j with

d ≡ d0 ≥ d1 ≥ · · · ≥ dq ≥ 1,
q∑

i=0

di = N .

This allows to introduce natural definitions of anisotropic norm and Hölder continuity
on R

N .

Definition 1.1. (Anisotropic norm and anisotropic Hölder spaces) For any x ∈ R
N

let

|x |B :=
q∑

j=0

d̄ j∑

i=d̄ j−1+1

|xi |
1

2 j+1 , d̄ j :=
j∑

k=0

dk . (1.7)

For α ∈ ]0, 1] we denote by Cα
B(RN ) the set of functions g ∈ Cb(R

N ) such that

‖g‖Cα
B (RN ) := sup

x∈RN
|g(x)| + sup

x,y∈RN

|g(x) − g(y)|
|x − y|αB

< ∞,

andby L∞([0, T0];Cα
B(RN )) the set ofmeasurable functions f : [0, T0] −→ Cα

B(RN )

such that

‖ f ‖L∞([0,T0];Cα
B (RN )) := sup

t∈[0,T0]
‖ f (t)‖Cα

B (RN ) < ∞.

To give the precise definition of theHölder spaceC2,α
B wefirst introduce the intrinsic

Hölder regularity along the vector fields appearing in the Hörmander condition (1.2).
As it is standard in the framework of functional analysis on homogeneous groups (cf.
[11]), the idea is to weight the Hölder exponent in terms of the formal degree of the
vector fields, which is equal to 1 for ∂x1, . . . , ∂xd and equal to 2 for Y .

Definition 1.2. Let α ∈ ]0, 1], β ∈ ]0, 2] and T > 0. We denote respectively by
Cα
d (ST ) and Cβ

Y (ST ) the set of the functions f : ST → R such that the following
semi-norms are finite

‖ f ‖Cα
d (ST ) :=

d∑

i=1

sup
(t,x)∈S T

h∈R

| f (t, x + hei ) − f (t, x)|
|h|α ,

‖ f ‖
Cβ
Y (ST )

:= sup
t,s∈[0,T ]
x∈RN

∣∣ f (s, e(s−t)Bx) − f (t, x)
∣∣

|t − s| β
2

.
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Here ei denotes the i-th element of the canonical basis of RN .
Moreover, we say that f is a.e. Lie differentiable along Y on ST if there exists

F ∈ L1
loc(]0, T [;Cb(R

N )) such that

f (s, e(s−t)Bx) = f (t, x) +
∫ s

t
F(r, e(r−t)Bx)dr, (t, x) ∈ ST , s ∈ ]0, T [.

(1.8)

In that case, we set Y f = F and call it an a.e. Lie derivative of f onST .

Next we recall the intrinsic Hölder spaces of order 0 and 1 introduced in [30,31].

Definition 1.3. (Intrinsic Hölder spaces: orders 0 and 1) For α ∈ ]0, 1], C0,α
B (ST )

and C1,α
B (ST ) denote, respectively, the set of the functions f : ST → R such that

the following semi-norms are finite

‖ f ‖C0,α
B (ST )

:= ‖ f ‖Cα
Y (ST ) + ‖ f ‖Cα

d (ST ),

‖ f ‖C1,α
B (ST )

:= ‖ f ‖C1+α
Y (ST )

+
d∑

i=1

‖∂xi f ‖C0,α
B (ST )

= ‖ f ‖C1+α
Y (ST )

+
d∑

i=1

(‖∂xi f ‖Cα
Y (ST ) + ‖∂xi f ‖Cα

d (ST )

)
.

Remark 1.1. It is standard to show (see [30]) that, if f ∈ C0,α
B (ST ), then f isα-Hölder

continuous w.r.t. the intrinsic distance, namely

| f (t, x) − f (t, y)| ≤ C
(|t − s| α

2 + |x − e(t−s)B y|αB), (t, x)(s, t) ∈ ST ,

where C is a positive constant that depends only on the matrix B and T . In particular,
f enjoys anisotropic Hölder regularity, and thus also regularity in the degenerate
variables xi for i > d, namely

sup
x,y∈RN

| f (t, x) − f (t, y)|
|x − y|αB

≤ C‖ f ‖C0,α
B (ST )

, t ∈ [0, T [.

Remark 1.2. In [30] it was also shown that if f ∈ C1,α
B (ST ) then the following

intrinsic Taylor formula holds:

∣∣∣ f (s, y) − f (t, x) −
d∑

i=1

∂xi f (t, x)(y − e(s−t)Bx)i
∣∣∣

≤ C
(|s − t | 12 + |y − e(s−t)Bx |B

)1+α
, (t, x), (s, y) ∈ ST .

where C is a positive constant that depends only on the matrix B. We stress that the
Taylor “polynomial” above only contains the first derivatives of f w.r.t. the first d
components of x .
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Table 1. Functional spaces

Notation Functional space Reference

Cα
B Anisotropic Hölder spaces on R

N Def. 1.1
Cα
d ,Cα

Y Lie Hölder spaces on ST Def. 1.2

Ck,α
B , k = 0, 1, 2 Intrinsic Hölder spaces on ST Def. 1.3, 1.4

To cope with the lack of regularity of the coefficients in the time-direction, the
definition of C2,α

B (ST ) differs from the one given in [30], specifically with regards to
the regularity along Y .

Definition 1.4. (Intrinsic Hölder spaces: order 2) For α ∈ ]0, 1], C2,α
B (ST ) is the set

of functions f : ST → R such that following semi-norm is finite:

‖ f ‖C2,α
B (ST )

=
d∑

i=1

‖∂xi f ‖C1,α
B (ST )

+ ‖Y f ‖L∞([0,T ];Cα
B (RN ))

=
d∑

i=1

‖∂xi f ‖C1+α
Y (ST )

+
d∑

i, j=1

(‖∂xi x j f ‖Cα
Y (ST ) + ‖∂xi x j f ‖Cα

d (ST )

)

+ ‖Y f ‖L∞([0,T ];Cα
B (RN )). (1.9)

Here Y f is the a.e. Lie derivative as in Definition 1.2.

Remark 1.3. Definition 1.4 is similar in spirit to that proposed in [9,27,30] for the
study of Kolmogorov operators with Hölder coefficients: according to their definition,
if f belongs to C2,α then Y f belongs to C0,α

B .
This is the regularity the fundamental solution enjoys in case the coefficients of

A are Hölder continuous in both space and time, namely if they belong to C0,α
B . By

contrast, if f ∈ C2,α
B in the sense of Definition 1.4 then f is generally atmost Lipschitz

continuous along Y : this is the optimal result one can prove without assuming further
regularity of the coefficients in the time variable other than measurability, as it was
shown in [4] in the case of coefficients only dependent on time.

For reader’s convenience, we recall that we shall always denote by ST the strip
]0, T [×R

N ; also, in the following table we collect the notations used for the main
functional spaces (Table 1):

1.3. Main results

As previously explained, major questions in the study of Kolmogorov equations
are the very definition of solution and its optimal regularity properties. It is well-
known that, in general, the fundamental solution is not regular enough to support the
derivatives ∂xi , for d < i ≤ N , appearing in the transport term Y . Indeed, under
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the Hörmander condition (1.2), these derivatives are of order three and higher in the
intrinsic sense. For this reason, even for equations with Hölder coefficients, weak
notions of solution have been introduced. We employ a notion of solution, recently
proposed in [35] with the aim of studying Langevin stochastic PDEs with rough
coefficients. In accordance with the intrinsic Hölder space C2,α

B (ST ) in Definition
1.4, this solution supports the existence of an a.e. Lie derivative and is the strongest
possible under our regularity assumptions on the coefficients.

Definition 1.5. (Strong Lie solution) Let 0 < T ≤ T0 and f ∈ L1
loc([0, T [;Cb(R

N )).
A solution to equation

A u + Yu = f onST (1.10)

is a continuous function u such that there exist ∂xi u, ∂xi x j u ∈ L1
loc([0, T [;Cb(R

N )),
for i, j = 1, . . . , d, and f −A u is an a.e. Lie derivative of u in the sense of Definition
1.2, i.e.

u(s, e(s−t)Bx) = u(t, x) −
∫ s

t

(
A u(τ, e(τ−t)Bx) − f (τ, e(τ−t)Bx)

)
dτ,

(t, x) ∈ ST , s < T . (1.11)

Remark 1.4. Notice that s �→ (s, e(s−t)Bx) is the integral curve of Y starting from
(t, x): for any suitably regular function u the limit

Yu(t, x) := lim
s→t

u(s, e(s−t)Bx) − u(t, x)

s − t
(1.12)

is the directional (or Lie) derivative along Y of u at (t, x). Thus, if the integrand in
(1.11) is continuous then u is a classical (pointwise) solution of (1.10). However, as
noticed in Remark 2.6, in general a solution u in the sense of Definition 1.5 is only
a.e. differentiable along Y and Eq. (1.10) is satisfied for almost every (t, x) ∈ ST .

In order to state our first main result, we give the following

Definition 1.6. (Fundamental solution)A fundamental solution ofA +Y is a function
p = p(t, x; T, y) defined for t < T and x, y ∈ R

N such that, for any fixed (T, y) ∈
ST0 , we have:

(i) p(·, ·; T, y) is a solution of equation A u + Yu = 0 on ST in the sense of
Definition 1.5;

(ii) For any g ∈ Cb(R
N ) we have

lim
(t,x)→(T,y)

t<T

∫

RN
p(t, x; T, η)g(η)dη = g(y).

Before stating our main results, we introduce our last standing assumption, which
is concerned with the regularity of the coefficients of A .
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Assumption 1.3. The coefficients ai j , ai , a ofA belong to L∞([0, T0];Cα
B(RN )) for

some α ∈ ]0, 1].
Remark 1.5. The boundedness requirement in Assumption 1.3 is a crucial ingredient
of the parametrix method: it is used to get the preliminary Gaussian estimates (cf.
Proposition A.1) on which the entire technique relies. In particular, the key property is
boundedness in space for any fixed time. On the other hand, a detailed examination of
the proof reveals the possibility for an extension that includes coefficients that are only
locally integrable, as opposed to bounded, in the time variable. We aim to investigate
this extension in a future work.

The following result states the existence of the fundamental solution p of A + Y ,
as well as uniform Gaussian bounds for p and its derivatives with respect to the non-
degenerate variables x1, . . . , xd .

Theorem 1.1. (Existence and Gaussian bounds)Under Assumptions 1.1, 1.2 and 1.3,
A + Y has a fundamental solution p = p(t, x; T, y) in the sense of Definition 1.6.
For every ε > 0 there exists a positive constant C, only dependent on T0, μ, B, ε, α

and the α-Hölder norms of the coefficients, such that

p(t, x; T, y) ≤ C�μ+ε(t, x; T, y), (1.13)
∣∣∂xi p(t, x; T, y)

∣∣ ≤ C√
T − t

�μ+ε(t, x; T, y), (1.14)

∣∣∂xi x j p(t, x; T, y)
∣∣ ≤ C

T − t
�μ+ε(t, x; T, y), (1.15)

for any (T, y) ∈ ST0 , (t, x) ∈ ST and i, j = 1, . . . , d, where �δ is the Gaussian
fundamental solution of (1.3), whose explicitly expression is given in (2.4). Moreover,
there exist two positive constants μ̄, c̄ such that

c̄�μ̄(t, x; T, y) ≤ p(t, x; T, y), (1.16)

for any (T, y) ∈ ST0 and (t, x) ∈ ST .

In Sect. 4 we present several results for the Cauchy problem that are straightforward
consequences of Theorem 1.1. The proof of Theorem 1.1 is based on a modification
of Levi’s parametrix technique, which allows to deal with the lack of regularity of the
coefficients along the drift term Y . The main tool is the fundamental solution of a Kol-
mogorov operator with time-dependent measurable coefficients, also recently studied
in [4]. This approach allows for a careful analysis of the optimal regularity properties
of the fundamental solution p: Theorem 1.2 below states that p belongs to the intrinsic
Hölder spaceC2,α

B as given by Definition 1.4. As the notation could be misleading, we

explicitly remark that for u ∈ C2,α
B not even the first order derivatives ∂xi u, for i > d,

necessarily exist. However, in general we cannot expect higher regularity properties
for solutions to (1.10) and C2,α

B -regularity is indeed optimal. The following theorem
refines the known results about the smoothness of the fundamental solution in [26],
[27] and [9] and exhibits its maximal regularity properties.
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Theorem 1.2. (Regularity of the fundamental solution) Under the assumptions of
Theorem 1.1, p(·, ·; T, y) ∈ C2,β

B (Sτ ) for every (T, y) ∈ ST0 , 0 < τ < T and
β < α. Precisely, there exists a positive constant C only dependent on T0, μ, B, β, α

and the α-Hölder norms of the coefficients, such that

‖p(·, ·; T, y)‖
C2,β
B (Sτ )

≤ C

(T − τ)
Q+2+β

2

,

where Q is the so-called homogeneous dimension ofRN with respect to the quasi-norm
| · |B defined by

Q =
q∑

i=0

(2i + 1)di . (1.17)

Remark 1.6. As previously explained, the Hölder space C2+α introduced in [26] (and
adopted in [24,37] to prove Schauder estimates), consists of functions f that, together
with their second order derivatives ∂xi x j f in the non-degenerate directions i, j =
1, . . . , d, are Hölder continuousw.r.t. the anisotropic norm (1.7). This notion is weaker
than Definition 1.4 both in terms of the regularity of ∂xi f and, more importantly, in
terms of the Lipschitz continuity of f along Y (cf. (1.8)) which reveals the regularizing
effect of the associated evolution semigroup.

The rest of the paper is structured as follows. Section2 contains the construction of
the fundamental solution by means of the parametrix method: in particular, Sect. 2.2
includes the proof of Theorem 1.1. In Sect. 3 we prove the regularity estimates of
the fundamental solution, in particular Theorem 1.2. In Sect. 4, we anticipate some
results for the Cauchy problem for A + Y , namely well-posedness and Schauder
estimates, which can be derived by utilizing our results on the fundamental solution.
The appendices contain the Gaussian and potential estimates that are employed in the
proofs.

2. Parametrix construction

The parametrix method, introduced by E. Levi in 1907, is a constructive technique
to prove the existence of the fundamental solution to an elliptic operator, later extended
by several authors to numerous parabolic settings. The monograph [12] is a classical
reference for the application of the method to uniformly parabolic operators; the case
of degenerate operators of the form (1.1) with Hölder continuous coefficients was
studied in [7,36]. We refer to [4] for a derivation of the fundamental solution via
classical Fourier methods, in the case of time-depending measurable coefficients.
LetAssumptions 1.1, 1.2 and 1.3 be satisfied. The first step of the parametrixmethod

is to set a kernel P = P(t, x; T, y) that serves as proxy for the fundamental solution,
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called parametrix. We denote byA (s,v) the operator obtained by freezing the second-
order coefficients of A along the integral curve of the vector field Y passing through
(s, v) ∈ ST0 and neglecting the lower order terms. Namely we consider the operator

A (s,v) := 1

2

d∑

i, j=1

ai j (t, e
(t−s)Bv)∂xi x j , (t, x) ∈ ST0 . (2.1)

One can directly prove that the fundamental solution of

A (s,v) + Y,

in the sense of Definition 1.6, is given by

�(s,v)(t, x; T, y) = G(C (s,v)(t, T ), y − e(T−t)Bx), (T, y) ∈ ST0 , (t, x) ∈ ST ,

where

G(C , z) := 1√
(2π)N detC

e− 1
2 〈C−1z,z〉

is the Gaussian kernel on R
N and

C (s,v)(t, T ) :=
∫ T

t
e(T−τ)B A(s,v)(τ )e(T−τ)B∗

dτ, (2.2)

A(s,v)(τ ) :=
(
A0(τ, e(τ−s)Bv) 0

0 0

)
, A0 = (

ai j
)
i, j=1,...,d . (2.3)

Remark 2.1. Clearly �(s,v)(t, x; T, y) is of class C∞ as a function of x and only
absolutely continuous along the integral curves of Y as a function of (t, x).

Remark 2.2. In the particular case of A0 ≡ δ Id for some δ > 0, where Id is the
(d × d)-identity matrix, the Kolmogorov operatorA (s,v) + Y reads as in (1.3) and its
fundamental solution reduces to

�δ(t, x; T, y) := G(δC (T − t), y − e(T−t)Bx), (2.4)

with

C (t) =
∫ t

0
e(t−τ)B

(
Id 0
0 0

)
e(t−τ)B∗

dτ. (2.5)

Proceeding as in [29,35], we define the parametrix function P(t, x; T, y) as

P(t, x; T, y) := �(T,y)(t, x; T, y), (T, y) ∈ ST0 , (t, x) ∈ ST , (2.6)

and we refer to it as to the time-dependent parametrix in order to emphasize the fact
that it is obtained by freezing only the space variable of the coefficients of A .
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Remark 2.3. Since �(s,v) is the fundamental solution of A (s,v) + Y , we have

(A (T,y) + Y )P(·, ·; T, y) = 0 on ST , (2.7)

in the sense of Definition 1.5, for any (T, y) ∈ ST0 .

Remark 2.4. In [7], where the variable coefficients of A are assumed intrinsically
Hölder continuous in space and time, the parametrix is defined as the fundamental
solution of the operator obtained by freezing the second order coefficients of A in
both time and space variables, i.e.

1

2

d∑

i, j=1

ai j (s, v)∂xi x j + Y.

Aswe shall see below, the choice of freezing the coefficients only in the space variable,
along the integral curve of Y as in (2.1), is necessary in order to deal with the lack of
regularity in the time variable.

Once the parametrix function is defined, the parametrix construction prescribes that
a fundamental solution of A + Y is sought in the form

p(t, x; T, y) = P(t, x; T, y) +
∫ T

t

∫

RN
P(t, x; τ, η)φ(τ, η; T, y)dηdτ, (2.8)

where φ is an unknown function. We now perform some heuristic computations that
will lead to a fixed-point equation for φ. Assuming that p(t, x; T, y) in (2.8) is a
fundamental solution of A + Y , we obtain

0 = (A + Y )p(t, x; T, y) = (A + Y )P(t, x; T, y) + (A + Y )

×
∫ T

t

∫

RN
P(t, x; τ, η)φ(τ, η; T, y)dηdτ.

Furthermore, by formally differentiating and employing p(t, x; t, ·) = δx we also
have

(A + Y )

∫ T

t

∫

RN
P(t, x; τ, η)φ(τ, η; T, y)dηdτ

=
∫ T

t

∫

RN
(A + Y )P(t, x; τ, η)φ(τ, η; T, y)dηdτ − φ(t, x; T, y).

Therefore, φ(t, x; T, y) must solve the Volterra integral equation

φ(t, x; T, y) = (A + Y )P(t, x; T, y) +
∫ T

t

∫

RN
(A + Y )P(t, x; τ, η)φ(τ, η; T, y)dηdτ.

(2.9)

Now, owing to Remark 2.3, Eq. (2.9) can be written as
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φ(t, x; T, y) = (A − A (T,y))P(t, x; T, y) +
∫ T

t

∫

RN
(A − A (τ,η))

P(t, x; τ, η)φ(τ, η; T, y)dηdτ, (2.10)

whose solution can be determined by an iterative procedure, which leads to the series
representation

φ(t, x; T, y) =
∑

k≥1

φk(t, x; T, y) (2.11)

where

⎧
⎨

⎩

φ1(t, x; T, y) := (
A − A (T,y)

)
P(t, x; T, y),

φk+1(t, x; T, y) :=
∫ T

t

∫

RN
(A − A (τ,η))P(t, x; τ, η)φk(τ, η; T, y)dηdτ, k ∈ N.

(2.12)

In order to make the previous arguments rigorous one has to prove that:

– The series defined by (2.11)–(2.12) is uniformly convergent onST . At this stage
one also obtains a uniform upper bound and a Hölder estimate for φ;

– p defined by (2.8) is actually a fundamental solution ofA + Y . In this step one
also establishes the Gaussian estimates on p and its derivatives that appear in
Theorem 1.1.

2.1. Convergence of the series and estimates on φ

Proposition 2.1. For every (T, y) ∈ ST0 the series in (2.11) converges uniformly in
(t, x) ∈ ST and the function φ = φ(t, x; T, y) solves the integral Eq. (2.10) onST .
Furthermore, for every ε > 0 and 0 < δ < α, there exists a positive constant C, only
dependent on T0, μ, B, δ, α, ε and the α-Hölder norms of the coefficients, such that

|φ(t, x; T, y)| ≤ C

(T − t)1− α
2
�μ+ε(t, x; T, y), (2.13)

|φ(t, x; T, y) − φ(t, v; T, y)| ≤ C |x − v|α−δ
B

(T − t)1− δ
2

(
�μ+ε(t, x; T, y) + �μ+ε(t, v; T, y)

)
,

(2.14)

for any (T, y) ∈ ST0 and (t, x), (t, v) ∈ ST .

To avoid repeating the arguments already used in [7], we limit ourselves to high-
lighting the parts of the proof that differ significantly from the classical case.

Proof. We first prove that there exists a positive κ such that

|(A − A (T,y))P(t, x; T, y)| ≤ κ

(T − t)1−α/2�μ+ε(t, x; T, y),

(T, y) ∈ ST0 , (t, x) ∈ ST . (2.15)
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Assume for simplicity that ai , a ≡ 0, the general case being a straightforward exten-
sion. By definition (2.1) we have

|(A − A (T,y))P(t, x; T, y)| ≤ 1

2

d∑

i, j=1

|ai j (t, x) − ai j (t, e
−(T−t)B y)|

× |∂xi x jP(t, x; T, y)| ≤ (2.16)

(by the Hölder regularity of ai j and the Gaussian estimate (A.11))

≤ κ
|x − e−(T−t)B y|αB

T − t
�μ+ε/2(t, x; T, y). (2.17)

The estimate (A.9) then yields (2.15).
For any (T, y) ∈ ST0 and (t, x) ∈ ST , (2.12) and (2.15) imply

|φ1(t, x; T, y)| ≤ κ

(T − t)1−α/2 �μ+ε(t, x; T, y)

and

|φ2(t, x; T, y)| ≤
∫ T

t

∫

RN

∣∣∣
(
A − A (τ,η)

)
P(t, x; τ, η)

∣∣∣ × |φ1(τ, η; T, y)|dηdτ

≤ κ2
∫ T

t

1

(τ − t)1−α/2

1

(T − τ)1−α/2

×
∫

RN
�μ+ε(t, x; τ, η)�μ+ε(τ, η; T, y)dηdτ =

(by the Chapman–Kolmogorov identity and solving the integral in dτ )

= κ2 �2
Euler

(
α
2

)

(T − t)1−α�Euler(α)
�μ+ε(t, x; T, y).

Proceeding by induction, it is straightforward to verify that

|φn(t, x; T, y)| ≤ κn �n
Euler

(
α
2

)

(T − t)1− α
2 �Euler(

α
2 )

�μ+ε(t, x; T, y), n ∈ N.

This proves the uniform convergence of the series on ST , which in turn implies that
φ satisfies (2.10), as well as the estimate (2.13).
The proof of (2.14) is a technical modification of the arguments in [7, Lemma 6.1],

which is necessary to account for the different parametrix function. For sake of brevity,
we leave the details to the reader. �

Remark 2.5. The proof above is particularly informative to understand the choice of
the parametrix function in relation to the lack of regularity of the coefficients with
respect to the time variable. In particular, in passing from (2.17) to (2.15), we take
advantage of the increment |x − e−(T−t)B y|αB in order to recover the integrability of
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the singularity in time. In the classical case, namely when the coefficient ai j is also
Hölder continuous in time, the parametrix function is obtained by freezing the variable
coefficients in both space and time (see Remark 2.4). In (2.16), this choice leads to
increments of type

∣∣ai j (t, x) − ai j (T, y)
∣∣,

which is clearly not helpful if ai j does not exhibit any regularity in time.
Furthermore, note that the coefficients have to be frozen in the space variable along

the integral curve of Y : freezing the coefficients at a fixed point y would yield an
increment of type |x − y|αB in (2.17), which does not allow to employ the Gaussian
estimates in (A.9) to control the singularity.

2.2. Proof that p is a fundamental solution and Gaussian bounds

We now prove the first part of Theorem 1.1, concerning the existence of the fun-
damental solution of A + Y . This is achieved by proving that the candidate solution
p = p(t, x; T, y) defined through (2.8) satisfies points i) and ii) of Definition 1.6. The
innovative part of the proof consists in showing point i), which is p(·, ·; T, y) solves
the equation

A u + Yu = 0 on ST (2.18)

in the integral sense of Definition 1.5. Once more, we provide the details of the parts
that significantly depart from the classical case.
For any (T, y) ∈ ST0 , let us rewrite p(t, x; T, y) as

p(t, x; T, y) = P(t, x; T, y) + �(t, x; T, y), (t, x) ∈ ST ,

where we set

�(t, x; T, y) :=
∫ T

t

∫

RN
P(t, x; τ, η)φ(τ, η; T, y)dηdτ. (2.19)

The strategy of the proof is to first show that p possesses the regularity required in
order to qualify as a fundamental solution, and then to check that it actually solves Eq.
(2.18). As pointed out in Remark 2.7, the parametrix P = P(t, x; T, y) is an integral
solution to (2.7). In particular, it is smooth in the variable x and absolutely continuous
along Y . As for � = �(t, x; T, y), the next result shows that it is twice differentiable
w.r.t. x1, . . . , xd and states some Gaussian bounds on the derivatives.

Proposition 2.2. For any (T, y) ∈ ST0 , (t, x) ∈ ST and i, j = 1, . . . , d, there exist

∂xi �(t, x; T, y) =
∫ T

t

∫

RN
∂xiP(t, x; τ, η)φ(τ, η; T, y)dηdτ,

∂xi x j �(t, x; T, y) =
∫ T

t

∫

RN
∂xi x jP(t, x; τ, η)φ(τ, η; T, y)dηdτ,
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and, for any ε > 0 we have

|�(t, x; T, y)| ≤ C(T − t)
α
2 �μ+ε(t, x; T, y),

∣∣∂xi �(t, x; T, y)
∣∣ ≤ C

(T − t)
1−α
2

�μ+ε(t, x; T, y),

∣∣∂xi x j �(t, x; T, y)
∣∣ ≤ C

(T − t)
2−α
2

�μ+ε(t, x; T, y),

where C denotes a positive constant, only dependent on T0, μ, B, α, ε and the α-
Hölder norms of the coefficients.

Proof. By the definition of � in (2.19) we have

�(t, x; T, y) =
∫ T

t
J (t, x; τ ; T, y)dτ,

with J defined as in (B.1). The potential estimates of Proposition B.1 upon integrating
in τ , yield the result. �

The following result shows that �(·, ·; T, y) is also Lipschitz continuous along the
integral curves of Y .

Lemma 2.1. For every (T, y) ∈ ST0 and (t, x) ∈ ST , we have

�
(
s, e(s−t)Bx; T, y

) − �(t, x; T, y) = −
∫ s

t
F(τ, x; T, y)dτ, s ∈ [t, T [,

where

F(τ, x; T, y) :=
∫ T

τ

∫

RN
A (r,η)P

(
τ, e(τ−t)Bx; r, η)

φ(r, η; T, y)dηdr

+φ
(
τ, e(τ−t)Bx; T, y

)
. (2.20)

Proof. For any s ∈ [t, T [ one can write

�
(
s, e(s−t)Bx; T, y

) − �(t, x; T, y)

=
∫ T

s

∫

RN

(
P
(
s, e(s−t)Bx; r, η) − P(t, x; r, η)

)
φ(r, η; T, y)dηdr

︸ ︷︷ ︸
=:G(t,x)

−
∫ s

t

∫

RN
P(t, x; r, η)φ(r, η; T, y)dηdr

︸ ︷︷ ︸
=:H(t,x)

.

First, we study the term G(t, x). Remark 2.3 yields

G(t, x) =
∫ T

s

∫

RN

(∫ s

t
−A (r,η)P

(
τ, e(τ−t)Bx; r, η)

dτ

)
φ(r, η; T, y)dηdr .
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By (A.11) and Assumption 1.3, for every ε > 0 we have

∣∣∣A (r,η)P(τ, e(τ−t)Bx; r, η)

∣∣∣ ≤ C

r − τ
�μ+ε(τ, e(τ−t)Bx; r, η), t < τ < s < r < T .

Therefore, considering also (2.13), for any r ∈ ]s, T ], the function
(τ, η) �→ |A (r,η)P(τ, e(τ−t)Bx; r, η)φ(r, η; T, y)|

is integrable on [t, s] × R
N . Thus Fubini’s theorem yields

∫

RN

(∫ s

t
A (r,η)P

(
τ, e(τ−t)Bx; r, η)

dτ

)
φ(r, η; T, y)dη

=
∫ s

t

∫

RN
A (r,η)P

(
τ, e(τ−t)Bx; r, η)

φ(r, η; T, y)dηdτ.

Moreover, by the potential estimate (B.3) with δ = α
2 , for any ε > 0 we have

∣∣∣∣
∫

RN
A (r,η)P

(
τ, e(τ−t)Bx; r, η)

φ(r, η; T, y)dη

∣∣∣∣

≤ C

(T − r)1− α
4 (r − τ)1− α

4
�μ+ε

(
τ, e(τ−t)Bx; T, y

)
.

(2.21)

As the right-hand side term is integrable over [t, s]× [s, T ] as a function of (τ, r), we
can apply once more Fubini’s theorem to conclude that

G(t, x) = −
∫ s

t

∫ T

s

∫

RN
A (r,η)P

(
τ, e(τ−t)Bx; r, η)

φ(r, η; T, y)dηdrdτ.

(2.22)

Let us consider H(t, x). For every n ∈ N, we define εn(r) := 1
n (r − t). Note that,

for every r ∈ ]t, s[ we have r − εn(r) ≥ t . Hence

H(t, x) =
∫ s

t

∫

RN
P
(
r − εn(r), e

(r−εn(r)−t)Bx; r, η)
φ(r, η; T, y)dηdr

︸ ︷︷ ︸
=:H̃n(t,x)

−
∫ s

t

∫

RN

(
P
(
r − εn(r), e

(r−εn(r)−t)Bx; r, η) − P(t, x; r, η)
)

φ(r, η; T, y)dηdr
︸ ︷︷ ︸

=:Hn(t,x)

.

Once more, Remark 2.3 yields

Hn(t, x) =
∫ s

t

∫

RN

( ∫ r−εn(r)

t
A (r,η)P

(
τ, e(τ−t)Bx; r, η)

dτ

)
φ(r, η; T, y)dηdr

(applying Fubini’s theorem as above)

=
∫ s

t

∫ r−εn(r)

t

∫

RN
A (r,η)P

(
τ, e(τ−t)Bx; r, η)

φ(r, η; T, y)dηdτdr
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(setting δn(τ ) = τ−t
n−1 and applying Fubini’s theorem again)

=
∫ s−εn(s)

t

∫ s

τ+δn(τ )

∫

RN
A (r,η)P

(
τ, e(τ−t)Bx; r, η)

φ(r, η; T, y)dηdrdτ

(by (2.21) and applying Lebesgue’s dominated convergence theorem)

−−−→
n→∞

∫ s

t

∫ s

τ

∫

RN
A (r,η)P

(
τ, e(τ−t)Bx; r, η)

φ(r, η; T, y)dηdrdτ.

On the other hand, by the potential estimate (B.2), for any n ∈ N we have

∣∣∣∣
∫

RN
P
(
r − εn(r), e

(r−εn(r)−t)Bx; r, η)
φ(r, η; T, y)dη

∣∣∣∣ ≤ C
�μ+ε(τ, e(τ−t)Bx; T, y)

(T − r)1− α
2 (T − r)

Q
2

,

r ∈ [t, s].

Thus Lebesgue’s dominated convergence theorem yields

lim
n→∞ H̃n(t, x) =

∫ s

t
lim
n→∞

∫

RN
P
(
r − εn(r), e

(r−εn(r)−t)Bx; r, η)
φ(r, η; T, y)dη dr

(by (2.24), since η �→ φ(r, η; T, y) is a bounded and continuous function for every
r ∈ [t, s])

=
∫ s

t
φ
(
r, e(r−t)Bx; T, y

)
dr.

We have proved that

H(t, x) =
∫ s

t

∫ s

τ

∫

RN
A (r,η)P(τ, e(τ−t)Bx; r, η)φ(r, η; T, y)dηdrdτ

+
∫ s

t
φ(τ, e(τ−t)Bx; T, y)dτ.

This and (2.22) prove the statement. �

We are now in the position to prove Theorem 1.1, namely that p = p(t, x; T, y)
defined by (2.8) is a fundamental solution ofA +Y in the sense of definitionDefinition
1.6, and that the Gaussian bounds from (1.13) to (1.16) are satisfied.

Proof of Theorem 1.1. Let p = p(t, x; T, y) be defined by (2.8).
Step 1. We show that p = p(t, x; T, y) satisfies point i) of Definition 1.6, namely

that p(·, ·; T, y) is an integral solution to (2.18) onST in the sense of Definition 1.5.
By Lemma 2.1, we have

p
(
s, e(s−t)Bx; T, y

) − p(t, x; T, y)

= P(s, e(s−t)Bx; T, y) − P(t, x; T, y) + �(s, e(s−t)Bx; T, y)
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− �(t, x; T, y)

= −
∫ s

t

(
A (r,η)P(τ, e(τ−t)Bx; r, η) + F(τ, x; T, y)

)
dτ. (2.23)

Furthermore, by (2.20) and since φ(t, x; T, y) solves the integral Eq. (2.9), we obtain

A (r,η)P(τ, e(τ−t)Bx; r, η) + F(τ, x; T, y) = A P(τ, e(τ−t)Bx; T, y)

+
∫ T

τ

∫

RN
A P(τ, e(τ−t)Bx; r, η)φ(r, η; T, y)dηdr

(by Proposition 2.2)

= A P(τ, e(τ−t)Bx; T, y) + A �(τ, e(τ−t)Bx; T, y) = A p(τ, e(τ−t)Bx; T, y),

which, together with (2.23), concludes the proof.
Step 2. We show that p = p(t, x; T, y) satisfies point ii) of Definition 1.6. In light

of the estimate (2.13), it is straightforward to see that

|�(t, x; T, y)| ≤ C(T − t)
α
2 �μ+ε(t, x; T, y), (T, y) ∈ ST0 , (t, x) ∈ ST .

Therefore, it is enough to prove that, for any fixed (T, y) ∈]0, T0[×R
N , we have

lim
(t,x)→(T,y)

tau<T

∫

RN
P(t, x; T, η) f (η)dη = f (y), f ∈ Cb(R

N ). (2.24)

Recalling the definition of the parametrix P, we add and subtract to obtain
∫

RN
P(t, x; T, η) f (η)dη =

∫

RN
�(T,η)(t, x; T, η) f (η)dη

=
∫

RN
�(T,y)(t, x; T, η) f (η)dη

+
∫

RN

(
�(T,η)(t, x; T, η) − �(T,y)(t, x; T, η)

)
f (η)dη

︸ ︷︷ ︸
=:J (t,x)

.

Furthermore, by estimate (A.12), for every ε > 0 one has

|J (t, x)| ≤ C
∫

RN
|y − η|αB�μ+ε(t, x; T, η)dη.

Eventually, (2.24) follows from classical arguments.
Step 3. We show the upper Gaussian bounds (1.13)–(1.14)–(1.15) for p and its

derivatives. The proof of the lower Gaussian bound (1.16) is similar to that of Theorem
4.7 in [34] and Section 5.1.4. in [35], thus we omit it for sake of brevity.
The Gaussian bounds of Proposition A.1 and the definition of parametrix (2.6) yield

the estimates (1.13)–(1.14)–(1.15) for P = P(t, x; T, y). The estimates of Proposition
2.2 and the fact that p = P + � conclude the proof. �



69 Page 20 of 37 G. Lucertini et al. J. Evol. Equ.

Remark 2.6. Any integral solution u to Eq. (1.11) on ST in the sense of Definition
1.5, is Lie differentiable along Y almost everywhere on ST . Indeed, the set HT of
(t, x) ∈ ST such that Yu(t, x) in (1.12) exists finite, is measurable as the limit

lim sup
τ→t+

u
(
τ, e(τ−t)Bx

) − u(t, x)

τ − t

is a measurable function of (t, x) and the same holds for lim inf. This is a straight-
forward consequence of the continuity of u along the integral curves of Y . The fact
that HT has null Lebesgue measure stems from Fubini’s theorem, as u is absolutely
continuous along the integral curves of Y and the map

(τ, y) �→ (τ, eτ B y)

is a diffeomorphism onST .

3. Regularity of the fundamental solution

In this section we prove Theorem 1.2. Since p(·, ·; T, y) can be represented as
in (2.8), we need to study the regularity of P(·, ·; T, y) and �(·, ·; T, y). While the
former term can be easily dealt with by means of the Gaussian estimates of Appendix
A, the latter has to be treated more carefully. We start with the proof of Theorem 1.2,
which is based on the regularity estimates for �(·, ·; T, y) and P(·, ·; T, y) proved in
Sects. 3.1 and 3.2, respectively.

Proof of Theorem 1.2. Let β < α. For fixed (T, y) ∈ ST0 , we set

f (t, x) := p(t, x; T, y), (t, x) ∈ ST .

We first note that, by definition of fundamental solution, (1.8) is satisfied with Y f =
−A f . Furthermore, for any t ∈]0, T [, by (1.9) and the representation (2.8) we have

‖ f ‖
C2,β
B (St )

= NP,1 + NP,2 + N�,1 + N�,2,

where

NP,1 :=
d∑

i=1

‖∂xiP(·, ·; T, y)‖
C1+β
Y (St )

+
d∑

i, j=1

(‖∂xi x jP(·, ·; T, y)‖
Cβ
Y (St )

+ ‖∂xi x jP(·, ·; T, y)‖
Cβ
d (St )

)
,

NP,2 := ‖A P(·, ·; T, y)‖
L∞([0,t];Cβ

B (RN ))
,

N�,1 :=
d∑

i=1

‖∂xi �(·, ·; T, y)‖
C1+β
Y (St )

+
d∑

i, j=1

(‖∂xi x j �(·, ·; T, y)‖
Cβ
Y (St )
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+ ‖∂xi x j �(·, ·; T, y)‖
Cβ
d (St )

)
,

N�,2 := ‖A �(·, ·; T, y)‖
L∞([0,t];Cβ

B (RN ))
.

Now, the estimates of Lemma 3.2 yield

NP,1 ≤ C

(T − t)
Q+2+β

2

. (3.1)

To bound NP,2, first fix i, j = 1, . . . , d and note that, by estimate (A.11), we obtain

sup
x∈RN

∣∣∂xi x jP(s, x; T, y)
∣∣ ≤ C

(T − t)
Q+2
2

, s < t. (3.2)

Furthermore, (3.1) combined with Remark 1.1 yield

sup
x,v∈RN

|∂xi x jP(s, x; T, y) − ∂xi x jP(s, v; T, y)|
|x − v|βB

≤ C

(T − t)
Q+2+β

2

, s < t.

(3.3)

Thus, by (3.2)–(3.3) we obtain

‖∂xi x jP(s, ·; T, y)‖
Cβ
B (RN )

≤ C

(T − t)
Q+2+β

2

, s < t,

which in turn implies

‖∂xi x jP(·, ·; T, y)‖
L∞([0,t];Cβ

B (RN ))
≤ C

(T − t)
Q+2+β

2

.

This, together with Assumption 1.3, prove

NP,2 ≤ C

(T − t)
Q+2+β

2

.

The bound for N�,1 stems from the estimates of Proposition 3.1, which yield

N�,1 ≤ C

(T − t)
Q+2−(α−β)

2

≤ C

(T − t)
Q+2+β

2

.

Eventually, the bound for N�,2 follows from the same arguments used to bound NP,2.
�

The rest of this section is devoted to the results utilized in the proof of Theorem
1.2. It is useful to introduce the following

Notation 3.1. Let f = f (t, x; T, y) be a function defined for (T, y) ∈ ST0 and
(t, x) ∈ ST , suitably differentiable w.r.t. x . For any i = 1, . . . , N , we set

∂i f (t, x; T, y) := ∂xi f (t, x; T, y),

and we adopt analogous notations for the higher-order derivatives.

This notation is useful in order to compose partial derivatives with other functions.
For instance, if g = g(t, x) is a given function, then

∂i f
(
t, g(t, x); T, y

) = ∂zi f (t, z; T, y)|z=g(t,x).
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3.1. Regularity estimates of �

Now prove the Hölder estimates for �(·, ·; T, y). We recall that Q denotes the
homogeneous dimension of RN as in (1.17).

Proposition 3.1. For every ε > 0 and 0 < β < α there exists a positive constant C,
only dependent on T0, μ, B, ε, α, β and the α-Hölder norms of the coefficients, such
that, for any i, j, k = 1, . . . , d, we have

∣∣∂i�(s, e(s−t)Bx; T, y) − ∂i�(t, x; T, y)
∣∣

≤ C(s − t)
1+β
2

(T − t)Q/2

(T − s)
Q+2−(α−β)

2

�μ+ε(t, x; T, y), (3.4)

∣∣∂i j�(s, e(s−t)Bx; T, y) − ∂i j�(t, x; T, y)
∣∣

≤ C(s − t)
β
2

(T − t)Q/2

(T − s)
Q+2−(α−β)

2

�μ+ε(t, x; T, y), (3.5)

∣∣∂i j�(t, x + hek; T, y) − ∂i j�(t, x; T, y)
∣∣

≤ C |h|β �μ+ε(t, x + hek; T, y) + �μ+ε(t, x; T, y)

(T − t)
2−(α−β)

2

, (3.6)

for every (T, y) ∈ ST0 , (t, x) ∈ ST , t < s < T and h ∈ R.

The proof of estimates (3.4)–(3.5) relies on the following

Lemma 3.1. Let (T, y) ∈ ST0 . Then, for any i = 1, . . . , d, the function u :=
∂iP(·, ·; T, y) is a strong Lie solution to the equation

A u + Yu = −
d+d1∑

j=1

b ji∂ jP(·, ·; T, y) on ST ,

in the sense of Definition 1.5.

Proof. We note that

[∂i ,Y ]P(t, x; T, y) = [∂i , 〈Bx,∇〉 + ∂t ]P(t, x; T, y) =
d+d1∑

j=1

b ji∂ jP(t, x; T, y),

for every x ∈ R
N and for almost every t ∈ [0, T [, where, in the last equality, we used

thatb ji = 0 if j > d+d1.While it is obvious that the previous identity holds for smooth
functions of (t, x), one can directly check that ∂i∂tP(t, x; T, y) = ∂t∂iP(t, x; T, y)
and thus the identity holds for the parametrix too. Therefore, we obtain

∂iP(s, e(s−t)Bx; τ, η) − ∂iP(t, x; τ, η)

=
∫ s

t
(Y ∂iP)(r, e(r−t)Bx; τ, η)dr
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=
∫ s

t

(
(∂i YP)(r, e(r−t)Bx; τ, η) − [∂i ,Y ]P(r, e(r−t)Bx; τ, η)

)
dr

(by Remark 2.3)

= −
∫ s

t

(
(∂iA

(τ,η)P)(r, e(r−t)Bx; τ, η) +
d+d1∑

j=1

b ji∂ jP(r, e(r−t)Bx; τ, η)
)
dr

(since ∂iA (τ,η) = A (τ,η)∂i )

= −
∫ s

t

((
A (τ,η)∂iP

)
(r, e(r−t)Bx; τ, η) +

d+d1∑

j=1

b ji∂ jP(r, e(r−t)Bx; τ, η)
)
dr.

�

We are now in the position to prove Proposition 3.1.

Proof of Proposition 3.1. Let (T, y) ∈ ST0 , (t, x) ∈ ST , t < s < T and h ∈ R be
fixed. Also fix i, j, k ∈ {1, . . . , d}. First we prove (3.4). By adding and subtracting,
we have

∂i�(s, e(s−t)Bx; T, y) − ∂i�(t, x; T, y)

=
∫ T

s

∫

RN

(
∂iP(s, e(s−t)Bx; τ, η) − ∂iP(t, x; τ, η)

)

︸ ︷︷ ︸
=:I (τ,η)

φ(τ, η; T, y)dηdτ

−
∫ s

t

∫

RN
∂iP(t, x; τ, η)φ(τ, η; T, y)dηdτ

︸ ︷︷ ︸
=:L

.

We consider the first term. By Lemma 3.1 and swapping the integrals as in the proof
of Proposition 2.1, we have

∫ T

s

∫

RN
I (τ, η)φ(τ, η; T, y)dηdτ

= −
∫ T

s

∫ s

t

∫

RN

((
A (τ,η)∂iP

)
(r, e(r−t)Bx; τ, η)

+
d+d1∑

j=1

b ji∂ jP(r, e(r−t)Bx; τ, η)

)
φ(τ, η; T, y)dηdrdτ.

Therefore, the estimates of Proposition B.1 with δ = (α − β)/2 yield
∣∣∣∣
∫ T

s

∫

RN
I (τ, η)φ(τ, η; T, y)dηdτ

∣∣∣∣

≤
∫ T

s

∫ s

t

C

(T − τ)1−
α−β
4 (τ − r)

3
2− α+β

4

�μ+ε(r, e(r−t)Bx; T, y)drdτ
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(by a standard estimate on �μ+ε(r, e(r−t)Bx; T, y))

≤ C
∫ T

s

∫ s

t

1

(T − τ)1−
α−β
4 (τ − r)

3
2− α+β

4

drdτ

︸ ︷︷ ︸
=:K

(
T − t

T − s

)Q/2

�μ+ε(t, x; T, y).

(3.7)

We now bound K :

K =
∫ s

t

∫ T

s

1

(T − τ)1−
α−β
4 (τ − r)

3
2− α+β

4

dτdr

≤
∫ s

t

∫ T

s

1

(T − τ)1−
α−β
4 (τ − r)1−

α−β
4

dτ
1

(s − r)
1
2− β

2

dr

(solving the integral in dτ )

≤ C
∫ s

t

1

(T − r)1−
α−β
2

1

(s − r)
1
2− β

2

dr ≤ C

(T − s)1−
α−β
2

∫ s

t

1

(s − r)
1−β
2

dr

≤ C

(T − s)1−
α−β
2

(s − t)
1+β
2 . (3.8)

On the other hand, estimate (B.3) with δ = α − β yields

|L| ≤
∫ s

t

C

(T − τ)1−
α−β
2 (τ − t)

1
2− β

2

dτ �μ+ε(t, x; T, y)

≤ C

(T − s)1−
α−β
2

∫ s

t

1

(τ − t)
1−β
2

dτ �μ+ε(t, x; T, y)

≤ C

(T − s)1−
α−β
2

(s − t)
1+β
2 �μ+ε(t, x; T, y).

This, together with (3.7)–(3.8), proves (3.4). Estimate (3.5) can be obtained following
the same arguments.

We finally prove (3.6). By Proposition 2.2 we have

∂i j (t, x + hek; T, y) − ∂i j�(t, x; T, y)

=
∫ T

t

∫

RN

(
∂i jP(t, x + hek; τ, η) − ∂i jP(t, x; τ, η)

)
φ(τ, η; T, y)dη

︸ ︷︷ ︸
=:I (τ )

dτ.

We first prove that
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|I (τ )| ≤ C
|h|β

(T − τ)1−
α−β
4 (τ − t)1−

α−β
4

(
�μ+ε(t, x + hek; T, y) + �μ+ε(t, x; T, y)

)
,

τ ∈]t, T [.

We consider the case τ − t ≥ h2. By the mean-value theorem, there exists a real h̄
with |h̄| ≤ |h| such that

∣∣∂i jP(t, x + hek; τ, η) − ∂i jP(t, x; τ, η)
∣∣ = |h| ∣∣∂i jkP(t, x + h̄ek; τ, η)

∣∣ .

Therefore, by the estimate (B.3) with δ = (α − β)/2, we have

|I (τ )| ≤ C
|h|

(T − τ)1−
α−β
4 (τ − t)

3
2− α+β

4

�μ+ε(t, x + h̄ek; T, y)

(since τ − t ≥ h2)

≤ C
|h|β

(T − τ)1−
α−β
4 (τ − t)1−

α−β
4

�μ+ε(t, x + h̄ek; T, y)

(by standard estimates on �μ+ε(t, x + h̄ek; T, y) with τ − t ≥ h2)

≤ C
|h|β

(T − τ)1−
α−β
4 (τ − t)1−

α−β
4

(
�μ+ε(t, x + hek; T, y) + �μ+ε(t, x; T, y)

)
.

We now consider the case τ − t < h2. Employing triangular inequality and estimate
(B.3) with δ = (α − β)/2, we get

|I (τ )| ≤ C

(T − τ)1−
α−β
4 (τ − t)1−

α+β
4

(
�μ+ε(t, x + hek; T, y) + �μ+ε(t, x; T, y)

)

(since τ − t < h2)

≤ C
|h|β

(T − τ)1−
α−β
4 (τ − t)1−

α−β
4

(
�μ+ε(t, x + hek; T, y) + �μ+ε(t, x; T, y)

)
.

Therefore, combining the previous estimates, we obtain

∣∣∣∣
∫ T

t
I (τ )dτ

∣∣∣∣ ≤ C |h|β
∫ T

t

1

(T − τ)1−
α−β
4 (τ − t)1−

α−β
4

dτ
(
�μ+ε(t, x + hek; T, y)

+ �μ+ε(t, x; T, y)
)

≤ C |h|β 1

(T − t)1−
α−β
2

(
�μ+ε(t, x + hek; T, y) + �μ+ε(t, x; T, y)

)
,

which proves (3.6). �
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3.2. Regularity estimates for the parametrix

We have the following Hölder estimates for P. Notice that Notation 3.1 remains in
force.

Lemma 3.2. Let 0 ≤ β ≤ α. Then for every ε > 0 there exists a positive constant C,
only dependent on T0, μ, B, ε, α, β and the α-Hölder norms of the coefficients, such
that for any i, j, k = 1, . . . , d we have

∣∣∂iP(s, e(s−t)Bx; T, y) − ∂iP(t, x; T, y)
∣∣ ≤ C(s − t)

1+β
2

(T − t)Q/2

(T − s)
Q+2+β

2

�μ+ε(t, x; T, y),

(3.9)

∣∣∂i jP(s, e(s−t)Bx; T, y) − ∂i jP(t, x; T, y)
∣∣ ≤ C(s − t)

β
2

(T − t)Q/2

(T − s)
Q+2+β

2

�μ+ε(t, x; T, y),

(3.10)
∣∣∂i jP(t, x + hek; T, y) − ∂i jP(t, x; T, y)

∣∣ ≤ C |h|β 1

(T − t)
2+β
2

(
�μ+ε(t, x + hek; T, y)

+�μ+ε(t, x; T, y)
)
, (3.11)

for any (T, y) ∈ ST0 , (t, x) ∈ ST , t < s < T and h ∈ R.

Proof. We first consider (3.9). By Lemma 3.1 we have

∂iP(s, e(s−t)Bx; T, y) − ∂iP(t, x; T, y) = −
∫ s

t

(
A (T,y)∂iP(r, e(r−t)Bx; T, y)

+
d+d1∑

j=1

b ji∂ jP(r, e(r−t)Bx; T, y)
)
dr.

Therefore, by boundedness of the coefficients of A (T,y) and the estimates of Propo-
sition A.1, we obtain

∣∣∂iP(s, e(s−t)Bx; T, y) − ∂iP(t, x; T, y)
∣∣

≤
∫ s

t

C

(T − r)
3
2

�μ+ε(r, e(r−t)Bx; T, y)dr

≤
∫ s

t

C

(T − r)
3
2

dr

(
T − t

T − s

)Q/2

�μ+ε(t, x; T, y)

(for any β ≤ 1)

≤ C
(s − t)

1+β
2

(T − s)1+
β
2

(
T − t

T − s

)Q/2

�μ+ε(t, x; T, y).

The proof of (3.10) is based on analogous arguments.
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We finally prove (3.11). As for (3.6), we first consider the case T − t ≥ h2. By the
mean-value theorem, there exists a real h̄ with |h̄| ≤ |h| such that

∣∣∂i jP(t, x + hek; T, y) − ∂i jP(t, x; T, y)
∣∣ = |h| ∣∣∂i jkP(t, x + h̄ek; T, y)

∣∣

(by estimate (A.11))

≤ C
|h|

(T − t)
3
2

�μ+ε(t, x + h̄ek; T, y)

(since T − t ≥ h2 and by standard estimates on �μ+ε(t, x + h̄ek; T, y))

≤ C
|h|β

(T − t)1+
β
2

(
�μ+ε(t, x + hek; T, y) + �μ+ε(t, x; T, y)

)
.

We now consider T − t < h2. Employing triangular inequality and estimate (A.11)
yields

∣∣∂i jP(t, x + hek; T, y) − ∂i jP(t, x; T, y)
∣∣

≤ C

T − t

(
�μ+ε(t, x + hek; T, y) + �μ+ε(t, x; T, y)

)

(since T − t < h2)

≤ C
|h|β

(T − t)1+
β
2

(
�μ+ε(t, x + hek; T, y) + �μ+ε(t, x; T, y)

)
.

This concludes the proof of (3.11). �

4. Cauchy problem

In this section we anticipate some of the results on the Cauchy problem, namely
well-posedness andSchauder estimates,which canbe derived byutilizing the existence
and the regularity estimates on the fundamental solution. We refer the reader to [25]
for the details.
Consider the Cauchy problem

{
A u + Yu = f on ST ,

u(T, ·) = g on R
N ,

(4.1)

with T > 0 being fixed hereafter.

Assumption 4.1. For some α ∈]0, 1] and ν ∈ [0, 2 + α], we have f ∈ L∞([0, T ];
Cα
B(RN )) and g ∈ Cν

B(RN ).

When ν > 1, the definition of the anisotropic spaceCν
B(RN ) is a standard extension

of that in Definition 1.1. Once more, we refer to [25] for the details.
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Theorem 4.1. (Well-posedness and Schauder estimate) Under Assumptions 1.1, 1.2,
1.3 and 4.1, the function

u(t, x) :=
∫

RN
p(t, x; T, y)g(y)dy −

∫ T

t

∫

RN
p(t, x; s, y) f (s, y)dyds

is the unique bounded solution of the Cauchy problem (4.1), in the sense of Definition
1.5. Furthermore, for any β ∈]0, α[, u satisfies

‖u‖
C2,β
B (St )

≤ C
(
(T − t)−

2+β−ν
2 ‖g‖Cν

B (RN ) + ‖ f ‖
L∞([0,t];Cβ

B (RN ))

)
, t ∈]0, T [.

Remark 4.1. In [25] it is allowed for f to be unbounded with respect to the time
variable, namely ‖ f ‖L∞([0,t];Cα

B (RN )) ∼ (T − t)−γ as t → T−, for some γ ∈ [0, 1[.
Furthermore, the proofs in [25] can be extended to include the case of f and g with
exponential growth in the space variable, namely:

| f (t, x)| + |g(x)| ≤ CeC|x |2 , x ∈ R
N .

As a consequence of Proposition 4.1, we have the following result, which contains
further useful properties that allow to view the fundamental solution as the transition
probability density of a Markovian process.

Corollary 4.1. Under the assumptions of Theorem 1.1 we have:

(i) The Chapman–Kolmogorov identity

p(t, x; T, y) =
∫

RN
p(t, x; s, η)p(s, η; T, y)dη,

0 < t < s < T < T0, x, y ∈ R
N ;

(ii) If the zero-th order coefficient a of A is constant, i.e. a(t, x) = ā, then
∫

RN
p(t, x; T, y)dy = eā(T−t), 0 < t < T < T0, x ∈ R

N .
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A Gaussian estimates

We prove Gaussian estimates that are crucial in the analysis of Sects. 2 and 3. Here
we follow the ideas in [7, Section 3], but with some technical difference. Namely, in
the aforementioned paper the Kolmogorov operator acts on the forward variables of
�(s,v)(t, x; T, y), whereas here we considerA + Y acting on the backward variables
(t, x). This has an impact on the spatial derivatives, which contain additional factors
that require a careful analysis.
Throughout the appendix we suppose that Assumptions 1.1, 1.2 and 1.3 are satisfied

and fix (s, v) ∈ ST0 . Denoting by B0 the matrix B with null ∗-blocks, we define the
N × N matrices

C0(t) :=
∫ t

0
e(t−τ)B0

(
Id 0
0 0

)
e(t−τ)B∗

0 dτ,

C (s,v)
0 (t, T ) :=

∫ T

t
e(T−τ)B0 A(s,v)(τ )e(T−τ)B∗

0 dτ,

with A(s,v) as defined in (2.3). As an immediate consequence of Assumption 1.1 we
can compare the quadratic forms associated toC (s,v) (as in (2.2)),C (s,v)

0 withC (T −t)
(as in (2.5)), C0(T − t), respectively:

1

μ
C (T − t) ≤ C (s,v)(t, T ) ≤ μC (T − t),

1

μ
C0(T − t) ≤ C (s,v)

0 (t, T ) ≤ μC0(T − t), (A.1)

for any t ≤ T . Moreover, an asymptotic comparison near 0 of C (s,v) and C (s,v)
0 holds:

Lemma A.1. There exist two positive constants C and δ, only dependent on μ and
B, such that

1

2μ
C0(T − t) ≤ C (s,v)(t, T ) ≤ 2μC0(T − t),

1

(2μ)N
detC0(T − t) ≤ detC (s,v)(t, T ) ≤ (2μ)N detC0(T − t),

for any 0 < T − t < δ. Analogous estimates hold for
(
C (s,v)(t, T )

)−1
.

Proof. It follows from the same arguments of [23, Lemma 3.1]: the proof is only based
on the properties of the matrices A and B, and it is not relevant whether A has constant
or time-dependent entries. �

Remark A.1. We note that | · |B is homogeneous with respect to the family of dilations
defined by the matrices

D(λ) := diag(λId , λ
3 Id1 , . . . , λ

2q+1 Idq ), λ ≥ 0.
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In [23, Proposition 2.3] it is proved that

C0(t) = D(
√
t)C0(1)D(

√
t), t ≥ 0. (A.2)

Therefore, for 0 < T − t < δ with δ as in Lemma A.1,

(T − t)Q

(2μ)N
detC0(1) ≤ detC (s,v)(t, T ) ≤ (2μ)N (T − t)Q detC0(1).

To compute the spatial derivatives of �(s,v)(t, x; T, y) it is useful noticing that

�(s,v)(t, x; T, y) = G
(
H (s,v)(t, T ), e−(T−t)B y − x

)
, (T, y) ∈ ST0 , (t, x) ∈ ST ,

where

H (s,v)(t, T ) := e−(T−t)BC (s,v)(t, T )e−(T−t)B∗
.

Since C (s,v)(t, T ) is symmetric positive definite and e−(T−t)B is non-singular, then
H (s,v)(t, T ) is symmetric and positive definite for every 0 ≤ t < T .
In order to give estimates on the matrix H (s,v) we need to study the elements of et B .

We recall the block partition (1.6) of the matrix B: for h, k = 0, . . . , q, we denote the
dh × dk block of B by

Qhk := (
bi j

)
i=d̄h−1+1,...,d̄h
j=d̄k−1+1,...,d̄k

,

with d̄h as in (1.7). Note that by (1.6) we have
⎧
⎪⎪⎨

⎪⎪⎩

Qhk = 0dh×dk if h > k + 1,

Qhk = Bh if h = k + 1,

Qhk = ∗ if h < k + 1.

(A.3)

Analogously, for n ∈ N, we can consider the same block decomposition for Bn . We
denote by Q(n)

hk the dh × dk block of Bn .

Lemma A.2. Let h, k = 0, . . . , q and n ∈ N. Then

Q(n)
hk = 0dh×dk , h > k + n, (A.4)

which is (Bn)i j = 0 if i ∈ {d̄h−1 + 1, . . . , d̄h} and j ∈ {d̄k−1 + 1, . . . , d̄k}.
Proof. We proceed by induction on n. The case of n = 1 is obvious (see (A.3)). Now
we assume that (A.4) holds for a certain n ∈ N. For h > k + n + 1 we have

Q(n+1)
hk =

q∑

m=0

Q(n)
hmQmk .

If m < h − n, then Q(n)
hm = 0dh×dm by inductive hypothesis; if m ≥ h − n, then

m > k + 1 and Qmk = 0dm×dk . Therefore Q
(n+1)
hk = 0dh×dk . �
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Lemma A.3. Let h, k = 1, . . . , q such that h − k =: n ∈ N. For any i ∈ {d̄h−1 +
1, . . . , d̄h} and j ∈ {d̄k−1 + 1, . . . , d̄k} we have

(
et B

)

i j
= O(tn), as t → 0.

Proof. From Lemma A.2 we have that (Bm)i j = 0 for every m = 0, . . . , n − 1, since

Q(m)
hk = 0dh×dk for h − k = n > m. Therefore

(et B)i j = tn(Bn)i j

n! + O(tn+1), as t → 0.

�

Lemma A.4. There exists a positive constant C that only depends on μ, B and T0
such that, for every i, j = 1, . . . , d and k = d + 1, . . . , d + d1,

∣∣(H (s,v)(t, T )−1x
)
i

∣∣ ≤ C√
T − t

∣∣D(
√
T − t)−1e(T−t)Bx

∣∣, (A.5)

∣∣(H (s,v)(t, T )−1)
i j

∣∣ ≤ C

T − t
, (A.6)

∣∣(H (s,v)(t, T )−1x
)
k

∣∣ ≤ C

(T − t)
3
2

∣∣D(
√
T − t)−1e(T−t)Bx

∣∣, (A.7)

∣∣(H (s,v)(t, T )−1)
ik

∣∣ ≤ C

(T − t)2
, (A.8)

for any 0 < T < T0 and (t, x) ∈ ST .

Proof. We prove the first inequality. Setting τ = T − t , we have

∣∣∣
(
H (s,v)(t, T )−1x

)

i

∣∣∣ = 1√
τ

∣∣∣
(
D(

√
τ)eτ B∗

C (s,v)(t, T )−1eτ Bx
)

i

∣∣∣

≤ 1√
τ

N∑

n=1

∣∣∣
(
D(

√
τ)eτ B∗

D(
√

τ)−1)
in

∣∣∣
∥∥∥D(

√
τ)C (s,v)(t, T )−1D(

√
τ)

∥∥∥
∣∣∣D(

√
τ)−1eτ Bx

∣∣∣ .

By Lemma A.1 there exists a positive constant δ such that, if 0 < τ < δ, we have

∥∥∥D(
√

τ)C (s,v)(t, T )−1D(
√

τ)

∥∥∥ ≤ sup
|y|=1

〈D(
√

τ)C (s,v)(t, T )−1D(
√

τ)y, y〉

≤ 2μ sup
|y|=1

〈C0(τ )−1D(
√

τ)y, D(
√

τ)y〉

= 2μ‖C0(1)
−1‖,
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where the last equality follows from (A.2). If δ ≤ τ < T0, by Eq. (A.1) we have
∥∥∥D(

√
τ)C (s,v)(t, T )−1D(

√
τ)

∥∥∥ ≤ μ

∥∥∥D(
√

τ)C (τ )−1D(
√

τ)

∥∥∥ ,

which is bounded by a constant that depends only on μ, T0 and B.
In order to conclude the proof of (A.5), we let hn be the only h ∈ {0, . . . , q} such

that d̄h−1 + 1 ≤ n ≤ d̄h . Then, by Lemma A.3, since i ∈ {1, . . . , d}, we obtain
(
D(

√
τ)eτ B∗

D(
√

τ)−1)
in = D(

√
τ)i i

(
eτ B∗)

in D(
√

τ)−1
nn

= τ
1
2

(
eτ B

)

ni
τ− 2hn+1

2 = O(1) as τ → 0.

Estimate (A.6) follows from (A.5) choosing x = e j . Estimates (A.7) and (A.8) can
be proved following the same arguments, noticing that for k = d + 1, . . . , d + d1 we
have D(τ )kk = τ 3. �

Finally, we provide Gaussian estimates for �(s,v)(t, x; T, y) and its derivatives up
to the fourth order that will be used to study the Hölder regularity of the second
order derivatives of the fundamental solution via the representation (2.8)–(2.12). The
following result can be proved as [7, Proposition 3.5].

Lemma A.5. For every β ≥ 0 and ε > 0 there exists a positive constant C, only
dependent on T0, μ, B, ε and β, such that

|wi |β �(s,v)(t, x; T, y) ≤ C�μ+ε(t, x; T, y),

(T, y) ∈ ST0 , (t, x) ∈ ST , i = 1, . . . , N , (A.9)

where

w = D(
√
T − t)−1

(
y − e(T−t)Bx

)
.

Notation A.1. Let ν = (ν1, . . . , νN ) ∈ N
N
0 be a multi-index. We define the B-length

of ν as

[ν]B :=
q∑

j=0

(2 j + 1)

d̄ j∑

i=d̄ j−1+1

νi .

Moreover, as usual ∂ν
x = ∂

ν1
x1 · · · ∂νN

xN .

Combining Lemmas A.4 and A.5 with [7, Proposition 3.1, 3.6 and Lemma 5.2],
some lengthy but straightforward computations show the following

Proposition A.1. We have

1

μN
�

1
μ (t, x; T, y) ≤ �(s,v)(t, x; T, y) ≤ μN�μ(t, x; T, y). (A.10)
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for any (T, y) ∈ ST0 and (t, x) ∈ ST . Moreover, for every ε > 0 and ν ∈ N
N
0 with

[ν]B ≤ 4, there exists a positive constant C, only dependent on T0, μ, B and ε, such
that

|∂ν
x�(s,v)(t, x; T, y)| ≤ C

(T − t)
[ν]B
2

�μ+ε(t, x; T, y),

(A.11)
∣∣∣∂ν

x�(s,v)(t, x; T, y) − ∂ν
x�(s,w)(t, x; T, y)

∣∣∣ ≤ C
|v − w|αB

(T − t)
[ν]B
2

�μ+ε(t, x; T, y),

(A.12)

for any (T, y) ∈ ST0 , (t, x) ∈ ST and w ∈ R
N .

B potential estimates

We study � = �(t, x; T, y) in (2.19) and its derivatives w.r.t. to the variables
x1, . . . , xd . To do so, we have to deal with some singular integrals. We follow the
steps in [7, Section 5], but we remark that the estimates of Proposition B.1 extend the
ones in the aforementioned paper to higher order derivatives. This is needed to prove
the optimal regularity of �(t, x; T, y) and thereafter of p(t, x; T, y).
We set

J (t, x; τ ; T, y) :=
∫

RN
P(t, x; τ, η)φ(τ, η; T, y)dη,

(T, y) ∈ ST0 , (t, x) ∈ ST , τ ∈]t, T [. (B.1)

Proposition B.1. For every ε > 0, ν ∈ N
N
0 with [ν]B ≤ 4 and 0 < δ < α, there

exists a positive constant C, only dependent on N , T0, μ, B, δ, α and ε, such that,

|J (t, x; τ ; T, y)| ≤ C

(T − τ)1− α
2
�μ+ε(t, x; T, y) (B.2)

∣∣∂ν
x J (t, x; τ ; T, y)

∣∣ ≤ C

(T − τ)1− δ
2 (τ − t)

[ν]B−(α−δ)

2

�μ+ε(t, x; T, y), (B.3)

for every (T, y) ∈ ST0 , (t, x) ∈ ST and τ ∈]t, T [.
Proof. The proof relies on Proposition 2.1: (B.2) can be easily obtained by applying
estimate (A.10) to P(t, x; τ, η), estimate (2.13) to φ(τ, η; T, y) and the Chapman–
Kolmogorov identity.
We provide a full proof of (B.3) in the case of ∂ν

x = ∂xi x j , with i, j ≤ d, the proof
for higher order derivatives being analogous. The idea is to combine (2.14) with the
techniques in [7, Proposition 5.3] and [36, Proposition 3.2]. Let (t, x) ∈ ST and
τ ∈]t, T [ be fixed. By estimates (A.11) and (2.13), we have

∂xi x j J (t, x; τ ; T, y) =
∫

RN
∂xi x jP(t, x; τ, η)φ(τ, η; T, y)dη.
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We set = t+T
2 and consider two separate cases:

Case < τ < T . By (A.11) and (2.13), we have that for every ε > 0 and 0 < δ < α

there exists a positive constant C such that

|∂xi x j J (t, x; τ ; T, y)| ≤
∫

RN

C

(T − τ)1− α
2 (τ − t)

�μ+ε(t, x; τ, η)�μ+ε(τ, η; T, y)dη

(by the Chapman–Kolmogorov equation)

≤ C

(T − τ)1− α
2 (τ − t)

�μ+ε(t, x; T, y)

(since T − τ < τ − t)

≤ C

(T − τ)1− δ
2 (τ − t)1− α−δ

2

�μ+ε(t, x; T, y).

Case t < τ ≤. Here we need to handle with care the singularity of ∂xi x jP(t, x; τ, η)

for small τ − t . Note that in this case the following inequalities hold true:

τ − t ≤ T − t

2
≤ T − τ < T − t. (B.4)

We have

∂xi x j J (t, x; τ ; T, y) = K1 + K2 + K3,

where, setting ξ = e(τ−t)Bx ,

K1 :=
∫

RN
∂xi x j �

(τ,η)(t, x; τ, η)
(
φ(τ, η; T, y) − φ(τ, ξ ; T, y)

)
dη,

K2 := φ(τ, ξ ; T, y)
∫

RN

(
∂xi x j �

(τ,η)(t, x; τ, η) − ∂xi x j �
(τ,v)(t, x; τ, η)

∣∣
v=ξ

)
dη,

K3 := φ(τ, x; T, y)
∫

RN
∂xi x j �

(τ,v)(t, x; τ, η)
∣∣
v=ξ

dη.

We first consider K1. By (2.14) and (A.11), for every ε > 0 and 0 < δ < α there
exists a positive constant C such that

|K1| ≤ C

(T − τ)1− δ
2

∫

RN

|η − ξ |α−δ
B

(τ − t)
�μ+ ε

2 (t, x; τ, η)

× (
�μ+ε(τ, ξ ; T, y) + �μ+ε(τ, η; T, y)

)
dη

(by (A.9))

≤ C

(T − τ)1− δ
2

∫

RN

1

(τ − t)1− α−δ
2

�μ+ε(t, x; τ, η)

× (
�μ+ε(τ, ξ ; T, y) + �μ+ε(τ, η; T, y)

)
dη
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(integrating in η and by the Chapman–Kolmogorov identity)

≤ C

(T − τ)1− δ
2 (τ − t)1− α−δ

2

(
�μ+ε(τ, ξ ; T, y) + �μ+ε(t, x; T, y)

)

(by (B.4))

≤ C

(T − τ)1− δ
2 (τ − t)1− α−δ

2

�μ+ε(t, x; T, y).

Consider now K2. By (2.13) and (A.12), we obtain

|K2| ≤ C
�μ+ε(τ, ξ ; T, y)

(T − τ)1− α
2

∫

RN

|η − ξ |αB
τ − t

�μ+ε(t, x; τ, η)dη

(by (A.9) and integrating in η)

≤ C

(T − τ)1− α
2 (τ − t)1− α

2
�μ+ε(τ, ξ ; T, y)

(again by (B.4))

≤ C

(T − τ)1− δ
2 (τ − t)1− α−δ

2

�μ+ε(t, x; T, y).

Finally, K3 = 0 since
∫

RN
∂xi x j �

(τ,v)(t, x; τ, η)dη = ∂xi x j

∫

RN
�(τ,v)(t, x; τ, η)dη = 0

for any v ∈ R
N . �
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