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Abstract. In this paper we consider a pair of coupled nonlinear partial differential equations describing
the interaction of a predator–prey pair including random movement as well as prey-taxis. We introduce
a concept of generalized solutions and show the existence of such solutions in all space dimensions with
the aid of a regularizing term. Additionally, we prove the weak–strong uniqueness of these generalized
solutions and the existence of strong solutions at least locally in time for space dimension two and three.
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1. Introduction

The modelling approaches for predator–prey interactions are as diverse as the
wildlife itself.
There are many different effects to be thought of, leading to different response

functions as well as movements, see [33] for a derivation of a quite general class of
models. The subject of the present work is the analysis of the prey-taxis model stated
below. For Ω being a bounded C2-domain in R

d for some d ∈ N with d ≥ 2 and
T > 0, we are going to consider the following model

{∂t u − νΔu + κ∇ · (u∇w) = (αw − β)u in (0, T ) × Ω, (1.1a)

∂tw − μΔw = (γ − δu)w in (0, T ) × Ω, (1.1b)

u = u0 on {0} × Ω, (1.1c)

w = w0 on {0} × Ω, (1.1d)

∇u · n = 0 on [0, T ] × ∂Ω, (1.1e)

∇w · n = 0 on [0, T ] × ∂Ω. (1.1f)

The unknown u : [0, T ] × Ω → R represents the density of predators, the unknown
w : [0, T ] × Ω → R the density of prey and n denotes the outer normal vector of Ω .
All other appearing parameters are positive constants.
The system considered is inspired by an application in biological pest control. In

the production of ornamental plants, as for example roses, it is desirable to reduce the
use of chemical pesticides. This can be achieved by releasing natural enemies of the
pest involved, which do not have a damaging effect on the plants. A typical example
of such a predator–prey pair is the two-spotted spider mite (Tetranychus urticae) and
the predatory mite (Phytoseiulus persimilis), see [54] for a detailed discussion of this
predator–prey pair.
In order to describe the interaction of these two populations over a bounded domain

and on a finite time horizon, we consider a typical Lotka–Volterra system coupled with
diffusivemovement of both populations over thewhole domain, modelling the random
movement of the mite populations. The Lotka–Volterra model was first introduced in
form of a system of ordinary differential equations in 1920 by Alfred J. Lotka [46]
and in 1926 by Vito Volterra [58] describing the evolution of the number of predators
and prey in time. In this model the prey population is assumed to grow exponentially
with rate γ if there are no predators present and decline by predation with a rate
proportional to the number of predators −δu. The predator population is assumed
to decline exponentially in the absence of prey with rate −β and has a natality rate
proportional to the number of prey available αw. Even though the model has some
drawbacks, as the lack of capturing saturation effects, it is a good starting point for
the investigation of population dynamics, see [50, Ch. 3.1].
The considered model (1.1) is very close to the model introduced in [10] and iden-

tical to it except for the nonlinear higher-order coupling term κ∇ · (u∇w), we include
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this cross-diffusion term in order to model the predator’s hunting behaviour as some
directed movement towards higher concentrations of prey. This term was first intro-
duced by Evelyn F. Keller and Lee A. Segel in 1970 and 1971, see [34] and [35],
where the movement of one-celled organisms under the influence of some chemical
attractant was considered. The classical Keller–Segel model

∂t u = Δu − ∇ · (u∇w),

∂tw = Δw − w + u,

where u denotes the density of the one-celled organisms and w the concentration
of the chemical attractant, has been of large mathematical interest, see for example
[28] for an extensive survey and the references therein. Of particular interest is the
question whether finite time blow-up occurs or not. In 1992 blow-up was proven to
exist in two spatial dimensions in a simplified setting where the second equation is
only elliptic, see [30]. In 2001 this result was extended to the classical Keller–Segel
model, see [29], where the existence of unbounded solutions was shown. The survey
[40] provides a nice overview of the mathematical challenges of chemotaxis models
due to blow-up. Even though for themodel at hand the existence of finite time blow-up
is, to the best of the authors knowledge, still an open question. The existing results on
blow-up behaviour of models including a cross-diffusion term like κ∇ · (u∇w) justify
the usage of generalized solution concepts as we will introduce in this work.
Relying on field observations made on the behaviour of the ladybug beetle and the

goldenrod aphid and on ideas from Keller and Segel, Peter Kareiva and Garett Odell
derived a model similar to the Keller–Segel model for the behavior of a predator–prey
pair in 1987, see [33]. This indicates that the chemotaxis term ∇ · (u∇w) from the
Keller–Segel model is also appropriate to model prey-taxis.
A significant contribution to the analysis of model (1.1) was made in 2017 by

Michael Winkler, see [62]. Within this work the existence of global weak solution was
proven for convex domains with space dimension d ≤ 5.

Similar models to the one above have been of interest to researchers in the mathe-
matical and numerical analysis of partial differential equations over the last decades
[6]. Replacing the taxis coefficient κ by a functionχ(u) dependent on u and presuming
various conditions on this function, the existence of weak or even classical solutions
to models similar to (1.1) is known. Assuming that χ(u) vanishes for large values of
u and considering a different response function on the right-hand side, classical so-
lutions are known to exist in dimensions d = 1, 2, 3, see [48,57] and weak solutions
exist in all space dimensions [7]. Presuming some smallness condition for the taxis
coefficient κ , the existence of classical solution is also proven in all space dimensions
in [64] and in [60], relying on a milder growth of either the prey or predator density.
In [31] global existence of classical solutions for a prey-taxis model is shown with
no restriction on the taxis coefficient but with dampened growth conditions of the
predator and the prey, which prevent blow-up. These result were extended in [32] to
include a prey-density dependence of the predators mobility. Renormalized solutions
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were considered in [59]. Here, the equation constitutive for the solution is a weak
formulation for some smooth function of the solution u. In [59] the global existence of
these solutions was shown for a chemo-taxis model including the nonlinear coupling
term κ∇ · (u∇w) with the taxis coefficient κ = 1 in all space dimension d ≥ 4.

Another generalized solution concept for a Keller–Segel model was considered in
[39], with a weak formulation for the prey and some weak inequalities for the coupled
quantity u pwq for some p, q ∈ (0, 1). Here it was still necessary to impose some
smallness conditions on the taxis coefficient.

To the best of the authors knowledge model (1.1) was not yet considered in this
generality, with no constraints, apart from the positivity, on the taxis coefficient κ .

Our definition of generalized solution consists of a weak formulation for the prey
equation forw and two inequalities for the predator u, see Definition 2.1 below. These
two inequalities bear some resemblance to mass conservation (in)equalities and en-
tropy inequalities, as they include the total number of predators

∫
Ω
u dx and the term

− ∫
Ω
ln u dx commonly associated to the entropy of a physical system. Since reason-

able a priori estimates, that is estimates leading to the existence of weak solutions,
seem to be out of reach for the function u itself, we rather formulate the solvabil-
ity concept for a nonlinear function of the predator variable, namely ln u. With this,
we follow the landmark paper [16], where renormalized solutions were introduced
for the first time in the context of Boltzmann equations. Similar concepts of gen-
eralized solutions have been considered for different versions of the Keller–Segel
model [14,23,38,39,61,63].

Our main motivation to make these inequalities constitutive in our definition of
generalized solutions is purely mathematical. With these inequalities we are able to
prove a relative energy inequality, an estimate for the so-called relative energy,

R(u, w|ũ, w̃) =
∫

Ω

u − ũ − ũ(ln u − ln ũ) + κ2

μν
ũ|w − w̃|2 dx

for u and ũ two different predator and w and w̃ two different prey populations, which
is inspired by the Kullback–Leibler divergence, see [36]. This distance measure has
many names, one of which is relative entropy, and many application areas. In its
original form it measures the difference of two probability densities and is commonly
used in information theory but also finds its application in biological systems as the
Lotka–Volterra model, see [3]. In the context of the incompressible Navier–Stokes
equations, i.e., for a quadratic energy, the relative energy approach was already used
by Leray in his seminal work [45] and later on by Serrin [56] to prove weak–strong
uniqueness. Formore general energy or entropy functionals this approach can be traced
back to Dafermos, see [11,15], in the context of conservation laws. This technique has
since been generalized in different direction, for instance to the case of renormalized
solutions [22] or non-convex energies [43]. The relative energy serves nowadays as a
general tool in the analysis of PDEs and is used to consider aside from theweak–strong
uniqueness of solutions [9,22,27] also
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long-time behaviour [42], singular limits [20], convergence of numerical schemes
[4] or comparison with reduced models [21] and even optimal control [41].

The deviation from the solution concept of the commonly used weak solutions al-
lowed us to tackle the higher-order nonlinear coupling introduced by the Keller–Segel
taxis term in (1.1). The meaningfulness of this solution concept is further supported
by the fact that weak–strong uniqueness holds, which is a consequence of the above
mentioned relative energy inequality. Furthermore, the proposed relative energy ap-
proach has numerous other applications as explained above and the relative energy
inequality should be investigated in these directions in the future. In the numerical
simulations, we performed to visualize the influence of the prey-taxis, the bias of the
random motion of the predator u, modelled by the diffusion, towards higher concen-
tration of prey is clearly visible. This suggests that model (1.1) is suitable to model
the populations of a predator–prey pair which includes some hunting behaviour.

Plan of the paper: The paper is structured as follows. In the next section, Sect. 2,
we collect the main results and highlight some aspects of the proofs. In Sect. 3, we
present some numerical simulations motivating the chosen model and illustrating
the effect of the prey-taxis term. In Sect. 4, we prove the existence of generalized
solutions using the special regularization of adding a term modelling overcrowding.
The weak–strong uniqueness proof is conducted in Sect. 5, whereas the existence of
strong solutions locally in time in dimension two and three is proven in Sect. 6. The
“Appendix” contains certain technical lemmata.

Notation: Before we begin with the main part of this work, we make some remarks
on our notation. By Ω ⊆ R

d , we denote a bounded C2-domain with d ≥ 2. The
variable T ∈ (0,∞) denotes the finite time horizon. By n, we denote the outer normal
vector of the domain Ω . For any Banach space V we denote the dual pairing between
V ∗ and V by 〈·, ·〉V . In the remainder of this paper we will drop the subscript V
for the sake of readability as it will be clear from the context which space is meant.
Additionally, we will sometimes use the shorthand notations Lr (Lq) for the Bochner
space Lr (0, T ; Lq(Ω)) and Lr (Wk,q) for the Bochner space Lr (0, T ;Wk,q(Ω)) for
k ∈ N and r, q ≥ 1. Furthermore, we denote the space of abstract functions of
bounded variationwith values in V byBV([0, T ]; V ). The space ofweakly continuous
functions with values in V is denoted by Cw([0, T ]; V ) and the space of V -valued
regular measures on [0, T ] byM(0, T ; V ), see for example [13] for an introduction.

We generally use C > 0 for constant upper bounds, where the exact value of C
may change throughout a calculation without this being indicated in the notation.
Throughout this paper we take T, α, β, γ, δ, κ, ν, μ > 0 arbitrary but fixed. Further,
we take the dimension d ∈ Nwith d ≥ 2, the C2−domainΩ ⊆ R

d and p > max{4, d}
to be fixed.
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2. Main results

We start off by defining the appropriate spaces for our solutions. We first define the
regularity space of the solution X . We say (u, w) ∈ X if

u ∈ L∞(0, T ; L1(Ω)),

ln u ∈ L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ; L1(Ω)) ∩ BV([0, T ];W 1,p(Ω)∗),
u > 0 a.e. in (0, T ) × Ω,

w ∈ L∞((0, T ) × Ω) ∩ L2(0, T ;W 1,2(Ω)),

∂tw ∈ L2(0, T ;W 1,2(Ω)∗ + L1(Ω)),

w ≥ 0 a.e. in (0, T ) × Ω,

where p > d and the sum X = X1+X0 of twoBanach spaces X0 and X1 continuously
embedded into a Hausdorff topological vector spaceH is the set of all elements x ∈ H
such that there are x0 ∈ X0 and x1 ∈ X1 with x = x0 + x1, see [8, p. 97]. The here
given sum of Banach spaces is well-defined since both L1(Ω) and W 1,2(Ω)∗ are
continuously embedded into the space of distributions D′(Ω). We now define the
generalized solutions as follows.

Definition 2.1. (Generalized solution) We say (u, w) ∈ X is a generalized solution
to (1.1) for the initial data (u0, w0) ∈ L1(Ω) × L2(Ω) if the population inequality
for the predator

∫

Ω

u(t) dx + β

∫ t

0

∫

Ω

u dx ds ≤ α

∫ t

0

∫

Ω

wu dx ds +
∫

Ω

u0 dx (2.1)

and the logarithmic inequality for the predator

−
∫

Ω

ln u(t)ϑ(t) dx +
∫ t

0

∫

Ω

ν|∇ ln u|2ϑ − ν∇ ln u · ∇ϑ dx ds

+
∫ t

0

∫

Ω

−κϑ∇w · ∇ ln u + κ∇w · ∇ϑ dx ds

≤
∫ t

0

∫

Ω

(β − αw)ϑ − ln u ∂tϑ dx ds −
∫

Ω

ln u0ϑ(0) dx (2.2)

hold for all non-negative test function ϑ ∈ C1([0, T ]; L∞(Ω))∩ L2(0, T ;W 1,2(Ω))

and all t ∈ [0, T ]. Additionally, the prey equation is fulfilled in the weak sense, that
is

∫

Ω

w(t)ϕ(t)d�x −
∫ t

0

∫

Ω

w∂tϕ − μ∇w · ∇ϕ − δuwϕd�xds

=
∫ t

0

∫

Ω

γwϕd�xds +
∫

Ω

w0ϕ(0)d�x
(2.3)

holds for all ϕ ∈ C1([0, T ]; L∞(Ω)) ∩ L2(0, T ;W 1,2(Ω)) and all t ∈ [0, T ].
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Remark 2.2. The energy inequality (2.1) is formally derived by testing the predator
equation (1.1a) with the test function ϕ ≡ 1 and relaxing the equality to an inequality.
The logarithmic inequality (2.2) is formally derived by testing the predator equation
(1.1a) with ϕ = −ϑ

u and again relaxing the equality to an inequality.

Remark 2.3. The values of the solution (u, w) at time zero are well-defined in the
given spaces as along as the initial conditions (u0, w0) live in the appropriate spaces,
i.e. ln u0, u0 ∈ L1(Ω) and w0 ∈ L2(Ω), since by the definition of X we have
ln u ∈ BV([0, T ];W 1,p(Ω)∗) and

w ∈ L∞(0, T ; L2(Ω)) ∩ Cw([0, T ];W 1,p(Ω)∗) ↪→ Cw([0, T ]; L2(Ω)).

Note that the inequalities (2.1)–(2.2) do hold, unlike in many similar cases, for all
t ∈ [0, T ]. This follows from an application of an abstract version of Helly’s selection
principle, see for example [5]. More details can be found in the proof of Theorem 2.4.

The main result of this work is the proof, that such solutions exist under certain
assumptions on the initial data, which are formulated in the following theorem.

Theorem 2.4. (Existence of generalized solutions) Let Ω ⊆ R
d be a smooth and

bounded domain with d ∈ N, d ≥ 2. Additionally, assume u0 ∈ L1(Ω) with u0 > 0
almost everywhere in Ω as well as ln u0 ∈ L1(Ω) and w0 ∈ L∞(Ω) with w0 ≥ 0
almost everywhere in Ω . Then there exists a generalized solution (u, w) ∈ X to (1.1)
in the sense of Definition 2.1.

To see that our generalized solution concept is meaningful, we show weak–strong
uniqueness. To do that we need the notion of a strong solution. We define strong
solutions in the following way.

Definition 2.5. (Strong solution)We call the pair (ũ, w̃) a strong solution to the system
(1.1) on [0, T̃ ] for some T̃ > 0 to the initial data u0, w0 ∈ C3(Ω) non-negative, if

ũ, w̃ ∈ C1([0, T̃ ] × Ω) and Δũ,Δw̃ ∈ C([0, T̃ ] × Ω),

w̃ and ũ are non-negative and the equations (1.1a)–(1.1f) are fulfilled pointwise.

Theorem 2.6. (Weak–strong uniqueness) Let (ũ, w̃) be a strong solution according to
Definition2.5 for the initial conditions u0, w0 ∈ C3(Ω)non-negative,with u0 bounded
away from zero. Then every generalized solution (u, w) ∈ X emanating from the same
initial values coincides with the strong solution and thus the generalized solution is
unique.

In the final part of this paper we show that under stronger assumption on the initial
conditions, we indeed have at least local-in-time existence of strong solutions.

Theorem 2.7. (Local existence of weak solutions) For d ∈ {2, 3}, u0 ∈ W 1,2(Ω) and
w0 ∈ W 2,6(Ω) both non-negative and fulfilling zero Neumann boundary conditions
there is a T ∗ > 0 such that (1.1) has a weak solution (u, w) with

u ∈ W 1,2(0, T ∗; L2(Ω)) ∩ L2(0, T ∗;W 2,2(Ω)) ∩ L∞(0, T ∗;W 1,2(Ω)),
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w ∈ W 1,6(0, T ∗; L6(Ω)) ∩ L6(0, T ∗;W 2,6(Ω)) ∩ L∞(0, T ∗;W 2,2(Ω)).

The necessary a priori estimates for this result are given at the end of the paper.
Given smoother initial data we can deduce even more regularity of the local solution
so that we obtain a strong solution.

Proposition 2.8. (Local existenceof strong solutions)Ford ∈ {2, 3}andnon-negative
w0, u0 ∈ C3(Ω) both fulfilling zero Neumann boundary conditions, we find that the
solutions from Theorem 2.7 are strong solutions.

Main contributions: In this section we will briefly present the main structure of the
proofs of the existence theorem, cf. Theorem 2.4, the weak–strong uniqueness result,
cf. Theorem 2.6 and the local existence result, cf. Theorem 2.7 and highlight the main
ideas.
The existence of generalized solutions is proven via showing the existence of weak

solutions to a regularized system, deriving a priori estimates and extracting convergent
subsequences to send the regularization to zero.
Major contributions to the analysis of a system like (1.1) were made in [62], where

the existence of weak solutions was shown, but there the a priori estimates crucially
depended on the convexity of the domain Ω , which we do not assume to hold here.
Similar generalized solution concepts to the one inDefinition2.1 basedon replacing the
weak formulation of (1.1a) by two variational inequalities were considered in [38,39].
The challenge in proving the existence of such generalized solutions lies in deriving
strong enough a priori estimates to pass to the limit in the nonlinear terms ∇ · (u∇w)

and uw due to the low regularity of u, which is a common challenge when analysing
taxis models, see [40]. If superlinear damping is present in the first equation (1.1a),
additional L p-estimates could help to deduce the desired equi-integrability (cf. [38]).
In [39] highly nonlinear a priori estimates helped to deduce equi-integrability for
approximations of u under certain conditions on the taxis coefficient.
Besides rather classical energy-like estimates, the new idea of the article at hand lies

in deriving an L1(L1) estimate for uw ln(uw + 1), which gives the equi-integrability
of the product uw needed to extract convergent subsequences in L1(L1) independent
of the coefficients and without superlinear damping. This estimate is obtained by
testing (1.1a) by −w

u+1 and adding (1.1b) tested by ln(u + 1). In the resulting relation,
the product stemming from the last term in (1.1b) generates the desired estimate,
since all other terms can be bounded appropriately due to the classical energy-like
estimates. We can then use the weak convergence of the product uw to deduce the
strong convergence of ∇w, which then suffices (with the weak convergence of u) to
pass to the limit in the taxis term. This a priori estimate is, to the best of the authors’
knowledge, the first of this kind in this general taxis system.
The other rather new technique in the context of Keller–Segel models presented, is

the relative energy, our tool of choice to prove the weak–strong uniqueness, mentioned
above in the introduction. Together with the theorem of local existence of a strong
solution this provides a full self-contained analysis of the system comprising global
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existence of generalized solutions, local existence of classical solutions, and weak–
strong uniqueness that is standard nowadays (cf. [43]).

3. Numerical simulations

With the application of model (1.1) in biological pest control in mind, we performed
some numerical simulations illustrating the influence of the prey-taxis term in the
predator equation, using the finite element method and the python package FEniCS.
The illustrations were produced with the python library Plotly. The nonlinear, higher-
order coupling prey-taxis termmade the existence proof of solutions quite challenging,
but it also made the modelling of a certain hunting behaviour possible as can be seen,
when keeping the diffusion coefficients constant and increasing the coefficient of the
prey-taxis term.
Simulations of another Keller–Segel model were conducted in [25]. As described

there, blow-up solution are known to exists for certain initial values and as we have
seen in Sect. 1 also the value of the prey-taxis coefficient played a crucial role in various
existence proofs. With these difficulties in mind, we would like to point out that the
simulations performed here are only used as a visualization tool and we do not claim
any accuracy.
Numerical simulations were performed over the domain Ω = [−1, 1]2, discretized

by a regular triangulation with nx = ny = 200, choosing the final time T = 10 and
the time step dt = 0.01 and continuous P1-Lagrange elements for u and continuous
P2-Lagrange elements for w. Additionally, we chose the coefficients of system (1.1)
to be

ν = 0.1, μ = 0.01, α = 2.0, β = 0.8, γ = 0.8, δ = 2.0, κ ∈ {0, 1, 2, 3}

and the initial conditions

u0 = 4 exp(−30(x + 0.6)2 − 30(y − 0.6)2),

w0 = 2 exp(−9(x + 0.4)2 − 9(y + 0.5)2) + 2 exp(−9(x − 0.5)2 − 9(y − 0.4)2).

Note that the case κ = 0 is not covered by our analysis, but was part of our numerical
simulations for illustration purposes. In this case the difficult prey-taxis term in (1.1a)
vanishes and the existence of weak solution should follow by standard means. The
initial conditions are visualized in Fig. 1.

For κ = 0 the densities at time t = 0.4 are shown in Fig. 2. We chose this rather
short time to illustrate the difference of the model for κ = 0 and κ = 1. At later times
the prey density is distributed more evenly over the whole domain due to the diffusion
and the difference gets less pronounced. The initial concentration of predators and
prey in Gaussians has already spread out slightly as one would expect from diffusive
movement. Here no predators have accumulated at the peaks of the prey density yet.
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Figure 1. Initial conditions

Figure 2. Mite densities for κ = 0 at t = 0.4

In contrast, for κ = 1 and t = 0.4we have a higher concentration of predatorswhere
prey is plenty, see Fig. 3. Here, the biased movement towards higher concentration of
prey, modelled by the prey-taxis term, is nicely visible.

4. Existence of generalized solutions

4.1. The regularized system

Now we introduce the regularizing term −ε u|u|p−1 on the right-hand side of the
predator equation (1.1a), where ε > 0 is the regularizing coefficient, which we will
take to zero in the proof of the existence of generalized solutions, and the exponent
p > max{d, 4}. So the system we are considering in this section is identical to the
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system (1.1) with (1.1a) replaced by

∂t u − νΔu + κ∇ · (u∇w) = (αw − β)u − ε u|u|p−1 in (0, T ) × Ω. (4.1a)

4.2. Existence of weak solutions to the regularized system

The chosen regularization term allows for an easy attainable estimate of u in
L p+1(L p+1) and with the use of maximal L p-regularity in the prey equation (1.1b)
we get rather strong estimates for ∇w, which we need to estimate the prey-taxis term
in (4.1a), which is the term with the prefactor κ .
Let’s start by defining our notion of weak solutions. We first define our solution

space. We say w ∈ W if

w ∈ L2(0, T ;W 1,2(Ω)) and ∂tw ∈ L2(0, T ;W 1,2(Ω)∗)

and we say that u ∈ U if

u ∈ L2(0, T ;W 1,2(Ω)) ∩ L p+1(0, T ; L p+1(Ω)) =: U ,

∂t u ∈ L2(0, T ;W 1,2(Ω)∗) + Lq(0, T ; Lq(Ω)) = U∗.

Here, q > 1 denotes the conjugate exponent of p + 1.
The time derivative of w and u are to be understood in the distributional sense, that

is ut ∈ U∗ is the weak time derivative of u ∈ U if

∫ T

0
〈u(t), ϕ〉φ′(t) dt = −

∫ T

0
〈ut (t), ϕ〉φ(t) dt (4.2)

holds for all ϕ ∈ L p+1(Ω) ∩ W 1,2(Ω) and φ ∈ C∞
0 (0, T ). We then write ∂t u = ut .

The time derivative of w is defined similarly with test functions ϕ ∈ W 1,2(Ω).

Definition 4.1. (Weak solution to the regularized system) We say that a pair (u, w) ∈
U × W is a weak solution to problem (4.1), if

u, w ≥ 0, w ∈ L∞((0, T ) × Ω), ∇w ∈ L p(0, T ; L∞(Ω)),

the integral equalities
∫ t

0
〈∂t u, ψ〉 ds +

∫ t

0

∫

Ω

ν∇u · ∇ψ − κu∇w · ∇ψ − (αw − β)uψ dx ds

+
∫ t

0

∫

Ω

εu|u|p−1ψ dx ds = 0, (4.3)

∫ t

0
〈∂tw, ϕ〉 ds +

∫ t

0

∫

Ω

μ∇w · ∇ϕ − (γ − δu)wϕ dx ds = 0 (4.4)

are fulfilled for all ϕ ∈ L2(0, T ;W 1,2(Ω)) and all ψ ∈ U and almost all t ∈ (0, T )

and the initial conditions are fulfilled in the sense of traces in L2(Ω).
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Figure 3. Mite densities for κ = 1 at t = 0.4

Theorem 4.2. (Existence of weak solutions to the regularized system) For every pair
of initial data (u0, w0)with non-negative u0 ∈ L p(Ω) and non-negative and bounded

w0 ∈
{
w ∈ W 2,p(Ω) | ∇w · n = 0 on ∂Ω

}

there exists a weak solution according to Definition 4.1 to the regularized system (4.1).

Proof. We only give a rough outline of the proof since it mainly follows the standard
procedure of decoupling the system, using a Galerkin approximation to tackle the
single equations and Schauder’s fixed point theorem to show the existence of a solution
to the coupled equations. A detailed proof for d = 2 can be found in [51].
The existence and uniqueness of a weak solution w to the prey equation (1.1b) for

fixed non-negative ū ∈ L p(L p) follows from [53, Thm. 8.30 and Thm. 8.34]. The non-
negativity and boundedness ofw follows from a comparison principle, see Lemma 4.3
below. The additional regularity of w follows from the maximal L p-regularity of the
Laplace operator, see [12, Thm. 8.2]. Here the assumptions that Ω has a C2-boundary
and the initial condition w0 fulfills some compatibility condition are needed.
For fixed w̄ ∈ W non-negative and bounded with ∇w̄ ∈ L p(L∞), the existence

of a weak solution u ∈ U to (4.1a) with w replaced by w̄ can be shown via a stan-
dard Galerkin discretization using the Gelfand triple W 1,2(Ω) ∩ L p+1(Ω) = V ⊆
L2(Ω) ⊆ V ∗ and Minty’s trick to handle the monotone regularization term. Here we
needed the integration by parts rule for elements of U and the continuous embedding
of U into C([0, T ]; L2(Ω)), which can be proven analogously to the well-known ver-
sions of these results for the spaceW. We obtained the non-negativity of u by testing
equation (4.1a) with u− and applying Gronwall’s inequality. Additionally we obtained
a constant L p(L p)-bound for u by using 1 as a test function.

We define the solution operator T : L p(L p) → L p(L p), which maps a non-
negative ū ∈ L p(L p) to the solution of (4.1a) with w = w̄, where w̄ is the solution of
(1.1b) with u replaced by ū. Using the above mentioned existence results and a priori
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estimates for the decoupled equations, we find that T is a well-defined self-map on a
bounded, convex and closed subset of the Banach space L p(L p). The continuity can
be proven by testing appropriately, using L p-interpolation inequalities and maximal
L p-regularity of the heat equation. For any bounded sequence (ūn)n ⊆ L p(L p) the
sequence (T (ūn))n is bounded in L p+1(L p+1), where the bound depends on ε, and
the strong convergence of a subsequence of (T (ūn))n in L p(L p) follows by Vitali’s
theorem, see [18, Thm. 5.6]. This implies the compactness of T and Schauder’s fixed
point theorem then implies the existence of a weak solution to the regularized system
(4.1). �

4.3. A priori estimates

In order to show the existence of generalized solutions according to Definition 2.1,
we show some a priori estimates for solutions (uε, wε) of the regularized system.
These a priori estimates will allow us to extract a convergent subsequence, whose
limit fulfills our notion of generalized solutions.
At first, we prove the following comparison principle for the prey variable.

Lemma 4.3. (Comparison principle forw) Let u ∈ L1(0, T ; L1(Ω)) be non-negative
and assume that w and w are a sub- and a super-solution of (1.1b), i.e. w and w

fulfill equation (1.1b) in the weak sense with the equality sign replaced by ≤ and ≥,
respectively, and

w,w ∈ L2(0, T ; L∞(Ω) ∩ W 1,2(Ω)),

∂tw, ∂tw ∈ L2(0, T ; L1(Ω) + W 1,2(Ω)∗),
0 ≤ ess inf(0,T )×Ω w ≤ ess sup(0,T )×Ω w < ∞,

0 ≤ ess inf(0,T )×Ω w ≤ ess sup(0,T )×Ω w < ∞

hold as well as w(0, x) ≤ w(0, x) a.e. in Ω. Then

w(t, x) ≤ w(t, x) a.e. in (0, T ) × Ω (4.5)

holds.

Proof. Subtracting the equation for the sub-solution w and the super-solution w and
testing the resulting inequality with (w − w)+ := max{0, w − w}, we obtain

1

2

∥
∥(w(t) − w(t))+

∥
∥2
L2(Ω)

+
∫ t

0

∫

Ω

μ|∇(w − w)+|2 + δu|(w − w)+|2 dx ds

= 1

2

∥
∥(w(0) − w(0))+

∥
∥2
L2(Ω)

+ γ

∫ t

0

∫

Ω

|(w − w)+|2 dx ds

for almost all t ∈ (0, T ), where we integrated the first term by parts. The standard
integration by parts rule can be generalized to this case by an approximation with



20 Page 14 of 44 D. Hömberg et al. J. Evol. Equ.

smooth functions, cf. Corollary 7.4 in the “Appendix”. An application of Gronwall’s
inequality yields

∥
∥(w(t) − w(t))+

∥
∥2
L2(Ω)

≤ ∥
∥(w(0) − w(0))+

∥
∥2
L2(Ω)

e2γ t = 0

for almost all t ∈ (0, T ), by the assumption on the initial values and our proof is
complete. �

Corollary 4.4. (Boundedness of w) Let u ∈ L1(0, T ; L1(Ω)) and w0 ∈ L∞(Ω)

both be non-negative. Then the solution w of (1.1b) fulfills

0 ≤ w ≤ ess supx∈Ωw0(x)eγ t a.e. in (0, T ) × Ω. (4.6)

Proof. One easily checks that 0 is a sub- and ess supx∈Ωw0(x)eγ t is a super-solution
to (1.1b). Then the assertion follows from Lemma 4.3. �

Proposition 4.5. (A priori estimates) Assume that the initial values can be bounded
independently of ε. That is ln u0ε and u0ε are bounded in L1(Ω) independently of
ε and w0ε is bounded in L∞(Ω) independently of ε. For a solution (uε, wε) to the
approximate system (4.1) we have the following a priori estimates

‖uε‖L∞(L1) + ε
1
p ‖uε‖L p(L p) + ‖ln uε‖L∞(L1) + ‖∇ ln uε‖L2(L2)

+‖∂t ln uε‖L1(W 1,p(Ω)∗) ≤ C,
(4.7a)

‖wε‖L∞((0,T )×Ω) + ‖∇wε‖L2(L2) + ‖wεuε ln(uεwε + 1)‖L1(L1)

+‖∂twε‖L2(W 1,p(Ω)∗) ≤ C,
(4.7b)

where the constant C is independent of ε.

Remark 4.6. A sequence of initial values fulfilling the boundedness assumptions and
the appropriate regularity criteria is constructed in the proof of Theorem 2.4 below.

Proof. The L∞((0, T ) × Ω)-bound of wε follows from Corollary 4.4. Note that this
bound is independent of ε as long as w0ε is bounded independently of ε. Testing
equation (1.1b) with wε, we get

1

2
‖wε(T )‖2L2(Ω)

+ μ ‖∇wε‖2L2(L2)
+ δ

∫ T

0

∫

Ω

uεw
2
ε dx dt

≤ γ ‖wε‖2L∞((0,T )×Ω) |Ω|T + 1

2
‖w0ε‖2L2(Ω)

,

which gives the L2(L2)-bound for ∇wε, since uε is non-negative. Using ϕ ≡ 1 as a
test function in the predator equation (4.1a), we get

∫ t

0
〈∂t uε(s), 1〉 ds +

∫ t

0

∫

Ω

εu p
ε + βuε dx ds = α

∫ t

0

∫

Ω

wεuε dx ds (4.8)
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for almost all t ∈ (0, T ). All following equations throughout this proof, which depend
on t , also hold for almost all t ∈ (0, T ). By the non-negativity of uε, we obtain

‖uε(t)‖L1(Ω) ≤ ‖u0ε‖L1(Ω) + α ‖wε‖L∞((0,T )×Ω)

∫ t

0
‖uε(s)‖L1(Ω) ds.

An application of Gronwall’s inequality then yields

‖uε(t)‖L1(Ω) ≤ eα‖wε‖L∞((0,T )×Ω) ‖u0ε‖L1(Ω) . (4.9)

Additionally, (4.8) implies

ε ‖uε‖p
L p(L p) ≤ α ‖wε‖L∞((0,T )×Ω) T e

α‖wε‖L∞((0,T )×Ω) ‖u0ε‖L1(Ω) .

Now we have shown that the first two terms of (4.7a) and (4.7b) have constant upper
bounds independent of ε. To derive an estimate for the third and fourth term in (4.7a)
we use − 1

uε+λ
as a test function in the predator equation (4.1a) for some λ ∈ (0, 1).

This yields
∫ t

0

〈

∂t uε(s),
−1

uε(s) + λ

〉

ds +
∫ t

0

∫

Ω

ν∇uε∇
( −1

uε + λ

)

dx ds

=
∫ t

0

∫

Ω

κuε∇wε∇
( −1

uε + λ

)

+ εu p−1
ε

uε

uε + λ
+ (αwε − β)

−uε

uε + λ
dx ds.

Wechoose this test function, aswe have only shown that uε ≥ 0 holds and thereforewe
are not allowed to test with 1/uε. Using an integration by parts and Young’s inequality
we can estimate

−
∫

Ω

ln(uε + λ)

∣
∣
∣
∣

t

0
d�x + ν

2

∫ t

0

∫

Ω

|∇ ln(uε + λ)|2d�xds

≤ κ2

2ν

∫ t

0

∫

Ω

|∇wε|2d�xds + ε

∫ t

0

∫

Ω

p − 1

p
u p

ε + 1

p
d�xds + βT |Ω|.

(4.10)

By the already derived estimates for the first two terms of (4.7a) and (4.7b), this gives
a constant upper bound for − ∫

Ω
ln(uε(t) + λ) dx as long as

∫
Ω
ln(u0ε + λ) dx is

bounded, which is the case since u0ε is assumed to be bounded in L1(Ω), as can be
seen from the following estimate

∫

Ω

ln(uε(t) + λ)d�x ≤
∫

Ω

uε(t) + λd�x ≤ ‖uε(t)‖L1(Ω) + λ|Ω|
≤ ‖uε(t)‖L1(Ω) + |Ω| ≤ C

(4.11)

for some C > 0, where we used ln(s) ≤ s for all s > 0. This constant C , like all
following C’s in this proof, is independent of λ and ε using that λ is upper bounded
by 1. The constant upper bound follows from the fact, that we already know that uε

is bounded in the L∞(L1)-norm, cf. (4.9). We can now derive a constant upper bound
for the L1(Ω)-norm of ln uε(t). We estimate
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‖ln(uε(t) + λ)‖L1(Ω)

= −
∫

{uε(t)+λ<1}
ln(uε(t) + λ)d�x +

∫

{uε(t)+λ≥1}
ln(uε(t) + λ)d�x

= −
∫

Ω

ln(uε(t) + λ)d�x + 2
∫

{uε(t)+λ≥1}
ln(uε(t) + λ)d�x ≤ C,

(4.12)

where we use (4.10) and (4.11). To get the L∞(L1)-bound for ln uε, we take λ to zero
from above. Since the logarithm is continuous, we have

lim inf
λ↓0 | ln(uε(t, x) + λ)| = | ln(uε(t, x))| for almost all (t, x) ∈ (0, T ) × Ω,

where we define ln(0) := −∞. By Fatou’s lemma we can estimate
∫

Ω

| ln uε(t)| dx =
∫

Ω

lim inf
λ↓0 | ln(uε(t) + λ)| dx

≤ lim inf
λ↓0

∫

Ω

| ln(uε(t) + λ)| dx ≤ C,

where the constant upper bound follows from (4.12). Thus we get the L∞(L1)-bound
of ln uε and we have uε(t) > 0 almost everywhere. Similarly, we get the bound for
∇ ln uε. We already have that ∇ ln(uε + λ) is bounded in L2(L2) independently of λ

and ε by (4.10). Again using Fatou’s lemma we get

‖∇ ln uε‖2L2(L2)
=

∫ T

0

∫

Ω

1

u2ε
|∇uε|2 dx dt

=
∫ T

0

∫

Ω

lim inf
λ↓0

1

(uε + λ)2
|∇uε|2 dx dt =

∫ T

0

∫

Ω

lim inf
λ↓0 |∇ ln(uε + λ)|2 dx dt

≤ lim inf
λ↓0

∫ T

0

∫

Ω

|∇ ln(uε + λ)|2 dx dt ≤ C.

In order to show the L1(L1)-bound of uεwε ln(uεwε + 1), we note that

0 ≤ uεwε ln(uεwε + 1) ≤ uεwε ln((uε + 1)(wε + 1))

= uεwε ln(uε + 1) + uεwε ln(wε + 1)

holds pointwise and it suffices to show a L1(L1)-bound for uεwε ln(uε + 1) and
uεwε ln(wε + 1) separately. The upper bounds for uε and ∇ ln uε from (4.7a) can
be transferred to ln(uε + 1) and ∇ ln(uε + 1). We test the prey equation (1.1b) by
ln(uε + 1). It can be shown by an approximation with smooth functions, see [65,
Ex. 21.3c] that this is indeed an admissible test function since uε ∈ L2(W 1,2) and
uε + 1 is bounded away from zero by 1. We then have

∇ ln(uε + 1) = 1

uε + 1
∇uε.

Using ∂twε ln(uε + 1) = −∂t ln(uε + 1)wε + ∂t (ln(uε + 1)wε) and integrating by
parts we get
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δ

∫ T

0

∫

Ω

wεuε ln(uε + 1)d�xdt

≤
∫ T

0

∫

Ω

∂t ln(uε + 1)wεd�xdt + μ ‖∇wε‖L2(L2) ‖∇ ln(uε + 1)‖L2(L2)

+ (1 + γ T ) ‖wε‖L∞((0,T )×Ω) ‖ln(uε + 1)‖L∞(L1)

+ ‖wε‖L∞((0,T )×Ω) ‖ln(u0ε + 1)‖L1(Ω) .

(4.13)

All terms on the right-hand side except the first are already known to be bounded by
a constant. To upper bound the first term on the right-hand side, we test (4.1a) with

wε

uε+1 , which is an admissible test function, since wε and uε are in L2(W 1,2) and wε

is bounded,
∫ T

0

∫

Ω

∂t uε

wε

uε + 1
d�xdt

+
∫ T

0

∫

Ω

ν∇uε · ∇
(

wε

uε + 1

)

− κuε∇wε · ∇
(

wε

uε + 1

)

d�xdt

=
∫ T

0

∫

Ω

(αwε − β) wε

uε

uε + 1
− εu p−1

ε wε

uε

uε + 1
d�xdt.

Rearranging the terms and calculating the gradients yields
∫ T

0

∫

Ω

∂t uε

wε

uε + 1
d�xdt

= −
∫ T

0

∫

Ω

ν∇ ln(uε + 1) · ∇wε − νwε|∇ ln(uε + 1)|2d�xdt

+
∫ T

0

∫

Ω

κ
uε

uε + 1
|∇wε|2 − κwε

uε

uε + 1
∇wε · ∇ ln(uε + 1)d�xdt

+
∫ T

0

∫

Ω

(αwε − β) wε

uε

uε + 1
− εu p−1

ε wε

uε

uε + 1
d�xdt.

Using ∂t ln(uε+1)wε = wε

uε+1∂t uε, we find a constant upper bound for the first term on
the right-hand side of (4.13), by estimating uε

uε+1 by one and using the already derived
a priori estimates for the second and fourth term in (4.7a) and the first two terms in
(4.7b). Now all terms on the right-hand side of (4.13) are known to be bounded and
we find that ‖wεuε ln(uε + 1)‖L1(L1) is bounded, since uεwε ln(uε + 1) ≥ 0. The
estimate for uεwε ln(wε + 1) now follows directly by

∫ T

0

∫

Ω

uεwε ln(wε + 1) dx dt

≤ ‖wε‖L∞((0,T )×Ω) ln(‖wε‖L∞((0,T )×Ω) + 1)
∫ T

0

∫

Ω

uε dx dt ≤ C.

This shows the upper bound for the third term in (4.7b). Using equation (1.1b) tested
with ϕ ∈ W 1,p(Ω), yields
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∣
∣
∣
∣

∫

Ω

∂twεϕ dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

Ω

(γ − δuε)wεϕ − μ∇wε · ∇ϕ dx

∣
∣
∣
∣

≤ C ‖ϕ‖W 1,p(Ω)

(‖wε‖L∞((0,T )×Ω) (γ + δ ‖uε‖L1(Ω)) + μ ‖∇wε‖L2(Ω)

)
,

where we used p > d such that W 1,p(Ω) ↪→ L∞(Ω). Noting that the right-hand
side is bounded in L2(0, T ) independently of ε, we obtain the upper bound for ∂twε

in L2(0, T ;W 1,p(Ω)∗).
To obtain the upper bound for ∂t ln uε in L1(0, T ;W 1,p(Ω)∗), we first note that

a regularized form of the logarithmic inequality (2.2) holds with an equality sign on
the approximate level. To see that we use − ϑ

uε+λ
as a test function in (4.1a) for an

arbitrary ϑ ∈ C1([0, T ]; L∞(Ω)) ∩ L2(W 1,2) and λ ∈ (0, 1). This yields,

−
∫

Ω

∂t ln(uε + λ)ϑ dx +
∫

Ω

ν|∇ ln(uε + λ)|2ϑ − ν∇ ln(uε + λ) · ∇ϑ dx

+
∫

Ω

κ
uε

uε + λ
∇wε · ∇ϑ − κ

uε

uε + λ
ϑ ∇wε · ∇ ln(uε + λ) dx

=
∫

Ω

(β − αwε)
uε

uε + λ
ϑ + ε|uε|p−1 uε

uε + λ
ϑ dx,

where we omitted the argument t for the sake of readability and will continue to do
so for the remainder of the proof. We take λ ↓ 0 and pull the limit into the integral,
which we are allowed to do by the following reasoning. Note that −∂t ln(uε + λ) is
monotonically increasing for λ ↓ 0, thus, by the monotone convergence theorem, we
can pull the limit into the integral in the first term. For the other integrals we note
that we have pointwise convergence in λ and that we can find integrable dominating
functions by the estimates from the first three terms of (4.7a) and the first two terms
of (4.7b). The dominating functions of the terms including λ are given by

|∇ ln(uε + λ)|2 = 1

(uε + λ)2
|∇uε|2 ≤ 1

u2ε
|∇uε|2 = |∇ ln uε| and

uε

uε + λ
≤ 1.

Thus by Lebesgue’s dominated convergence theorem we can also pull the limit λ ↓ 0
into the remaining integrals with equality and we get

−
∫

Ω

∂t ln uεϑ dx +
∫

Ω

ν|∇ ln uε|2ϑ − ν∇ ln uε · ∇ϑ + κ∇wε · ∇ϑ dx

−
∫

Ω

κϑ ∇wε · ∇ ln uε dx =
∫

Ω

(β − αwε)ϑ + ε|uε|p−1 ϑ dx. (4.14)

Here we used the convergence uε

uε+λ
→ 1 for λ ↓ 0 pointwise almost everywhere as

we have uε > 0 almost everywhere due to the fact that ln uε is bounded in L∞(L1),
cf. (4.9). Using the test function ϑ = −ϕ for some ϕ ∈ W 1,p(Ω) we can derive an
estimate for ∂t ln uε in L1(W 1,p(Ω)∗), by estimating

∣
∣
∣
∣

∫

Ω

∂t ln uεϕ dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

Ω

ν|∇ ln uε|2ϕ − ν∇ ln uε · ∇ϕ + κ∇wε · ∇ϕ dx



J. Evol. Equ. On the existence of generalized solutions Page 19 of 44 20

−
∫

Ω

κϕ ∇wε · ∇ ln uε − (β − αwε)ϕ − ε|uε|p−1 ϕ dx

∣
∣
∣
∣

≤ C ‖ϕ‖W 1,p(Ω)

(
1 + ‖∇ ln uε‖2L2(Ω)

+ ‖∇wε‖2L2(Ω)

+‖wε‖L∞((0,T )×Ω) + ε ‖uε‖p−1
L p(Ω)

)
.

Note that this time the right-hand side is only in L1(0, T ) and thus we get the weaker
bound for ∂t ln uε. �

4.4. Convergence of approximate solutions

We now tend the regularization coefficient to zero and show the existence of gen-
eralized solutions for vanishing regularization.

Proposition 4.7. (Convergence of solutions) Let {(u0ε, w0ε)} be as in Proposition 4.5
and let {(uε, wε)} be a sequence of solutions to the approximate system (4.1). Then
there exists a pair (u, w) ∈ X , such that the following convergences hold for a
subsequence ε ↓ 0,

wε ⇀ w in L2(0, T ;W 1,2(Ω)), (4.15)

wε → w in L2(0, T ; L2(Ω)), (4.16)

wε → w pointwise a.e. in (0, T ) × Ω, (4.17)

wε ⇀∗ w in L∞((0, T ) × Ω) (4.18)

ln uε ⇀ ln u in L2(0, T ;W 1,2(Ω)), (4.19)

ln uε → ln u in L2(0, T ; L2(Ω)), (4.20)

ln uε → ln u pointwise a.e. in (0, T ) × Ω, (4.21)

uε → u pointwise a.e. in (0, T ) × Ω, (4.22)

wεuε → wu in L1(0, T ; L1(Ω)), (4.23)

ln uε ⇀∗ ln u in BV([0, T ];W 1,p(Ω)∗), (4.24)

∂twε ⇀ ∂tw in L2(0, T ;W 1,p(Ω)∗), (4.25)

wε → w in Cw([0, T ]; L2(Ω)). (4.26)

Proof. We will not relabel subsequences throughout this proof. The boundedness of
{wε} and {∇wε} in L2(L2) from Proposition 4.5 imply that there exists a subsequence
weakly convergent in L2(W 1,2) to some w ∈ L2(W 1,2), since L2(W 1,2) is reflexive.
Additionally, due to the boundedness of {∂twε} in L2(W 1,p(Ω)∗) and Aubin–Lions
Lemma, see for example [53, Lem. 7.7], there exists a subsequence {wε} strongly
convergent to w in L2(L2) and thus we find another subsequence which converges
pointwise almost everywhere to w in (0, T ) × Ω . The uniform boundedness of {wε}
in L∞((0, T ) × Ω) additionally implies the weak*-convergence of a subsequence to
w in L∞((0, T ) × Ω), see for example [19, Thm. A.2.18].
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Since {∇ ln uε} is bounded in L2(L2) there is a subsequence, which is weakly
convergent in L2(L2). By Poincaré’s inequality, see [44, Thm. 13.27, p. 432], we
have

∥
∥ln uε(t) − (ln uε(t))

ave
∥
∥
L2(Ω)

≤ C ‖∇ ln uε(t)‖L2(Ω) (4.27)

for almost all t ∈ (0, T ), where for g ∈ L1(Ω) we define gave by

gave := 1

|Ω|
∫

Ω

g(x) dx.

Wefind the constant upper bound for the L2(L2)-normof ln uε by the a priori estimates
from Proposition 4.5. Using the L∞(L1) a priori bound for ln uε, cf. the third term of
(4.7a), we can estimate

(ln uε(t))
ave = 1

|Ω|
∫

Ω

ln uε(t) dx ≤ 1

|Ω| ‖ln uε‖L∞(L1) ≤ 1

|Ω|C

for almost all t ∈ (0, T ). Plugging this into (4.27) and using the reverse triangle
inequality of the norm, we obtain

∫ T

0
‖ln uε(t)‖2L2(Ω)

dt ≤
∫ T

0
C2 (‖∇ ln uε(t)‖L2(Ω) + 1

)2 dt ≤ C,

by the a priori estimate from the fourth term of (4.7a). Again we find a subsequence
{ln uε}, which is weakly convergent to some ξ ∈ L2(W 1,2). We define u := eξ .
This implies the convergence from (4.19). Using the a priori bound on {∂t ln uε}
and the compact embedding from Aubin–Lions Lemma, see [53, Lem. 7.7], we find,
as above, another subsequence {ln uε} converging strongly in L2(L2) and pointwise
almost everywhere to ln u. This implies that also uε → u pointwise almost everywhere
and we have shown the convergences from (4.19)–(4.22).
The product {uεwε} is bounded in L1(L1) and equi-integrable by Proposition 4.5.

The equi-integrability follows from the fact that uεwε ln(uεwε + 1) is bounded in
L1(L1) and by an application of the de la Vallée Poussin theorem, see for example
[44, p. 675], which is applicable since G : [0,∞) → [0,∞] with x �→ x ln(x + 1)
is an increasing, convex function and fulfills G(|x |)

x → ∞ as x → ∞. By Vitali’s
theorem, see [18, Ch. VI, Thm. 5.6], and the pointwise convergence of {uεwε} to uw,
cf. convergences (4.17) and (4.22), we can deduce the strong convergence of {uεwε}
to uw in L1(L1).
By the reflexivity of L2(W 1,p(Ω)∗) we find a weakly convergent subsequence of

{∂twε} convergent to some η ∈ L2(W 1,p(Ω)∗). By the convergence of {wε} to w

in L2(L2) we find η = ∂tw. We can infer the convergence of a subsequence {wε}
in Cw([0, T ]; L2(Ω)) as a consequence of the boundedness of {wε} in L∞(L2) and
of {∂twε} in L2(0, T ;W 1,p(Ω)∗), see [17, Prop. 4.9]. This gives the convergence
in (4.26).
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For the convergence of {∂t ln uε}, we consider {ln uε} as abstract functions of
bounded variation, more precisely in the space BV([0, T ];W 1,p(Ω)∗), for a defi-
nition see [5, Sec. 1.3] or [26]. We first show that {ln uε} is bounded in that space,
since boundedness implies relative compactness with respect to the weak* topology
[26, Cor. 3.11]. A characterization of weak* convergence in BV([0, T ];W 1,p(Ω)∗)
can be found in [5, Thm. 1.126]. We start by showing that {ln uε} is bounded in
W 1,1(0, T ;W 1,p(Ω)∗). The L1(0, T ;W 1,p(Ω)∗)-norm of {ln uε} is bounded since

L2(L2) ↪→ L2(0, T ;W 1,p(Ω)∗) ↪→ L1(0, T ;W 1,p(Ω)∗)

holds and the L1(0, T ;W 1,p(Ω)∗)-norm of {∂t ln uε} is bounded by the a priori esti-
mates from (4.7a). From the continuous embedding

W 1,1(0, T ;W 1,p(Ω)∗) ↪→ BV([0, T ];W 1,p(Ω)∗),

which follows from [5, Thm. 1.129], we get ‖ln uε‖BV ≤ C for some C > 0 inde-
pendent of ε and we can find a subsequence, which converges weak* in this space to
some l. By the convergence of ln uε → ln u in L2(L2) and the uniqueness of weak
limits we can deduce l = ln u by possibly redefining u on a set of measure zero, since
both L2(L2) and BV([0, T ];W 1,p(Ω)∗) are embedded into L1(0, T ;W 1,p(Ω)∗).

�

Proposition 4.8. Let {(uε, wε)} be the sequence of approximate solutions and (u, w)

the limit from Proposition 4.7. Under the assumption that wε(0) → w0 strongly in
L2(Ω) as ε ↓ 0, we have ∇wε → ∇w in L2(0, T ; L2(Ω)) as ε ↓ 0.

Proof. For fixed ε, ε̃ > 0 we can subtract the equations for wε and wε̃ and test the
equation with (wε − wε̃).
This yields

1

2

∫

Ω

(wε − wε̃)
2d�x

∣
∣
∣
∣

t

0
+

∫ t

0

∫

Ω

μ|∇(wε − wε̃)|2d�xds

=
∫ t

0

∫

Ω

γ (wε − wε̃)
2 − δ(uεwε − u ε̃wε̃)(wε − wε̃)d�xds

for almost all t ∈ (0, T ), which in turn implies

μ

∫ t

0

∫

Ω

|∇(wε − wε̃)|2d�xds ≤ 1

2

∫

Ω

(wε − wε̃)
2(0)d�x +

∫ t

0

∫

Ω

γ (wε − wε̃)
2

− δ(uεwε − u ε̃wε̃)(wε − wε̃)d�xds
for almost all t ∈ (0, T ).
As the product of an equi-integrable and a uniformly bounded family of functions

the product {uεw
2
ε } is also equi-integrable and again applying Vitali’s theorem [18,

Ch. VI, Thm. 5.6], we can deduce the strong convergence to uw2 in L1(L1) from the
pointwise almost everywhere convergence, cf. (4.17) and (4.22).
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Using this and theweak lower semicontinuity of the norm, similarly to the procedure
in the proof of [63, Lem. 4.5], and the weak convergence of {∇wε} to ∇w in L2(L2),
cf. (4.15), we obtain

μ

∫ t

0

∫

Ω

|∇(wε − w)|2d�xds ≤ lim inf
ε̃↘0

μ

∫ t

0

∫

Ω

|∇(wε − wε̃)|2d�xds

≤ lim inf
ε̃↘0

1

2

∫

Ω

(wε − wε̃)
2(0)d�x + lim inf

ε̃↘0

∫ t

0

∫

Ω

γ (wε − wε̃)
2d�xds

+ lim inf
ε̃↘0

∫ t

0

∫

Ω

−δ(uεwε − u ε̃wε̃)(wε − wε̃)d�xds

=
∫

Ω

(wε(0) − w0)
2d�x +

∫ t

0

∫

Ω

γ (wε − w)2d�xds

+
∫ t

0

∫

Ω

−δ(wεuε − uw)(wε − w)d�xds
(4.28)

for almost all t ∈ (0, T ), where the equality follows from the assumed strong conver-
gence of the initial values and the strong convergence of {wε} in L2(L2), cf. (4.16).
Again using the weak lower semicontinuity of the norm we can also take ε to zero.
Then the right-hand side of (4.28) vanishes and we obtain the strong convergence of
{∇wε} in L2(L2).

�

Proof of Theorem 2.4. For every (u0, w0), fulfilling the conditions fromTheorem 2.4,
we now show that we can construct a sequence {(u0ε, w0ε)} of initial values fulfilling
the assumptions from Theorem 4.2 and Proposition 4.5, such that u0ε ⇀ u0 in L1(Ω)

and w0ε → w0 in L2(Ω). Using mollifiers we find a sequence {w0ε} ⊆ C∞
0 (Ω) such

that w0ε ≥ 0, w0ε ⇀∗ w0 in L∞(Ω) and

‖w0ε‖L∞(Ω) ≤ ‖w0‖L∞(Ω)

holds. Thus {w0ε} is uniformly bounded in ε and fulfills all the required assumptions.
Applying an L p-interpolation theorem, we get the strong convergence w0ε → w0 in
Lr (Ω) for all r ∈ [1,∞). Defining

u0ε :=
{
u0 if u0 ≤ nε,

nε if u0 > nε,

for a sequence {nε} ⊆ N with nε → ∞ as ε ↓ 0, we have constructed a sequence of
approximate initial conditions for the predator fulfilling the required assumptions.
The weak convergence (4.15) of {wε} from Proposition 4.7 implies

∫ t

0

∫

Ω

wεg dx dt →
∫ t

0

∫

Ω

wg dx ds
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for all g ∈ L2(L2) and all t ∈ [0, T ]. All remaining convergences throughout this
proof for which it is not stated otherwise, also hold for all t ∈ [0, T ]. Since we have
ϑ ∈ L2(L2), ∇ϑ ∈ L2(L2) and ∂tϑ ∈ L2(L2), we get

∫ t

0

∫

Ω

wε∂tϑ − μ∇wε · ∇ϑ dx ds →
∫ t

0

∫

Ω

w∂tϑ − μ∇w · ∇ϑ dx ds,

∫ t

0

∫

Ω

γwεϑ dx ds →
∫ t

0

∫

Ω

γwϑ dx ds

for all ϑ ∈ C1([0, T ]; L∞(Ω)) ∩ L2(W 1,2). The strong convergence of {wεuε} in
L1(L1) implies

∫ t

0

∫

Ω

δuεwεϑ dx ds →
∫ t

0

∫

Ω

δuwϑ dx ds,

since ϑ ∈ C1([0, T ]; L∞(Ω)) ↪→ L∞((0, T ) × Ω). Making use of the convergence
of {wε} in Cw([0, T ]; L2(Ω)), cf. (4.26), we find

∫

Ω

wε(t)ϑ(t) dx →
∫

Ω

w(t)ϑ(t) dx

for all ϑ ∈ C1([0, T ]; L∞(Ω)). By the convergence of the initial data, we have
∫

Ω

wε(0) dx =
∫

Ω

w0ε dx →
∫

Ω

w0 dx.

This shows that the limit identified inProposition 4.7 fulfills the variational formulation
(2.3). The equality of w(0) = w0 in L2(Ω) follows by the convergence of the initial
data {w0ε} in L2(Ω) and the convergence of {wε} in Cw([0, T ]; L2(Ω)), cf. (4.26).
Since {wε} is pointwise almost everywhere convergent and uniformly bounded in
L∞((0, T )×Ω) this bound transfers to the limit andwe also getw ∈ L∞((0, T )×Ω).
The Laplace is a bounded linear map between W 1,2(Ω) and its dual W 1,2(Ω)∗.

Since we knoww to be in L2(W 1,2), we findΔw ∈ L2(0, T ;W 1,2(Ω)∗) and equation
(1.1b) now implies

∂tw ∈ L2(0, T ;W 1,2(Ω)∗ + L1(Ω)).

Next, we show that the population and the logarithmic inequality for the predator,
cf. equations (2.1) and (2.2), respectively, are fulfilled. On the approximate level the
population inequality (2.1) holds with equality, cf. equation (4.8). By the strong con-
vergence of {uεwε} in L1(L1) we get

α

∫ t

0

∫

Ω

uεwε dx ds → α

∫ t

0

∫

Ω

uw dx ds.

Using the weak lower semicontinuity of the convex functional x �→ ex and the weak
convergence of {ln uε} we get

β

∫ t

0

∫

Ω

u dx ds = β

∫ t

0

∫

Ω

eln u dx ds ≤ lim inf
ε↓0 β

∫ t

0

∫

Ω

eln uε dx ds.
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Using the boundedness of {ln uε} in L2(L2) ∩ BV ([0, T ];W 1,p(Ω)∗) and ap-
plying [52, Thm. A.5], we find a subsequence of {ln uε} and some l in L2(L2) ∩
L∞(0, T ;W 1,p(Ω)∗), such that

ln uε ⇀∗ l in L2(L2) ∩ L∞(0, T ;W 1,p(Ω)∗), (4.29)

ln uε(t) ⇀ l(t) in L2(Ω) for almost all t ∈ (0, T ). (4.30)

Since, we already have the strong convergence of {ln uε} in L2(L2) to ln u, we can
identify the limit l with ln u. The uniform boundedness of {ln u0ε} inW 1,p(Ω)∗, which
is needed to apply Thm. A.5, follows from the boundedness of {ln u0ε} in L1(Ω) and
the continuous embedding of L1(Ω) into W 1,p(Ω)∗. Using [49, Lem. 7.2], we find
that

ln uε(t) ⇀∗ l̄(t) in W 1,p(Ω)∗ for all t ∈ [0, T ], (4.31)

for some l̄ ∈ BV([0, T ];W 1,p(Ω)∗). We find ln u = l̄ everywhere in [0, T ], after pos-
sibly redefining u on a set of measure zero. Again using the weak lower semicontinuity
of x �→ ex , we get

∫

Ω

u(t) dx =
∫

Ω

eln u(t) dx ≤ lim inf
ε↓0

∫

Ω

eln uε(t) dx = lim inf
ε↓0

∫

Ω

uε(t) dx.

The weak convergence of the initial values implies
∫

Ω

u0 dx = lim
ε↓0

∫

Ω

u0ε dx.

Putting these results together we get
∫

Ω

u dx

∣
∣
∣
∣

t

0
+ β

∫ t

0

∫

Ω

u dx ds ≤ lim inf
ε↓0

∫

Ω

uε(t) dx

− lim
ε↓0

∫

Ω

u0ε dx + lim inf
ε↓0 β

∫ t

0

∫

Ω

uε dx ds + lim inf
ε↓0

∫ t

0

∫

Ω

εuε|uε|p−1 dx ds

= lim inf
ε↓0 α

∫ t

0

∫

Ω

wεuε dx ds = α

∫ t

0

∫

Ω

wu dx ds.

This shows, that the population inequality (2.1) holds.
To derive the logarithmic inequality (2.2), we use the regularized logarithmic equal-

ity from (4.14). To take the limit ε ↓ 0 we note the following. By the weak lower
semicontinuity of the norm and the weak convergence (4.19), we get

∫ t

0

∫

Ω

ϑ |∇ ln u|2 dx ds ≤ lim inf
ε↓0

∫ t

0

∫

Ω

ϑ |∇ ln uε|2 dx ds,

where we used ϑ ≥ 0 to pull it out of the absolute value. Using the strong convergence
of the sequence {∇wε} in L2(L2) to ∇w, which is shown in Proposition 4.8, we can
deduce that

∇ ln uε · ∇wε ⇀ ∇ ln u · ∇w in L1(L1).
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By the convergence of the initial data, we get

lim
ε↓0

∫

Ω

ln u0ε(x)ϑ(0, x) dx =
∫

Ω

ln u0ϑ(0, x) dx,

for all ϑ ∈ C([0, T ]; L∞(Ω)). Putting all this together, we see that the shown con-
vergences are sufficient to pass to the limit with ε ↓ 0 in the regularized logarithmic
equality, where the equality becomes an inequality,

−
∫

Ω

ln uϑ dx

∣
∣
∣
∣

t

0

+
∫ t

0

∫

Ω

ν|∇ ln u|2ϑ − ν∇ ln u · ∇ϑ − κϑ∇w · ∇ ln u + κ∇w · ∇ϑ dx ds

≤ lim inf
ε↓0

[

−
∫

Ω

ln uεϑ dx

∣
∣
∣
∣

t

0

]

+ lim inf
ε↓0

∫ t

0

∫

Ω

ν|∇ ln uε|2ϑ dx ds

+ lim
ε↓0

∫ t

0

∫

Ω

−ν∇ ln uε · ∇ϑ − κϑ∇wε · ∇ ln uε + κ∇wε · ∇ϑ dx ds

= lim inf
ε↓0

∫ t

0

∫

Ω

(β − αwε)ϑ − ln uε∂tϑ + ε|uε|p−1ϑ dx ds

=
∫ t

0

∫

Ω

(β − αw)ϑ − ln u∂tϑ dx ds,

where the regularizing term vanishes as ε goes to zero due to the boundedness of
{ε1/puε} in L p(L p) from Proposition 4.5. The fact that u fulfills the initial condition
u0 in L1(Ω) follows from the convergence for all t ∈ [0, T ] in W 1,p(Ω)∗, cf. (4.31),
and the convergence of the initial data. For all ϕ ∈ W 1,p(Ω) we have

∫

Ω

ln u0ϕ dx = lim
ε↓0

∫

Ω

ln u0εϕ dx =
∫

Ω

ln u(0)ϕ dx.

By a density argument we find ln u(0) = ln u0 in L1(Ω) and thus u(0) = u0 in L1(Ω).
Using the population inequality, we find that u is bounded in L∞(L1), where we used
the L1(L1) integrability of uw and the L1(Ω) integrability of u0. Again using the fact,
that ln uε(t) ⇀ ln u(t) in L2(Ω) for almost all t ∈ (0, T ), we can transfer the L∞(L1)-
bound from {ln uε} to ln u by using the weak lower semicontinuity of the norm. Thus
we have shown that ln u ∈ L∞(L1), which implies u > 0 almost everywhere. The
non-negativity of w follows from the comparison principle, cf. Lemma 4.3. �

5. Weak–strong uniqueness

In order to justify that our solution concept is meaningful, we prove that it fulfills
the weak–strong uniqueness property. That is, if there exists a strong solution to the
system (1.1) for some initial data, then all generalized solutions emanating from the
same initial data coincide with the strong solution and thus this solution is unique
as long as it exists. In order to be able to prove such a property for the generalized
solutions, some additional properties of strong solutions are needed.
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5.1. Properties of strong solution

Later on, in the proof of the weak–strong uniqueness, we would like to test with
1/ũ, for a strong solution ũ to (1.1a). In order to justify that this is possible, we prove
the following lemma.

Lemma 5.1. Let the initial condition u0 ∈ C3(Ω) be bounded away from zero by
some l > 0 and w̃ ∈ C1([0, T ] × Ω) with Δw̃ ∈ C([0, T ] × Ω). Then a strong
solution ũ to (1.1a) with w replaced by w̃ is bounded away from zero.

To be able to prove this lemma, we first show the following comparison principle.

Proposition 5.2. (Comparison principle for ũ) Let w̃ ∈ C1([0, T ] × Ω) be such
that Δw̃ ∈ C([0, T ] × Ω). Assume that there exist a strong sub-solution u and a
strong super-solution ū to (1.1a) with w = w̃, fulfilling the non-negative initial data
u0, ū0 ∈ C3(Ω) respectively. That is u and ū fulfill

u, ū ∈ C1([0, T ] × Ω) and Δu,Δū ∈ C([0, T ] × Ω),

are non-negative and it holds,

ut − νΔu + κ∇ · (u∇w̃) ≤ (αw̃ − β)u in (0, T ) × Ω, (5.1)

ūt − νΔū + κ∇ · (ū∇w̃) ≥ (αw̃ − β)ū in (0, T ) × Ω, (5.2)

u ≤ u0 on {0} × Ω, (5.3)

ū ≥ ū0 on {0} × Ω, (5.4)

∇u · n = 0 on [0, T ] × ∂Ω, (5.5)

∇ū · n = 0 on [0, T ] × ∂Ω. (5.6)

If additionally u0 ≤ ū0 holds, then u(t, x) ≤ ū(t, x) holds everywhere in [0, T ]×Ω .

Proof. Subtracting (5.2) from (5.1) and testing the resulting inequality with the dif-
ference (u − ū)+, we find

∫ t

0

∫

Ω

∂t (u − ū)(u − ū)+ + ν|∇(u − ū)+|2 − κ(u − ū)+ ∇w̃ · ∇(u − ū)+ dx ds

+
∫ t

0

∫

Ω

β
(
(u − ū)+

)2
dx ds =

∫ t

0

∫

Ω

αw̃
(
(u − ū)+

)2
dx ds (5.7)

for all t ∈ [0, T ]. Using Young’s inequality, collecting alike terms and integrating by
parts we get

1

2

∥
∥(u − ū)+(t)

∥
∥2
L2(Ω)

≤
∫ t

0

(

α ‖w̃‖L∞((0,T )×Ω)) + κ2

2ν
‖∇w̃(s)‖2L∞(Ω)

)
∥
∥(u − ū)+(s)

∥
∥2
L2(Ω)

ds
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for all t ∈ [0, T ]. An application of Gronwall’s inequality yields (u − ū)+ = 0
almost everywhere and with the continuity of u and ū this equality extends to the
whole domain [0, T ] × Ω . Thus we have u(t, x) ≤ ū(t, x) everywhere in [0, T ] × Ω

as claimed. �

Now we prove Lemma 5.1.

Proof of Lemma 5.1. Wewill construct a sub-solution u∗ which is bounded away from
zero and constant in space. The predator equation for such a sub-solution then reads

∂t u + (κΔw̃ − αw̃ + β) u ≤ 0,

since all space derivatives of u vanish. We first consider the ordinary differential
equation

∂t u + (
κ ‖Δw̃‖L∞((0,T )×Ω) + α ‖w̃‖L∞((0,T )×Ω) + β

)
u = 0

with the initial value u(0) ≡ l. This ordinary differential equation can be solved
explicitly by

u∗(t) = l exp
(− (

κ ‖Δw̃‖L∞((0,T )×Ω) + α ‖w̃‖L∞((0,T )×Ω) + β
)
t
)

for t ∈ [0, T ]. The solution u∗ is monotonically decreasing and continuous, thus it is
bounded from below on [0, T ] by u∗(T ) and u∗(T ) > 0 holds. Now,

∂t u
∗ + (κΔw̃ − αw̃ + β) u∗

≤ ∂t u
∗ + (

κ ‖Δw̃‖L∞((0,T )×Ω) + α ‖w̃‖L∞((0,T )×Ω)) + β
)
u∗ = 0

holds everywhere in [0, T ]×Ω , since u∗ is non-negative, and thus u∗ is a sub-solution
to (1.1a) and by the comparison principle from Proposition 5.2 we conclude that ũ is
bounded away from zero. �

Now we have finished the technical groundwork for our proof of weak–strong
uniqueness.

5.2. Relative energy estimates

Using the integration by parts formula from the “Appendix”, cf. Lemma 7.3, we can
prove a relative energy inequality, which serves as a strong tool when proving weak–
strong uniqueness of generalized solutions. In order to formulate this inequality we
need the following definitions. We say (ũ, w̃) ∈ Y if

ũ, w̃ ∈ C1([0, T ] × Ω) and Δũ,Δw̃ ∈ C([0, T ] × Ω),

w̃, ũ ≥ 0 and ũ ≥ l > 0 for some l > 0

and ũ and w̃ fulfill zero Neumann boundary conditions.
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Definition 5.3. For (u, w) ∈ X and a test function (ũ, w̃) ∈ Y , we define the relative
energy R : X × Y → L∞(0, T ) by

R(u, w|ũ, w̃) =
∫

Ω

u − ũ − ũ(ln u − ln ũ) + κ2

μν
ũ|w − w̃|2 dx, (5.8)

the relative dissipationW : X × Y → L1(0, T )

W(u, w|ũ, w̃) =
∫

Ω

(β − αw̃)(u − ũ − ũ(ln u − ln ũ))d�x

+ 2κ2

μν

∫

Ω

(δũ − γ )ũ|w − w̃|2d�x + ν

2

∫

Ω

ũ|∇ ln u − ∇ ln ũ|2d�x

+ κ2

2ν

∫

Ω

ũ|∇w − ∇w̃|2d�x,
(5.9)

the regularity weight K : Y → L∞(0, T )

K(ũ, w̃) = ‖∂t ln ũ‖L∞(Ω) + μ ‖∇ ln ũ‖2L∞(Ω) + max{α ‖w̃‖L∞(Ω) , 2γ }
+max

{
1

‖w‖L∞(Ω) + ‖w̃‖L∞(Ω) + 1
, ‖w‖L∞(Ω) + ‖w̃‖L∞(Ω) + 1

}

×
(

αμν

κ2 + α + 2δ ‖ũ‖L∞(Ω) ‖w‖L∞(Ω)

(
κ2

μν
+ 1

)

+ κ2δ

2μν
‖ũ‖L∞(Ω)

)

,

(5.10)

and the system operator A : Y → (L∞((0, T ) × Ω))2

A(ũ, w̃) =
(

∂t ũ − νΔũ + κ∇ · (ũ∇w̃) + (β − αw̃)ũ
∂t w̃ − μΔw̃ + δũw̃ − γ w̃

)

. (5.11)

Note, that the regularity weight K can be considered as independent of w for fixed
and bounded initial data, since the L∞((0, T ) × Ω)-bound of w only depends on the
initial value w0 and the finial time T , cf. Lemma 4.3.

Remark 5.4. The relative energy R defined above is non-negative and

R(u, w|ũ, w̃) = 0

if and only if u = ũ and w = w̃ almost everywhere. For u, ũ > 0, which holds almost
everywhere by the definition of X and Y , we can rewrite the first term ofR pointwise
almost everywhere with u = ez and ũ = ez̃ as

ez − ez̃ − ez̃(z − z̃) ≥ 0,

where the inequality follows from the convexity of the exponential and since this
convexity is strict this inequality is strictwhenever z �= z̃ and thus ez−ez̃−ez̃(z−z̃) = 0
implies u = ũ.
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Lemma 5.5. (Relative energy inequality) Let (u, w) ∈ X be a generalized solution
to system (1.1) according to Definition 2.1 and (ũ, w̃) ∈ Y be a test function. Then,
the following relative energy inequality holds,

R(u, w|ũ, w̃)(t)

+
∫ t

0

(
W(u, w|ũ, w̃) + max{α ‖w̃‖L∞(Ω) , 2γ }R(u, w|ũ, w̃)

)
e
∫ t
s K(ũ,w̃) dτ ds

≤ R(u, w|ũ, w̃)(0)e
∫ t
0 K(ũ,w̃) ds

−
∫ t

0

∫

Ω

A(ũ, w̃) ·
(

ln u − ln ũ
2κ
μν

ũ(w − w̃)

)

e
∫ t
s K(ũ,w̃) dτ dx ds (5.12)

for almost all t ∈ (0, T ), where R,W,A and K are defined in Definition 5.3.

Proof. Adding the population inequality (2.1) foru and the logarithmic inequality (2.2)
for u tested with ũ and adding and subtracting the system operatorA(ũ, w̃) tested with
(ln u − ln ũ, 0)T yields

∫

Ω

u − ũ ln u

∣
∣
∣
∣

t

0
dx + β

∫ t

0

∫

Ω

u − ũ − ũ(ln u − ln ũ) dx ds

+
∫ t

0

∫

Ω

νũ|∇ ln u|2 − ν∇ ln u · ∇ũ + νΔũ (ln u − ln ũ) dx ds

+
∫ t

0

∫

Ω

κ∇w · ∇ũ − κ ũ∇w · ∇ ln u − κ∇ · (ũ∇w̃)(ln u − ln ũ) dx ds

≤ α

∫ t

0

∫

Ω

uw − ũw̃ − ũ(w − w̃) − w̃ũ (ln u − ln ũ) dx ds

−
∫ t

0

∫

Ω

A(ũ, w̃) ·
(
ln u − ln ũ

0

)

+ (∂t ũ) ln ũ dx ds (5.13)

for almost all t ∈ (0, T ). All following equations in this proof will also hold for almost
all t ∈ (0, T ). Using ∂t (ũ ln ũ) − ∂t ũ = (∂t ũ) ln ũ and integrating by parts using the
zero Neumann boundary conditions, equation (5.13) can be rewritten as

∫

Ω

u − ũ − ũ(ln u − ln ũ)

∣
∣
∣
∣

t

0
dx + β

∫ t

0

∫

Ω

u − ũ − ũ(ln u − ln ũ) dx ds

+ν

∫ t

0

∫

Ω

ũ|∇ ln u|2 − ∇ ln u · ∇ũ − ∇ũ · ∇(ln u − ln ũ) dx ds

+κ

∫ t

0

∫

Ω

∇w · ∇ũ − ũ∇w · ∇ ln u + ũ∇w̃ · ∇(ln u − ln ũ) dx ds

≤ α

∫ t

0

∫

Ω

uw − ũw̃ − ũ(w − w̃) − w̃ũ (ln u − ln ũ) dx ds

−
∫ t

0

∫

Ω

A(ũ, w̃) ·
(
ln u − ln ũ

0

)

dx ds. (5.14)
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We observe

ν

∫

Ω

ũ|∇ ln u|2 − ∇ ln u · ∇ũ − ∇ũ · ∇(ln u − ln ũ)d�x

=
∫

Ω

νũ|∇ ln u − ∇ ln ũ|2d�x,

which is a reformulation of the terms in the second line of (5.14). Using similar
transformations for terms of the third line of (5.14), yields

κ

∫

Ω

∇w · ∇ũ − ũ∇w · ∇ ln u + ũ∇w̃ · ∇(ln u − ln ũ)d�x

=
∫

Ω

−κ ũ(∇ ln u − ∇ ln ũ) · (∇w − ∇w̃)d�x .

Now, inequality (5.14) may be rewritten as

∫

Ω

u − ũ − ũ(ln u − ln ũ)

∣
∣
∣
∣

t

0
dx + β

∫ t

0

∫

Ω

u − ũ − ũ(ln u − ln ũ) dx ds

+
∫ t

0

∫

Ω

νũ|∇ ln u − ∇ ln ũ|2 + A(ũ, w̃) ·
(
ln u − ln ũ

0

)

dx ds

≤ α

∫ t

0

∫

Ω

uw − ũw̃ − ũ(w − w̃) − w̃ũ (ln u − ln ũ) dx ds

+
∫ t

0

∫

Ω

κ ũ(∇w − ∇w̃) · (∇ ln u − ∇ ln ũ) dx ds

≤ ν

2

∫ t

0

∫

Ω

ũ|∇ ln u − ∇ ln ũ|2 dx ds + κ2

2ν

∫ t

0

∫

Ω

ũ|∇w − ∇w̃|2 dx ds

+α

∫ t

0

∫

Ω

w̃(u − ũ − ũ(ln u − ln ũ)) + (w − w̃)(u − ũ) dx ds, (5.15)

where we have used Young’s inequality. Note, that the first term on the right-hand side
can be absorbed into the left. Nowwe test the weak formulation for the prey (2.3) with
ũ(w − w̃). We are allowed to do so, since the weak formulation holds in particular for
all ϑ ∈ C1([0, T ]; L∞(Ω) ∩ W 1,2(Ω)) and this space is dense in the solution space
of the prey w, cf. Lemma 7.5 in the “Appendix”.

Setting w̄ = (w − w̃) and adding and subtracting the system operator tested with
(0, ũw̄)T , we obtain

∫ t

0
〈∂t w̄, ũw̄〉 ds +

∫ t

0

∫

Ω

μ∇w · ∇(ũw̄) + δuwũw̄ + μΔw̃ũw̄ − δũw̃ũw̄ dx ds

=
∫ t

0

∫

Ω

γwũw̄ − γ w̃ũw̄ − A(ũ, w̃) ·
(

0
ũw̄

)

dx ds. (5.16)

Using the integration by parts rule from Lemma 7.3 in the “Appendix”, we get
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∫ t

0
〈∂t w̄, ũw̄〉 ds = −

∫ t

0
〈∂t (ũw̄), w̄〉 ds +

∫

Ω

ũ|w̄|2 dx
∣
∣
∣
∣

t

0

= −
∫ t

0

∫

Ω

∂t ũ|w̄|2 dx ds −
∫ t

0
〈∂t w̄, ũw̄〉 ds +

∫

Ω

ũ|w̄|2 dx
∣
∣
∣
∣

t

0
,

where we also used the product rule from Lemma 7.6 in the “Appendix”. Pulling the
second term on the right-hand side into the left-hand side and dividing by 2, we obtain

∫ t

0
〈∂t w̄, ũw̄〉 ds = 1

2

∫

Ω

ũ|w̄|2 dx
∣
∣
∣
∣

t

0
− 1

2

∫ t

0

∫

Ω

∂t ũ|w̄|2 dx ds.

Plugging this into (5.16), gives

1

2

∫

Ω

ũ|w̄|2 dx
∣
∣
∣
∣

t

0
+

∫ t

0

∫

Ω

μw̄∇w̄ · ∇ũ + μũ|∇w̄|2 + δũ(uw − ũw̃)w̄ dx ds

=
∫ t

0

∫

Ω

γ ũ|w̄|2 + 1

2
∂t ũ|w̄|2 − A(ũ, w̃) ·

(
0
ũw̄

)

dx ds.

Adding δũ2|w̄|2 on both sides in the integral and using the equality,

δũ2|w̄|2 − δũ(uw − ũw̃)w̄ = −δũw(u − ũ)w̄,

some reordering of the terms yields

1

2

∫

Ω

ũ|w̄|2 dx
∣
∣
∣
∣

t

0
+

∫ t

0

∫

Ω

μũ|∇w̄|2 + (δũ − γ )ũ|w̄|2 + A(ũ, w̃) ·
(

0
ũw̄

)

dx ds

=
∫ t

0

∫

Ω

−δũw(u − ũ)w̄ + 1

2
∂t ũ|w̄|2 − μw̄∇w̄ · ∇ũ dx ds.

Further estimating the right-hand side of this equality by an application of Young’s
inequality, we arrive at

1

2

∫

Ω

ũ|w̄|2 dx
∣
∣
∣
∣

t

0
+

∫ t

0

∫

Ω

μũ|∇w̄|2 + (δũ − γ )ũ|w̄|2 + A(ũ, w̃) ·
(

0
ũw̄

)

dx ds

≤
∫ t

0

((
1

2
‖∂t ln ũ‖L∞(Ω) + μ

2
‖∇ ln ũ‖2L∞(Ω)

) ∫

Ω

ũ|w̄|2 dx
)

ds

+
∫ t

0

∫

Ω

μ

2
ũ|∇w̄|2 − δũw(u − ũ)w̄ dx ds.
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Absorbing the second to last term from the right into the left-hand side, multiplying
by 2κ2

μν
and adding (5.15) leaves us with

∫

Ω
u − ũ − ũ(ln u − ln ũ) + κ2

μν
ũ|w − w̃|2d�x

∣
∣
∣
∣

t

0

+
∫ t

0

∫

Ω
(β − αw̃)(u − ũ − ũ(ln u − ln ũ)) + 2κ2

μν
(δũ − γ )ũ|w − w̃|2d�xds

+
∫ t

0

∫

Ω

κ2

2ν
ũ|∇w − ∇w̃|2 + ν

2
ũ|∇ ln u − ∇ ln ũ|2

+
∫ t

0

∫

Ω
A(ũ, w̃) ·

(
ln u − ln ũ

2κ2
μν ũ(w − w̃)

)

d�xds

≤
∫ t

0

∫

Ω
α(w − w̃)(u − ũ) + 2κ2

μν
δũw(w̃ − w)(u − ũ)d�xds

+
∫ t

0

((
κ2

μν
‖∂t ln ũ‖L∞(Ω) + κ2

ν
‖∇ ln ũ‖2L∞(Ω)

)∫

Ω
ũ|w − w̃|2d�x

)

ds.

(5.17)

Since w and w̃ are non-negative and bounded by K := ‖w‖L∞(Ω) + ‖w̃‖L∞(Ω) + 1
and ũ, u > 0 almost everywhere, we can apply Lemma 7.7 from the “Appendix”,
which is an application of the Fenchel–Young inequality, to get the pointwise almost
everywhere estimate,

(w − w̃)(u − ũ) ≤ max

{
1

4K
, 4K

} (
ũ|w − w̃|2 + u − ũ − ũ(ln u − ln ũ)

)
.

Note that this estimate also holds for exchanged roles of w and w̃ and that we know
that ũ, w ≥ 0 holds, so that the inequality remains true when multiplied with the
product ũw. Inserting this estimate into (5.17) and introducing the operators defined
in Definition 5.3, yields

R(u, w|ũ, w̃)

∣
∣
∣
∣

t

0
+

∫ t

0

(

W(u, w|ũ, w̃) +
∫

Ω

A(ũ, w̃) ·
(

ln u − ln ũ
2κ2
μν

ũ(w − w̃)

))

dx ds

≤
∫ t

0

∫

Ω

(

α + 2κ2

μν
δũw

)

max

{
1

4K
, 4K

}

×
(
ũ|w − w̃|2 + u − ũ − ũ(ln u − ln ũ)

)
dx ds

+
∫ t

0

((
κ2

μν
‖∂t ln ũ‖L∞(Ω) + κ2

ν
‖∇ ln ũ‖2L∞(Ω)

) ∫

Ω

ũ|w − w̃|2 dx
)

ds

≤
∫ t

0

((

‖∂t ln ũ‖L∞(Ω) + μ ‖∇ ln ũ‖2L∞(Ω) + max

{
1

4K
, 4K

}

×
(

αμν

κ2 + α + 2δ ‖ũ‖L∞(Ω) ‖w‖L∞(Ω) + 2κ2δ

μν
‖ũ‖L∞(Ω) ‖w‖L∞(Ω)

))

×
∫

Ω

u − ũ − ũ(ln u − ln ũ) + κ2

μν
ũ|w − w̃|2 dx

)

ds.
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Adding max{α ‖w̃‖L∞(Ω) , 2γ }R(u, w|ũ, w̃) on both sides of the inequality we find,
with the definition of the regularity weight K, cf. Definition 5.3,

R(u, w|ũ, w̃)

∣
∣
∣
∣

t

0
+

∫ t

0
W(u, w|ũ, w̃) + max{α ‖w̃‖L∞(Ω) , 2γ }R(u, w|ũ, w̃)ds

+
∫ t

0

∫

Ω

A(ũ, w̃) ·
(

ln u − ln ũ
2κ2
μν

ũ(w − w̃)

)

d�xds ≤
∫ t

0
K(ũ, w̃)R(u, w|ũ, w̃)ds.

(5.18)

Applying Gronwall’s inequality, see for example Lemma 7.3.1 in [19, p. 180], the
relative energy inequality (5.12) follows and our proof of the lemma is finished. �
Using the relative energy inequality from the previous lemma, makes the proof of

the weak–strong uniqueness, cf. Theorem 2.6, quite simple.

Proof of Theorem 2.6. The relative energy inequality (5.12) from Lemma 5.5 holds
for the generalized solution (u, w) ∈ X and the strong solution (ũ, w̃). We indeed
have ũ, w̃ ∈ Y , since the initial value u0 is bounded away from zero and thus also
ũ is bounded away from zero, by Lemma 5.1. Since (ũ, w̃) is a strong solution to
(1.1) the term including the system operator A vanishes. By the non-negativity of
W + max{α ‖w̃‖L∞(Ω) , 2γ }R, we estimate

R(u, w|ũ, w̃)(t) ≤ R(u, w|ũ, w̃)(0)e
∫ t
0 K(ũ,w̃) ds = 0

for almost all t ∈ (0, T ) and thus we have w = w̃ and u = ũ almost everywhere in
(0, T ) × Ω by the definition of the relative energy R, see (5.8), where we used that
x − y− y(ln x − ln y) = 0 implies x = y for all x, y > 0, see Remark 5.4 above. �

6. Local existence of strong solution

We only show the a priori estimates needed for the local-in-time existence of strong
solutions for system (1.1) in a formal way, working directly with the equations from
(1.1). To make this rigorous one would need to choose an appropriate Galerkin basis
of eigenfunctions, which fulfill ∇(Δϕ) · n = 0 on ∂Ω and perform these estimates on
the discrete level. The structure of the proof follows the proof of [43, Thm 2.5].

Remark 6.1. The local existence also follows directly from the abstract existence
theory based on semigroup theory, see for example [2, Thm. 14.4]. However, there,
only the existence of strong solution for some t+ > 0 follows, while with the approach
given here we can construct a lower bound on the time horizon of local existence and
we will do so below.

For all functions ϕ ∈ W 2,2(Ω) fulfilling zero Neumann boundary conditions we
can consider the norm

‖ϕ‖2
W

2,2
(Ω)

:= ‖ϕ‖2L2(Ω)
+ ‖Δϕ‖2L2(Ω)

,
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which defines an equivalent norm to the standard W 2,2(Ω)-norm.

Proof of Theorem 2.7. We show this by deriving appropriate a priori estimates and
using an ODE comparison principle for

ξ(t) := 1

2

(
2 + ‖w(t)‖2

W
2,2 + ‖u(t)‖2W 1,2

)
,

where we write L2 instead of L2(Ω) etc. throughout the proof. Note that for d ≤ 3
we have W 1,2 ↪→ L6 and W 2,2 ↪→ L∞ by the Sobolev embedding theorem. Testing
the prey equation (1.1b) with w itself we get

d

dt

1

2
‖w‖2L2 + μ‖∇w‖2L2 ≤

(

γ + 1

2

)

‖w‖2L2 + δ2

2
‖u‖2L2

≤ C
(
‖u‖2W 1,2 + ‖w‖2

W
2,2

)
(6.1)

and testing (1.1b) with the bi-Laplacian Δ2w and applying Young’s inequality yields

d

dt

1

2
‖Δw‖2L2 + μ ‖∇(Δw)‖2L2

=
∫

Ω

γ |Δw|2 + δu∇w · ∇(Δw) + δw∇u · ∇(Δw) dx

≤ γ ‖Δw‖2L2 + δ ‖u‖L4 ‖∇w‖L4 ‖∇(Δw)‖L2 + δ ‖w‖L∞ ‖∇u‖L2 ‖∇(Δw)‖L2

≤ γ ‖Δw‖2L2 + μ

2
‖∇(Δw)‖2L2 + δ2

2μ

(
‖u‖4L4 + ‖∇w‖4L4 + ‖w‖4L∞ + ‖∇u‖4L2

)
,

where the boundary terms vanished since ∇(Δw) · n = 0 on ∂Ω holds by our choice
of Galerkin basis. Absorbing the term including the third partial derivatives of w from
the right into the left-hand side and using the above mentioned Sobolev embeddings,
we obtain

d

dt

1

2
‖Δw‖2L2 + μ

2
‖∇(Δw)‖2L2 ≤ C

(
1 + ‖u‖4W 1,2 + ‖w‖4

W
2,2

)
. (6.2)

Testing the predator equation (1.1a) with u and applying Young’s inequality gives

d

dt

1

2
‖u‖2L2 + ν ‖∇u‖2L2 + β ‖u‖2L2 =

∫

Ω

αwu2 + κu∇w · ∇u dx

≤ α

2
‖w‖2L∞ + α

2
‖u‖4L2 + κ2

2ν
‖∇w‖2L4 ‖u‖2L4 + ν

2
‖∇u‖2L2 .

Absorbing the last term on the right-hand side into the left-hand side and again using
the above mentioned Sobolev embeddings, yields

d

dt

1

2
‖u‖2L2 ≤ C

(
1 + ‖u‖4W 1,2 + ‖w‖4

W
2,2

)
. (6.3)

Finally testing (1.1a) with −Δu and integrating by parts we obtain

d

dt

1

2
‖∇u‖2L2 + ν ‖Δu‖2L2 =

∫

Ω

κuΔwΔu + κΔu∇u · ∇w + (β − αw)uΔu dx
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≤ −
∫

Ω

κΔw|∇u|2 + κu∇(Δw) · ∇u dx −
∫

Ω

β|∇u|2 dx
+κ ‖∇u‖L3 ‖∇w‖L6 ‖Δu‖L2 + α ‖w‖L∞ ‖u‖L2 ‖Δu‖L2

≤ κ ‖Δw‖L2 ‖∇u‖2L4 + κ ‖u‖L6 ‖∇u‖L3 ‖∇(Δw)‖L2

+κ ‖∇u‖L3 ‖∇w‖L6 ‖Δu‖L2 + α ‖w‖L∞ ‖u‖L2 ‖Δu‖L2 . (6.4)

Foru ∈ W 2,2 fulfilling zeroNeumannboundary conditionswe can estimate‖∇u‖L6 ≤
C ‖Δu‖L2 and we can deduce the following interpolation inequalities

‖∇u‖L3 ≤ C ‖∇u‖
1
2
L2 ‖Δu‖

1
2
L2 ,

‖∇u‖L4 ≤ C ‖∇u‖
1
4
L2 ‖Δu‖

3
4
L2 .

Using these inequalities and Young’s inequality, we can further estimate (6.4) by

d

dt

1

2
‖∇u‖2

L2
+ ν ‖Δu‖2

L2

≤ C ‖Δw‖L2 ‖Δu‖
3
2
L2

‖∇u‖
1
2
L2

+ C ‖u‖L6 ‖∇u‖
1
2
L2

‖Δu‖
1
2
L2

‖∇(Δw)‖L2

+C ‖∇u‖
1
2
L2

‖∇w‖L6 ‖Δu‖
3
2
L2

+ α ‖w‖L∞ ‖u‖L2 ‖Δu‖L2
≤ ν

2
‖Δu‖2

L2
+ C

(
‖Δw‖6

L2
+ ‖∇u‖6

L2

)
+ μ

2
‖∇(Δw)‖2

L2
+ C

(
‖∇u‖6

L2
+ ‖u‖6

L6

)

+ ν

2
‖Δu‖2

L2
+ C

(
‖∇w‖6

L6
+ ‖∇u‖6

L2

)
+ α2

2ν

(
‖w‖4L∞ + ‖u‖4

L2

)
.

Absorbing the Δu terms from the right into the left-hand side, we can deduce

d

dt

1

2
‖∇u‖2L2 ≤ C

(
1 + ‖u‖6W 1,2 + ‖w‖6

W
2,2

)
+ μ

2
‖∇(Δw)‖2L2 . (6.5)

Adding equations (6.1), (6.2), (6.3) and (6.5) we get

d

dt
ξ(t) ≤ Cξ(t)3. (6.6)

For the initial values given in Theorem 2.7 the initial value ξ(0) is bounded and thus
we find a T ∗ > 0 and some C∗ > 0 such that (6.6) has a solution on [0, T ∗) and

‖ξ‖L∞(0,T ∗) ≤ C∗

holds. The constantC = C(Ω, d, ν, μ, α, γ, δ) from (6.6) is dependent on the domain
Ω and the dimension d through the Sobolev embedding constant. By solving the
ordinary differential equation y′ = Cy3 explicitly, we can give a lower bound on
the time T ∗ in terms of C and the initial value, T ∗ = 1/2Cξ(0)2. This shows that
u ∈ L∞(0, T ∗;W 1,2) and w ∈ L∞(0, T ∗;W 2,2). By the maximal L p-regularity of
the heat equation, see [12, Thm. 8.2] we obtain the required regularity in time, where
we proceeded as follows. First we find

w ∈ W 1,6(0, T ∗; L6) ∩ L6(0, T ∗;W 2,6) ↪→ C1([0, T ∗] × Ω),
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by the embedding from [37, Lem. 3.3] and maximal L p-regularity for (1.1b). With
this additional regularity for w and maximal L p-regularity for (1.1a) we find that
u ∈ W 1,2(0, T ∗; L2) ∩ L2(0, T ∗;W 2,2). �

Finally, we infer the additional regularity of strong solutions asserted in Proposi-
tion 2.8.

Proof of Proposition 2.8. The proof is performed via a bootstrap argument. We apply
the maximal L p-regularity of the heat equation, see [12, Thm. 8.2], multiple times
and use the following embeddings for parabolic Sobolev spaces

W 1,q(0, T ∗; Lq(Ω)) ∩ Lq(0, T ∗;W 2,q(Ω)) ↪→ L p(0, T ∗;Wk,p(Ω)) (6.7)

for k = 0, 1 with p ≥ q and 2 − k − (1/q − 1/p)(n + 2) ≥ 0 and

W 1,q(0, T ∗; Lq(Ω)) ∩ Lq(0, T ∗;W 2,q(Ω)) ↪→ C (k+α)/2,k+α([0, T ∗] × Ω) (6.8)

for q > (n+2)/(2− k), k = 0, 1 and 0 ≤ α < 2− k − (n+2)/q, see [37, Lem. 3.3].
The space Cα/2,α([0, T ∗] × Ω) is the parabolic Hölder space, see [47, p. 177] for
a definition. We make use of the Hölder continuity of the right-hand side to deduce
the regularity up to t = 0. Roughly speaking, we can say that when the right-hand
side and initial condition of the heat equation are Hölder continuous, this continuity
transfers to the time derivative and the Laplace of the solution and can be extended to
t = 0, see Section 5.1.2 in [47]. This will be done more precisely later in the proof.
We begin by noting that by the embedding (6.8) we find

w ∈ W 1,6(0, T ∗; L6(Ω)) ∩ L6(0, T ∗;W 2,6(Ω)) ↪→ C (1+α)/2,1+α([0, T ∗] × Ω)

(6.9)

for all α ∈ (0, 1
6 ). Using the embedding from (6.7) we find

u ∈ W 1,2(0, T ∗; L2(Ω)) ∩ L2(0, T ∗;W 2,2(Ω)) ↪→ L10(0, T ∗; L10(Ω)),

u ∈ W 1,2(0, T ∗; L2(Ω)) ∩ L2(0, T ∗;W 2,2(Ω)) ↪→ L
10
3 (0, T ∗;W 1, 103 (Ω)).

Using this additional regularity and considering equation (1.1a)

∂t u − νΔu = −κuΔw − κ∇u · ∇w + (αw − β)u, (6.10)

we notice that the right-hand side of (6.10) is in L
10
3 (0, T ∗; L 10

3 (Ω)) and thus by the
maximal L p-regularity of the heat equation and again using embedding (6.7), we find

u ∈ W 1, 103 (0, T ∗; L 10
3 (Ω)) ∩ L

10
3 (0, T ∗;W 2, 103 (Ω)) ↪→ L10(0, T ∗;W 1,10(Ω)).

An application of (6.8) yields

u ∈ W 1, 103 (0, T ∗; L 10
3 (Ω)) ∩ L

10
3 (0, T ∗;W 2, 103 (Ω)) ↪→ C α̃/2,α̃([0, T ∗] × Ω),
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for all α̃ ∈ (0, 1
2 ). Now, we can deduce that the right-hand side of (6.10) is in

L6(0, T ∗; L6(Ω)) and again applying maximal L p-regularity we obtain

u ∈ W 1,6(0, T ∗; L6(Ω)) ∩ L6(0, T ∗;W 2,6(Ω)) ↪→ C(1+α)/2,1+α([0, T ∗] × Ω) (6.11)

for all α ∈ (0, 1
6 ) by embedding (6.8). Now we have that the right-hand side of (1.1b)

∂tw − μΔw = (γ − δu)w

is in the parabolic Hölder space C (1+α)/2,1+α([0, T ∗] × Ω) for all α ∈ (0, 1
6 ), since

the product of two Hölder continuous functions with Hölder exponents λ1 > 0 and
λ2 > 0 is again Hölder continuous with Hölder exponent λ = min{λ1, λ2}, see
[24, Ch. 4.1]. Additionally, we have that w0 ∈ C3(Ω) ↪→ C2+2α(Ω) holds. The
embedding holds by the Sobolev embedding theorem since Ω has a smooth enough
boundary, see for example [1, Thm. 5.4], and w0 fulfills the boundary conditions.
Thus, by [47, Thm. 5.1.18iii)], we find

wt ∈ Cα,2α([0, T ∗] × Ω) and Δw ∈ Cα,0([0, T ∗] × Ω).

For the regularity of u we find that the right-hand side of (6.10) is inCα,0([0, T ∗]×Ω)

andwith the properties ofu0, namely thatu0 ∈ C3(Ω) ↪→ C2+2α(Ω) and that it fulfills
the zero Neumann boundary conditions, we find, again applying [47, Thm. 5.1.18iii)],
that

ut ∈ Cα,2α([0, T ∗] × Ω) and Δu ∈ Cα,0([0, T ∗] × Ω).

Combining these continuity results of the time derivatives and the Laplacians with the
continuity of the first derivatives in space, cf. (6.9) and (6.11), we obtain

u, w ∈ C1([0, T ∗] × Ω) and Δu,Δw ∈ C([0, T ∗] × Ω).

The non-negativity of the initial values u0 and w0 can be transferred to the solutions
u and w by first applying the comparison principle for strong solutions of the preda-
tor equation, cf. Proposition 5.2 and then the comparison principle for the prey w,
cf. Lemma 4.3. This completes our proof. �
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7. Appendix

7.1. A generalized integration by parts and product rule

By the definition of the solution space X , cf. Sect. 2, we know w to be in
L2(0, T ;W 1,2(Ω) ∩ L∞(Ω)) with ∂tw ∈ L2(0, T ; L1(Ω) + W 1,2(Ω)∗). In this
section we prove that the standard integration by parts and product rules are valid in
this space.
We define V1 = W 1,2(Ω) ∩ L∞(Ω) and V2 = L1(Ω) + W 1,2(Ω)∗. Both L1(Ω)

and W 1,2(Ω)∗ are continuous embedded in W 1,p(Ω)∗ for p > d and thus the sum of
these spaces is well-defined. Equipped with the norms

‖v1‖V1 := max
{‖v1‖W 1,2(Ω) + ‖v1‖L∞(Ω)

}

‖v2‖V2 := inf

{∥
∥
∥v12

∥
∥
∥
L1(Ω)

+
∥
∥
∥v22

∥
∥
∥
W 1,2(Ω)∗

: v12 ∈ L1(Ω), v22 ∈ W 1,2(Ω)∗

s.t. v12 + v22 = v2

}

for v1 ∈ V1 and v2 ∈ V2 these spaces are Banach, see [8, Thm. 1.3]. We will continue
to denote the L1(Ω) part of v ∈ V2 by an upper index 1 and theW 1,2(Ω)∗ by an upper
index 2 throughout this section. Next we define the following space.

Definition 7.1. We define Y := {
w ∈ L2(V1) | ∂tw ∈ L2(V2)

}
, where the distribu-

tional time derivative is given as usual via

−
∫ T

0

∫

Ω

w(t, x)v(x) dx φ′(t) dt =
∫ T

0
φ(t)〈∂tw(t), v〉 dt (7.1)

for all φ ∈ C∞
0 (0, T ) and all v ∈ L∞(Ω) ∩ W 1,2(Ω).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Remark 7.2. The space Y equipped with the norm

‖w‖Y := ‖w‖L2(V1) + ‖∂tw‖L2(V2)

is a Banach space.

We now state the generalized integration by parts rule for the space Y.

Lemma 7.3. The spaceY fromDefinition 7.1 is continuously embedded into the space
C([0, T ]; L2(Ω)) and for arbitrary w, v ∈ Y, we have

(w(t), v(t))L2 − (w(s), v(s))L2 =
∫ t

s
〈∂tw(τ), v(τ )〉 + 〈∂tv(τ), w(τ)〉 dτ (7.2)

for all 0 ≤ s ≤ t ≤ T .

Before we turn to the proof, we note the following easy consequence of this lemma.

Corollary 7.4. For w ∈ Y we have w+ := max{0, w} ∈ L2(V1) and

d

dt

1

2

∥
∥w+(t)

∥
∥2
L2(Ω)

= 〈∂tw(t), w+(t)〉 (7.3)

holds for almost all t ∈ (0, T ).

Proof. This can be shown by first taking w ∈ C1([0, T ]; V1). We then have w+ ∈ Y

and we can apply the integration by parts rule from Lemma 7.3 to obtain (7.3). For
arbitrary w ∈ Ywe find an approximating sequence in C1([0, T ]; V1) by Lemma 7.5,
see below, and deduce that (7.3) remains true in the limit. �

In order to prove Lemma 7.3 we follow the standard procedure bymoving to a dense
subset of smooth functions.

Lemma 7.5. The space C1([0, T ]; V1) is dense in Y.
Proof. This can be shown by the use of mollifiers as it is done in [53, Lem. 7.2]. �

The following proof is conducted along the lines of [53, Lem. 7.3]. One cannot
apply this Lemma directly, since V1 ↪→ L2(Ω) ↪→ V2 does not define an evolution
triple, since V ∗

1 �= V2.

Proof of Lemma 7.3. We start by proving the embedding into C([0, T ]; L2(Ω)), us-
ing the density from Lemma 7.5 to show that the embedding via the identity i :
C1([0, T ]; V1) ⊆ Y → C([0, T ]; L2(Ω)), can be extended to the whole space Y.
First, we note that for arbitrary w, v ∈ C1([0, T ]; V1) we have

d

dt
(w(t), v(t))L2(Ω) = 〈∂tw(t), v(t)〉 + 〈∂tv(t), w(t)〉 (7.4)
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for all t ∈ (0, T ). Using the mean value theorem, we find t1 ∈ [0, T ] such that
w(t1) = 1

T

∫ T
0 w(s) ds holds. Using this identity and Young’s inequality we get

‖w(t)‖2L2(Ω)
= ‖w(t1)‖2L2(Ω)

+
(
‖w(t)‖2L2(Ω)

− ‖w(t1)‖2L2(Ω)

)

≤ 1

T

∫ T

0
‖w(s)‖2L2(Ω)

ds + 2
∫ t

t1
〈∂tw(s), w(s)〉ds

= 1

T

∫ T

0
‖w(s)‖2L2(Ω)

ds + 2
∫ t

t1
〈∂tw(s)1, w(s)〉 + 〈∂tw(s)2, w(s)〉ds

≤ C

(

‖w‖L2(V1) +
∥
∥
∥
∥

∥
∥
∥∂tw

1
∥
∥
∥
L1(Ω)

+
∥
∥
∥∂tw

2
∥
∥
∥
W 1,2(Ω)∗

∥
∥
∥
∥
L2(0,T )

)2

for some C > 0 and all t ∈ [0, T ]. Since this inequality holds for all decompositions
of ∂tw(s) into its L1(Ω) part ∂tw(s)1 and its W 1,2(Ω)∗ part ∂tw(s)2, the inequality
also holds for the infimum over all these decompositions and we obtain

‖w‖C([0,T ];L2(Ω)) ≤ C ‖w‖Y .

We can extend this densely defined linear operator i to the whole space Y by the
extension principle, see [65, Prop.18.29].
The integration by parts formula for arbitrary w, v ∈ Y follows by a density ar-

gument. We take approximating sequences (vn)n, (wn)n ⊆ C1([0, T ]; V1) such that
vn → v and wn → w in Y holds. We then have that the identity (7.4) holds for w and
v replaced by wn and vn respectively. Integrating this identity over (s, t) we find that
(7.2) holds, again with w and v replaced by wn and vn . Finally we can conclude that
the equality remains true in the limit. �

Next we show a generalized product rule.

Lemma 7.6. (Product rule) For w ∈ Y and v ∈ W 1,2(0, T ; V1) the product rule
∂t (wv) = v∂tw + w∂tv holds, where

W 1,2(0, T ; V1) :=
{
v ∈ L2(0, T ; V1) | ∂tv ∈ L2(0, T ; V1)

}
.

Proof. The proof is analogous to the proof of the product rule for weak derivatives.
First we show that it holds for w ∈ C1([0, T ]; V1) and v ∈ C∞

0 ([0, T ]) ⊗ V1. In this
case v has enough regularity and can be split up to join the test functions ϕ and φ from
the definition of the generalized time derivative, cf. Definition 7.1. By Lemma 5.12 in
[55, p. 70],we have the density ofC∞

0 ([0, T ])⊗V1 inW 1,2(0, T ; V1).With this density
we can deduce the product rule for all u ∈ C1([0, T ]; V1) and v ∈ W 1,2(0, T ; V1),
where we use the continuous embedding ofW 1,2(0, T ; V1) into C([0, T ]; V1) to pass
to the limit. With the density of C1([0, T ]; V ) in Y, cf. Lemma 7.5, we finally get the
product rule as stated in the lemma. �
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7.2. Auxiliary results

We reprove a nice pointwise inequality resulting from the Fenchel–Young inequal-
ity. The proof is taken from Lemma 26 in [27].

Lemma 7.7. (An application of the Fenchel–Young inequality) Let r > 0 and u, ũ,

w, w̃ ∈ R be non-negative, such thatw, w̃ ∈ Br (0) and ũ, u > 0 holds. We then have

(w − w̃)(u − ũ) ≤ max

{
1

4r
, 4r

} (
ũ |w − w̃|2 + u − ũ − ũ(ln u − ln ũ)

)
.

(7.5)

Proof. First, we define the proper convex function g : R → R via

g(x) :=
{
x − ln(x + 1) for x ∈ (−1,∞),

+∞ otherwise.

The convex conjugate, see Section 2.1.4 in [5, p. 75], is easily computed and given by
g∗ : R → R with

g∗(y) =
{

− ln(1 − y) − y for y ∈ (−∞, 1),

+∞ otherwise.

Choosing y = w−w̃
4r such that |y| < 1

2 and x = ( uũ − 1), we find that

g(x) = u

ũ
− 1 − ln

(u

ũ

)
= u

ũ
− 1 − (ln u − ln ũ).

We estimate g∗(y) by writing it via the Taylor expansion using the integral form of
the remainder term,

g∗(y) = g∗(0) + (g∗)′(0)y +
∫ 1

0
(1 − s)(g∗)′′(sy) ds y2 =

∫ 1

0

1 − s

(1 − sy)2
ds y2

≤
∫ 1

0

1 − s
(
1 − s

2

)2 ds y2 ≤ 2
∫ 1

0
(1 − s) ds y2 = y2,

since |y| ≤ 1
2 by our choice of y. An application of the Fenchel–Young inequality,

again see Section 2.1.4 in [5], yields

(w − w̃)(u − ũ) = (4r ũ)
w − w̃

4r

(u

ũ
− 1

)
= (4r ũ)xy ≤ 4r ũ

(
g∗(y) + g(x)

)

≤ 4r ũ

( |w − w̃|2
16r2

+ u

ũ
− 1 − (ln u − ln ũ)

)

≤ max

{
1

4r
, 4r

} (
ũ|w − w̃|2 + u − ũ − ũ (ln u − ln ũ)

)
.

This concludes our proof of the inequality (7.5). �



20 Page 42 of 44 D. Hömberg et al. J. Evol. Equ.

REFERENCES

[1] R. A. Adams. Sobolev spaces. Academic Press, New York, 1975.
[2] H.Amann.Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems.

In H. J. Schmeisser and H. Triebel, editors, Function Spaces, Differential Operators and Nonlinear
Analysis, pages 9–126. Vieweg+Teubner Verlag, 1993.

[3] J. C. Baez and B. S. Pollard. Relative entropy in biological systems. Entropy, 18(2):46, 2016.
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