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Abstract. We prove a short time existence result for a system consisting of a geometric evolution equation
for a hypersurface and a parabolic equation on this evolving hypersurface.More precisely, we discuss amean
curvature flow scaled with a term that depends on a quantity defined on the surface coupled to a diffusion
equation for that quantity. The proof is based on a splitting ansatz, solving both equations separately using
linearization and a contraction argument. Our result is formulated for the case of immersed hypersurfaces
and yields a uniform lower bound on the existence time that allows for small changes in the initial value of
the height function.

1. Introduction

We prove a short time existence result for the coupling of a scaled mean curvature
flow describing the evolution of a surface and a diffusion equation for a quantity on
this surface. More precisely, we investigate the system

V = (G(c) − G ′(c)c
)
H, (1.1a)

∂�c = ��

(
G ′(c)

)+ cHV (1.1b)

defined on an evolving closed hypersurface �, whose normal velocity and mean cur-
vature are given by V and H , respectively. The function c : � → R≥0 describes a
quantity defined on this surface and ∂�c is its normal time derivative (see Remark
2.8). Finally, �� denotes the Laplace–Beltrami operator on �. We will often use the
short notation

g(c) := G(c) − G ′(c)c,

which appears in the right-hand side of (1.1a). The function G : R≥0 → R can be
interpreted as a (Gibbs) energy density, as a solution (�, c) to the system (1.1) reduces
the energy

E
(
�(t), c(t)

) :=
∫

�(t)
G
(
c(t)
)
dA. (1.2)
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This follows easily using the transport theorem and the Gauß theorem for closed
surfaces (see [4, Proposition 2.58 and Proposition 2.48]):

d

dt
E(�, c) = d

dt

∫

�

G(c) dA

=
∫

�(t)
G ′(c)∂�c − G(c)HV dA

=
∫

�(t)
G ′(c)��

(
G ′(c)

)+ (G ′(c)c − G(c)
)
HV dA

= −
∫

�(t)

∣∣∇�G
′(c)
∣∣2 + V 2 dA ≤ 0.

Hence, a solution (�, c) of (1.1) can never increase the energy functional E. As long
as the geometry of the system changes, i.e. V �= 0, the energy will actually decrease.
Also, assumingG ′′ to be positive, a non-uniform distribution of the quantity described
by c in general also leads to an actual decrease of the energy. Later on, we impose
certain conditions on the functionG that guarantee parabolicity for our system (seeAs-
sumptions 3.9(i)). Also, they imply an actual decrease of the energy: Because a closed
hypersurface �(t) cannot have vanishing mean curvature H everywhere, Eq. (1.1a)
together with the parabolicity conditions yields that V cannot be identically zero.

Furthermore, a solution (�, c) to the system (1.1) conserves the mass of the quantity
described by the function c: Using again the transport theorem and the Gauß theorem
for closed surfaces, we obtain

d

dt

∫

�(t)
c dA =

∫

�(t)
∂�c − cHV dA =

∫

�(t)
��

(
G ′(c)

)
dA = 0.

So, from a physical point of view, we are interested in a system consisting of an
evolving closed hypersurface � and a concentration c : � → R≥0 that can vary in
space and time but fulfills mass conservation on� and the development of this system,
tending to increase the energy (1.2).

Mathematically, we discuss a parabolic PDE on an evolving hypersurface, where
the evolution of the geometry is not given but part of the problem. To our knowledge,
there is not yet much literature on this interesting coupling. In [14,15] Mayer and
Simonett consider a coupled system similar to (1.1), which is

V = H − f (c),

∂�c = ��c + cHV + cV + g(c),

and proved existence of classical solutions for small times and sufficiently regular
initial data. In the case of a one-dimensional curve Pozzi and Stinner investigate
the numerical approximation of such a coupled problem and develop (semi-discrete)
finite element schemes for the curve shortening flow (in [16]) and the elastic flow
(in [17]) coupled with a diffusion equation on the curve. Barrett, Deckelnick and
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Styles consider a slightly more general version of the problem from [16], enhance
the numerical analysis and end up with a fully discrete scheme (see [2]). For higher
dimensions, studying finite element methods for coupled problems is a difficult task. A
first error analysis for the case of two-dimensional, closed surfaces has been achieved
by Kovács, Li, Lubich and Power Guerra in [10], leading to a FEM semi-discretization
for regularized versions of geometric evolution equations. Kovács and Lubich extend
these ideas and obtain a full-discretization, again for regularized versions of geometric
evolution equations (see [11]). Both results apply to the coupling of a regularized
mean curvature flow and a diffusion equation. In the later work [9], Kovács, Li and
Lubich finally prove a result without regularization and present a fully discrete FE
algorithm for the coupled problem of mean curvature flow and a diffusion equation
for two-dimensional closed surfaces. For the case of two-dimensional surfaces that
can be represented as the graph of some function, Deckelnick and Styles investigate
the problem from [2] and derive a fully discrete finite element scheme (see [5]).

The considerations in [2,5,9,16] are of special interest to us because the problem
statements therein are very similar to ours, discussing the coupling of a mean cur-
vature flow-type equation and a diffusion equation. In contrast to all these previous
contributions that concern modifications V = H + f (c) of the mean curvature flow
resulting from an additive term f (c) (with f (c) = c in the case of [9]), we deal with
a multiplicatively scaled version V = g(c)H , g(c) := G(c) − G ′(c)c of the mean
curvature flow. This seems more natural to us, as it arises from the physical situation
explained above. Also, while the diffusion equations in the previous literature all are
semilinear, i.e., ∂�c = α��c + l.o.t. with a constant α > 0, our second equation
∂�c = G ′′(c)��c + l.o.t. is quasilinear. Be reminded that [2,16] only consider the
one-dimensional case of closed curves and [5,9] restrict to the case of two-dimensional
surfaces, represented as graph of a function or being closed, respectively. Our results
however apply to closed hypersurfaces of arbitrary dimension. Finally, all four of the
mentioned contributions address numerical analysis exclusively whereas this work is
purely analytic and yields a short-time existence result. We also refer to the recent
contribution of Elliott, Garcke and Kovács in [6] who analyze a finite element approx-
imation of (1.1) relying on the existence result presented in this work. In a forthcoming
paper, we will discuss several properties of solutions to (1.1), placing emphasis on to
what extent the hypersurface in our setting qualitatively evolves as for the usual mean
curvature flow. For properties of the mean curvature flow, we point out the famous
result of Huisken that convex, closed surfaces shrink to round points (see [8]) and
recommend Mantegazza ([13]) for further literature and details.

Our system of Eq. (1.1) is defined on an evolving hypersurface so that usual analytic
methods cannot be applied directly. But as we only consider the case of codimension
1, the evolving hypersurface can be parameterized over a fixed reference surface via a
real valued parameterization called height function ρ. Then, transforming the system
(1.1) onto the fixed reference surface yields a system consisting of an equation for the
height function ρ and another one for the transformed concentration c̃ (cf. Sect. 2.3).
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Both equations are of second order, as themean curvature and the Laplace–Beltrami
operator are (quasilinear and linear, respectively) differential operators of secondorder.
Due to HV ∼ H2, second order derivatives of the height function occur quadratically
such that the system is fully non-linear. But as these derivatives of the height function
appear in the equation for the concentration only, both equations remain quasilinear
when considered separately. Suitable assumptions on the energy density function G
ensure parabolicity of the system (see Assumptions 3.9(i)). Hence, we consider a
system of two parabolic, quasilinear differential equations of second order that are, of
course, coupled.
From a mathematical point of view, this coupling makes the problem interesting

and challenging. The proof of short-time existence uses a spitting ansatz: As a first
step, we solve the first equation for ρ with an arbitrary concentration c̃ in Sect. 3.1 and
then, we solve the second equation for c̃ where we insert the solution function ρc̃ from
the first equation in Sect. 3.2. The approach for solving both equations has the same
structure, relying, as usual for parabolic, not fully linear equations, on a linearization
and a contraction argument. Nevertheless, the second-order derivatives of the height
function occurring in the equation for the concentration necessitate handling the second
equation more carefully than the first, where the concentration only appears in lower
order terms. Also, the quadratic occurrence of these derivatives makes it clear that we
have to use solution spaces that form an algebrawith pointwisemultiplication. Sobolev
spaces do not have this property in general. Instead, we will work with little Hölder
spaces, which in particular implies that we solve the transformation of the system (1.1)
in a classical sense. The combined result is given in Sect. 3.3. It is formulated for the
case of immersed hypersurfaces and yields a uniform lower bound on the existence
time that allows for small changes in the initial value of the height function. Finally,
we note the latter results are essentially used in the author’s contribution [1], where
quantitative properties of this coupled system are discussed.
The present paper is based on the dissertation [4] of the second author.

2. Preliminaries

2.1. Function spaces

For Banach spaces X and Y , an open subsetU ⊂ Y and a natural number k ∈ N>0,
we use

C0(U, X) and Ck(U, X)

to describe the continuous and the k-times continuously Fréchet-differentiable func-
tions f : U → X . An index b means that the function itself and all its Fréchet-
derivatives up to order k are bounded as functions onU . For an open subsetW ⊂ R

d ,
d ∈ N>0,

C0(W , X) and Ck(W , X)
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denote the functions that themselves and all their Fréchet-derivatives up to order
k are continuously extendable onto W . Again, an index b indicates boundedness and
then, these spaces form Banach spaces with the usual norms. If X = R, we omit the
image space and for an arbitrary subset V ⊂ X , we define

Ck(W , V ) := { f ∈ Ck(W , X)
∣∣ f (x) ∈ V for all x ∈ W

}
.

Definition 2.1. (Hölder spaces on the closure of open sets) For α ∈ (0, 1) and R ∈
(0,∞], we define the seminorm

[ f ]R
hα(W ,X)

:= sup
x,y∈W

0<|x−y|<R

‖ f (x) − f (y)‖X
|x − y|α

as well as the little Hölder space

hα(W , X) :=
{
f ∈ C0

b (W , X)

∣∣∣ [ f ]∞hα(W ,X)
< ∞ and lim

R→0
[ f ]R

hα(W ,X)
= 0

}
.

Together with the norm

‖ f ‖hα(W ,X) := ‖ f ‖C0(W ,X) + [ f ]∞
hα(W ,X)

,

it forms a Banach space. For k ∈ N>0, the little Hölder spaces of higher order

hk+α(W , X)

are the functions in Ck
b (W , X) whose highest order derivatives lie in hα(W , X). They

are endowed with the natural norm to form Banach spaces. For short notation, we use

hsb(W , X)

for s ∈ R≥0, meaning Cs
b(W , X) if s ∈ N≥0 and hs(W , X) else. Note, that we assume

a Hölder regular function to fulfill not only a local, but a uniform Hölder condition!
On C1 ∩ hk+α-embedded hypersurfaces M ⊂ R

d+1 as introduced in Definition 2.4
below, we define Hölder functions

hk+α(M, X)

:=
{
f : M → X

∣
∣∣ ∀p ∈ M : ∃ loc. param. (γ,W ): p ∈ γ (W ), f ◦ γ ∈ hk+α

(
W , X

)}

with the help of local parameterizations (γ,W ). If M is closed, we obtain the charac-
terization

hk+α(M, X) =
{
f : M → X

∣∣∣ f ◦ γ ∈ hk+α
(
W , X

)
for all loc. param. (γ,W )

}

as for the case of continuous or continuously differentiable functions. Also, if M is
closed, we can restrict to a finite set (γl ,Wl)l=1,...,L of local parameterizations with

hk+α(M, X) =
{
f : M → X

∣∣∣ f ◦ γl ∈ hk+α
(
Wl , X

)
for all l = 1, . . . , L

}
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and then hk+α(M, X) forms a Banach space with the norm

‖ f ‖hk+α(M,X) :=
L∑

l=1

‖ f ◦ γl‖hk+α(Wl ,X).

2.2. Generators of semigroups

Definition 2.2. Let A : D(A)⊂X → X generate an analyticC0-semigroup
(
T (t)

)
t≥0

in a Banach space X . For β ∈ (0, 1), we define

DA(β) :=
{

x ∈ X
∣∣∣ sup
0<s≤1

s1−β
∥∥AT (s)x

∥∥
X < ∞ and lim

s↘0
s1−β AT (s)x = 0

}

with

‖x‖DA(β) := ‖x‖X + sup
0<s≤1

s1−β
∥∥AT (s)x

∥∥
X

and for T > 0, we set

(
hβ([0, T ], X) × D(A)

)
+ := {( f, x) ∈ hβ([0, T ], X) × D(A)

∣∣ Ax + f (0) ∈ DA(β)
}

with

‖( f, x)‖(hβ ([0,T ],X)×D(A))+ := ‖ f ‖hβ([0,T ],X) + ‖x‖D(A) + ‖Ax + f (0)‖DA(β).

The space DA(β) is given as real interpolation space by

DA(β) = (X,D(A)
)
β
.

As any operator generating an analytic C0-semigroup is sectorial in the sense of [12,
Definition 2.0.1], a proof of this representation can be found in [12, Proposition 2.2.2].

In the appendix (see Proposition A.13), we state that Au0 + f (0) ∈ DA(β) is the
suitable compatibility condition such that hβ([0, T ], X) is of maximal regularity for
the initial value problem

∂t u − Au = f in (0, T ),

u(0) = u0.

Moreover, we discuss differential operators A acting on little Hölder spaces and for-
mulate a condition that guarantees them to generate analytic C0-semigroups (see
Proposition A.16).
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2.3. Geometric setting

In the following, let d, n ∈ N>0 and r, s ∈ R≥0. As in Sect. 2.1, we set hs := Cs
b if

s ∈ N≥0.

Definition 2.3. (Hölder-continuous local parameterization) Let M ⊂ R
n . A pair

(γ,W ) is called a (d-dimensional) h1+s-local parameterization of M ifW ⊂ R
d is an

open, bounded and convex subset and γ ∈ h1+s(W , R
n) is an embedding such that

γ (W ) ⊂ M is an open subset with γ (W ) ⊂ M . Choosing the local parameterization
(γ,W ) sufficiently small means that γ (W ) ⊂ M is sufficiently small.

In contrast to the usual literature on submanifolds, we restrict to bounded and convex
sets and assume the corresponding local parameterizations to be well-defined on the
closure of these sets. This is possible w.l.o.g., because we can always achieve these
properties by choosing the sets smaller.

Definition 2.4. (Embedded hypersurface) A subset M ⊂ R
d+1 is called an h1+s-

embedded (closed) hypersurface if

(i) M is a d-dimensional h1+s-embedded submanifold, i.e., if for every point p ∈ M
there exists a d-dimensional h1+s-local parameterization (γp,Wp) of M with
p ∈ γp(Wp),

(ii) M is orientable such that there exists a continuous unit normal νM , i.e., a con-
tinuous vector field νM : M → R

d+1 with |νM (p)| = 1 and νM (p) ⊥ TpM for
all p ∈ M and

(iii) M is connected (and compact) as subset of R
d+1.

In this work, a hypersurface never contains a boundary. A unit normal automatically
fulfills νM ∈ hs(M, R

d+1).

Remark 2.5. IfM is a closed hypersurface, i.e., compact as a subset ofRd+1, it suffices
to use finitely many local parameterizations (γl ,Wl)l=1,...,L to cover it. W.l.o.g., we
can assume the existence of further open subsets Ul ⊂ M with Ul ⊂ γl(Wl) and

M ⊂
L⋃

l=1

Ul .

Definition 2.6. (Immersed hypersurface) Let M ⊂ R
d+1 be an h1+s-embedded

(closed) hypersurface and let θ : M → R
d+1 be an h1+s-immersion, i.e., θ ∈

h1+s(M, R
d+1) such that its differential dpθ : TpM → R

d+1 is injective for all
p ∈ M . Then, � := θ(M) ⊂ R

d+1 is called an h1+s-immersed (closed) hypersurface
with reference surface M and global parameterization θ .

Just as for the embedded case, an immersed hypersurface never contains a boundary.
Moreover, we remark that we do not use any topological structure on the immersed
hypersurface � itself but only consider the topology on the (embedded) reference
surface M .
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As locally any immersion is an embedding, for every point p ∈ M there exists
an open neighborhood U ⊂ M such that θ(U ) ⊂ � is an embedded patch, i.e.,
an embedded hypersurface. Every locally defined term for embedded hypersurfaces
thus can easily be defined also for immersed hypersurfaces, simply defining it on the
embedded patches. To avoid confusion in points of self-intersection, we always use
the pullback onto the reference surface M .
As for every embedded patch θ(U ) the restriction θ|U is an embedding and thus the

differential dpθ : TpM = TpU → Tθ(p)θ(U ) is a linear isomorphism, the tangent
space of � at θ(p) is given by Tp� := dpθ(TpM) for every p ∈ M . Furthermore
one can show that orientability transfers from the embedded hypersurface M to the
immersed hypersurface � = θ(M), meaning that there exists a unit normal ν ∈
hs(M, R

d+1) with |ν(p)| = 1 and ν(p) ⊥ Tp� for all p ∈ M (see [4, Proposition
2.27]).

Definition 2.7. (Evolving hypersurface) Let � = θ̄ (M) ⊂ R
d+1 be an h3+s

-embedded/immersed closed hypersurface with unit normal ν� and let T ∈ (0,∞).
Furthermore, letρ ∈ h1+r

([0, T ], hs(M)
)∩hr ([0, T ], h2+s(M)

)
with‖ρ‖C0([0,T ]×M)

sufficiently small. We define

θρ : [0, T ] × M → R
d+1, θρ(t, p) := θ̄ (p) + ρ(t, p)ν�(p).

Then, with �ρ(t) := θρ(t, M),

�ρ := {{t} × �ρ(t)
∣
∣ t ∈ [0, T ]}

is called the h1+r -h2+s-evolving embedded / immersed hypersurface parameterized
via the height function ρ with reference surface M and global parameterization θρ .

We have θρ ∈ h1+r
([0, T ], hs(M, R

d+1)
) ∩ hr

([0, T ], h2+s(M, R
d+1)

)
by con-

struction. Also, θρ(t, ·) : M → R
d+1 is an embedding / immersion for all t ∈ [0, T ]:

This follows with the usual arguments concerning tubular neighborhoods of hypersur-
faces for the embedded case (cf. [18, section 2.3] or [3, section III.3.2]) and is proven
in the appendix (see Lemma A.18) for the immersed case.

In the following remark, we introduce some basic notation for evolving closed
hypersurfaces parameterized via height functions and list some important regularity
properties.

Remark 2.8. Let �ρ be an h1+r -h2+s-evolving immersed closed hypersurface param-
eterized via a height function ρ as in Definition 2.7 with reference surface M ⊂ R

d+1

and global parameterization θρ : [0, T ] × M → R
d+1. Moreover, let � = θ̄ (M)

be the corresponding immersed reference surface with unit normal ν� . We use the
notation θρ(t) := θρ(t, ·) and �ρ(t) := �ρ(t) := θρ(t)(M) for all t ∈ [0, T ]. Given a
sufficiently small local parameterization (γ,W ) of M , we define

γρ(t) := θρ(t) ◦ γ
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such that

γρ ∈ h1+r ([0, T ], hs(W , R
d+1)

) ∩ hr
([0, T ], h2+s(W , R

d+1)
)

holds. We use gρ(t)
i j := ∂iγρ(t) · ∂ jγρ(t) for the first fundamental form and gi jρ(t) for its

inverse. There exists a vector field

νρ ∈ hr
([0, T ], h1+s(M, R

d+1)
)

such that νρ(t, ·) is a continuous unit normal to �ρ(t) for all t ∈ [0, T ] (see [4,
Proposition 2.51]). As spatial derivatives are defined locally, we employ the usual
definitions on the embedded patches of �ρ and then use a pullback onto the reference
surface M via the parameterization θρ : For functions f ∈ C0

([0, T ],C1(M, R)
)
and

F ∈ C0
([0, T ],C1(M, R

d+1)
)
, we define the surface gradient and surface divergence

by

∇ρ f := (∇�ρ ( f ◦ θ−1
ρ )
) ◦ θρ and divρF := (div�ρ (F ◦ θ−1

ρ

) ◦ θρ,

respectively, and for f ∈ C0
([0, T ],C2(M, R)

)
weuse theLaplace–Beltrami operator

�ρ f := (��ρ ( f ◦ θ−1
ρ

) ◦ θρ.

Their representationswith respect to a sufficiently small local parameterization (γ,W )

of M are given by

∇ρ f ◦ γ =
d∑

i, j=1

gi jρ ∂i ( f ◦ γ ) ∂ jγρ, divρF ◦ γ =
d∑

i, j=1

gi jρ ∂i (F ◦ γ ) · ∂ jγρ and

�ρ f ◦ γ =
d∑

i, j=1

gi jρ ∂i∂ j ( f ◦ γ ) +
d∑

k,l=1

gi jρ ∂i
(
gklρ ∂lγρ

) · ∂ jγρ ∂k( f ◦ γ ).

From these formulas it is clear that f ∈ hτ
([0, T ], hσ (M, R)

)
and F ∈ hτ

([0, T ],
hσ (M, R

d+1)
)
for τ, σ ∈ R≥0 with τ ≤ r , σ ≤ 2 + s and σ ≥ 1 (or even σ ≥ 2 if

necessary), fulfill

∇ρ f ∈ hτ
([0, T ], hσ−1(M, R

d+1)
)
,

divρF ∈ hτ
([0, T ], hσ−1(M, R)

)
and

�ρ f ∈ hτ
([0, T ], hσ−2(M, R)

)
.

We use a similar notation to express the dependence on the height function for the
mean curvature

H(ρ) := Hρ := −divρνρ ∈ hr
([0, T ], hs(M)

)

and the total and normal velocity of the hypersurface

V tot
ρ := ∂tθρ ∈ hr

([0, T ], hs(M, R
d+1)

)
and
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Vρ := V tot
ρ · νρ ∈ hr

([0, T ], hs(M)
)
,

respectively. Finally, for f ∈ h1+τ
([0, T ], hσ (M)

)∩hτ
([0, T ], h1+σ (M)

)
with τ, σ ∈

R≥0, τ ≤ r and σ ≤ s, the normal time derivative is given by

∂� f = ∂t f − V tot
ρ · ∇ρ f

and thus ∂� f ∈ hτ
([0, T ], hσ (M, R)

)
holds.

Reformulation onto a fixed domain

We wish to reformulate the system (1.1) in a way that enables us to prove the
existence of short-time solutions. For this, we assume that �ρ is an evolving immersed
closed hypersurface parameterized via a height function ρ as in Definition 2.7 with
reference surfaceM and global parameterization θρ : [0, T ]×M → R

d+1, θρ(t, z) :=
θ̄ (z) + ρ(t, z)ν�(z), where � = θ̄ (M) is the immersed reference surface with unit
normal ν� . Our considerations here are restricted to the embedded case, but they
transform easily to the immersed case using the embedded patches. We introduce the
function

u := c ◦ θρ : [0, T ] × M → R

to describe the pullback of the concentration. Assuming ρ to be sufficiently small in
an appropriate sense yields that

a(ρ) := 1

ν� · νρ

is well-defined with 1
2 ≤ a(ρ) ≤ C (see Remark 3.6). Using the definitions and

notation from Remark 2.8, the total velocity of the surface is given by V tot
ρ = ∂tθρ =

∂tρ ν� and we obtain

V ◦ θρ = Vρ = V tot
ρ · νρ = ∂tρ ν� · νρ = ∂tρ

a(ρ)
and

(
∂�c

) ◦ θρ = ∂�u = ∂t u − V tot
ρ · ∇ρu = ∂t u − ∂tρ ν� · ∇ρu

for the normal velocity of the surface and the normal time derivative of the concentra-
tion. So, finally, the formulation of the system (1.1) on the fixed domain [0, T ] × M
is given by

∂tρ = g(u)a(ρ)H(ρ), (2.1a)

∂t u = �ρG
′(u) + ∂tρ ν� · ∇ρu + uH(ρ)Vρ

= �ρG
′(u) + g(u)a(ρ)H(ρ) ν� · ∇ρu + g(u)H(ρ)2u. (2.1b)
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3. Short-time existence

The topic of this section is the existence of short-time solutions to our system of
Eq. (2.1). As a start, several regularity properties of functionals are stated which will
be useful throughout the whole chapter. Then, we list the conditions under which our
short-time existence result holds (see Assumptions 3.9) and introduce the notations
that will be used (see Notations 3.10). With this preparatory work, we can move
on to the actual proof of short-time existence. As explained in the introduction, a
splitting ansatz is applied: In Sect. 3.1, the first Eq. (2.1a) for the height function ρ

is discussed. For an arbitrary concentration u, we obtain a unique short-time solution
ρu of this equation, which is then inserted into the second equation (2.1b) for the
concentration u. Section 3.2 deals with the existence of short-time solutions to this
reduced system, i.e., the second equation with inserted ρu . The combined result on
short-time existence can be found in Sect. 3.3.

Notations 3.1. Let s ∈ R>0\N and let � = θ̄ (M) ⊂ R
d+1 be an h2+s-immersed

closed hypersurface. We define Xs := hs(M), Ys := h1+s(M), Zs := h2+s(M) and
for constants R� > 0 and Rc > 0

Uh
s,1 := {ρ ∈ Ys

∣∣ ‖ρ‖C1(M) < 2R�
}
, Uc

s := {u ∈ Ys
∣∣ ‖u‖Ys < 2Rc}.

We recall the notation and some properties for surfaces parameterized via height
functions in the following lemma.

Lemma 3.2. Let s ∈ R>0\N and let� = θ̄ (M) ⊂ R
d+1 be an h2+s -immersed closed

hypersurface with unit normal ν� . We use Notations 3.1. There exists a sufficiently
small R� > 0 such that for all ρ ∈ Uh

s,1

θρ : M → R
d+1, θρ(z) := θ̄ (z) + ρ(z)ν�(z)

is an h1+s -immersion and �ρ := θρ(M) is an h1+s -immersed closed hypersurface. In
particular, for any sufficiently small local parameterization (γ,W ) of M and

γρ := θρ ◦ γ,

(γρ,W ) is a local parameterization of an embedded patch of �ρ .
Moreover,

(
∂1γρ |x , ..., ∂dγρ |x , ν� ◦γ|x

) ⊂ R
d+1 are linearly independent for every

x ∈ W, where

∂iγρ = ∂i (θ̄ ◦ γ ) + ∂i (ρ ◦ γ )(ν� ◦ γ ) + (ρ ◦ γ )∂i (ν� ◦ γ )

holds.

Proof. On account of Proposition A.18, it remains to show that

(
∂1γρ |x , ..., ∂dγρ |x , ν� |γ (x)

) ⊂ R
d+1
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are linearly independent for every x ∈ W . For this, fix x ∈ W and letα1, . . . , αd+1 ∈ R

with

0 =
d∑

i=1

αi∂iγρ |x + αd+1ν� |γ (x)

=
d∑

i=1

αidγ (x)θ̄ [∂iγ|x ] + ρ|γ (x)

d∑

i=1

αidγ (x)ν�[∂iγ|x ]

+
(

d∑

i=1

αi∂i (ρ ◦ γ )|x + αd+1

)

ν� |γ (x).

With the statement in (A.1),

0 =
d∑

i=1

αidγ (x)θ̄ [∂iγ|x ] + ρ|γ (x)

d∑

i=1

αidγ (x)ν�[∂iγ|x ] (3.1)

and

0 =
d∑

i=1

αi∂i (ρ ◦ γ )|x + αd+1 (3.2)

hold independently. For ‖ρ‖C0(M) sufficiently small, Eq. (3.1) yields α1, . . . , αd = 0
and then αd+1 = 0 follows with Eq. (3.2). So, the claimed linear independency does
indeed hold. �

Now, we turn to the promised regularity statements.

Lemma 3.3. Let s ∈ R>0\N and let � = θ̄ (M) ⊂ R
d+1 be an h3+s -immersed

closed hypersurface. We use Notations 3.1. For R� > 0 sufficiently small, there exist
functions

P ∈ C∞(Uh
s,1,L

(
Zs, Xs

))
and Q ∈ C∞(Uh

s,1, Xs
)

such that the mean curvature H(ρ) of the h2+s -immersed closed hypersurface �ρ =
θρ(M) from Lemma 3.2 is given by

H(ρ) = P(ρ)[ρ] + Q(ρ) in Xs

for all ρ ∈ Uh
s,1 ∩ Zs.

Proof. By [7, Lemma 3.1], for any sufficiently small local parameterization (γ,W )

of M , we have

H(ρ) ◦ γ = P(ρ)[ρ] ◦ γ + Q(ρ) ◦ γ with

P(ρ)[u] ◦ γ = 1

d

⎛

⎝
d∑

i, j=1

pi j (ρ)∂i∂ j (u ◦ γ ) +
d∑

k=1

pk(ρ)∂k(u ◦ γ )

⎞

⎠
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and Q(ρ) ◦ γ = 1

d
q(ρ),

where pi j , pi , q ∈ C∞(Uh
s,1, h

s(W )
)
hold for R� > 0 sufficiently small. Hence,

P ∈ C∞(Uh
s,1,L(Zs, Xs)

)
and Q ∈ C∞(Uh

s,1, Xs)

follow with the help of a partition of unity. Note that [7] assumes � to be a sphere.
In [18, section 2.2.5], the same statement is shown for an arbitrary embedded closed
hypersurface � but as the proof therein is less clearly arranged, we chose to cite
[7]. Both proofs reduce the statement to local coordinates and therefore neither the
shape of a sphere nor the embeddedness property are necessary. Instead, the proofs
can be transferred w.l.o.g. to our setting of an immersed closed hypersurface �, when
choosing the local parameterization (γ,W ) so small that θρ

(
γ (W )

)
is a subset of an

embedded patch of � and thus (γρ,W ) is a local parameterization of an embedded
patch of �. �
The fact that the mean curvature H has a quasilinear structure is the key argument

to ensure that the PDE for the height function (2.1a) is also quasilinear. Even more,
its main part P(ρ) is elliptic, as we will see in the upcoming lemma.

Lemma 3.4. Let s ∈ R>0\N and let� = θ̄ (M) ⊂ R
d+1 be an h3+s -immersed closed

hypersurface. We use Notations 3.1 and choose P as in Lemma 3.3. For R� > 0 suffi-
ciently small and ρ ∈ Uh

s,1, P(ρ) ∈ L(Zs, Xs) is a symmetric and elliptic differential
operator of second order, i.e., given a sufficiently small local parameterization (γ,W )

of M,

P(ρ)[·] ◦ γ =
∑

i, j

ai j∂i∂ j (· ◦ γ ) + lower order terms

holdswith a symmetric and positive definite coefficientmatrix [ai j ]i, j ∈ hs(W , R
d×d).

Proof. Let ρ ∈ Uh
s,1. With our sign convention, [7, Lemma 3.1] yields

P(ρ) ◦ γ = 1

d

∑

i, j

pi j (ρ)∂i∂ j (· ◦ γ ) + lower order terms

with

pi j (ρ) =
wi j (ρ)

(
1 +∑k,l wkl (ρ)∂k (ρ ◦ γ )∂l (ρ ◦ γ )

)
−∑k,l wik (ρ)w jl (ρ)∂k (ρ ◦ γ )∂l (ρ ◦ γ )

(
1 +∑k,l wkl (ρ)∂k (ρ ◦ γ )∂l (ρ ◦ γ )

)3/2

andwkl(ρ) = gθ̄
kl +(ρ◦γ )

(
∂k(ν� ◦γ ) ·∂lγθ̄ +∂l(ν� ◦γ ) ·∂kγθ̄

)+(ρ◦γ )2
(
∂k(ν� ◦γ ) ·

∂l(ν� ◦ γ )
)
as well as [wkl(ρ)]k,l = ([wkl(ρ)]k,l

)−1. In particular, ai jρ := 1
d pi j (ρ) ∈

hs(W ) holds for all i, j = 1, . . . , d. On account of ρ ∈ Uh
s,1, we have ‖ρ‖C1(�) <

2R� . Thus, choosing R� > 0 sufficiently small, symmetry and positive definiteness
of the first fundamental form [gθ̄

i j ]i, j and its inverse [gi j
θ̄

]i, j ensures the same for

[ai jρ ]i, j . �
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We gather some further regularity statements in the following lemma.

Lemma 3.5. Let s ∈ R>0\N and let � = θ̄ (M) ⊂ R
d+1 be an h3+s -immersed

closed hypersurface with unit normal ν� . We use the notation ∇ρ, divρ,�ρ and νρ as
in Remark 2.8 as well as Notations 3.1. For R� > 0 sufficiently small,

(i) ρ �→ (∇ρ : f �→ ∇ρ f
) ∈ C∞(Uh

s,1,L(Ys, Xd+1
s )

)
and

ρ �→ (
divρ : F �→ divρF

) ∈ C∞(Uh
s,1,L(Yd+1

s , Xs)
)
hold,

(ii) ρ �→ a(ρ) := 1
νρ ·ν�

∈ C∞(Uh
s,1, Xs) holds and

(iii) there exist functions D ∈ C∞(Uh
s,1,L(Zs, Xs)

)
and J ∈ C∞(Uh

1+s,1,L(Ys, Xs)
)

with J ∈ C∞
b

(
Uh
1+s,1 ∩B,L(Ys, Xs)

)
for any bounded subset B ⊂ Zs such that

we have �ρu = D(ρ)[u] + J (ρ)[u] for all ρ ∈ Uh
1+s,1 and u ∈ Zs.

In particular, ρ �→ (
�ρ : f �→ �ρ f

) ∈ C∞(Uh
1+s,1,L(Zs, Xs)

)
follows.

Proof.

Ad (i) Let f : R
d+1 × R

d+1 × R
d+1 × R × R → R

d+1, f (v1, v2, v3, u1, u2) :=
v1 + u2v2 + u1v3. As � = θ̄ (M) is an h2+s-immersed hypersurface, we
have ∂ jγ, ν� ◦ γ, ∂ j (ν� ◦ γ ) ∈ hs(W , R

d+1) for any sufficiently small local
parameterization (γ,W ) of M . Thus, smoothness of f and Corollary A.11(ii)
yield

F ∈ C∞(hs(W ) × hs(W ), hs(W , R
d+1)

) ∩ C∞
b

(
B, hs(W , R

d+1)
)

for F : (u1, u2) �→ ∂ jγ + u2(ν� ◦ γ ) + u1∂ j (ν� ◦ γ ) and arbitrary bounded
subsets B ⊂ hs(W ) × hs(W ). Additionally, G : u �→ (

u ◦ γ, ∂ j (u ◦ γ )
) ∈

L(Ys, hs(W ) × hs(W )
)
holds and therefore we have

ρ �→ ∂ jγρ = F ◦ G(ρ) ∈ C∞(Ys, hs(W , R
d+1)

) ∩ C∞
b

(B, hs(W , R
d+1)

)

for bounded subsets B ⊂ Ys . In particular, ρ �→ gρ
i j = ∂iγρ · ∂ jγρ ∈

C∞(Ys, hs(W )
)
and ρ �→ gρ

i j ∈ C∞
b

(B, hs(W )
)
follow. According to Lemma

3.2, for ρ ∈ Uh
s,1 with R� > 0 sufficiently small, [gρ

i j ]1≤i, j≤d is invertible on

W and thus minW | det[gρ
i j ]| > 0 holds. So, with the open subset U := {A ∈

R
d×d | det A �= 0}, we have [gρ

i j ] ∈ hs(W ,U ) for all ρ ∈ Uh
s,1. Even more,

as ρ �→ minW | det[gρ
i j ]| is continuous as mapping on C1(M), there exists

ε > 0 with minW | det[gρ
i j ]| ≥ ε for all ρ ∈ Uh

s,1 ⊂ {ρ ∈ C1(M) | ‖ρ‖C1(M) <

2R�} with R� > 0 sufficiently small. For the closed subset A := {A ∈
R
d×d | | det A| ≥ ε} ⊂ U , we thus have [gρ

i j ] ∈ hs(W ,A) for all ρ ∈ Uh
s,1.

In particular, ρ �→ [gρ
i j ] ∈ C∞(Uh

s,1, h
s(W ,U )

) ∩ C∞
b

(
Uh
s,1 ∩ B, hs(W ,A)

)

follows.ByRemarkA.12, (·)−1 ∈ C∞(hs(W ,U ), hs(W , R
d×d)

)∩C∞
b

(
B, hs

(W , R
d×d)

)
holds for the inversion (·)−1 of matrices and any bounded subset

B ⊂ hs(W ,A). Hence, combination implies

ρ �→ gi jρ ∈ C∞(Uh
s,1, h

s(W )
) ∩ C∞

b

(
Uh
s,1 ∩ B, hs(W )

)
.
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Due to f �→ ∂i ( f ◦γ ) ∈ L(Ys, hs(W )
)
and F �→ ∂i (F◦γ ) ∈ L(Yd+1

s , hs(W , R
d+1)

)
,

we finally have

(ρ, f ) �→ ∇ρ f ◦ γ =
∑

i, j

gi jρ ∂i ( f ◦ γ )∂ jγρ ∈ C∞(Uh
s,1,L(Ys, h

s(W , R
d+1))

)
and

(ρ, F) �→ divρF ◦ γ =
∑

i, j

gi jρ ∂i (F ◦ γ ) · ∂ jγρ ∈ C∞(Uh
s,1,L(Yd+1

s , hs(W ))
)
.

Ad (iii) For any sufficiently small local parameterization (γ,W ) of M , we have

�ρ f ◦ γ =
∑

i, j

gi jρ ∂i∂ j ( f ◦ γ ) +
∑

i, j,k,l

gi jρ ∂i
(
gklρ ∂lγρ

) · ∂ jγρ ∂k( f ◦ γ )

by Remark 2.8. We choose D as the principal part of� and define J := �−D
such that

D(ρ)[ f ] ◦ γ =
∑

i, j

gi jρ ∂i∂ j ( f ◦ γ ) and

J (ρ)[ f ] ◦ γ =
∑

i, j,k,l

gi jρ ∂i
(
gklρ ∂lγρ

) · ∂ jγρ ∂k( f ◦ γ )

hold on W . With the help of a partition of unity, D(ρ)[ f ] and J (ρ)[ f ] are
well-defined on the whole hypersurface M . As in (i), we have ρ �→ gi jρ ∈
C∞(Uh

s,1, h
s(W )

)
and on account of f �→ ∂i∂ j ( f ◦ γ ) ∈ L(Zs, hs(W )

)

(ρ, f ) �→ D(ρ)[ f ] ◦ γ ∈ C∞(Uh
s,1,L(Zs, h

s(W ))
)

follows. But we only needed � to be an h2+s-immersed hypersurface for the
proof of (i). Thus, also

ρ �→ ∂ jγρ ∈ C∞(Zs, h
1+s(W , R

d+1)
) ∩ C∞

b

(B, h1+s(W , R
d+1)

)
and

ρ �→ gi jρ ∈ C∞(Uh
1+s,1, h

1+s(W )
) ∩ C∞

b

(
Uh
1+s,1 ∩ B, h1+s(W )

)

hold for bounded subsets B ⊂ Zs with h1+s(W , R
m) ↪→ hs(W , R

m) for
m ∈ {1, d + 1} due to Lemma A.2. Differentiating once yields

ρ �→ ∂i∂lγρ ∈ C∞(Zs, h
s(W , R

d+1)
) ∩ C∞

b

(B, hs(W , R
d+1)

)
and

ρ �→ ∂i g
kl
ρ ∈ C∞(Uh

1+s,1, h
s(W )

) ∩ C∞
b

(
Uh
1+s,1 ∩ B, hs(W )

)
.

Due to f �→ ∂k( f ◦ γ ) ∈ L(Ys, hs(W )
)
, we hence have

(ρ, f ) �→ J (ρ)[ f ] ◦ γ ∈ C∞(Uh
1+s,1,L(Ys, h

s(W ))
)

∩C∞
b

(
Uh
1+s,1 ∩ B,L(Ys, h

s(W ))
)
.
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Ad (ii) Let K : (Rd+1)d → R
d+1 be a generalized cross product; in particular K is

smooth. For the open subset

U := {(v1, . . . , vd+1) ∈ (Rd+1)d+1
∣
∣ (v1, . . . , vd+1) ⊂ R

d+1 linearly independent
}
,

the map f : U → R with

f (v1, . . . , vd+1) := |K(v1, . . . , vd)|
K(v1, . . . , vd) · vd+1

is well-defined and also smooth. So, by Corollary A.11(ii), F ∈ C∞(hs
(W ,U ), hs(W )

)
holds with

(
F(u)

)
(x) := f

(
u(x)

)
for u : W → U . As

in the proof of (i), we have ρ �→ ∂ jγρ ∈ C∞(Ys, hs(W , R
d+1)

)
for any

sufficiently small local parameterization (γ,W ) of M and thus G : ρ �→
(∂1γρ, . . . , ∂dγρ, ν� ◦ γ ) ∈ C∞(Ys, hs(W , (Rd+1)d+1)

)
. Due to Lemma 3.2,(

∂1γρ |x , ..., ∂dγρ |x , ν�◦γ|x
) ⊂ R

d+1 are linearly independent for every x ∈ W
ifρ ∈ Uh

s,1 with R
� > 0 sufficiently small. Therefore,G ∈ C∞(Uh

s,1, h
s(W ,U )

)

follows. Composition yields

(
F ◦ G

)
(ρ) = |K (∂1γρ, ..., ∂dγρ)|

K (∂1γρ, ..., ∂dγρ) · (ν� ◦ γ )
= 1

(νρ ◦ γ ) · (ν� ◦ γ )
= a(ρ) ◦ γ

and hence ρ �→ a(ρ) ◦ γ ∈ C∞(Uh
s,1, h

s(W )
)
. �

Remark 3.6. Let s ∈ R>0\N, let � = θ̄ (M) be an h3+s-immersed closed hypersur-
face and let α ∈ (0, 1) with α ≤ s. We use Notations 3.1. Due to the smoothness
of a : Uh

α,1 → Xα , a(ρ) := 1
νρ ·ν�

by Lemma 3.5(ii) and a(0) = 1
|ν� |2 = 1 for

0 ∈ Uh
α,1, we can choose R� > 0 sufficiently small such that a ≥ 1

2 holds on
{
ρ ∈ Yα

∣∣ ‖ρ‖Yα < 2R�
}
. In particular, we thus have a ≥ 1

2 on the set Uh
s defined in

Notations 3.10. Analogously, there exists a constant C > 0 such that ‖a(ρ)‖Xα ≤ C
holds for all ρ ∈ Uh

s .

The pullback �ρ of the Laplace–Betrami operator obviously is a linear operator, so
that the PDE for the concentration (2.1b) is quasilinear. Its parabolicity relies mainly
on the fact that �ρ is an elliptic operator, as we state in the next remark.

Remark 3.7. Let s ∈ R>0\N and let� = θ̄ (M) ⊂ R
d+1 be an h3+s-immersed closed

hypersurface. We use the notation �ρ as in Remark 2.8 as well as Notations 3.1. For
R� > 0 sufficiently small and ρ ∈ Uh

1+s,1, the pullback �ρ ∈ L(Zs, Xs) of the
Laplace–Beltrami operator is a symmetric and elliptic differential operator of second
order, as for a sufficiently small local parameterization (γ,W ) of M ,

�ρ[·] ◦ γ =
∑

i, j

gi jρ ∂i∂ j (· ◦ γ ) + lower order terms

holds with the symmetric and positive definite matrix [gi jρ ]i, j ∈ hs(W , R
d×d).
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We end the collection of regularity statements by a simple consequence of Sect. A.2
on the regularity of composition operators that will be applied to the functions G and
g later on.

Lemma 3.8. Let s ∈ R>0\N and let� = θ̄ (M) ⊂ R
d+1 be an h1+s -immersed closed

hypersurface. We use Notations 3.1. If F ∈ Ck+�s�+2(R), we have

u �→ F(u) ∈ Ck(Xs, Xs)

and in particular, u �→ F(u) ∈ Ck(Uc
s , Xs).

Proof. Let (γ,W ) be any sufficiently small local parameterization of M and let
R > 0. Due to F ∈ Ck+�s�+2

b

(
(−R, R)

)
, Proposition A.9(iii) yields F ∈ Ck

(
hs

(W , (−R, R)), hs(W )
)
. As R > 0 was arbitrary, F ∈ Ck

(
hs(W ), hs(W )

)
holds.

With u �→ u ◦ γ ∈ L(Xs, hs(W )
)
the claim follows. �

Having gathered these general regularity statements,we proceed to themore specific
setting in which we will prove the existence of short-time solutions. First, we list the
assumptions needed for our proof.

Assumptions 3.9.

(i) Let α ∈ (0, 1) and β ∈ (0, 1
2 ) with 2β + α /∈ N. Furthermore, let G ∈ C7(R)

with G ′′ > 0 and g := G − G ′ · Id > 0.
(ii) Let � = θ̄ (M) ⊂ R

d+1 be an h4+α-immersed closed hypersurface with unit
normal ν� and let R� > 0 be sufficiently small.

(iii) Let u0 ∈ h2+2β+α(M) and let δ1 > R� be arbitrary.
(iv) Let Rc, Rh > 0 be sufficiently large such that 2‖u0‖h2+α(M) ≤ Rc and 2δ1 ≤ Rh

holds. Let δ0 ∈ (0, R�). Then, let T ∈ (0, 1) be sufficiently small such that

RhT β + δ0 < R� (3.3)

is valid.

We give a few comments on these assumptions and explain why they are postulated
by referring to later statements. So, these comments will not be understandable in
detail for the reader yet, but serve as a later look-up. Choosing β < 1

2 ensures that
the embedding Zα ↪→ Y2β+α is compact and thus Kc

2β+α , K
h
2β+α as in Definition

3.10(i) are compact sets in Y2β+α . Assuming the immersed hypersurface � to be of
h4+α-regularity guarantees that we can apply Lemmas 3.3 and 3.5 for s := 2β + α.
Together with the C7-regularity of G, this is used in Corollary 3.11 to gain regularity
properties for our operators. The conditions G ′′ > 0 and g > 0 ensure that our PDEs
are parabolic. The h2+2β+α-regularity, which we assume for the initial value u0 of
the concentration, as well as for the initial value ρ0 of the height function later on,
makes sure that by applying our second-order operators, we still end upwith an h2β+α-
regularity. This turns out to be the necessary compatibility condition and is used in
Lemmas 3.16 and 3.24.
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We will obtain a short-time existence result for any initial height function ρ0 ∈
h2+2β+α(M)with‖ρ0‖h2+2β+α(M) < δ1 and‖ρ0‖h1+α(M) < δ0. Particularly, 2‖ρ0‖h2+α

(M) < 2δ1 ≤ Rh follows.As δ1 > 0 can be chosen arbitrarily large, ‖ρ0‖h2+2β+α(M) <

δ1 is not an actual restriction on ρ0. To yield a suitable height function as in Lemma 3.2,
the initial value ρ0 only needs to be small in the C1-norm. But to achieve a(ρ0) > 0
with Remark 3.6, and also later on in the proofs of Theorem 3.18 and Proposition
3.25, smallness of ρ0 in the h1+α-norm is necessary. This is why we set the condition
‖ρ0‖h1+α(M) < δ0.
Assuming R� > 0 sufficiently smallmeans that Lemmas 3.2, 3.3, 3.4 and3.5 aswell

as Remarks 3.6 and 3.7 hold. In particular, this implies that any function ‖ρt‖ < R� is
a well-defined height function as in Lemma 3.2 and the regularity statements in terms
of ρt hold for all the geometric quantities from Lemmas 3.3 and 3.5.
In the following, we will choose Rc and Rh even larger and δ0 > 0 and T > 0 even

smaller, where T always has to be so small that estimate (3.3) holds. Enlarging Rc

and Rh increases the set of possible solutions to our system of PDEs, which we seek
in balls with radii Rc and Rh . Then, estimate (3.3) together with the Hölder-regularity
of the solution guarantees that every ‖ρ‖ ≤ Rh with initial value ‖ρ(0)‖ < δ0

fulfills ‖ρ(t)‖ < R� . Particularly, ρ(t) remains small in the h1+α-norm for all times
t ∈ [0, T ] such that all the properties mentioned above hold; most importantly, ρ(t)
is a well-defined height function as in Lemma 3.2 for every t ∈ [0, T ].
Now, we give a summary of the notation used in the following sections. It relies on

Notations 3.1, but is reduced to our more specific setting.

Notations 3.10. Suppose Assumptions 3.9 are valid and let s ∈ {α, 2β + α}. This
guarantees that� = θ̄ (M) is an h3+s-immersed closed hypersurface and thus permits
to use Notations 3.1: Xs := hs(M), Ys := h1+s(M) and Zs := h2+s(M). We also
recall

Uh
s,1 := {ρ ∈ Ys

∣
∣ ‖ρ‖C1(M) < 2R�

}
, Uc

s := {u ∈ Ys
∣
∣ ‖u‖Ys < 2Rc},

Uh
1+s,1 := {ρ ∈ Zs

∣∣ ‖ρ‖C1(M) < 2R�
}

and define

Uh
s := {ρ ∈ Ys

∣∣ ‖ρ‖Ys < 2Rh, ‖ρ‖Yα < 2R�
}
.

(i) Furthermore, we define

Kh
s := {ρ ∈ Zα

∣∣ ‖ρ‖Zα ≤ Rh, ‖ρ‖Yα ≤ R�
}‖·‖Ys

,

Kc
s := {u ∈ Zα

∣∣ ‖u‖Zα ≤ Rc
}‖·‖Ys

.

(ii) We use the following notation for spaces and sets with time-dependence

E0,T := hβ([0, T ], Xα),

E1,T := h1,β([0, T ], Xα) ∩ hβ([0, T ], Zα),
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Mc
T := {u ∈ E1,T | ‖u‖E1,T ≤ Rc and u(0) = u0 in Zα},

Mh
T := {ρ ∈ E1,T

∣∣ ‖ρ‖E1,T ≤ Rh and ‖ρ(t)‖Yα ≤ R� for all t ∈ [0, T ]} and
Mh

T,ρ0
:= {ρ ∈ E1,T | ‖ρ‖E1,T ≤ Rh and ρ(0) = ρ0 in Zα}

for any ρ0 ∈ Z2β+α with ‖ρ0‖Zα ≤ Rh and ‖ρ0‖Yα < δ0.

(iii) For the sake of completeness, we also define the operators used in the following
sections. For u, ρ ∈ E1,T and u1, ρ1 ∈ Zα , we set

Ah
u1,ρ1 [ρ] := g(u1)a(ρ1)P(ρ1)[ρ],
Ah[ρ] := Ah

u0,0[ρ] = g(u0)a(0)P(0)[ρ],
Gh

u(ρ) := g(u)a(ρ)H(ρ) − Ah[ρ],

Lh[ρ] :=
(

∂tρ − Ah[ρ]
ρ(0)

)
,

Ac
u1,ρ1 [u] := G ′′(u1)�ρ1u + g(u1)a(ρ1)H(ρ1)ν� ·∇ρ1u + g(u1)H(ρ1)

2u,

Ac[u] := Ac
u0,0[u] = G ′′(u0)��u + g(u0)H

2
�u,

Gc
ρ0

(u) := �ρu,ρ0
G ′(u) + g(u)a(ρu,ρ0)H(ρu,ρ0)ν� ·∇ρu,ρ0

u

+ g(u)H(ρu,ρ0)
2u − Ac[u],

Lc[u] :=
(

∂t u − Ac[u]
u(0)

)
.

Here, H, P, Q are the functionals from Lemma 3.3. Moreover, we have a(ρ) :=
1

νρ ·ν�
as in Lemma 3.5, where νρ as well as the differential operators ∇ρ , �ρ

were introduced in Remark 2.8; in particular, ν0 = ν� , ∇0 = ∇� , �0 = ��

and H(0) = H� hold in the case of ρ = 0. Finally, ρu,ρ0 ∈ Mh
T,ρ0

is the solution
from Theorem 3.18 associated with the concentration u ∈ Mc

T and the initial
value ρ0 ∈ Z2β+α with ‖ρ0‖Z2β+α < δ1 and ‖ρ0‖Yα < δ0.

Both our PDEs (2.1) are parabolic, quasilinear equations of second order (see Lem-
mas 3.3, 3.4 and 3.5 as well as Remarks 3.6 and 3.7) and will be solved by similar
approaches. To underline this parallel structure, we use the same notation for all corre-
sponding sets and operators and mark the association to the respective equation with a
superscript, using the letter h for the first Eq. (2.1a) concerning the height function and
the letter c for the second Eq. (2.1b) concerning the concentration function. Depen-
dences of sets or operators will never be denoted by superscripts, but only by indices.
To clarify this even more, we use the letters h and c only to denote the association to
the equation; while height functions and concentrations will always be called ρ and
u, respectively.

Whereas the initial value u0 for the concentration is chosen fixed in Assumptions
3.9, our short-time existence result allows for small variations in the initial value ρ0

of the height function. More precisely, for any initial value ρ0 ∈ h2+2β+α(M) with
‖ρ0‖h2+2β+α(M) < δ1 and ‖ρ0‖h1+α(M) < δ0, we will obtain a solution to (2.1) on a
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time interval [0, T ] with T independent of ρ0. This is crucial to prove the formation
of self-intersections, which will be done in an upcoming publication. However, we
thus cannot linearize the system (2.1) around the initial value for the height function,
as we do for the concentration. Instead, we linearize around the fixed value 0. This
is possible, as due to ‖ρ0‖h1+α(M) < δ0 all eligible initial values ρ0 are close to the
zero-function in a suitable sense.
We will solve our PDEs in the space E0,T and therefore the solution functions lie

in E1,T . To be precise, we seek the solution functions in Mc
T and Mh

T , which are the
balls with radii Rc and Rh mentioned earlier. As forecasted, estimate (3.3) guarantees
that any ρ ∈ Mh

T,ρ0
fulfills

‖ρ(t)‖Yα ≤ ‖ρ(t) − ρ(0)‖Yα + ‖ρ(0)‖Yα

≤ ‖ρ‖hβ([0,T ],Yα)T
β + ‖ρ0‖Yα < RhT β + δ0 < R�,

i.e., Mh
T,ρ0

⊂ Mh
T holds. In particular, ρ(t) is a well-defined height function as in

Lemma 3.2 for every ρ ∈ Mh
T and t ∈ [0, T ].

Now, we give a few crucial comments on embeddings of the sets defined above.
Here, the superscripts c and h are omitted whenever the corresponding statement holds
for both of them. As always, we set s ∈ {α, 2β + α}.
(i) We have Ks ⊂ Us due to Zα ↪→ Ys . Moreover, Ks ⊂ Ys is compact and convex,

because Zα ↪→ Ys is a compact embedding due to Lemma A.5 with β < 1
2 .

Obviously, Us ⊂ Ys is open.
(ii) As u ∈ Mc

T ,ρ ∈ Mh
T fulfill ‖u(t)‖Zα ≤ Rc, ‖ρ(t)‖Zα ≤ Rh and ‖ρ(t)‖Yα ≤ R�

for every t ∈ [0, T ], the inclusions

Mh
T ⊂ hβ

([0, T ], Kh
s

) ∩ hβ
([0, T ],Uh

1+α,1

) ⊂ hβ
([0, T ],Uh

s

)
,

Mc
T ⊂ hβ

([0, T ], Kc
s

) ⊂ hβ
([0, T ],Uc

s

)

follow. Furthermore, for any u ∈ Mc
T and any ρ ∈ Mh

T ,

‖ρ‖hβ ([0,T ],Ys ) ≤ ‖ρ‖hβ ([0,T ],Zα) ≤ ‖ρ‖E1,T ≤ Rh,

‖u‖hβ([0,T ],Ys ) ≤ ‖u‖hβ([0,T ],Zα) ≤ ‖u‖E1,T ≤ Rc

hold on account of Zα ↪→ Ys .

In the next corollary, we state some regularity properties for the components of the
operators from Notations 3.10(iii). This corollary, and even more so the subsequent
remark, are crucial for the proof of short-time existence as many of the following
statements are based on this regularity.

Corollary 3.11. We suppose Assumptions 3.9 are valid and use Notations 3.10. For
s ∈ {α, 2β + α},

gaP ∈ C2(Uc
s ×Uh

s ,L(Zs, Xs)
)
,
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gaQ ∈ C2(Uc
s ×Uh

s , Xs),

G ′′D ∈ C2(Uc
s ×Uh

s ,L(Zs, Xs)
)
,

G ′′ J ∈ C2(Uc
s ×Uh

1+s,1,L(Ys, Xs)
)
,

gaPν� · ∇ ∈ C2(Uc
s ×Uh

s ,L(Zs,L(Ys, Xs))
)
,

gaQν� · ∇ ∈ C2(Uc
s ×Uh

s ,L(Ys, Xs)
)
,

gP2Id c ∈ C2(Uc
s ×Uh

s ,L(Zs,L(Zs,L(Xs, Xs)))
)
,

gPQId c ∈ C2(Uc
s ×Uh

s ,L(Zs,L(Xs, Xs))
)
and

gQ2Id c ∈ C2(Uc
s ×Uh

s ,L(Xs, Xs)
)
,

hold. Furthermore, for G ′′′∇(·) · ∇(·) : (u, ρ) �→ G ′′′(u)∇ρ · ∇ρ , we have

G ′′′ ∇(·) · ∇(·) ∈ C2(Uc
α ×Uh

α ,L(Yα,L(Yα, Xα))
)
,

G ′′′ ∇(·) · ∇(·) ∈ C1(Uc
2β+α ×Uh

2β+α,L(Y2β+α,L(Y2β+α, X2β+α))
)
.

Proof. We have 2β + α ∈ (0, 2)\{1} with 2β < 1. Because � = θ̄ (M) is an h4+α-
immersed closed hypersurface and G ∈ C7(R), we can choose s ∈ {α, 2β + α} and
mostly k := 2 in Lemmas 3.3, 3.5 and 3.8. (If s > 1, we have to restrict to k := 1
in Lemma 3.8 for G ′′′ and thus can only conclude C1-differentiability for G ′′′. The
C7-regularity of G is used to obtain G ′′′ ∈ C2(Uc

α, Xα) with Lemma 3.8.) Moreover,
the inclusion Uh

s ⊂ Uh
s,1 holds. By considering functions independent of c or h as

constant in these variables, several multiplications and Zs ↪→ Ys ↪→ Xs prove the
claims. �

Remark 3.12. As Kc
s × Kh

s ⊂ Uc
s × Uh

s is compact and convex, we can apply
Corollary A.10 in the following way: For any Banach space Ws and any functional
F ∈ C2

(
Uc
s × Uh

s ,Ws
)
, there exists a constant C = C(R�, Rc, Rh) such that

F(u1, ρ1) ∈ hβ
([0, T ],Ws

)
holds with

∥∥F(u1, ρ1)
∥∥
hβ([0,T ],Ws )

≤ C and
∥∥F(u1, ρ2)−F(u2, ρ2)

∥∥
hβ([0,T ],Ws )

≤C
(‖u1−u2‖hβ([0,T ],Ys )+‖ρ1−ρ2‖hβ([0,T ],Ys )

)

for ui ∈ hβ
([0, T ], Kc

s

)
, ρi ∈ hβ

([0, T ], Kh
s

)
with ‖ui‖hβ([0,T ],Ys )

≤ Rc, ‖ρi‖hβ([0,T ],Ys ) ≤ Rh . In particular, these conditions are fulfilled for ui ∈ Mc
T

and ρi ∈ Mh
T .

Except forG ′′ J , all of the functionals listed inCorollary 3.11 can be estimated in this
way. Because G ′′′∇(·) ·∇(·) is a C1-function only for s = 2β +α, Corollary A.10 only
yields the first of the two estimates stated above in that case. But if we restrict to u1 =
u2, the second estimate also holds: As in Corollary 3.11, we have G ′′′ ∈ C1(Uc

s , Xs)

and ∇(·) · ∇(·) : ρ �→ ∇ρ · ∇ρ ∈ C2(Uh
s ,Ws) with Ws := L(Ys,L(Ys, Xs)). Thus,

Corollary A.10 yields the existence of a constant C = C(R�, Rc, Rh) with
∥∥G ′′′(u)∇ρ1 · ∇ρ1 − G ′′′(u)∇ρ2 · ∇ρ2

∥∥
hβ([0,T ],Ws )
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≤ ‖G ′′′(u)‖hβ([0,T ],Xs )

∥∥∇ρ1 · ∇ρ1 − ∇ρ2 · ∇ρ2

∥∥
hβ([0,T ],Ws )

≤ C‖ρ1 − ρ2‖hβ([0,T ],Ys )

for all u ∈ Mc
T and ρi ∈ Mh

T .
Due to Uh

1+s,1 ⊂ Zs and Mh
T ⊂ E1,T = h1+β([0, T ], Xα) ∩ hβ([0, T ], Zα), we

cannot find a compact set K ⊂ Uh
1+s,1 with Mh

T ⊂ hβ
([0, T ], K ). Therefore, the

functional G ′′ J , which is defined on Uc
s × Uh

1+s,1, has to be handled differently. But
as J : ρ �→ J (ρ) is bounded on bounded sets by Lemma 3.5(iii), we have J : ρ �→
J (ρ) ∈ C2

b

(
Uh
1+s,1 ∩ BZs

R (0),L(Ys, Xs)
)
for any R > 0. As Uh

1+s,1 ∩ BZs
R (0) ⊂ Zs

is convex, we can apply Proposition A.9 instead of Corollary A.10 to G ′′ J . With
Ws := L(Ys, Xs), this means that there exists a constant C = C(R�, Rc, R) such that
G ′′ J (u1, ρ1) ∈ hβ

([0, T ],Ws
)
holds with

∥
∥G ′′ J (u1, ρ1)

∥
∥
hβ ([0,T ],Ws )

≤ C and
∥
∥G ′′ J (u1, ρ2) − G ′′ J (u2, ρ2)

∥
∥
hβ ([0,T ],Ws )

≤ C
(‖u1 − u2‖hβ ([0,T ],Ys ) + ‖ρ1 − ρ2‖hβ ([0,T ],Zs )

)

for ui ∈ hβ
([0, T ], Kc

s

)
, ρi ∈ hβ

([0, T ],Uh
1+s,1

)
with ‖ui‖hβ([0,T ],Ys ) ≤ Rc, ‖ρi‖hβ

([0, T ], Zs) ≤ R. For s = α, this is again fulfilled for ui ∈ Mc
T and ρi ∈ Mh

T with
R = Rh .

As preparation for the following two sections, we deduce a technical auxiliary
corollary from Remark 3.12.

Corollary 3.13. We suppose Assumptions 3.9 are valid and use Notations 3.10. For
u ∈ Mc

T and ρ ∈ Mh
T , we have Ah[ρ] ∈ E0,T and Gh

u(ρ) ∈ E0,T and

(
g(u)a(ρ)Q(ρ)

)
(t) ∈ X2β+α as well as

(
G ′′′(u)

∣∣∇ρu
∣∣2
)

(t) ∈ X2β+α

holds for all t ∈ [0, T ].
Proof. We have u, u0 ∈ Mc

T and ρ, 0 ∈ Mh
T ⊂ hβ([0, T ], Zα). Thus, Remark 3.12

together with Lemma A.8 yields Ah[ρ],Gh
u(ρ) ∈ E0,T . Furthermore, for every t ∈

[0, T ], we have u(t) ∈ Uc
2β+α and ρ(t) ∈ Uh

2β+α ⊂ Y2β+α . Thus, Corollary 3.11 with
s := 2β + α yields the remaining claims. �
3.1. Short-time existence for ρ

This section deals with the first Eq. (2.1a)

∂tρ = g(u)a(ρ)H(ρ)

for height functions ρ with initial value ρ(0) = ρ0. We use the standard approach
for parabolic, quasilinear partial differential equations of second order relying on
linearization and a contraction argument, as explicated e.g. in [12, Chapter 7]. For this,
we first show that the linearization of the (elliptic) operator on the right-hand side of
the equation generates an analytic C0-semigroup (see Proposition 3.14). In particular,
the linearization of the initial value problem then yields an invertible operator (see
Proposition 3.15).
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Proposition 3.14. We suppose Assumptions 3.9 are valid and use Notations 3.10.
Then,

Ah = Ah
u0,0 : Zα → Xα

generates an analytic C0-semigroup withDAh (β) = X2β+α . If u ∈ Mc
T and ρ ∈ Mh

T ,
also

Ah
u(t),ρ(t) : Zs → Xs

generates an analytic C0-semigroup for s ∈ {α, 2β + α} and t ∈ [0, T ].
Proof.Let u ∈ Mc

T ,ρ ∈ Mh
T andfix s ∈ {α, 2β+α}, t ∈ [0, T ]. Then, g(u(t)

)
, a
(
ρ(t)

)

∈ Xs holds with Lemmas 3.8 and 3.5(ii). Also, Lemma 3.4 yields that P(ρ(t)) ∈
L(Zs, Xs) is a symmetric and elliptic differential operator of second order. Because
we have

Ah
u(t),ρ(t) = g

(
u(t)

)
a
(
ρ(t)

)
P
(
ρ(t)

)

with g > 0 and a > 0 by Assumption 3.9(i) and Remark 3.6, Ah
u(t),ρ(t) ∈ L(Zs, Xs) is

a symmetric and elliptic differential operator of second order, too. Due to Proposition
A.16, Ah

u(t),ρ(t) : D(Ah
u(t),ρ(t)

) ⊂ Xs → Xs therefore generates an analytic C0-

semigroup with D(Ah
u(t),ρ(t)

) = Zs . Lemma A.1 and the reiteration theorem finally
imply

DAh
u0,0

(β) = (Xα,D(Ah
u0,0

))
β

= (hα(�), h2+α(�)
)
β

= h2β+α(�) = X2β+α. �

Proposition 3.15. We suppose Assumptions 3.9 are valid and use Notations 3.10.
Then,

Lh : E1,T → (E0,T × Zα)h+

is bijective with

�h := sup
0<T≤1

‖(Lh)−1‖L((E0,T ×Zα)h+,E1,T ) < ∞,

where

(E0,T × Zα)h+
:= {( f, f0) ∈ (E0,T × Zα)

∣∣ f (0) + Ah[ f0] ∈ DAh (β) = X2β+α

}
with

‖( f, f0)‖(E0,T ×Zα)h+
:= ‖ f ‖E0,T + ‖ f0‖Zα + ‖ f (0) + Ah[ f0]‖X2β+α for ( f, f0) ∈ (E0,T × Zα)h+.

In particular, �h = �h(u0) only depends on the initial value u0.
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Proof. By Proposition 3.14, Ah satisfies the conditions of Proposition A.13, which
yields the claim. �

As a next step, we prove a technical auxiliary lemma.

Lemma 3.16. We suppose Assumptions 3.9 are valid and use Notations 3.10.

(i) If u ∈ Mc
T and ρ ∈ Mh

T with ρ(0) ∈ Z2β+α , then
(
Gh

u(ρ)
)
(0) = Gh

u0

(
ρ(0)

)

holds in Xα and we have
(
Gh

u(ρ), ρ(0)
) ∈ (E0,T × Zα

)h
+.

(ii) There exists a constant Nh = Nh
(
Rc, δ1

)
independent of T , Rh and u ∈ Mc

T
such that

∥
∥∥
(
Gh

u(ρ0), ρ0
)∥∥∥

(E0,T ×Zα)h+
≤ Nh

holds for all ρ0 ∈ Z2β+α with ‖ρ0‖Z2β+α < δ1, ‖ρ0‖Yα < δ0.

Proof.

Ad (i) We haveGh
u(ρ) ∈ E0,T by Corollary 3.13, hence

(
Gh

u(ρ), ρ(0)
) ∈ E0,T ×Zα

holds.Moreover, we have u(0) = u0 ∈ Uc
2β+α andρ(0), 0 ∈ Uh

2β+α∩Z2β+α .

So, Corollary 3.11 yields
(
Gh

u(ρ)
)
(0) = Gh

u0

(
ρ(0)

)
in X2β+α ↪→ Xα and

therefore

Ah[ρ(0)
]+ (Gh

u(ρ)
)
(0) = g(u0)a

(
ρ(0)

)
H
(
ρ(0)

) ∈ X2β+α

follows with X2β+α = DAh (β) by Proposition 3.14.

Ad (ii) We have u, u0 ∈ Mc
T and ρ0, 0 ∈ M̃h

T with M̃h
T defined as Mh

T but with

R̃h := 2δ1 instead of Rh . So, Remark 3.12 together with Lemma A.8 yields
∥∥Gh

u(ρ0)
∥∥
E0,T

= ∥∥(gaH)(u, ρ0) − (gaP)(u0, 0)[ρ0]
∥∥
E0,T

≤
∥∥
∥
((
gaP

)
(u, ρ0) − (gaP)(u0, 0)

)
[ρ0]

∥∥
∥
E0,T

+ ∥∥(gaQ)(u, ρ0)
∥∥
E0,T

≤ C(Rc, δ1)
(‖u − u0‖hβ([0,T ],Yα) + ‖ρ0‖Yα

)‖ρ0‖Zα + C(Rc, δ1)

≤ C(Rc, δ1)

as well as
∥∥∥Ah[ρ0] + (Gh

u(ρ0)
)
(0)
∥∥∥DAh (β)

≤ ∥∥(gaP)(u0, ρ0)[ρ0]
∥
∥
X2β+α

+ ∥∥(gaQ)(u0, ρ0)
∥
∥
X2β+α

≤ C(Rc, δ1)
(‖ρ0‖Z2β+α + 1

) ≤ C
(
Rc, δ1

)
.

(As u0 and ρ0 are independent of t , there is also no time dependence in the
application of Remark 3.12 in the estimate above.) Altogether,

∥∥
∥
(
Gh

u(ρ0), ρ0
)∥∥
∥

(E0,T ×Zα)h+
≤ C

(
Rc, δ1

) =: Nh

holds. �
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The following proposition is the key point for the contraction argument.

Proposition 3.17. We suppose Assumptions 3.9 are valid and use Notations 3.10.
There exists ε > 0 with

‖Gh
u1(ρ1) − Gh

u2(ρ2)‖E0,T ≤ C(R�, Rc, Rh)T ε
(‖u1 − u2‖E1,T + ‖ρ1 − ρ2‖E1,T

)

+ C(R�, Rc, Rh)‖ρ1(0) − ρ2(0)‖Yα

+ C(R�, ‖u0‖Zα , ‖ρ1(0)‖Zα )‖ρ1(0)‖Yα‖ρ1 − ρ2‖E1,T

for any u1, u2 ∈ Mc
T and ρ1, ρ2 ∈ Mh

T .

Proof. Remark 3.12 yields
∥∥(gaQ

)
(u1, ρ1) − (gaQ)(u2, ρ2)

∥∥
E0,T

≤ C(R�, Rc, Rh)
(‖u1 − u2‖hβ([0,T ],Yα) + ‖ρ1 − ρ2‖hβ([0,T ],Yα)

)

≤ C(R�, Rc, Rh)
(
T γ−β

(‖u1 − u2‖hγ ([0,T ],Yα) + ‖ρ1 − ρ2‖hγ ([0,T ],Yα)

)

+ ‖ρ1(0) − ρ2(0)‖Yα

)

≤ C(R�, Rc, Rh)
(
T γ−β

(‖u1 − u2‖E1,T

+ ‖ρ1 − ρ2‖E1,T

)+ ‖ρ1(0) − ρ2(0)‖Yα

)
,

where we used Remark A.3 und Lemma A.4 for the further estimate and γ ∈ (0, 1)
with γ > β is the exponent from Lemma A.4. For w ∈ E1,T ⊂ hβ

([0, T ], Zα

)
and

using Lemma A.8, we have analogously
∥∥∥
((
gaP

)
(u1, ρ1) − (gaP)(u2, ρ2)

)
[w]
∥∥∥
E0,T

≤ C(R�, Rc, Rh)
(‖u1 − u2‖hβ([0,T ],Yα) + ‖ρ1 − ρ2‖hβ([0,T ],Yα)

) ‖w‖hβ([0,T ],Zα)

≤ C(R�, Rc, Rh)
(
T γ−β

(‖u1 − u2‖E1,T + ‖ρ1 − ρ2‖E1,T

)

+ ‖ρ1(0) − ρ2(0)‖Yα

)
‖w‖E1,T .

Finally, using R̃c := ‖u0‖Zα and R̃h := ‖ρ1(0)‖Zα instead of Rc and Rh , Remark
3.12 with Lemma A.8 implies

∥∥∥
((
gaP

)
(u0, ρ1(0)) − (gaP)(u0, 0)

)
[w]
∥∥∥
E0,T

≤ C(R�, ‖u0‖Zα , ‖ρ1(0)‖Zα )‖ρ1(0)‖Yα‖w‖E1,T

for w ∈ E1,T . Overall,

‖Gh
u1(ρ1) − Gh

u2(ρ2)‖E0,T

≤
∥∥∥
((
gaP

)
(u1, ρ1) − (gaP)(u0, ρ1(0))

)
[ρ1 − ρ2]

∥∥∥
E0,T
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+
∥∥∥
((
gaP

)
(u0, ρ1(0)) − (gaP)(u0, 0)

)
[ρ1 − ρ2]

∥∥∥
E0,T

+
∥∥∥
((
gaP

)
(u1, ρ1) − (gaP)(u2, ρ2)

)
[ρ2]

∥∥∥
E0,T

+ ∥∥(gaQ)(u1, ρ1) − (gaQ)(u2, ρ2)
∥∥
E0,T

≤ C(R�, Rc, Rh)T γ−β
(‖u1 − u0‖E1,T + ‖ρ1 − ρ1(0)‖E1,T

)‖ρ1 − ρ2‖E1,T

+ C(R�, ‖u0‖Zα , ‖ρ1(0)‖Zα )‖ρ1(0)‖Yα‖ρ1 − ρ2‖E1,T

+ C(R�, Rc, Rh)
(
T γ−β

(‖u1 − u2‖E1,T + ‖ρ1 − ρ2‖E1,T

)

+ ‖ρ1(0) − ρ2(0)‖Yα

)(‖ρ2‖E1,T +1
)

≤ C(R�, Rc, Rh)
(
T γ−β

(‖u1 − u2‖ET + ‖ρ1 − ρ2‖E1,T

)+ ‖ρ1(0) − ρ2(0)‖Yα

)

+ C(R�, ‖u0‖Zα , ‖ρ1(0)‖Zα )‖ρ1(0)‖Yα‖ρ1 − ρ2‖E1,T

follows. �
With this preparatory work, we can now prove short-time existence for the first

Eq. (2.1a).

Theorem 3.18. WesupposeAssumptions3.9are valid anduseNotations3.10. Therein,
choose Rh = Rh

(
Rc, u0, δ1

)
> 0 sufficiently large, choose δ0 = δ0

(
R�, u0, δ1

) ∈
(0, R�) sufficiently small and choose T = T

(
R�, Rc, Rh, u0, δ0

) ∈ (0, 1) sufficiently
small. Then, for any initial value ρ0 ∈ Z2β+α with ‖ρ0‖Z2β+α < δ1 and ‖ρ0‖Yα < δ0

and any concentration u ∈ Mc
T , there exists a unique solution ρ := ρu,ρ0 ∈ Mh

T,ρ0
of

{
∂tρ = g(u)a(ρ)H(ρ)in E0,T ,

ρ(0) = ρ0in Zα.

Proof. We show the existence of a unique solution ρ ∈ Mh
T,ρ0

of
{

∂tρ = g(u)a(ρ)H(ρ)in E0,T ,

ρ(0) = ρ0in Zα

⇔ Lh[ρ] =
(
Gh

u(ρ)

ρ0

)
in E0,T × Zα. (3.4)

Equation (3.4) is well-defined because Ah[ρ],Gh
u(ρ) ∈ E0,T holds for ρ ∈ Mh

T and
u ∈ Mc

T by Corollary 3.13. Due to Lemma 3.16(i) and Proposition 3.15 it is equivalent
to prove the existence of a unique ρ ∈ Mh

T,ρ0
with

Lh[ρ] =
(
Gh

u(ρ)

ρ0

)
in (E0,T × Zα)h+ ⇔

ρ = (Lh)−1
(
Gh

u(ρ)

ρ0

)
=: Kh

u,ρ0
(ρ) in E1,T .

So, we show that Kh
u,ρ0

: Mh
T,ρ0

⊂ E1,T → E1,T has a unique fixed point ρ ∈ Mh
T,ρ0

using the Banach fixed-point theorem. Due to Lemma 3.16(i) and Proposition 3.15,
Kh
u,ρ0

(ρ) ∈ E1,T is well-defined for ρ ∈ Mh
T,ρ0

.
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Step 1: We have to verify that Kh
u,ρ0

is a contraction on Mh
T,ρ0

. For any ρ1, ρ2 ∈ Mh
T,ρ0

‖Kh
u,ρ0

(ρ1) − Kh
u,ρ0

(ρ2)‖E1,T ≤ �h‖Gh
u(ρ1) − Gh

u(ρ2)‖E0,T

≤
(
C(R�, Rc, Rh,�h)T ε + C(R�, ‖u0‖Zα , ‖ρ0‖Zα ,�h)‖ρ0‖Yα

)
‖ρ1 − ρ2‖E1,T

≤
(
C(R�, Rc, Rh,�h)T ε + C(R�, u0, δ1,�

h)δ0

)
‖ρ1 − ρ2‖E1,T

holds by Proposition 3.15, Lemma 3.16(i) as well as Proposition 3.17. For
sufficiently small δ0 > 0 and sufficiently small T > 0,

‖Kh
u,ρ0

(ρ1) − Kh
u,ρ0

(ρ2)‖E1,T ≤ 1

4
‖ρ1 − ρ2‖E1,T

follows. Because �h only depends on u0, δ0 only depends on R�, u0 and δ1

whereas T only depends on R�, Rc, Rh and u0.
Step 2: We have to show that Kh

u,ρ0
: Mh

T,ρ0
→ Mh

T,ρ0
is a self-mapping. Any ρ ∈

Mh
T,ρ0

fulfills
(
Kh
u,ρ0

(ρ)
)
(0) = ρ0 in Zα because w := Kh

u,ρ0
(ρ) is a solution

to

Lhw =
([Lhw]1

w(0)

)
=
(
Gh

u(ρ)

ρ0

)
in E0,T × Zα.

Furthermore, we have

‖Kh
u,ρ0

(ρ)‖E1,T ≤ ‖Kh
u,ρ0

(ρ0)‖E1,T + ‖Kh
u,ρ0

(ρ) − Kh
u,ρ0

(ρ0)‖E1,T

≤ �h
∥∥(Gh

u(ρ0), ρ0
)∥∥

(E0,T ×Zα)h+
+ 1

4
‖ρ − ρ0‖E1,T

≤ �h Nh + 1

4

(‖ρ‖E1,T + 2‖ρ0‖Zα

) ≤ Rh

2
+ Rh

2
= Rh,

where the first summand is bounded by Proposition 3.15 and Lemma 3.16(ii)
and the second summand by the contraction-property (see step 2). The con-
stant Rh being sufficiently large thus means Rh ≥ 2�h Nh and because �h

only depends on u0 and Nh only depends on Rc and δ1, we have Rh =
Rh
(
Rc, u0, δ1

)
. The two properties just deduced imply Kh

u,ρ0
(ρ) ∈ Mh

T,ρ0
for

all ρ ∈ Mh
T,ρ0

. �
Now that we know that there exists a solution ρu,ρ0 to the first Eq. (2.1a), we analyze

some of its properties. First, we discuss its dependence on the concentration u and the
initial value ρ0. The result in Proposition 3.19 will be necessary for the contraction
argument for the second Eq. (2.1b). Afterwards, we state an improved regularity in
space for the solution in Proposition 3.20.

Proposition 3.19. We suppose that Assumptions 3.9 are valid and use Notations 3.10.
Therein, choose Rh > 0 as large and choose δ0 > 0, T > 0 as small as in Theorem
3.18. There exists ε > 0 with

‖ρ1 − ρ2‖E1,T ≤ C(R�, Rc, Rh,�h, δ1)
(
T ε‖u1 − u2‖E1,T + ‖ρ0,1 − ρ0,2‖Z2β+α

)
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for any u1, u2 ∈ Mc
T and ρ0,1, ρ0,2 ∈ Z2β+α with ‖ρ0,i‖Z2β+α < δ1 and ‖ρ0,i‖Yα <

δ0, where ρi := ρui ,ρ0,i ∈ Mh
T is the solution from Theorem 3.18 associated with the

concentration ui and the initial value ρ0,i , respectively.

Proof.Asρi ∈ Mh
T is the solution fromTheorem3.18 associatedwith the concentration

ui and the initial value ρ0,i , it is a fixed point of (Lh)−1
(
Gh

ui (·), ρ0,i
)
as in the proof

of Theorem 3.18. Therefore, we have

‖ρ1 − ρ2‖E1,T ≤ �h
∥∥(Gh

u1(ρ1), ρ0,1
)− (Gh

u2(ρ2), ρ0,2
)∥∥

(E0,T ×Zα)h+
= �h

∥∥Gh
u1(ρ1) − Gh

u2(ρ2)
∥∥
E0,T

+ �h‖ρ0,1 − ρ0,2‖Zα

+ �h
∥∥Gu0(ρ0,1) − Gu0(ρ0,2) + Ah[ρ0,1 − ρ0,2]

∥∥
X2β+α

by Proposition 3.15 and Lemma 3.16(i). With δ0 > 0 and T > 0 as small as in
Theorem 3.18, Proposition 3.17 yields

�h
∥
∥Gh

u1(ρ1) − Gh
u2(ρ2)

∥
∥
E0,T

≤ 1

4
‖ρ1 − ρ2‖E1,T + C(R�, Rc, Rh,�h)

(
T ε‖u1 − u2‖E1,T + ‖ρ0,1 − ρ0,2‖Yα

)
.

Due to u0 ∈ Mc
T and ρ0,i ∈ Mh

T , Remark 3.12 together with Lemma A.8 implies

∥∥Gu0(ρ0,1) − Gu0(ρ0,2) + Ah[ρ0,1 − ρ0,2]
∥∥
X2β+α

≤
∥∥
∥
((
gaP

)
(u0, ρ0,1) − (gaP)(u0, ρ0,2)

)
[ρ0,1]

∥∥
∥
X2β+α

+ ∥∥(gaP)(u0, ρ0,2)[ρ0,1 − ρ0,2]
∥∥
X2β+α

+ ∥∥(gaQ)(u0, ρ0,1) − (gaQ)(u0, ρ0,2)
∥
∥
X2β+α

≤ C(R�, Rc, Rh)
(‖ρ0,1 − ρ0,2‖Y2β+α‖ρ0,1‖Z2β+α + ‖ρ0,1 − ρ0,2‖Z2β+α

+ ‖ρ0,1 − ρ0,2‖Y2β+α

)

≤ C(R�, Rc, Rh, δ1)‖ρ0,1 − ρ0,2‖Z2β+α .

(As u0 and ρ0,i are all independent of t , there is also no time dependence in the
application of Lemma A.8 in the estimate above.) Altogether, we thus have

‖ρ1 − ρ2‖E1,T ≤ C(R�, Rc, Rh,�h, δ1)
(
T ε‖u1 − u2‖E1,T

+ ‖ρ0,1 − ρ0,2‖Z2β+α

)
. �

Proposition 3.20. We suppose that Assumptions 3.9 are valid and use Notations 3.10.
Therein, choose Rh > 0 as large and choose δ0 > 0, T > 0 as small as in Theorem
3.18. Let u ∈ Mc

T and ρ0 ∈ Z2β+α with ‖ρ0‖Z2β+α < δ1 and ‖ρ0‖Yα < δ0 be

arbitrary and let ρ := ρu,ρ0 ∈ Mh
T,ρ0

be the associated solution from Theorem 3.18.
Then, ρ(t) ∈ Z2β+α holds for all t ∈ [0, T ].
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Proof. Fix t ∈ [0, T ]. We have

Ah
u(t),ρ(t)

[
ρ(t)

] = ∂tρ(t) − (gaQ)(u, ρ)(t) ∈ X2β+α

by Proposition A.13(i) and Corollary 3.13. Because Ah
u(t),ρ(t) : Zs → Xs generates

an analytic C0-semigroup for s ∈ {α, 2β + α} (see Proposition 3.14), Lemma A.14
yields ρ(t) ∈ Z2β+α . �
3.2. Short-time existence for u

In this section, we discuss the second Eq. (2.1b)

∂t u = �ρG
′(u) + g(u)a(ρ)H(ρ) ν� · ∇ρu + g(u)H(ρ)2u

for concentrations u with initial value u(0) = u0. As height function ρ, we insert the
solution function ρu,ρ0 from Theorem 3.18 with initial value ρ0. Both Eqs. (2.1a) and
(2.1b) are parabolic, quasilinear partial differential equations of second order. Due to
this parallel structure, we apply the same approach as in Sect. 3.1 to solve this second
equation, using linearization and a contraction argument.
First, we deduce a corollary from Remark 3.12, which contains the analogous state-

ment to Corollary 3.13 but for Ac and Gc instead of Ah and Gh .

Corollary 3.21. We suppose Assumptions 3.9 are valid and use Notations 3.10. There
in, choose Rh > 0 as large and choose δ0 > 0, T > 0 as small as in Theorem 3.18.
Let ρ0 ∈ Z2β+α with ‖ρ0‖Z2β+α < δ1 and ‖ρ0‖Yα < δ0. For u ∈ Mc

T , we have
Ac[u] ∈ E0,T and Gc

ρ0
(u) ∈ E0,T .

Proof. Let ρu,ρ0 ∈ Mh
T,ρ0

be the solution from Theorem 3.18 associated with the

concentration u and the initial value ρ0. Then, we have u, u0 ∈ Mc
T ⊂ hβ([0, T ], Zα)

and ρu,ρ0 , 0 ∈ Mh
T ⊂ hβ([0, T ], Zα). Thus, Remark 3.12 together with Lemma A.8

yields the statement. �
As in Sect. 3.1, we show that the linearization of the (elliptic) operator on the right-

hand side of the equation generates an analytic C0-semigroup, which implies that the
linearization of the initial value problem defines an invertible operator.

Proposition 3.22. We suppose Assumptions 3.9 are valid and use Notations 3.10.
Then,

Ac = Ac
u0,0 : Zα → Xα

generates an analytic C0-semigroup with DAc (β) = X2β+α .
Let Rh be as large and let δ0 > 0, T > 0 be as small as in Theorem 3.18. If ρ :=
ρu,ρ0 ∈ Mh

T,ρ0
is the solution from Theorem 3.18 associated with the concentration

u ∈ Mc
T and the initial value ρ0 ∈ Z2β+α with ‖ρ0‖Z2β+α < δ1 and ‖ρ0‖Yα < δ0,

also

Ac
u(t),ρ(t) : Zs → Xs

generates an analytic C0-semigroup for s ∈ {α, 2β + α} and t ∈ [0, T ].
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Proof. Fix s ∈ {α, 2β + α} and t ∈ [0, T ]. Any solution ρ := ρu,ρ0 ∈ Mh
T,ρ0

from
Theorem 3.18 fulfills ρ(t) ∈ Zs with Proposition 3.20 and due to ‖ρ(t)‖C1(M) ≤
‖ρ(t)‖Yα < R� (see remark after Notations 3.10), ρ(t) ∈ Uh

1+s,1 follows. By Remark
3.7, �ρ(t) ∈ L(Zs, Xs) is a symmetric and elliptic differential operator of second
order. Because we have

Ac
u(t),ρ(t) = G ′′(u(t)

)
�ρ(t) + lower order terms

with G ′′ > 0 by Assumption 3.9(i), Ac
u(t),ρ(t) ∈ L(Zs, Xs) is a symmetric and elliptic

differential operator of second order, too. The operator Ac
u(t),ρ(t) : D(Ac

u(t),ρ(t)

) ⊂
Xs → Xs therefore generates an analytic C0-semigroup with D(Ac

u(t),ρ(t)

) = Zs on
account of Proposition A.16. Lemma A.1 together with the reiteration theorem finally
implies

DAc
u0,0

(β) = (Xα,D(Ac
u0,0

))

β
= (hα(�), h2+α(�)

)
β

= h2β+α(�) = X2β+α,

where (·, ·)β denotes the continuous interpolation functor. �

Proposition 3.23. We suppose Assumptions 3.9 are valid and use Notations 3.10.
Then,

Lc : E1,T → (E0,T × Zα)c+

is bijective with

�c := sup
0<T≤1

‖(Lc)−1‖L((E0,T ×Zα)c+,E1,T ) < ∞,

where

(E0,T × Zα)c+ := {( f, f0) ∈ (E0,T × Zα)
∣∣ f (0)

+ Ac[ f0] ∈ DAc (β) = X2β+α

}
with

‖( f, f0)‖(E0,T ×Zα)c+ := ‖ f ‖E0,T + ‖ f0‖Zα

+ ‖ f (0) + Ac[ f0]‖X2β+α for ( f, f0) ∈ (E0,T × Zα)c+.

In particular, �c = �c(u0) only depends on the initial value u0.

Proof. By Proposition 3.22, Ac satisfies the conditions of Proposition A.13, which
yields the claim. �

We show a technical auxiliary lemma analogous to Lemma 3.16.

Lemma 3.24. We suppose Assumptions 3.9 are valid and use Notations 3.10. Therein,
choose Rh > 0 as large and choose δ0 > 0, T > 0 as small as in Theorem 3.18.

(i) Let ρ0 ∈ Z2β+α with ‖ρ0‖Z2β+α < δ1 and ‖ρ0‖Yα < δ0 and let u ∈ Mc
T . Then



J. Evol. Equ. Short time existence for coupling Page 31 of 46 14

(
Gc

ρ0
(u)
)
(0) = �ρ0G

′(u0) + g(u0)a(ρ0)H(ρ0)ν� · ∇ρ0u0

+ g(u0)H(ρ0)
2u0 − Ac[u0]

holds in Xα . In particular,
(
Gc

ρ0
(u)
)
(0) is independent of u. Furthermore, we

have

(
Gc

ρ0
(u), u0

) ∈ (E0,T × Zα

)c
+.

(ii) There exists a constant Nc = Nc
(
R�, u0, δ1

)
independent of T , Rc and Rh

such that

∥∥(Gc
ρ0

(u0), u0
)∥∥

(E0,T ×Zα)c+
≤ Nc

holds for all ρ0 ∈ Z2β+α with ‖ρ0‖Z2β+α < δ1 and ‖ρ0‖Yα < δ0.

Proof.

Ad (i) We have Gc
ρ0

(u) ∈ E0,T by Corollary 3.21, hence
(
Gc(u), u0

) ∈ E0,T × Zα

holds.
Let ρ := ρu,ρ0 ∈ Mh

T,ρ0
be the solution from Theorem 3.18 associated with

the concentration u ∈ Mc
T and the initial value ρ0. Then, u(0) = u0 ∈

Uc
2β+α ∩ Z2β+α and ρ(0) = ρ0, 0 ∈ Uh

2β+α ∩Uh
1+2β+α,1 ⊂ Z2β+α hold. So,

Corollary 3.11 yields

(
Gc

ρ0
(u)
)
(0) = �ρ0G

′(u0) + g(u0)a(ρ0)H(ρ0)ν� · ∇ρ0u0 + g(u0)H(ρ0)
2u0

− G ′′(u0)��u0 − g(u0)H
2
�u0 in X2β+α ↪→ Xα

and therefore

Ac[u0]+
(
Gc

ρ0
(u)
)
(0) = �ρ0G

′(u0)+g(u0)a(ρ0)H(ρ0)ν� ·∇ρ0u0

+g(u0)H(ρ0)
2u0 ∈ X2β+α

follows with X2β+α = DAc (β) by Proposition 3.22.
Ad (ii) We have

∥
∥(Gc

ρ0
(u0), u0

)∥∥
(E0,T ×Zα)c+

= ∥∥Gc
ρ0

(u0)
∥
∥
E0,T

+ ‖u0‖Zα

+ ∥∥Ac[u0]+
(
Gc

ρ0
(u0)

)
(0)
∥∥
DAc (β)

.

Let ρ := ρu0,ρ0 ∈ Mh
T,ρ0

⊂ hβ
([0, T ], Zα

)
be the solution from Theorem

3.18 associated with the concentration u0 and the initial value ρ0. We have
u0 ∈ M̃c

T and ρ, ρ0, 0 ∈ M̃h
T with M̃c

T , M̃
h
T defined as Mc

T , M
h
T but with

R̃c := 2‖u0‖Zα , R̃h := ‖ρ‖E1,T ≥ 2‖ρ0‖Zα instead of Rc, Rh . We thus can
use Remark 3.12 and Lemma A.8 to bound

∥∥Gc
ρ0

(u0)
∥∥
E0,T

= ∥∥�ρG
′(u0) + g(u0)a(ρ)H(ρ)ν� · ∇ρu0 + g(u0)H(ρ)2u0
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− G ′′(u0)��u0 − g(u0)H
2
�u0

∥∥
E0,T

≤ C
(
R�, ‖u0‖Zα , ‖ρ‖E1,T

)
.

as well as

∥∥Ac[u0] + (Gc
ρ0

(u0)
)
(0) − G ′′(u0)J (ρ0)[u0]

∥∥
DAc (β)

= ∥∥G ′′(u0)D(ρ0)[u0] + G ′′′(u0)
∣∣∇ρ0u0

∣∣2

+ g(u0)a(ρ0)H(ρ0)ν� · ∇ρ0u0 + g(u0)H(ρ0)
2u0
∥∥
X2β+α

≤ C
(
R�, ‖u0‖Zα , ‖ρ‖E1,T

)
C
(‖u0‖Z2β+α , ‖ρ0‖Z2β+α

)

≤ C
(
R�, ‖u0‖Z2β+α , δ1, ‖ρ‖E1,T

)
.

(As u0 and ρ0 are independent of t , there is also no time dependence in
the application of Remark 3.12 in the estimate above.) Moreover, we have

ρ0 ∈ Uh
1+2β+α,1 ∩ B

Z2β+α

δ1
(0) and therefore a last application of Remark 3.12

and Lemma A.8 yields

∥
∥G ′′(u0)J (ρ0)[u0]

∥
∥DAc (β)

≤ C
(
R�, ‖u0‖Zα , δ1

)‖u0‖Y2β+α

≤ C
(
R�, ‖u0‖Z2β+α , δ1

)
.

So,

∥∥Ac[u0] + (Gc
ρ0

(u0)
)
(0)
∥∥
DAc (β)

≤ C
(
R�, ‖u0‖Z2β+α , δ1, ‖ρ‖E1,T

)

follows. Altogether, we thus have

∥∥(Gc
ρ0

(u0), u0
)∥∥

(E0,T ×Zα)c+
≤ C

(
R�, ‖u0‖Z2β+α , δ1, ‖ρ‖E1,T

)
.

Now,wehave to explainwhy ‖ρ‖E1,T can be bounded by a constant depending
only on R� , u0 and δ1. As ρ is the solution fromTheorem 3.18, ‖ρ‖E1,T ≤ Rh

holdswith Rh = Rh
(
Rc, u0, δ1

)
. Becauseρ is associated to the concentration

u0, it suffices to use Rh = Rh
(
2‖u0‖Zα , u0, δ1

)
for the statement of Theorem

3.18. Thus, we have ‖ρ‖E1,T ≤ Rh = C
(
u0, δ1

)
and therefore finally

∥∥(Gc
ρ0

(u0), u0
)∥∥

(E0,T ×Zα)c+
≤ C

(
R�, u0, δ1

) =: Nc

follows.

With the help of Proposition 3.19, an analogous statement to Proposition 3.17 holds
which again will be the key point to the contraction argument.

Proposition 3.25. We suppose that Assumptions 3.9 are valid and use Notations 3.10.
Therein, choose Rh > 0 as large and choose δ0 > 0, T > 0 as small as in Theorem
3.18. There exists ε > 0 with
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‖Gc
ρ0,1

(u1) − Gc
ρ0,2

(u2)‖E0,T

≤ C(R�, Rc, Rh,�h, δ1)
(
T ε‖u1 − u2‖E1,T + ‖ρ0,1 − ρ0,2‖Z2β+α

)

+ C(R�, ‖u0‖Zα , δ1)δ0‖u1 − u2‖E1,T

for u1, u2 ∈ Mc
T and initial values ρ0,1, ρ0,2 ∈ Z2β+α with ‖ρ0,i‖Z2β+α < δ1 and

‖ρ0,i‖Yα < δ0.

Proof. Let ρi := ρui ,ρ0,i ∈ Mh
T be the solution from Theorem 3.18 associated with

the concentration ui and the initial value ρ0,i . Using appropriate triangle inequalities
(as in the proof of Proposition 3.17), Remark 3.12 together with Lemma A.8 yields
∥∥∥
(
Gc

ρ0,1
(u1) − Gc

ρ0,2
(u2)

)
−
(
G ′′(u1)D(ρ1)[u1 − u2] − G ′′(u0)D(0)[u1 − u2]

)∥∥∥
E0,T

=
∥∥∥G ′′(u1)D(ρ1)[u2] − G ′′(u2)D(ρ2)[u2]

+ G ′′(u1)J (ρ1)[u1] − G ′′(u2)J (ρ2)[u2] − G ′′(u0)J (0)[u1 − u2]
+ G ′′′(u1)

∣∣∇ρ1u1
∣∣2 − G ′′′(u2)

∣∣∇ρ2u2
∣∣2

+ g(u1)a(ρ1)H(ρ1)ν� · ∇ρ1u1 − g(u2)a(ρ2)H(ρ2)ν� · ∇ρ2u2

+ g(u1)H(ρ1)
2u1 − g(u2)H(ρ2)

2u2 − g(u0)H
2
�[u1 − u2]

∥∥∥
E0,T

≤ C(R�, Rc, Rh)
(‖u1 − u2‖hβ ([0,T ],Yα) + ‖ρ1 − ρ2‖hβ ([0,T ],Yα)

)

+ C(R�, Rc, Rh)
(‖u1 − u0‖hβ ([0,T ],Yα) + ‖ρ1‖hβ ([0,T ],Zα)

)‖u1 − u2‖hβ ([0,T ],Yα)

+ C(R�, Rc, Rh)
(‖u1 − u2‖hβ ([0,T ],Yα) + ‖ρ1 − ρ2‖hβ ([0,T ],Zα)

)

≤ C(R�, Rc, Rh)
(‖u1 − u2‖hβ ([0,T ],Yα) + ‖ρ1 − ρ2‖hβ ([0,T ],Zα)

)
.

Analogously, using R̃c := ‖u0‖Zα and R̃h := ‖ρ1,0‖Zα instead of Rc and Rh for the
second summand, Remark 3.12 with Lemma A.8 implies

∥∥G ′′(u1)D(ρ1)[u1 − u2] − G ′′(u0)D(0)[u1 − u2]
∥∥
E0,T

≤ ∥∥(G ′′(u1)D(ρ1) − G ′′(u0)D(ρ0,1)
)[u1 − u2]

∥
∥
E0,T

+ ∥∥(G ′′(u0)D(ρ0,1) − G ′′(u0)D(0)
)[u1 − u2]

∥
∥
E0,T

≤ C(R�, Rc, Rh)
(‖u1 − u0‖hβ([0,T ],Yα)

+ ‖ρ1 − ρ0,1‖hβ([0,T ],Yα)

)‖u1 − u2‖hβ([0,T ],Zα)

+ C(R�, ‖u0‖Zα , ‖ρ0,1‖Zα )‖ρ0,1‖Yα‖u1 − u2‖hβ([0,T ],Zα).

So, altogether, we have
∥∥Gc

ρ0,1
(u1) − Gc

ρ0,2
(u2)

∥∥
E0,T

≤ C(R�, Rc, Rh)
(‖u1 − u2‖hβ([0,T ],Yα) + ‖ρ1 − ρ2‖hβ([0,T ],Zα)

)

+ C(R�, Rc, Rh)
(‖u1 − u0‖hβ([0,T ],Yα)

+ ‖ρ1 − ρ0,1‖hβ([0,T ],Yα)

)‖u1 − u2‖hβ([0,T ],Zα)
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+ C(R�, ‖u0‖Zα , δ1)δ0‖u1 − u2‖hβ([0,T ],Zα).

For the further estimate, we use Remark A.3 und Lemma A.4 and choose γ ∈ (0, 1)
with γ > β as the exponent from Lemma A.4. We obtain

∥
∥Gc

ρ0,1
(u1) − Gc

ρ0,2
(u2)

∥
∥
E0,T

≤ C(R�, Rc, Rh)
(
T γ−β‖u1 − u2‖E1,T + ‖ρ1 − ρ2‖hβ([0,T ],Zα)

)

+ C(R�, Rc, Rh)T γ−β
(‖u1 − u0‖E1,T + ‖ρ1 − ρ0,1‖E1,T

)‖u1 − u2‖hβ([0,T ],Zα)

+ C(R�, ‖u0‖Zα
, δ1)δ0‖u1 − u2‖hβ([0,T ],Zα)

≤ C(R�, Rc, Rh)
(
T γ−β‖u1 − u2‖E1,T + ‖ρ1 − ρ2‖E1,T

)

+ C(R�, ‖u0‖Zα
, δ1)δ0‖u1 − u2‖E1,T .

Finally, due to Proposition 3.19,

∥∥Gc
ρ0,1

(u1) − Gc
ρ0,2

(u2)
∥∥
E0,T

≤ C(R�, Rc, Rh,�h, δ1)
(
T ε‖u1 − u2‖E1,T + ‖ρ0,1 − ρ0,2‖Z2β+α

)

+ C(R�, ‖u0‖Zα , δ1)δ0‖u1 − u2‖E1,T

holds for some ε > 0. �

The preparatory work above enables us to prove the short-time existence result for
the second Eq. (2.1b).

Theorem 3.26. We suppose that Assumptions 3.9 are valid and use Notations 3.10.
Therein, choose Rc = Rc

(
R�, u0, δ1

)
> 0 sufficiently large and then, depending on

this Rc, choose Rh = Rh
(
Rc, u0, δ1

)
> 0 as large as in Theorem 3.18. Also, choose

δ0 = δ0
(
R�, u0, δ1

)
> 0 and T = T

(
R�, Rc, Rh, u0, δ0, δ1

)
> 0 sufficiently small,

but at least as small as in Theorem 3.18. Then, for any initial value ρ0 ∈ Z2β+α with
‖ρ0‖Z2β+α < δ1 and ‖ρ0‖Yα < δ0, there exists a unique solution u := uρ0 ∈ Mc

T of

{
∂t u = �ρuG

′(u) + g(u)a(ρu)H(ρu)ν� · ∇ρu u + g(u)H(ρu)
2u in E0,T

u(0) = u0 in Zα,

where ρu := ρu,ρ0 ∈ Mh
T,ρ0

is the solution from Theorem 3.18 associated with the
concentration u and the initial value ρ0.

Proof. We show the existence of a unique solution u ∈ Mc
T of

{
∂t u = �ρuG

′(u) + g(u)a(ρu)H(ρu)ν� · ∇ρu u + g(u)H(ρu)
2u in E0,T

u(0) = u0 in Zα

⇔ Lc[u] =
(
Gc

ρ0
(u)

u0

)
in E0,T × Zα. (3.5)
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Equation (3.5) is well-defined because Ac[u],Gc
ρ0

(u) ∈ E0,T holds for u ∈ Mc
T by

Corollary 3.21. Due to Lemma 3.24(i) and Proposition 3.23 it is equivalent to prove
the existence of a unique u ∈ Mc

T with

Lc[u] =
(
Gc

ρ0
(u)

u0

)
in (E0,T × Zα)c+ ⇔

u = (Lc)−1
(
Gc

ρ0
(u)

u0

)
=: Kc

ρ0
(u) in E1,T .

So, we show that Kc
ρ0

: Mc
T ⊂ E1,T → E1,T has a unique fixed point u ∈ Mc

T
using the Banach fixed-point theorem. Due to Lemma 3.24(i) and Proposition 3.23,
Kc

ρ0
(u) ∈ E1,T is well-defined for u ∈ Mc

T .

Step 1: We have to verify that Kc
ρ0

is a contraction on Mc
T . For any u1, u2 ∈ Mc

T

‖Kc
ρ0

(u1) − Kc
ρ0

(u2)‖E1,T ≤ �c‖Gc
ρ0

(u1) − Gc
ρ0

(u2)‖E0,T

≤
(
C(R�, Rc, Rh,�c,�h, δ1)T

ε + C(R�, u0, δ1,�
c)δ0

)
‖u1 − u2‖E1,T

holds by Proposition 3.23, Lemma 3.24(i) as well as Proposition 3.25. For
sufficiently small δ0 > 0 and sufficiently small T > 0,

‖Kc
ρ0

(u1) − Kc
ρ0

(u2)‖E1,T ≤ 1

4
‖u1 − u2‖E1,T

follows. Because �c and �h only depend on u0, δ0 only depends on R�, u0
and δ1 whereas T only depends on R�, Rc, Rh, u0 and δ1.

Step 2: We have to show that Kc
ρ0

: Mc
T → Mc

T is a self-mapping. Any u ∈ Mc
T

fulfills
(
Kc

ρ0
(u)
)
(0) = u0 in Zα because w := Kc

ρ0
(u) is a solution to

Lcw =
([Lcw]1

w(0)

)
=
(
Gc

ρ0
(u)

u0

)
in E0,T × Zα.

Furthermore, we have

‖Kc
ρ0

(u)‖E1,T ≤ ‖Kc
ρ0

(u0)‖E1,T + ‖Kc
ρ0

(u) − Kc
ρ0

(u0)‖E1,T

≤ �c
∥∥(Gc

ρ0
(u0), u0

)∥∥
(E0,T ×Zα)c+

+ 1

4
‖u − u0‖E1,T

≤ �cNc + 1

4

(‖u‖E1,T + 2‖u0‖Zα

) ≤ Rc

2
+ Rc

2
= Rc,

where the first summand is bounded by Proposition 3.23 and Lemma 3.24(ii)
and the second summand by the contraction-property (see step 2). The con-
stant Rc being sufficiently large thus means Rc ≥ 2�cNc and because
�c only depends on u0 and Nc only depends on R�, u0 and δ1, we have
Rc = Rc

(
R�, u0, δ1

)
. The two properties just deduced imply Kc

ρ0
(u) ∈ Mc

T
for all u ∈ Mc

T .
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Proposition 3.27. We suppose that Assumptions 3.9 are valid and use Notations 3.10.
Therein, choose Rc > 0, Rh > 0 as large and choose δ0 > 0, T > 0 as small as
in Theorem 3.26. Let ρ0 ∈ Z2β+α with ‖ρ0‖Z2β+α < δ1 and ‖ρ0‖Yα < δ0 and
let u := uρ0 ∈ Mc

T be the solution from Theorem 3.26 associated with ρ0. Then,
u(t) ∈ Z2β+α holds for all t ∈ [0, T ].
Proof. Let ρ := ρu,ρ0 ∈ Mh

T,ρ0
be the solution from Theorem 3.18 and fix t ∈ [0, T ].

We have

Ac
u(t),ρ(t)

[
u(t)

] = ∂t u(t) − (G ′′′(u)
∣∣∇ρu

∣∣2)(t) ∈ X2β+α

by Proposition A.13(i) and Corollary 3.13. Because Ac
u(t),ρ(t) : Zs → Xs generates

an analytic C0-semigroup for s ∈ {α, 2β + α} (see Proposition 3.22), Lemma A.14
yields u(t) ∈ Z2β+α . �

3.3. Analytic short-time existence

Combining the results fromSects. 3.1 and 3.2 yields our full statement on short-time
existence. We formulate it in a self-contained way, such that the reader does not have
to look up Assumptions 3.9 or Notations 3.10 that were continually used above.

Theorem 3.28. Let α ∈ (0, 1) and β ∈ (0, 1
2 ) with 2β + α /∈ N and let G ∈ C7(R)

with G ′′ > 0 and g := G − G ′ · Id > 0. Moreover, let � = θ̄ (M) be an h4+α-
immersed closed hypersurface with unit normal ν� . Let u0 ∈ h2+2β+α(M) and δ1 > 0
be arbitrary. Then, choose δ0 = δ0(�, u0, δ1) > 0 and T = T (�, u0, δ1) > 0
sufficiently small. For every function ρ0 ∈ h2+2β+α(M)with ‖ρ0‖h2+2β+α(M) < δ1 and
‖ρ0‖h1+α(M) < δ0, there exists a solution (ρ, u) with ρ, u ∈ E1,T := h1+β

([0, T ],
hα(M)

) ∩ hβ
([0, T ], h2+α(M)

)
to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tρ = g(u)a(ρ)H(ρ) in hβ
([0, T ], hα(M)

)
,

∂t u = �ρG ′(u) + g(u)a(ρ)H(ρ)ν� · ∇ρu
+g(u)H(ρ)2u in hβ

([0, T ], hα(M)
)
,

ρ(0) = ρ0 in h2+α(M),

u(0) = u0 in h2+α(M).

Furthermore, ρ(t), u(t) ∈ h2+2β+α(M) as well as ‖ρ(t)‖h1+α(M) < R� hold for all
t ∈ [0, T ] and there exists a constant R = R(�, u0, δ1) > 0 independent of ρ0 with
‖ρ‖E1,T , ‖u‖E1,T ≤ R. For any two solutions, there exists T ∈ (0, T ] such that the
solutions coincide on [0, T ].
Proof. For sufficiently small R� > 0 and sufficiently large Rc, Rh > 0, choosing
δ0 > 0 and T > 0 sufficiently small, Assumptions 3.9 and the conditions of Theorems
3.18 and 3.26 are satisfied. The existence of a solution (ρ, u) with ρ, u ∈ E1,T then
follows directly from Theorems 3.18 and 3.26. With R := max{Rc, Rh}, we have
‖ρ‖E1,T , ‖u‖E1,T ≤ R, where Rc, Rh and thus also R only depend on �, u0 and
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δ1 (see Theorems 3.18 and 3.26). The property ρ(t), u(t) ∈ h2+2β+α(M) for all
t ∈ [0, T ] is due to Propositions 3.20 and 3.27 and

‖ρ(t)‖h1+α(M) ≤ ‖ρ(t) − ρ(0)‖h1+α(M)

|t − 0|β T β + ‖ρ0‖h1+α(M) ≤ ‖ρ‖E1,T T
β + δ0 < R�

follows with Estimate (3.3).
To prove the stated uniqueness property of the solution, assume that there exists a

second solution (ρ̃, ũ) with ρ̃, ũ ∈ E1,T . Choose Rc and Rh as large as in Theorem
3.26, but at least as large such that ‖u‖E1,T , ‖ũ‖E1,T ≤ Rc and ‖ρ‖E1,T , ‖ρ̃‖E1,T ≤ Rh

hold. Then, choose T > 0 as small as in Theorem 3.26 but at least as small such that
T ≤ T holds. As δ0 is independent of Rc and Rh , the conditions of Theorems 3.18
and 3.26 are satisfied. We hence obtain a unique solution in

MT := {(ρ̄, ū) ∈ E1,T × E1,T

∣∣ ‖ρ̄‖E1,T
≤ Rh and ‖ū‖E1,T

≤ Rc}.

As we have (ρ, u), (ρ̃, ũ) ∈ MT , the two solutions coincide on [0, T ]. �

If we could apply a continuation argument to the two solutions (ρ, u) and (ρ̃, ũ)

from the proof above, we could show that they coincide on the full time interval [0, T ]
and thus obtain uniqueness of the solution. For this, we would need to ensure that for
a solution (ρ, u) at any time t , the pair

(
ρ(t), u(t)

)
fulfills the conditions for the initial

values in Theorem 3.28. In particular, ρ(t) needs to be bounded by δ0
(
u(t)

)
in the

appropriate norm. To achieve this, the dependence of δ0 on u0 should be controlled in
a uniform way.
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A. Appendix

A.1. Basic properties of Hölder spaces

In this section, we gather some basic properties of little Hölder spaces. For their
proofs, we refer to [4, section 2.2]. Via localization, the results transfer to embedded
closed hypersurfaces.

Lemma A.1. (Hölder spaces as continuous interpolation spaces) Let m ∈ N≥1 and
θ ∈ (0, 1) with θm /∈ N and let W ⊂ R

d be an open subset with regular boundary
(see [12, section 0.1, pages 2 and 3] for an explicit definition). Then,

(
C0
b (W ),Cm

b (W )
)
θ

= hθm(W )

holdswith equivalent norms,where (·, ·)θ denotes the continuous interpolation functor.
Lemma A.2. (Embeddings of Hölder spaces) Let W ⊂ R

d be an open, bounded and
convex subset. For any s1, s2 ∈ R>0 with s1 ≤ s2,

hs2b (W , X) ↪→ hs1b (W , X)

holds. For X = R
n, the statement also holds if W ⊂ R

d is an open subset with regular
boundary.

As a special case of Lemma A.2, the following remark holds.

Remark A.3. Let T ∈ (0, 1] and letα1, α2 ∈ (0, 1)withα1 < α2.We have hα2([0, T ],
X) ↪→ hα1([0, T ], X) with

‖ f ‖hα1 ([0,T ],X) ≤ 2T α2−α1‖ f ‖hα2 ([0,T ],X) + ‖ f (0)‖X
for all f ∈ hα2

([0, T ], X).
Lemma A.4. (Embeddings of Hölder spaces in time and space) Let T ∈ (0,∞) and
let α, β ∈ (0, 1). Furthermore, let M ⊂ R

d+1 be a d-dimensional h2+α-embedded
closed hypersurface. Define X := hα(M), Y := h1+α(M) and Z := h2+α(M). Then,
there exists γ ∈ (0, 1) with γ > β such that

h1+β([0, T ], X) ∩ hβ([0, T ], Z) ↪→ hγ ([0, T ],Y )

is a continuous embedding.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Lemma A.5. (Compact embeddings of Hölder spaces) Let W ⊂ R
d be an open,

bounded and convex subset. For every s1, s2 ∈ R>0\N with s1 < s2,

hs2(W ) ↪→ hs1(W )

is a compact embedding.

Proposition A.6. (Pointwise product in Hölder spaces) Let W ⊂ R
d be an open,

bounded and convex subset and let s ∈ R≥0. Furthermore, let X1, X2, X be Banach
spaces with a R-bilinear operation · : X1 × X2 → X such that ‖u1 · u2‖X �
‖u1‖X1‖u2‖X2 holds for all u1 ∈ X1, u2 ∈ X2.
Then, with pointwise multiplication, f · g ∈ hsb(W , X) with

‖ f · g‖hs (W ,X) ≤ C‖ f ‖hs (W ,X1)
‖g‖hs (W ,X2)

holds for all f ∈ hsb(W , X1), g ∈ hsb(W , X2). For X1 = X2 = R
n and X = R, the

statement also holds if W ⊂ R
d is an open subset with regular boundary.

Proposition A.7. (Composition of Hölder Functions) Let W1 ⊂ R
d1 , W2 ⊂ R

d2

be open, bounded and convex subsets, let X be a Banach space and let s ∈ R≥0.
Furthermore, let ϕ ∈ hsb(W1, R

d2) such that ϕ(W1) ⊂ W2 holds and ϕ : W1 → R
d2

is Lipschitz continuous, i.e., there exists a constant L ≥ 0 with

sup
x,y∈W1
x �=y

|ϕ(x) − ϕ(y)|
|x − y| ≤ L .

Then, if F ∈ hsb(W2, X), we have F ◦ ϕ ∈ hsb(W1, X). For X = R
n, the statement

also holds if W1 ⊂ R
d1 , W2 ⊂ R

d2 are open subsets with regular boundaries.

A.2. Composition operators of Hölder regular functions

In the following, let W ⊂ R
d be an open, bounded and convex subset, let s ∈ R≥0

and let X,Y, Z be Banach spaces.

Lemma A.8. Let g : W → L(Y, Z) and define G(v) : W → Z ,
(
G[v])(x) :=

g(x)
[
v(x)

]
for any function v : W → Y . If g ∈ hs(W ,L(Y, Z)), then G ∈

L(hs(W ,Y ), hs(W , Z)
)
holds with

‖G‖L(hs (W ,Y ),hs (W ,Z)) � ‖g‖hs (W ,L(Y,Z)).

Proof. The result is a consequence of Proposition A.6. �

Proposition A.9. Let U ⊂ Y be an open subset and K ⊂ U a convex subset. Fur-
thermore, let f : U → Z and define F(u) : W → Z ,

(
F(u)

)
(x) := f

(
u(x)

)
for any

function u : W → U. Then the following hold:



14 Page 40 of 46 H. Abels et al. J. Evol. Equ.

(i) If f ∈ C�s�+1(U, Z) with f ∈ C�s�+1
b (K , Z), then we have F(u) ∈ hs(W , Z)

for all u ∈ hs(W , K ). In addition, for any R > 0 there exists a C(R) > 0 such
that

‖F(u)‖hs (W ,Z) ≤ C(R)

holds for all u ∈ hs(W , K ) with ‖u‖hs (W ,Y ) ≤ R.

(ii) If f ∈ C�s�+2(U, Z) with f ∈ C�s�+2
b (K , Z), then F ∈ C0

(
hs(W , K ), hs(W ,

Z)
)
. In particular, for any R > 0 there exists a C(R) > 0 such that we have

‖F(u1) − F(u2)‖hs (W ,Z) ≤ C(R)‖u1 − u2‖hs (W ,Y )

for all u1, u2 ∈ hs(W , K ) with ‖u j‖hs (W ,Y ) ≤ R. Moreover, F ∈ C0
b

(B, hs(W ,

Z)
)
holds for all subsets B ⊂ hs(W , K ) that are bounded in hs(W ,Y ).

(iii) If f ∈ Ck+�s�+2(U, Z) with f ∈ Ck+�s�+2
b (K , Z), then F ∈ Ck

(
hs(W , V ),

hs(W , Z)
)
and F ∈ Ck

b

(B, hs(W , Z)
)
hold for any k ∈ N≥0, any open subset

V ⊂ K and any bounded subset B ⊂ hs(W , V ).

Proof. First, we prove the statements (i) and (ii) for s ∈ [0, 1), i.e. �s� = 0: Due to
the mean value theorem and the convexity of K , we have

‖F(u)‖hs (W ,Z) ≤ ‖ f ‖C1(K ,Z)

(
1 + ‖u‖hs (W ,Y )

)
and

‖F(u1) − F(u2)‖hs (W ,Z) ≤ ‖ f ‖C2(K ,Z)(1 + R)‖u1 − u2‖hs (W ,Y )

for all u ∈ hs(W , K ) and u1, u2 ∈ hs(W , K )with ‖u j‖hs (W ,Y ) ≤ R. Boundedness of

the function F : B → hs(W , Z) for a bounded subset B ⊂ hs(W , K ) follows directly
from the estimate in (i).
The general statements (i) and (ii) for arbitrary s ∈ R≥0 follow by mathematical

induction on �s�, using Lemma A.2 and the fact that differentiability of f and u
implies differentiability of F(u) and we have ∂xi

(
F(u)

) = A(u)
(
∂xi u

)
with A(v) :

W → L(Y, Z),
(
A(v)

)
(x) := Df

(
v(x)

)
for any function v : W → U . Applying the

induction hypothesis and Lemma A.8 on A conclude the inductive step.
We show the statement (iii) using mathematical induction: Assume that the claim is

satisfied for afixed k ∈ N0 and choose a function f ∈ Ck+�s�+3(U, Z)∩Ck+�s�+3
b (K , Z)

as well as an open subset V ⊂ K and a bounded subset B ⊂ hs(W , V ). Define
A(u) : W → L(Y, Z),

(
A(u)

)
(x) := Df

(
u(x)

)
. The induction hypothesis together

with Lemma A.8 yields

F ∈ Ck(hs(W , V ), hs(W , Z)
) ∩ Ck

b

(B, hs(W , Z)
)
and

A ∈ Ck(hs(W , V ),L(hs(W ,Y ), hs(W , Z)
)) ∩ Ck

b

(B,L(hs(W ,Y ), hs(W , Z)
))

.

It remains to show that F is Fréchet-differentiable with DF = A.
Fix u0 ∈ hs(W , V ). Due to f ∈ C�s�+3

b (V, Z), the statement of (i) yields D2 f (u0+
θh) ∈ hs

(
W ,L(Y,L(Y, Z))

)
with ‖D2 f (u0 + θh)‖hs (W ,L(Y,L(Y,Z))) ≤ C(u0) for all
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θ ∈ [0, 1] and h ∈ hs(W ,Y ) with ‖h‖hs (W ,Y ) sufficiently small. A Taylor expansion,
the triangle inequality for integrals and Lemma A.8 imply

∥∥F(u0 + h) − F(u0) − A(u0)h
∥∥
hs (W ,Z)

≤
∫ 1

0
(1 − θ)‖D2 f (u0 + θh)‖hs (W ,L(Y,L(Y,Z)))‖h‖2

hs (W ,Y )
dθ ≤ C(u0)‖h‖2

hs (W ,Y )
.

We derive two corollaries from this main result: The first one reduces to the case of
a compact subset K ⊂ U and the second one deals with a finite dimensional setting.

Corollary A.10. Let U ⊂ Y be an open subset and K ⊂ U a compact and convex
subset. Furthermore, let f : U → Z and define F(u) : W → Z ,

(
F(u)

)
(x) :=

f
(
u(x)

)
for any function u : W → U. Then the following hold:

(i) If f ∈ C�s�+1(U, Z), then F(u) ∈ hs(W , Z) for all u ∈ hs(W , K ). Moreover,
for any R > 0 there exists a constant C(K , R) > 0 such that

‖F(u)‖hs (W ,Z) ≤ C(K , R)

holds for all u ∈ hs(W , K ) with ‖u‖hs (W ,Y ) ≤ R.

(ii) If f ∈ C�s�+2(U, Z), then F ∈ C0
(
hs(W , K ), hs(W , Z)

) ∩ C0
b

(B, hs(W , Z)
)

holds for all bounded subsets B ⊂ hs(W , K ). Moreover, for any R > 0 there
exists a constant C(K , R) > 0 such that

‖F(u1) − F(u2)‖hs (W ,Z) ≤ C(K , R)‖u1 − u2‖hs (W ,Y )

holds for all u1, u2 ∈ hs(W , K ) with ‖u j‖hs (W ,Y ) ≤ R.

(iii) If f ∈ Ck+�s�+2(U, Z), then F ∈ Ck
(
hs(W , V ), hs(W , Z)

)∩Ck
b

(B, hs(W , Z)

holds for any k ∈ N≥0, any open subset V ⊂ K and any bounded subset
B ⊂ hs(W , V ).

Proof. The statements (i) and (ii) follow directly from Proposition A.9 using the com-
pactness of K . Therefore, we only prove the statement (iii).
As K is convex with V ⊂ K , also the convex hull conv V ⊂ K of V is a sub-
set of K . Its interior Ṽ := (conv V )◦ therefore is an open and convex set with
Ṽ ⊂ K . We then have f ∈ Ck+�s�+2(U, Z) and K ⊂ U compact, Ṽ ⊂ K . Thus,
f ∈ Ck+�s�+2

b (Ṽ , Z) holds with the open and convex subset Ṽ ⊂ Y . Proposition
A.9(iii) yields F ∈ Ck

(
hs(W , Ṽ ), hs(W , Z)

)
and F ∈ Ck

b

(B, hs(W , Z)
)
for all

bounded subsets B ⊂ hs(W , Ṽ ). As V ⊂ Y is open, V ⊂ Ṽ holds and therefore
F ∈ Ck

(
hs(W , V ), hs(W , Z)

)
and F ∈ Ck

b

(B, hs(W , Z)
)
for all bounded subsets

B ⊂ hs(W , V ) follows. �

Corollary A.11. Let f : U → R
N for an open subset U ⊂ R

M and define F(u) :
W → R

N ,
(
F(u)

)
(x) := f

(
u(x)

)
for any function u : W → U. Then the following

hold:

(i) If f ∈ C�s�+1(U, R
N ), then F(u) ∈ hs(W , R

N ) for all u ∈ hs(W ,U ).
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(ii) If f ∈ Ck+�s�+2(U, R
N ), then F ∈ Ck

(
hs(W ,U ), hs(W , R

N )
)∩Ck

b

(B, hs(W ,

R
N )
)
holds for any k ∈ N≥0 and any bounded subset B ⊂ hs(W ,A) with

A ⊂ R
M closed and A ⊂ U.

Proof. For U = R
M , the statements follow directly from Corollary A.10, as any

bounded set in R
M can easily be enclosed in a compact set, that still remains a subset

of U . Now, assume U � R
M . For any f ∈ Cl(U, R

N ) and any compact subset
K ⊂ U , choose a cut-off function ξ ∈ C∞(Rm, R) with ξ ≡ 1 on K , ξ ≡ 0 on
R

M\U and 0 ≤ ξ ≤ 1. The results for f̃ := ξ f ∈ Cl(RM , R
N ) from the first part of

the proof then can be transferred to f . �

Remark A.12. (Hölder Regularity for the Inverse of a Matrix) Let W ⊂ R
d be an

open, bounded and convex subset and let s ∈ R≥0. The set of invertible matrices

U := {A ∈ R
n×n | det A �= 0}

is an open subset ofRn×n . For thematrix inversionmapping f : U → R
n×n, f (A) :=

A−1, we have f ∈ C1(U, R
n×n) with

Df (A)[H ] = − f (A) · H · f (A)

for all A ∈ U and H ∈ R
n×n . Thus, we have Df ∈ C1(U,L(Rn×n, R

n×n)) (see
e.g. [19, section 2 Satz 2.7(ii)]) and then recursively, f ∈ C∞(U, R

n×n) follows.
Corollary A.11(ii) thus implies

(·)−1 ∈ C∞(hs(W ,U ), hs(W , R
n×n)

) ∩ C∞
b

(B, hs(W , R
n×n)

)

for the inversion (·)−1 of matrices with B ⊂ hs(W ,A) an arbitrary bounded subset
and A ⊂ R

n×n closed with A ⊂ U . In particular, for any A ∈ hs(W , R
n×n) with

det A �= 0 on W , also A−1 ∈ hs(W , R
n×n) holds.

A.3. Results using generators of semigroups

In this section, we state some results using the theory of semigroups. Again, we
refer to [4, section 2.3.4] for the proofs.

Proposition A.13. (Maximal regularity) Let A : D(A) ⊂ X → X generate an
analytic C0-semigroup in a Banach space X. Furthermore, let β ∈ (0, 1) and T ∈
(0, 1]. We have
(i) h1+β([0, T ], X) ∩ hβ

([0, T ],D(A)
)

↪→ C1
([0, T ],DA(β)

)
and

(ii) LT : h1+β([0, T ], X)∩hβ
([0, T ],D(A)

)→ (
hβ([0, T ], X)×D(A)

)
+, LT [ρ]

:= (∂tρ−Aρ
ρ(0)

)
is bijective with sup0<T≤1 ‖L−1

T ‖L < ∞.

Lemma A.14. (Improved regularity for preimages) Let s1, s2 ∈ (0, 2)\{1} with s1 <

s2. Let M ⊂ R
d+1 beanh2+s2 -embedded closedhypersurfaceand let A : h2+si (M) →

hsi (M) generate an analytic C0-semigroup for both i ∈ {1, 2}. Then, any v ∈
h2+s1(M) with Av ∈ hs2(M) already fulfills v ∈ h2+s2(M).
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Definition A.15. ((Uniform) ellipticity) Let � ⊂ R
d be an arbitrary subset. A matrix

valued function A : � → R
n×n is called

(i) elliptic (or positive definite on �), if

ξ�A(x)ξ > 0

holds for every x ∈ � and ξ ∈ R
n\{0} and

(ii) uniformly elliptic, if there exists C > 0 so that

ξ�A(x)ξ ≥ C |ξ |2

holds for every x ∈ � and ξ ∈ R
n .

If � is compact and A is continuous on �, the two properties coincide.

Proposition A.16. (Differential operators as generators) Let s ∈ (0, 2)\{1} and let
M ⊂ R

d+1 beanh2+s -embedded closedhypersurface.Moreover, let A ∈ L(h2+s(M),

hs(M)
)
be a symmetric, elliptic differential operator of second order, i.e. given a local

parameterization (γ,W ) of M,

Au ◦ γ = a : D2(u ◦ γ ) + b · ∇(u ◦ γ ) + c(u ◦ γ )

holds for every u ∈ h2+s(M), with a ∈ hs(W , R
d×d), b ∈ hs(W , R

d) and c ∈
hs(W , R) such that the matrix a is symmetric and positive definite on W. Then,

A : D(A) := h2+s(M) ⊂ hs(M) → hs(M)

generates an analytic C0-semigroup.

A.4. Results for hypersurfaces

We show well-definedness of the parameterization of evolving immersed hypersur-
faces used in Definition 2.7.

Lemma A.17. Let� = θ(M) be a C1-immersed closed hypersurface. Then, we have

inf
p∈M inf

v∈TpM,
|v|=1

∣∣dpθ [v]∣∣ > 0.

Proof. Let d := dim M and choose a local parameterization (γ,W ) of M . In partic-
ular, γ ∈ C1(W , R

d+1) is an embedding with γ (W ) ⊂ M . Set

v(α, x) :=
∑

i α
i∂iγ (x)

∣∣∑
i α

i∂iγ (x)
∣∣

for α ∈ R
d\{0} and x ∈ W . Then v(α, x) ∈ Tγ (x)M holds with |v(α, x)| = 1 for

every α ∈ R
d\{0} and x ∈ W . Moreover, for β := α

|α| , we have

v(β, x) =
∑

i β
i∂iγ (x)

∣∣∑
i β

i∂iγ (x)
∣∣ =

1
|α|
∑

i α
i∂iγ (x)

∣∣∣ 1
|α|
∑

i α
i∂iγ (x)

∣∣∣
=
∑

i α
i∂iγ (x)

∣∣∑
i α

i∂iγ (x)
∣∣ = v(α, x)
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for every x ∈ W . So, with S := {α ∈ R
d , |α| = 1},

{
v ∈ Tγ (x)M, |v| = 1

} = {v(α, x)
∣∣α ∈ S}

and in particular

inf
v∈Tγ (x)M,

|v|=1

∣∣dγ (x)θ [v]∣∣ = inf
α∈S

∣∣dγ (x)θ
[
v(α, x)

]∣∣

follows for every x ∈ W . We have

∣∣dγ (x)θ
[
v(α, x)

]∣∣ =
∣∣∣∣
∣
dγ (x)θ

[ ∑
i α

i∂iγ (x)
∣
∣∑

i α
i∂iγ (x)

∣
∣

]∣∣∣∣
∣
=
∣∣∣∣
∣

∑
i α

idγ (x)θ [∂iγ (x)]
∣
∣∑

i α
i∂iγ (x)

∣
∣

∣∣∣∣
∣

=
∣∣∑

i α
i∂i (θ ◦ γ )(x)

∣∣
∣∣∑

i α
i∂iγ (x)

∣∣

for all α ∈ S and x ∈ W . Due to θ ∈ C1(M, R
d+1), γ ∈ C1(W , R

d+1) with
γ (W ) ⊂ M and ∂iγ �= 0 on W for all i = 1, . . . , d by the immersion property of γ ,
thus

(α, x) �→ ∣∣dγ (x)θ
[
v(α, x)

]∣∣ ∈ C0(S × W )

follows.Because θ is an immersion,
∣∣dγ (x)θ

[
v(α, x)

]∣∣ > 0 holds for all (α, x) ∈ S×W
and then compactness of S × W implies

inf
x∈W

inf
v∈Tγ (x)M,

|v|=1

∣∣dγ (x)θ [v]∣∣ = inf
x∈W

inf
α∈S

∣∣dγ (x)θ
[
v(α, x)

]∣∣ > 0.

Finally, as M is compact, it can be covered by finitely many local parameterizations
(γ,W ) and therefore the claim follows. �

Lemma A.18. Let � = θ̄ (M) ⊂ R
d+1 be a C2-immersed closed hypersurface with

unit normal ν� . Furthermore, let ρ ∈ C1(M, R) with ‖ρ‖C0(M,R) sufficiently small.
Then,

θρ : M → R
d+1, θρ(p) := θ̄ (p) + ρ(p)ν�(p)

is an immersion.

Proof. We have ν� ∈ C1(M, R
d+1) and thus θρ = θ̄ + ρν� ∈ C1(M, R

d+1). For
any local parameterization (γ,W ) of M , the domain W ⊂ R

d is compact and hence

S(γ,W ) := sup
x∈W

∥∥dγ (x)ν�

∥∥L(Tγ (x)M,Rd+1)

� sup
x∈W

max
i=1,...,d

∣∣dγ (x)ν�

(
∂iγ (x)

)∣∣

|∂iγ (x)| = sup
x∈W

max
i=1,...,d

|∂i (ν� ◦ γ )(x)|
|∂iγ (x)| < ∞
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holds. Because M is compact, it can be covered by finitely many local parameteriza-
tions (γl ,Wl)l=1,...,L and therefore

S := sup
p∈M

∥∥dpν�

∥∥L(TpM,Rd+1)
≤ max

l=1,...,L
S(γl ,Wl ) < ∞

follows. As the mean curvature H = −div�ν� is not the zero function on closed
hypersurfaces, S �= 0 holds. Further, Lemma A.17 implies

I := inf
p∈M inf

v∈TpM,
|v|=1

∣∣dp θ̄ [v]∣∣ > 0.

Hence,

R := I

2S
> 0

is well-defined. Assume ‖ρ‖C0(M) ≤ R. For all p ∈ M and v ∈ TpM

dp θ̄ [v], dpν�[v] ∈ Tp� and ν�(p) ⊥ Tp� (A.1)

hold. Due to ρ(p), dpρ[v] ∈ R, we thus have

∣∣dpθρ[v]∣∣2 = ∣∣dp θ̄ [v] + dpρ[v]ν�(p) + ρ(p)dpν�[v]∣∣2

= ∣∣dp θ̄ [v] + ρ(p)dpν�[v]∣∣2 + ∣∣dpρ[v]∣∣2

≥ ∣∣dp θ̄ [v] + ρ(p)dpν�[v]∣∣2

and then
∣∣dpθρ[v]∣∣ ≥ ∣∣dp θ̄ [v] + ρ(p)dpν�[v]∣∣

≥ ∣∣dp θ̄ [v]∣∣− R
∣∣dpν�[v]∣∣ ≥ I − RS = I

2
> 0

follows for |v| = 1. In particular, dpθρ : TpM → R
d+1 is injective and therefore

θρ : M → R
d+1 is an immersion. �
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