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Zero-contact angle solutions to stochastic thin-film equations
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Abstract. We establish existence of nonnegative martingale solutions to stochastic thin-film equations with
quadratic mobility for compactly supported initial data under Stratonovich noise. Based on so-called α-
entropy estimates, we show that almost surely these solutions are classically differentiable in space almost
everywhere in time and that their derivative attains the value zero at the boundary of the solution’s support.
From a physics perspective, this means that they exhibit a zero-contact angle at the three-phase contact
line between liquid, solid, and ambient fluid. These α-entropy estimates are first derived for almost surely
strictly positive solutions to a family of stochastic thin-film equations augmented by second-order linear
diffusion terms. Using Itô’s formula together with stopping time arguments, Jakubowski’s modification
of the Skorokhod theorem, and martingale identification techniques, the passage to the limit of vanishing
regularization terms gives the desired existence result.

1. Introduction

In this paper, we are concerned with existence results of martingale solutions to
stochastic thin-film equations of the generic form

du = −(m(u)uxxx )xdt + (
√
m(u) ◦ dW )x (1.1)

subject to periodic boundary conditions. The deterministic version of (1.1) models
the solely surface-tension driven evolution of the height u of a thin viscous liquid
film—the noise term is to capture effects of thermal fluctuations.
Gess and Gnann have been the first to consider stochastic thin-film equations with

Stratonovich noise. In [18], they proved the global-in-time existence of nonnegative
martingale solutions for the choice m(u) = u2. To establish this result, they took
advantage of the regularizing effect of Stratonovich noise compared to Itô noise. In
fact, for the Itô version of (1.1), i.e.,

du = −(m(u)uxxx )xdt + (
√
m(u)dW )x , (1.2)
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no integral estimates are known. In contrast, the Stratonovich version (1.1) permits to
derive stochastic versions of the energy estimate

1

2

ˆ
O

|ux (·, t)|2 dx +
ˆ t

0

ˆ
O
u2u2xxx dxds ≤ 1

2

ˆ
O

|(u0)x |2 dx (1.3)

and of the so-called entropy estimate
ˆ
O
G(u(·, t))dx +

ˆ t

0

ˆ
O
u2xx dxds ≤

ˆ
O
G(u0)dx , (1.4)

where G(·) is a second primitive of the reciprocal mobility m−1(s). Already from the
deterministic setting, it is well-known that weak solutions to the free-boundary prob-
lem associated with the thin-film equation are not unique in general, unless additional
conditions are imposed at the free boundary, i.e., the boundary of supp[u(·, t) > 0].
In a series of papers [19,21–25] short-time uniqueness results were established for
classical solutions of thin-film equations exhibiting a zero-contact angle at the free
boundary.
In this spirit, it is the aim of the present paper to construct nonnegative martingale

solutions ũ to Eq. (1.1) under the choice m(u) = u2 which are P̃-almost surely and
almost everywhere in time continuously differentiable in space. Hence, those spatial
derivatives of ũ attain the value zero in roots of ũ. The vanishing of these derivatives
comes as the consequence of additional regularity results. While the solutions con-
structed by Gess and Gnann in [18] for compactly supported initial data do not have
the regularity stipulated by the entropy estimate (1.4) (note that

´
O G(u0)dx = +∞

in this case) and therefore do not necessarily exhibit zero-contact angles, the solu-
tions presented here are more regular. In fact, they satisfy a stochastic version of a
variant of (1.4), the so-called α-entropy estimate. This α-entropy estimate provides
H2-regularity of appropriate powers of the solutions ũ without requiring initial data
to be zero only on sets of Lebesgue measure zero. For an overview on α-entropy
estimates and other integral estimates for the thin-film equation in the deterministic
setting, we refer to [3,5,8,28] and the references therein.
At this point, it is worth mentioning that in the analysis of the qualitative behavior of

deterministic thin-film equations, weighted versions of α-entropy estimates become
important. They have been used, e.g., to obtain optimal results on the propagation of
the free boundary of solutions or on the regularity at the free boundary.
For an overview of corresponding results, we cite [6,13,27] for finite speed of prop-

agation and [9,14,20,29] for the occurrence and scaling of waiting time phenomena.
In the stochastic setting, the techniques of [20] have been generalized by [15,26] to
provide sufficient criteria for the occurrence of waiting time phenomena and for qual-
itative results on finite speed of propagation for stochastic p-Laplace and stochastic
porous-media equations. For finite speed of propagation for the latter equations, we
also mention [2,17] which use different techniques.
Before giving the outline of the present paper, we report on variants of (1.1) which

are meaningful for physical and/or for analytical reasons as they may set up auxiliary
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problems to construct the more regular solutions to be considered in this paper. First,
we mention (1.1) with the generic mobility m(u) = un where n > 0. The exponent
n depends on the flow boundary conditions at the liquid-solid interface—a no-slip
boundary conditions entails n = 3. Recently, Dareiotis, Gess, Gnann, and the first
author of this paper established the existence of martingale solutions [10] for (1.1)
with m(u) = un in the parameter regime n ∈ [8/3, 4) which covers in particular the
no-slip case. Note that Davidovitch et al. [11] who derived (1.1) with Itô- instead of
Stratonovich noise via the dissipation-fluctuation theorem conjectured that noise en-
hances spreading, changing in particular characteristic spreading laws on intermediate
time-scales in expectation. Parallel in time, Grün, Mecke, and Rauscher [30] studied
the influence of thermal fluctuations on the dewetting of unstable liquid films. Based
on lubrication approximation and Fokker-Planck-type arguments, they came up with
an equation of the generic form

du = −(m(u)(uxx − F′(u))x )xdt + (
√
m(u)dW )x , (1.5)

where the effective interface potential F(u) models van der Waals-interactions—a
typical example is the potential F(u) := αu−p − βu−q with p > q > 0, α > 0, and
β ≥ 0. For the case m(u) = u2, the existence of a.s. positive martingale solutions
has been established in [16]—the technically much more involved case of two space
dimensions has been studied in [38]—for a very recent result in the spirit of [18] which
also provides α-entropy estimates, see [39].
The outline of our paper is as follows. In contrast to the Trotter–Kato scheme, where

the stochastic and the deterministic parts of the equation are split and which was used
in [18], we will follow an approximation ansatz based on positive solutions to

duε = −(m(uε)(uε
xx − εF ′(uε))x )xdt + (

√
m(uε) ◦ dW )x , (1.6)

where ε ∈ (0, 1) and F(u) := u−p, p > 2. We take advantage of the fact that under
natural assumptions on the coloured noise W (x, t) = ∑

k∈Z λkgk(x)βk(t), such that

– gk(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
2
L sin( 2πkxL ) k > 0,

1√
L

k = 0,
√

2
L cos( 2πkxL ) k < 0,

– βk(·), k ∈ Z, are i.i.d. Brownian motions on R,
– λk ∈ R

+
0 , k ∈ Z, appropriate damping parameters,

(see Sect. 2 for the precise assumptions), existence of a.s. positivemartingale solutions
to (1.6) comes as a consequence of the existence result in [16].

After formulating precise assumptions in Sect. 2, especially on initial data and the
noise, we present our main results in Sect. 3. The existence of solutions to (1.6) is the
topic of Sect. 4. Our strategy is the following. Since we are dealing with Stratonovich
noise in (1.6), we may rewrite it in Itô form with the corresponding correction term
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added. The equation obtained can be written in the form

duε = −
(
(uε)2

(
uε
xx − �′

ε

(
uε
))

x

)

x
dt + (

uεdW
)
x (1.7)

with

�ε(u) :=
⎧
⎨

⎩
εu−p + 1

2

(
λ20
L +∑∞

k=1
2λ2k
L

)
(u − log(u)) if u > 0

+∞ if u ≤ 0,
(1.8)

for more details see (2.6), (2.7), and (4.1). Note that (1.7) is of the generic form (1.5).
Thatway, the equation satisfies—with a grain of salt—the assumptions of the existence
result, Theorem 3.2, in [16]. For a comparison of the growth condition in [16] and that
one of the present paper, we refer to Sect. 4, in particular to Remark 4.1.

Since solutions in [16] were constructed under the assumption of positive initial
data, we shift nonnegative initial data with potentially compact support by a suitable
power of ε such that we recover the nonnegative initial data in the limit, cf. (H2ε) in
Sect. 4. This is sufficient to establish in Theorem 4.3 existence results for a family of
approximate P̃-almost surely strictly positive solutions uε.

The key result for the passage to the limit ε → 0 is a combined α-entropy-energy
estimate in the spirit of the classical α-entropy estimates in [3] (see also [5]) and the
energy estimates in [4] both translated to the stochastic setting. The derivation of this
estimate is the content of the fifth section. We first introduce suitable stopping times
and cut-off versions of our approximate solutions, cf. (5.4) and (5.5), which allow to
derive a first version of an α-entropy-energy estimate in Theorem 5.2.

Itô’s formula, which is the main tool for the proof, is applied to the energy
´
O u2xdx

and the α-entropy
´
O

1
α(α+1)u

α+1 − 1
α
u + 1

α+1dx , see “Appendix B” for the rigorous
justification. Here, the advantages of the usage of the Stratonovich integral become
apparent again. Critical terms occurring in Itô’s formula are controlled by the S-
tratonovich correction term—this way guaranteeing the estimate to be ε-independent.
The passage to the limit ε → 0 is discussed in Sect. 6. We use the aforementioned

α-energy-entropy estimate to apply Jakubowski’s theorem, cf. [33]. Based on this, we
follow standard arguments encountered in the analysis of PDE’s for the convergence
of the deterministic terms and make use of the ideas introduced in [7,31] to identify
the stochastic integral in Lemma 6.16. The effective interface potential vanishes in the
limit, cf. Lemma 6.11.
There are two appendices. In “Appendix A,” the equivalence of the different for-

mulations of (1.6) is made explicit. More details on the application of Itô’s formula
are provided in “Appendix B”.

Notation: Besides the standard notation of pde theory and stochastic analysis, we
use the following. By C , we denote a generic constant. Throughout the paper, we
will use ε as an approximation parameter, subsequences will not be renamed, if it
causes no confusion. We consider the spatial domain O = [0, L] and define OT :=
(0, L) × (0, T ) for numbers L , T > 0. For a function f on OT , [ f > 0] is the
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set {(x, t) ∈ OT ; f (x, t) > 0}. Subspaces consisting of periodic functions (w.r.t.
space) are marked by the subscript ‘per’ on the corresponding function space. For
γ, σ ∈ (0, 1], we denote by Cγ,σ (ŌT ) the space of Hölder-continuous functions on
ŌT with Hölder exponents γ and σ in the spatial and temporal variables, respectively.
The minimum of a and b is denoted by a∧b. We write 〈X〉 for the quadratic variation
process of a stochastic process X and 〈X,Y 〉 for the quadratic covariation process of
X and another process Y . Moreover, for two Hilbert spacesU and V , L2(U, V ) is the
set of Hilbert–Schmidt operators fromU to V . Note that the dual pairing on a Banach
space X is denoted by X ′ 〈x ′, x〉X for x ′ ∈ X ′ and x ∈ X .

2. Preliminaries

Let us fix some basic assumptions. We are dealing with the stochastic thin-film
equation with Stratonovich noise

du = −(m(u)uxxx )xdt + (
√
m(u) ◦ dW )x (2.1)

on OT subject to periodic boundary conditions and initial data specified below. For
the noise we consider a Q-Wiener process defined by the operator

Qgk = λ2kgk ∀k ∈ Z. (2.2)

Here, the functions gk form a basis of L2(O) consisting of eigenfunctions of the
Laplacian on O subject to periodic boundary conditions.

gk(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
2
L sin( 2πkxL ) k > 0

1√
L

k = 0
√

2
L cos( 2πkxL ) k < 0

(2.3)

The noise is coloured by the growth condition on the numbers (λk)k∈Z, cf. (H3) below.
We can now give precise assumptions for our main result.

(H1) The mobility is given by m(u) = u2.
(H2) Let 
0 be a probability measure on H1

per(O) equipped with the Borel σ -algebra
which is supported on the subset of nonnegative functions such that there is a
positive constant C with the property that

esssupv∈supp
0

{ˆ
O

1

2
|vx |2 dx +

(ˆ
O

vdx

)}
≤ C .

(H3) Let (�,F , (Ft )t≥0,P) be a stochastic basis with a complete right-continuous
filtration such that



64 Page 6 of 37 G. Grün and L. Klein J. Evol. Equ.

– W is a Q-Wiener process on � adapted to (Ft )t≥0 which admits a decompo-
sition of the formW = ∑

k∈Z λkgkβk for a sequence of independent standard
Brownian motions βk and nonnegative numbers (λk)k∈Z with

λ−k = λk (2.4)

for all k ∈ N,
– the noise is coloured in the sense that

∑

k∈Z
k4λ2k < ∞ , (2.5)

– there exists a F0-measurable random variable u0 such that 
0 = P ◦ u−1
0 .

Based on these hypotheses, we may rewrite (2.1) in two different ways.

du = −(u2(uxx − S ′(u))x )xdt + (udW )x (2.6)

with S(u) := CStrat (u − log u) and CStrat := 1
2

(
λ20
L +∑∞

k=1
2λ2k
L

)
. Note that this is

equivalent to

du = (−(u2uxxx )x + CStrat uxx )dt + (udW )x . (2.7)

For a justification, we refer to “Appendix A”.

3. Main results

In this section,wemake our results on the existence of zero-contact anglemartingale
solutions precise. We begin with the existence result.

Theorem 3.1. Let (H1), (H2), and (H3) be satisfied and let T > 0 be given. Then
there exist a stochastic basis (�̃, F̃ , (F̃t )t≥0, P̃) with a complete, right-continuous
filtration, an F̃t -adapted Q-Wiener process W̃ = ∑

k∈Z λkgk β̃k , a continuous L2(O)-
valued F̃t -adapted process ũ ∈ L2(�̃; L2(0, T ;W 1,3

per (O)))∩L2(�̃;C γ̃ ,σ̃ (ŌT )), γ̃ <

1/2, σ̃ < 1/8, and ũ0 ∈ L2(�̃; H1
per(O)) such that the following holds:

1. ũ and ũ0 are P̃-almost surely nonnegative,
2. for t ∈ [0, T ] and all φ ∈ H3

per(O)

ˆ
O

(ũ(t) − ũ0)φdx =
ˆ ˆ

[ũ>0]
ũ3xφxdxds + 3

ˆ t

0

ˆ
O
ũũ2xφxx dxds

+
ˆ t

0

ˆ
O
ũ2ũxφxxx dxds

− 1

2

ˆ t

0

ˆ
O

∑

k∈Z
λ2kgk(gkũ)xφx dxds

−
∑

k∈Z

ˆ t

0

ˆ
O

λkgk ũφxdxdβ̃k (3.1)
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holds P̃-almost surely and we have 
0 = P̃ ◦ ũ−1
0 ,

3. ũ satisfies for arbitrary q ≥ 1 and α ∈ (− 1
3 , 0) the estimate

E

[

sup
t∈[0,T ]

(ˆ
O

1

2
|ũx |2 dx

)q
]

+ E

[(ˆ T

0

ˆ
O

((ũ)
α+3
4 )4x dxds

)q
]

+ E

[(ˆ T

0

ˆ
O

((ũ)
α+3
2 )2xx dxds

)q
]

≤ C(T, q, ũ0). (3.2)

As a consequence of estimate (3.2), we obtain the following regularity result.

Corollary 3.2. Let ũ be a solution as constructed in Theorem 3.1 and α ∈ (−1/3, 0).
Then, P̃-almost surely, ũ exhibits a zero-contact angle in the following sense:

For almost all t0 ∈ (0, T ], the classical derivative ∂
∂x ũ(x0, t0, ω) exists in points

x0 ∈ O such that ũ(x0, t0, ω) = 0, and it attains the value zero.

4. An existence result for positive approximate solutions

As pointed out in the introduction, our existence result for zero-contact angle solu-
tions relies on new integral estimates which are initially derived for strictly positive
approximate solutions. In this section, we provide results on existence and on re-
fined regularity and positivity properties of such solutions. More precisely, we study
stochastic thin-film equations

duε = −((uε)2(uε
xx − �′

ε(u
ε))x )xdt +

∑

k∈Z
λk(u

εgk)xdβ
ε
k , (4.1)

ε ∈ (0, 1), subject to periodic boundary conditions onO. This class of equations differs
from equations (2.6) and (2.7) by the choice of the potential S (or �ε, respectively)
and by the assumptions on the positivity properties of initial data. Here,�ε(u) is given
by

�ε(u) :=
{

εu−p + S(u) if u > 0

+∞ if u ≤ 0
(4.2)

with a positive number p > 2. Note that the potential �ε satisfies for every ε > 0 the
hypothesis

(H4ε) For ε > 0, the effective interface potential �ε has continuous second-order
derivatives on R

+ and satisfies for some p > 2 and u > 0

c1u
−p−2 − c2 ≤ �′′

ε (u) ≤ C1(u
−p−2 + 1) ,

�ε(u) ≥ Cu−p ,

where c1,C1, and C are positive constants depending on ε > 0.
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In addition, we require initial data to be bounded from below by εθ with θ ∈ (0, 1/p).
Combined with Hypothesis (H2), this leads to the modification

(H2ε) Let 
0 be a probability measure on H1
per(O) satisfying Hypothesis (H2). Then,


ε is the probability measure on H1
per(O) defined by 
ε = 
0 ◦ S−1

ε , where

Sε : H1
per(O) → H1

per(O) is for θ ∈ (0, 1/p) given by Sε(u) = u + εθ .

Remark 4.1. Note that the growth condition (H2) of [16] differs from (H4ε) only by
the assumption that �′′

ε (u) in [16] was required to satisfy

�′′
ε (u) ≤ C1u

−p−2

instead of

�′′
ε (u) ≤ C1(u

−p−2 + 1)

in our paper. It is straightforward to show that this does not affect the validity of the a
priori estimates and the existence result in [16].

Definition 4.2. Let 
ε be a probability measure on H1
per(O) satisfying (H2ε). We

call a triple ((�ε,Fε, (Fε
t )t≥0,P

ε), uε,W ε) a martingale solution to (4.1) with initial
data 
ε on the time interval [0, T ] provided
(i) (�ε,Fε, (Fε

t )t≥0,P
ε) is a stochastic basis with a complete right-continuous

filtration,
(ii) W ε satisfies (H3) with respect to (�ε,Fε, (Fε

t )t≥0,P
ε),

(iii) The continuous L2(O)-valued process uε ∈ L2(�ε; L2(0, T ; H3
per(O))) ∩ L2

(�ε;Cγ,σ (ŌT )) with γ < 1/2, σ < 1/8 is P
ε-almost surely positive and

adapted to (Fε
t )t≥0,

(iv) there is a Fε
0 -measurable H1

per(O)-valued random variable uε
0 with 
ε = P

ε ◦
(uε

0)
−1 and the equation
ˆ
O

(uε(t) − (uε
0))φdx =

ˆ t

0

ˆ
O
m(uε)(uε

xx − �′
ε(u

ε))xφx dxds

−
∑

k∈Z

ˆ t

0

ˆ
O

λkgk
√
m(uε)φxdxdβ

ε
k (4.3)

holds Pε-almost surely for all t ∈ [0, T ] and all φ ∈ H1
per(O).

We have the following theorem.

Theorem 4.3. Let the assumptions (H1), (H2ε), (H3), and (H4ε) be satisfied and
let T > 0 be given. Then, for every ε ∈ (0, 1) there exists a martingale solution
((�ε,Fε, (Fε

t )t≥0,P
ε), uε,W ε) to (4.1) in the sense of Definition 4.2, satisfying the

additional bound

E

[

sup
t∈[0,T ]

(ˆ
O

1

2

∣∣uε
x

∣∣2 + �ε(u
ε)dx

)q
]

+ E

[ˆ T

0

ˆ
O

(uε)2
∣∣(uε

xx − �′
ε(u

ε))x
∣∣2 dxdt

]

≤ C(ε, u0, T, q) , (4.4)
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where q ≥ 1 can be chosen arbitrarily.

Remark 4.4. Combining the continuity of the L2(O)-valued process uε with (4.4), it
follows that uε in fact is a continuous process attaining values in H1

w(O) (i.e., H1(O)

equipped with the weak topology).

Proof. Observe that Hypothesis (H4ε) differs only by the positive additive term C1

in the upper bound on �′′
ε from Hypothesis (H2) in [16]. It is straightforward to show

that all the results in [16] are still true if Hypothesis (H2) of [16] is replaced by Hy-
pothesis (H4ε) of this paper. Noting that Hypothesis (H3) of this paper is stronger than
Hypothesis (H4) of [16], we may establish the result as a consequence of Theorem 3.2
in [16]. �
For brevity, we will also call the process uε in Theorem 4.3 a solution of (4.1). We

now give two auxiliary results we will need later on. The first one is a continuous
version of Lemma 4.1 in [16] and can be established by similar arguments. It provides
lower bounds on the solutions uε constructed in Theorem 4.3.

Lemma 4.5. Let ε ∈ (0, 1) and consider for u ∈ H1(O,R+) the functional

Hε[u] := 1

2

ˆ
O

|ux |2 + ε(u)−pdx . (4.5)

Then there is a positive constant Cp independent of ε such that

sup
x∈O

(u)−1 ≤
( 

O
udx

)−1

+ Cpε
1

2−p Hε[u] 2
p−2 . (4.6)

If in addition Hε[u] ≤ σ−1 for σ ∈ (0, 1), there is a positive constant C̄ p independent
of ε such that

min
x∈O u ≥ C̄ p ε

1
p−2 σ

2
p−2 . (4.7)

In the next lemma, we collect a number of integral estimates which come as natu-
ral consequences of the energy-entropy estimate Lemma 4.4 in [16]. In the analysis
presented in that paper, they were not needed and hence they were not made explicit
there.
For the reader’s convenience, we recall the notation used in [16]:

Remark 4.6. The pressure associated with a liquid film of thickness uε is given by
pε := −uε

xx + �′
ε(u

ε), and at the level of finite elements, the discrete pressure ph

is—with a grain of salt— defined by
(
ph, φh

)

h
=
ˆ
O
uhxφ

h
x dx +

(
�′

ε(u
h), φh

)

h
for all φh ⊂ Vh

where (., .)h denotes the lumped masses scalar product and Vh is an appropriate space
of continuous linear finite elements (see [16] for the details). Finally, for positive
parameters α and κ ,

R(s) := α + Eh

[
uh(s)

]
+ κSh

[
uh(s)

]



64 Page 10 of 37 G. Grün and L. Klein J. Evol. Equ.

is a weighted sum of discrete energy Eh and discrete entropy Sh—for the details, we
refer to (4.14) in [16].

Lemma 4.7. Let uε be a solution as constructed in Theorem 4.3. Then there is a
positive constant C = C(ε) such that

E

[ˆ T

0

ˆ
O

((uε)2 pε
x )

2dxdt

]
≤ C , (4.8)

E

[ˆ T

0

ˆ
O

∣∣uε
xx

∣∣2 dxdt
]

≤ C , (4.9)

E

[ˆ T

0

ˆ
O

(uε)−p−2(uε
x )

2dxdt

]
≤ C . (4.10)

Proof. We recall that uε has been constructed as a limit of solutions (uε)h to finite
dimensional auxiliary problems, cf. Lemma 4.2 in [16]. The convergence of these
solutions is based on the a-priori estimate in Lemma 4.4 of that paper which will be
for us the starting point to derive the estimates above. Adopting the notation of [16],
and for the ease of presentation omitting the index ε, we recall the h-independent
estimate

E

[ˆ T

0

ˆ
O

(Mh(u
h)phx )

2dxds

]
≤ CE

[ˆ T

0
sup
x∈O

((uh)2)
ˆ
O
Mh(u

h)(phx )
2dxds

]

≤ CE

[ˆ T

0
R(s)

ˆ
O
Mh(u

h)(phx )
2dxds

]
≤ C(ε, u0, T ) , (4.11)

where R(s) denoted in [16] a weighted sum of energy and entropy (cf. (4.14) in [16]).
In particular, we have the upper bound

´
O(uhx )

2(·, s)dx ≤ R(s) for all s ∈ [0, T ].
Mimicking the arguments fromLemma 5.2 in [16], this bound shows that the sequence
(Mh(uh)phx )h∈(0,1) is tight on the path-space L2(O×[0, T ]) with respect to the weak
topology. Consequently, by Jakubowski’s theorem, cf. [33], we find a stochastic basis(
�̃, F̃ , (F̃t )t≥0, P̃

)
and for each h > 0 random variables g̃h : �̃ → L2(O × [0, T ])

as well as g̃ : �̃ → L2(O × [0, T ]) such that

g̃h
D= Mh(u

h)phx (4.12)

under the probability measure P̃. Moreover,

g̃h ⇀ g̃

in L2(O×[0, T ]) P̃-almost surely. The identifications g̃h = Mh(ũh) p̃hx and g̃ = ũ2 p̃x
can be achieved as in Lemma 5.6 and Lemma 5.9 in [16] where p̃h and p̃ are the
pressures related to ũh and ũ, respectively. Thus, we have

Mh(ũ
h) p̃hx ⇀ ũ2 p̃x . (4.13)
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By the lower semi-continuity of the L2-Norm w.r.t. weak convergence and Fatou’s
lemma, we have

E

[ˆ T

0

ˆ
O

(
ũ2 p̃x

)2
dxds

]
≤ E

[
lim inf
h→0

ˆ T

0
sup
x∈O

((ũh)2)
ˆ
O
Mh(ũ

h)( p̃hx )
2dxds

]

≤ lim inf
h→0

E

[ˆ T

0
sup
x∈O

((ũh)2)
ˆ
O
Mh(ũ

h)( p̃hx )
2dxds

]

≤ C(ε, u0, T ) < ∞ , (4.14)

where we could use (4.11) due to (4.12). The arguments to show (4.9) and (4.10) are
similar. �

5. A combined α-entropy-energy estimate

In this section, we prove a new estimate satisfied by solutions to Eq. (4.1) which is
independent of ε > 0. This estimate will be the key to pass to the limit ε → 0 and
this way to establish the existence of martingale solutions to Eq. (2.1). Abbreviating
F(u) := u−p, Eq. (4.1) can equivalently be written

duε = −((uε)2(uε
xx − εF ′(uε))x )xdt + CStratu

ε
xxdt +

∑

k∈Z
λk(gku

ε)xdβ
ε
k . (5.1)

Theorem 4.3 guarantees the existence of a family (uε)ε∈(0,1) of solutions to (5.1).

Theorem 5.1. Let ε ∈ (0, 1) and uε be a solution to (5.1). Then, for q ≥ 1 and
α ∈ (− 1

3 , 0) the ε-independent estimate

E

[

sup
t∈[0,T ]

(ˆ
O

1

2
|uε

x |2 + εF(uε)dx

)q

+ sup
t∈[0,T ]

(ˆ
O

1

α(α + 1)
(uε)α+1 − 1

α
uε + 1

α + 1
dx

)q

+
(ˆ T

0

ˆ
O

(uε)2(uε
xx − εF ′(uε))2x dxds

)q

+
(ˆ T

0

ˆ
O

((uε)
α+3
4 )4x dxds

)q

+
(ˆ T

0

ˆ
O

((uε)
α+3
2 )2xx dxds

)q

+
(ˆ T

0

ˆ
O

(uε)α+1(uε
x )

2εF ′′(uε) dxds

)q
]

≤ C(T, q, u0). (5.2)

holds.

Our strategy to prove Theorem 5.1 is to combine Itô’s formula and a stopping time
argument. Let us for ε > 0 consider energies

Eε(u) := 1

2

ˆ
O

|ux |2 dx + ε

ˆ
O
F(u)dx (5.3)
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as well as random times

Tσ := T ∧ inf{t ∈ [0, T ]|Eε(u
ε) ≥ σ−1} (5.4)

for positive parameters σ .
To show that Tσ is indeed a stopping time, according to Theorem 23 in [12], page 51

(see also the notes to Chapter 1 in [34]), we need to convince ourselves that Eε(uε) is

progressively measurable as
(
F̃t

)

t≥0
is right-continuous and Ft is complete for each

t ≥ 0. For this, let us prove the stronger result that Eε(uε) is predictable and therefore
progressively measurable, too. For the first term on the right-hand side in (5.3), this
is essentially a consequence of the fact, that uε has continuous paths as a mapping to
L2(O), combined with an appropriate convolution argument to derive predictability of
uε
x as a mapping to L2(O). Finally, predictability of εF(uε) follows from the fact that

uε is nonnegative almost surely and F is Lipschitz on [ρ,∞) for any ρ > 0. Hence,
ε
´
O F(uε + ρ) is predictable for any ρ > 0 fixed, too. Together with the monotone

convergence theorem and preservation of predictability in the limit ρ → 0, the result
follows.
We further introduce the following cut-off versions of solutions uε, where we skip

the index ε:

uσ (·, t) :=
{
uε(·, t) t ∈ [0, Tσ ]
uε(·, Tσ ) t ∈ (Tσ , T ] .

(5.5)

Moreover, we set pσ := −(uσ )xx + εF ′(uσ ). Note that the definition of pσ is slightly
different from that one of ph or pε in Sect. 4 as we do not include the Stratonovich
correction term within the pressure any longer.

Lemma 5.2. For α ∈ (− 1
3 , 0), q ≥ 1, and a constant C(T, q, u0) that is independent

of ε we have the estimate

E

[

sup
t∈[0,T ]

(
1

2

ˆ
O

(uσ )2x + εF(uσ )dx

)q
]

+ E

[

sup
t∈[0,T ]

(ˆ
O

1

α(α + 1)
uα+1

σ − 1

α
uσ + 1

α + 1
dx

)q
]

+ E

[(ˆ t∧Tσ

0

ˆ
O

(uσ )2(pσ )2xdxds

)q
]

+ E

[(ˆ t∧Tσ

0

ˆ
O

(uσ )2xx (uσ )α+1dxds

)q
]

+ E

[(ˆ t∧Tσ

0

ˆ
O

|α(α + 1)|
3

uα−1
σ (uσ )4xdxds

)q
]

+ E

[(ˆ t∧Tσ

0

ˆ
O
uα+1

σ (uσ )2xεF
′′(uσ )dxds

)q
]

≤ C(T, q, u0) . (5.6)
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The proof of Lemma 5.2 will be given below. Let us first assume it to hold and see
how (5.2) can be derived from it. We need the following lemma which may be proven
similarly as Lemma 5.5 in [16].

Lemma 5.3. We have limσ→0 Tσ = T P
ε-almost surely.

Proof of Theorem 5.1. From Lemma 4.5, we infer that uε is strictly positive on O ×
[0, T ] Pε-almost surely. In combination with Lemma 5.3, we find that the sets Aσ :=
{ω ∈ � : uε(·, ω) ≥ σ on O×[0, T ]} tend for σ → 0 to� up to a set of measure zero.
Hence, using nonnegativity of the terms on the left-hand side of (5.6) and monotone
convergence, Theorem 5.1 is proven. �

The rest of this section is devoted to the proof of Lemma 5.2.

Proof of Lemma 5.2. Consider the operators

E1 : u �→ 1

2

ˆ
O
u2dx , (5.7)

E2 : u �→ ε

ˆ
O
F(η(u))dx , (5.8)

Gα : u �→
ˆ
O
Gα(η(u))dx , (5.9)

where η is a positive smooth cut-off function corresponding to the lower bound of
uε provided by Lemma 4.5. For precise information about its properties, we refer
to (B.13) and (B.14). Moreover, Gα is a standard α-entropy used for the thin-film
equation, i.e.,

Gα(u) = 1

α(α + 1)
uα+1 − 1

α
u + 1

α + 1
> 0 . (5.10)

Itô’s formula, applied separately for each of these operators, see “Appendix B” for
details, yields

ˆ
O

1

2
(uσ (t))2x + εF(uσ (t))dx + Gα(uσ (t))

+
ˆ t∧Tσ

0

ˆ
O

(uσ )2(pσ )2xdxds +
ˆ t∧Tσ

0

ˆ
O
CStrat (uσ )2xxdxds

+
ˆ t∧Tσ

0

ˆ
O
CStrat (uσ )2xεF

′′(uσ )dxds

= E1((u
ε
0)x ) + E2(u

ε
0) + Gα(uε

0)

+
∑

k∈Z

ˆ t∧Tσ

0

ˆ
O

(uσ )xλk(uσ gk)xx + λkεF
′(uσ )(uσ gk)xdxdβk

+ 1

2

ˆ t∧Tσ

0

ˆ
O

∑

k∈Z
λ2k(uσ gk)

2
xxdxds
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+ 1

2

ˆ t∧Tσ

0

ˆ
O

∑

k∈Z
λ2kεF

′′(uσ )(uσ gk)
2
xdxds

+
∑

k∈Z

ˆ t∧Tσ

0

ˆ
O

λk

(
1

α
uα

σ − 1

α

)
(uσ gk)xdxdβk

+
ˆ t∧Tσ

0

ˆ
O

(−(uσ )2(pσ )x − CStrat (uσ )x )

(
1

α
uα

σ − 1

α

)

x
dxds

+ 1

2

ˆ t∧Tσ

0

ˆ
O

∑

k∈Z
λ2ku

α−1
σ (uσ gk)

2
xdxds

:= E1((u
ε
0)x ) + E2(u

ε
0) + Gα(uε

0) + R1 + · · · + R6 . (5.11)

Let us derive estimates for the terms on the right-hand side of Eq. (5.11). We will
frequently use the relations (A.3)–(A.5) and (2.5). Choosing σ small enough, we may
assume that η(uε

0) = uε
0. Then, since 
ε = P ◦ (u0 + εθ )−1, (H2), θ ∈ (0, 1

p ), and

F(x) = x−p, we get

E
ε
[
E1((u

ε
0)x ) + E2(u

ε
0)
] = E

0
[
1

2

ˆ
O

(u0 + εθ )2x + ε(u0 + εθ )−pdx

]

≤ E
0
[
C
ˆ
O

(u0)
2
x + εε−θpdx

]
≤ C(u0)

and for α ∈ (−1, 0)

E
ε
[Gα(uε

0)
] = E

0
[ˆ

O
1

α(α + 1)
(u0 + εθ )α+1 − 1

α
(u0 + εθ ) + 1

α + 1
dx

]
≤ C(u0) .

(5.12)

Here, the superscript indicates that the expectation is computed with respect to Pε and
P, respectively.
Ad R2: We have

1

2

ˆ t∧Tσ

0

ˆ
O

∑

k∈Z
λ2k(uσ gk)

2
xxdxds

= 1

2

ˆ t∧Tσ

0

ˆ
O

∞∑

k=1

k4λ2k
32π4

L5
u2σ + 2

∞∑

k=1

k2λ2k
8π2

L3 (uσ )2x + 4
∞∑

k=1

k2λ2k
8π2

L3 (uσ )2x

+
(

λ20

L
+

∞∑

k=1

2λ2k
L

)

(uσ )2xxdxds

:= A + B + C + D . (5.13)

By means of Poincaré’s inequality, A, B, and C will become terms to be controlled by
a Gronwall argument, while D cancels out against an identical term on the left-hand
side of (5.11).
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Ad R3:

R3 = 1

2

ˆ t∧Tσ

0

ˆ
O

∑

k∈Z
λ2kεF

′′(uσ )
(
(gk)

2
x (uσ )2 + 2(gk)x (gk)uσ (uσ )x + (gk)

2(uσ )2x
)
dxds

= 1

2

ˆ t∧Tσ

0

ˆ
O

∞∑

k=1

k2λ2k
8π2

L3 εp(p + 1)F(uσ )dxds

+
ˆ t∧Tσ

0

ˆ
O

εCStrat F
′′(uσ )(uσ )2xdxds , (5.14)

where the first term will be a Gronwall term, the second one cancels out against the
corresponding term on the left-hand side of (5.11).

Let us discuss the contributions of the entropy. Ad R5:

ˆ t∧Tσ

0

ˆ
O

(−(uσ )2(pσ )x − CStrat (uσ )x )

(
1

α
uα

σ − 1

α

)

x
dxds

=
ˆ t∧Tσ

0

ˆ
O

−(uσ )2xxu
α+1
σ + α(α + 1)

3
uα−1

σ (uσ )4x − εF ′′(uσ )uα+1
σ (uσ )2xdxds

−
ˆ t∧Tσ

0

ˆ
O
CStratu

α−1
σ (uσ )2xdxds . (5.15)

Since α(α + 1) < 0, the first integral is a good term while the second one will cancel
out as the following calculation shows.

Ad R6:

1

2

ˆ t∧Tσ

0

ˆ
O

∑

k∈Z
λ2ku

α−1
σ (uσ gk)

2
xdxds

= 1

2

ˆ t∧Tσ

0

ˆ
O

∞∑

k=1

λ2kk
2 8π

2

L3 uα+1
σ dxds

+
ˆ t∧Tσ

0

ˆ
O

1

2

(
λ20

L
+

∞∑

k=1

2λ2k
L

)

uα−1
σ (uσ )2xdxds . (5.16)

Here, the first term can be estimated by means of Young’s and Poincaré’s inequalities
to become a Gronwall term while the last one vanishes by cancellation as indicated
above.

Collecting all terms, rearranging, and combining the constants, as well as applying
q’th powers, q ≥ 1, suprema, and expectation, we get with E(v) := E1(vx ) + E2(v)

for arbitrary t ′ ∈ [0, T ] that
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E

[

sup
t∈[0,t ′∧Tσ ]

E(uσ (t))q + sup
t∈[0,t ′∧Tσ ]

Gα(uσ (t))q
]

+ E

[(ˆ t ′∧Tσ

0

ˆ
O

(uσ )2(pσ )2xdxds

)q]

+ E

[(ˆ t ′∧Tσ

0

ˆ
O

(uσ )2xx (uσ )α+1dxds

)q]

+ E

[(ˆ t ′∧Tσ

0

ˆ
O

|α(α + 1)|
3

uα−1
σ (uσ )4xdxds

)q]

+ E

[(ˆ t ′∧Tσ

0

ˆ
O

εF ′′(uσ )uα+1
σ (uσ )2xdxds

)q]

≤ C(u0, q) + CE

[ˆ t ′∧Tσ

0
E(uσ )qds

]

+ E

[

sup
t∈[0,t ′∧Tσ ]

|R1|q
]

+ E

[

sup
t∈[0,t ′∧Tσ ]

|R4|q
]

.

Before applying the Burkholder–Davis–Gundy inequality, we consider for s ∈ [0, T ]
the operator τ1(s) : Q 1

2 L2(O) → R with

τ1(s)(v) :=
ˆ
O

(uσ (s))x (uσ (s)
∑

i∈Z
(gi , v) gi )xx

+ εF ′(uσ (s))(uσ (s)
∑

i∈Z
(gi , v) gi )xdx . (5.17)

Let us estimate the Hilbert–Schmidt norm of τ1. For better readability, we will skip
the argument s in the integral terms.

‖ τ1(s) ‖2L2(Q1/2L2(O),R)
=
∑

k∈Z
|τ1(s)(gkλk)|2

=
∑

k∈Z

∣∣∣∣

ˆ
O

(uσ )xx (uσ )xλkgk + (uσ )xxuσ λk(gk)x + εp(p + 1)u−p−1
σ (uσ )xλkgkdx

∣∣∣∣

2

≤ C

(
∑

k∈Z
λ2kk

2
(ˆ

O
1

2
(uσ )2xdx

)2

+
∑

k∈Z
λ2kk

2
ˆ
O

(uσ )2xxu
2
σ dx

+
∑

k∈Z
λ2kk

2(p + 1)2
(

ε

ˆ
O
F(uσ )dx

)2
)

≤
(
C(p)E(uσ )2 + C‖ u−α+1

σ ‖∞
ˆ
O

(uσ )2xxu
α+1
σ dx

)
. (5.18)
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Hence,

E

[

sup
t∈[0,t ′∧Tσ ]

|R1|q
]

≤ CE

⎡

⎣
(ˆ t ′∧Tσ

0
E(uσ )2 + ‖ u−α+1

σ ‖∞
ˆ
O

(uσ )2xxu
α+1
σ dxds

) q
2
⎤

⎦

≤ C(q)E

[ˆ t ′∧Tσ

0
E(uσ )qds

]

+ C(p, δ, T ) δ̃ E

[

sup
t∈[0,t ′∧Tσ ]

‖ uσ ‖2q
H1(O)

]

+ δ̃−1C(q, δ, T, L)

+ C(q)δE

[(ˆ t ′∧Tσ

0

ˆ
O

(uσ )2xxu
α+1
σ dxds

)q]

(5.19)

for positive parameters δ and δ̃ and arbitrary t ′ ∈ [0, T ].
The first term on the right-hand side of the last estimate is a Gronwall term while

the others can be absorbed. We proceed to do the same for the stochastic integral R4.

The corresponding operator τ2(s) : Q 1
2 L2(O) → R now reads

τ2(s)(v) :=
ˆ
O

(
1

α
uα

σ (s) − 1

α

)
(uσ (s)

∑

i∈Z
(gi , v) gi )xdx

for s ∈ [0, T ]. It follows

‖ τ2(s) ‖2L2(Q1/2L2(O),R)
=
∑

k∈Z

∣∣∣∣∣

ˆ
O

(
1

α
uα

σ − 1

α

)
(uσ

∑

i∈Z
(gkλk, gi ) gi )xdx

∣∣∣∣∣

2

≤
∑

k∈Z

ˆ
O
u2ασ (uσ )2x g

2
kλ

2
kdx

≤
∑

k∈Z
λ2k‖ gk ‖2∞‖ u

3α+1
2

σ ‖2∞
ˆ
O
u

α−1
2

σ (uσ )2xdx

≤ C‖ u3α+1
σ ‖∞

ˆ
O
u

α−1
2

σ (uσ )2xdx , (5.20)

where we used α ∈ (− 1
3 , 0) , the boundedness of gk , and (2.5). Then we get

E

[

sup
t∈[0,t ′∧Tσ ]

|R4|q
]

≤ CE

⎡

⎣
(ˆ t ′∧Tσ

0
‖ u3α+1

σ ‖∞
ˆ
O
u

α−1
2

σ (uσ )2xdxds

) q
2
⎤

⎦

≤ C(q, T ) δ̃ E

[

sup
t∈[0,t ′∧Tσ ]

‖ uσ ‖2q
H1(O)

]

+ δ̃−1C(q, T, L)q

+ C(q)δE

[(ˆ t ′∧Tσ

0

ˆ
O
uα−1

σ (uσ )4xdxds

)q]

+ δ−qC(q, T, L) . (5.21)
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For the last estimate, we have once more used Poincaré’s inequality. The first and the
third term can be absorbed while the others are independent of ε. After absorption, we
obtain

E

[

sup
t∈[0,t ′∧Tσ ]

E(uσ (t))q
]

+ E

[

sup
t∈[0,t ′∧Tσ ]

Gα(uσ (t))q
]

+ E

[(ˆ t ′∧Tσ

0

ˆ
O

(uσ )2(pσ )2xdxds

)q]

+ E

[(ˆ t ′∧Tσ

0

ˆ
O

(uσ )2xx (uσ )α+1dxds

)q]

+ E

[(ˆ t ′∧Tσ

0

ˆ
O

|α(α + 1)|
3

uα−1
σ (uσ )4xdxds

)q]

+ E

[(ˆ t ′∧Tσ

0

ˆ
O

εF ′′(uσ )uα+1
σ (uσ )2xdxds

)q]

≤ C(T, q, u0) + CE

[ˆ t ′∧Tσ

0
E(uσ )qds

]

.

(5.22)

To control the second term on the right-hand side, we observe that (5.22) entails the
estimate

E

[

sup
t≤t ′

E (uσ (t ∧ Tσ ))q

]

≤ C(T, q, u0) + CE

[ˆ t ′∧Tσ

0
E(uσ (s))qds

]

≤ C(T, q, u0) + CE

[ˆ t ′

0
sup
t≤s

E(uσ (t ∧ Tσ ))qds

]

(5.23)

which gives the result by a combination of a Gronwall and a Fubini argument. �

6. Convergence of approximate solutions

In this section, we pass to the limit ε → 0 with the approximate solutions uε and
finally, we prove the main results of the paper, i.e., Theorem 3.1 and Corollary 3.2.

6.1. Application of Jakubowski’s theorem

In this subsection, we will apply Jakubowski’s theorem, cf. [33].
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We define vε := ((uε)
α+3
4 )x , zε := ((uε)

α+3
2 )xx , and for γ̃ < γ and σ̃ < σ

Xu := C γ̃ ,σ̃ (ŌT )

Xux := L2(0, T ; L2(O))weak

Xv := L4(0, T ; L4(O))weak

Xz := L2(0, T ; L2(O))weak

XW := C([0, T ]; L2(O))

Xu0 := H1
per(O).

Moreover,X := Xu×Xux ×Xv ×Xz×XW ×Xu0 . Using standard results on tightness,
see for instance Lemma 5.2 in [16], we get the following result.

Theorem 6.1. The laws μuε , μuε
x
, μvε , μzε , μW ε , μuε

0
of the corresponding random

variables are tight on the path spaces Xu,Xux ,Xv,Xz,XW , and Xu0 , respectively.

Now, we apply Jakubowski’s theorem [33].

Theorem 6.2. For subsequences of uε, uε
x , v

ε, zε, uε
0, and W

ε, there exist a probabili-
ty space (�̃, F̃ , P̃), a sequence of L2(O)-valued stochastic processes W̃ ε on (�̃, F̃ , P̃),
sequences of random variables

ũε :�̃ → C γ̃ ,σ̃ (ŌT ),

w̃ε :�̃ → L2(0, T ; L2(O)),

ṽε :�̃ → L4(0, T ; L4(O)),

z̃ε :�̃ → L2(0, T ; L2(O)),

ũε
0 :�̃ → H1

per(O),

random variables

ũ ∈ L2(�̃;C γ̃ ,σ̃ (ŌT )),

w̃ ∈ L2(�̃; L2(0, T ; L2(O))),

ṽ ∈ L4(�̃; L4(0, T ; L4(O))),

z̃ ∈ L2(�̃; L2(0, T ; L2(O))),

ũ0 ∈ L2(�̃; H1
per(O)),

as well as a L2(O)-valued process W̃ such that

1. for all ε ∈ (0, 1) the law of (ũε, w̃ε, ṽε, z̃ε, W̃ ε, ũε
0) on X w.r.t. the measure P̃

equals the law of (uε, uε
x , v

ε, zε,W ε, uε
0) w.r.t. P

ε.
2. as ε → 0, the sequence (ũε, w̃ε, ṽε, z̃ε, W̃ ε, ũε

0) converges P̃-almost surely to
(ũ, w̃, ṽ, z̃, W̃ , ũ0) in the topology of X .
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Next, we identify the new sequences on (�̃, F̃ , P̃).

Lemma 6.3. We have w̃ε = ũε
x , ṽε = ((ũε)

α+3
4 )x , as well as z̃ε = ((ũε)

α+3
2 )xx

P̃-almost surely.

Proof. The mapping

L2(0, T ; L2(O)) → R, u �→
ˆ T

0

ˆ
O
u dxds

is Borel-measurable. Hence, for arbitrary φ ∈ C∞
c (OT ) we have due to the equality

of laws stated in Theorem 6.2

E

[∣∣∣∣

ˆ T

0

ˆ
O

w̃εφ dxds +
ˆ T

0

ˆ
O
ũεφx dxds

∣∣∣∣

]

= E

[∣∣∣∣

ˆ T

0

ˆ
O
uε
xφ dxds −

ˆ T

0

ˆ
O
uε
xφ dxds

∣∣∣∣

]

= 0.

The other statements follow by similar reasoning. �

As in [16], we consider the filtrations (F̃t )t≥0 and (F̃ε
t )t≥0 with

F̃t := σ(σ(rt ũ, rt W̃ ) ∪ {N ∈ F̃ : P̃(N ) = 0} ∪ σ(ũ0)) (6.1)

and

F̃ε
t := σ(σ(rt ũ

ε, rt W̃
ε) ∪ {N ∈ F̃ : P̃(N ) = 0} ∪ σ(ũε

0)) . (6.2)

Here, rt is the restriction of a mapping on [0, T ] to the time interval [0, t], t ∈ [0, T ].
The proof of the next lemma can be found in [16] Lemma 5.7.

Lemma 6.4. The processes W̃ ε and W̃ are Q-Wiener processes which are adapted to
the filtrations (F̃ε

t )t≥0 and (F̃t )t≥0, respectively. We have

W̃ ε(t) =
∑

k∈Z
λk β̃

ε
k (t)gk (6.3)

and

W̃ (t) =
∑

k∈Z
λk β̃k(t)gk (6.4)

with families (β̃ε
k )k∈Z and (β̃k)k∈Z of i.i.d. standard Brownian motions w.r.t. (F̃ε

t )t≥0

and (F̃t )t≥0, respectively.

For the limits w̃, ṽ and z̃, we get the following identities.

Lemma 6.5. We have P̃-almost surely w̃ = ũx , ṽ = (ũ
α+3
4 )x , and z̃ = (ũ

α+3
2 )xx .
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Proof. Exemplarily we show the first statement. From our convergence results in
Theorem 6.2 and by integration by parts, we deduce for all test functionsφ ∈ C∞

c (OT )

ˆ T

0

ˆ
O

w̃φ dxds ←
ˆ T

0

ˆ
O

w̃εφ dxds =
ˆ T

0

ˆ
O
ũε
xφ dxds

= −
ˆ T

0

ˆ
O
ũεφx dxds

→ −
ˆ T

0

ˆ
O
ũφx dxds

P̃-almost surely. This gives the first equality. �

6.2. Convergence results of the deterministic terms

In the next lemmas, we establish convergence of the deterministic terms, corre-
sponding to the weak formulation (3.1).

Lemma 6.6. The sequence ũε admits a subsequence such that for a function ζ on
�̃ × O × (0, T )

(ũε
x )

3 ⇀ ζ (6.5)

weakly in L
4
3 (OT ) P̃-almost surely.

Proof. FromLemmas 6.2, 6.3, and 6.5 in the previous subsection, we know ((ũε)
α+3
4 )x

⇀ (ũ
α+3
4 )x P̃-almost surely in L4(0, T ; L4(O)). By the identity

(ũε
x )

3 =
(

4

α + 3

)3

(ũε)
3(−α+1)

4 ((ũε)
α+3
4 )3x , (6.6)

the P̃-almost surely uniform boundedness of ũε in L∞(OT ), and the positivity of
−α + 1 we conclude

ˆ T

0

ˆ
O

((ũε
x )

3)
4
3 dxds = C

ˆ T

0

ˆ
O

(ũε)−α+1((ũε)
α+3
4 )4x dxds ≤ C

P̃-almost surely. The result then follows by the reflexivity of L
4
3 (O). �

Let S be a set. L p−(S) denotes the space of functions that are contained in every
space Lq(S), where 1 ≤ q < p.

Lemma 6.7. We have P̃-almost surely

((ũε)
α+3
4 )x → ((ũ)

α+3
4 )x (6.7)

strongly in L4−([ũ > 0]).
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Proof. For arbitrary p > 1, we have the strong convergence of ũε in L p(OT ) P̃-almost

surely, cf. Theorem 6.2. Thus, (ũε)
α+3
2 → ũ

α+3
2 in L2(OT ) P̃-almost surely. By Riesz’

theorem

lim
h→0

‖ (ũε)
α+3
2 (·, · + h) − (ũε)

α+3
2 (·, ·) ‖L2((0,T−h);L1(O)) = 0 (6.8)

follows. Furthermore, (5.2) implies

sup
ε∈(0,1)

‖ ((ũε)
α+3
2 )xx ‖L2(OT ) < ∞ (6.9)

P̃-almost surely. Hölder’s inequality as well as the uniform bound of uε in C γ̃ ,σ̃ (ŌT )

show
ˆ T

0

ˆ
O

((ũε)
α+3
2 )2xdxds = C

ˆ T

0

ˆ
O

(ũε
x )

2(ũε)
α−1
2 (ũε)

α+3
2 dxds

≤ C

(ˆ T

0

ˆ
O

(ũε
x )

4(ũε)α−1 dxds

) 1
2
(ˆ T

0

ˆ
O

(ũε)α+3 dxds

) 1
2

< ∞ (6.10)

for all ε ∈ (0, 1) P̃-almost surely. Combining (6.9) and (6.10), we conclude

sup
ε∈(0,1)

‖ ((ũε)
α+3
2 ) ‖H2(OT ) < ∞ (6.11)

P̃-almost surely. By Simon’s theorem, c.f. [40], using (6.8), (6.11), and the spaces
H2(O) ⊂ H1(O) ⊂ L1(O), we get

((ũε)
α+3
2 )x → (ũ

α+3
2 )x (6.12)

strongly in L2(OT ) P̃-almost surely. On the set [ũ > 0], there exists a subsequence
with

((ũε)
α+3
4 )x → (ũ

α+3
4 )x (6.13)

pointwise almost surely for ε → 0. The sequence ((ũε)
α+3
4 )x is uniformly bounded in

L4(OT ), cf. (5.2), which in turn implies uniform integrability in L4−δ(OT ), δ ∈ (0, 1).
The result now follows with Vitali’s theorem. �

Corollary 6.8. We have P̃-almost surely

(ũε
x )

3 ⇀ ũ3x (6.14)

weakly in L
4
3 ([ũ > 0]) and for φ ∈ H3

per(O)

lim
ε→0

ˆ
[ũ=0]

(ũε
x )

3φxdx = 0. (6.15)
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Proof. The identity (6.6), the uniform convergence of ũε, and Lemma 6.7 show

(ũε
x )

3 → ũ3x strongly in L
4
3−([ũ > 0]). By the uniqueness of weak limits, we find

ζ = (ũε
x )

3 on [ũ > 0] in Lemma 6.6 which is (6.14). The second statement (6.15)
follows with Hölder’s inequality:

ˆ ˆ
[ũ=0]

∣∣∣(ũε
x )

3φx

∣∣∣ dxds =
ˆ ˆ

[ũ=0]
(ũε)

3(α−1)
4
∣∣ũε

x

∣∣3 (ũε)
−3(α−1)

4 |φx | dxds

≤
(ˆ ˆ

[ũ=0]
(ũε)α−1(ũε

x )
4dxds

)3/4 (ˆ ˆ
[ũ=0]

(ũε)−3α+3φ4
xdxds

)1/4

→ 0 .

�

The convergence of ũε(ũε
x )

2 can be shown in a similar way.

Lemma 6.9. For a subsequence of ũε, we have P̃-almost surely

ũε(ũε
x )

2 ⇀ ũ(ũx )
2 (6.16)

weakly in L2(OT ).

Proof. By means of the identity

ũε(ũε
x )

2 =
(

4

α + 3

)2

(ũε)
−α+3

2 ((ũε)
α+3
4 )2x , (6.17)

we conclude as in Lemma 6.6 that ũε(ũε
x )

2 is uniformly bounded in L2(OT ) and thus
admits a subsequence such that ũε(ũε

x )
2 ⇀ γ P̃-almost surely in L2(OT ). Using

−α > 0, the strong convergence (6.12) in Lemma 6.7, as well as

ũε(ũε
x )

2 =
(

2

α + 3

)2

((ũε)
α+3
2 )2x (ũ

ε)−α, (6.18)

we find a subsequence of ũε(ũε
x )

2 that converges pointwise to ũ(ũx )2 P̃-almost surely.
The uniform bound of (6.18) and Vitali’s theorem then give

ũε(ũε
x )

2 → ũ(ũx )
2

strongly in L2−(OT ) P̃-almost surely. The same arguments as in Corollary 6.8 show
γ = ũ(ũx )2. �

The next result follows immediately from the strong convergence of (ũε)2 and the
weak convergence of ũε

x in L2(OT ), respectively.

Lemma 6.10. For all φ ∈ H3
per(OT )

ˆ T

0

ˆ
O

(ũε)2ũε
xφxxx dxds →

ˆ T

0

ˆ
O

(ũ)2ũxφxxx dxds (6.19)

holds P̃-almost surely.
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Finally, we show that the term which contains the effective interface potential van-
ishes in the limit.

Lemma 6.11. For ε → 0 and all φ ∈ H3
per(OT ), we have

E

[∣∣∣∣

ˆ T

0

ˆ
O

ε(ũε)2ũε
x F

′′(ũε)φx dxds

∣∣∣∣

]
→ 0. (6.20)

Proof. Using the weighted version of Young’s inequality, we find for η > 0 and
p ∈ (2,∞) with F(x) = x−p

∣∣∣∣

ˆ T

0

ˆ
O

ε(ũε)2ũε
x (ũ

ε)−p−2φx dxds

∣∣∣∣ =
∣∣∣∣

1

p − 1

ˆ T

0

ˆ
O

ε(ũε)
−p
2 (ũε)

−p+2
2 φxx dxds

∣∣∣∣

≤ C

4

ˆ T

0

ˆ
O

ε2εη−1(ũε)−pφ2
xx dxds

+ C
ˆ T

0

ˆ
O

ε1−η(ũε)−p+2 dxds

:= I+ II .

Due to the boundedness of φxx and (5.2), we have for I

Cεη+1
E

[ˆ T

0

ˆ
O
F(ũε)φ2

xx dxds

]
≤ εη+1C E

[

sup
t∈[0,T ]

ˆ
O
F(ũε(t))dx

]

≤ εη+1C → 0

P̃-almost surely. For II, we argue with δ > 0 as follows:

ˆ T

0

ˆ
O

ε1−η(ũε)−p(ũε)2 dxds

=
ˆ ˆ

[ũ<ε
η
2 +δ]

ε1−η(ũε)−p(ũε)2dxds +
ˆ ˆ

[ũ≥ε
η
2 +δ]

ε1−η(ũε)−p+2dxds

≤ ε1−η+η+2δ
ˆ T

0

ˆ
O
F(ũε) dxds +

ˆ ˆ
[ũ≥ε

η
2 +δ]

ε1−η+(−p+2)( η
2+δ)dxds .

Hence, using (5.2) once more, we have for η and δ chosen appropriately

E [II] ≤ ε1+2δC + ε1−η− pη
2 +η+δ(−p+2)C → 0

for ε → 0. �
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6.3. Identification of the stochastic integral

For φ ∈ H3
per(O) arbitrary, but fixed, we consider the processes Mε,φ : � ×

[0, T ] → R defined by

Mε,φ(t) :=
ˆ
O

(uε(t) − uε
0)φdx −

ˆ t

0

ˆ
O

(uε
x )

3φx dxds − 3
ˆ t

0

ˆ
O
uε(uε

x )
2φxx dxds

−
ˆ t

0

ˆ
O

(uε)2uε
xφxxx dxds +

ˆ t

0

ˆ
O

(uε)2uε
xεF

′′(uε)φx dxds

+
ˆ t

0

ˆ
O

1

2

∑

k∈Z
λ2kgk(gku

ε)xφx dxds . (6.21)

Note that the right-hand side of (6.21) coincides with the deterministic terms in (4.3)
for the choice φ ∈ H3

per (O)which follows easily by integration by parts. In particular,

the last term in (6.21) is identical with CStrat
´ t
0

´
O uε

xφxdxds, cf. (2.6) and (A.6). On
the other hand, we have

Mε,φ(t) =
∑

k∈Z

ˆ t

0

ˆ
O

λk(gku
ε)xφdxdβk (6.22)

for t ∈ [0, T ], i.e., Mε,φ is a continuous, square integrable Fε
t -martingale. We will

need the following results which have been shown in [16], Lemmas 5.10 and 5.12:

〈Mε,φ〉 =
ˆ ·

0

∑

k∈Z
λ2k

(ˆ
O

(uεgk)xφdx

)2

ds, (6.23)

〈Mε,φ〉 ≤ C‖φ ‖2H1
per

ˆ T

0
‖ uε ‖2L2(O)

ds, (6.24)

and for k ∈ N

〈Mε,φ, βε
k 〉 = λk

ˆ ·

0

ˆ
O

(uεgk)xφdxds. (6.25)

With these results at hand, we can establish

Corollary 6.12. Let k ∈ N and ε ∈ (0, 1). The processes

M2
ε,φ −

ˆ ·

0

∑

k∈Z
λ2k

(ˆ
O

(uεgk)xφdx

)2

ds (6.26)

and

Mε,φβε
k − λk

ˆ ·

0

ˆ
O

(uεgk)xφdxds (6.27)

are continuous Fε
t -martingales.
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By the equality of laws stated in Theorem 6.2, we also get the analog statements for

M̃ε,φ(t) :=
ˆ
O

(ũε(t) − ũε
0)φdx −

ˆ t

0

ˆ
O

(ũε
x )

3φx dxds

− 3
ˆ t

0

ˆ
O
ũε(ũε

x )
2φxx dxds −

ˆ t

0

ˆ
O

(ũε)2ũε
xφxxx dxds

+
ˆ t

0

ˆ
O

(ũε)2ũε
xεF

′′(uε)φx dxds +
ˆ t

0

ˆ
O

1

2

∑

k∈Z
λ2kgk(gkũ

ε)xφx dxds .

Lemma 6.13. For k ∈ N and ε ∈ (0, 1)

M̃ε,φ (6.28)

M̃2
ε,φ −

ˆ ·

0

∑

k∈Z
λ2k

(ˆ
O

(ũεgk)xφdx

)2

ds (6.29)

M̃ε,φβ̃ε
k − λk

ˆ ·

0

ˆ
O

(ũεgk)xφdxds (6.30)

are continuous F̃ε
t -martingales. Moreover, on [0, T ] we have

〈M̃ε,φ〉t =
ˆ t

0

∑

k∈Z
λ2k

(ˆ
O

(ũεgk)xφdx

)2

ds (6.31)

〈M̃ε,φ, β̃ε
k 〉t = λk

ˆ t

0

ˆ
O

(ũεgk)xφ dxds. (6.32)

The next step is to show that the martingale property is preserved in the limit. We
show that for φ ∈ H3

per(O)

M̃0,φ(t) :=
ˆ
O

(ũ(t) − ũ0)φdx −
ˆ ˆ

[ũ>0]
(ũx )

3φxdxds − 3
ˆ t

0

ˆ
O
ũ(ũx )

2φxx dxds

−
ˆ t

0

ˆ
O

(ũ)2ũxφxxx dxds +
ˆ t

0

ˆ
O

1

2

∑

k∈Z
λ2kgk(gkũ)xφx dxds (6.33)

has the martingale property.

Lemma 6.14. For s, t ∈ [0, T ] with s ≤ t and for all continuous functions
� : C γ̃ ,σ̃ ([0, s] × Ō) × C([0, s]; L2(O)) → [0, 1], we have

E

[
�(rs ũ, rs W̃ )

(
M̃0,φ(t) − M̃0,φ(s)

)]
= 0. (6.34)

Proof. We treat the terms inside the expectation in (6.34) one by one. The continuity
of � as well as the convergence of ũε to ũ and of W̃ ε to W̃ in C(0, T ; L2(O)) show

lim
ε→0

�(rs ũ
ε, rs W̃

ε) = �(rs ũ, rs W̃ ) (6.35)
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P̃-almost surely on [0, 1]. To see the convergence of the expected values, we aim to
utilize Vitali’s theorem; therefore, since � is bounded, it suffices to show uniform
boundedness of moments of the integral-terms in (6.34) and use the convergence
results already established.
By the strong convergence of ũε in C γ̃ ,σ̃ (ŌT ), cf. Theorem 6.2, we have P̃-almost

surely

lim
ε→0

ˆ
O

(ũε(t) − ũε(s))φdx =
ˆ
O

(ũ(t) − ũ(s))φdx . (6.36)

The α-entropy-energy estimate (5.2) gives ũε ∈ L2q(�̃; L∞(OT )) for an arbitrary
q > 1, and thus, the uniform boundedness of a q-th absolute moment.
Weak convergence of (ũε

x )
3
P̃-almost surely has been established in Corollary 6.8.

Using Hölder’s inequality and (5.2), we have for q > 1

E

[∣∣∣∣

ˆ t

s

ˆ
O

(ũε
x )

3φx dxds

∣∣∣∣

q]

≤ C E

[∣∣∣∣

ˆ t

s

ˆ
O

((ũε)
α+3
4 )4x dxds

∣∣∣∣

q] 3
4

E

[∣∣∣∣

ˆ t

s

ˆ
O

(ũε)−3(α−1)φ4
x dxds

∣∣∣∣

q] 1
4

≤ C.

The identity

(ũε
x )

2ũε =
(

4

α + 3

)2

((ũε)
α+3
4 )2x (ũ

ε)
−α+3

2

yields

E

[∣∣∣∣

ˆ t

s

ˆ
O

(ũε
x )

2ũεφxx dxds

∣∣∣∣

q]

≤ C E

[∣∣∣∣

ˆ t

s

ˆ
O

((ũε)
α+3
4 )4x dxds

∣∣∣∣

q] 1
2

E

[∣∣∣∣

ˆ t

s

ˆ
O

(ũε)−α+3φ2
xx dxds

∣∣∣∣

q] 1
2

≤ C

which we combine with Lemma 6.9.
By means of Cauchy–Schwarz’ inequality

∣∣∣∣

ˆ t

s

ˆ
O

(ũε)2ũε
xφxxx dxds

∣∣∣∣ ≤ C

(

sup
ŌT

ũε

)2 (

sup
t∈[0,T ]

ˆ
O

∣∣ũε
x

∣∣2 dx

) 1
2 (ˆ

O
φ2
xxxdx

) 1
2

holds, which implies the boundedness of higher moments. Lemma 6.10 states the
needed convergence P̃-almost surely.
In Lemma 6.11, we have seen

lim
ε→0

E

[
�(rs ũ

ε, rs W̃
ε)

(ˆ T

0

ˆ
O

ε(ũε)2uε
x F

′′(ũε)φx dxds

)]
= 0 . (6.37)
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For the Stratonovich correction term, we have due to the convergence of ũε
P̃-almost

surely and the weak convergence of ũε
x on L2(0, T ; L2(O)), cf. Theorem 6.2,

ˆ t

s

ˆ
O

1

2

∑

k∈Z
λ2kgk(gkũ

ε)xφx dxds →
ˆ t

s

ˆ
O

1

2

∑

k∈Z
λ2kgk(gkũ)xφx dxds

P̃-almost surely. Furthermore, by boundedness of the gk and (2.5),

∣∣∣∣∣

ˆ t

s

ˆ
O

1

2

∑

k∈Z
λ2kgk(gkũ

ε)xφx dxds

∣∣∣∣∣
≤ C

∣∣∣∣∣
sup
ŌT

ũε

∣∣∣∣∣
.

FromLemma6.13,weknow that (M̃ε,φ)ε∈(0,1) aremartingales. Thus, the convergence
results above yield

E

[
�(rs ũ, rs W̃ )

(
M̃0,φ(t) − M̃0,φ(s)

)]
= 0.

�

Dynkin’s lemma in combination with Lemma 6.14 implies the martingale property,
cf. for example [32].

Corollary 6.15. M̃0,φ is a continuous F̃t -martingale.

By similar arguments as before, cf. also [16] Lemmas 5.14 and 5.15, we can show
that for 0 ≤ s ≤ t ≤ T and � as in Lemma 6.14

E

[

�(rs ũ, rs W̃ )

(

M̃2
0,φ(t) − M̃2

0,φ(s) −
ˆ t

s

∑

k∈Z
λ2k

(ˆ
O

(ũgk)xφdx

)2

ds

)]

= 0

(6.38)

and

E

[
�(rs ũ, rs W̃ )

(
(M̃0,φβ̃k)(t) − (M̃0,φβ̃k)(s) − λk

ˆ t

s

ˆ
O

(ũgk)xφ dxds

)]
= 0

(6.39)

holds. Following the argumentation of Lemma 5.16 in [16], the identification of the
stochastic term is achieved.

Lemma 6.16. It holds P̃-almost surely

M̃0,φ =
∑

k∈Z

ˆ ·

0

ˆ
O

λk(ũgk)xφdxdβ̃k . (6.40)
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6.4. Proof of the main results

Finally, we provide the proofs for the existence of zero-contact angle martingale
solutions.

Proof of Theorem 3.1. FromTheorem 6.2, the existence of the stochastic basis, the Q-
Wiener process W̃ , as well as sequences (ũε)ε∈(0,1), (ũε

0)ε∈(0,1), and random variables
ũ and ũ0 follows.Moreover, for every ε ∈ (0, 1) uε and ũε aswell as uε

0 and ũ
ε
0 have the

same laws, respectively, and for ε → 0, ũε → ũ inC γ̃ ,σ̃ (ŌT ) and ũε
0 → ũ0 in H1

per(O)

holds P̃-almost surely for a subsequence. Owing to the uniform convergence ũε → ũ,
we see in particular that ũ is nonnegative P̃-almost surely. The weak formulation (3.1)
is satisfied due to Lemma 6.16. Since u0 + εθ → u0 pointwise, by Corollary 13.19 in
[36] we get

P
ε ◦ (uε

0)
−1 = P ◦ (u0 + εθ )−1 → P ◦ u−1

0 = 
0

weakly for ε → 0. Likewise, from the pointwise convergence ũε
0 → ũ0 P̃-almost

surely, the weak convergence of the laws follows, i.e.,

P̃ ◦ (ũε
0)

−1 → P̃ ◦ ũ−1
0 .

From Theorem 6.2, we know that

P
ε ◦ (uε

0)
−1 = P̃ ◦ (ũε

0)
−1

for all ε ∈ (0, 1). Thus, by the uniqueness of limits w.r.t. weak convergence on Polish
spaces, we get


0 = P̃ ◦ ũ−1
0 .

Additionally, ũ0 is P̃-almost surely nonnegative.
At last, estimate (3.2) follows from Fatou’s lemma and (5.2). We have

E

[

lim inf
ε→0

sup
t∈[0,T ]

(ˆ
O

1

2

∣∣ũε
x

∣∣2 dx
)q
]

≤ lim inf
ε→0

E

[

sup
t∈[0,T ]

(ˆ
O

1

2

∣∣ũε
x

∣∣2 dx
)q
]

≤ C(T, q, ũ0).

Hence, by the lower semi-continuity of the L∞(0, T ; H1(O)) norm w.r.t. the conver-
gence in the distributional sense and Remark 8.3 from [1], we deduce

E

[

sup
t∈[0,T ]

(
1

2

ˆ
O

|ũx |2 dx
)q
]

≤ C(T, q, ũ0) .

Again, with Fatou’s lemma and the lower semi-continuity of the L p(OT )-norm w.r.t.

to weak convergence of ((ũε)
α+3
4 )x and ((ũε)

α+3
2 )xx , we conclude

E

[(ˆ T

0

ˆ
O

((ũ)
α+3
4 )4x dxds

)q
]

≤ C(T, q, ũ0)
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and

E

[(ˆ T

0

ˆ
O

((ũ)
α+3
2 )2xx dxds

)q
]

≤ C(T, q, ũ0),

where we used the α-entropy-energy estimate respectively. Thus, we have shown the
estimate (3.2) and completed the proof of Theorem 3.1. �
Finally, we show the zero-contact-angle property at touch-down points of the solu-

tion.

Proof of Corollary 3.2. From the a priori estimate (3.2) combined with (H2), we in-

fer that ũ
α+3
4 (·, ·, ω) is element of L4((0, T );W 1,4(O)) P̃-almost surely. Using the

nonnegativity of ũ, the assumption on α, and the fact that ũ
α+3
4 (·, t, ω) ∈ W 1,4(O)

for almost all t ∈ [0, T ], the claim follows from the estimate

0 ≤ ũ(x, t0, ω) ≤ C(ω, t0)|x − x0|
3

α+3 for x ∈ O
which is a consequence of Sobolev’s embedding theorem. �
Concluding remarks. In this paper which is partially based on the master thesis of the
second author [35], we have presented a rather elementary proof for the existence of
zero-contact angle solutions to the stochastic thin-filmEq. (1.1) for a quadraticmobility
m(·) in one space dimension. The strategy has been to derive new regularity results
first for approximate solutions which differ from (1.1) by a potential that enhances
spreading and that this way entails strict positivity almost surely. We expect that this
method can be slightly modified to establish corresponding results in the spatially two-
dimensional case, too, this time starting from the existence result in [38]. Moreover,
the new integral estimate (3.2) may serve as a starting point to establish results on the
qualitative behavior of solutions—like finite speed of propagation or (non)-occurrence
of waiting time phenomena. It remains, however, an open problem to which extent
this approach may be applied to more general mobilities m(·).
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A. Stratonovich correction

We will briefly discuss how to derive Eq. (2.6) from Eq. (2.1). We skip the index ε

in this section. The Stratonovich correction term with respect to
∑

k∈Z
(λkgku)x ◦ dβk(t) (A.1)

reads

CS = 1

2

∑

k∈Z
λ2k(gk(ugk)x )x , (A.2)

see, e.g., [18]. By the identities

gkg
′
k = 2πk

L
gkg−k (A.3)

g−kg
′−k = −2πk

L
g−kgk (A.4)

g2k + g2−k = 2

L
, (A.5)

a straightforward computation shows

CS =
(

λ20

L
+

∞∑

k=1

2λ2k
L

)

uxx = CStratuxx . (A.6)

The stochastic thin-film equation with Stratonovich noise can then be written as

du = (−(u2uxxx )x + CStrat uxx )dt + (udW )x (A.7)

or equivalently as

du = −(u2(uxx − CStrat(1 − u−1))x )xdt + (udW )x (A.8)

= −(u2(uxx − S ′(u))x )xdt + (udW )x (A.9)

with S(u) = CStrat(u − log u).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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B. Itô’s formula

In what follows, we show that all the assumptions of the Itô formula in Theorem 3.1
in [37] are satisfied in our setting. Let us first derive weak formulations as in (3.1) of
[37] in the spaces V1 := H2

per(O), V2 := H1
per(O), and H := L2(O). By Lemma 4.5,

we see that for t ∈ [0, Tσ ]
uε(·, t) ≥ c̄εσ

2
p−2 , (B.1)

where c̄ε := C̄ pε
1

p−2 . For the functions uσ as introduced in (5.5), we get for all
φ ∈ H1

per(O)

ˆ
O
uσ (t)φdx =

ˆ
O
uε
0φdx +

ˆ t∧Tσ

0

ˆ
O

(−(uσ )2(pσ )x − CStrat (uσ )x )φxdxds

−
∑

k∈Z

ˆ t∧Tσ

0

ˆ
O
uσ gkφxdxdβk (B.2)

on [0, T ].
By estimate (4.8), the function −(uσ )2(pσ )x − CStrat (uσ )x defines a mapping

ξ ∈ L2(� × [0, T ]; (H2
per(O))′) (B.3)

by

v �→ E

[ˆ T

0

ˆ
O

(−(uσ )2(pσ )x − CStrat(uσ )x )xxvdxds

]
. (B.4)

Hence, by Riesz’ representation theorem there is ξ∗ ∈ L2(� × [0, T ]; H2
per(O)) such

that ˆ
�

ˆ T

0
(H2

per(O))′ 〈ξ, φ〉H2
per(O)dsdP

ε =
ˆ

�

ˆ T

0

(
ξ∗, φ

)
H2(O)

dsdPε (B.5)

holds for all φ ∈ L2(�×[0, T ]; H2
per(O)). Similarly, we introduce f ∗ w.r.t. H1

per(O),
i.e., f ∗ solves

ˆ
�

ˆ T

0
(H1

per(O))′ 〈 f, φ〉H1
per(O)dsdP

ε =
ˆ

�

ˆ T

0

(
f ∗, φ

)
H1(O)

dsdPε (B.6)

for every φ ∈ L2(� × [0, T ]; H1
per(O)), where f ∈ L2(� × [0, T ]; (H1

per(O))′) is
defined via

v �→ E

[ˆ T

0

ˆ
O

(−(uσ )2(pσ )x − CStrat(uσ )x )vxdxds

]
. (B.7)

Riesz’ representation theorem also shows

E

[ˆ T

0

(
‖ uσ ‖2H1(O)

+ ‖ f ∗ ‖2H1(O)

)
ds

]
≤ C(ε, T ) , (B.8)
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due to (4.8). Owing to the regularity of solutions, cf. Definition 4.2 iii),

E

[ˆ T

0

(
‖ (uσ )x ‖2H2(O)

+ ‖ ξ∗ ‖2H2(O)

)
ds

]
≤ C(ε, T ) (B.9)

holds as well.
Let us set σ k

s := (λkuεgk)x . By standard convolution arguments, we find the processes
ξ∗, f ∗, σ k

s , and (σ k
s )x to be predictable. Thus, we may rewrite (B.2) by means of (B.5)

and obtain

((uσ )x (t), φ)L2(O) = (
(uε

0)x , φ
)
L2(O)

+
ˆ t∧Tσ

0

(−ξ∗, φ
)
H2(O)

ds

+
∑

k∈Z

ˆ t∧Tσ

0

(
(σ k

s )x , φ
)

L2(O)
dβk , (B.10)

where we have multiplied with φx for φ ∈ H2
per(O) and integrated by parts. On the

other hand, with (B.6) we get

(uσ (t), φ)L2(O) = (
uε
0, φ

)
L2(O)

+
ˆ t∧Tσ

0

(
f ∗, φ

)
H1(O)

ds

+
∑

k∈Z

ˆ t∧Tσ

0

(
σ k
s , φ

)

L2(O)
dβk (B.11)

for all φ ∈ H1
per(O). Both formulations (B.10) and (B.11) hold for all t ∈ [0, T ].

Concerning the assumption

∑

k∈Z
E

[ˆ T

0
‖ σ k

s ‖2Hdt
]

< ∞, (B.12)

we get with (A.3)–(A.5) and the assumptions on the data (2.5)

∑

k∈Z

ˆ
O

λ2k

∣∣(uεgk)x
∣∣2 dx = λ20

L

ˆ
O

(uε
x )

2dx +
∞∑

k=1

λ2k
2

L

ˆ
O

(uε
x )

2dx

+
∞∑

k=1

λ2kk
2 8π

2

L3

ˆ
O

(uε)2dx,

which implies (B.12) due to (4.4). The proof for (σ k
s )x uses similar arguments and

will be omitted.
For convenience, we will state the operators we work with once more. To guarantee

well-posedness on H and continuity of their Fréchet derivatives on H × H , we use a
cut-off function η ∈ C∞(R) such that for an appropriate δ > 0

η(x) =

⎧
⎪⎪⎨

⎪⎪⎩

|x | for |x | ≥ c̄εσ
2

p−2

∈ R
+ for |x | ∈ (c̄εσ

2
p−2 − δ, c̄εσ

2
p−2 )

c̄εσ
2

p−2 − δ for |x | ≤ c̄εσ
2

p−2 − δ

(B.13)
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and
∣∣∣η(s)(x)

∣∣∣ ≤ C(s)δ−s, s ∈ (1, 2) . (B.14)

Note that (B.1) implies η(uε) = uε, η′(uε) = 1, and η′′(uε) = 0 on [0, Tσ ]. We define

E1 : u �→ 1

2

ˆ
O
u2dx , (B.15)

E2 : u �→ ε

ˆ
O
F(η(u))dx , (B.16)

Gα : u �→
ˆ
O
Gα(η(u))dx , (B.17)

where Gα is defined by

Gα(u) = 1

α(α + 1)
uα+1 − 1

α
u + 1

α + 1
> 0 . (B.18)

For E1, E2, and Gα , we compute the Fréchet derivatives

DE1(u)[v] =
ˆ
O
uvdx D2E1(u)[v,w] =

ˆ
O

vwdx (B.19)

DE2(u)[v] = ε

ˆ
O
F ′(η(u))η′(u)vdx (B.20)

D2E2(u)[v,w] = ε

ˆ
O
F ′′(η(u))(η′(u))2vw + F ′(η(u))η′′(u)vwdx

(B.21)

DGα(u)[v] =
ˆ
O
G ′

α(η(u))η′(u)vdx =
ˆ
O

(
1

α
η(u)α − 1

α

)
η′(u)vdx

(B.22)

D2Gα(u)[v,w] =
ˆ
O
G ′′

α(η(u))(η′(u))2vw + G ′
α(η(u))η′′(u)vwdx . (B.23)

Due to the cutoff η, the assumptions i) to iv) of Theorem 3.1 in [37] are readily checked
for the space H and its dense subsets V1 (in the case of E1) and V2 (in the case of E2

and Gα , respectively). Hence, we may choose the operators E1, E2 and Gα to use Itô’s
formula w.r.t. to the weak formulation (B.10) in the first case and w.r.t. (B.11) in the
other two cases. We end up with the following equations which hold for t ∈ [0, T ].

1

2

ˆ
O

(uσ (t))2xdx = 1

2

ˆ
O

(uε
0)

2
xdx +

∑

k∈Z

ˆ t∧Tσ

0

ˆ
O

(uσ )xλk(uσ gk)xxdxdβk

+
ˆ t∧Tσ

0

ˆ
O

−(−(uσ )2(pσ )x − CStrat (uσ )x )(uσ )xxxdxds

+ 1

2

ˆ t∧Tσ

0

∑

k∈Z
λ2k

ˆ
O

(uσ gk)
2
xxdxds (B.24)
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and

ε

ˆ
O
F(uσ (t))dx = ε

ˆ
O
F(η(uε

0)))dx +
∑

k∈Z

ˆ t∧Tσ

0

ˆ
O

εF ′(uσ )λk(uσ gk)xdxdβk

+
ˆ t∧Tσ

0

ˆ
O

(−(uσ )2(pσ )x − CStrat (uσ )x )(εF
′(uσ ))xdxds

+ 1

2

ˆ t∧Tσ

0

∑

k∈Z
λ2k

ˆ
O

εF ′′(uσ )(uσ gk)
2
xdxds . (B.25)

The entropy (B.17) applied to (B.11) then gives

Gα(uσ (t)) = Gα(uε
0) +

∑

k∈Z

ˆ t∧Tσ

0

ˆ
O

(
1

α
(uσ )α − 1

α

)
λk(uσ gk)xdxdβk

+
ˆ t∧Tσ

0

ˆ
O

(−(uσ )2(pσ )x − CStrat (uσ )x )

(
1

α
uα

σ − 1

α

)

x
dxds

+ 1

2

ˆ t∧Tσ

0

∑

k∈Z
λ2k

ˆ
O
uα−1

σ (uσ gk)
2
xdxds . (B.26)

Thus, combining (B.24), (B.25), and (B.26) and adding all terms with a good sign to
the left-hand side, we obtain Eq. (5.11).
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[7] Z. Breźniak and M. Ondreját. Strong solutions to stochastic wave equations with values in Rie-

mannian manifolds. J. Funct. Anal., 253:449–481, 2007.
[8] R. Dal Passo, H. Garcke, and G. Grün. On a fourth-order degenerate parabolic equation: global

entropy estimates, existence, and qualitative behavior of solutions. SIAM J. Math. Anal., 29(2):321–
342, 1998.

[9] R. Dal Passo, L. Giacomelli, and G. Grün. A waiting time phenomenon for thin film equations.
Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 30(2):437–463, 2001.

[10] K.Dareiotis, B.Gess,M.V.Gnann, andG.Grün.Non-negativemartingale solutions to the stochastic
thin-film equation with nonlinear gradient noise. Arch. Ration. Mech. Anal., 242:179–234, 2021.

[11] B. Davidovitch, E. Moro, and H. A. Stone. Spreading of viscous fluid drops on a solid substrate
assisted by thermal fluctuations. Phys. Rev. Lett., 95(24):244505, 2005.

[12] C. Dellacherie. Capacités et Processus Stochastiques. Springer-Verlag, Berlin, 1972.
[13] J. Fischer. Optimal lower bounds on asymptotic support propagation rates for the thin-film equation.

J. Differential Equations, 255(10):3127–3149, 2013.



64 Page 36 of 37 G. Grün and L. Klein J. Evol. Equ.

[14] J. Fischer. Upper bounds on waiting times for the thin-film equation: the case of weak slippage.
Arch. Ratio. Mech. Anal., 211(3):771–818, 2014.

[15] J. Fischer and G. Grün. Finite speed of propagation and waiting times for the stochastic porous
medium equation: a unifying approach. SIAM J. Math. Anal., 47:825–854, 2015.

[16] J. Fischer and G. Grün. Existence of positive solutions to stochastic thin-film equations. SIAM J.
Math. Anal., 50(1):411–455, 2018.

[17] B. Gess. Finite speed of propagation for stochastic porous media equations. SIAM J. Math. Anal.,
45:2734–2766, 2013.

[18] B. Gess and M. V. Gnann. The stochastic thin-film equation: existence of nonnegative martingale
solutions. Stoch. Process. Appl., 130(12):7260–7302, 2020.

[19] L. Giacomelli, M. V. Gnann, H. Knüpfer, and F. Otto. Well-posedness for the Navier-slip thin-film
equation in the case of complete wetting. J. Differential Equations, 257(1):15–81, 2014.

[20] L. Giacomelli and G. Grün. Lower bounds on waiting times for degenerate parabolic equations and
systems. Interfaces Free Bound., 8:111–129, 2006.

[21] L. Giacomelli and H. Knüpfer. A free boundary problem of fourth order: classical solutions in
weighted Hölder spaces. Comm. Partial Differential Equations, 35(11):2059–2091, 2010.

[22] L. Giacomelli, H. Knüpfer, and F. Otto. Smooth zero-contact-angle solutions to a thin-film equation
around the steady state. J. Differential Equations, 245(6):1454–1506, 2008.

[23] M. V. Gnann. Well-posedness and self-similar asymptotics for a thin-film equation. SIAM J. Math.
Anal., 47(4):2868–2902, 2015.

[24] M. V. Gnann. On the regularity for the Navier-slip thin-film equation in the perfect wetting regime.
Arch. Ration. Mech. Anal., 222(3):1285–1337, 2016.

[25] M. V. Gnann, S. Ibrahim, and N. Masmoudi. Stability of receding traveling waves for a fourth order
degenerate parabolic free boundary problem. Adv. Math., 347:1173–1243, 2019.

[26] H. Grillmeier. Free-boundary problems and noise: analysis and numerics of stochastic porous-
medium equations and of stochastic parabolic p-Laplace equations. Ph.D. thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Erlangen, 2020.

[27] G. Grün. Droplet spreading under weak slippage: the optimal asymptotic propagation rate in the
multi-dimensional case. Interfaces Free Bound., 4(3):309-323, 2002.

[28] G. Grün. Droplet spreading under weak slippage - existence for the Cauchy problem.Comm. Partial
Differential Equations, 29(11-12):1697–1744, 2005.

[29] G. Grün. Upper bounds on waiting times for the thin-film equation: the case of weak slippage. Arch.
Ration. Mech. Anal., 211(3):771–818, 2014.

[30] G. Grün, K. Mecke, and M. Rauscher. Thin-film flow influenced by thermal noise. J. Stat. Phys.,
122(6):1261–1291, 2006.

[31] M. Hofmanova, M. Röger, and M. von Renesse. Weak solutions for a stochastic mean curvature
flow of two-dimensional graphs. Probab. Theory Relat. Fields, 168(1-2):373–408, 2017.

[32] M. Hofmanova and J. Seidler. On weak solutions of stochastic differential equations. Stoch. Anal.
Appl., 30:100–121, 2012.

[33] A. Jakubowski. The almost sure Skorokhod representation for subsequences in nonmetric spaces.
Theory Probab. Appl., 42(1):167–174, 1998.

[34] I. Karatzas and S. Shreve. Brownian Motion and Stochastic Calculus. Springer, New York, 2004.
[35] L. Klein. On the construction of nonnegative solutions to surface-tension driven stochastic thin-

film equations with general nonnegative initial data. Master thesis, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Erlangen, May 2020. in German.

[36] A. Klenke. Probability Theory. Springer, London, 2014.
[37] N. V. Krylov. A relatively short proof of Itô’s formula for SPDEs and its applications. Stoch. Partial

Differ. Equ. Anal. Comput., 1(1):152–174, 2013.
[38] S. Metzger and G. Grün. Existence of nonnegative solutions to stochastic thin-film equations in two

space dimensions. arXiv e-prints, arXiv:2106.07973, 2021. Interfaces Free Bound., to appear.
[39] M. Sauerbrey. Martingale solutions to the stochastic thin-film equation in two dimensions. arxive

e-prints, arXiv:2108.05754, 2021.
[40] J. Simon. Compact sets in the space L p(0, T ; B). Ann. Mat. Pura Appl., 146:65–96, 1987.

http://arxiv.org/abs/2106.07973
http://arxiv.org/abs/2108.05754


J. Evol. Equ. Zero-contact angle solutions Page 37 of 37 64

Günther Grün and Lorenz Klein
Department Mathematik
Friedrich-Alexander-Universität
Erlangen-Nürnberg
Cauerstraße 11
91058 Erlangen
Germany
E-mail: gruen@math.fau.de

Lorenz Klein
E-mail: lorenz.klein@fau.de

Accepted: 5 June 2022


	Zero-contact angle solutions to stochastic thin-film equations
	Abstract
	1. Introduction
	2. Preliminaries
	3. Main results
	4. An existence result for positive approximate solutions
	5. A combined α-entropy-energy estimate
	6. Convergence of approximate solutions
	6.1. Application of Jakubowski's theorem
	6.2. Convergence results of the deterministic terms
	6.3. Identification of the stochastic integral
	6.4. Proof of the main results

	Acknowledgements
	A. Stratonovich correction
	B. Itô's formula
	REFERENCES




