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Abstract. In this paper we provide sufficient conditions which ensure that the nonlinear equation dy(t) =
Ay(t)dt + σ(y(t))dx(t), t ∈ (0, T ], with y(0) = ψ and A being an unbounded operator, admits a unique
mild solution such that y(t) ∈ D(A) for any t ∈ (0, T ], and we compute the blow-up rate of the norm of
y(t) as t → 0+. We stress that the regularity of y is independent of the smoothness of the initial datum ψ ,
which in general does not belong to D(A). As a consequence we get an integral representation of the mild
solution y which allows us to prove a chain rule formula for smooth functions of y.

1. Introduction

The Young integral has been introduced in [15], where the author defines extension
of the Riemann–Stieltjes integral

∫
f dg when neither f nor g have finite total varia-

tion. In particular in [15] it is shown that, if f and g are continuous functions such that
f has finite p-variation and g has finite q-variation, with p, q > 0 and p−1+q−1 > 1,
then the Stieltjes integral

∫
f dg is well-defined as a limit of Riemann sums. This was

the starting point of the crucial extension to rough paths integration. Indeed, in [13]
the author proves that it is possible to define the integral

∫
f dx also in the case when

f has finite p-variation and x has finite q-variation with p, q > 0 and p−1+q−1 < 1.
In this case, additional information on the function x is needed, which would play the
role of iterated integrals for regular paths.
An alternative formulation of the integration over rough paths is provided in [6],

where the author considers Hölder-like (semi)norms instead of p-variation norms.
Namely, if f is α-Hölder continuous and g is η-Hölder continuous with α + η > 1
then the Young integral is well defined as the unique solution to an algebraic problem.
Recently, a more general theory of rough integration, when α + η ≤ 1, has been
introduced in [5].

Here, we consider only Young integrals and focus on the spatial regularity of solu-
tions to infinite dimensional evolution equations leaving aside the enormous amount of
results connected to the rough paths case culminating in the breakthrough on singular
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SPDEs (see, e.g., [7]). Namely, we consider the nonlinear evolution equation
{
dy(t) = Ay(t)dt + σ(y(t))dx(t), t ∈ (0, T ],
y(0) = ψ,

(1.1)

where A is the infinitesimal generator of a semigroup defined on a Banach space X
with suitable regularizing properties and x is a η-Hölder continuous function with
η > 1/2. Ordinary differential equations (in finite dimensional spaces) driven by an
irregular path of Hölder regularity greater than 1/2 have been understood in full details
since [16] (see also [10]). On the other hand, the infinite dimensional case was treated
in [8] and then developed in [9] and [3], see also [14] for earlier results in the context
of stochastic partial differential equations driven by an infinite dimensional fractional
Brownian motion of Hurst parameter H > 1/2.

In [3], problem (1.1) is formulated in a mild form

y(t) = S(t)y(0) +
∫ t

0
S(t − r)(σ (y(r)))dx(r), t ∈ [0, T ],

where (S(t))t≥0 is the analytic semigroup generated by the sectorial operator A, and
the authors exploit the regularizing properties of S to show that, if the initial datum
ψ is smooth enough (i.e., if it belongs to a suitable domain of the fractional powers
(−A)α), then Eq. (1.1) admits a unique mild solution with the same spatial regularity
as the initial datum. The key technical point in [3] is to prove that the convolution

∫ t

0
S(t − s) f (s)dx(s) (1.2)

is well defined if f takes values in D((−A)α) and belongs to a Hölder-type function
space. To be more precise, the authors require that f : [0, T ] → D((−A)α) satisfies
the condition

sup
s<t,s,t∈[0,T ]

‖ f (t) − f (s) − (S(t − s) − I ) f (s)‖D((−A)α)

(t − s)β
< +∞.

This is one of the main difference with respect to the finite dimensional case, where
the condition on the function f reads in terms of classical Hölder norms. Once that
convolution (1.2) is well-defined, the smoothness of the initial datum ψ and suitable
estimates on (1.2) allow the authors to solve the mild reformulation of Eq. (1.1) by a
fixed point argument in the same Hölder-type function space introduced above.
Our point in the present paper is that, if one looks a bit more closely to the trade-

off between Hölderianity in time and regularity in space of the convolution (1.2),
one discovers that an extra regularity in space can be extracted by estimates, see
Lemma 2.2. This allows us to show that the mild solution to Eq. (1.1), which in our
situation is driven by a finite dimensional noise, is more regular than the initial datum
(that nevertheless has to enjoy the same regularity assumptions as in [3]). Namely,
y(t) belongs to D(A) for any t ∈ (0, T ] (see Theorem 3.1).
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It is also worth mentioning that, when A is an unbounded operator, the mild formu-
lation of Eq. (1.1) is the most suitable to prove existence and uniqueness of a solution
since it allows to apply a fixed point argument in spaces of functions with a low degree
of smoothness. On the other hand this formulation is too weak in several applications
where an integral formulation of the equation helps a lot. Here, having proved that the
mild solution y takes values in D(A), we are in a position to show that y admits an
integral representation as well, i.e., it satisfies the equation:

y(t) = ψ +
∫ t

0
Ay(s)ds +

∫ t

0
σ(y(s))dx(s), t ∈ [0, T ].

Moreover, starting from the above relation, we can also obtain a chain rule; in other
words we show that we can differentiate with respect to time regular enough functions
of the solution to Eq. (1.1). Finally, as an example of possible applications of the chain
rule, we propose (in Hilbertian setting, see Proposition 5.1) a necessary conditions
for the invariance of Hyperplanes under the action of solutions of equations driven
by irregular paths. In the case of an ordinary differential equation with a rough path,
this problem is addressed in [2], when the state space is finite dimensional and no
unbounded operators are involved in the equation. The problem of the invariance of a
convex set with respect to a general infinite dimensional evolution equation driven by a
rough trajectory is still unexplored (see [1] and the references therein for corresponding
results in the case of classical evolution equations).
Summarizing, this paper can been described as a first step towards a systematic

study, by the classical tools of semigroup theory, of smoothing properties of the mild
solution to (1.1). We plan to go further in the analysis, first weakening the smoothness
assumptions on ψ and, then, developing results analogous to those in this paper for
equations driven by more irregular noises as in the case of rough paths.
The paper is structured as follows. In Sect. 2, we introduce the function spaces

that we use and we recall some results taken from [6,9], slightly generalizing some
of those results. In Sect. 3, we prove the existence and uniqueness of a mild solution
to the nonlinear Young equation (1.1) when ψ belongs to a suitable space Xα ⊂ X
(which will be defined later), x is η-Hölder continuous for some η ∈ (1/2, 1) and
α + η > 1. We show that this solution takes values in D(A) and estimate the blow-up
rate of its X1+μ-norm as t tends to 0+, when μ ∈ [0, η + α − 1) (see Theorem 3.1).
The smoothness of the mild solution strongly relies on the smoothing effect of the
semigroup associatedwith operator A. In general, when A is the infinitesimal generator
of a strongly continuous semigroup, such smoothing properties are not satisfied by the
associated semigroup. Nevertheless, we still can prove the existence and uniqueness
of the mild equation to Eq. (1.1) by a suitable choice of the spaces Xα . Based on
Theorem 3.1, in Sect. 4 we prove that the mild solution to (1.1) can be written in an
integral form, which is used in Sect. 5 to prove the chain rule. By a simple example,
we show how the availability both of a solution, which takes values in D(A), and
of a chain rule, can be exploited to tackle the problem of the invariance of convex
sets, when an unbounded operator A is involved. Finally, in Sect. 6 we provide two
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examples, one on the space of continuous functions and one on an L p state space, to
illustrate our results.

Notation. We denote by [a, b]2< the set {(s, t) ∈ R
2 : a ≤ s < t ≤ b}. Further, we

denote byL (Xα, Xγ ) the space of linear bounded operators from Xα into Xγ , for each
α, γ ≥ 0. For every A ⊆ R, C(A; X) denotes the usual space of continuous functions
from A into X endowed with the sup-norm. The subscript “b” stands for bounded.
Finally, for everyα ∈ (0, 1),Cα(A; X)denotes the subset ofCb(A; X) consisting ofα-
Hölder continuous functions. It is endowedwith the norm‖ f ‖Cα(A;X) = ‖ f ‖Cb(A;X)+
[ f ]Cα(A;X), where [ f ]Cα(A;X) = sup

s,t∈A
s 
=t

‖ f (t) − f (s)‖X
|t − s|α . When X = R, we simply

write Cα(A).

2. The abstract Young equation

2.1. Function spaces and preliminary results

Throughout the paper, X denotes a Banach space and A : D(A) ⊆ X → X
is a linear operator which generates a semigroup (S(t))t≥0. We further assume the
following set of assumptions.

Hypothesis 2.1. (i) For every α ∈ [0, 2), there exists a space Xα (with the con-
vention that X0 = X and X1 = D(A)) such that if β ≤ α then Xα is con-
tinuously embedded into Xβ . We denote by Kα,β a positive constant such that
|x |β ≤ Kα,β |x |α for every x ∈ Xα;

(ii) for every ζ, α, γ ∈ [0, 2), ζ ≤ α, and μ, ν ∈ (0, 1] with μ > ν there exist
positive constants Mζ,α,T , and Cμ,ν,T , which depend on T , such that

{
(a) ‖S(t)‖L (Xζ ,Xα) ≤ Mζ,α,T t−α+ζ ,

(b) ‖S(t) − I‖L (Xμ,Xν ) ≤ Cμ,ν,T tμ−ν,
(2.1)

for every t ∈ (0, T ].
Example 2.1. If A is a sectorial operator on X , then Hypotheses 2.1 are satisfied if we
set Xα := DA(α,∞) for everyα ∈ (0, 2). Hypotheses 2.1 are satisfied alsowhen A is a
negative sectorial operator and Xα := D((−A)α) for everyα ∈ (0, 2).More generally,
if A is a sectorial operator, then Hypotheses 2.1 are satisfied with Xα := [X, D(A)]α
for every α ∈ (0, 1), X1 = D(A) and Xα = {x ∈ D(A) : Ax ∈ Xα−1} if α ∈ (1, 2).
We refer the reader also to Sect. 3.1 for another choice of the spaces Xα , which
guarantees the validity of a part of Hypotheses 2.1.

We now introduce some operators which will be used extensively in this paper.
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Definition 2.1. Let a and b be two real numbers with a < b. Then, the operators
δ, δS : C([a, b]; X) → C([a, b]2<; X) are defined as follows:

(δ f )(s, t) = f (t) − f (s),

(δS f )(s, t) = f (t) − f (s) − a(s, t) f (s),

for every (s, t) ∈ [a, b]2< and f ∈ C([a, b]; X), where a(s, t) = S(t − s) − I .

Remark 2.1. We stress that the continuity of the function a in [a, b]2< is implied by the
strong continuity of the semigroup (S(t))t≥0 in (0,+∞). No continuity assumption
at t = 0 is required.

2.2. Function spaces

Definition 2.2. For every a, b ∈ R, with a < b and α, β ∈ [0, 2), we denote by:
(i) Cβ([a, b]2<; Xα) the subspace of C([a, b]2<; Xα) consisting of functions f such

that

‖ f ‖Cβ([a,b]2<;Xα) := sup
(s,t)∈[a,b]2<

‖ f (s, t)‖Xα

|t − s|β < +∞;

(ii) Eβ([a, b]; Xα) the subset of C([a, b]; Xα) consisting of functions f such that
δS f ∈ Cβ([a, b]2<; Xα) endowed with the norm

‖ f ‖Eβ([a,b];Xα) := ‖ f ‖C([a,b];Xα) + ‖δS f ‖Cβ([a,b]2<;Xα).

Remark 2.2. For every a, b ≥ 0 with a < b, and α, β, k ∈ [0, 2) the following
properties hold true.

(i) If f ∈ C([a, b]; Xα) ∩ Ek([a, b]; Xβ) then f ∈ Cρ([a, b]; Xγ ) for every γ ∈
[0, β], such that γ < α, and ρ := min{k, α − γ }. Indeed, for every (s, t) ∈
[a, b]2< we can estimate

‖ f (t) − f (s)‖Xγ ≤ ‖(δS f )(s, t)‖Xγ + ‖a(s, t) f (s)‖Xγ .

Estimating separately the two terms we get

‖(δS f )(s, t)‖Xγ ≤ Kβ,γ ‖ f ‖Ek ([a,b];Xβ)|t − s|k,
‖a(s, t) f (s)‖Xγ ≤ Cα,γ,b‖ f ‖C([a,b];Xα)|t − s|α−γ

for every a ≤ s < t ≤ b, which yields the assertion. In particular, Eα([a, b]; Xα)

is continuously embedded into Cα−γ ([a, b]; Xγ ) if α ∈ (0, 1) and γ ∈ [0, α],
it is contained in the space of Lipschitz continuous functions over [a, b] with
values in X if α = 1, and it consists of constant functions if α > 1.

(ii) For every f : [a, b]2< → X and α, β, γ ≥ 0, such that β > γ , it holds that

‖ f ‖Cγ ([a,b]2<;Xα) ≤ |b − a|β−γ ‖ f ‖Cβ([a,b]2<;Xα). (2.2)
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Assume that ‖ f ‖Cβ([a,b]2<;Xα) is finite. Then, for any s, t ∈ [a, b] with s < t we
can estimate

‖ f (s, t)‖Xα

|t − s|γ = ‖ f (s, t)‖Xα

|t − s|β |t − s|β−γ ≤ |b − a|β−γ ‖ f (s, t)‖Xα

|t − s|β .

By taking the supremum over (s, t) ∈ [a, b]2<, (2.2) follows.
We recall some relevant results from [6] and [9]. In particular,we recall the definition

of the Young integrals

∫ t

s
f (r)dx(r),

∫ t

s
S(t − r) f (r)dx(r), s, t ∈ [a, b],

where f : [a, b] → X and x : [a, b] → R satisfy suitable assumptions. In particular,
we assume the following condition on x .

Hypothesis 2.2. x ∈ Cη([a, b]) for some η ∈ (1/2, 1).

Theorem 2.1. (Section 3 in [6] and Section 2 in [9]) Fix f ∈ Cα([a, b]; X), where
α ∈ (1 − η, 1). Then, for each (s, t) ∈ [a, b]2< the Riemann sum

n−1∑

i=0

f (ti )(x(ti+1) − x(ti )),

whereΠ(s, t) := {t0 = s < t1 < . . . < tn = t} is a partition of [s, t] and |Π(s, t)| :=
max{ti+1 − ti : i := 0, . . . , n − 1}, converges in X as |Π(s, t)| tends to 0. Further,
there exists a function R f : [a, b]2< → X such that

I f (s, t) := lim|Π(s,t)|→0

n−1∑

i=0

f (ti )(x(ti+1) − x(ti )) = f (s)(x(t) − x(s)) + R f (s, t)

(2.3)

for each (s, t) ∈ [a, b]2<, and

‖R f ‖Cη+α([a,b]2<;X) ≤ 1

1 − 2−(η+α−1)
‖δ f ‖Cα([a,b]2<;X)‖x‖Cη([a,b]). (2.4)

In particular,

‖I f ‖Cη([a,b]2<;X) ≤
(

‖ f ‖C([a,b];X) + (b − a)α

1 − 2−(η+α−1)
‖δ f ‖Cα([a,b]2<;X)

)

‖x‖Cη([a,b]).

(2.5)

Remark 2.3. For each s, τ, t ∈ [a, b], with s < τ < t , it holds that

I f (s, t) = I f (s, τ ) + I f (τ, t). (2.6)
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To check this formula it suffices to choose a family of partitions Π(s, t) such that
τ ∈ Π(s, t) and letting |Π(s, t)| tend to 0. As a byproduct, if we setΦ(t) := I f (a, t),
t ∈ (a, b], we deduce that (δΦ)(s, t) = I f (s, t). Indeed, from (2.6) we infer

(δΦ)(s, t) = I f (a, t) − I f (a, s) = I f (s, t).

Moreover, Φ is the unique function such that Φ(a) = 0 and

‖(δΦ)(t, s) − f (s)(δx)(t, s)‖X ≤ c|t − s|α+η

for every (s, t) ∈ [a, b]2< and some positive constant c.

Remark 2.4. Clearly, when x ∈ C1([a, b]) the limit in (2.3) coincides with the
Riemann–Stieltjes integral over the interval [s, t] of the function f with respect to
the function x .

Remark 2.4 yields the following definition (see [9]).

Definition 2.3. For every f ∈ Cα([0, T ]) (α ∈ (1−η, 1)) and every (s, t) ∈ [a, b]2<,
I f (s, t) is the Young integral of f in [s, t] and is denoted by

∫ t

s
f (u)dx(u).

The above result reports for the construction of the “classical” Young integral. The
following one, proved in [9, Sections 3 & 4], accounts the construction of Young type
convolutions with the semigroup (S(t))t≥0.

Theorem 2.2. For each f ∈ Ek([a, b]; Xβ), such that β ∈ [0, 2) and η + k > 1, the
limit

lim|Π(s,t)|→0

n−1∑

i=0

S(t − ti ) f (ti )(x(ti+1) − x(ti )) (2.7)

exists in X for every (s, t) ∈ [a, b]2<. Further, there exists a functionRS f : [a, b]2< →
X such that

IS f (s, t) := lim|Π(s,t)|→0

n−1∑

i=0

S(t − ti ) f (ti )(x(ti+1) − x(ti ))

= S(t − s) f (s)(x(t) − x(s)) + RS f (s, t),

for each (s, t) ∈ [a, b]2<, and for each ε ∈ [0, 1) there exists a positive constant
c = c(η + α, ε) such that

‖RS f ‖Cη+k−ε([a,b]2<;Xβ+ε)
≤ c‖δS f ‖Ck ([a,b]2<;Xβ)‖x‖Cη([a,b]). (2.8)

In particular,

‖IS f ‖Cη([a,b]2<;Xβ) ≤ M0,β,b‖ f ‖C([a,b];Xβ )‖x‖Cη([a,b]) + ‖RS f ‖Cη([a,b]2<;Xβ)

≤ (
M0,β,b‖ f ‖C([a,b];Xβ ) + c(k, a, b)‖δS f ‖Ck ([a,b]2<;Xβ)

)‖x‖Cη([a,b]).
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Remark 2.5. Actually, in [9], Theorem 2.2 has been proved assuming that Xβ =
D((−A)β). A direct inspection of the proof of [9, Theorem 4.1(2)] shows that the
assertion holds true also under our assumptions, since estimates (2.1) allow us to
repeat verbatim the same arguments in the quoted paper.

Again, when x ∈ C1([a, b]) the limit in (2.7) coincides with the Riemann–Stieltjes
integral of the function S(t −·) f with respect to the function x over the interval [s, t].
As above, this remark inspires the following definition (see again [9]).

Definition 2.4. For every f ∈ Ek([a, b]; Xβ), with k ∈ (1 − η, 1) and β ∈ [0, 2),
IS f (s, t) is the Young convolution of the function S(t −·) f with respect to x in [s, t]
for every (s, t) ∈ [a, b]2< and it is denoted by

∫ t

s
S(t − u) f (u)dx(u). (2.9)

For further use, we prove a slight extension of the estimate in [9, Theorem 4.1(2)].

Lemma 2.1. Let f be a function in Ek([a, b]; Xβ) ∩C([a, b]; Xβ1) and assume that
k ∈ (1− η, 1) and β, β1 ∈ [0, 2). Then, for every r ∈ [k, 1) the functionIS f belongs
to Cη+k−r ([a, b]2<; Xνr ), where νr := min{r + β, r + β1 − k}. Further,

‖IS f ‖Cη+k−r ([a,b]2<;Xνr )

≤ Cβ1,η,r,k‖x‖Cη([a,b])(‖δS f ‖Ck ([a,b]2<;Xβ) + ‖ f ‖C([a,b];Xβ1 )) (2.10)

for every r ∈ [k, 1).
Proof. From Theorem 2.2 it follows that IS f is well-defined as Young convolution
and

(IS f )(s, t) = (x(t) − x(s))S(t − s) f (s) + RS f (s, t), (s, t) ∈ [a, b]2<.

Using condition (2.1)(ii)(a), we get

‖(x(t) − x(s))S(t − s) f (s)‖Xγ+β1
≤ [x]Cη([a,b])|t − s|η‖S(t − s) f ‖Xγ+β1

≤ Mβ1,γ+β1,b[x]Cη([a,b])‖ f ‖C([a,b];Xβ1 )|t − s|η−γ (2.11)

for each (s, t) ∈ [a, b]2<, γ ∈ [0, η).
Now, we fix r ∈ [k, 1) and take γ = r − k. Since η + k > 1 it follows that

γ < 1 − k < η and η − γ = η + k − r . From (2.8) and (2.11) we conclude that
IS f ∈ Cη+k−r ([a, b]2<; Xνr ), where νr := min{r + β, r + β1 − k}, and estimate
(2.10) follows. �
Remark 2.6. From the definition of the Young convolution it follows that if x, x1, x2
belong to Cη([a, b]) and f, f1, f2 belong to Ek([a, b]; Xβ), for some η ∈ (1/2, 1),
k ∈ (1 − η, 1) and β ∈ [0, 2), then

∫ t

s
S(t − u) f (u)d(x1 + x2)(u) =

∫ t

s
S(t − u) f (u)dx1(u)

+
∫ t

s
S(t − u) f (u)dx2(u) (2.12)
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and
∫ t

s
S(t − u)( f1(u)+ f2(u))dx(u) =

∫ t

s
S(t − u) f1(u)dx(u)

+
∫ t

s
S(t − u) f2(u)dx(u) (2.13)

for every (s, t) ∈ [a, b]2<.
Now, we prove that the Young convolution (2.9) can be split into the sum of two

terms.

Lemma 2.2. For every f ∈ Ek([a, b]; Xβ), with β ∈ [0, 2) and k ∈ (1−η, 1), every
(s, t) ∈ [a, b]2< and τ ∈ [s, t], it holds that

∫ t

s
S(t − r) f (r)dx(r) = S(t − τ)

∫ τ

s
S(τ − r) f (r)dx(r)

+
∫ t

τ

S(t − r) f (r)dx(r).

Proof. The proof is straightforward: it is enough to take into account the properties
of Young convolution and the semigroup property of (S(t))t≥0. �

Corollary 2.1. For every f ∈ Ek([a, b]; Xβ), with k+η > 1 and β ∈ [0, 2), it holds
that

(δSIS f (a, ·))(s, t) = IS f (s, t) =
∫ t

s
S(t − r) f (r)dx(r), (s, t) ∈ [a, b]2<.

Proof. From the definition of δS and of IS f it follows that

(δSIS f (a, ·))(s, t) =
∫ t

a
S(t − r) f (r)dx(r) − S(t − s)

∫ s

a
S(s − r) f (r)dx(r)

(2.14)

for every (s, t) ∈ [a, b]2<. Applying Lemma 2.2 with s = a and τ = s we infer that

∫ t

a
S(t − r) f (r)dx(r) = S(t − s)

∫ s

a
S(s − r) f (r)dx(r) +

∫ t

s
S(t − r) f (r)dx(r),

which combined with (2.14) yields the assertion. �

3. Smoothness of mild solutions

We consider the following assumptions on the nonlinear term σ .
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Hypothesis 3.1. The function σ : X → X is Fréchet differentiable with bounded
and locally Lipschitz continuous Fréchet derivative. Moreover, the restriction of σ to
Xα maps this space into itself for some α ∈ (0, 1) such that α + η > 1, it is locally
Lipschitz continuous and there exists a positive constant Lα

σ such that

‖σ(x)‖Xα ≤ Lα
σ (1 + ‖x‖Xα ), x ∈ Xα. (3.1)

Hereafter, we assume that Hypothesis 2.2 with a = 0 and b = T > 0 and Hypoth-
esis 3.1 hold true.
We consider the following nonlinear Young equation

{
dy(t) = Ay(t)dt + σ(y(t))dx(t), t ∈ (0, T ],
y(0) = ψ.

(3.2)

and we are interested in its mild solutions which take values in D(A), where by mild
solution we mean a function y : [0, T ] → X such that σ ◦ y ∈ Eα([0, T ]; X),
η + α > 1 and

y(t) = S(t)ψ + (IS(σ◦y))(0, t), t ∈ [0, T ]. (3.3)

Theorem 3.1. Let Hypotheses 2.1, 2.2 and 3.1 be satisfied, with [a, b] = [0, T ]. Then,
for every ψ ∈ Xα such that α ∈ (0, 1/2) and η + α > 1, there exists a unique mild
solution y ∈ Eα([0, T ]; Xα) to equation (3.2). The solution y is actually smoother
since for everya ∈ (0, T )andγ ∈ [η+α−1, η+α), y belongs to Eη+α−γ ([a, T ]; Xγ ).
Moreover, for every μ ∈ [0, η + α − 1) and ε > 0 there exists a positive constant
c = c(ε, μ) such that

‖y(t)‖X1+μ ≤ ctη+α−2−μ−ε, t ∈ (0, T ]. (3.4)

In particular, y(t)belongs to D(A) for every t ∈ (0, T ]and y ∈ Cη−β([a, T ]2<; Xα+β)

for every a ∈ (0, T ) and β ∈ [0, η).

The proof follows the lines of [9, Theorem 4.3], but our assumptions are weaker. In
particular, in [9] the authors assume that η > 2α, while we do not need this condition.

Before proving Theorem 3.1, we state the following lemma, which is a straightfor-
ward consequence of Lemma 2.2.

Lemma 3.1. Suppose that y is a mild solution to (3.2). Then, for every τ ∈ [0, T ] it
holds that

y(t) = S(t − τ)y(τ ) +
∫ t

τ

S(t − r)σ (y(r))dx(r), t ∈ [τ, T ]. (3.5)

Proof of Theorem 3.1. We split the proof into some steps.
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Step 1.Here, we prove an apriori estimate. Namely, we show that if y ∈ Eα([0, T ];
Xα) is a mild solution to (3.2), then there exists a positive constantR, which depends
only on ψ , T , α, x , η and σ , such that

‖y‖Eα([0,T ];Xα) ≤ R. (3.6)

Let us fix a, b ∈ [0, T ], with a < b. Taking Corollary 2.1 into account, it is easy to
check that (δS y)(s, t) = (IS(σ◦y))(s, t) for every (s, t) ∈ [0, T ]2<. Hence, to estimate
‖δS y‖Cα([a,b]2<;Xα) we can take advantage of Lemma 2.1. For this purpose, let us prove
thatσ◦y belongs to Eα([a, b]; X)∩C([a, b]; Xα). The conditionσ◦y ∈ C([a, b]; Xα)

follows immediately from (3.1), which also shows that

‖σ ◦ y‖C([a,b];Xα) ≤ Lα
σ (1 + ‖y‖C([a,b];Xα)). (3.7)

Further, we note that the function δS(σ ◦ y) is continuous in [0, T ] with values in X .
Indeed, fix (t0, s0) ∈ [a, b]2<. Then,

‖(δS(σ ◦ y))(t, s) − (δS(σ ◦ y))(t0, s0)‖X
≤ ‖(σ (y(t)) − (σ (y(t0))‖X + ‖S(t − s)σ (y(s)) − S(t0 − s0)σ (y(s0))‖X
≤ L‖y(t) − y(t0)‖X + ‖S(t − s)‖L (X)‖σ(y(s)) − σ(y(s0))‖X

+ ‖(S(t − s) − S(t0 − s0))σ (y(s0))‖X
≤ L‖y(t) − y(t0)‖X + LM0,0,T ‖y(s) − y(s0)‖X

+ 2Cα,0,T ‖σ(y(s0))‖Xα |t − t0|α (3.8)

for every (t, s) ∈ [0, T ]2<, where M0,0,T and Cα,0,T are the constants in condition
(2.1), L denotes the Lipschitz constant of σ on X , and the last side of the previous
chain of inequalities vanishes as (t, s) tends to (t0, s0). Next, we split

(δS(σ ◦ y))(s, t) = (δ(σ ◦ y))(s, t) − a(s, t)σ (y(s)), (s, t) ∈ [0, T ]2<.

and estimate separately the two terms. As far as the first one is considered, we observe
that

‖(δ(σ ◦ y))(s, t)‖X = ‖σ(y(t)) − σ(y(s))‖X
≤ Lσ ‖y(t) − y(s)‖X
≤ Lσ (‖(δS y)(s, t)‖X + ‖a(s, t)y(s)‖X )

≤ Lσ (1 + Cα,0,T )‖y‖Eα([a,b];Xα)|t − s|α (3.9)

for every (s, t) ∈ [a, b]2<, where Lσ denotes the Lipschitz constant of the function σ .
As far as the term a(s, t)σ (y(s)) is concerned, we use (3.1) to estimate

‖a(s, t)σ (y(s))‖X ≤ Cα,0,T ‖σ(y(s))‖Xα |t − s|α
≤ Cα,0,T L

α
σ (1 + ‖y‖Eα([a,b];Xα))|t − s|α
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for every (s, t) ∈ [a, b]2<. We have so proved that σ ◦ y ∈ Eα([a, b]; X) and

‖(δS(σ ◦ y)‖Cα([a,b]2<;X) ≤ (Lσ + Lα
σ )(1 + Cα,0,T )(1 + ‖y‖Eα([a,b];Xα)). (3.10)

Thus, we can apply Lemma 2.1 as claimed, with k = β1 = α and β = 0, to infer
that IS(σ◦y) belongs to Cη+α−r ([a, b]2<; Xr ) for every r ∈ [α, 1) and

‖IS(σ◦y)‖Cη+α−r ([a,b]2<;Xr )

≤ Cα,η,r,α‖x‖Cη([0,T ])(‖δS(σ ◦ y)‖Cα([a,b]2<;X) + ‖σ ◦ y‖C([a,b];Xα))

≤ Cα,η,r,α‖x‖Cη([0,T ])(Lσ + Lα
σ )(2 + Cα,0,T )(1 + ‖y‖Eα([a,b];Xα)). (3.11)

Since α < 1/2 < η, it follows that

‖IS(σ◦y)‖Cα([a,b]2<;Xα) ≤ (b − a)η−α‖IS(σ◦y)‖Cη([a,b]2<;Xα),

so that, applying (3.11) with r = α, we conclude that

‖δS y‖Cα([a,b]2<;Xα) = ‖IS(σ◦y)‖Cα([a,b]2<;Xα)

≤ C(b − a)η−α‖x‖Cη([0,T ])(1 + ‖y‖Eα([a,b];Xα)), (3.12)

where C := Cα,η,r,α(Lσ + Lα
σ )(2+Cα,0,T ). Further, from (3.5) with τ = a, t ∈ [a, b]

and Corollary 2.1, we get

‖y‖C([a,b];Xα) ≤ Mα,α,b‖y(a)‖Xα + ‖(δS y)(a, ·)‖C([a,b];Xα)

≤ Mα,α,T ‖y(a)‖Xα + (b − a)α‖δS y‖Cα([a,b]2<;Xα)

≤ Mα,α,T ‖y(a)‖Xα + C(b − a)η‖x‖Cη([0,T ])(1 + ‖y‖Eα([a,b];Xα)).

(3.13)

Taking (3.12) and (3.13) into account, this gives

‖y‖Eα([a,b];Xα) ≤Mα,α,T ‖y(a)‖Xα

+ C(b − a)η−α(1 + (b − a)α)‖x‖Cη([0,T ])(1 + ‖y‖Eα([a,b];Xα))

≤Mα,α,T ‖y(a)‖Xα

+ C(b − a)η−α(1 + T α)‖x‖Cη([0,T ])(1 + ‖y‖Eα([a,b];Xα)).

(3.14)

Let us set

T =
(

1

2C(1 + T α)‖x‖Cη([0,T ])

) 1
η−α

.

If b − a ≤ T , then we get

‖y‖Eα([a,b];Xα) ≤ 2Mα,α,T ‖y(a)‖Xα + 1. (3.15)
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Now, we introduce the function φ : (0,∞) → (0,∞), defined by φ(r) = 2Mα,α,T r+
1 for every r > 0 and split

[0, T ] =
N−1⋃

n=0

[tn, tn+1],

where 0 = t0 < t1 < t2 < . . . < tN = T and tn+1 − tn ≤ T for every n =
0, . . . , N − 1. From (3.15) it follows that

‖y‖C([tn ,tn+1];Xα) ≤ φ(‖y(tn)‖Xα ) ≤ φn+1(‖ψ‖Xα ), (3.16)

for every n = 0, . . . , N − 1, where φk denotes the composition of φ with itself k
times. Since φ(r) > r for every r > 0, from (3.16) we conclude that

‖y‖C([0,T ];Xα) ≤ φN (‖ψ‖Xα ). (3.17)

In particular, for each interval [s, t] ⊂ [0, T ] whose length is less than or equal to T
we get

‖y‖Eα([s,t];Xα) ≤ 2Mα,α,TφN (‖y(s)‖Xα ) + 1 ≤ φN+1(‖ψ‖Xα ).

Now we are able to estimate ‖δS y‖Cα([0,T ]2<;Xα). We stress that, if |t − s| ≤ T , then
from (3.15) we get

‖(δS y)(s, t)‖Xα ≤ φN+1(‖ψ‖Xα )|t − s|α, (3.18)

and if |t − s| > T then

‖(δS y)(s, t)‖Xα

|t − s|α ≤ ‖y(t) − S(t − s)y(s)‖Xα

T
α ≤ (1 + Mα,α,T )φN (‖ψ‖Xα )

T
α .

(3.19)

From (3.17), (3.18) and (3.19) it follows that

‖y‖Eα([0,T ];Xα) ≤φN (‖ψ‖Xα )

+ max{φN+1(‖ψ‖Xα ), T
−α

(1 + Mα,α,T )φN (‖ψ‖Xα )}
=: R.

Step 2. Here, we prove that there exists a unique mild solution to Eq. (3.2). For this
purpose, we introduce the operator Γ1 : Eα([0, T∗]; Xα) → Eα([0, T∗]; Xα), defined
by (Γ1(y))(t) = S(t)ψ + IS(σ◦y)(0, t) for every t ∈ [0, T∗] and (Γ1(y))(0) = ψ ,
where T∗ ∈ (0, T ] has to be properly chosen later on. We are going to prove that Γ1 is
a contraction in B = {y ∈ Eα([0, T∗]; Xα) : ‖y‖Eα([0,T∗];Xα) ≤ 2Mα,α,TR}. To begin
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with, we fix y ∈ B and observe that δSΓ1(y) = IS(σ◦y). Hence, from (3.14), we can
estimate

‖Γ1(y)‖Eα([0,T∗];Xα)

≤ Mα,α,T ‖ψ‖Xα + CT η−α∗ (1 + T α∗ )‖x‖Cη([0,T ])(1 + ‖y‖Eα([0,T∗];Xα))

≤ Mα,α,TR + CT η−α∗ (1 + T α)‖x‖Cη([0,T ])(1 + 2Mα,α,TR). (3.20)

We now choose T∗ ≤ T such that CT η−α∗ (1 + T α)‖x‖Cη([0,T ])(1 + 2Mα,α,TR) ≤
Mα,α,TR. With this choice of T∗, we conclude that Γ1(y) belongs to B.
Let us prove that Γ1 is a 1/2-contraction. Fix y1, y2 ∈ B. The linearity of the Young

integral gives (Γ1(y1))(t) − (Γ1(y2))(t) = IS(σ◦y1−σ◦y2)(0, t) for every t ∈ [0, T∗],
so that we can estimate

‖Γ1(y1) − Γ1(y2)‖Xα ≤ T η∗ ‖IS(σ◦y1−σ◦y2)‖Cη([0,T∗]2<;Xα)

and, as in Step 1 (see the first inequality in (3.11)),

‖Γ1(y1) − Γ1(y2)‖Cη([0,T∗]2<;Xα)

≤ Cα,η‖x‖Cη([0,T ])(‖δS(σ ◦ y1 − σ ◦ y2)‖Cα([0,T∗]2<;X)

+ ‖σ ◦ y1 − σ ◦ y2‖C([0,T∗];Xα)). (3.21)

We set R := 2Mα,α,TR ≥ max{‖y1‖C([0,T∗];Xα), ‖y2‖C([0,T∗];Xα)} and note that

‖a(s, t)(σ (y1(s)) − σ(y2(s)))‖X ≤ Cα,0,T |t − s|α‖σ(y1(s)) − σ(y2(s))‖Xα

≤ Cα,0,T L
α,R
σ |t − s|α‖y1 − y2‖C([0,T∗];Xα),

(3.22)

where Lα,r
σ denotes the Lipschitz constant of the restriction of σ to the ball B(0, r) ⊂

Xα and we have used the condition (2.1)(b). Further, by taking advantage of the
smoothness of σ we get

(δ(σ ◦ y1 − σ ◦ y2)(s, t))

= σ(y1(s) + (δy1)(s, t)) − σ(y1(s)) − σ(y2(s) + (δy1)(s, t)) + σ(y2(s))

+ σ(y2(s) + (δy1)(s, t)) − σ(y2(s) + (δy2)(s, t))

=
∫ 1

0
〈σ ′(y1(s) + r(δy1)(s, t)) − σ ′(y2(s) + r(δy1)(s, t)), δy1(s, t)〉dr

+ σ(y2(s) + (δy1)(s, t)) − σ(y2(s) + (δy2)(s, t)). (3.23)

Since for every s, t ∈ [0, T ], with s < t , and r ∈ (0, 1), it holds that

‖y1(s) + rδy1(s, t)‖Xα ∨ ‖y2(s) + rδy1(s, t)‖Xα ≤ 3R,
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and recalling that R ≥ 1, it follows that

‖δ(σ ◦ y1 − σ ◦ y2)(s, t)‖X
≤ K R

σ ′ ‖y1 − y2‖C([0,T∗];X)‖(δy1)(s, t)‖X + Lσ ‖(δ(y1 − y2))(s, t)‖X
≤ K R

σ ′ ‖y1 − y2‖C([0,T∗];X)(‖(δS y1)(s, t)‖X + ‖a(s, t)y1(s)‖X )

+ Lσ (‖(δS(y1 − y2))(s, t)‖X + ‖a(s, t)(y1(s) − y2(s))‖X )

≤ K R
σ ′(‖y1‖Eα([0,T∗];Xα) + Cα,0,T ‖y1‖C([0,T∗];Xα))‖y1 − y2‖C([0,T∗];X)|t − s|α

+ Lσ (‖y1 − y2‖Eα([0,T∗];Xα)+Cα,0,T ‖y1 − y2‖C[0,T∗];Xα))|t − s|α
≤ (1 + Cα,0,T )R(K R

σ ′ + Lσ )‖y1 − y2‖Eα([0,T∗];Xα)|t − s|α, (3.24)

where K R
σ ′ denotes the Lipschitz constant of the restriction of function σ ′ to the ball

B(3Kα,0R) ⊂ X . As far as ‖σ ◦ y1 − σ ◦ y2‖C([0,T∗];Xα) in (3.21) is concerned, it
holds that

‖σ(y1(t)) − σ(y2(t))‖Xα ≤ Lα,R
σ ‖y1 − y2‖Eα([0,T∗];Xα) (3.25)

for every t ∈ [0, T∗]. From (3.21), (3.22), (3.24) and (3.25) we get

‖Γ1(y1) − Γ1(y2)‖Eα([0,T∗];Xα) ≤ T η−α∗ ‖IS(σ◦y1−σ◦y2)‖Cη([0,T∗]2<;Xα)

≤ cT η−α∗ ‖y1 − y2‖Eα([0,T∗];Xα), (3.26)

where c is a positive constant which depends on x, α, R, σ, η but not on T∗ nor on ψ .
Based on (3.20) and (3.26), we can now fix T∗ > 0 such that Γ1 is a 1/2-contraction

in B. If T∗ = T , then we are done. Otherwise, we use a standard procedure to extend
the solution of the Young equation (3.2): we introduce the operator Γ2 defined by

(Γ2(y))(t) = S(t − T∗)y1(T∗) + IS(σ◦y)(T∗, t), T∗ ≤ t ≤ T∗∗ = min{2T∗, T },
for every y ∈ B2 := {z ∈ Eα([T∗, T∗∗]; Xα) : ‖y‖Eα([T∗,T∗∗];Xα) ≤ 2Mα,α,TR}.
Since y1 is a mild solution to (3.2), from (3.6), which clearly holds true also with
T∗ < T and the same constantR, it follows that ‖y1(T∗)‖Xα ≤ R. Then, by the same
computations as above we show that Γ2 is a 1/2-contraction in B2. Denote by y2 its
unique fixed point. Thanks to Lemma 2.2, the function y defined by y(t) = y1(t) if
t ∈ [0, T∗] and y(t) = y2(t) if t ∈ [T∗, T∗∗] is a mild solution to Eq. (3.2) in [0, T∗∗].
Obviously, if T∗∗ < T , then we can repeat the same procedure and in a finite number
of steps we extend y to whole [0, T ]. Estimate (3.6) yields also the uniqueness of the
mild solution to Eq. (3.2).

Step 3. From the arguments in the first part of Step 1 (see (3.11)), we deduce
that IS(σ◦y) belongs to Cη+α−r ([0, T ]2<; Xr ) for every r ∈ [α, 1). The smoothing
properties of the semigroup (S(t))t≥0 (see condition (2.1)(ii)(a)), estimates (3.6) and
(3.11) show that y(t) ∈ Xr and

‖y(t)‖Xr ≤ ‖S(t)ψ‖Xr + ‖IS(σ◦y)(0, t)‖Xr

≤ Mα,r,T t
α−r‖ψ‖Xα + ‖IS(σ◦y)‖Cη+α−r ([0,T ]2<;Xr )

tη+α−r

≤ c1(1 + T η)tα−r (3.27)
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for every t ∈ (0, T ] and some positive constant c1, which depends on α, η, r ,
‖x‖Cη([0,T ]), ‖ψ‖Xα , σ , R, and is a continuous function of ‖x‖Cη([0,T ]) and R.
Now, we observe that ‖y(t) − y(s)‖Xr ≤ ‖δS y(s, t)‖Xr + ‖a(s, t)y(s)‖Xr . Since
δS y = IS(σ◦y), from (3.11) it follows that

‖δS y(s, t)‖Xr ≤ c2(t − s)η+α−r , (s, t) ∈ [0, T ]2<, (3.28)

where c2 = c2(α, η, r, ‖x‖Cη([0,T ]), ‖ψ‖Xα , σ,R) is a positive constant, which de-
pends in a continuous way on ‖x‖Cη([0,T ]) andR. Moreover, using condition (2.1)(b)
and estimate (3.27) (with r being replaced by r + β), we get

‖a(s, t)y(s)‖Xr ≤ Cr+β,r,T |t − s|β‖y(s)‖Xr+β

≤ Cr+β,r,T c̃1(1 + T η)sα−r−β |t − s|β, (3.29)

where β > 0 is such that r + β < 1 (such β exists since we are assuming r ∈
[α, 1)). From these two last estimates it follows immediately that y ∈ C((0, T ]; Xr ).
Moreover, for every ε ∈ (0, T ] and r ∈ [α, 1), there exists a positive constant
c3 = c3(α, η, r, ‖x‖Cη([0,T ]), ‖ψ‖Xα , σ,R, T ), which depends in a continuous way
on ‖x‖Cη([0,T ]) and on R, such that

‖y‖C([ε,T ];Xr ) + ‖δS y‖Cη+α−r ([ε,T ]2<;Xr )
≤ c3ε

α−r .

Next, we estimate ‖(δS(σ ◦ y))(s, t)‖Xλ when η+α−λ > 1, i.e., λ ∈ [0, η+α−1).
As usually, we separately estimate ‖(δ(σ ◦ y))(s, t)‖Xλ and ‖a(s, t)σ (y(s))‖Xλ . Note
that λ < α since η < 1. We fix ε > 0 and observe that the continuous embedding
Xα ↪→ Xλ, (3.11) and (3.27) (with r = 2α−λ, which belongs to [α, 1) sinceα < 1/2)
give

‖(δ(σ ◦ y))(s, t)‖Xλ ≤ Kα,λL
α,R
σ (‖(δS y)(s, t)‖Xα + ‖a(s, t)y(s)‖Xα )

≤ Kα,λL
α,R
σ (‖y‖Eα([0,T ];Xα)|t − s|

+ C2α−λ,α,T ελ−α|t − s|α−λ)

≤ c4ε
λ−α|t − s|α−λ (3.30)

for every (s, t) ∈ [ε, T ]2<, where c4 = c4(α, η, ‖x‖Cη([0,T ]),R, T, λ). Moreover,

‖a(s, t)σ (y(s))‖Xλ ≤ Cα,λ,T ‖σ(y(s))‖Xα |t − s|α−λ

≤ Cα,λ,T L
α
σ (1 + ‖y(s)‖Xα )|t − s|α−λ

≤ Cα,λ,T L
α
σ (1 + R)|t − s|α−λ (3.31)

for every (s, t) ∈ [ε, T ]2<. From (3.30) and (3.31), it follows that

sup
ε≤s<t≤T

‖(δS(σ ◦ y))(s, t)‖Xλ

|t − s|α−λ
≤ c4ε

λ−α + Cα,λ,T L
α
σ (1 + R).
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Moreover, arguing as in the proof of (3.8) we can show that

‖(δS(σ ◦ y))(t, s) − (δS(σ ◦ y))(t0, s0)‖Xλ

≤ LαKα,λ(‖y(t) − y(t0)‖Xα + Mα,α‖y(s) − y(s0)‖Xα )

+ 2Cα,λ‖σ(y(s0))‖Xα |t − t0|α−λ,

for every (t0, s0), (t, s) ∈ [ε, T ]2<, where Lα denotes the Lipschitz constant of σ on
the subset {y ∈ Xα : ‖y‖Xα ≤ supt∈[0,T ] ‖y(t)‖Xα } of Xα , and conclude that δS(σ ◦
y) ∈ Cα−λ([ε, T ]2<; Xλ). Further, σ ◦ y belongs to C([ε, T ]; Xα). From Lemma 2.1
with k = α − λ, β = λ, β1 = α and r = γ , we infer that IS(σ◦y) belongs to
Cη+α−λ−γ ([ε, T ]2<; Xγ+λ) for every γ ∈ [α − λ, 1) and

‖IS(σ◦y)‖Cη+α−λ−γ ([ε,T ]2<;Xγ+λ)

≤ Cα,η,γ,α−λ‖x‖Cη([0,T ])(‖σ ◦ y‖C([ε,T ];Xα) + ‖δS(σ ◦ y)‖Cα−λ([ε,T ]2<;Xλ))

≤ c5ε
λ−α (3.32)

for some positive constant c5 = c5(α, η, σ, ‖x‖Cη([0,T ]),R, T, λ, γ, ‖ψ‖Xα ), which
does not depend on ε. From (3.5), with τ = ε, we can write

y(t) = S(t − ε)(y(ε)) + IS(σ◦y)(ε, t), t ∈ [ε, T ] (3.33)

and applying (3.27), with t = ε and r = α, (3.32) and (3.33) we infer that

‖y(t)‖Xγ+λ ≤ Mα,γ+λ,T (t − ε)α−γ−λ‖y(ε)‖Xα + ‖IS(σ◦y)(ε, t)‖Xγ+λ

≤ c1Mα,γ+λ,T (t − ε)α−γ−λ

+ ‖IS(σ◦y)‖Cη+α−λ−γ ([ε,T ]2<;Xλ+γ )(t − ε)η+α−λ−γ

≤ c6(t − ε)α−γ−λελ−α, (3.34)

for every t ∈ (ε, T ] and some positive constant c6 = c6(λ, γ, η, α, σ, x, ψ,R, T ). In
particular, since the range of the function � : D → R, defined by �(λ, γ ) = λ + γ

for every (λ, γ ) ∈ D = {(λ, γ ) ∈ R
2 : λ ∈ [0, η + α − 1), γ ∈ [α − λ, 1)} is the

interval [η + α − 1, η + α), for every μ ∈ [0, η + α − 1) we can choose λ and γ such
that 1 + μ = λ + γ . Then, from (3.34) we conclude that

‖y(t)‖X1+μ ≤ c7(t − ε)α−1−μελ−α, t ∈ (ε, T ],
so that, for every ε ∈ (0, T/2),

‖y(t)‖X1+μ ≤ c7ε
λ−1−μ, t ∈ [2ε, T ], (3.35)

and c7 = c7(λ, μ, η, α, σ, x, ψ,R, T ) is a positive constant, which depends in a
continuous way on ‖x‖Cη([0,T ]) and on R but not on ε. From (3.35), estimate (3.4)
follows at once. Finally, using again (3.33) and the smoothness properties of the
semigroup (S(t))t≥0, we conclude that y ∈ Eη+α−μ([2ε, T ]; Xμ) for every μ ∈
[η + α − 1, η + α) and ε ∈ (0, T/2). �
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Remark 3.1. (i) Theorem 3.1 generalizes the results in [9, Theorem 4.3].
(ii) From the last part of Step 3 in the proof of Theorem 3.1 it follows that y ∈

C((0, T ]; Xμ) for any μ ∈ [0, η + α).
(iii) In Step 3 of the proof of Theorem 3.1 we have proved that for each r ∈ [α, 1)

there exists a constant c such that

‖y(t)‖Xr ≤ ctα−r , t ∈ (0, T ], (3.36)

for some constant c, independent of t . If ψ ∈ Xγ for some γ ∈ [α, 1), then
arguing as in estimate (3.27), we can easily show that we can replace α − r with
(γ − r) ∧ 0 in (3.36), with r ∈ [α, 1). Based on this estimate, (3.28) and (3.29),
we conclude that

‖y(t) − y(s)‖X ≤ ‖(δS y)(t, s)‖Xr + ‖a(s, y)y(s)‖Xr

≤ c∗(t − s)η+γ−r + c∗∗s(γ−r−β)∧0|t − s|β (3.37)

for every β > 0 such that r + β < 1, every 0 < s < t ≤ T and some positive
constants c∗ and c∗∗, independent of s and t . Since β < η + γ − r , from (3.37)
we conclude that

‖y(t) − y(s)‖Xr ≤ cs(γ−r−β)∧0|t − s|β, 0 < s < t ≤ T .

If γ − r − β ≥ 0 then the above estimate can be extended to s = 0. We will use
these estimates in Sect. 5.

Remark 3.2. The result in Theorem 3.1 extend, using the same techniques, to the case
of the Young equation

⎧
⎪⎨

⎪⎩

dy(t) = Ay(t)dt +
m∑

i=1

σi (y(t))dxi (t), t ∈ (0, T ],
y(0) = ψ,

(3.38)

where the nonlinear terms σi (i = 1, . . . ,m) satisfy Hypotheses (3.1) and the paths
xi , (i = 1, . . . ,m), belong to Cη([0, T ]).
3.1. The case when the semigroup has no smoothing effects

The proof of Theorem 3.1 strongly relies on the smoothing effects on the semigroup
(S(t))t≥0, i.e., on condition 2.1(a),which in general is not satisfiedwhen the semigroup
associated with operator A is merely strongly continuous. For instance, one may think
to the semigroup of left-translations in the space of bounded and continuous functions
over Rd or in the usual L p(Rd)-space related to the Lebesgue measure: the function
S(t) f has the same degree of smoothness as the function f .
In the proof of Theorem 3.1, condition (2.1)(a) is heavily used to prove that the mild

solution y to the nonlinear Young equation 3.2 takes values to D(A).
In this subsection we show that partially removing condition (2.1)(a), i.e. assuming

that it holds true only when α = ζ , and suitably choosing the intermediate spaces Xα ,
the existence and uniqueness of a mild solution to Eq. (3.2) can still be guaranteed.
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Theorem 3.2. Let Hypotheses 2.1(i), 2.1(ii)(a) (with ζ = α), 2.1(ii)(b), 2.2 and 3.1
be satisfied, with [a, b] = [0, T ]. Then, for every ψ ∈ Xα , such that α ∈ (0, 1/2) and
η + α > 1, there exists a unique mild solution y ∈ Eα([0, T ]; Xα) to Eq. (3.2).

Proof. The proof follows the same lines as the first two steps of the proof of Theo-
rem 3.1. The only difference is that, under these weaker assumptions, Lemma 2.1 can
be applied only with r = k, so that estimate (3.11) now reads as follows:

‖IS(σ◦y)‖Cη([a,b]2<;Xα)

≤ Cα,η‖x‖Cη([0,T ])(Lσ + Lα
σ )(2 + Cα,0,T )(1 + ‖y‖Eα([a,b];Xα)).

From this point on the proof of the theorem carries on as in the proof of the quoted
theorem. �

We now provide an example of intermediate spaces Xα for which any strongly
continuous semigroup satisfies Hypothesis 2.1(ii)(b) and 2.1(ii)(a), this latter at least
with ζ = α.

Example 3.1. Let A be the generator of a strongly continuous semigroup (S(t))t≥0

and for each α ∈ (0, 1) let us consider the Favard space

Fα =
{

x ∈ X : sup
t∈(0,1]

‖S(t)x − x‖X
tα

< +∞
}

,

endowed with the norm

‖x‖Fα = sup
t∈(0,1]

‖S(t)x − x‖X
tα

, x ∈ Fα.

If α = k + β for some k ∈ N and β ∈ (0, 1), then

Fα =
{

x ∈ D(Ak) : sup
t∈(0,1]

‖S(t)Akx − Akx‖X
tβ

< +∞
}

,

endowed with the norm

‖x‖Fα = ‖x‖D(Ak ) + ‖Akx‖Fβ , x ∈ Fα.

Each space Fα is a Banach space when endowed with the norm ‖ · ‖Fα .
Fix α ∈ R, x ∈ Fα and t ∈ [0,+∞). For any s ∈ (0, 1], we can estimate

‖S(s)S(t)x − S(t)x‖X
sα

≤ ‖S(t)‖L(X)

‖S(s)x − x‖X
sα

≤ ‖S(t)‖L(X)‖x‖Xα .

Hence, S(t)x belongs to Fα and ‖S(t)x‖Fα ≤ ‖S(t)‖L(X)‖x‖Fα , so that Hypothe-
sis 2.1(ii)(a), with ζ = α holds true if we take Xα = Fα .
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Let us prove that the semigroup (S(t))t≥0 satisfies Hypothesis (2.1)(ii)(b) with Xα =
Fα . Fix μ, ν ∈ (0, 1] with μ > ν, x ∈ Xμ and t ∈ (0, 1]. Then, for any s ∈ (0, t] it
holds that s−ν ≤ s−μtμ−ν , so that

‖s−ν(S(s) − I )(S(t) − I )x‖X ≤ ‖s−ν(S(t + s)x − S(s)x − S(t)x + x)‖X
≤ ‖s−μ(S(t + s)x − S(t)x)‖X tμ−ν

+ ‖s−μ(S(s)x − x)‖X tμ−ν

≤ ‖S(t)x‖Fμ t
μ−ν + ‖x‖Fμ t

μ−ν

≤ (1 + M0,0,1)t
μ−ν‖x‖Fμ.

On the other hand, if s ∈ (t, 1], then s−ν < t−ν so that

s−ν‖(S(s) − I )(S(t)x − x)‖X ≤ ‖t−μ(S(t + s)x − S(s)x)‖X tμ−ν

+ ‖t−μ(S(t)x − x)‖X tμ−ν

≤ ‖S(s)x‖Fμ t
μ−ν + ‖x‖Fμ t

μ−ν

≤ (1 + M0,0,1)t
μ−ν‖x‖Fμ.

We have so proved that

‖S(t) − I‖L(Fμ,Fν ) ≤ (1 + M0,0,1)t
μ−ν, t ∈ (0, 1].

and estimate (2.1)(ii)(b) follows, with T = 1 and with Cμ,ν = (1+ M0,0,1). If T > 1
and t ∈ (1, T ], then

sup
s∈(0,1]

s−ν‖(S(s) − I )(S(t)x − x)‖X ≤ (‖S(t)‖L(X) + 1)‖x‖Fμ

≤ (M0,0,T + 1)‖x‖Fμ,

so that estimate (2.1)(ii)(b) holds true in any interval [0, T ].
We refer the reader to [4, Chapter 2, Section 5.b] for further results on the Favard

spaces.

Remark 3.3. Note that if X = Cb(R) and A is the first-order derivative, with C1
b(R)

as domain, then (S(t))t≥0 is the semigroup of left translations on Cb(R). For every
α ∈ (0,+∞)\N, Fα is the space of all functions f : R → R, which are differentiable
up to the [α]-th order and such that the derivative of order [α] is bounded and (α−[α])-
Hölder continuous on R.

4. The integral representation formula

Knowing that mild solutions take their values in D(A) we are in a position to prove
that they solve equation (3.2) in a natural integral form.
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Definition 4.1. Let y belong to Eα([0, T ]; Xα) ∩ L1((0, T ); D(A)) for some α ∈
(1− η, 1). We say that y solves equation (3.2) in the integral form if, for every t > 0,
it satisfies the equation

y(t) = ψ +
∫ t

0
Ay(u)du +

∫ t

0
σ(y(u))dx(u), t ∈ [0, T ]. (4.1)

Remark 4.1. To prove that mild solutions verify (4.1), we first need to check that the
integral

∫ t

0
σ(y(u))dx(u), 0 ≤ t ≤ T,

is well defined as Young integral, when y is the unique mild solution to (3.2). But, if
σ satisfies Hypothesis 3.1, then for every f ∈ Eα([0, T ]; Xα) and x ∈ Cη([0, T ]),
where η ∈ (1/2, 1) and α ∈ (1 − η, 1), the Young integral

∫ t

s
σ( f (u))dx(u), (s, t) ∈ [0, T ]2<, (4.2)

is well defined. Indeed, arguing as in the proof of (3.9) it can be easily checked that
σ ◦ f ∈ Cα([0, T ]; X). Therefore, Theorem 2.1 guarantees that the integral in (4.2)
is well-defined.

We can now prove that, under Hypotheses 2.1, 2.2 and 3.1, the mild solution y
verifies (4.1) To prove this result, we first show that the mild solution to (3.2) can be
approximated by mild solutions of classical problems.

Proposition 4.1. Let (xn) ⊂ C1([0, T ]) be a sequence converging to x in Cη([0, T ])
for some η > 1/2 and fix ψ ∈ Xα for some α ∈ (0, 1/2) such that α + η > 1. For
every n ∈ N, denote by yn the mild solution to (3.2) with x replaced by xn, and let y
be the mild solution to (3.2). Then, the following properties are satisfied:

(i) yn converges to y in Eα([0, T ]; Xα) as n tends to +∞;

(ii) if we set J(t) =
∫ t

0
σ(y(u))dx(u) and Jn(t) =

∫ t

0
σ(yn(u))dxn(u) for every

t ∈ [0, T ] and n ∈ N, then Jn converges to J in Cη([0, T ]; X) as n tends to
+∞.

Proof. (i) We split the proof into two steps. In the first one, we show the assertion
when T is small enough and in the second step we remove this additional condition.
Step 1. Let us fix τ, T̃ ∈ [0, T ]with τ < T̃ . To begin with, we observe that applying

Lemma 2.1 (with k = r = β1 = α, β = 0 and a = τ , b = T̃ ) and noticing that,
by Corollary 2.1 (with a = τ and b = T̃ ), (δSIS f (τ, ·))(s, t) = IS f (s, t) for every
(s, t) ∈ [τ, T̃ ], we can show that

‖IS f (τ, ·)‖Eα([τ,T̃ ];Xα) ≤C(T̃ − τ)η−α(‖ f ‖C([τ,T̃ ];Xα)

+ ‖δS f ‖Cα([τ,T̃ ]2<;X))‖x‖Cη([0,T ]), (4.3)
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for every x ∈ Cη([0, T ]) and f ∈ Eα([0, T ]; X) ∩ C([0, T ]; Xα) such that α ∈
(0, 1/2), η + α > 1 and τ, T̃ ∈ [0, T ], with τ < T̃ , where C = Cα,η,α,α is the
constant in Lemma 2.1.

Now, we fix T∗ ∈ (0, T ] to be chosen later on. From (2.12) and (2.13), we get

y(t) − yn(t) =
∫ t

0
S(t − r)σ (y(r))dx(r) −

∫ t

0
S(t − r)σ (yn(r))dxn(r)

=
∫ t

0
S(t − r)σ (yn(r))dxn(r)

+
∫ t

0
S(t − r)(σ (y(r)) − σ(yn(r)))dx(r)

=: I1,n(t) + I2,n(t)

for every t ∈ [0, T∗], where xn := x − xn . Taking (3.10) and (3.7) into account, we
can estimate

‖I1,n‖Eα([0,T∗];Xα)

≤ CT η−α∗ (‖σ ◦ yn‖C([0,T∗];Xα) + ‖δS(σ ◦ yn)‖Cα([0,T∗]2<;X))‖xn‖Cη([0,T ])
≤ CT η−α∗ (Lσ + Lα

σ )(Cα,0,T + 2)(1 + ‖yn‖Eα([0,T∗];Xα))‖xn‖Cη([0,T ]), (4.4)

where C is a positive constant which depends on α, η, σ and T . An inspection of the
proof of estimate (3.6) shows that the constant R depends in a continuous way on
the η-Hölder norm of the path. Since supn∈N ‖xn‖Cη([0,T ]) < +∞, from (4.4) we can
infer that

‖I1,n‖Eα([0,T∗];Xα) ≤ cT η−α∗ (Lσ + Lα
σ )(Cα,0,T + 2)(1 + M)‖xn‖Cη([0,T ]),

for some positive constant M, independent of n. As far as I2,n is considered, from
(4.3), with f replaced by σ ◦ y − σ ◦ yn , and estimates (3.24), (3.25), we infer that

‖I2,n‖Eα([0,T∗];Xα)

≤ cT η−α∗ (‖σ ◦ y − σ ◦ yn‖C([0,T∗];Xα)

+ ‖δS(σ ◦ y − σ ◦ yn)‖Cα([0,T∗]2<;X))‖x‖Cη([0,T ])
≤ c̃T η−α∗ ‖y − yn‖Eα([0,T∗];Xα)‖x‖Cη([0,T ]),

and c̃ is a positive constant which depends on α, T , σ , M, K , η and on the constant
Cα,0,T . We choose T∗ ≤ T such that c̃T η−α∗ ‖x‖Cη([0,T ]) ≤ 1/2 and use the previous
estimate to conclude that

‖y − yn‖Eα([0,T∗];Xα) ≤ 2cT η−α∗ (Lσ + Lα
σ )(Cα,0,T + 2)(1 + M)‖xn − x‖Cη([0,T ])

and, consequently, that yn converges to y in Eα([0, T∗]; Xα) as n tends to +∞.



J. Evol. Equ. Regularity results for nonlinear Young equations Page 23 of 34 3

Step 2. If T∗ = T then we are done. Otherwise, let us fix T̂ := (2T∗)∧ T . For every
t ∈ [T∗, T̂ ], from (3.5) we can write

y(t) − yn(t) =
∫ t

T∗
S(t − r) (σ (y(r)) − σ(yn(r))) dx(r)

+
∫ t

T∗
S(t − r)σ (yn(r))dxn(r)

+ S(t − T∗)(y(T∗) − yn(T∗)).

In Step 1we have proved that yn(T∗) converges to y(T∗) in Xα as n tends to+∞.More-
over, for every (s, t) ∈ [T∗, T ]2< it holds that δS S(· − T∗)(y(T∗) − yn(T∗))(s, t) = 0.
Hence, ‖S(·−T∗)(y(T∗)−yn(T∗))‖Eα([T∗,T̂ ];Xα) vanishes as n tends to+∞. Repeating
the same arguments as in Step 1, we conclude that

‖y − yn‖Eα([T∗,T̂ ];Xα) ≤ 2cT η−α∗ (Lσ + Lα
σ )(Cα,0,T + 2)(1 + M)‖xn − x‖Cη([0,T ]),

and therefore yn converges to y in Eα([T∗, T̂ ]; Xα) as n tends to +∞. If T̂ = T then
the assertion follows. Otherwise by iterating this argument, we get the assertion in a
finite number of steps.
(ii) As in the proof of property (i), we can write

Jn(t) − J(t) =
∫ t

0
σ(yn(u))dxn(u) +

∫ t

0
(σ (yn(u)) − σ(y(u)))dx(u)

=: Jn1(0, t) + J
n
2(0, t).

From (2.5), (3.7) and (3.10), we infer that

‖Jn1(0, t)‖X ≤ tη
(

‖σ ◦ yn‖C([0,T ];X) + ‖σ ◦ yn‖Eα([0,T ];Xα)

1 − 2−(η+α−1)

)

‖xn‖Cη([0,T ])

≤ T η

(

Lσ + (Lσ + Lα
σ )(1 + Cα,0,T )

1 − 2−(η+α−1)

)

×
(

1 + sup
n∈N

‖yn‖Eα([0,T ];Xα)

)

‖xn‖Cη([0,T ]) (4.5)

for every t ∈ [0, T ], As far as the term J
n
2(0, t) is concerned, we argue similarly, taking

advantage of the computations in (3.23) and estimate (3.24), and get

‖Jn2(0, t)‖X ≤ CT η‖y − yn‖Eα([0,T ];Xα). (4.6)

From (4.5) and (4.6) it thus follows that

sup
t∈[0,T ]

‖Jn(t) − J(t)‖X ≤ C ′T η(‖x − xn‖Cη([0,T ]) + ‖y − yn‖Eα([0,T ];Xα))

for a suitable constant C ′, independent of n. From the assumptions on x and (xn), and
property (i), we conclude that Jn converges to J in C([0, T ]; X) as n tends to +∞.
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To prove that Jn converges to J in Cη([0, T ]; X), now it suffices to note that (see
Remark 2.3)

(δ(Jn − J))(s, t) = J
n
1(s, t) + J

n
2(s, t), (s, t) ∈ [0, T ]2<.

and repeat the above computations to infer that

[Jn − J]Cη([0,T ];X) ≤ C ′(‖x − xn‖Cη([0,T ]) + ‖y − yn‖Eα([0,T ];Xα))

for every n ∈ N. �

We are now ready to show that the mild solution y to (3.2) satisfies the integral
representation formula (4.1).

Theorem 4.1. Let Hypotheses 2.1, 2.2 and 3.1 be satisfied and let ψ ∈ Xα for some
α ∈ (0, 1) such that α + η > 1. Further, let y be the unique mild solution to Eq. (3.2).
Then, y satisfies (4.1).

Proof. Let (xn) ⊂ C1([0, T ]) be a sequence of smooth paths which converges to x in
Cη([0, T ]) as n tends to +∞. For every n ∈ N, let yn be the unique mild solution to
(3.2) with x replaced by xn . The computations in Step 3 of the proof of Theorem 3.1
with x replaced by xn and the fact that supn∈N ‖xn‖Cη([0,T ]) < +∞ imply that yn(t)
belongs to D(A) for each t ∈ (0, T ] and n ∈ N, and for every λ ∈ [0, η+α −1) there
exists a positive constant c = c(λ), independent of n, such that ‖Ay(t)‖X ≤ ctλ−1

and ‖Ayn(t)‖X ≤ ctλ−1 for every t ∈ (0, T ] and n ∈ N. From [12, Proposition 4.1.5]
we infer that

yn(t) = ψ +
∫ t

0
Ayn(s)ds +

∫ t

0
σ(yn(s))dxn(s), t ∈ [0, T ], n ∈ N.

Let us fix t ∈ (0, T ]. From Proposition 4.1 we know that yn converges to y in

C([0, T ]; X) and
∫ t

0
σ(yn(s))dxn(s) converges to

∫ t

0
σ(y(s))dx(s) in X as n tends

to +∞. Hence,
∫ t

0
yn(s)ds and

A
∫ t

0
yn(s)ds =

∫ t

0
Ayn(s)ds = yn(t) − ψ −

∫ t

0
σ(yn(s))dxn(s)

converge, as n tends to +∞, to
∫ t

0
y(s)ds and y(t) − ψ −

∫ t

0
σ(y(s))dx(s), respec-

tively, for every t ∈ [0, T ]. Since A is a closed operator, it follows that
∫ t

0
y(s)ds ∈ D(A), A

∫ t

0
y(s)ds = y(t) − ψ −

∫ t

0
σ(y(s))dx(s).

Finally, since ‖Ay(t)‖X ≤ ctλ−1 for every t ∈ (0, T ] (see (3.4) with μ = 0), we

conclude that Ay belongs to L1((0, T ); X). Hence, A
∫ t

0
y(s)ds =

∫ t

0
Ay(s)ds,
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which gives

y(t) = ψ +
∫ t

0
Ay(s)ds +

∫ t

0
σ(y(s))dx(s).

The arbitrariness of t ∈ [0, T ] yields the assertion. �

Corollary 4.1. Let σi : X → X (i = 1, . . . ,m) satisfy Hypotheses 3.1 and let the
paths xi (i = 1, . . . ,m) belong to Cη([0, T ]). Then, the unique mild solution y to
(3.38) with ψ ∈ Xα , with α + η > 1, satisfies the equation

y(t) = ψ +
∫ t

0
Ay(u)du +

m∑

i=1

∫ t

0
σi (y(u))dxi (u), t ∈ [0, T ].

Proof. The statement follows from Remark 3.2, and by repeating the computations in
this section. �

5. Chain rule for nonlinear Young equations

In this subsection we use the integral representation formula (4.1) of the unique
mild solution y to problem (3.2) to prove a chain rule for F(·, y(·)), where F is a
smooth function.

Theorem 5.1. Let F ∈ C1([0, T ] × X) be such that and Fx is α-Hölder continuous
with respect to t , locally uniformlywith respect to x, and is locallyγ -Hölder continuous
with respect to x, uniformly with respect to t , for someα, γ ∈ (0, 1) such that η+αγ >

1. Further, let y be the unique mild solution to (3.2). Then,

F(t, y(t)) − F(s, y(s)) =
∫ t

s
Ft (u, y(u))du +

∫ t

s
〈Fx (u, y(u)), Ay(u)〉du

+
∫ t

s
〈Fx (u, y(u)), σ (y(u))〉dx(u)

for every (s, t) ∈ [0, T ].

Proof. Let us fix 0 < s < t ≤ T and a sequence (Πn(s, t)) of partitions Πn(s, t) =
{s = sn0 < sn1 < . . . < snmn

= t} of [s, t], with mesh-size which converges to zero,
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and note that

F(t, y(t)) − F(s, y(s))

=
mn∑

j=1

F(snj , y(s
n
j )) − F(snj−1, y(s

n
j−1))

=
mn∑

j=1

[F(snj , y(s
n
j )) − F(snj−1, y(s

n
j )) + F(snj−1, y(s

n
j )) − F(snj−1, y(s

n
j−1))]

=
mn∑

j=1

Ft (s
n
j , y(s

n
j ))Δsnj +

mn∑

j=1

(
Ft (s̃

n
j , y(s

n
j )) − Ft (s

n
j , y(s

n
j ))

)
Δsnj

+
mn∑

j=1

〈Fx (snj−1, y(s
n
j−1)),Δy j 〉 +

mn∑

j=1

〈Fx (snj−1, ỹ j ) − Fx (s
n
j−1, y(s

n
j−1)),Δy j 〉

=: I1,n + I2,n + I3,n + I4,n,

where Δy j = y(snj ) − y(snj−1), Δsnj = snj − snj−1, s̃
n
j = snj−1 + θnj (s

n
j − snj−1),

ỹ j = y(snj−1) + ηnj (y(s
n
j ) − y(snj−1)) and θnj , η

n
j ∈ (0, 1) are obtained from the

mean-value theorem, for every j = 1, . . . ,mn .
Analysis of the terms I1,n and I2,n . Since the function s �→ Ft (s, y(s)) is continuous

in [0, T ], I1,n converges to
∫ t

s
Ft (u, y(u))du as n tends to +∞. Moreover, since

y([0, T ]) is a compact subset of X , the restriction of function Ft to [0, T ]× y([0, T ])
is uniformly continuous. Thus, for every ε > 0 there exists a positive constant δ such
that |Ft (t2, x2) − Ft (t1, x1)| ≤ ε if |t2 − t1|2 + |x2 − x1|2 ≤ δ2. As a byproduct, it
follows that, if |Π(s, t)| ≤ δ, then |I2,n| ≤ ε

∑n
j=1 Δsnj = ε(t − s) and this shows

that I2,n converges to 0 as n tends to +∞.
Analysis of the term I3,n . Using (4.1) we can write (see Remark 2.3)

〈Fx (snj−1, y(s
n
j−1)),Δy j 〉

=
〈

Fx (s
n
j−1, y(s

n
j−1)),

∫ snj

snj−1

Ay(u)du +
∫ snj

snj−1

σ(y(u))dx(u)

〉

= 〈Fx (snj−1, y(s
n
j−1)), Ay(s

n
j−1)〉Δsnj

+
〈

Fx (s
n
j−1, y(s

n
j−1)),

∫ snj

snj−1

(Ay(u) − Ay(snj−1))du

〉

+
〈

Fx (s
n
j−1, y(s

n
j−1)),

∫ snj

snj−1

(σ (y(u)) − σ(y(snj−1)))dx(u)

〉

+ 〈Fx (snj−1, y(s
n
j−1)), σ (y(snj−1))〉(x(snj ) − x(snj−1)) (5.1)

for j = 1, . . . ,mn . By assumptions, the function s �→ Fx (s, y(s)) is continuous
with values in X ′. Similarly, by Theorem 3.1 the function Ay is continuous in (0, T ].
Indeed, y belongs to Eη+α−μ([s, T ]; Xμ) for every μ ∈ [η + α − 1, η + α). Taking
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μ = 1 we deduce that ‖(δS y)(u, w)‖X1 ≤ c|w − u|η+α−1 for every (u, w) ∈ [s, t]2<
and some positive constant c, independent of u and w. Hence,

‖Ay(u) − Ay(w)‖X ≤‖(δS y)(u, w)‖X1 + ‖a(u, w)Ay(u)‖X
≤c|w − u|η+α−1 + ‖a(u, w)Ay(u)‖X .

Choosing μ = 1 + ρ for some ρ < η + α − 1 and using (2.1)(b) we get

‖a(u, w)Ay(w)‖X ≤ C0,ρ |w − u|ρ‖Ay(w)‖Xρ ≤ C0,ρ |w − u|ρ‖y‖C([ε,T ];X1+ρ).

Therefore, Ay is ρ-Hölder continuous in [ε, T ] for any ε ∈ (0, T ). Since s > 0, it
follows that u �→ Ay(u) is continuous in [s, T ], and we thus conclude that

lim
n→+∞

mn∑

j=1

〈Fx (snj−1, y(s
n
j−1)), Ay(s

n
j−1)〉Δsnj =

∫ t

s
〈Fx (u, y(u)), Ay(u)〉du (5.2)

and

∥
∥
∥
∥

∫ snj

snj−1

(Ay(u) − Ay(snj−1))du

∥
∥
∥
∥
X

≤ [Ay]Cρ([s,T ];X)|snj − snj−1|1+ρ

≤ [Ay]Cρ([s,T ];X)(s
n
j − snj−1)|Πn(s, t)|ρ

for every j = 1, . . . ,mn , so that

∣
∣
∣
∣

mn∑

j=1

〈

Fx (s
n
j−1, y(s

n
j−1)),

∫ snj

snj−1

(Ay(u) − Ay(snj−1))du

〉∣∣
∣
∣

≤ ‖Fx‖C([0,T ]×y([0,T ]);X ′)[Ay]Cρ([s,T ];X)(t − s)|Πn(s, t)|ρ (5.3)

and the right-hand side of the previous inequality vanishes as n tends to +∞.

Let us consider the third term in the right-hand side of (5.1). From Theorem 2.1 and
recalling that α + η > 1, we infer that

∥
∥
∥
∥

∫ snj

snj−1

(σ (y(u)) − σ(y(snj−1)))dx(u)

∥
∥
∥
∥
X

=
∥
∥
∥
∥

∫ snj

snj−1

σ(y(u))dx(u) − σ(y(snj−1))(x(s
n
j ) − x(snj−1))

∥
∥
∥
∥
X

≤ 1

1 − 2α−η−1 ‖δ(σ ◦ y)‖Cα([0,T ]2<;X)‖x‖Cη([0,T ])|snj − snj−1|α+η

≤ 1

1 − 2α−η−1 ‖δ(σ ◦ y)‖Cα([0,T ]2<;X)‖x‖Cη([0,T ])(snj − snj−1)|Πn(s, t)|α+η−1
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for j = 1, . . . ,mn . Hence,

∣
∣
∣
∣

mn∑

j=1

〈

Fx (s
n
j−1, y(s

n
j−1)),

∫ snj

snj−1

(σ (y(u)) − σ(y(snj−1)))dx(u)

〉∣∣
∣
∣

≤ 1

1 − 2α−η−1 ‖Fx‖C([0,T ]×y([0,T ]);X ′)(t − s)|Πn(s, t)|α+η−1.

Letting n tend to +∞ gives

lim
n→+∞

mn∑

j=1

〈

Fx (s
n
j−1, y(s

n
j−1)),

∫ snj

snj−1

(σ (y(u)) − σ(y(snj−1)))dx(u)

〉

= 0. (5.4)

To conclude the study of I3,n it remains to consider the term

〈Fx (snj−1, y(s
n
j−1)), σ (y(snj−1))〉(x(snj ) − x(snj−1)).

For this purpose, we introduce the function g : [s, t] → R, defined by g(τ ) =
〈Fx (τ, y(τ )), σ (y(τ ))〉 for every τ ∈ [s, t]. Let us prove that g ∈ Cαγ ([s, t]). To this
aim, we recall that

‖σ(y(τ ))‖X ≤ K0,α‖σ(y(τ ))‖Xα ≤ K0,αL
α
σ (1 + ‖y‖C([0,T ];Xα)), τ ∈ [0, T ].

Hence, we can estimate

|g(τ2) − g(τ1)|
= |〈Fx (τ2, y(τ2)), σ (y(τ2))〉 − 〈Fx (τ1, y(τ1)), σ (y(τ1))〉|
≤ |〈Fx (τ2, y(τ2)) − Fx (τ2, y(τ1)), σ (y(τ2))〉|
+ 〈Fx (τ2, y(τ1)) − Fx (τ1, y(τ1)), σ (y(τ2))〉
+ |〈Fx (τ1, y(τ1)), σ (y(τ2)) − σ(y(τ1))〉|
≤ K0,αL

α
σ sup
t∈[0,T ]

‖Fx (t, ·)‖Cγ (y([0,T ]);X ′)(1 + ‖y‖C([0,T ];Xα))‖y(τ2) − y(τ1)‖γ

X

+ K0,αL
α
σ sup
x∈y([0,T ])

[Fx (·, x)]Cα([0,T ];X ′)(1 + ‖y‖C([0,T ];Xα))|τ2 − τ1|α

+ Lσ ‖Fx‖C([0,T ]×y([0,T ]);X ′)‖y(τ2) − y(τ1)‖X
≤

(

K0,αL
α
σ sup
t∈[0,T ]

‖Fx (t, ·)‖Cγ (y([0,T ]);X ′)(1 + ‖y‖C([0,T ];Xα))[y]Cα([0,T ];X)

+ K0,αL
α
σ sup
x∈y([0,T ])

[Fx (·, x)]Cα([0,T ];X ′)(1 + ‖y‖C([0,T ];Xα))T
α(1−γ )

+ Lσ ‖Fx‖C([0,T ]×y([0,T ]);X ′)[y]Cα([0,T ];X)T
α(1−γ )

)

|τ2 − τ1|αγ ,
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for every τ1, τ2 ∈ [s, t], which shows that g is αγ -Hölder continuous in [s, t]. Since
η + γα > 1, we can apply Theorem 2.1 which implies that

lim
n→+∞

mn∑

j=1

〈Fx (snj−1, y(s
n
j−1)), σ (y(snj−1))〉(x(snj ) − x(snj−1))

=
∫ t

s
〈Fx (u, y(u)), σ (y(u))〉dx(u), (5.5)

where the integral is well-defined as Young integral. From (5.2)–(5.5) we conclude
that

lim
n→+∞ I3,n =

∫ t

s
〈Fx (u, y(u)), Ay(u)〉du +

∫ t

s
〈Fx (u, y(u)), σ (y(u))〉dx(u).

To complete the proof, we observe that I4,n converges to 0 as n tends to +∞. This
property can be checked arguing as we did for the term I2,n , noting that Fx is uniformly
continuous in [0, T ] × y([0, T ]).

Summing up, we have proved that

F(t, y(t)) − F(s, y(s)) =
∫ t

s
Ft (u, y(u))du +

∫ t

s
〈Fx (u, y(u)), Ay(u)〉du

+
∫ t

s
〈Fx (u, y(u)), σ (y(u))〉dx(u), (5.6)

for every 0 < s < t ≤ T . As s tends to 0+, the left-hand side of (5.6) converges
to F(t, y(t)) − F(0, y(0)). As far as the right-hand side is concerned, the first and
the third term converge to the corresponding integrals over [0, t] since the functions
u �→ Ft (u, y(u)) and u �→ Fx (u, y(u)) are continuous in [0, T ]. As far as the second
term in the right-hand side of (5.6) is concerned, thanks to (3.4) with μ = 0 we can
apply the dominated convergence theoremwhich yields the convergence to the integral
over (0, t). The assertion in its full generality follows. �

The same arguments as in the proof of Theorem 5.1 and Corollary 4.1 give the
following result.

Corollary 5.1. Let σi : X → X (i = 1, . . . ,m) satisfy Hypotheses 3.1, let the paths
xi ∈ Cη([0, T ]) (i = 1, . . . , n) belong to Cη([0, T ]), and let y be the unique mild
solution to (3.38) with ψ ∈ Xα , with α + η > 1. Then, for any function F satisfying
the assumptions in Theorem 5.1 it holds that

F(t, y(t)) − F(s, y(s)) =
∫ t

s
Ft (u, y(u))du +

∫ t

s
〈Fx (u, y(u)), Ay(u)〉du

+
m∑

i=1

∫ t

s
〈Fx (u, y(u)), σi (y(u))〉dxi (u) (5.7)

for every (s, t) ∈ [0, T ].
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As an immediate application of the chain rule, we provide necessary conditions, in
the contexts of Hilbert spaces, for the invariance of the set K = {x ∈ X : 〈x, ϕ〉 ≤ 0}
for themild solution y to (3.38), where invariancemeans that, ifψ ∈ Xα∩K , then y(t)
belongs to K for any t ∈ [0, T ]. For this purpose, we assume that A : D(A) ⊂ X → X
is a self-adjoint nonpositive closed operator which generates an analytic semigroup of
bounded linear operators (S(t))t≥0 on H and that the results so far proved hold true
with Xζ = D((−A)ζ ) for any ζ ≥ 0.

Proposition 5.1. Let Hypotheses 2.1, 2.2, 3.1 be fulfilled with η +α > 1. Let ϕ ∈ Xε

for some ε ∈ [0, 1), ψ ∈ Xζ for some ζ ∈ [α, 1) and let K := {x ∈ X : 〈x, ϕ〉 ≤ 0}
be invariant for y. The following properties are satisfied.

(i) If ψ ∈ ∂K and η ≤ ζ + ε ≤ 1, then

lim sup
t→0+

t−β
m∑

i=1

〈ϕ, σi (ψ)〉(xi (t) − xi (0)) ≤ 0,

for β ∈ [η, ζ + ε) and

sup
λ>0

lim sup
t→0+

t−β

(

−
∫ t

0

(λ + 〈ϕ, y(s)〉)+
λ

〈(−A)εϕ, (−A)1−ε y(s)〉ds

+
m∑

i=1

〈ϕ, σi (ψ)〉(xi (t) − xi (0))

)

≤ 0,

for β ∈ [ζ + ε, 1].
(ii) If y(t0) ∈ ∂K for some t0 ∈ [0, T ) and ζ + ε > 1, then

lim sup
t→t+0

|t − t0|−β
m∑

i=1

〈ϕ, σi (y(t0))〉(xi (t) − xi (t0)) ≤ 0,

if β ∈ [η, 1) and

lim sup
t→t+0

|t − t0|−1
m∑

i=1

〈ϕ, σi (y(t0))〉(xi (t) − xi (t0))

− 〈(−A)εϕ, (−A)1−ε y(t0)〉 ≤ 0,

if β = 1.

Remark 5.1. If t0 > 0 in (i i) then y(t) ∈ X1+μ for any μ ∈ [0, η + α − 1) and
t ∈ (0, T ] (see Theorem 3.1). Hence, the condition ζ + ε > 1 is automatically
satisfied.

Proof. For any λ > 0 we introduce the function Fλ : X → X , defined by Fλ(x) :=
(λ+〈ϕ, x〉)2+, for any x ∈ X . As it is easily seen, each function Fλ belongs toC1,1(X)

and DFλ(x) = 2(λ + 〈ϕ, x〉)+ϕ for any x ∈ X . Further, for any x ∈ K it holds that
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Fλ(x) ≤ λ2, and Fλ(x) = λ2 if and only if x ∈ ∂K . Fix t0 ∈ [0, T ). If y(t0) ∈ ∂K
then from (5.7) it follows that

0 ≥Fλ(y(t)) − Fλ(y(t0))

= − 2
∫ t

t0
(λ + 〈ϕ, y(s)〉)+〈(−A)εϕ, (−A)1−ε y(s)〉ds

+ 2
m∑

i=1

λ〈ϕ, σi (y(t0))〉(xi (t) − xi (t0)) + R f (t0, t) (5.8)

for any t ∈ [t0, T ] and any λ > 0, where in the equality we have used (2.3) with
f (t) = (λ + 〈ϕ, y(t)〉)+〈ϕ, σi (y(t))〉 for t ∈ [0, T ]. We recall that from (2.4) it
follows that R f (t0, t) = o(|t − t0|) as t → t+0 , and from Remark 3.1(i i) we know
that y ∈ C((0, T ]; Xμ) for any μ ∈ [0, η + α).
Now, we separately consider the cases (i) and (i i).
(i). Fix ψ ∈ ∂K ∩ Xζ with η ≤ ζ + ε ≤ 1. From (3.36) with r = 1 − ε we infer

that there exists a positive constant c, independent of s, such that

∣
∣
∣(λ + 〈ϕ, y(s)〉)+〈(−A)εϕ, (−A)1−ε y(s)〉

∣
∣
∣ ≤ λcsζ+ε−1, s ∈ (0, T ]. (5.9)

Let β ∈ [η, 1]. Dividing by tβ and λ both sides of (5.8) (with t0 = 0) and taking (5.9)
into account, the assertion follows easily.

(ii). Fix t0 ∈ [0, T ) with y(t0) ∈ ∂K and ζ + ε > 1. Since 1 − ε < ζ , y is
continuous up to 0 with values in X1−ε. Indeed, from (2.1)(b) we get ‖S(t)ψ −
ψ‖X1−ε ≤ Ctζ+ε−1 for every t ∈ [0, T ], and from (3.3) and the smoothness of
IS(σ◦y) at t = 0 we infer that y ∈ Cb([0, T ]; X1−ε). As a consequence, the function
s �→ (λ + 〈ϕ, y(s)〉)+〈(−A)εϕ, (−A)1−ε y(s)〉 belongs to Cb([0, T ]). Let β ∈ [η, 1].
Dividing (5.8) by |t − t0|β and λ, and letting t → t+0 , the assertion follows also in this
case. �

6. Examples

In this section, we provide two examples to which our results apply. We consider
the second-order elliptic operator A, defined by

A =
d∑

i, j=1

qi j Di j +
d∑

j=1

b j D j + c.

Example 6.1. Let us assume that the coefficients of the operator A are bounded and
β-Hölder continuous on R

d , for some β ∈ (0, 1), and
∑d

i, j=1 qi j (x)ξiξ j ≥ μ|ξ |2 for
every x, ξ ∈ R

d and some positive constant μ.
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Let A be the realization of operator A in X = Cb(R
d) with domain

D(A) =
{
u ∈ Cb(R

d) ∩
⋂

p<+∞
W 2,p

loc (Rd) : Au ∈ Cb(R
d)

}
.

For every α ∈ (0, 2) \ {1/2, 1}, we take Xα = C2α
b (Rd) endowed with the classical

norm of C2α
b (Rd). Moreover, we take as X1/2 the Zygmund space of all bounded

functions g : Rd → R such that

[g]X1/2 = sup
x 
=y

|g(x) + g(y) − 2g(2−1(x + y))|
|x − y| < +∞,

endowed with the norm ‖g‖X1/2 = ‖g‖∞ + [g]X1/2 . It is well known that A generates
an analytic semigroup onCb(R

d) and Xα is the interpolation space of order α between
X and X1 = D(A).We refer the reader to e.g., [11, Chapters 3 and 14]. Finally, we fix a
function σ̂ ∈ C2

b (R) and note that the function σ : X → X , defined by σ( f ) = σ̂ ◦ f
satisfies Hypothesis 3.1 for every α ∈ (0, 1/2), with Lα

σ = ‖σ̂‖Lip(R). Since the
assumptions of Theorem 3.1 are satisfied, we conclude that, for every ψ ∈ Cα

b (Rd)

(α ∈ (0, 1)), there exists a unique solution y to Problem (3.2), which takes values in
D(A).

Example 6.2. Let Ω ⊂ R
n be a bounded open domain with C2-boundary and as-

sume that the coefficients qi j (i, j = 1, . . . , d) of operator A are uniformly con-
tinuous in Ω , whereas the other coefficients are in L∞(Ω). We further assume that∑d

i, j=1 qi j (x)ξiξ j ≥ μ|ξ |2 for every x, ξ ∈ R
d and some positive constant μ and, for

p ∈ (1,+∞), we denote by Ap the realization of the operatorA in X = L p(Ω) with
homogeneous Dirichlet boundary conditions, with domain D(Ap) = W 2,p(Ω) ∩
W 1,p

0 (Ω). It is well-known that Ap generates an analytic semigroup on L p(Ω).
We assume that p > n. Hence, n/(2p) < 1/2. It is also well-known that, for any
α ∈ (1/(2p), 1),

DAp (α, p) = (L p(Ω), D(Ap))α,p = W 2α,p
0 (Ω),

where with W 2α,p
0 (Ω) we denote the fractional Sobolev space of order 2α with null

trace on ∂Ω . We set Xα := W 2α,p
0 (Ω).

Let us fix f ∈ C2
b (R) with f (0) = 0 and let us define the function σ by setting

σ ◦ y(·) = f (y(·)) for any y ∈ L p(Ω). It is not hard to show that σ : X → X
is Fréchet differentiable with bounded and locally Lipschitz Fréchet derivative. We
claim that for α ∈ (n/(2p), 1/2) the function σ satisfies condition (3.1) and it is
locally Lipschitz continuous in Xα . Let us notice that σ ◦ y ∈ W 2α,p

0 (Ω) for any

y ∈ W 2α,p
0 (Ω). Let us denote by σ ′ the Fréchet derivative of σ . For any y, h ∈ Xα it

holds that ((σ ′ ◦ y)h)(ξ) = f ′(y(ξ))h(ξ) for almost every ξ ∈ Ω . Hence,

‖(σ ′ ◦ y)h‖L p(Ω) ≤ ‖ f ′‖∞‖h‖L p(Ω) ≤ ‖ f ‖C2
b (R)‖h‖Xα .
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Further, we recall that since 2αp > n, it follows that W 2α,p(Ω) ⊂ C(Ω). Therefore,

[(σ ′ ◦ y)h]W 2α,p(Ω) =
∫

Ω×Ω

| f ′(y(ξ))h(ξ) − f ′(y(η))h(η)|p
|ξ − η|2αp+n

dξdη

≤
∫

Ω×Ω

| f ′(y(ξ))h(ξ) − f ′(y(ξ))h(η)|p
|ξ − η|2αp+n

dξdη

+
∫

Ω×Ω

| f ′(y(ξ))h(η) − f ′(y(η))h(η)|p
|ξ − η|2αp+n

dξdη

≤ ‖ f ‖p
C2
b (R)

[h]p
W 2α,p(Ω)

+ ‖ f ‖p
C2
b (R)

‖h‖p∞[y]p
W 2α,p(Ω)

≤ cp1 ‖h‖p
Xα

(1 + ‖y‖p
Xα

),

where c1 is a positive constant which depends on the C2
b (R)-norm of f . It follows

that ‖(σ ′ ◦ y)h‖Xα ≤ c2‖h‖Xα (1 + ‖y‖Xα ) for every y, h ∈ Xα , and some positive
constant c2, so that σ is locally Lipschitz continuous on Xα . Hence, the assumptions
of Theorem 3.1 are satisfied, and problem (3.2) admits a unique mild solution y, for
any ψ ∈ Xα , such that y(t) ∈ D(Ap) for every t ∈ (0, T ].
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