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Abstract. We consider the Kuramoto–Sivashinsky equation (KSE) on the two-dimensional torus in the
presence of advection by a given background shear flow. Under the assumption that the shear has a finite
number of critical points and there are linearly growing modes only in the direction of the shear, we prove
global existence of solutions with data in L2, using a bootstrap argument. The initial data can be taken
arbitrarily large.

1. Introduction

In this article we consider the Kuramoto–Sivashinsky equation (KSE) in two-space
dimension in the presence of advection by a given background shear flow. The KSE
is a well-known model of large-scale instabilities, such as those arising in flame-front
propagation (see e.g. [26] and references therein).
The KSE comes in a scalar, potential form, and a differentiated, vectorial form. We

will confine ourselves to the scalar form, since the addition of a linear transport term
is meaningful for the potential:

∂tφ + 1

2
|∇φ|2 + �2φ + �φ = 0. (1)

We solve this equation with periodic boundary conditions on [0, L1] × [0, L2], that
is, on a two-dimensional torus, which with slight abuse of notation we denote by T

2.
When L1 > 2π or L2 > 2π , the symbol of the linear operator �2 + � is negative
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on a finite set of low frequencies. Hence, there are (linearly) growing modes in the
horizontal or vertical direction, respectively.
Since the Kuramoto–Sivashinsky equation describe the motion of a (plane) frame

front [31,37], one and two space dimensions are the most physically relevant for
the problem. For the same reason, taking periodic boundary conditions is physically
motivated, even though other geometries, such as that of a channel, are of interest. We
confine ourselves to treating periodic boundary conditions.
We consider a modified version of (1), where the potential φ is subject to advection

by a given steady shear flow,whichwewritewithout loss of generality as the horizontal
shear v = (u(y), 0):

∂tφ + A u(y)∂xφ + 1

2
|∇φ|2 + �2φ + �φ = 0,

where the parameter A > 0 represents the amplitude of the flow. As we explain more
precisely below, we are interested in considering shear flows which are relaxation
enhancing [11], for instance, a sufficient condition [12] is that u has a finite number
of critical points. The KSE with general advection term has been utilized in models
of turbulent premixed-combustion [15]. By a change of time, the above equation can
be rewritten in an equivalent way as

∂tφ + u(y)∂xφ + ν

2
|∇φ|2 + ν�2φ + ν�φ = 0, (2)

where ν = A−1 and, with slight abuse of notation, we have not relabeled the trans-
formed variables. Because ν determines the strength of the dissipation, we will refer
to ν as a viscosity coefficient. We will refer to the equation above as AKSE.

The main difficulty in dealing with both (1) and (2) is the lack of a priori norm
estimates on the solution, which does not allow to bootstrap local existence into global
existence via a standard continuation argument. The analysis of the KSE in one space
dimension is well developed by now, since in one dimension energy estimates lead to
a good control on the L2 norm of the solution [8,9,21–24,35]. By contrast, there are
only a handful of results concerning the well-posedness of the classical KSE (1) in
dimension greater than one. Local well-posedness holds in L p spaces [7,27]. Global
existence is known only under fairly restrictive assumptions, such as for thin domains
and for the anisotropically reduced KSE [6,30,32,36], without growing modes [1,17],
or with only one growing mode in each direction [2], for small data. The attractor and
determining modes were studied in [34], under a uniform bound on higher Sobolev
norms that yields global existence of solutions.
In [17], two of the authors proved global existence for AKSE for large data and any

number of growing modes, when the advecting velocity field induces a sufficiently
small dissipation time, e.g. if the flow ismixing, that leads to a global uniformbound on
the L2 norm of the solution. In this case, the action of the flow is to move energy from
large scales to small scales in both directions, where the dissipation can efficiently
damp the effect of all the growing modes. We prove in this work that the same result,
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global existence for large data, holds, if the advecting flow is a shear flow with only
isolated critical points and in the absence of growing modes in the direction transverse
to the shear, the vertical direction in our set up, which can be achieved by restricting
0 < L2 < 2π . The idea of the proof is to exploit the enhanced dissipation arising
from the combined action of the hyper-diffusion and the advection to control both the
nonlinearity as well as the destabilizing effect of the negative Laplacean at large scale.
Intuitively speaking, the shear flow has no influence on purely vertical modes. For
instance, the function of y obtained by averaging the solution in the x direction may
grow in time.On the other hand, themixing along streamlines of the flowmoves energy
from large to small scales. Therefore, the growth generated by growing horizontal
modes is damped on a sufficiently large time-scale by the dissipation. The nonlinearity
then couples all the modes.
For the case at hand of a steady shear flow, the transport operator has a large kernel,

namely all the functions on the torus that are constant in the horizontal variable. One
needs to project out the kernel to take advantage of the action of the flow. There is no
enhanced decay of the energy on the kernel component (at a linear level), but the norm
can nevertheless be controlled as they satisfy collectively a modified one-dimensional
KSE. A key point is to use the fact that the linear operator

Hν := ν�2 + u(y)∂x , (3)

is dissipation enhancing [11,12,16].More precisely, for the components of the solution
orthogonal to the kernel of the transport operator, it generates an exponentially stable
semigroup e−t Hν with a rate of decay of the L2 norm of order λν , where ν/λν → 0 as
ν → 0. By contrast, a standard energy estimate shows that the semigroup is contractive
with rate O(ν). The improved rate in viscosity allows to control both the growing
modes as well as the nonlinear terms, provided ν is small enough compared to the size
of the initial data. Given g ∈ L2(T2), we denote

〈g〉(y) = 1

L1

∫
T1

g(t, x, y)dx, g�=(x, y) = g(x, y) − 〈g〉(y). (4)

By Fubini–Tonelli’s Theorem, 〈g〉 exists for a.e. y. We observe that 〈g〉 corresponds
to the projection of g onto the kernel of the advection operator u(y)∂x , while g�=
corresponds to the projection onto the orthogonal complement in L2.

We define the order of a critical point x0 of a function u(x) as the smallest m ∈ N

such that the derivative um(x0) �= 0. A simple critical point has therefore orderm = 2.
As shown in [4], if u has a finite number of critical points of order at most m, then

u is mixing in the sense that for some constant C > 0 there holds

‖e−u∂x t g�=‖H−1 ≤ C

(1 + t)1/m
‖g�=‖H1 , (5)

for every t ≥ 0. Thanks to, [12, Corollary 2.3] this translates into the enhanced
dissipation estimate

‖e−Hν t g�=‖L2 ≤ 5e−λν t‖g�=‖L2 , λν = ε0ν
2m

2m+1 , (6)
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for some ε0 > 0, independent of ν, and for every t ≥ 0. For AKSE, we use (6) to
show that solutions are global, as stated in the next theorem.

Theorem 1.1. Let 0 < L2 < 2π and let u : [0, L2) → R be a smooth function with
a finite number of critical points of order at most m. Then, given φ0 ∈ L2(T2), there
exists 0 < ν0 < 1 depending on L1, L2, u, and ‖φ0‖L2 with the following property:
for any 0 < ν < ν0, there exists a unique global-in-time weak solution φ of (2) with
initial data φ0 such that φ ∈ L∞([0,∞), L2) ∩ L2([0,∞), H2) 0 < T < ∞

Westress thatwe can allow any number of growingmodes in the horizontal direction
and the initial data can be arbitrarily large in L2. The uniqueness of solutions in
C([0, T ], L2) follows similarly to other semi-linear parabolic equations (see e.g. [38,
Proposition 1.1, page 315]).
The proof is based on a bootstrap argument inspired by [5]. The main steps in

this argument are as follows. For any initial data in L2, there exists a local-in-time
mild solution of (2) on some interval of time [0, t0), which is also a weak solution in
L∞([0, t0), L2) ∩ L2([0, t0), H2) and satisfies the energy identity [17]. For t0 small
enough, we can make the L2 and H2 norms of the projected component less than a
certain multiple of the size of the initial data. By using the stability of the semigroup
generated by Hν , one then shows that, for ν sufficiently small, these norms are in fact
half that amount. Hence, the solution can be continued for a longer time than t0, which
allows to bootstrap existence from local to global for the projected component and
then conclude using the time evolution of the kernel component of the solution.
As we shall see in Sect. 2, the size of ν0 in Theorem 1.1 depends on the rate at which

ν/λν vanishes as ν → 0. Hence, improving the semigroup estimate (6) automatically
implies a better global existence threshold. In Sect. 3, we show that imposing a possibly
more restrictive condition on u (see Assumption 3.1), the semigroup bound can be
improved. In particular, we consider as a prototypical example the case of

u(y) = sin((2πy)/L2)
	 for 	 ∈ N, (7)

and prove the following result.

Proposition 1.2. Let g ∈ L2(T2), 0 < ν < 1, and u(y) be given as in (7). There
exists ε′

0 > 0, independent of ν, such that

‖e−t Hν g�=‖L2 ≤ e−λ′
ν t+π/2‖g�=‖L2 , λ′

ν = ε′
0ν

max{2,	}
max{2,	}+4 , (8)

for every t ≥ 0.

We observe that 	 is related tom in (6) in the sense that u in (7) has critical points of
order at most m = max{2, 	}. Hence, a direct comparison between (6) and (8) shows
that (8) has a much better decay rate, and in particular ν/λ′

ν → 0 faster as ν → 0.
The derivation of the semigroup estimate (8) is carried out in Sect. 3 via a spectral-

theoretic approach. It follows from a general Gearhart–Prüss criterion for m-accretive
operators devised in [39] based on a quantitative pseudo-spectral bound. The proof is
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motivated by that of a similar result for the Laplace operator� in [20]. For the Laplace
operator plus advection, decay rates akin to (8) were obtained in [10,39] for a shear
with infinitely many critical points, using the pseudo-spectral approach, and for shear
flows with finitely many critical points in [4], using hypocoercivity. Such quantitative
semigroup estimates are relevant in the investigation of enhanced diffusion for passive
scalars [3,4,13,39], in the study of asymptotic stability of particular solutions to the
two-dimensional Navier–Stokes equations [14,19,33,40], and have also applications
to several other nonlinear problems [5,25,28,29].

In Sect. 3, we prove a more general version of Proposition 1.2, namely Proposi-
tion 1.1, for shear flows satisfying a certain condition, Assumption 3.1, again inspired
by [20]. This condition can be readily verified for u in (7). This is a main reason while
we chose it as prototypical example. In fact, by refining themethod of proof, we expect
an analog of Proposition 1.2 to hold for any shear flow with critical points of order m.

In what follows, C denotes a generic constant that may depend on the domain, i.e.,
on L1 and L2. We utilize standard notation to denote function spaces, e.g. Hk(T2) is
the usual L2-based Sobolev space. We denote the L2-norm on the whole T2 as ‖·‖L2

while ‖·‖L2
y
is the L2-norm on the torus in the vertical direction.

Finally, the paper is organized as follows. In Sect. 2, we obtain the bootstrap esti-
mates and prove Theorem 1.1. Then, in Sect. 3, we establish the exponential stability of
the semigroup generated by Hν with the improved decay rate, using spectral estimates.

2. Global existence for the KSE with shear

In this section, we establish global existence of solutions of the KSE in the presence
of advection by a shear flow with a finite number of critical points. The semigroup
estimate (6) allows to control these growing modes through a suitable decomposition
of the solution and a bootstrap argument.

2.1. Decomposition of the solution and proof of the main result

In this section, we derive the system of coupled equations that describe the time
evolution of the component 〈φ〉 of the solution in the kernel of the transport operator
and the time evolution of the component φ�= in the orthogonal complement.

We will refer informally to 〈φ〉 and φ �= as the kernel and projected components,
respectively. Then 〈φ〉 satisfies

∂t 〈φ〉 + ν

2L1

∫
T1

|∇φ �= + ∇〈φ〉|2 dx + ν∂4y 〈φ〉 + ν∂2y 〈φ〉 = 0, (9)
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while φ �= satisfies

∂tφ �= + u(y)∂xφ �= + ν�2φ �=

= −ν

2
|∇φ �= + ∇〈φ〉|2 + ν

2L1

∫
T1

|∇φ �= + ∇〈φ〉|2 dx − ν�φ �=

= −ν

2
|∇φ �=|2 + ν

2
〈|∇φ �=|2〉 − ν∂yφ �=∂y〈φ〉 − ν�φ �=. (10)

We remark that in the equation above the kernel component interacts with the projected
ones through the term ∂y〈φ〉. Denoting ψ = ∂y〈φ〉 for notational ease, we have

∂tψ + ν

2L1

∫
T1

∂y |∇φ �=|2 dx + νψ∂yψ + ν∂4yψ + ν∂2yψ = 0. (11)

It was proved in [17] that the unique local mild solution to (2) is also a weak solution
satisfying the energy identity on the time of existence of themild solution. In particular,
φ �= ∈ L∞((0, t0); L2(T2))∩ L2((0, t0); H2(T2)), at least for a sufficiently small time
t0 > 0. Furthermore, it was shown in [17] that the mild and weak solution persists
as long as its L2 norm is finite, that is, if T ∗ is the maximal time of existence of the
solution, then

T ∗ < ∞ ⇒ lim sup
t→T ∗

‖φ(t)‖L2 = ∞.

Our goal is to obtain a global bound on the L2 norm of the solution via a bootstrap
argument, fromwhich global existence follows.Wewill employ both energy estimates
aswell as semigroup estimates to exploit enhanceddissipation arising from the addition
of the advection term on φ �=.
Let St be the solution operator from 0 to time t ≥ 0 for the transport-hyperdiffusion

equation:

∂t g + u(y) ∂x g + ν�2g = 0,

that is, St = e−t Hν . Then φ �= satisfies for 0 ≤ t̄ ≤ t ,

φ �=(t) = St−t̄ (φ �=(t̄))+

+
∫ t−t̄

0
St−t̄−s

(
− ν

2
|∇φ �=(s + t̄)|2

+ ν

2
〈|∇φ �=(s + t̄)|2〉 − νψ(s)∂yφ �=(s + t̄) − ν�φ �=(s + t̄)

)
ds, (12)

by Duhamel’s principle. We note that the “forcing” term under the integral sign on the
right-hand sideof this equation iswell controlled as long asφ�= ∈ L∞((0, t0); L2(T2))∩
L2((0, t0); H2(T2)), provided ψ is also controlled.



Vol. 21 (2021) Global existence for the two-dimensional 5085

Using the decay of St on the projected component given by (6), it follows from (12)
that, for 0 ≤ s ≤ t ,

∥∥φ �=(t)
∥∥
L2 ≤ ∥∥St (φ �=(s))

∥∥
L2 + Cν

∫ t−s

0

( ∥∥∇φ �=
∥∥2
L4

+ ‖ψ‖L4
y

∥∥∇φ �=
∥∥
L4 + ∥∥�φ �=

∥∥
L2

)
(s + τ) dτ

≤ ∥∥St (φ �=(s))
∥∥
L2 + Cν

∫ t−s

0

( ∥∥φ �=
∥∥1/2
L2

∥∥�φ �=
∥∥3/2
L2 + ∥∥�φ �=

∥∥
L2

+ ∥∥φ �=
∥∥1/4
L2

∥∥�φ �=
∥∥3/4
L2 ‖ψ‖7/8

L2
y

∥∥∥∂2yψ

∥∥∥1/8
L2
y

)
(s + τ) dτ

≤ ∥∥St (φ �=(0))
∥∥
L2 + Cν

∫ t

0

( ∥∥φ �=
∥∥1/2
L2

∥∥�φ �=
∥∥3/2
L2

+ ∥∥�φ �=
∥∥
L2 + ∥∥φ �=

∥∥1/4
L2

∥∥�φ �=
∥∥3/4
L2

∥∥∥∂2yψ

∥∥∥
L2
y

)
(s + τ) ds, (13)

where in the above estimate we used the fact ‖ψ‖L2
y

≤ C
∥∥∥∂2yψ

∥∥∥
L2
y

by applying

Poincaré’s inequality twice (we exploit here that ψ and, hence, all its derivatives
have zero average by definition), and the following Gagliardo-Nirenberg interpolation
inequalities:

∥∥∇φ �=
∥∥
L4 ≤ C

∥∥φ �=
∥∥1/4
L2

∥∥�φ �=
∥∥3/4
L2 , ‖ψ‖L4

y
≤ C ‖ψ‖7/8

L2
y

∥∥∥∂2yψ

∥∥∥1/8
L2
y

. (14)

We next derive some energy estimates that will be needed for the bootstrap argument.
Multiplying (10) byφ �= and integrating bypart, using the periodic boundary conditions,
yields:

1

2

d

dt

∥∥φ �=
∥∥2
L2 + ν

∥∥�φ �=
∥∥2
L2

= −ν

2

∫
T2

|∇φ �=|2φ �= dxdy + ν

2L1

∫
T2

(∫
T1

|∇φ �=|2 dx
)

φ �= dxdy (15)

− ν

∫
T2

ψ∂yφ �=φ �= dxdy + ν
∥∥∇φ �=

∥∥2
L2 (16)

≤ Cν
∥∥∇φ �=

∥∥2
L4

∥∥φ �=
∥∥
L2 + Cν ‖ψ‖L2

y

∥∥∇φ �=
∥∥
L4

∥∥φ �=
∥∥
L4 + ν

∥∥∇φ �=
∥∥2
L2 .

(17)

We recall the Gagliardo-Nirenberg interpolation inequalities in (14) and
∥∥φ �=

∥∥
L4 ≤ C

∥∥φ �=
∥∥3/4
L2

∥∥�φ �=
∥∥1/4
L2 . (18)

These estimate imply:

1

2

d

dt

∥∥φ �=
∥∥2
L2 + ν

∥∥�φ �=
∥∥2
L2 ≤ Cν

∥∥φ �=
∥∥3/2
L2

∥∥�φ �=
∥∥3/2
L2 + Cν ‖ψ‖L2

y

∥∥φ �=
∥∥
L2

∥∥�φ �=
∥∥
L2

+ ν
∥∥φ �=

∥∥
L2

∥∥�φ �=
∥∥
L2 , (19)
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wherewe have integrated by parts in the last term in (15). ApplyingYoung’s inequality,
we further get

d

dt

∥∥φ �=
∥∥2
L2 + ν

∥∥�φ �=
∥∥2
L2 ≤ Cν

∥∥φ �=
∥∥6
L2 + Cν

∥∥φ �=
∥∥2
L2 + Cν

∥∥φ �=
∥∥2
L2 ‖ψ‖2L2

y
.

(20)

We also recall that the enhanced diffusion estimate (6) for St :

‖St g‖L2 ≤ 5 e−λν t ‖g‖L2 ,

for any g ∈ L2(T2) with
∫
T1 g(x, y) dx = 0. Above λν satisfies

ν

λν

→ 0, as ν → 0. (21)

In view of (12), the regularity of the mild and weak solution and the continuation
principle, for all sufficiently small times t ≥ s ≥ 0 we can assume that

(H1)
∥∥φ �=(t)

∥∥
L2 ≤ 8e−λν(t−s)/4

∥∥φ �=(s)
∥∥
L2 ,

(H2) ν
∫ t
s

∥∥�φ �=(τ )
∥∥2
L2 dτ ≤ 4

∥∥φ �=(s)
∥∥2
L2 .

Let t0 > 0 be themaximal time such that the estimates above hold on [0, t0]. Following
[7], we refer to (H1)–(H2) with t ∈ [0, t0] as the bootstrap assumptions. The next
lemma ensures suitable bounds on ψ once the bootstrap assumptions (H1) and (H2)
hold.

Lemma 2.1. Let 0 < L2 < 2π . Assume the bootstrap assumptions (H1) and (H2).
There exists a ν-independent constant C1 = C1(

∥∥φ �=(0)
∥∥
L2 , ‖ψ(0)‖L2

y
), which can

be explicitly computed, such that

‖ψ(t)‖2L2
y
+ ν

∫ t

0

∥∥∥∂2yψ(s)
∥∥∥2
L2
y

ds ≤ C1, (22)

for all t ∈ [0, t0].
Proof. First from the energy estimate and Poincaré’s inequality, we have

1

2

d

dt
‖ψ‖2L2

y
+ ν

∥∥∥∂2yψ

∥∥∥2
L2
y

= ν
∥∥∂yψ

∥∥2
L2
y
+ ν

2L1

∫
T2

|∇φ �=|2∂yψ dxdy

≤ ν
( L2

2π

)2 ∥∥∥∂2yψ

∥∥∥2
L2
y

+ ν

2L
1
2
1

∥∥∇φ �=
∥∥2
L4

∥∥∂yψ
∥∥
L2
y
. (23)

It follows from the Gagliardo-Nirenberg inequality that

∥∥∂yψ
∥∥2
L2
y

≤
∥∥∥∂2yψ

∥∥∥
L2
y

‖ψ‖L2
y
. (24)
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Appealing to (14) and the bound above, estimate (23) becomes

1

2

d

dt
‖ψ‖2L2

y
+ν

(
1 −

( L2

2π

)2) ∥∥∥∂2yψ

∥∥∥2
L2
y

≤Cν
∥∥φ �=

∥∥1/2
L2

∥∥�φ �=
∥∥3/2
L2

∥∥∥∂2yψ

∥∥∥1/2
L2
y

‖ψ‖1/2
L2
y

.

We now exploit in a crucial way the hypothesis L2 < 2π . By Young’s inequality we
deduce that

d

dt
‖ψ‖2L2

y
+ ν

(
1 − ( L2

2π

)2) ∥∥∥∂2yψ

∥∥∥2
L2
y

≤ Cν
∥∥φ �=

∥∥2/3
L2

∥∥�φ �=
∥∥2
L2 ‖ψ‖2/3

L2
y

(25)

≤ Cν
∥∥φ �=

∥∥2/3
L2

∥∥�φ �=
∥∥2
L2 + Cν

∥∥φ �=
∥∥2/3
L2

∥∥�φ �=
∥∥2
L2 ‖ψ‖2L2

y
. (26)

We define an integrating factor μ = exp
( − Cν

∫ t
0

∥∥φ �=
∥∥2/3
L2

∥∥�φ �=
∥∥2
L2 ds

)
. Then

solving (26) gives

‖ψ(t)‖2L2
y

≤ Cνμ−1
∫ t

0

∥∥φ �=(s)
∥∥2/3
L2

∥∥�φ �=(s)
∥∥2
L2 ds + μ−1 ‖ψ(0)‖2L2

y

≤
(
16Ce16C‖φ�=(0)‖8/3

L2
∥∥φ �=(0)

∥∥8/3
L2 + e16C‖φ�=(0)‖8/3

L2 ‖ψ(0)‖2L2
y

)
=: C̃1,

(27)

where the last inequality follows by the bootstrap assumptions (H1) and (H2). By
using (27) in (25), we get (22). �
We show below in Sect. 2.2 that, in fact, there exists ν0 > 0 small enough such that,

if ν < ν0 and (H1)–(H2) hold on [0, t0], then for any 0 ≤ s ≤ t ≤ t0
(B1)

∥∥φ �=(t)
∥∥
L2 ≤ 4e−λν(t−s)/4

∥∥φ �=(s)
∥∥
L2 ,

(B2) ν
∫ t
s

∥∥�φ �=(τ )
∥∥2
L2 dτ ≤ 2

∥∥φ �=(s)
∥∥2
L2 .

We refer to (B1)–(B2) as the bootstrap estimates. Thus, under the assumptions (H1)–
(H2), the stronger conclusions (B1)–(B2) hold. As a consequence, (B1)–(B2) hold
for all positive times. Assuming temporarily this fact, we proceed with the proof of
Theorem 1.1.

Proof of Theorem 1.1. From Lemmas 2.2 and 2.5 and the definition of t0, we must
have t0 = ∞. In particular, φ �= ∈ L∞([0,∞); L2(T2)) ∩ L2([0,∞); H2(T2)). By
Lemma2.1,we haveψ ∈ L∞([0,∞); L2(T1))∩L2([0,∞); H2(T1)). By the triangle
and Poincaré’s inequalities, it then follows �φ ∈ L2([0,∞); L2(T2)). If we further
denote

φ̄ = 1

L1L2

∫
T2

φ(x, y) dxdy = 1

L2

∫
T1

〈φ〉 dy, (28)

then from (9) we have

∂t φ̄ = − ν

2L1L2

∫
T2

|∇φ �= + ∇〈φ〉|2 dxdy

= − ν

2L1L2

∫
T2

|∇φ �=|2 dxdy − ν

2L2

∫
T1

|ψ |2 dy. (29)
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By integrating the above equation and applying estimate (22) and (B2), we obtain φ̄ ∈
L∞([0,∞)). By Lemma 2.1, it follows that ψ ∈ L∞([0,∞); L2(T1)). Hence, (28)
and the Poincaré inequality imply that 〈φ〉 ∈ L∞([0,∞); L2(T1)). As a consequence,
φ ∈ L∞([0,∞); L2(T2)). Finally, we note that ∇2φ = ∇2φ �= + ∇ψ so that φ ∈
L2([0,∞); H2(T2)). This concludes the proof. �

2.2. Bootstrap estimates

It remains to establish the bootstrap estimates (B1)–(B2), which we accomplish
through a series of lemmas. We address (B2) first.

Lemma 2.2. Let 0 < L2 < 2π . Assume the bootstrap assumptions (H1) and (H2).
There exists ν0 = ν0(

∥∥φ �=(0)
∥∥
L2), explicitly computable, with the following property:

for any 0 ≤ s ≤ t ≤ t0 and for any ν ≤ ν0, it holds that

ν

∫ t

s

∥∥�φ �=(τ )
∥∥2
L2 dτ ≤ 2

∥∥φ �=(s)
∥∥2
L2 . (30)

In particular, (B2) holds.

Proof. The bootstrap assumptions, Lemma 2.1 and the energy estimate (20) give

ν

∫ t

s

∥∥�φ �=(τ )
∥∥2
L2 dτ ≤ ∥∥φ �=(s)

∥∥2
L2 + Cν

∫ t

s

∥∥φ �=(τ )
∥∥6
L2 + (1 + C1)

∥∥φ �=(τ )
∥∥2
L2 dτ

≤ ∥∥φ �=(s)
∥∥2
L2 + ν

λν

C(
∥∥φ �=(0)

∥∥4
L2 + 1 + C1)

∥∥φ �=(s)
∥∥2
L2

(31)

We observe that, since ν/λν → 0 as ν → 0, there exists ν0 such that

ν0

λν0

≤ 1

C(
∥∥φ �=(0)

∥∥4
L2 + 1 + C1)

.

Hence, by combining the choice ν0 with (31) we conclude the proof of the Lemma.
�

It remains to prove (B1), which we accomplish in different steps. The next lemma
states that within a fixed length of time, the quantity

∥∥φ �=
∥∥
L2 will never grow too fast.

Lemma 2.3. Let 0 < L2 < 2π . Assume the bootstrap assumptions (H1) and (H2),
and fix τ ∗ = 4/λν . For any 0 ≤ t1 < t0, there exists ν0 = ν0(

∥∥φ �=(0)
∥∥
L2) such that

for any ν ≤ ν0 there holds

∥∥φ �=(t)
∥∥
L2 ≤ √

2
∥∥φ �=(t1)

∥∥
L2 . (32)

for all t ∈ [t1, t1 + τ ∗] ∩ [0, t0].
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Proof. We will assume that ν0 is small enough so that Lemma 2.2 applies. Again by
Lemma 2.1, the energy estimate (20), and the bootstrap assumption (H1), for some
positive C2 = C2(

∥∥φ �=(0)
∥∥
L2 , ‖ψ(0)‖L2

y
) we have that

d

dt

∥∥φ �=
∥∥2
L2 ≤ Cν

∥∥φ �=
∥∥6
L2 + C(1 + C1)ν

∥∥φ �=
∥∥2
L2

≤ C(1 + C1)ν
∥∥φ �=(0)

∥∥2
L2 (

∥∥φ �=
∥∥4
L2 + 1)

≤ C2ν
(∥∥φ �=

∥∥4
L2 + 1

)
. (33)

Now, we define T (B) as

T (B) = 1

νC2

∫ 2B2

B2

dy

y2 + 1
= 1

νC2
(arctan(2B2) − arctan(B2)). (34)

It is easy to see that T (·) is a decreasing function and, since by the bootstrap assumption
(H1) we have that

∥∥φ �=(t1)
∥∥
L2 ≤ 8

∥∥φ �=(0)
∥∥
L2 , it follows that T (

∥∥φ �=(t1)
∥∥
L2) ≥

T (8
∥∥φ �=(0)

∥∥
L2). In light of (33), by the definition of T (B) we have that for any t ∈

[t1, t1 + T (8
∥∥φ �=(0)

∥∥
L2)] ∩ [0, t0], the estimate

∥∥φ �=(t)
∥∥
L2 ≤ √

2
∥∥φ �=(t1)

∥∥
L2 holds.

The lemma is now proved if we choose τ ∗ ≤ T (8
∥∥φ �=(0)

∥∥
L2), which is equivalent to

asking for

ν

λν

≤ 1

4C2
(arctan(128

∥∥φ �=(0)
∥∥2
L2) − arctan(64

∥∥φ �=(0)
∥∥2
L2)). (35)

Finally, ν/λν → 0 as ν → 0, so it is enough to satisfy (35) for ν0. This concludes the
proof. �

The next lemma shows that by, selecting ν sufficiently small, a constant fraction of∥∥φ �=
∥∥
L2 decays after a fixed length of time.

Lemma 2.4. Let 0 < L2 < 2π . Assume the bootstrap assumptions (H1) and (H2),
and fix again τ ∗ = 4/λν . If t0 ≥ τ ∗ then there exists ν0 = ν0(

∥∥φ �=(0)
∥∥
L2), explicitly

computable, with the following property: for any s ∈ [0, t0 − τ ∗] and for any ν ≤ ν0,

∥∥φ �=(τ ∗ + s)
∥∥
L2 ≤ 1

e

∥∥φ �=(s)
∥∥
L2 . (36)

Proof. In the course of this proof, we assume that ν0 is small enough so that Lemma2.2
can be applied. By the definition of τ ∗, we have

∥∥Sτ∗(φ �=(s))
∥∥
L2 ≤ 5

e4
∥∥φ �=(s)

∥∥
L2 ≤ 1

e2
∥∥φ �=(s)

∥∥
L2 . (37)
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Using this inequality in (13) yields

∥∥φ�=(τ ∗ + s)
∥∥
L2 ≤ 1

e2
∥∥φ �=(s)

∥∥
L2

+ Cν

∫ τ∗+s

s

( ∥∥φ �=
∥∥1/2
L2

∥∥�φ�=
∥∥3/2
L2 + ∥∥�φ�=

∥∥
L2 + ∥∥φ�=

∥∥1/4
L2

∥∥�φ�=
∥∥3/4
L2

∥∥∥∂2yψ

∥∥∥
L2
y

)
dτ

≤ 1

e2
∥∥φ�=(s)

∥∥
L2 + C

(
ν

∫ τ∗+s

s

∥∥φ �=(τ )
∥∥2
L2 dτ

)1/4(
ν

∫ τ∗+s

s

∥∥�φ �=(τ )
∥∥2
L2 dτ

)3/4

+ C
(
ν

∫ τ∗+s

s

∥∥�φ�=(τ )
∥∥2
L2 dτ

)1/2
(ντ ∗)1/2

+ C
(
ν

∫ τ∗+s

s

∥∥�φ�=(τ )
∥∥2
L2 dτ

)3/8(
ν

∫ τ∗+s

s

∥∥∥∂2yψ(τ)

∥∥∥2
L2

dτ
)1/2

(
ν

∫ τ∗+s

s

∥∥φ�=(τ )
∥∥2
L2 dτ

)1/8
.

(38)

Using the bootstrap assumptions (H1)–(H2) and Lemma 2.1, it then follows that

∥∥φ �=(τ ∗ + s)
∥∥
L2 ≤ 1

e2
∥∥φ �=(s)

∥∥
L2 + C(ντ ∗)1/4

∥∥φ �=(s)
∥∥2
L2 + C(ντ ∗)1/2

∥∥φ �=(s)
∥∥
L2

+ C
√
C1(ντ ∗)1/8

∥∥φ �=(s)
∥∥
L2

≤ 1

e2
∥∥φ �=(s)

∥∥
L2 + C(ντ ∗)1/8

( ∥∥φ �=(s)
∥∥
L2 + √

C1
) ∥∥φ �=(s)

∥∥
L2 ,

(39)

where we used the fact that ντ ∗ � 1 when ν0 is small enough. By further restricting
ν0 so that

1

e2
+ C(4ν0λ

−1
ν0

)1/8
(
8
∥∥φ �=(0)

∥∥
L2 + √

C1
) ≤ 1

e
, (40)

the desired result follows from (39). �
Now we are ready to show that the bootstrap assumption (H1) can be refined.

Lemma 2.5. Let 0 < L2 < 2π . Assume the bootstrap assumptions (H1) and (H2).
There exists ν0 = ν0(

∥∥φ �=(0)
∥∥
L2), explicitly computable, with the following property:

for any 0 ≤ s ≤ t ≤ t0 and for any ν ≤ ν0, it holds that∥∥φ �=(t)
∥∥
L2 ≤ 4e−λν(t−s)/4

∥∥φ �=(s)
∥∥
L2 . (41)

In particular, (B1) holds.

Proof. We fix ν0 = ν0(
∥∥φ �=(0)

∥∥
L2) so that all the restrictions in Lemmata 2.2–2.4 are

fulfilled. If t0 < τ ∗ then (B1) directly follows by Lemma 2.3 since
√
2e < 4. When

t0 ≥ τ ∗, by Lemma 2.4, we have
∥∥φ �=(nτ ∗ + s)

∥∥
L2 ≤ e−n

∥∥φ �=(s)
∥∥
L2 , for any n ∈ Z+satisfying s + nτ ∗ ≤ t0.

(42)
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For any 0 ≤ s ≤ t ≤ t0, there exists n such that t ∈ [nτ ∗ + s, (n + 1)τ ∗ + s). From
Lemma 2.3 with t1 = nτ ∗ + s, it follows that

∥∥φ �=(t)
∥∥
L2 ≤ √

2
∥∥φ �=(nτ ∗ + s)

∥∥
L2 ≤ √

2e−n
∥∥φ �=(s)

∥∥
L2

≤ √
2e1−(t−s)/τ∗ ∥∥φ �=(s)

∥∥
L2 ≤ 4e−λν(t−s)/4

∥∥φ �=(s)
∥∥
L2 . (43)

This concludes the proof of the lemma. �

3. Semigroup estimates

In this section, we prove Proposition 1.2, namely an improved decay estimate for
the semigroup generated by Hν in L2, under a general condition on the shear velocity
profile u.
We denote by L̊2(T2) the closed subspace of L2(T2) of elements for which 〈g〉 = 0.

By Fubini–Tonelli’s Theorem, such elements are also mean-zero on the torus. We
will be concerned with the restriction of the operator Hν to L̊2(T2) viewed as an
unbounded operator. By slight abuse of notation, we denote the restriction also by
Hν . It is straightforward to check that the projection onto L̊2(T2) commutes with the
semigroup e−t Hν generated by Hν .
Let (X, ‖ · ‖) be a complex Hilbert space and let H be a closed, densely defined

operator on X . As shown in [39], if H is an m-accretive operator on X , then the
decay properties of the semigroup e−t H can be understood in terms of the following
quantity:

�(H) = inf {‖(H − iλ)g‖ : g ∈ D(H), λ ∈ R, ‖g‖ = 1} , (44)

is related to the pseudospectral properties of the operator [18]. Following [39], for
L1k
2π ∈ Z\{0} and ν ∈ (0, 1], we consider the operator Hν localized to the kth Fourier
mode in the direction of the shear, namely, the operator

Hν,k = ν�2
k + iku(y), �k := −k2 + ∂yy . (45)

Following the arguments in [39] for the Laplace operator, it can be shown that Hν,k

is an m-accretive operator on L2(T1) with domain H4(T1). Here, L2 is a space of
complex-valued functions. Then, as a consequence of [39]*Theorem 1.3,

‖e−Hν,k t‖op ≤ e−t�(Hν,k )+π/2, ∀t ≥ 0, (46)

where ‖ · ‖op denotes the operator norm. To establish lower bounds on �(Hν,k), we
assume the following condition on the shear flow.

Assumption 3.1. There exist m, N ∈ N, c1 > 0 and δ0 ∈ (0, L2) with the property
that, for any λ ∈ R and any δ ∈ (0, δ0), there exist n ≤ N and points y1, . . . yn ∈
[0, L2) such that

|u(y) − λ| ≥ c1

(
δ

L2

)m

, ∀ |y − y j | ≥ δ, ∀ j ∈ {1, . . . n}. (47)
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Remark 3.1. Assumption 3.1 is heavily inspired by a similar property of the velocity
field associated to the Oseen’s vortex [33]. In [20], Gallay previously observed that
the method of proof in [33] can be extended to more general shear flows assuming
a condition similar to (47). We observe that a strictly monotone shear flow satisfies
Assumption 3.1 withm = 1. However, no such flows exists on the torusT2, where any
shear flow must have at least a simple critical point, so that we always have m ≥ 2.
See for instance the example in Proposition 1.2.

The following is the main result of this section.

Proposition 1.1. Let u satisfy Assumption 3.1. Assume k �= 0 and ν|k|−1 ≤ 1. There
exists a constant ε′

0 > 0, independent of ν and k, such that

�(Hν,k) ≥ ε′
0ν

m
m+4 |k| 4

m+4 . (48)

We state next a direct consequence of the theorem.

Corollary 3.1. In the hypotheses of Proposition 1.1, let Pk denote the L2 projection
onto the k-th Fourier mode in the horizontal direction. Then, for every t ≥ 0,

‖e−Hν t Pk‖op ≤ e−ε′
0ν

m
m+4 |k| 4

m+4 t+π/2. (49)

In particular, Hν generates an exponentially stable semigroup in L̊2(T2) with rate:

‖e−Hν t‖op ≤ e−λ′
ν t+π/2, t > 0, (50)

where λ′
ν = ε′

0ν
m

m+4 for some ε′
0 > 0.

Before proving Proposition 1.1, we show that the Assumption 3.1 is satisfied with
m ≥ 2 for u as in (7).

Example 3.1. We consider the case of u(y) = (sin(y))	, 	 ∈ N, defined on [0, 2π).
For a general period L2, the result follows by a standard rescaling argument. Without
loss of generality, we may assume that δ0 > 0 is small enough so that cos(δ0) ≥ 1/2.
In particular, δ0 and hence δ < 1 and, for every C ≥ 1,

sin(δ/C) ≥ δ

2C
, ∀δ ∈ (0, δ0). (51)

Given λ ∈ R, we choose the set of points y1, . . . , yn to be the union of the set of
the critical points of u with the set u−1({λ}) (possibly empty). More precisely, we
consider

Y :=
{

{π/2, 3π/2} ∪ u−1({λ}), 	 = 1,

{0, π/2, π, 3π/2} ∪ u−1({λ}), 	 ≥ 2,
n := |Y |. (52)

There are at most N = 8 points in Y . Observe that the critical points at y = π/2, 3π/2
are such that u′′(π/2), u′′(3π/2) �= 0 for any 	 ≥ 1. On the other hand, for 	 ≥ 2
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the critical points at y = 0, π are such that u( j)(0) = u( j)(π) = 0 for every j =
1, . . . , 	−1 and u(	)(0), u(	)(π) �= 0. We denote Y = {yi }ni=1 and we order the points
in such a way that 0 ≤ yi ≤ yi+1 ≤ 2π for i = 1, . . . , N . We fix δ ∈ (0, δ0) and
consider different cases.
Case λ ∈ [0, 1]. Denote by yλ the smallest element of u−1({λ}). Due to the symmetries
of u, we know that yλ ∈ [0, π/2]. We consider three situations.

• 0 ≤ yλ < δ/4: In this case, thanks to (51), we have

|u(y) − λ| = |(sin(y))	 − (sin(yλ))
	| ≥ | sin(δ)|	 − | sin(yλ)|	

≥ δ	

2	
− | sin(δ/4)|	 ≥ δ	

2	
− δ	

4	
≥ δ	

2	+1 , (53)

where we used that 0 ≤ sin(y) ≤ y.
• |yλ − π/2| < δ/4: In this case we have

|u(y) − λ| = |(sin(y))	 − (sin(yλ))
	| ≥ |(sin(π/2 − δ))	 − (sin(yλ))

m |
≥ |(sin(π/2 − δ)))	 − (sin(π/2)))	| − |(sin(π/2)))	 − (sin(π/2 − δ/4)))	|. (54)

Since ∂y(sin(y))	 = 	(sin(y))	−1 cos(y) and ∂2y (sin(y))
	 = 	(	−1)(sin(y))	−2

cos2(y) − 	(sin(y))	,

|(sin(π/2 − δ)))	 − (sin(π/2)))	| =
∣∣∣∣∣
(
1 − δ2

2
+ O(δ4)

)e

ll − 1

∣∣∣∣∣ = 	

2
δ2 + O(δ4).

(55)

so that, by possibly restricting the size of δ0 further (depending on 	), we also
have

|(sin(π/2 − δ)))	 − (sin(π/2)))	| ≥ 	

4
δ2. (56)

On the other hand,

|(sin(π/2)))	 − (sin(π/2 − δ/4)))	| ≤ 	

8
δ2. (57)

Consequently,

|u(y) − λ| ≥ 	

8
δ2. (58)

• yλ ≥ δ/4 and |yλ − π/2| ≥ δ/4: In this case, we have

|u(y) − λ| = |(sin(y))	 − (sin(yλ))
	|

≥ min
{
|(sin(yλ + δ/8))	 − (sin(yλ))

	|, |(sin(yλ − δ/8))	 − (sin(yλ))
	|

}
.

(59)
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We observe that yλ + δ/8 < π/2− δ/8 and yλ − δ/8 > δ/8. Then if yλ ≥ π/4,
it follows by the Mean Value Theorem that for some ξ ∈ (yλ, yλ + δ/8),

|(sin(yλ + δ/8))	 − (sin(yλ))
	| = 	|(sin(ξ))	−1 cos(ξ)| δ

8

≥ 	|(sin(π/4))	−1 cos(π/2 − δ/8)| δ
8

≥ 	

2
	−1
2

| sin(δ/8)| δ
8

≥ 	

2
	−1
2

δ2

128
, (60)

also using (51). Otherwise, if yλ ≤ π/4, we have

|(sin(yλ + δ/8))	 − (sin(yλ))
	| = 	|(sin(ξ))	−1 cos(ξ)| δ

8

≥ 	|(sin(δ/4))	−1 cos(π/4 + δ/8)| δ
8

≥ 	|(sin(δ/4))	−1 cos(π/3)| δ
8

≥ 	

8	+1 δ	. (61)

A lower bound for |(sin(yλ − δ/8)))	 − (sin(yλ)))	| can be proved in a similar
way.

Case λ > 1. In this case u−1({λ}) = ∅. Hence, since dist(y,Y ) ≥ δ, we simply have

|u(y) − λ| ≥ |(sin(y))	 − (sin(π/2))	| ≥ |(sin(π/2 − δ))	 − (sin(π/2))	|
≥ 	|(sin(ξ))	−1 cos(ξ)|δ ≥ 	|(sin(π/6))	−1 cos(π/2 − δ)|δ ≥ 	

2	
δ2,

(62)

where we used (51) in the last inequality.
Case λ < 0. This case is only relevant for 	 even, hence 	 ≥ 2. In fact, for 	 odd we
proceed as for the case λ ∈ [0, 1] by symmetry. Here, again u−1({λ}) = ∅. Hence,
since dist(y,Y ) ≥ δ, we have

|u(y) − λ| ≥ |(sin(y))	| ≥ (sin(δ))	 ≥ δ	

2	
, (63)

by (51).
Since δ > δ2, combining all these estimates together gives that there exists a constant

c	 > 0 such that

|u(y) − λ| ≥ c	δ
max{	,2}, (64)

as we wanted.

We now turn our attention to the proof of Proposition 1.1.

Proof of Proposition 1.1. The theoremfollowsbyestablishing a lower boundon�(Hν,k).
In the following, ‖·‖ denotes the L2 norm and 〈·, ·〉 denotes theHermitian inner product
in L2.
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We fix λ ∈ R and pick g ∈ D(Hν,k) with ‖g‖ = 1. For notational convenience, we
set

H := Hν,k − ikλ = ν�2
k + ik(u(y) − λ).

Let χ : [0, L2) → [−1, 1] be a smooth approximation of sign(u(y) − λ) such that
‖χ ′‖L∞ ≤ c2δ−1, ‖χ ′′‖L∞ ≤ c2δ−2, χ(u − λ) ≥ 0 and

χ(y)(u(y) − λ) = |u(y) − λ|, whenever |y − y j | ≥ δ, ∀ j ∈ {1, . . . n}, (65)

where y j are the points in Assumption 3.1. The function χ can be constructed via a
standard mollification argument. A double integration by parts in y yields the identity

Re〈Hg, g〉 = ν‖�kg‖2, (66)

which implies that

‖�kg‖2 ≤ 1

ν
‖Hg‖‖g‖. (67)

On the other hand, we have

〈Hg, χg〉 = ν〈�2
kg, χg〉 + ik〈(u(y) − λ)g, χg〉 = ν〈�kg, χ

′′g〉
+ 2ν〈�kg, χ

′∂yg〉 + ν〈�kg, χ�kg〉 + ik〈(u(y) − λ)g, χg〉 (68)

so that

Im〈Hg, χg〉 = νIm〈�kg, χ
′′g〉 + 2νIm〈�kg, χ

′∂yg〉 + k〈(u(y) − λ)g, χg〉.
(69)

In particular, from the properties of the function χ and the interpolation inequality
‖∂yg‖2 ≤ ‖�kg‖‖g‖, it follows that

|k|〈(u(y) − λ)g, χg〉 ≤ ‖Hg‖‖g‖ + c2ν

δ2
‖�kg‖‖g‖ + c2ν

δ
‖�kg‖3/2‖g‖1/2. (70)

We denote

E := {
y ∈ [0, L2) : |y − y j | ≥ δ, for j = 1, . . . , n

}
, (71)

where y j are the points in Assumption 3.1. By (47) we have

〈(u(y) − λ)g, χg〉 ≥
∫
E

|u(y) − λ||g(y)|2dy ≥ c1

(
δ

L2

)m ∫
E

|g(y)|2dy. (72)
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Utilizing (67) and (70), we find that there exists a positive constant c̃2 such that
∫
E

|g(y)|2dy ≤ 1

c1|k|
(
L2

δ

)m [
‖Hg‖‖g‖ + c2ν

δ2
‖�kg‖‖g‖ + c2ν

δ
‖�kg‖3/2‖g‖1/2

]

≤ 1

c1|k|
(
L2

δ

)m

‖Hg‖‖g‖ + c̃2

((
ν

|k|δ2
)2 (

L2

δ

)2m

+
(

ν

|k|δ
)4/3 (

L2

δ

) 4m
3

)
‖�kg‖2 + 1

4
‖g‖2

≤
⎛
⎝ 1

c1|k|
(
L2

δ

)m

+ c̃2
ν

⎛
⎝

(
ν

|k|L2
2

)2 (
L2

δ

)2m+4

+
(

ν

|k|L2

)4/3 (
L2

δ

) 4
3 (m+1)

))
‖Hg‖‖g‖ + 1

4
‖g‖2. (73)

On the other hand, since Ec is of size at most Nδ, we have
∫
Ec

|g(y)|2dy ≤ Nδ‖g‖2L∞ ≤ Nδ

(
2‖g‖‖∂yg‖ + 1

L2
‖g‖2

)

≤ Nδ

(
2‖g‖3/2‖�kg‖1/2 + 1

L2
‖g‖2

)

≤ (6Nδ)4

12
‖�kg‖2 +

(
Nδ

L2
+ 1

4

)
‖g‖2

≤ (6Nδ)4

12ν
‖Hg‖‖g‖ +

(
Nδ

L2
+ 1

4

)
‖g‖2, (74)

where we made use of (67) in the last inequality. Without loss of generality, we
can assume that δ0 in Assumption 3.1 is small enough so that δ ≤ L2/(4N ) for all
δ ∈ (0, δ0). Thus we can add (73) and (74) to conclude that

‖g‖ ≤4

(
1

c1|k|
(
L2

δ

)m

+ c̃2
ν

(|k|L2
2)

2

(
L2

δ

)2m+4

+ c̃2
ν1/3

(|k|L2)
4/3

(
L2

δ

) 4
3 (m+1)

+ (6Nδ)4

12ν

)
‖Hg‖. (75)

We now take δ satisfying

δ

L2
= c3

(
ν

|k|
) 1

m+4

(76)

for some sufficiently small constant c3 > 0, which is independent of ν, k since
ν|k|−1 ≤ 1. We conclude that

ν
m

m+4 |k| 4
m+4 = ν

m
m+4 |k| 4

m+4 ‖g‖ ≤ c4‖Hg‖, (77)
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for a large enough constant c4 > 0 independent of ν and k. By definition then

�(H) ≥ ε′
0 ν

m
m+4 |k| 4

m+4 ,

for some constant ε′
0 > 0 independent of ν and k, whence proving the

proposition. �

Remark 3.2. The proof of Proposition 1.1 carries over to the slightly more general
case of the semigroup generated by the hypoelliptic operator

H̃ν = u(y)∂x + ν∂4y , (78)

for which the same semigroup estimate (50) holds.
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