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Abstract. We consider the long-time behavior of solutions to a fourth-order nonlinear Schrödinger (NLS)
equation with a derivative nonlinearity. By using the method of testing by wave packets, we construct an
approximate solution and show that the solution for the fourth-order NLS has the same decay estimate for
linear solutions. We prove that the self-similar solution is the leading part of the asymptotic behavior.

1. Introduction

We consider the Cauchy problem for a fourth-order nonlinear Schrödinger (NLS)
equation {

i∂t u − 1
4∂

4
x u = i∂x F(u), t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,
(1.1)

where u = u(t, x) : [0,∞) × R → C is an unknown function and u0 is a given
function. Here, F satisfies the following assumptions:

A-1. F ∈ C1(C;C)∩C2(C\{0};C)1 with F(0) = F ′(0) = 0 and F(αu) = α4F(u)

for α ≥ 0 and u ∈ C, where F ′ denotes any of Fu := ∂F
∂u and Fu := ∂F

∂u .
Moreover,

|F ′(u1) − F ′(u2)| � (|u1|2 + |u2|2)|u1 − u2|
for all u1, u2 ∈ C.

A-2. Fu is real-valued.

We use the assumption (A-1) to show the local-in-time well-posedness of (1.1). More
precisely, we can prove the local well-posedness of (1.1) with the quartic homogeneity
replaced by

|F ( j)(u)| � |u|4− j (1.2)

for j = 0, 1, 2 and u �= 0. However, we only consider the quartic homogeneous
nonlinearity in this paper for simplicity. See also Remark 1.
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1Here, we regard C as R2.
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To obtain the global existence (and asymptotic behavior), we employ the quartic
homogeneity and (A-2). Indeed, we use these assumptions in energy estimates in
Sect. 2. A typical example of F is given by

F(u) = a|u|3u + bu4 (1.3)

for a ∈ R and b ∈ C. We note that the first term |u|3u in (1.3) can be generalized as
follows: for a real-valued cubic homogeneous function g ∈ C1(C;R)∩C2(C\{0};R),∫ u
0 g(v)dv satisfies assumptions (A-1) and (A-2), where we calculate this integral as

if u is a real-variable. For example, when g(u) = |u|3 = u
3
2 u

3
2 , we have

∫ u

0
g(v)dv = 2

5
u

5
2 u

3
2 = 2

5
|u|3u.

By setting g(u) = (	u)3−k(
u)k for k = 0, 1, 2, 3, we have other examples of
nonlinearities satisfying (A-1) and (A-2).
Here, we mention some properties of solutions to (1.1). If u is a solution to (1.1),

we have the following conservation law:∫
R

u(t, x)dx =
∫
R

u0(x)dx . (1.4)

Note that (1.1) is invariant under the scaling transformation

u(t, x) �→ λu(λ4t, λx) (1.5)

for any λ > 0. Hence, the scaling critical Sobolev regularity is sc := − 1
2 .

Asymptotic behavior of the fourth-order NLS and its related equations have been
studied by several researchers. See [1,2,5–12,14,15,19] and references therein. In
particular, Ben-Artzi, Koch, and Saut [2] showed the dispersive estimates for the
fourth-order Schrödinger equations. From the dispersive estimates, we can expect
that a quartic nonlinearity with a derivative is critical in the sense of the asymptotic
behavior of solutions to (1.1). This is a reason why we assume quartic nonlinearity in
(A-1).
Hayashi and Naumkin [6,7] derived the asymptotic behavior of the solution to the

fourth-order NLS equation with the gauge invariant nonlinearity:

i∂t u − 1

4
∂4x u = λ∂x (|u|ρu), t > 0, x ∈ R. (1.6)

They proved that the asymptotic behavior of (1.6) is the same as that of the linear
solution and the self-similar solution to (1.6) when λ ∈ C, ρ > 3 and λ = i , ρ = 3,
respectively. They employed the factorization technique for the evolution operator of
the fourth-order Schrödinger equation.
For (1.1) with F(u) = u4, namely

i∂t u − 1

4
∂4x u = ∂x (ū

4), t > 0, x ∈ R,
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Hirayama and the first author [12] showed the small data global well-posedness and

the scattering in the scaling critical Sobolev space Ḣ− 1
2 (R). They used the Fourier

restriction normmethod adapted to the spaces V p of functions of bounded p-variation
and their pre-duals U p.
To state the main result, we denote Hs,r (R) the weighted Sobolev space equipped

with the norm

‖u‖Hs,r := ‖〈x〉r 〈i∂x 〉su‖L2
x

for s, r ∈ R and we set Hs(R) := Hs,0(R). Define the phase function

φ(t, x) = 3

4
t−

1
3 x

4
3 − π

4
. (1.7)

Here, a
1
3 = 3

√
a denotes the unique real cubic root of a ∈ R.

Theorem 1. Assume that the initial datum u0 at time 0 satisfies

‖u0‖H1 + ‖u0‖H0,1 ≤ ε � 1. (1.8)

Let F satisfy (A-1) and (A-2). Then, there exists a unique global solution u to (1.1)
with ei

1
4 t∂

4
x u ∈ C

([0,∞); H1(R) ∩ H0,1(R)
)
satisfying the estimates

∥∥∥〈t− 1
4 x〉− k

3+ 1
3 ∂kx u(t)

∥∥∥
L∞
x

� εt−
k+1
4 (1.9)

for t ≥ 1 and k = 0, 1, 2. Moreover, we have the following asymptotic behavior as
t → +∞.
Set ρ := 1

4 (
1
8 − ε). In the self-similar region Xself(t) := {x ∈ R : t− 1

4 |x | � t3ρ},
there exists a solution Q = Q(y) to the nonlinear ordinary differential equation

Q′′′ + iyQ + 4i F(Q) = 0 (1.10)

satisfying ‖Q‖L∞
y

� ε and

∥∥∥u(t) − t−
1
4 Q(t−

1
4 x)

∥∥∥
L∞
x (Xself (t))

� εt−
1
4− 5

2ρ, (1.11)
∥∥∥u(t) − t−

1
4 Q(t−

1
4 x)

∥∥∥
L2
x (X

self (t))
� εt−

1
8−3ρ. (1.12)

In the oscillatory region Xosc(t) := {x ∈ R : t− 1
4 |x | � t3ρ}, there exists a unique

complex-valued function W satisfying ‖W‖L∞∩L2 � ε such that

u(t, x) = 1√
3
t−

1
4 (t−

1
4 x)−

1
3W

(
t−

1
3 x

1
3

)
eiφ(t,x) + errx , (1.13)

where the error satisfies the estimates∥∥∥t 14 (t− 1
4 |x |) 1

2 errx
∥∥∥
L∞
x (Xosc(t))

� ε,

∥∥∥t 18 (t− 1
4 |x |) 1

3 errx
∥∥∥
L2
x (X

osc(t))
� ε.
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In the corresponding frequency region X̂osc(t) := {ξ ∈ R : t 14 |ξ | � tρ}, we have

û(t, ξ) = W (ξ)e
1
4 i tξ

4 + errξ , (1.14)

where the error satisfies

∥∥∥(t
1
4 |ξ |) 1

2 errξ

∥∥∥
L∞

ξ (X̂osc(t))
� ε,

∥∥∥t 18 (t 14 |ξ |)errξ

∥∥∥
L2

ξ (X̂osc(t))
� ε.

In Theorem 1, we divide R into two regions R = Xself(t) ∪ Xosc(t). Note that, in
the results on KdV equations in [3,17,18], the asymptotic behavior is classified into
three regions: self-similar, oscillatory, and decaying. This difference comes from the
asymptotic behavior of the linear solutions. Indeed, the corresponding linear equation
to (1.1)

i∂t u − 1

4
∂4x u = 0 (1.15)

is invariant under the spatial inversion. Namely, if u satisfies (1.15), then ũ defined by

ũ(t, x) := u(t,−x) (1.16)

also satisfies the same equation. Hence, the asymptotic behaviors for x > 0 and x < 0
are the same. On the other hand, the linear KdV (Airy) equation

∂t u − 1

3
∂3x u = 0 (1.17)

is not invariant under the spatial inversion (1.16). More precisely, the transformation
(1.16) changes the sign of the coefficient of ∂3x . Indeed, the solution to (1.17) (the Airy
function) is oscillating for x > 0 and decaying for x < 0.

As mentioned above, by using the factorization technique for the fourth-order NLS
equation, Hayashi and Naumkin [6] studied the asymptotic behavior of (1.1) with
F(u) = |u|3u for small initial data in H1,1(R). More precisely, they proved the

existence of a global solution u with ei
1
4 t∂

4
x u ∈ C

([0,∞); H1,1(R)
)
and

‖u(t)‖L∞
x

� ε〈t〉− 1
4 , (1.18)

when ‖u0‖H1,1 ≤ ε � 1. In this paper, we employ the method of testing by wave
packets as in [13]. Since we use (1.9) instead of (1.18) (as a bootstrap assumption),
our assumption u0 ∈ H1(R) ∩ H0,1(R) is better than u0 ∈ H1,1(R) in [6]. See also
Remark 2.

Remark 1. Wecan obtain the same result as inTheorem1 for short-range perturbations
of the form

i∂t u − 1

4
∂4x u = i∂x (F(u) + G(u)),
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where G ∈ C2(C;C), Gu is real-valued, and there exists p0 > 4 such that

|G( j)(u)| � |u|p0− j

for j = 0, 1, 2. Since we can apply the same argument as in Appendix A in [3] and
Appendix B in [18], we omit the details here.

Remark 2. When we consider the explicit nonlinearity as in (1.3), we can replace

H1(R) in Theorem 1 with H
3
8 (R). See Remark 4. Note that this regularity H

3
8 (R) is

exactly the same as that in [18] with the fourth-order dispersion.

1.1. Outline of proof

We give here an outline of the proof. Denote by L the linear operator of (1.1):

L := i∂t − 1

4
∂4x . (1.19)

To obtain pointwise estimates for solutions, we use the vector field

J := x − i t∂3x , (1.20)

which satisfies J = e−i 14 t∂
4
x xei

1
4 t∂

4
x . Since J has the third derivative, it is difficult to

apply J directly for the energy estimates. We then use the generator of the scaling
transformation (1.5) given by

S := 4t∂t + x∂x + 1. (1.21)

Moreover, by (1.19)–(1.21), we have

S = −4i tL + J ∂x + 1.

As in [3,17,18], we also use the operator


 := ∂−1
x S = −4i t∂−1

x L + J . (1.22)

Roughly speaking, since the operator 
 acts as the first-order derivative for the non-
linearity, we use 
 instead of J .
We introduce the norm with respect to the spatial variable

‖u(t)‖X :=
(
‖u(t)‖2H1

x
+ ‖
u(t)‖2L2

x

) 1
2
. (1.23)

We note that

‖u0‖X ∼ ‖u0‖H1 + ‖u0‖H0,1 . (1.24)

By a standard fixed point argument, we have the local well-posedness in X of (1.1).
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Proposition 1. Assume that F satisfies (A-1). If u0 ∈ H1(R)∩H0,1(R) satisfies (1.8),
then there exist T > 1 and a (unique) solution u(t) ∈ X to (1.1) satisfying

sup
0≤t≤T

‖u(t)‖X � ‖u0‖H1 + ‖u0‖H0,1 . (1.25)

The proof is a slight modification of that in Appendix in [18].
We then make the bootstrap assumption that u satisfies the linear pointwise esti-

mates: there exists a large constant D such that

∥∥〈t− 1
4 x〉− k

3+ 1
3 ∂kx u(t)

∥∥
L∞
x

≤ Dεt−
k+1
4 (1.26)

for t ∈ [1, T ] and k = 0, 1, 2. Note that we take ε > 0 small enough so that ε ≤ D−2.
In Sect. 2, by using (1.26), for ε > 0 sufficiently small, we prove the a priori bound:

sup
1≤t≤T

‖u(t)‖X ≤ εCT , (1.27)

where CT is a constant depending only on T . Namely, CT is independent of D and
ε. Then, by the local well-posedness with (1.27), the global existence follows from
closing the bootstrap estimate (1.26).
In Sect. 3, we prove decay estimates in L∞(R) and L2(R) that allow us to reduce

closing the bootstrap argument to considering the behavior of u along the ray �v :=
{x = vt}. We also observe that (1.26) holds true at t = 1. Since u is complex-valued,
we have to pay attention to the sign of frequencies. We thus need to slightly modify
the argument in [18]. See, for example, (3.11) and the proof of Lemma 4.
To close the bootstrap argument, we use the method of testing by wave packets as

in [3,4,13,18]. Here, a wave packet is an approximate solution localized in both space
and frequency on the scale of the uncertainty principle. Our main task in Sect. 4 is to
construct a wave packet �v(t, x) to the corresponding linear equation and observe its
properties.
To observe decay of u along the ray �v , we use the function

γ (t, v) =
∫
R

u(t, x)�v(t, x)dx . (1.28)

In Sect. 4, we prove that γ is a reasonable approximation of u. We then reduce closing
the bootstrap estimate (1.26) to proving global bounds for γ .

In Sect. 5, by solving an ordinary differential equation with respect to γ , we show
the global existence of u. Moreover, we prove that the leading part of the asymptotic

behavior is given by the self-similar solution t− 1
4 Q(t− 1

4 x), where Q is a solution to
(1.10).

1.2. Notation

At this point, we summarize the notation used throughout this paper. SetN0 := N∪
{0}. Denote the set of positive and negative real numbers by R+ and R−, respectively.
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Let C∞
0 (R) be the space of all smooth and compactly supported functions. We denote

the space of all smooth and rapidly decaying functions on R by S(R). Define the
Fourier transform of f by F[ f ] or f̂ .

In estimates, we use C to denote a positive constant that can change from line to
line. If C is absolute or depends only on parameters that are fixed, then we often write
X � Y , which means X ≤ CY . When an implicit constant depends on a parameter a,
we sometimes write X �a Y . We define X � Y to mean X ≤ C−1Y and X ∼ Y to
mean C−1Y ≤ X ≤ CY . We write X = Y + O(Z) when |X − Y | � Z .

Let σ be a smooth even function with 0 ≤ σ ≤ 1 and

σ(ξ) =
{
1, if |ξ | ≤ 1,

0, if |ξ | ≥ 2.

For any R, R1, R2 > 0 with R1 < R2, we set

σ≤R(ξ) := σ

(
ξ

R

)
, σ>R(ξ) := 1 − σ≤R(ξ),

σ<R(ξ) := σ≤ R
2
(ξ), σ≥R(ξ) := 1 − σ<R(ξ), σR(ξ) := σ≤R(ξ) − σ<R(ξ),

σR1≤·≤R2(ξ) := σ≤R2(ξ) − σ<R1(ξ), σR1<·<R2(ξ) := σ<R2(ξ) − σ≤R1(ξ).

Moreover, we define the corresponding Fourier multipliers as usual:

PR f := F−1[σR f̂ ], P≤R f := F−1[σ≤R f̂ ], P>R f := F−1[σ>R f̂ ],
PR1≤·≤R2 f := F−1[σR1≤·≤R2 f̂ ].

We denote the characteristic function of an interval I by 1I . For N ∈ 2Z, we define

P± f := F−1[1R± f̂ ], P±
N := P±PN .

We also set σ± = σ1R± and σ±
≤R := σ≤R1R± , etc.

2. Energy estimates

In this section, we prove some a priori estimates of a solution u to (1.1) satisfying
(1.26). First, we use an energy estimate to obtain the bound for ‖u(t)‖X .
Lemma 1. Assume that F satisfies (A-1) and (A-2). Let u be a solution to (1.1) in a
time interval [0, T ] satisfying

‖u0‖H1 + ‖u0‖H0,1 ≤ ε � 1 (2.1)

and (1.26). Then, we have

‖u(t)‖X � ε〈t〉ε,
where X is defined in (1.23) and the implicit constant is independent of D, T , and ε.
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Proof. By (1.25), we have the desired bound for 0 ≤ t ≤ 1. We thus consider the case
t > 1.

It follows from (1.1) and (A-1) that

1

2

d

dt
‖u(t)‖2L2

x
= 	

∫
R

u ·
(
Fu(u)∂xu + Fu(u)∂xu

)
dx

� ‖u(t)‖2L2
x
‖u(t)‖2L∞

x
‖∂xu(t)‖L∞

x
.

(2.2)

By (1.1) and (1.2), we have

1

2

d

dt
‖∂xu(t)‖2L2

x
= 	

∫
R

∂xu · Fu(u)∂2x udx + 	
∫
R

∂xu · Fu(u)∂2x udx

+ O
(
‖u(t)‖2H1

x
‖u(t)‖2L∞

x
‖∂xu(t)‖L∞

x

)

=: I + II + O
(
‖u(t)‖2H1

x
‖u(t)‖2L∞

x
‖∂xu(t)‖L∞

x

)
.

(2.3)

From Fu(0) = Fu(0) = 0, we may regard the integrals in I and II as those on {u �= 0}.
It follows from (A-2), integrating by parts, and (1.2) that

I = −1

2

∫
R

∂x Fu(u)|∂xu|2dx � ‖u(t)‖2H1
x
‖u(t)‖2L∞

x
‖∂xu(t)‖L∞

x
. (2.4)

Moreover, we apply integration by parts with (1.2) to obtain

II = −1

2
	

∫
R

∂x Fu(u)
(
∂xu

)2dx � ‖u(t)‖2H1
x
‖u(t)‖2L∞

x
‖∂xu(t)‖L∞

x
. (2.5)

By (2.2)–(2.5), we obtain

d

dt
‖u(t)‖2H1

x
� ‖u(t)‖2H1

x
‖u(t)‖2L∞

x
‖∂xu(t)‖L∞

x
. (2.6)

A direct calculation with (1.19) and (1.21) yields that

[L,S] = 4L, [S, ∂x ] = −∂x .

Moreover, it follows from (A-1) that

4F(u) = Fu(u)u + Fu(u)u.

If u is a solution to (1.1), it follows (1.22) and (1.1) that

L
u = ∂−1
x (S + 4)Lu = i

(
Fu(u)∂x
u + Fu(u)∂x
u

)
. (2.7)

By (1.19), (2.7), (A-2), integrating by parts, and (1.2), we obtain

1

2

d

dt
‖
u(t)‖2L2

x
= −


∫
R


u · L
udx

= −1

2

∫
R

∂x Fu(u)|
u|2dx − 1

2
	

∫
R

∂x Fu(u)(
u)2dx

� ‖
u(t)‖2L2
x
‖u(t)‖2L∞

x
‖∂xu(t)‖L∞

x
.

(2.8)
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Hence, it follows from (1.23), (2.6), (2.8), and (1.26) that

d

dt
‖u(t)‖2X � (Dε)3t−1‖u(t)‖2X .

From (Dε)3 � ε and Gronwall’s inequality, we obtain

‖u(t)‖X ≤ 10‖u(1)‖X · tε � εtε

for t ≥ 1.

Remark 3. To obtain (2.6) in the proof of Lemma 1, we only use (1.2) (instead of the
quartic homogeneity). However, (2.7) is a consequence of (A-1), and we rely on (A-1)
in the calculation in (2.8).

Second, we prove a priori bound for ‖J u(t)‖L2
x
. We define the auxiliary space

‖u(t)‖X̃ := ‖J u(t)‖L2
x
+ t

1
4

∥∥∥〈t 14 ∂x 〉−1u(t)
∥∥∥
L2
x

, (2.9)

where J is defined in (1.20).

Lemma 2. Assume that F satisfies (A-1) and (A-2). Let u be a solution to (1.1) which
satisfies (2.1) and (1.26). Then, for t ≥ 1, we have

‖u(t)‖X̃ � εt
1
8 ,

where the implicit constant is independent of D, T , and ε.

Proof. We note that (1.22) and (1.1) imply that

J u = 
u + 4i t∂−1
x Lu = 
u − 4t F(u). (2.10)

Since (A-1) and (1.26) yield that

|F(u(t, x))| � |u(t, x)|4 ≤ εt−1〈t− 1
4 x〉− 4

3 ,

we have

∥∥F(u(t))
∥∥
L2
x

� εt−1
( ∫

t−
1
4 |x |≤1

〈t− 1
4 x〉− 8

3 dx +
∫
t−

1
4 |x |≥1

〈t− 1
4 |x |〉− 8

3 dx

) 1
2

� εt−1+ 1
8 .

(2.11)

It follows from (2.10), Lemma 1, and (2.11) that

‖J u(t)‖L2
x

� ‖
u(t)‖L2
x
+ t

∥∥F(u(t))
∥∥
L2
x

� εtε + εt
1
8 � εt

1
8 . (2.12)

Next, we use a self-similar change of variables by defining

U (t, y) := t
1
4 u(t, t

1
4 y). (2.13)
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A direct calculation with (1.21) and (1.22) shows

∂tU (t, y) = 1

4
t−

3
4 (Su)(t, t

1
4 y) = 1

4
t−1∂y

(
(
u)(t, t

1
4 y)

)
. (2.14)

Then, it follows from (2.14) and Lemma 1 that

d

dt

∥∥〈∂y〉−1U (t)
∥∥
L2
y

� t−1− 1
8 ‖
u(t)‖L2

x
� εt−1− 1

8+ε. (2.15)

By (2.15), taking 0 < ε � 1, and (1.25), we have

∥∥〈∂y〉−1U (t)
∥∥
L2
y

= ∥∥〈∂y〉−1U (1)
∥∥
L2
y
+

∫ t

1
∂t ′

∥∥〈∂y〉−1U (t ′)
∥∥
L2
y
dt ′

� ‖u(1)‖H−1
x

+ ε � ε

(2.16)

for t ≥ 1. From
∥∥〈∂y〉−1U (t)

∥∥
L2
y

= t
1
8

∥∥∥〈t 14 ∂x 〉−1u(t)
∥∥∥
L2
x

, the desired bound follows

from (2.12) and (2.16).

Remark 4. The estimate ‖u(t)‖X̃ � ε for 0 ≤ t ≤ 1 holds true. Indeed, it follows

from (2.9), (2.10), (1.23), and Sobolev embedding H
3
8 (R) ↪→ L8(R) that

sup
0≤t≤1

‖u(t)‖X̃ � sup
0≤t≤1

(
‖
u(t)‖L2

x
+ ‖u(t)4‖L2

x
+ ‖u(t)‖L2

x

)

� sup
0≤t≤1

(
‖u(t)‖X + ‖u(t)‖4X

)
.

By (1.25), (1.24), and (1.8), we obtain

sup
0≤t≤1

‖u(t)‖X̃ � ε.

3. Decay estimates

In this section, we prove decay estimates for u without the bootstrap assumption
(1.26). In Sect. 3.1, we decompose u into a part on which J acts hyperbolically and a
part onwhich it acts elliptically. Since u is complex-valued, the decomposition is (a bit)
different from the previous papers [3,17,18]. In Sect. 3.2, by using the decomposition
in Sect. 3.1, we prove some decay estimates for u.

3.1. Hyperbolic and elliptic parts of u

We write uN := PNu. Let N (t) ∈ 2Z be the smallest dyadic integer satisfying

N (t) ≥ t− 1
4 for t ≥ 1. By setting

u
<t−

1
4

:= P<N (t)u,
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we have

u = u
<t−

1
4

+
∑
N∈2Z
N≥t−

1
4

uN . (3.1)

Here, by (1.20), we have J uN = PN (J u) + i N−1F−1
ξ [σ ′( ξ

N )̂u], where σ ′ is a
derivative of σ . Hence, it follows from (2.9) and (3.1) that

‖u(t)‖X̃ ∼
(

‖u
<t−

1
4
(t)‖2

X̃
+

∑
N∈2Z
N≥t−

1
4

‖uN (t)‖2
X̃

) 1
2

. (3.2)

We decompose uN into positive and negative frequencies:

uN = u+
N + u−

N , u±
N := P±uN = P±

N u.

For t ≥ 1 and N ≥ t− 1
4 , we define the hyperbolic and elliptic parts of u±

N as follows:

uhyp,±N := σ
hyp,±
N u±

N , uell,±N := u±
N − uhyp,±N , (3.3)

where σ
hyp,±
N (t, x) := σ 1

κ
t N3≤·≤κt N3(x)1R±(x) and

κ := 210. (3.4)

The largeness of κ uses in the proof of (3.13) in Lemma 4. While the explicit value
of κ is not important (e.g., we can choose κ with κ ≥ 210), we fix κ as in (3.4) for
simplicity.
Next, we define

uhyp,± :=
∑
N∈2Z
N≥t−

1
4

uhyp,±N , uhyp := uhyp,+ + uhyp,−, (3.5)

uell := u − uhyp. (3.6)

We note that uhyp,± is supported in {x ∈ R± : t− 1
4 |x | ≥ 1

2κ }. For (t, x) ∈ R
2 with

t− 1
4 |x | ≥ 1

2κ , (3.4) yields that

#
{
N ∈ 2Z : 1

2κ
t N 3 ≤ |x | ≤ 2κt N 3

}
< 10.

Hence, uhyp,±(t, x) is a finite sum of uhyp,±N (t, x)’s.
Moreover, we set

uellN := uell,+N + uell,−N
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for simplicity. It follows from (3.1), (3.3), and (3.6) that

uell = u
<t−

1
4

+
∑
N∈2Z
N≥t−

1
4

uellN . (3.7)

The functions uhypN and uellN are essentially frequency localized near N . This is a
consequence of the following lemma. See Lemma 3.1 in [16] and Lemma 4.1 [17] for
the proof.

Lemma 3. Let 2 ≤ p ≤ ∞, N ∈ 2Z, and R > 0. For any a, b, c ∈ R with a ≥ 0
and a + c ≥ 0, we have

‖(1 − PN
2 ≤·≤2N )|∂x |a(|x |bσR PN f )‖L p

x
�a,b,c N−c+ 1

2− 1
p R−a+b−c‖PN f ‖L2

x
.

Moreover, we may replace σR on the left-hand side by σ>R if a + c > b + 1 and σ<R

if a + c ≥ 0 and b = 0.
In addition, for any 0 < r < R, we have

‖(1 − PN
2 ≤·≤2N )|∂x |a(|x |bσr<·<R PN f )‖L2

x

�a,b,c N−c R−a+b−c
(
R

r

)a+|b|+c+2

‖PN f ‖L2
x
.

Lemma 3 yields that for any a ≥ 0, b ∈ R, and c ≥ 0,∥∥∥(1 − P±
N
2 ≤·≤2N

)|∂x |a(|x |buhyp,±N (t))
∥∥∥
L2
x

�a,b,c t
− a−b

4 (t
1
4 N )−c‖uN (t)‖L2

x
, (3.8)

∥∥∥(1 − P±
N
2 ≤·≤2N

)|∂x |auell,±N (t)
∥∥∥
L2
x

�a,c t
− a

4 (t
1
4 N )−c‖uN (t)‖L2

x
, (3.9)

∥∥∥(1 − P±
N
2 ≤·≤2N

)|∂x |a(|x |bσ
>t

1
4
(x)uell,±N )(t)

∥∥∥
L2
x

�a,b,c t
− a−b

4 (t
1
4 N )−c‖uN (t)‖L2

x
.

(3.10)

Factorizing the symbol x − tξ3 of J , we define

J± := |x | 13 ± i t
1
3 ∂x , J̃± := |x | 23 ∓ i t

1
3 |x | 13 ∂x − t

2
3 ∂2x . (3.11)

These operators are useful in our analysis. Note thatJ− andJ+ are elliptic on positive
and negative frequencies, respectively.

3.2. Decay estimates in L2 and L∞

First, we show the following frequency localized estimates.

Lemma 4. For t ≥ 1 and N ∈ 2Z with N ≥ t− 1
4 , we have∥∥∥(|x | 23 + t

2
3 N 2)J±uhyp,±N (t)

∥∥∥
L2
x

� ‖uN (t)‖X̃ , (3.12)
∥∥∥(|x | + t N 3)uell,±N (t)

∥∥∥
L2
x

� ‖uN (t)‖X̃ . (3.13)
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Proof. First, we prove (3.12). Set f := J±uhyp,±N . Note that the support of f is away
from the origin. Hence, integration by parts and Plancherel’s theorem yield that

‖J̃± f (t)‖2L2
x

=
∥∥∥|x | 23 f (t)

∥∥∥2
L2
x

+
∥∥∥t 13 |x | 13 ∂x f (t)

∥∥∥2
L2
x

+
∥∥∥t 23 ∂2x f (t)

∥∥∥2
L2
x

∓ 2t
1
3 


∫
R

|x | f (t, x)∂x f (t, x)dx − 2t
2
3 	

∫
R

|x | 23 f (t, x)∂2x f (t, x)dx

∓ 2t

∫
R

|x | 13 ∂x f (t, x)∂2x f (t, x)dx

=
∥∥∥|x | 23 f (t)

∥∥∥2
L2
x

+
∥∥∥t 13 |x | 13 ∂x f (t)

∥∥∥2
L2
x

+
∥∥∥t 23 ∂2x f (t)

∥∥∥2
L2
x

± 2t
1
3

∫
R

ξ |F[| · | 12 f ](t, ξ)|2dξ

+ 2t
2
3

∫
R

|x | 23 |∂x f (t, x)|2dx + 4

9
t
2
3

∫
R

|x |− 4
3 | f (t, x)|2dx

± 2t
∫
R

ξ |F[| · | 16 ∂x f ](t, ξ)|2dξ

≥
∥∥∥|x | 23 f (t)

∥∥∥2
L2
x

+
∥∥∥t 13 |x | 13 ∂x f (t)

∥∥∥2
L2
x

+
∥∥∥t 23 ∂2x f (t)

∥∥∥2
L2
x

− 2t
1
3

∫
R∓

|ξ ||F[| · | 12 f ](t, ξ)|2dξ

− 2t
∫
R∓

|ξ ||F[| · | 16 ∂x f ](t, ξ)|2dξ.

It follows from (3.11) and (3.8) that

t
1
3

∫
R∓

|ξ ||F[| · | 12 f ](t, ξ)|2dξ ≤ t
1
3 ‖P∓|∂x | 12 (| · | 12J±uhyp,±N )(t)‖2L2

x

� N−2‖uN (t)‖2L2
x
,

t
∫
R∓

|ξ ||F[| · | 16 ∂x f ](t, ξ)|2dξ ≤ t‖P∓|∂x | 12 (| · | 16 ∂xJ±uhyp,±N )(t)‖2L2
x

� N−2‖uN (t)‖2L2
x
.

We therefore obtain

‖J̃± f (t)‖2
L2
x

≥
∥∥∥|x | 23 f (t)

∥∥∥2
L2
x

+
∥∥∥t 13 |x | 13 ∂x f (t)

∥∥∥2
L2
x

+
∥∥∥t 23 ∂2x f (t)

∥∥∥2
L2
x

− CN−2‖uN (t)‖2
L2
x
. (3.14)

A direct calculation with (3.11) and (1.20) shows that

J̃± f = J̃±J±uhyp,±N

= ±J uhyp,±N − i

3
t
1
3 |x |− 1

3 uhyp,±N + 2

9
t
2
3 |x |− 5

3 uhyp,±N ∓ 2

3
t
2
3 |x |− 2

3 ∂xu
hyp,±
N .
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Moreover, from (1.20) and (3.3), we have

J uhyp,±N = σ
hyp,±
N J u±

N

+ t
(
∂3xσ

hyp,±
N · u±

N + 3∂2xσ
hyp,±
N · ∂xu

±
N + 3∂xσ

hyp,±
N · ∂2x u

±
N

)
.

Hence, by (3.8), t N 4 ≥ 1, and (2.9), we have

‖J̃± f (t)‖L2
x

= ‖J̃±J±uhyp,±N (t)‖L2
x

� ‖J uN (t)‖L2
x
+ N−1‖uN (t)‖L2

x

� ‖uN (t)‖X̃ .
(3.15)

From (3.14), (3.15), and (3.8), we obtain (3.12).

Next, we prove (3.13). We decompose uell,±N into three parts

uell,±N = σ≤ 2
κ
t N3u

ell,±
N + σ 2

κ
t N3<·< κ

2 t N
3u

ell,±
N + σ≥ κ

2 t N
3uell,±N

=: uell,±,L
N + uell,±,M

N + uell,±,H
N .

(3.16)

By (1.20), we have

‖xg‖2L2
x
+ ‖t∂3x g‖2L2

x
= ‖J g‖2L2

x
+ 2


∫
R

t xg · ∂3x g(x)dx (3.17)

for any smooth function g.

We consider the estimate of the third part on the right-hand side of (3.16). By the
Cauchy–Schwarz inequality, (3.10), (3.16), and (3.4), we have

∣∣∣∣
∫
R

xtuell,±,H
N (t, x) · ∂3x u

ell,±,H
N (t, x)dx

∣∣∣∣
≤ 1

8

∥∥∥xuell,±,H
N (t)

∥∥∥2
L2
x

+ 2
∥∥∥t∂3x uell,±,H

N (t)
∥∥∥2
L2
x

≤ 1

8

∥∥∥xuell,±,H
N (t)

∥∥∥2
L2
x

+ 2
216

κ2

∥∥∥PN
2 ≤·≤2N

(
xuell,±,H

N

)
(t)

∥∥∥2
L2
x

+ Ct2
∥∥∥(1 − PN

2 ≤·≤2N )∂3x (u
ell,±,H
N )(t)

∥∥∥2
L2
x

≤ 1

4
‖xuell,±,H

N (t)‖2L2
x
+ CN−2‖uN (t)‖2L2

x
.

Hence, it follows from taking g = uell,±,H
N in (3.17) and (3.2) that

∥∥∥xuell,±,H
N (t)

∥∥∥
L2
x

� ‖uN (t)‖X̃ . (3.18)
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Next, we consider the estimate of the first part on the right-hand side of (3.16). By
the Cauchy–Schwarz inequality, (3.9), and (3.4), we have

∣∣∣∣
∫
R

t xuell,±,L
N (t, x) · ∂3x u

ell,±,L
N (t, x)dx

∣∣∣∣
≤ 1

8

∥∥∥t∂3x uell,±,L
N (t)

∥∥∥2
L2
x

+ 2
∥∥∥xuell,±,L

N (t)
∥∥∥2
L2
x

≤ 1

8

∥∥∥t∂3x uell,±,L
N (t)

∥∥∥2
L2
x

+ 2
216

κ2

∥∥∥t∂3x PN
2 ≤·≤2Nu

ell,±,L
N (t)

∥∥∥2
L2
x

+ Ct2N 6
∥∥∥(1 − PN

2 ≤·≤2N )uell,±,L
N (t)

∥∥∥2
L2
x

≤ 1

4

∥∥∥t∂3x uell,±,L
N (t)

∥∥∥2
L2
x

+ CN−2‖uN (t)‖2L2
x
.

Hence, it follows from taking g = uell,±,L
N in (3.17) and (3.2) that

∥∥∥t∂3x uell,±,L
N (t)

∥∥∥
L2
x

� ‖uN (t)‖X̃ . (3.19)

Finally, we consider the estimate of the second part on the right-hand side of (3.16).
It follows from (3.3) to (3.16) that supp uell,±,M

N (t) ⊂ R∓. In particular, we have

uell,±,M
N (t, x) = 1R∓u

ell,±,M
N (t, x). By (3.10), we have



∫
R

t xuell,±,M
N (t, x) · ∂3x u

ell,±,M
N (t, x)dx

= ∓t

∫
R

√|x |uell,±,M
N (t, x)∂3x

(√|x |uell,±,M
N (t, x)

)
dx

± t

∫
R

|x |−1uell,±,M
N (t, x)∂xu

ell,±,M
N (t, x)dx

� t
∥∥∥P∓|∂x | 32

(√| · |uell,±,M
N (t)

)∥∥∥2
L2
x

+ N−2‖uN (t)‖2L2
x

� N−2‖uN (t)‖2L2
x
.

Hence, it follows from (3.17) with g = uell,±,M
N , (3.2), and (3.10) that

t N 3
∥∥∥uell,±,M

N (t)
∥∥∥
L2
x

� ‖uN (t)‖X̃ . (3.20)

From (3.16), (3.18)–(3.20), (3.9), and (3.10), we obtain (3.13).

By summing up the frequency localized estimates, we obtain the L2-estimates.
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Corollary 1. For t ≥ 1, we have

2∑
k=0

k∑
�=0

∥∥∥t k+1
3 |x |− 4k+1

3 +�∂�
x u

hyp,±(t)
∥∥∥
L2
x

� ‖u(t)‖X̃ , (3.21)

2∑
k=0

∥∥∥t k3 |x |− k−2
3 J±∂kx u

hyp,±(t)
∥∥∥
L2
x

� ‖u(t)‖X̃ , (3.22)

2∑
k=0

∥∥∥t k+1
4 〈t− 1

4 x〉− k
3+1∂kx u

ell(t)
∥∥∥
L2
x

� ‖u(t)‖X̃ . (3.23)

The proof is the same as that in Corollary 3.4 in [18]. We thus omit the details here.
Moreover, by a repetition of the proof of Proposition 3.5 in [18], we have the pointwise
decay estimates.

Proposition 2. For t ≥ 1 and k = 0, 1, 2, we have∣∣∣t k+1
4 〈t− 1

4 x〉− k
3+ 1

6 ∂kx u
hyp,±(t, x)

∣∣∣ � t−
1
8 ‖u(t)‖X̃ , (3.24)∣∣∣t k+1

4 〈t− 1
4 x〉− k

3+ 5
6 ∂kx u

ell(t, x)
∣∣∣ � t−

1
8 ‖u(t)‖X̃ . (3.25)

Remark 5. For t ≥ 1 and k = 0, 1, 2, the estimate∣∣∣t k4+ 3
16 〈t− 1

4 x〉− k
3+ 1

3 ∂kx u
hyp,±(t, x)

∣∣∣ � ‖u(t)‖L2
x
+ t−

1
8 ‖u(t)‖X̃

holds true. Indeed, by (1.7) and (3.11), we have

∂x (e
−iφuhyp,±) = ∓i t−

1
3J±uhyp,±. (3.26)

We use the Gagliardo–Nirenberg inequality, (3.26), and (3.8) to obtain∣∣∣t k4+ 3
16 〈t− 1

4 x〉− k
3+ 1

3 ∂kx u
hyp,±
N (t, x)

∣∣∣
� t

7
16 N−k+1‖∂kx uhyp,±N (t)‖L∞

x

� t
13
48 N−k+1‖∂kx uhyp,±N (t)‖

1
2
L2
x

∥∥J±∂kx u
hyp,±
N (t)

∥∥ 1
2
L2
x

� t−
1
16 ‖uN (t)‖

1
2
L2
x
‖t 23 N 2J±uhyp,±N (t)‖

1
2
L2
x
+ t−

1
8 ‖u(t)‖X̃

� ‖u(t)‖L2
x
+ t−

1
8 ‖u(t)‖X̃ .

Accordingly, from (1.25) and Remark 4, we obtain (1.9) at t = 1.

4. Testing by wave packets

In this section, we prove some properties of wave packets. In Sect. 4.1, we construct
wave packets corresponding to the fourth-order Schrödinger equation. Moreover, we
show that the wave packet is a good approximate solution to the linear equation. In
Sect. 4.2, we prove the output (1.28) is a good approximation of u.
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4.1. Construction of wave packets

Let t ≥ 1. Setting

λ := t−
1
2 v− 1

3 = t−
1
4 (t

3
4 v)−

1
3 , (4.1)

we define, for |v| ≥ t− 3
4 ,

�v(t, x) := χ(λ(x − vt))eiφ(t,x), (4.2)

where χ is a smooth function with

suppχ ⊂
[

− 1

2
,
1

2

]
,

∫
R

χ(z)dz = 1, (4.3)

and φ is defined by (1.7). The spatial support of �v is included in [ vt
2 , 3

2vt] for v > 0
or in [ 32vt, vt

2 ] for v < 0. In particular, the sign of x is the same as that of v.
We show that �v(t, x) is essentially localized at frequency

ξv := v
1
3 = t−

1
4 (t

3
4 v)

1
3 (4.4)

in the following sense (see Lemma 4.1 in [18], for example):

Lemma 5. For t ≥ 1 and |v| ≥ t− 3
4 , we have

F[�v](t, ξ) = 1√
3
λ−1χ1

(
λ−1(ξ − ξv), λ

−1ξv

)
e− 1

4 i tξ
4
,

where χ1(·, α) ∈ S(R) satisfies

sup
|α|≥1

sup
ζ∈R

∣∣〈ζ 〉k∂�
ζ χ1(ζ, α)

∣∣ �k,� 1 (4.5)

for any k, � ∈ N0. Moreover, there exists a constant C1 > 0 such that for any |α| ≥ 1,∣∣∣∣
∫
R

χ1(ζ, α)dζ − 1

∣∣∣∣ ≤ C1

|α| . (4.6)

For |v| ≥ t− 3
4 , we define the nearest dyadic number to |ξv| by Nv ∈ 2Z. Then, we

have
3

4
Nv ≤ |ξv| ≤ 3

2
Nv. (4.7)

Moreover, let ± be the sign of v:
± v = |v|. (4.8)

Lemma 5 yields the following bound.

Lemma 6. For |v| ≥ t− 3
4 , a ≥ 0, and k ∈ N0, we have

∥∥(1 − P±
Nv

)∂kx�v(t)
∥∥
L1
x

�a,k t
1−k
4

(
t
3
4 |v|)−a

,

where ± is as in (4.8).
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Proof. It suffices to show that

∣∣(1 − P±
Nv

)∂kx�v(t, x)
∣∣ �a,k t

− k
4
(
t
3
4 |v|)−a min

(
1, |x |−1t

1
4
)2 (4.9)

for any k ∈ N0 and a ≥ 0. Indeed, once we have (4.9), we obtain

∥∥(1 − P±
Nv

)∂kx�v(t)
∥∥
L1
x

≤ ∥∥(1 − P±
Nv

)∂kx�v(t)
∥∥
L1
x ({|x |≤t

1
4 })

+ ∥∥(1 − P±
Nv

)∂kx�v(t)
∥∥
L1
x ({|x |≥t

1
4 })

� t
1−k
4

(
t
3
4 |v|)−a

.

Inwhat follows,we show (4.9).ByLemma5and changingvariable ζ = λ−1(ξ−ξv),
we have

∣∣(1 − P±
Nv

)∂kx�v(t, x)
∣∣ =

∣∣∣∣ 1√
6π

∫
R

eix(λζ+ξv)
(
1 − σ±

Nv
(λζ + ξv)

)

× (λζ + ξv)
kχ1(ζ, λ−1ξv)e

− i
4 t (λζ+ξv)4dζ

∣∣∣∣.
(4.10)

Here, we note that

supp
(
1 − σ±

Nv
(λζ + ξv)

)

⊂
{
|λζ + ξv| ≤ Nv

2

}
∪

{Nv

2
≤ ∓(λζ + ξv) ≤ 2Nv

}
∪ {|λζ + ξv| ≥ 2Nv}

=: I1 ∪ I2 ∪ I3.

Then, we have

|ζ | � (t
3
4 |v|) 2

3 (4.11)

for ζ ∈ I1 ∪ I2 ∪ I3. In fact, on I1, it follows from the triangle inequality, (4.7), (4.1),
and (4.4) that

|ζ | ≥ λ−1
(
|ξv| − Nv

2

)
≥ λ−1 Nv

4
∼ (t

3
4 |v|) 2

3 .

Similarly, on I3, it follows from the triangle inequality, (4.7), (4.1), and (4.4) that

|ζ | ≥ λ−1(2Nv − |ξv|) ≥ λ−1 Nv

2
∼ (

t
3
4 |v|) 2

3 .

Moreover, by (4.8), we have ∓(λζ + ξv) = −|λ|ζ − |ξv| = |λζ | − |ξv| on I2. Hence,
(4.1) and (4.4) yield that

|ζ | ≥ |λ|−1
(
|ξv| + Nv

2

)
∼ (t

3
4 |v|) 2

3 .

Therefore, (4.11) holds.
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It follows from (4.10), (4.11), and (4.5) that
∣∣∣(1 − P±

Nv
)∂kx�v(t, x)

∣∣∣ � (t
3
4 |v|)− 2

3 a
′
∫
R

|λζ + ξv|k〈ζ 〉a′ |χ1(ζ, λ−1ξv)|dζ

� t−
k
4
(
t
3
4 |v|)− 2

3 a
′+ k

3

(4.12)

for any a′ > 0. Hence, by (4.12) and choosing a′ > 3
2a + k

2 , we obtain (4.9) for

|x | ≤ t
1
4 . Moreover, we use integration by parts twice to (4.10), (4.11), (4.5), (4.1),

and (4.4) to have∣∣∣(1 − P±
Nv

)∂kx�v(t, x)
∣∣∣ �

(
t
3
4 |v|)− 2

3 a
′+ k

3 · |xλ|−2
(
|λ2ξ k−2

v | + |ξ kv t2λ2ξ6v |
)

� t−
k
4
(
t
3
4 |v|)− 2

3 a
′+ k

3+2 · (|x |−1t
1
4
)2 (4.13)

for any a′ > 0. Hence, (4.9) for |x | ≥ t
1
4 follows from choosing a′ > 2

3a + k
2 + 3 in

(4.13). We therefore obtain (4.9), which concludes the proof.

Next, we show that �v is a good approximate solution for the linear equation. For

|v| ≥ t− 3
4 , a direct calculation with (4.2) and (4.1) shows that

∂t�v(t, x) = − x + vt

2t
λχ ′(λ(x − vt))eiφ(t,x) + i∂tφ(t, x)χ(λ(x − vt))eiφ(t,x).

(4.14)
By (1.7), we have

− ∂tφ = 1

4
(∂xφ)4. (4.15)

It follows from (1.19), (4.14), and (4.15) that

(L�v)(t, x) = i
eiφ(t,x)

tλ
∂x

(
χ̃(t, x)

) + O
(
t−1(t 34 |v|)− 4

3 χ(λ(x − tv))
)
, (4.16)

where
χ̃(t, x) := λ

x − vt

2
χ(λ(x − vt))

− i
3

2
λ2t

1
3 x

2
3 χ ′(λ(x − vt)) − λ3t

2
3 x

1
3 χ ′′(λ(x − vt))

has the same localization of χ(λ(x − vt)). More precisely, by (4.1), and (4.4), we can
write χ̃ as follows:

χ̃ (t, x) = λ
x − vt

2
χ(λ(x − vt)) − i

3

2
λ

4
3 t

1
3 (λ(x − vt) + λvt)

2
3 χ ′(λ(x − vt))

− λ
8
3 t

2
3 (λ(x − vt) + λvt)

1
3 χ ′′(λ(x − vt))

= χ̃0(λ(x − vt), λ−1ξv),

(4.17)
where

χ̃0(z, α) := z

2
χ(z) − i

3

2
α− 2

3 (z + α)
2
3 χ ′(z) − α− 4

3 (z + α)
1
3 χ ′′(z). (4.18)
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4.2. Approximation of u

In this subsection, by using wave packets constructed in Sect. 4.1, we prove the
output γ (t, v) defined in (1.28) is a “good” approximation of u.
Let C2 > 0 be the constant appearing in (4.5) with k = 2 and � = 0, that is,

sup
|α|≥1

sup
ζ∈R

∣∣〈ζ 〉2χ1(ζ, α)
∣∣ ≤ C2. (4.19)

For t ≥ 1, we define
�(t) :=

{
v ∈ R : |v| ≥ C∗t−

3
4

}
, (4.20)

where
C∗ := (2(C1 + C2 + 1))

3
2 . (4.21)

Here, C1 is the constant appearing in (4.6). The large constant C∗ is needed to show
the pointwise estimate (4.24) in the frequency space below.
The main goal in this subsection is to prove the following proposition:

Proposition 3. For t ≥ 1 and k = 0, 1, 2, we have the bound

∂kx u(t, vt) = i kλv
k
3 eiφ(t,vt)γ (t, v) + Rk(t, v), (4.22)

where γ and φ are defined in (1.28) and (1.7), respectively, and Rk is a function
satisfying∥∥∥t k+1

4 (t
3
4 |v|)− k

3+ 1
2 Rk(t, v)

∥∥∥
L∞

v (�(t))
+

∥∥∥t k4+ 5
8 (t

3
4 |v|)− k

3+ 1
3 Rk(t, v)

∥∥∥
L2

v(�(t))

� t−
1
8 ‖u(t)‖X̃ .

(4.23)
Moreover, in the frequency space, we have

û(t, ξv) = √
3e− 1

4 i tξ
4
v γ (t, v) + Rξ (t, v), (4.24)

where Rξ is a function satisfying
∥∥∥(t

3
4 |v|) 1

6 Rξ (t, v)

∥∥∥
L∞

v (�(t))
+

∥∥∥t 38 Rξ (t, v)

∥∥∥
L2

v(�(t))
� t−

1
8 ‖u(t)‖X̃ .

Before the proof of Proposition 3, we provide two preliminary lemmas.

Lemma 7. For t ≥ 1, we have∥∥∥∥v− 1
3

∫
R

| f (t, x)χ(λ(x − vt))|dx
∥∥∥∥
L2

v(�(t))
� ‖ f (t, ·)‖

L2
x (|x |≥t

1
4 )

. (4.25)

Proof. By a change of variables using z = λ(x − vt) and (4.1),

L.H.S. of (4.25) = t
1
2

∥∥∥∥
∫
R

∣∣∣ f (t, t 12 v 1
3 z + vt

)
χ(z)

∣∣∣ dz
∥∥∥∥
L2

v(�(t))
.
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Setting ṽ = t
1
2 v

1
3 z + vt , we note that

|t− 1
4 ṽ| = t

3
4 |v|

∣∣∣1 + (t
3
4 v)−

2
3 z

∣∣∣ ≥ 1,
∣∣∣dṽ
dv

∣∣∣ = t
∣∣∣1 + 1

3
(t

3
4 v)−

2
3 z

∣∣∣ ≥ t

2

for v ∈ �(t) and |z| ≤ 1
2 . Then, we have

L.H.S. of (4.25) � t
1
2

∫
R

∥∥∥ f
(
t, t

1
2 v

1
3 z + vt

)∥∥∥
L2

v(�(t))
|χ(z)|dz

� ‖ f (t, ·)‖
L2
x (|x |≥t

1
4 )

,

which shows (4.25).

The second lemma says that we can replace (iξv)
ku in (1.28) with ∂kx u

hyp,±.

Lemma 8. For t ≥ 1 and k = 0, 1, 2, we have

ikλv
k
3 γ (t, v) = λ

∫
R

∂kx u
hyp,±(t, x)�v(t, x)dx + Rk(t, v), (4.26)

where ± is as in (4.8) and Rk is a function satisfying (4.23).

Proof. First, we note that

i kλv
k
3 γ (t, v) = i kλv

k
3

∫
R

uhyp,±(t, x)�v(t, x)dx + Rk(t, v). (4.27)

Indeed, it follows from (1.28), (3.6), (3.5) and supp�v(t) ⊂ R± that

γ (t, v) =
∫
R

uhyp,±(t, x)�v(t, x)dx +
∫
R

uell(t, x)�v(t, x)dx . (4.28)

For the second part on the right-hand side of (4.28), we use (4.2), (4.1), and (3.25) to
obtain that

∣∣∣∣
∫
R

uell(t, x)�v(t, x)dx

∣∣∣∣ � |λ|−1(t
3
4 |v|)− 5

6

∥∥∥(t−
1
4 |x |) 5

6 uell(t)
∥∥∥
L∞
x

� (t
3
4 |v|)− 1

2 · t− 1
8 ‖u(t)‖X̃ .

(4.29)

Moreover, it follows from Lemma 7 and (3.23) that

∥∥∥∥
∫
R

uell(t, x)�v(t, x)dx

∥∥∥∥
L2

v(�(t))
� t−

1
4

∥∥∥〈t− 1
4 x〉 1

3 uell(t)
∥∥∥
L2
x

� t−
3
8 · t− 1

8 ‖u(t)‖X̃ .

(4.30)
Since (4.1) yields λ|v| k3 = t− k+1

4 (t
3
4 |v|) k

3− 1
3 , (4.27) follows from (4.28) and (4.30).
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Second, we prove (4.26). Since (4.26) with k = 0 is (4.27) with k = 0, we only
consider the case k = 1, 2. A direct calculation with (1.7) and (4.2) shows that

uhyp,±(t, x)�v(t, x) = − iv− 1
3 ∂xu

hyp,±(t, x)�v(t, x)

− i t
1
3

(
x− 1

3 − (vt)−
1
3

)
∂xu

hyp,±(t, x)�v(t, v)

+ i t
1
3 x− 1

3 ∂x (e
−iφuhyp,±)(t, x)χ(λ(x − vt)).

(4.31)

Here, (4.1), (4.2), and (3.24) yield that

|v|− k−1
3

∣∣∣∣
∫
R

t
1
3

(
x− 1

3 − (vt)−
1
3

)
∂kx u

hyp,±(t, x)�v(t, x)dx

∣∣∣∣
� t

k
4 (t

3
4 |v|)− 5

6 |λ|−1
∥∥∥〈t− 1

4 x〉− k
3+ 1

6 ∂kx u
hyp,±(t, x)

∥∥∥
L∞
x

� (t
3
4 |v|)− 1

2 · t− 1
8 ‖u(t)‖X̃

(4.32)

for k = 1, 2. By Lemma 7 and (3.21), we have

∥∥∥∥v− k−1
3

∫
R

t
1
3

(
x− 1

3 − (vt)−
1
3

)
∂kx u

hyp,±(t, x)�v(t, x)dx

∥∥∥∥
L2

v(�(t))

� t−
1
2

∥∥∥∥
( x
t

)− k+1
3

∂kx u
hyp,±(t)

∥∥∥∥
L2
x

� t−
3
8 · t− 1

8 ‖u(t)‖X̃ .

(4.33)

Moreover, Hölder’s inequality, (3.26), (3.22), and (4.1) imply that

∣∣∣∣v− k−1
3

∫
R

t
1
3 x− 1

3 ∂x
(
e−iφ∂k−1

x uhyp,±
)
(t, x)χ(λ(x − vt))dx

∣∣∣∣
� t

k
3− 7

12 (t
3
4 |v|)−1|λ|− 1

2

∥∥∥|x |− k−3
3 J±∂k−1

x uhyp,±(t)
∥∥∥
L2
x

� (t
3
4 |v|)− 5

6 · t− 1
8 ‖u(t)‖X̃

(4.34)

for k = 1, 2. In addition, (4.34) yields that

∥∥∥∥v− k−1
3

∫
R

t
1
3 x− 1

3 ∂x (e
−iφ∂k−1

x uhyp,±)(t, x)χ(λ(x − vt))dx

∥∥∥∥
L2

v(�(t))

�
∥∥∥(t

3
4 v)−

5
6

∥∥∥
L2

v(�(t))
· t− 1

8 ‖u(t)‖X̃
� t−

3
8 · t− 1

8 ‖u(t)‖X̃ .

(4.35)

Therefore, by (4.27) and (4.31)–(4.35), we obtain (4.26).

We are now in position to prove Proposition 3.
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Proof of Proposition 3. First, we show (4.22). Let ± be as in (4.8). Then, it follows
from (3.5) that uhyp(t, vt) = uhyp,±(t, vt). By (3.6), (3.23), and (3.25), we have

∂kx u(t, vt) = ∂kx u
hyp,±(t, vt) + Rk(t, v), (4.36)

where Rk satisfies (4.23). We set

wk(t, x) := e−iφ(t,x)∂kx u
hyp,±(t, x). (4.37)

By (4.36), Lemma 8, and (4.3), we have

∂kx u(t, vt) − i kλv
k
3 eiφ(t,vt)γ (t, v)

= λeiφ(t,vt)
∫
R

(wk(t, vt) − wk(t, x))χ(λ(x − vt))dx + Rk(t, v).
(4.38)

It follows from (4.37) and (3.26) that

∂xwk(t, x) = ∓i t−
1
3J±∂kx u

hyp,±. (4.39)

With a change of variables using z = λ(x − vt), the mean value theorem, (4.39),
Hölder’s inequality in θ , (3.22), and (4.1), we see that

|λ|
∫
R

∣∣(wk(t, vt) − wk(t, x))χ(λ(x − vt))
∣∣dx

≤ |λ|−1
∫
R

∣∣∣∣
∫ 1

0
∂xwk(t, vt + (1 − θ)λ−1z)dθ · zχ(z)

∣∣∣∣dz
� t−

k+1
4 (t

3
4 |v|) k

3− 1
2 · t− 1

8 ‖u(t)‖X̃ .

(4.40)

From (4.38) and (4.40), we obtain the L∞-estimate in (4.22).
Moreover, a change of variables using z = λ(x − vt) and ṽ = vt + (1 − θ)λ−1z,

and (3.22) give∥∥∥∥t k4+ 5
8 (t

3
4 v)−

k
3+ 1

3 λ

∫
R

|wk(t, vt) − wk(t, x)|χ(λ(x − vt))dx

∥∥∥∥
L2

v(�(t))

≤ t
k
3− 1

8

∥∥∥ṽ− k−2
3 (J±∂kx u

hyp,±)(t, ṽ)

∥∥∥
L2

ṽ

� t−
1
8 ‖u(t)‖X̃ .

(4.41)

Hence, the L2-estimate in (4.22) follows from (4.38) and (4.41).
Next, we consider the estimates in the frequency spaces. By (1.28), Lemmas 5 and

6, and Proposition 2, we have

√
3e− 1

4 i tξ
4
v γ (t, v) = e− 1

4 i tξ
4
v

∫
R±

û(t, ξ)λ−1χ1(λ−1(ξ − ξv), λ−1ξv)e− 1
4 i tξ

4
dξ

+ O
(
(t

3
4 |v|)−1 · t− 1

8 ‖u(t)‖X̃
)
.

(4.42)
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By changing variable ζ = λ−1(ξ − ξv), (4.19), (4.1), and (4.7), we have

∣∣∣∣
∫
R∓

λ−1χ1(λ
−1(ξ − ξv), λ

−1ξv)dξ

∣∣∣∣ =
∣∣∣∣
∫ −λ−1ξv

−∞
χ1(ζ, λ−1ξv)dζ

∣∣∣∣
≤ C2

∫ −λ−1ξv

−∞
〈ζ 〉−2dζ ≤ C2(t

3
4 |v|)− 2

3 .

(4.43)
It follows from (4.6) and (4.43) that

∣∣∣∣1 −
∫
R±

λ−1χ1(λ
−1(ξ − ξv), λ

−1ξv)dξ

∣∣∣∣
≤ C1(t

3
2 |v|)− 2

3 +
∣∣∣∣
∫
R∓

λ−1χ1(λ
−1(ξ − ξv), λ

−1ξv)dξ

∣∣∣∣
≤ (C1 + C2)(t

3
4 |v|)− 2

3 .

(4.44)

Hence, it follows from (4.42) and (4.44) that
∣∣∣̂u(t, ξv) − √

3e− 1
4 i tξ

4
v γ (t, v)

∣∣∣
≤

∣∣∣∣
∫
R±

(
û(t, ξv)e

1
4 i tξ

4
v − û(t, ξ)e

1
4 i tξ

4
)
λ−1χ1(λ−1(ξ − ξv), λ−1ξv)dξ

∣∣∣∣
+ (C1 + C2)(t

3
4 |v|)− 2

3 |̂u(t, ξv)| + C(t
3
4 |v|)−1 · t− 1

8 ‖u(t)‖X̃ .

(4.45)

By (1.28), Proposition 2, (4.2), and (4.1), we have

|γ (t, v)| � (t
3
4 |v|)− 1

6 |λ|−1
∥∥∥〈t− 1

4 x〉 1
6 u(t)

∥∥∥
L∞
x

� (t
3
4 |v|) 1

6 · t− 1
8 ‖u(t)‖X̃ . (4.46)

It follows from (4.46) and (4.21) that

(C1 + C2)(t
3
4 |v|)− 2

3 |̂u(t, ξv)|
≤ (C1 + C2)(t

3
4 |v|)− 2

3

∣∣∣̂u(t, ξv) − √
3e− 1

4 i tξ
4
v γ (t, v)

∣∣∣
+ √

3(C1 + C2)(t
3
4 |v|)− 2

3 |γ (t, v)|
≤ 1

2

∣∣̂u(t, ξv) − √
3e− 1

4 i tξ
4
v γ (t, v)

∣∣ + C(t
3
4 |v|)− 1

2 · t− 1
8 ‖u(t)‖X̃

(4.47)

for v ∈ �(t). Therefore, (4.45) and (4.47) yield that

∣∣∣̂u(t, ξv) − √
3e− 1

4 i tξ
4
v γ (t, v)

∣∣∣
�

∣∣∣∣
∫
R±

(
û(t, ξv)e

1
4 i tξ

4
v − û(t, ξ)e

1
4 i tξ

4
)
λ−1χ1(λ−1(ξ − ξv), λ−1ξv)dξ

∣∣∣∣
+ (t

3
4 |v|)− 1

2 · t− 1
8 ‖u(t)‖X̃ .

(4.48)
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With the mean value theorem and a change of variables using ζ = λ−1(ξ − ξv), we
have

∣∣∣∣
∫
R±

(
û(t, ξv)e

1
4 i tξ

4
v − û(t, ξ)e

1
4 i tξ

4
)
λ−1χ1(λ−1(ξ − ξv), λ−1ξv)dξ

∣∣∣∣
≤

∫
R

|ξ − ξv|
∫ 1

0

∣∣∣Ĵ u(t, θ(ξv − ξ) + ξ)

∣∣∣dθ · ∣∣λ−1χ1(λ
−1(ξ − ξv), λ

−1ξv)
∣∣dξ

= |λ|
∫
R

∫ 1

0

∣∣∣Ĵ u(t, ξv + λζ(1 − θ))

∣∣∣dθ |ζχ1(ζ, λ−1ξv)|dζ.

(4.49)
Since χ1(·, α) ∈ S(R) for α ≥ 1, it follows from (4.49), Hölder’s inequality in ζ ,
Minkowski’s integral inequality, (4.1), and (2.9) that

∣∣∣∣
∫
R±

(
û(t, ξv)e

1
4 i tξ

4
v − û(t, ξ)e

1
4 i tξ

4
)
λ−1χ1(λ−1(ξ − ξv), λ−1ξv)dξ

∣∣∣∣
� |λ| 12 ‖J u(t)‖L2

x
� (t

3
4 |v|)− 1

6 · t− 1
8 ‖u(t)‖X̃ .

(4.50)

Hence, the L∞-estimate in (4.24) follows from (4.48) and (4.50).

For the L2-estimate in the frequency space, we change variables using ṽ = ξv +
λζ(1 − θ). Since

d̃v

dv
= 1

3
v− 2

3

{
1 − ζ(1 − θ)t−

1
2 v− 2

3

}
,

(4.49), Minkowski’s integral inequality, (4.1), and (2.9) yield that

∥∥∥∥
∫
R±

(
û(t, ξv)e

1
4 i tξ

4
v − û(t, ξ)e

1
4 i tξ

4
)
λ−1χ1(λ−1(ξ − ξv), λ−1ξv)dξ

∥∥∥∥
L2

v(�(t))

�
∫ 1

0

∥∥∥∥λ

∫
R

∣∣∣Ĵ u(t, ξv + λζ(1 − θ))

∣∣∣∣∣ζχ1(ζ, λ−1ξv)
∣∣dζ

∥∥∥∥
L2

v(�(t))
dθ

� t−
1
2
∥∥(J u)(t, ṽ)

∥∥
L2
ṽ

� t−
3
8 · t− 1

8 ‖u(t)‖X̃ .

(4.51)
Moreover, by (4.20), (4.4), and (2.9), we have

∥∥∥(t
3
4 |v|)− 2

3 û(t, ξv)

∥∥∥
L2

v(�(t))
+

∥∥∥(t
3
4 |v|)−1

∥∥∥
L2

v(�(t))
t−

1
8 ‖u(t)‖X̃

� t−
1
2

∥∥∥|ξ |−1û(t, ξ)

∥∥∥
L2

ξ (|ξ |≥t−
1
4 )

+ t−
3
8 · t− 1

8 ‖u(t)‖X̃
� t−

3
8 · t− 1

8 ‖u(t)‖X̃ .

(4.52)

Hence, the L2-estimate in (4.24) follows from (4.45), (4.51), and (4.52). This con-
cludes the proof.
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5. Proof of the main theorem

In this section, we prove Theorem 1. In Sect. 5.1, we derive an ordinary differential
equation with respect to γ . In Sect. 5.2, we prove the global existence of the solution
to (1.1). In Sect. 5.3, we show the asymptotic behavior of the global solution.

5.1. ODE with respect to γ

In this subsection, we prove the following proposition:

Proposition 4. Assume that F satisfies (A-1) and (A-2). Let u be a solution to (1.1)
satisfying (1.26). Then, we have∥∥∥t (t 34 |v|) 1

6 γ̇ (t)
∥∥∥
L∞

v (�(t))
+

∥∥∥t 118 γ̇ (t)
∥∥∥
L2

v(�(t))
� ε

for t ≥ 1, where the implicit constant is independent of D and T . Here, γ and �(t)
are as in (1.28) and (4.20), respectively.

We use err to denote error terms that satisfy the estimates∥∥∥t (t 34 |v|) 1
6 err

∥∥∥
L∞

v (�(t))
� ε,

∥∥∥t 118 err∥∥∥
L2

v(�(t))
� ε.

Then, Proposition 4 says that
γ̇ (t) = err. (5.1)

For the proof of Proposition 4, we use the following lemmas.

Lemma 9. For t ≥ 1, v ∈ �(t), and k = 0, 1, 2, we have

t−1|v|− k
3

∫
R

|∂kx uell(t, x)χ(λ(x − vt))|dx = err, (5.2)

where χ is a smooth function satisfying (4.3).

Proof. By (4.1), (3.25), and Lemma 2, we have

t−1|v|− k
3

∫
R

|∂kx uell(t, x)χ(λ(x − vt))|dx

� t−1 · t− 1
4 (t

3
4 |v|)− 5

6 |λ|−1 sup
x∈R

∣∣∣t k+1
4 〈t− 1

4 x〉− k
3+ 5

6 ∂kx u
ell(t, x)

∣∣∣
� t−1(t

3
4 |v|)− 1

2 ε.

Moreover, it follows from Lemmas 7 and 2 with (3.23) that∥∥∥∥t−1|v|− k
3

∫
R

|∂kx uell(t, x)χ(λ(x − vt))|dx
∥∥∥∥
L2

v(�(t))

� t−
3
2

∥∥∥t k+1
4 〈t− 1

4 x〉− k
3+ 1

3 ∂kx u
ell(t)

∥∥∥
L2
x

� t−
11
8 ε.

We therefore obtain (5.2).
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Lemma 10. For t ≥ 1 and v ∈ �(t), we have
∣∣∣∣
∫
R

(uL�v)(t, x)dx

∣∣∣∣ = err, (5.3)

where L and �v are as in (1.19) and (4.2), respectively.

Proof. Let v ∈ �(t) and let ± be as in (4.8). From (4.16), (3.5), and (3.6), we have

(uL�v)(t, x) = −i
e−iφ(t,x)

tλ
uhyp,±(t, x)∂x χ̃(t, x)

− i
e−iφ(t,x)

tλ
uell(t, x)∂x χ̃ (t, x)

+ O
(
|u(t, x)|t−1(t

3
4 |v|)− 4

3 |χ(λ(x − vt))|
)

=: E1(t, x) + E2(t, x) + E3(t, x).

(5.4)

Note that χ̃0 defined in (4.18) has the same localization property as χ . It follows from
(5.4), (3.26), (4.1), (3.22), (4.17), and Lemma 2 that

∣∣∣∣
∫
R

E1(t, x)dx

∣∣∣∣ � t−
13
12 (t

3
4 |v|) 1

3

∫
R

∣∣J±uhyp,±(t, x)χ̃(t, x)
∣∣dx

� t−
5
4 (t

3
4 |v|)− 1

3

∥∥∥|x | 23J±uhyp,±(t)
∥∥∥
L2
x

‖χ̃ (t)‖L2
x

� t−1(t
3
4 |v|)− 1

6 ε.

(5.5)

In addition, we use Lemma 7, (4.17), (3.22), and Lemma 2 to obtain
∥∥∥∥

∫
R

E1(t, x)dx

∥∥∥∥
L2

v(�(t))
�

∥∥∥∥t− 13
12 (t

3
4 v)

1
3

∫
R

∣∣J±uhyp,±(t, x)χ̃(t, x)
∣∣dx

∥∥∥∥
L2

v(�(t))

� t−
3
2

∥∥∥|x | 23J±uhyp,±
∥∥∥
L2
x

� t−
11
8 ε.

(5.6)
From (5.4), (4.17), and Lemma 9, we have
∣∣∣∣
∫
R

E2(t, x)dx

∣∣∣∣ � t−1
∫
R

|uell(t, x)(∂x χ̃0)(λ(x − vt), λ−1ξv)|dx = err. (5.7)

Moreover, we use (5.4), (4.1), Proposition 2, and Lemma 2 to obtain
∣∣∣∣
∫
R

E3(t, x)dx

∣∣∣∣ � t−1(t
3
4 |v|)− 4

3

∫
R

|u(t, x)χ(λ(x − vt))|dx

� t−1(t
3
4 |v|)− 3

2 |λ|−1
∥∥∥〈t− 1

4 x〉 1
6 u(t)

∥∥∥
L∞
x

� t−1(t
3
4 |v|)− 7

6 ε.

(5.8)
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In addition, (5.8) also yields that
∥∥∥∥

∫
R

E3(t, x)dx

∥∥∥∥
L2

v(�(t))
� t−1

∥∥∥(t
3
4 |v|)− 7

6

∥∥∥
L2

v(�(t))
ε � t−

11
8 ε. (5.9)

Hence, (5.3) follows from (5.4) and (5.9).

Finally, we prove Proposition 4.

Proof of Proposition 4. By (1.19), (1.1), and Lemma 10, we can write

γ̇ (t, v) = −i
∫
R

(Lu · �v)(t, x) + i
∫
R

(uL�v)(t, x)dx

=
∫
R

∂x F(u(t, x))�v(t, x)dx + err.

The bootstrap assumption (1.26), (A-1), (4.2), (4.1), and ε ≤ D− 4
3 yield that

∣∣∣∣
∫
R

∂x F(u(t, x))�v(t, x)dx

∣∣∣∣ � t−
5
4 (Dε)4

∫
R

〈t− 1
4 x〉−1|�v(t, x)|dx

� t−
5
4 (t

3
4 |v|)−1(Dε)4|λ|−1

� t−1(t
3
4 |v|)− 2

3 ε.

We therefore obtain (5.1). This concludes the proof of Proposition 4.

5.2. Global existence

In this subsection, by using Proposition 4, we prove the global existence of the
solution to (1.1). From Proposition 1 and Lemma 1, this is reduced to showing (1.9),
that is to say, to close the bootstrap estimate (1.26).

Let C∗ be as in (4.21). In the case t− 1
4 |x | ≤ C∗, Proposition 2 and Lemma 2 yield

that ∥∥∥〈t− 1
4 x〉− k

3+ 1
3 ∂kx u(t)

∥∥∥
L∞
x (t−

1
4 |x |≤C∗)

�
∥∥∥〈t− 1

4 x〉− k
3+ 1

6 ∂kx u(t)
∥∥∥
L∞
x

� t−
k+1
4 − 1

8 ‖u(t)‖X̃ � εt−
k+1
4

for k = 0, 1, 2. For the case t− 1
4 |x | ≥ C∗, owing to (4.22) and (4.1), it is reduced to

showing that
‖γ (t)‖L∞

v (�(t)) � ε, (5.10)

where �(t) is as in (4.20) and the implicit constant is independent of D and T .

When |v| ≥ C∗, v ∈ �(t) implies that t ≥ max(1,C
4
3∗ |v|− 4

3 ). Then, solving the
ordinary differential equations in Proposition 4 with the initial time t = 1, we have

γ (t, v) = γ (1, v) + O
(
ε(t

3
4 |v|)− 1

6

)
. (5.11)
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It follows from (1.28), Lemma 5, the Gagliardo–Nirenberg inequality, (1.20), and
Remark 4 that

|γ (1, v)| � ‖û(1)‖L∞
ξ

= ∥∥e 1
4 iξ

4
û(1)

∥∥
L∞

ξ
� ‖u(1)‖

1
2
L2
x
‖J u(1)‖

1
2
L2
x

� ε. (5.12)

By (5.11) and (5.12), we obtain (5.10) for |v| ≥ C∗.
When |v| < C∗, let t0 > 1 be t0 := C

4
3∗ |v|− 4

3 . Then, solving the ordinary differential
equations in Proposition 4 with the initial time t = t0, we have

γ (t, v) = γ (t0, v) + O(ε). (5.13)

Note that (4.7) and (4.4) yield that Nv ∼ |v| 13 ∼ t
− 1

4
0 . Bernstein’s inequality, Propo-

sition 2, and Lemmas 6 and 2 with (2.9) yield that

|γ (t0, v)| � ‖PNvu(t0)‖L∞
x

‖�v(t0)‖L1
x
+ ‖u(t0)‖L∞

x
‖(1 − PNv )�v(t0)‖L1

x

� t
1
8
0

∑
N∈2Z
N∼t

− 1
4

0

‖uN (t0)‖L2
x
+ t

− 1
8

0 ‖u(t0)‖X̃

� t
− 1

8
0 ‖u(t0)‖X̃ � ε.

(5.14)

By (5.13) and (5.14), we obtain (5.10) for |v| < C∗. Accordingly, we conclude that
(1.9) holds for any t ∈ [1, T ].
5.3. Asymptotic behavior

In this subsection, we present the proof of the asymptotic behavior of the global
solution to (1.1).

Proposition 4 yields that there exists a unique function W defined on R\{0} such
that for t ≥ 1,

γ (t, v) = 1√
3
W (ξv) + R̃(t, v), (5.15)

where ∥∥(t
3
4 |v|) 1

6 R̃(t, v)
∥∥
L∞

v (�(t)) + ∥∥t 38 R̃(t, v)
∥∥
L2

v(�(t)) � ε.

We extend W to R by defining

W (0) =
∫
R

u0(x)dx .

Then, by (5.10), we have
‖W‖L∞

ξv
≤ ε. (5.16)

Moreover, changing variable v = ξv defined in (4.4) and Lemma 7 with (4.20) yield
that

‖γ (t, v)‖
L2

ξv
(|ξv |≥C

1
3∗ t−

1
4 )

= ∥∥v− 1
3 γ (t, v)‖L2

v(�(t)) � ‖u(t)‖L2
x
.
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In particular, by (1.25), we have

‖γ (1, v)‖
L2

ξv
(|ξv |≥C

1
3∗ )

� ε. (5.17)

Then, it follows from (5.16), (5.15), and (5.17) that

‖W‖L2
ξv

≤ ‖W‖
L2

ξv
(|ξv |≤C

1
3∗ )

+ ‖W‖
L2

ξv
(|ξv |≥C

1
3∗ )

� ε.

By (5.15) and Proposition 3, we obtain the asymptotic behavior (1.13) and (1.14).
Finally, we show the existence of the self-similar solution and the asymptotic behav-

ior in the self-similar regionXself(t).We use the self-similar change of variables (2.13).
Let ρ > 0 be a constant specified later and let C � 1. By choosing C sufficiently
large and (3.3), we have

P≥Ctρ− 1
4
uN (t, x) = P≥Ctρ− 1

4
uellN (t, x) (5.18)

for |x | � t3ρ . We set Y0(t) := {y ∈ R : |y| � t3ρ}.
From Bernstein’s inequality, (2.14), (5.18), (3.13), and Lemmas 1 and 2, we have

‖∂t P≤CtρU (t)‖L∞
y (Y0(t)) � t

ρ
2 ‖∂t P≤CtρU (t)‖L2

y(Y
0(t))

� t
3
2ρ− 9

8 ‖
u(t)‖L2
x
+ t

ρ
2 − 7

8
∑
N∈2Z

N∼tρ− 1
4

‖uellN (t)‖L2
x

� εt−1−min(− 3
2ρ+ 1

8−ε, 52ρ).

(5.19)

Furthermore, (5.18), (3.9), (3.13), and Lemma 2 yield

‖P>CtρU (t)‖L∞
y (Y0(t)) � t

1
4

( ∑
N∈2Z

N>Ctρ− 1
4

N‖uellN (t)‖2L2
x

) 1
2

+ t
1
4

∑
N∈2Z

N>Ctρ− 1
4

∥∥∥(1 − PN
2 ≤·≤2N )|∂x | 12 uellN (t)

∥∥∥
L2
x

� t−
5
2ρε,

(5.20)

‖P>CtρU (t)‖L2
y(Y

0(t)) � t
1
8

( ∑
N∈2Z

N>Ctρ− 1
4

‖uellN (t)‖2L2
x

) 1
2

+ t
1
8

∑
N∈2Z

N>Ctρ− 1
4

∥∥∥(1 − PN
2 ≤·≤2N )uellN (t)

∥∥∥
L2
x

� t−3ρε.

(5.21)
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By setting ρ := 1
4 (

1
8 − ε) with (5.19)–(5.21), there exists Q ∈ L∞

y (R) such that

‖U (t) − Q‖L∞
y (Y0(t)) � εt−

5
2ρ, ‖U (t) − Q‖L2

y(Y
0(t)) � εt−3ρ. (5.22)

Moreover, it follows from (5.22), (2.13), and (1.9) that

∥∥〈·〉 1
3 Q

∥∥
L∞
y

≤ lim
t→∞

(
tρ‖Q −U (t)‖L∞

y (Y0(t)) + ∥∥〈·〉 1
3U (t)

∥∥
L∞
y

)
� ε.

By (1.22) and (1.1), we have


u(t, x) = 4t∂−1
x ∂t u(t, x) + xu(t, x)

= −i t∂3x u(t, x) + 4t F(u(t, x)) + xu(t, x).
(5.23)

It follows from (5.23), (2.13), and Lemma 1 that

∥∥∂3yU (t) + iyU (t) + 4i F(U (t))
∥∥
L2
y

= ‖(
u)(t, t
1
4 y)‖L2

y
� tε−

1
8 .

By taking the limit as t → ∞, Q solves (1.10). In addition, (5.22), and (1.4) yield that

∫
R

Q(y)dy = lim
t→∞

∫ tρ

−tρ
Q(y)dy = lim

t→∞

∫ tρ

−tρ
U (t, y)dy

= lim
t→∞

∫
R

U (t, y)dy =
∫
R

u0(x)dx .

(5.24)

By (1.10) and (5.24), u(t, x) := t− 1
4 Q(t− 1

4 x) solves (1.1) with u(0) = ∫
R
u0(x)dxδ0,

where δ0 is the Dirac delta measure concentrated at the origin. Moreover, (1.11) and
(1.12) follow from (5.22) and (2.13), which concludes the proof of Theorem 1.
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