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Long-time behavior of solutions to a fourth-order nonlinear
Schrodinger equation with critical nonlinearity

MAMORU OKAMOTO@ AND KOTA URIYA

Abstract. We consider the long-time behavior of solutions to a fourth-order nonlinear Schrodinger (NLS)
equation with a derivative nonlinearity. By using the method of testing by wave packets, we construct an
approximate solution and show that the solution for the fourth-order NLS has the same decay estimate for
linear solutions. We prove that the self-similar solution is the leading part of the asymptotic behavior.

1. Introduction

We consider the Cauchy problem for a fourth-order nonlinear Schrédinger (NLS)
equation
. Lad,
{latu—zaxu—laxF(u), t>0, x eR, (D)

u(0, x) = uo(x), x €R,

where u = u(t,x) : [0,00) x R — C is an unknown function and ug is a given

function. Here, F satisfies the following assumptions:

A-1. F € C1(C; C)NC*(C\{0}; C)! with F(0) = F'(0) = 0 and F (au) = o* F(u)
fora > 0 and u € C, where F’ denotes any of F, := ‘;—5 and Fy = %—g
Moreover,

|F'(u1) — F'(u2)| S (g 1>+ [ual®)|uy — ual

forall uy, up € C.
A-2. F, is real-valued.

We use the assumption (A-1) to show the local-in-time well-posedness of (1.1). More
precisely, we can prove the local well-posedness of (1.1) with the quartic homogeneity
replaced by

[FO )] < Jul*™ (1.2)

for j = 0,1,2 and u # 0. However, we only consider the quartic homogeneous
nonlinearity in this paper for simplicity. See also Remark 1.
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To obtain the global existence (and asymptotic behavior), we employ the quartic
homogeneity and (A-2). Indeed, we use these assumptions in energy estimates in
Sect. 2. A typical example of F is given by

F(u) = alu’u + bu* (1.3)

fora € R and b € C. We note that the first term |u|>u in (1.3) can be generalized as
follows: for a real-valued cubic homogeneous function g € C L(C; RyNC?(C\{0}; R),
f0” g(v)dv satisfies assumptions (A-1) and (A-2), where we calculate this integral as

e . 3_3
if u is a real-variable. For example, when g(u) = lul® = u2u?, we have

v)dv = = .
g uzu ulu

By setting g(u) = (?)iu)3_k(i‘m)k for k = 0,1,2,3, we have other examples of
nonlinearities satisfying (A-1) and (A-2).

Here, we mention some properties of solutions to (1.1). If u is a solution to (1.1),
we have the following conservation law:

/ u(t, x)dx = f up(x)dx. (1.4)
R R
Note that (1.1) is invariant under the scaling transformation

u(t, x) — raurt, Ax) (1.5)

for any A > 0. Hence, the scaling critical Sobolev regularity is s, := —%.

Asymptotic behavior of the fourth-order NLS and its related equations have been
studied by several researchers. See [1,2,5-12,14,15,19] and references therein. In
particular, Ben-Artzi, Koch, and Saut [2] showed the dispersive estimates for the
fourth-order Schrodinger equations. From the dispersive estimates, we can expect
that a quartic nonlinearity with a derivative is critical in the sense of the asymptotic
behavior of solutions to (1.1). This is a reason why we assume quartic nonlinearity in
(A-1).

Hayashi and Naumkin [6,7] derived the asymptotic behavior of the solution to the
fourth-order NLS equation with the gauge invariant nonlinearity:

1
idu — Za;‘u = A0y (Jul’u), >0, xR (1.6)

They proved that the asymptotic behavior of (1.6) is the same as that of the linear
solution and the self-similar solution to (1.6) when A € C, p > 3 and A =i, p = 3,
respectively. They employed the factorization technique for the evolution operator of
the fourth-order Schrodinger equation.

For (1.1) with F(u) = u*, namely

1
iOu — Za;‘u =3, @"), >0, xR,
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Hirayama and the first author [12] showed the small data global well-posedness and
the scattering in the scaling critical Sobolev space H = (R). They used the Fourier
restriction norm method adapted to the spaces V7 of functions of bounded p-variation
and their pre-duals U?.

To state the main result, we denote H*" (R) the weighted Sobolev space equipped
with the norm

Nl prsr == 11(x)" (0x) ull .2

for s, r € R and we set H*(R) := H*%(R). Define the phase function

o) = 21-hxd = T (1.7)
JX) = =1 3Xx3 — —. .
4 4
Here, a’ = J/a denotes the unique real cubic root of @ € R.
Theorem 1. Assume that the initial datum ug at time O satisfies
luoll g1 + lluoll o <& < 1. (1.8)

Let F satisfy (A-1) and (A-2). Then, there exists a unique global solution u to (1.1)
with ¢ 319y € C([O, 00); H'(R) N HO1 (]R)) satisfying the estimates

k+1

H(F%xfg%afu(t)‘ et d (1.9)

S
Ly

fort > 1and k = 0, 1, 2. Moreover, we have the following asymptotic behavior as
r — +o00.

Set p = zlt(% — ©). In the self-similar region X5 (1) := {x € R: t_%lxl < 130y,
there exists a solution Q = Q(y) to the nonlinear ordinary differential equation

0" +iyQ+4iF(Q)=0 (1.10)
satisfying || QL < € and
Hu(t) - f%Q(f%x)H < gmi3p (1.11)
L (s (1)) ™ ' '
1 1 1
1) —t" 1014 < gt78TP, 1.12
ut) =i 0o Lty ¢ (1.12)

1
In the oscillatory region ¥°(t) = {x € R: t~4|x| > 13°}, there exists a unique
complex-valued function W satisfying |W || pconr2 S € such that

u(t, x) =Lf%(f%x)*%w(f%x%)e"d’“‘” +err (1.13)
£ ﬁ X .

where the error satisfies the estimates

o1 1 111
t3(t7%|x])2erry 18(t7%|x|)3erry <e¢
L2(X05¢(1))

e |
L2 (X%%¢(0)
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In the corresponding frequency region xosc (r):={& eR: 11 |&] = t°}, we have

—~ lil§4

u,§) =W(er™ +erre, (1.14)
where the error satisfies

<e

1 1 1 1
t%|&])2err H < e, Hﬁ t%|&])err ‘ - <
IGIERES LI .

LX< (1) ™

In Theorem 1, we divide R into two regions R = X% (1) U X°%(r). Note that, in
the results on KdV equations in [3,17,18], the asymptotic behavior is classified into
three regions: self-similar, oscillatory, and decaying. This difference comes from the
asymptotic behavior of the linear solutions. Indeed, the corresponding linear equation
to (1.1)

) L 4
z(’)tu—zaxuzo (1.15)
is invariant under the spatial inversion. Namely, if u satisfies (1.15), then & defined by
u(t,x) = u(t, —x) (1.16)

also satisfies the same equation. Hence, the asymptotic behaviors for x > Oandx < 0
are the same. On the other hand, the linear KdV (Airy) equation

1 3
du — 30%u =0 (1.17)

is not invariant under the spatial inversion (1.16). More precisely, the transformation
(1.16) changes the sign of the coefficient of 8;’ . Indeed, the solution to (1.17) (the Airy
function) is oscillating for x > 0 and decaying for x < 0.

As mentioned above, by using the factorization technique for the fourth-order NLS
equation, Hayashi and Naumkin [6] studied the asymptotic behavior of (1.1) with
F(u) = |ulPu for small initial data in H'!(R). More precisely, they proved the
existence of a global solution u with e’%’aﬁu € C([O, 00); H! (R)) and

1

lu@llLge < &)™, (1.18)

when [lug| g1 < ¢ < 1. In this paper, we employ the method of testing by wave
packets as in [13]. Since we use (1.9) instead of (1.18) (as a bootstrap assumption),
our assumption ug € H'(R) N H%!(R) is better than ug € H'!'(R) in [6]. See also
Remark 2.

Remark 1. We can obtain the same result as in Theorem 1 for short-range perturbations
of the form

1
idu — Zaju =i0.(Fu) + G®u)),
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where G € C 2((C; ©), G, is real-valued, and there exists pg > 4 such that
IGP )| < ulPo~

for j = 0, 1, 2. Since we can apply the same argument as in Appendix A in [3] and
Appendix B in [18], we omit the details here.

Remark 2. When we consider the explicit nonlinearity as in (1.3), we can replace
HY(R) in Theorem 1 with H § (R). See Remark 4. Note that this regularity H 8 (R) is
exactly the same as that in [18] with the fourth-order dispersion.

1.1. Outline of proof

We give here an outline of the proof. Denote by L the linear operator of (1.1):

1
L:=id — Za;‘. (1.19)

To obtain pointwise estimates for solutions, we use the vector field
J = x —itd;, (1.20)

which satisfies J = e~! N xé' N . Since J has the third derivative, it is difficult to
apply J directly for the energy estimates. We then use the generator of the scaling
transformation (1.5) given by

S =419 +x0, + 1. 1.21)
Moreover, by (1.19)—(1.21), we have
S=—4itL+Jo, + 1.
As in [3,17,18], we also use the operator

A:=071S=—4itd7' L+ . (1.22)

X

Roughly speaking, since the operator A acts as the first-order derivative for the non-
linearity, we use A instead of 7.
We introduce the norm with respect to the spatial variable

1
@ llx = (e + IAu@I2; ). (1.23)
We note that
lutollx ~ lol g1 + ol .1 (1.24)

By a standard fixed point argument, we have the local well-posedness in X of (1.1).
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Proposition 1. Assume that F satisfies (A-1). Ifug € H'(R)NH% ! (R) satisfies (1.8),
then there exist T > 1 and a (unique) solution u(t) € X to (1.1) satisfying

sup Nlu(llx < luoll g1 + lluoll go.r- (1.25)
0<t<T
The proof is a slight modification of that in Appendix in [18].
We then make the bootstrap assumption that u satisfies the linear pointwise esti-
mates: there exists a large constant D such that

1

[+~ 55 ko) < Der (126)

fort € [1, T]and k = 0, 1, 2. Note that we take ¢ > 0 small enough so that ¢ < D72,
In Sect. 2, by using (1.26), for ¢ > 0 sufficiently small, we prove the a priori bound:

sup [lu(®)llx < eCr, (1.27)
1<t<T
where C7 is a constant depending only on 7. Namely, Cr is independent of D and
¢. Then, by the local well-posedness with (1.27), the global existence follows from
closing the bootstrap estimate (1.26).

In Sect. 3, we prove decay estimates in L°°(R) and L%(R) that allow us to reduce
closing the bootstrap argument to considering the behavior of u# along the ray I', :=
{x = vt}. We also observe that (1.26) holds true at = 1. Since u is complex-valued,
we have to pay attention to the sign of frequencies. We thus need to slightly modify
the argument in [18]. See, for example, (3.11) and the proof of Lemma 4.

To close the bootstrap argument, we use the method of testing by wave packets as
in [3,4,13,18]. Here, a wave packet is an approximate solution localized in both space
and frequency on the scale of the uncertainty principle. Our main task in Sect. 4 is to
construct a wave packet W, (¢, x) to the corresponding linear equation and observe its
properties.

To observe decay of u along the ray I';, we use the function

y(t,v) = / u(t, x)W,(t, x)dx. (1.28)
R

In Sect. 4, we prove that y is a reasonable approximation of #. We then reduce closing
the bootstrap estimate (1.26) to proving global bounds for y.

In Sect. 5, by solving an ordinary differential equation with respect to y, we show
the global existence of u. Moreover, we prove that the leading part of the asymptotic
behavior is given by the self-similar solution 1 Q(t_%x), where Q is a solution to
(1.10).

1.2. Notation

At this point, we summarize the notation used throughout this paper. Set Ny := NU
{0}. Denote the set of positive and negative real numbers by R and R_, respectively.
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Let C;°(R) be the space of all smooth and compactly supported functions. We denote
the space of all smooth and rapidly decaying functions on R by S(R). Define the
Fourier transform of f by F[f] or f

In estimates, we use C to denote a positive constant that can change from line to
line. If C is absolute or depends only on parameters that are fixed, then we often write
X <Y, which means X < CY. When an implicit constant depends on a parameter a,
we sometimes write X <, Y. We define X <« Y to mean X < ClyandX ~Yto
mean C™'Y < X < CY.Wewrite X =Y + O(Z) when |X — Y| < Z.

Let o be a smooth even function with 0 < o < 1 and

© L ifj§l <1,
o =
0, iflg]>2.

For any R, R;, Ry > 0 with R < R, we set

R
o<r(§) =0 k), 0=2p(E) :=1—0R(©E), orE):=0<r(E) —0o<R(®),

OR <<Ry (&) = 0<p,(§) —0p (§), OR<<RrR(§) :=0.p,(§) —0o<p, (§).

o<r(§) = 0<§>, o>r(§) :=1—0<r(),

Moreover, we define the corresponding Fourier multipliers as usual:

Prf:=F orfl, P<ixf:=F 'lo<rfl, P-rf :=F '[o-rf],

PRi<<p, [ = fﬁl[O’RlSERzﬁ-
We denote the characteristic function of an interval / by 1;. For N € 2%, we define
Prf = F g, fl, PP :=PEPy.

We also set 0F = o 1p+ and ofR = o<rlR+, etc.

2. Energy estimates

In this section, we prove some a priori estimates of a solution u to (1.1) satisfying
(1.26). First, we use an energy estimate to obtain the bound for ||u(?)| x.

Lemma 1. Assume that F satisfies (A-1) and (A-2). Let u be a solution to (1.1) in a
time interval [0, T'] satisfying

luoll g1 + lluoll o1 < e K 1 2.1
and (1.26). Then, we have
lu@®llx < &(t),

where X is defined in (1.23) and the implicit constant is independent of D, T, and ¢.
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Proof. By (1.25), we have the desired bound for 0 < ¢ < 1. We thus consider the case
t>1.
It follows from (1.1) and (A-1) that

14 o, = m/ - (F W) dvi + Fa(u)d u)dx
2 dt L)ZC R u x u x (2.2)
S @72 )70 1820(0) | 2.
By (1.1) and (1.2), we have
1d S _
——llau®|;, = SR[ dcut - F, ()02udx +m/ deut - Fr(u)d udx
2dt x R R
+ 0 (I3 @0 0,0 e ) 2.3)
= 1+ 1+ O (Il I 100 (D)1 )

From F,(0) = F;(0) = 0, we may regard the integrals in I and IT as those on {u # 0}.
It follows from (A-2), integrating by parts, and (1.2) that

1= —% /R 0 Fu )95 *dx S ()31 1w @1 o l0xu @) e (2.4)
Moreover, we apply integration by parts with (1.2) to obtain
= _%m /R 0 F) (dy0) dx < N2 e 0@z, 25)
By (2.2)—(2.5), we obtain
%numn@ S IO IO P ERTOT RS (2.6)
A direct calculation with (1.19) and (1.21) yields that
(£, S]=4L, [S,0,]=—0.
Moreover, it follows from (A-1) that
4F (u) = F,(u)u + Fr(u)u.
If u is a solution to (1.1), it follows (1.22) and (1.1) that
LAu=37"(S+ 4 Lu = i(Fu(u)ds Au + Fz(u)d; Au). 2.7)
By (1.19), (2.7), (A-2), integrating by parts, and (1.2), we obtain
%%nz\u(t)ni% = -3 /R Au - LAudx
- —% /R 3y Fy ()| Aul?dx — %9{ /R 3 B (Au)2dx (28
S AU 721U 1950l Lo
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Hence, it follows from (1.23), (2.6), (2.8), and (1.26) that
d _
QU SOV IO S

From (D¢)? <« ¢ and Gronwall’s inequality, we obtain
lu@llx < 10[u(D]x - 1° < et

fort > 1.

Remark 3. To obtain (2.6) in the proof of Lemma 1, we only use (1.2) (instead of the
quartic homogeneity). However, (2.7) is a consequence of (A-1), and we rely on (A-1)
in the calculation in (2.8).

Second, we prove a priori bound for || Ju(z)|| L2- We define the auxiliary space

lu@®lz = IITu@®ll2 +1i (2.9)

(50 u()|

L’
where 7 is defined in (1.20).

Lemma 2. Assume that F satisfies (A-1) and (A-2). Let u be a solution to (1.1) which
satisfies (2.1) and (1.26). Then, fort > 1, we have

1
lu@llg < e,

where the implicit constant is independent of D, T, and e.

Proof. We note that (1.22) and (1.1) imply that
Ju = Au+4itd Lu = Au — 41 F (u). (2.10)

Since (A-1) and (1.26) yield that

Wl

\Fu(t, x)| < Jul, x)[* < et ax) 73,

we have
1
|}F(u(r))||L2,§et1(fl <f%x>*§dx+/l <z31|x|)§dx)2
! 1A x|<1 1A x|>1 (2.11)
,SSFH%.

It follows from (2.10), Lemma 1, and (2.11) that

1

1Tu@®llz S 1Au®lz + | Fa@)] 2 S e +erf < e, (2.12)

~

Next, we use a self-similar change of variables by defining

U, y) == tTu(t, t1y). 2.13)
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A direct calculation with (1.21) and (1.22) shows
1 _3 1 1 —1 1
QU y) = 317 Sw 1y = 7170, (A, (). 2.14)
Then, it follows from (2.14) and Lemma 1 that
d —1 —l—l —l—l+8
GO TUO] L ST IAUMIL S eI 2.15)

By (2.15), taking 0 < ¢ < 1, and (1.25), we have

t
[@) 7 U0l = [0 UM + /1 o @) " U]z 0

Sl 1+ S e

(2.16)

for 7 > 1. From ||(3,)"' U] ,» = ¥
2
from (2.12) and (2.16).

(t%ax)_lu(t) H 2 the desired bound follows

Remark 4. The estimate ||u(¢)||y < ¢ for 0 < ¢ < 1 holds true. Indeed, it follows

from (2.9), (2.10), (1.23), and Sobolev embedding H% (R) — L3(R) that

sup lullz S sup (I1Au®)llz2 + lu(®*l2 + lu(®)2)

0<t<l1 0<t<1

< sup (e lx + lu@))-

0<t<l

By (1.25), (1.24), and (1.8), we obtain

sup flu(®)llz < e.
0<t<1

3. Decay estimates

In this section, we prove decay estimates for u without the bootstrap assumption
(1.26). In Sect. 3.1, we decompose u into a part on which J acts hyperbolically and a
part on which it acts elliptically. Since u is complex-valued, the decomposition is (a bit)
different from the previous papers [3,17,18]. In Sect. 3.2, by using the decomposition
in Sect. 3.1, we prove some decay estimates for u.

3.1. Hyperbolic and elliptic parts of u

We write uy := Pyu. Let N(t) € 2% be the smallest dyadic integer satisfying
N(t) > 17 fort > 1. By setting

u 1 :=P u,
<k <N(t)
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we have

u=u _1-+ Z UN. (3.1

Here, by (1.20), we have Juy = Pn(Ju) + iN_lfé_l[o/(%)iZ], where o’ is a
derivative of 0. Hence, it follows from (2.9) and (3.1) that

1

2
IIM(t)II;?~<|Iu<Ii(t)||2}~(+ > ||uN(r>||§;> : (3:2)
Ne2Z
N>t 4

We decompose uy into positive and negative frequencies:
uy = u; +uy, ui = PiuN = Piu.

Fort > land N >t~ %, we define the hyperbolic and elliptic parts of ui as follows:

ell, £ . + hyp,+

hyp,.+ _ _hyp,+ + —
Uy =oy Uy, Uy i=uy—uy 3.3)

hyp,+ .
where o) (1, x) 1= 01 s <o ns () 1R, (x) and

=210, (3.4)

The largeness of « uses in the proof of (3.13) in Lemma 4. While the explicit value
of « is not important (e.g., we can choose x with x > 210), we fix « as in (3.4) for
simplicity.

Next, we define

hyp,+ —
uhypE . Z u/\?’P i P .— ,hyp.+ + 4P i (3.5)
Ne2Z1
N>t 4
ull =y — P, (3.6)

. . _1 .
We note that u™P* is supported in {x € Ry: " 4|x| > i}. For (¢, x) € R? with

=¥ > L, (3.4) yields that

|
#{N e2?. SN < x| = 2/<tN3} < 10.
K

. . hyp,£ ,
Hence, u™P-* (¢, x) is a finite sum of uNyp (t, x)’s.

Moreover, we set

ell . ell,+ ell,—
Uy =uy’ +uy
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for simplicity. It follows from (3.1), (3.3), and (3.6) that

11 11
u'=u 1+ E uy - (3.7
<t 4
Ne2Z
N>t 4

The functions ul;v and u ! are essentially frequency localized near N. This is a
consequence of the followmg lemma. See Lemma 3.1 in [16] and Lemma 4.1 [17] for
the proof.

Lemma3. Let2 < p < oo, N € 2Z and R > 0. Forany a, b, c € Rwitha > 0
and a + ¢ > 0, we have

el 1 e
(1= Py _ )18 “Ux"oR Py P2 Sabe N2 PR Py £ 2.

Moreover, we may replace o on the left-hand side by o~ g ifa +c¢ > b+ 1 and o_p
ifa+c>0andb =0.
In addition, for any 0 < r < R, we have

10 = Py )01 (1?0 <k P )12

, R\ @tHbl+c+2
Sabe N R —6(7) I Py £ 2

Lemma 3 yields that for any a > 0, b € R, and ¢ > 0,

hyp,+ _a=b 1 —
0= PE_ L PO, Sae TN Nyl G
[ = Py 00U 0, Sae TN Ty Ol 2, (3.9)
+ ell,£
Ja =Py el a)g(x)u,v 0|,

x (3.10)
_a=b 1 —c
Sabet” # AN Nun @l 2.

Factorizing the symbol x — 1&3 of 7, we define
To = x5 £it3dy, Joi=|x|3 Fitd|x]30, — 1302 G.11)

These operators are useful in our analysis. Note that J_ and [ are elliptic on positive
and negative frequencies, respectively.

3.2. Decay estimates in L? and L™

First, we show the following frequency localized estimates.

Lemmad. Fort > land N € 2% with N > t_%, we have

xlf + N Zuadye

LS luvOlg. (3.12)

”(|x| + tN3yushE

, Slluv®lz. (3.13)
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Proof. First, we prove (3.12). Set [ := jiul;\yp’i. Note that the support of f is away
from the origin. Hence, integration by parts and Plancherel’s theorem yield that

1302 £ (1)

||5if(t)||i§ _ H|x|%f(t)H; + t%|x|%axf(t)H; +

2

2

F209% [ /G087 Gt = 2080 [ jaif pe 0827 @
R R

:ths/ x|30y £ (1, x)O2 (1, x)dx
R

2 2 11 2 2 5 2
=[wiro], + [ mracrol, + [Faro],
1 1
+2t3 /Rsmn 12 f1(, 6)17dg
2 2 2 4 2 _4 2
4+ 2¢3 [x]3 10y f (£, x)|"dx + =13 [x|73|f (¢, x)|"dx
R 9 Jr

iZt/REI}'H 89, £10. &) 2de

2 2 o1 2 2 5 2
= s, + | ool + |diro],
—Zz%/R ENFL - 13 £ &) d

—Zt/ ENFL - 150, 10 §)2ds.
R

It follows from (3.11) and (3.8) that

t%/ EIFL - 12 £1e, ©)Pdg < 65 PF[a,2( - |2 Taul P H 0112,

:F
-2 2

t/R EIFTI - 150, £10, ©)Pd < 1] PT10,12( - [60: Tty ™ )3
:F
SN llun 017

‘We therefore obtain

~ 2
17012, = |k ro| |, + | xibacro

2
12

2 2 2
- L~ CN T lun 0117, (3.14)

X

13021 (1)

A direct calculation with (3.11) and (1.20) shows that

=~ = hyp, =+
Tof = TaTeuy®

hypt P 1 1 pyp+ 22 s
=LJuy’ —§t3|x| SupT +§t3|x| Su 13)x| 730 u

hyp, =+
N T

2r1—349 ,hypE
N

SRS
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Moreover, from (1.20) and (3.3), we have

hyp, &+ _ hyp +
Juy Juy

+z(a3 VI 30200 e + 30,00 - 02y ).
Hence, by (3.8), tN*> 1, and (2.9), we have

||jj:f(t)||L2 = | T Teul™* Ol SNTun @z + N un @)l

(3.15)
S llunv@®llg.
From (3.14), (3.15), and (3.8), we obtain (3.12).
Next, we prove (3.13). We decompose u?\l,l * into three parts
ell, + ell, ell, + ell, +

Uy _G<2tN3uN +02tN3< <&NSUN T T Os g3y (3.16)

_. uc]:\l]liL_i_ 7\1}1iM+ 7\1/1:|:H

By (1.20), we have

lxgl, + Itd381172 = 1Tgl7, +23 /R rxg - 83g(x)dx 3.17)

for any smooth function g.

We consider the estimate of the third part on the right-hand side of (3.16). By the
Cauchy—Schwarz inequality, (3.10), (3.16), and (3.4), we have

‘/ WS . 8gu}c$1,:|:,H(t’x)dx

1 +H +H

8 qu?\lll + ZH 83 ell

1 +H +H
SH.XM%I +2—HP1%/< (xu;l,l )

+Ct2”(l — Py )0

2 =

ell:I:H

—|| D172 + CNluy @175

Hence, it follows from taking g = u%l’i’H in (3.17) and (3.2) that

ell,+,H
quN (1)

, S lun @l (3.18)

x
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Next, we consider the estimate of the first part on the right-hand side of (3.16). By
the Cauchy—Schwarz inequality, (3.9), and (3.4), we have

/tx AL o) 93 EL dx
R

ell,£,L

PERCIESS + ZHXMN

<3l
=3

ell:I:L

IA

1
3 ell,+,L
gl

,+ 2—Ht8 -

+ Ct2N6H(1 — Py it

1
3 ell,+,L
< 3oz

2
Lt CNlun @17

Hence, it follows from taking g = u;l,] +Lin (3.17) and (3.2) that

Htas ell,+,L

, S lun @l (3.19)

Finally, we consider the estimate of the second part on the right-hand side of (3.16).

It follows from (3.3) to (3.16) that supp uf\}] = M(t) C Rz. In particular, we have

uy M, x) = 1p uly =M, x). By (3.10), we have

/txuil]I:I:M( ¥)- 03u ell:tM(t’x)dx

R

= q:m/ N iM(r,x)ag(,/|x|u§3,1’i’M(t,x))dx
:I:t\s/ e S EM @, o) M@, x)dx

< PRt (V=M o) |, + v

-2 2
S N2 un 013,

2
lun 17

Hence, it follows from (3.17) with g = u%l +M , (3.2), and (3.10) that

3. ell,£,M
tN ‘ Uy

, S llunOlz. (3.20)

From (3.16), (3.18)—(3.20), (3.9), and (3.10), we obtain (3.13).

By summing up the frequency localized estimates, we obtain the L?-estimates.
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Corollary 1. Fort > 1, we have

2k
SN S S | S u@ig (3.21)
k=0 (=0 Lx
2 k k=2

ST Zeofu =) S oy, (3:22)
k=0 Ly
2 k+1 1 k

tT(t*zx)*ﬁ‘aj;ue“(t)HLZ < Ju®llz- (3.23)
k=0 *

The proof is the same as that in Corollary 3.4 in [18]. We thus omit the details here.
Moreover, by a repetition of the proof of Proposition 3.5 in [18], we have the pointwise
decay estimates.

Proposition 2. Fort > 1 andk =0, 1, 2, we have

1 k

) Tk, | S R ez (3.24)
zk%la—%xr%%afue“(z,x)( <8 u) Iz (3.25)

Remark 5. Fort > 1and k = 0, 1, 2, the estimate

kyd 1 kil ko hyp+ _1
rATS (7)) T33P E (1, ) | S @)l 1S u) g

holds true. Indeed, by (1.7) and (3.11), we have
3, (e~ iPuPE) — i3 7, PE (3.26)
We use the Gagliardo—Nirenberg inequality, (3.26), and (3.8) to obtain

301 _k,1
E(tflx)7§+§8fu};\;/p’i(t, x)‘

+

k
t4

7
FON T o (0 e
—k

A

1

13 Lyak hyp£, .+ k hypt, 113

18Nk (1)) | TeakulPE ()],
x x

A

1 1 2 1 1
1 2.2 hyp, £ -1
ST lun @ 13N> Teuy ™= O], + 178 lu@) | 5
X X

-1
S lu@®llzz + 178 llu@®lly-

Accordingly, from (1.25) and Remark 4, we obtain (1.9) att = 1.

4. Testing by wave packets

In this section, we prove some properties of wave packets. In Sect. 4.1, we construct
wave packets corresponding to the fourth-order Schrodinger equation. Moreover, we
show that the wave packet is a good approximate solution to the linear equation. In
Sect. 4.2, we prove the output (1.28) is a good approximation of u.
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4.1. Construction of wave packets

Letr > 1. Setting
1 1 1 3 1
A=t 203 =t 4(t4v)” 3, “.1)

we define, for |v| > t_%,
W, (1, x) := x (A(x — v1))e!®@9) (4.2)

where x is a smooth function with
11
sppx [~ 5.5 [ x@az=1. (43)
22 R

and ¢ is defined by (1.7). The spatial support of W, is included in [”7’, %vt] forv >0
or in [%vt, “7’] for v < 0. In particular, the sign of x is the same as that of v.
We show that W, (¢, x) is essentially localized at frequency

Cl—
=
W=

£, = v = I(tv) (4.4)
in the following sense (see Lemma 4.1 in [18], for example):
Lemma 5. Fort > 1 and |v| > t_%, we have
FIW(,§) = \%rlm(rl@ — 8,27
where x1(-, ) € S(R) satisfies
sup sup [()*0f x1 (¢, )| See 1 4.5)

le|>1¢eR
forany k, £ € No. Moreover, there exists a constant C1 > 0 such that for any || > 1,

C
<L (4.6)
Jex|

‘/ x1(¢, a)dg — 1
R

For |v| > t’%, we define the nearest dyadic number to |£,| by N, € 2%. Then, we
have

3 3
ZNU =< |§v| = ENU' (4-7)

Moreover, let £ be the sign of v:
+v =1l 4.8)

Lemma 5 yields the following bound.

Lemma 6. For |v]| > t*%, a >0, and k € Ny, we have
-k , 3 —
|1 = PR @] 11 a7 (17 10]) ™,

where % is as in (4.8).
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Proof. 1t suffices to show that
(1= PE )R, ()| Sa 07 (17 [o]) ™ min (1, x| ' 1%)? (4.9)
for any k € Ny and a > 0. Indeed, once we have (4.9), we obtain

[a - Ppok w0l < [a-roakwol, 4

+ (= Py ()||

({lx |>14})

< Tk([Z|v|)

~

In what follows, we show (4.9). By Lemma 5 and changing variable { = A HE=¢g),
we have

|(1 . Pi)&fllfv(t,x)‘ _ tx()»{‘l‘fv ai}()ng +Ev))

7 ke

_ (4.10)
x (A +EDFxe, rlswe—fx’(“*&fd? ‘

Here, we note that
supp (1= o, (¢ +60))

Ny Ny
c{re+al= ol =var+e) sanfuine +ar=2m)
=L UL UI.
Then, we have
32
IC1 2 (t3]v])3 (4.11)

for ¢ € I1 U L U I3. In fact, on Iy, it follows from the triangle inequality, (4.7), (4.1),
and (4.4) that

N

- N 30002
61227 (16l = 1) =27 5 ~ (.

Similarly, on I3, it follows from the triangle inequality, (4.7), (4.1), and (4.4) that

w\l\a

Ny
£l > A7 @Ny — 18) = A7 2 5 ~ (tiv])7.

Moreover, by (4.8), we have F(A¢ + &) = —|1[¢ — &y = |X¢| — |&y| on 1. Hence,
(4.1) and (4.4) yield that

61z 7 (18 + 50) ~ @)

Therefore, (4.11) holds.
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It follows from (4.10), (4.11), and (4.5) that

(1—Piﬁﬁwwnxﬂ5(ﬁhM‘%’/WA;+sﬂﬂnfuwax—%om¢
R (4.12)

< 1‘%(;%|U|)7%G/+§

for any a’ > 0. Hence, by (4.12) and choosing a’ > %a + %, we obtain (4.9) for

x| < t%. Moreover, we use integration by parts twice to (4.10), (4.11), (4.5), (4.1),
and (4.4) to have

30 —24+% — -
(LJﬁmwmwﬂsme”3»ﬂ4%W%%+@Vﬁ§D(Ma
244k '
ST (R ) T (1xhew)?

for any a’ > 0. Hence, (4.9) for |x| > 11 follows from choosing a’ > %a + % +3in
(4.13). We therefore obtain (4.9), which concludes the proof.

Next, we show that W, is a good approximate solution for the linear equation. For

[v] > t_i , a direct calculation with (4.2) and (4.1) shows that

t . ,
O Wy(t,x) = . -;tv Ax' O(x = v0)e Y 19,0 (r, x) x (M(x — vi))e' P,
(4.14)
By (1.7), we have
1
— = 7 (0", (4.15)
It follows from (1.19), (4.14), and (4.15) that
eliewy) 34
(L)1) = i —— 0 (T (1, ) + o(z—l(ﬂm) Sy (h(x — m))), (4.16)
where
~ X — vt
X, x) = A X (A(x —vr))

3012, 3,2 .1
— lz)» t3x3x (A(x —vt)) —At3x3 " (A(x — vt))
has the same localization of x (A(x — vt)). More precisely, by (4.1), and (4.4), we can
write ¥ as follows:

X — vt

F(t,x) = A ¥ (M(x — vt)) — i%)ﬁz%(x(x — vt) + 2003 (x — v1))

A3 ux — vt) 4+ o) I (x — vt))
= Fo(h(x —vt), A7),
4.17)
where

~ z 3 2 2, _4 1,
x0(z, ) := EX(Z)_IE“ 3zt a)3ix () —a 3(z+a)3x (2). (4.18)
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4.2. Approximation of u

In this subsection, by using wave packets constructed in Sect. 4.1, we prove the
output y (¢, v) defined in (1.28) is a “good” approximation of u.
Let C; > 0 be the constant appearing in (4.5) with k = 2 and ¢ = 0, that is,

sup sup |(¢)?x1 (¢, )| < Ca. (4.19)
le]>1¢zeR
For t > 1, we define
3
Q) = {v eR: |v] > C*m}, (4.20)
where \
Ci = Q2(C1 + C2+ 1))2. (4.21)

Here, C| is the constant appearing in (4.6). The large constant C, is needed to show
the pointwise estimate (4.24) in the frequency space below.
The main goal in this subsection is to prove the following proposition:

Proposition 3. Fort > 1 and k =0, 1, 2, we have the bound
e, vr) = i*av3 ey (1 v) + Re(t, v), (4.22)

where y and ¢ are defined in (1.28) and (1.7), respectively, and Ry is a function
satisfying

k.5 3 k1
FE R ) TS R, v)

[ o R )| +
v kI, v
L (R(1)) L3(Q(1)
1
St u®lg
(4.23)
Moreover, in the frequency space, we have
@, &) = V3T y (1, v) + Re (1, v), (4.24)
where Rg is a function satisfying
[ ont Re 0, v)| + |F Re v Sl
v ) ) S u®|x.
@ g VETCT0) X
Before the proof of Proposition 3, we provide two preliminary lemmas.
Lemma 7. Fort > 1, we have
_1
v 3/ |f(t, x)x (A (x —vr))|dx SIfaEHI . (4.25)
R L3 Q) L(lxlze2)

Proof. By a change of variables using z = A(x — vt) and (4.1),

LH.S. of (4.25) = 12

/R’f(t,t%v%z+ vt))((z)‘dz

L2(Q(1)
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.~ 11
Setting v = 2 v3z + vt, we note that

| 3 3 _2
|t_1v|=t4|v|‘1+(t4v) 3z

21’

di‘—t‘l—i— Lituyd
dvl 3 voe

t
> _

2
forv € Q(¢) and |z] < % Then, we have

[x(2)dz

1 11
L.H.S. of (4.25) < ¢2 H (,,ﬁ § t)
of (4.25) S -/R f viz+v L)

S @

L2(x|ze%)’
which shows (4.25).
The second lemma says that we can replace (i£,)u in (1.28) with Bf uhyp- %

Lemma 8. Fort > 1andk =0, 1, 2, we have
05y (1, v) = x/ R uhYPE (1 X)W, (1, x)dx + Ri(t, v), (4.26)
R

where £ is as in (4.8) and Ry is a function satisfying (4.23).

Proof. First, we note that
*aviy(r, v) = iAo’ / uMPE (X)W, (1, x)dx + Ri(z, v). (4.27)
R
Indeed, it follows from (1.28), (3.6), (3.5) and supp ¥, (1) C Ry that

y(,v) =/uhyp’i(t,x)\llv(t,x)dx+/ ul(, X)W, (7, x)dx. (4.28)
R R

For the second part on the right-hand side of (4.28), we use (4.2), (4.1), and (3.25) to
obtain that

3 5
St Te

f u(t, X)W, (7, x)dx
R

(e bt )|
Ly (4.29)

3 11
S )T TS u()ll g
Moreover, it follows from Lemma 7 and (3.23) that
1

S
L2(Q1)

H/ue”(l,x)\llv(t,x)dx i) | < E s w1
R

L}
(4.30)
Since (4.1) yields Av]|5 = =5 (¢3[v]) 573, (4.27) follows from (4.28) and (4.30).
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Second, we prove (4.26). Since (4.26) with k = 0 is (4.27) with k = 0, we only
consider the case k = 1, 2. A direct calculation with (1.7) and (4.2) shows that

UYPE )T %) = — ivT3 0™ E(, )Ty (1, %)
— it} (x*% _ (vt)*%)axu“ypi(t, O, (431)
it x5 e uPEY (1) x) ) (O (x — v1)).
Here, (4.1), (4.2), and (3.24) yield that

o]~ 3

/ z%(x—% - (vt)_%)é)i‘uhyp’i(t, X)W, (7, )dx
R

S DT e ok | (4.32)
3 1
ST s lu@d i
for k = 1, 2. By Lemma 7 and (3.21), we have
_ k=1 17 1 I\ Lk hyp.+ —_—
v 3 t3<x 3 — (vt) 3)8xu YP-E (1, X)W, (1, x)dx
R L3(Q(1)
L e\
t L%
3 1
S8R lu@)y
Moreover, Holder’s inequality, (3.26), (3.22), and (4.1) imply that
v / t%xf%ax(e7i¢8f71uhyp'i)(t,x)x()\(x —vt))dx
R
SO )T AT |l Zeak | (434)
3 _5 1
S )T T lu@® g
for k = 1, 2. In addition, (4.34) yields that
v_k%} / t%x_%Bx(e_i'l’af_luhyp’i)(t,x))(()»(x — vt))dx
R L2(Q2(1)
3 5 _1 4.35)
< |I(¢% 6 -178 13163 (
o (G IO COIE
S5 ) g

Therefore, by (4.27) and (4.31)—(4.35), we obtain (4.26).

We are now in position to prove Proposition 3.



Vol. 21 (2021) Long-time behavior for critical 4NLS 4919

Proof of Proposition 3. First, we show (4.22). Let &+ be as in (4.8). Then, it follows
from (3.5) that u™P (¢, vt) = uMP-+(z, vr). By (3.6), (3.23), and (3.25), we have

Fu(r, vry = 3FuMYPE (1, vr) + Ri (2, ), (4.36)
where Ry, satisfies (4.23). We set
wi (1, x) i= e PUX ghyhvpE gy, (4.37)
By (4.36), Lemma 8, and (4.3), we have

k.
u(t, vr) — i*av3e?Cy (1, v)

) (4.38)
= el ®vD) / (w2, vt) — wi (2, x))x (A(x — vt))dx + Ri(t, v).
R
It follows from (4.37) and (3.26) that
Bywy (1, x) = Fit ™3 o dkuhPE, (4.39)

With a change of variables using z = A(x — vt), the mean value theorem, (4.39),
Holder’s inequality in 6, (3.22), and (4.1), we see that

Al /R | (wi (2, 1) — we (1, %)) x (A(x — v1))|dx

1
<! / ’ / dxwi(t, vt + (1 — 0)A"12)d6 - 23 (2)|dz (4.40)
R1Jo
SIS u ) g
From (4.38) and (4.40), we obtain the L°°-estimate in (4.22).
Moreover, a change of variables using z = A(x — vt) and ¥ = vt + (1 — Hr~ !z,
and (3.22) give

kys 3 k1
t3TR(130) a+s)\/ lwi (2, vt) — wr(t, x)| x (M (x — ve))dx
R

L2(Q(@)
(4.41)

<378

S Geatur 0, w)

L3
_1
St Eu@llg

Hence, the L2-estimate in (4.22) follows from (4.38) and (4.41).
Next, we consider the estimates in the frequency spaces. By (1.28), Lemmas 5 and
6, and Proposition 2, we have

V3eT Iy (1, v) = 3 E fR @920 (6 — &), 2 18)e 1 dg
+

+o(@i ™" T uOlz).
(4.42)
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By changing variable { = A‘l(é — &), (4.19), (4.1), and (4.7), we have
-171g,
‘ [ e e - rlsnds’ - ‘ [ neats
es —00

-7 1g, ; )
< 02/ (©)2de < i3

oo

(4.43)
It follows from (4.6) and (4.43) that
'1 —fR A0 —svxrlsv)ds’
<Ci(eip)TE 4 ‘ /R AN E = &), rlswds‘ (4.44)
q:

3 2
S (Cr+C)(*v])3.

Hence, it follows from (4.42) and (4.44) that

@, 6) = V3T y 1, v)|

=<

f (70 0635 — it )3 )20 T (€ — 60 TEdE| (449)
Ry
302 309 1
+(C1+ C) (3 )73 (@, &)+ CaF )™ - 175 [lu(@)]| 5.
By (1.28), Proposition 2, (4.2), and (4.1), we have
3 1 gl 1 EI |
@l S @D e s S @Dt ez, @46
It follows from (4.46) and (4.21) that

(C1+ Co)(t7 o) "3 (@t &)
< (C) + C) (3 o) 3@ &) — V3e 35 y (1, v)

4.47)
+V3(Cr + C) (3 ) F |y (2 v)]

1 . 1.4 301 1
551u<r,sv)—ﬁe iy + CUF) T2 s u@)lly

for v € Q(r). Therefore, (4.45) and (4.47) yield that

@, 6) — V3e Ry 1, v)|

<

~

[ (@06t ek )i GG =R s | (449
Ry

3 1 1
+ @) 2 8 lu(@) g
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With the mean value theorem and a change of variables using ¢ = A7' (£ — &), we
have

/ (7, g0t @0 e )A€ = &) 2 Teude
Ry
1 —
< [te—al [ [Fuc.oe -0+ 0l aG € — 6.0 6o

1
=i [ [T+ e - onfasicn . a ac
0 (4.49)
Since x1(-, ) € S(R) for o > 1, it follows from (4.49), Holder’s inequality in ¢,
Minkowski’s integral inequality, (4.1), and (2.9) that

| (@ s0et e~ 1l GTE — B A e
Ry (4.50)

1 IR
SIMZNTu@® gz S @*HuD 76 -7 E lu®)] g

Hence, the L°°-estimate in (4.24) follows from (4.48) and (4.50).
For the L?-estimate in the frequency space, we change variables using V = &, +
AL (1 —6). Since
w_1 Si-ca—oniei
dv 3" ¢ o

(4.49), Minkowski’s integral inequality, (4.1), and (2.9) yield that

[ (@@ a0t~ )i G E — 600 s
Ry

L2(Q()
1
S [ [ [Fae s aca - onflon el do
0 R L3(Q(1)
1 ~ _3 _1
§f_2||(ju)(f,V)||L%§t 58 |u )| 5
4.51)
Moreover, by (4.20), (4.4), and (2.9), we have
IGITE S +|aden] L ol
P @) L2(Q(1) X
1 3 1
<t 2| |E7 e, 78 T lu@) || 3 4.52
setfertaes], o+ (o)l (4.52)

3 1
StE s lu@) |z

Hence, the L2-estimate in (4.24) follows from (4.45), (4.51), and (4.52). This con-
cludes the proof.
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5. Proof of the main theorem

In this section, we prove Theorem 1. In Sect. 5.1, we derive an ordinary differential
equation with respect to y. In Sect. 5.2, we prove the global existence of the solution
to (1.1). In Sect. 5.3, we show the asymptotic behavior of the global solution.

5.1. ODE with respect to y

In this subsection, we prove the following proposition:

Proposition 4. Assume that F satisfies (A-1) and (A-2). Let u be a solution to (1.1)
satisfying (1.26). Then, we have

3 1 11
1T u])oy (¢ 1Ry S
H (t3uDey( )H +‘ YOl aaw ~°

L (1))

for t > 1, where the implicit constant is independent of D and T. Here, y and 2(t)
are as in (1.28) and (4.20), respectively.

We use err to denote error terms that satisfy the estimates

<e

3 1
t(t3|v 6err‘
H (%o L2(Q0) ™

Se |
L)

11
18 err

Then, Proposition 4 says that
y(t) = err. 5.1

For the proof of Proposition 4, we use the following lemmas.

Lemma9. Fort > 1,v € Q(), andk =0, 1, 2, we have
—1;,,—% k ell _
t|v|73 [0 u™" (¢, x)x (A(x — vt))|dx = err, 5.2)
R

where x is a smooth function satisfying (4.3).

Proof. By (4.1), (3.25), and Lemma 2, we have

—1,..—-% k_ ell
t|v|73 [0y u™" (¢, x) x (A(x — vt))|dx
R
13, 5 kel 1 kLS
<t Vi) A sup | T (i) s+6a]§ue“(t,x))
xeR
1,3 _1
St () 2e.

Moreover, it follows from Lemmas 7 and 2 with (3.23) that

t—1|v|—§/ 105U (2, x) x (L(x — vt))|dx
R

LZ(Q®)
k+l 1

3 k1 11
<i2te (t‘Zx)‘§+§8fuell(t)” L StTve
LX

‘We therefore obtain (5.2).
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Lemma 10. Fort > 1 and v € Q(t), we have

‘ / WLW,)(t, x)dx| = err, (5.3)
R

where L and Vy, are as in (1.19) and (4.2), respectively.
Proof. Letv € Q(t) and let & be as in (4.8). From (4.16), (3.5), and (3.6), we have

)

WLW,)(t, x) = —iTuhmiu, X)X (1, X)
0D N o
—i——u (7, x)0x x (1, x) (5.4)

+ 0 (Jute, 0l @ ) 7F X (= ) )
=: E(t,x) + Ex(t, x) + E3(t, x).

Note that o defined in (4.18) has the same localization property as x . It follows from
(5.4), (3.26), (4.1), (3.22), (4.17), and Lemma 2 that

/ Eq(t, x)dx
R

13

3 1 ~
St_lz(mvl)?f | TP (2, ) K (1, x)]dx
R

5 3 1 2 -

SO IGIITI [RER AL O BN IO
1,3 _1 '

StT(tF ) se.

In addition, we use Lemma 7, (4.17), (3.22), and Lemma 2 to obtain
H / E1(t, x)dx < B ivys / | TP (1, )7 (2, x)|dx
R L3(Q@) R L3(Q@)
S LR ATRLE
L2
< t_%s.
(5.6)

From (5.4), (4.17), and Lemma 9, we have

/ E»(t, x)dx
R

Moreover, we use (5.4), (4.1), Proposition 2, and Lemma 2 to obtain

/ Es(t, x)dx
R

<! / (2, x) (0 X0) (M(x — v), AT &) |dx = err.  (5.7)
R

3 4
sr”(mvn—@/ e, x) % (h(x — v0))ldx
R

(5.8)

o0
X

< e o be

3 7
St ed ) e
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In addition, (5.8) also yields that

H / E5(t, x)dx
R

Hence, (5.3) follows from (5.4) and (5.9).

11

St‘IH(I%IvI)‘% <t v (5.9)

&
LI(Q(1)

L3(Q(0)

Finally, we prove Proposition 4.

Proof of Proposition 4. By (1.19), (1.1), and Lemma 10, we can write
vy, v) = —i / (Lu - W) (t,x)+i / WLW,)(t, x)dx
R R

=/ O F(u(t, x))W,(t, x)dx + err.
R

The bootstrap assumption (1.26), (A-1), (4.2), (4.1), and ¢ < D_% yield that

EN[V)

St

‘/ 3y F(u(t, x))W, (7, x)dx (Da)“/(f%xrlwv(z,xndx
R R

t

EN[V

7))~ (De)*|al !

A

< i) e
We therefore obtain (5.1). This concludes the proof of Proposition 4.
5.2. Global existence
In this subsection, by using Proposition 4, we prove the global existence of the
solution to (1.1). From Proposition 1 and Lemma 1, this is reduced to showing (1.9),
that is to say, to close the bootstrap estimate (1.26).

Let C be as in (4.21). In the case t_% |x| < Cj, Proposition 2 and Lemma 2 yield
that

H ()5 T aku(r)

1 k1
e S e T k|
L@ Fx|=Cy) Ly

ki1 _
St TR lu®lg St d

for k = 0, 1, 2. For the case t_% |x] > C, owing to (4.22) and (4.1), it is reduced to
showing that

ly Ol S & (5.10)
where €2 () is as in (4.20) and the implicit constant is independent of D and T.

4
When |v| > Cy4, v € Q(¢) implies that t > max(1, C; |v|_%). Then, solving the
ordinary differential equations in Proposition 4 with the initial time # = 1, we have

vt v) = y(1,v) + 0<e(z3|v|)*%). (5.11)
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It follows from (1.28), Lemma 5, the Gagliardo—Nirenberg inequality, (1.20), and
Remark 4 that

ly (L)l S Ml = !|e%"f4ﬁ(1)um < lull; zllju(l)lle Se. (512

By (5.11) and (5.12), we obtain (5.10) for |v| > C,.

When |v]| < Cy,lettg > 1bety := C v~ 3 . Then, solving the ordinary differential
equations in Proposition 4 with the initial time ¢ = 7y, we have

y(t,v) = y(to, v) + O(e). (5.13)
_1
Note that (4.7) and (4.4) yield that N, ~ |v|% ~ 1, *. Bernstein’s inequality, Propo-
sition 2, and Lemmas 6 and 2 with (2.9) yield that
ly (to, VI S 1Py, u o) llLee MW (G Il 1t + llu@o)llzge 1(1 — P, )Wy (f0) I 21
1 1
St D Nuno)lzz + 1o Flluto) Iz
NE2ZI (5.14)
N~y
1
Sty Plluto)lly Se.

By (5.13) and (5.14), we obtain (5.10) for |v| < C. Accordingly, we conclude that
(1.9) holds for any ¢ € [1, T'].

5.3. Asymptotic behavior

In this subsection, we present the proof of the asymptotic behavior of the global
solution to (1.1).

Proposition 4 yields that there exists a unique function W defined on R\{0} such
that for ¢t > 1,

y(t,v) = %W(Su) + R(t,v), (5.15)

where
[ @3 1008 Rt )] iy + 115 R0 gy S ¢

We extend W to R by defining

W) = f ug(x)dx.
R
Then, by (5.10), we have
Wil < e. (5.16)

Moreover, changing variable v = &, defined in (4.4) and Lemma 7 with (4.20) yield
that

v, v)II = v Sy @ vl S a2
lngf 5 = | L3(Q(1) L2



4926 M. OkAMOTO AND K. URIYA J. Evol. Equ.

In particular, by (1.25), we have

ly (1, vl Se. (5.17)

l ~
L (1&I=C2)
Then, it follows from (5.16), (5.15), and (5.17) that

Wiz =IWI L+ W 1 Se

~

Lg, (&1<C2) L (&1=C3)

By (5.15) and Proposition 3, we obtain the asymptotic behavior (1.13) and (1.14).

Finally, we show the existence of the self-similar solution and the asymptotic behav-
ior in the self-similar region X' (). We use the self-similar change of variables (2.13).
Let p > 0 be a constant specified later and let C > 1. By choosing C sufficiently
large and (3.3), we have

_ ell
Pth/’_ZIIuN(t’x) = PEC LUy (t, x) (5.18)

for [x| < 3. Weset 9°(r) := {y e R: |y| < 3},
From Bernstein’s inequality, (2.14), (5.18), (3.13), and Lemmas 1 and 2, we have

2
19 P<cro Ul Lo (0(r)) Stz ||3tP§CtPU(t)||L§,@0(t))

3.9 p_1 11
SOPTE[Au@ 2 +1275 Y u Ol
Ne2Zl
N~tP~ %

(5.19)

< g lmmin(=3p+g—e.30)
~Y

Furthermore, (5.18), (3.9), (3.13), and Lemma 2 yield
1
1
IP=coo Ul ooy S 12 ( > Niu e“(r)MLz)
Ne2”
N>Ct’™4
1
RAED DR (Y BRWIE L

Ne2Z
_1
N>Ct’™ %

(5.20)

§
S,
1

1
I1P-cor U 2007 S rs( > ||u6”<r>||L2>

Ne2Z
_1
N>Ct"™ %
1
el Y fa-ry
Ne2Z
_1
N>Ct’~13
<173,

el (5.21)
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By setting p := (g — &) with (5.19)(5.21), there exists Q € L3°(R) such that

1T (@) = Qo0 S 61737, IU @) = Q2o SetP, (5.22)
Moreover, it follows from (5.22), (2.13), and (1.9) that

[ Qe = lim (10 = Ul oy + [T VD] 1) S e
By (1.22) and (1.1), we have

Au(t, x) = 43 d,u(r, x) + xu(t, x)
5 (5.23)
= —itd u(t,x) +4tF(u(t,x)) +xu(t, x).

It follows from (5.23), (2.13), and Lemma 1 that
1 1
[6JU@ +iyU@ + 4 FU@)| 5 = AW 1) S 1775

By taking the limit as t — oo, Q solves (1.10). In addition, (5.22), and (1.4) yield that

—00

= lim / U(t,y)dy:/uo(x)dx.
—00 R R

By (1.10) and (5.24), u(t, x) := 1~ Q(t "3 x) solves (1.1) with u(0) = [, uo(x)dxdo,
where & is the Dirac delta measure concentrated at the origin. Moreover, (1.11) and
(1.12) follow from (5.22) and (2.13), which concludes the proof of Theorem 1.

P tP
[ ooy =tim [ oay=iim [ va.ay
R —F —tr (5.24)
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