
J. Evol. Equ. 21 (2021), 4145–4169
© 2021 The Author(s)
1424-3199/21/044145-25, published online May 27, 2021
https://doi.org/10.1007/s00028-021-00716-z

Journal of Evolution
Equations

The primitive equations in the scaling-invariant space L∞(L1)

Yoshikazu Giga, Mathis Gries, Matthias Hieber, Amru Hussein and

Takahito Kashiwabara

Abstract. Consider the primitive equations on R
2 × (z0, z1) with initial data a of the form a = a1 + a2,

where a1 ∈ BUCσ (R2; L1(z0, z1)) and a2 ∈ L∞
σ (R2; L1(z0, z1)). These spaces are scaling-invariant

and represent the anisotropic character of these equations. It is shown that for a1 arbitrary large and a2
sufficiently small, this set of equations admits a unique strong solution which extends to a global one and
is thus strongly globally well posed for these data provided a is periodic in the horizontal variables. The
approach presented depends crucially on mapping properties of the hydrostatic Stokes semigroup in the
L∞(L1)-setting. It can be seen as the counterpart of the classical iteration schemes for the Navier–Stokes
equations, now for the primitive equations in the L∞(L1)-setting.

1. Introduction

The primitive equations for ocean and atmospheric dynamics serve as a fundamental
model for many geophysical flows. This set of equations describing the conservation
of momentum and mass of a fluid, assuming hydrostatic balance of the pressure, is
given in the isothermal setting by

⎧
⎪⎪⎨

⎪⎪⎩

∂tv + u · ∇v − �v + ∇Hπ = 0, in � × (0, T ),

∂zπ = 0, in � × (0, T ),

div u = 0, in � × (0, T ),

v(0) = a.

(1.1)

Here � := R
2 × J , where J = (z0, z1) is an interval. Denoting the horizontal

coordinates by x, y ∈ R
2 and the vertical one by z ∈ (z1, z2), we use the notation

∇H = (
∂x , ∂y

)T, whereas � denotes the three-dimensional Laplacian and ∇ and div
the three-dimensional gradient and divergence operators. The velocity u of the fluid is

Mathematics Subject Classification: Primary: 35Q35; Secondary: 76D03, 47D06, 86A05
Keywords: Primitive equations, Rough data, Global strong well-posedness.

This work was partly supported by the DFG International Research Training Group IRTG 1529 and the
JSPS Japanese-German Graduate Externship on Mathematical Fluid Dynamics. The first author is partly
supported by JSPS through the Grants Kiban A (No. 19H00639), Kaitaku (No. 18H05323), Kiban S (No.
26220702), Kiban A (No. 17H01091), Kiban B (No. 16H03948), the second and fourth author have been
supported by IRTG 1529 at TU Darmstadt, the fifth author is supported by JSPS Grant-in-Aid for Young
Scientists B (No. 17K14230).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00028-021-00716-z&domain=pdf
http://orcid.org/0000-0002-0250-4785


4146 Y. Giga et al. J. Evol. Equ.

described by u = (v,w), where v = (v1, v2) denotes the horizontal component and
w the vertical one.
In the literature, various sets of boundary conditions are considered such as Neu-

mann, Dirichlet and mixed boundary conditions. In this article, we choose Neumann
boundary conditions for v, i.e.

{
∂
∂z v = 0, on ∂� × (0, T ),

w = 0, on ∂� × (0, T ),
(1.2)

and mixed boundary conditions are discussed in [8].
The rigorous analysis of the primitive equations started with the pioneering work

of Lions et al. [20–22], who proved the existence of a global weak solution for this
set of equations for initial data a ∈ L2. The uniqueness problem for weak solutions
remains an open problem until today.
The existence of a local, strong solution for this equation with data a ∈ H1 was

proved by Guillén-González et al. in [9].
In 2007, Cao and Titi [3] proved a breakthrough result for this set of equation which

says, roughly speaking, that there exists a unique, global strong solution to the primi-
tive equations for arbitrarily large initial data a ∈ H1. Their proof is based on a priori
H1-bounds for the solution, which in turn are obtained by L∞(L6) energy estimates.
Kukavica and Ziane [16] proved global strong well-posedness of the primitive equa-
tions with respect to arbitrary large H1-data for the case of mixed Dirichlet–Neumann
boundary conditions. For a different approach, see also Kobelkov [14]. We also would
like to draw the attention of the reader to the recent survey article by Li and Titi [19]
on the primitive equations.
Recently, a new approach to the primitive equations based on the theory of evolution

equations has been developed in [10,11]. This approach is also valid in the L p-setting
for all 1 < p < ∞ and, using this approach, the authors proved global strong well-
posedness of the primitive equations subject to mixed Dirichlet–Neumann boundary
conditions for arbitrary large data in the Bessel potential space H2/p,p. Taking for-
mally the limit p → ∞, it is now tempting to consider initial data a ∈ L∞ with
no differentiability assumption on the initial data. This article aims to find a function
space, as large as possible, for the initial data for which the primitive equations are
strongly and globally well posed.
Recent regularity results for weak solutions by Li and Titi [18] and Kukavica et

al. [15] are also pointing in this direction. More specifically, starting from a weak
solution to the primitive equations, these authors investigated regularity criteria for
weak solutions for the primitive equations, following hereby in a certain sense the
spirit of Serrin’s condition in the theory of the Navier–Stokes equations and methods
of weak–strong uniqueness. Li and Titi proved in [18] that weak solutions are unique
for initial values in C0 or in {u ∈ L6 : ∂zu ∈ L2} including a small perturbation
belonging to L∞. By the weak–strong uniqueness property, it follows that these weak
solutions regularize and become strong solutions.
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Our approach to rough initial data results for the primitive equations is very different:
It considers the primitive equation as an evolution equation in an anisotropic function
space of the form L∞(R2; L1(J )). This space is invariant under the scaling

vλ(t, x1, x2, x3) = λv(λ2t, λ(x1, x2, x3)), λ > 0.

By this,wemean that ‖vλ‖L∞(R2;L1(λ−1 J )) = ‖v‖L∞(R2;L1(J )) for allλ > 0.Moreover,
vλ is a solution to the primitive equations whenever v has this property. For further
information on the Navier–Stokes equations in critical spaces see [2,4,17].
Based on L∞-type estimates for the underlying hydrostatic Stokes semigroup S on

L∞(L1) and its gradient, we develop an iteration scheme yielding first the existence
of a unique, local mild solution for initial data of the form a = a1 + a2 with

a1 ∈ BUCσ (R2, L1(J )) and a2 being a small perturbation in L∞
σ (R2; L1(J )).

The main idea of our approach may be described as follows: In a first step, we extend
the hydrostatic Stokes semigroup S from the L p(L p)-setting to the L∞(L1)-setting.
Duhamel’s formula leads us then to terms of the form S(t)Pdiv (u ⊗ v). Observe
that u = (v,w) involves first derivatives through w = w(v), and thus, second-
order derivatives appear in the above term. This implies a singularity of order t−1 for
S(t)Pdiv (u ⊗ v) for t > 0, which is nonintegrable. In order to surpass this difficulty,
we smoothen the horizontal derivatives by inserting fractional powers of the horizontal
Laplacian and the vertical derivative by inserting fractional vertical derivatives and
obtain

S(t)P∇ · (u ⊗ v) = S(t)P(−�H )(1−α)/2
︸ ︷︷ ︸

decay term

∇H · (−�H )−(1−α)/2(v ⊗ v)

+ S(t)∂z I
α
z0︸ ︷︷ ︸

decay term

I 1−α
z0 ∂z(wv), t > 0.

This leads us on the one hand to estimates for the decay terms in the L∞(L1)-norm
and on the other hand to estimates for fractional derivatives of functions within this
L∞(L1) framework. The iteration scheme developed yields sequences defined for
m ∈ N by

Km(t) := sup
0<τ<t

τ 1/2‖vm(τ )‖1,∞,1, ‖vm(τ )‖1,∞,1 := ‖vm(τ )‖∞,1 + ‖∇vm(τ )‖∞,1.

We show that this sequence and related sequences converge provided K0(t) =
sup0<τ<t τ

1/2 ‖S(τ )a‖1,∞,1 is sufficiently small. The sequence (vm) is then a Cauchy
sequence and converges to the unique solution of (1.1). The smallness can be balanced
by taking the time as well as the rough part a2 sufficiently small.
Assuming that a1, a2 are periodic with respect to horizontal variables, we are able

to prove that the solution regularizes sufficiently and thus, by an a priori estimate, can
be extended to global, strong solution without any restriction on the size of a1.
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Comparing our assumptions on the initial datawith the ones givenbyLi andTiti [18],
let us note that our assumptions are slightly less restrictive for the case of continuous
initial data, while our assumptions are not comparable to their second case.
Our approach may be viewed as the counterpart of the classical iteration schemes

for the 3-D Navier–Stokes equations due to Giga [5] and Kato [13] which yield initial
values in the scaling-invariant space L3. Note that, in contrast to the case of theNavier–
Stokes equations, our iteration schemepresented here combinedwith a suitable apriori
estimate yields the existence of a unique, global strong solutions not only for small
data as in the case of the Navier–Stokes equations, but for arbitrary large solenoidal
data a ∈ BUCσ (R2; L1(J )).
Aswritten above, our approach depends crucially on L∞(L1)-mapping properties of

the underlying hydrostatic Stokes semigroup aswell as on its gradient. These estimates
are collected in Proposition 2.2 and are of independent interest.
This article is organized as follows. Section 2 presents the result of this article.

Sections 3, 4 and 5 are devoted to anisotropic estimates for fractional derivatives, the
heat semigroup as well as for the hydrostatic semigroup. In Sect. 6, we present a proof
of our main results based on our iteration scheme.

2. Preliminaries and main results

Let z0 ∈ R, z1 = z0 + h for some h > 0, J be the interval J = (z0, z1) and
� := R

2 × J . The incompressibility condition div u = 0 in � × (0, T ) implies

w(x, y, z) =
∫ z1

z
divH v(x, y, ξ)dξ,

where the boundary conditionw = 0 on ∂� has been taken into account. Also,w = 0
on ∂� implies

divH v = 0 in R2,

where v denotes the vertical average of v, i.e.,

v(x, y) := 1

z1 − z0

∫ z1

z0
v(x, y, z)dz.

The linearization of Eq. (1.1) are the hydrostatic Stokes equations, which are given by

⎧
⎨

⎩

∂tv − �v + ∇Hπ = f, in � × (0, T ),

divH v = 0, in � × (0, T ),

v(0) = a in �.

(2.1)

The name ‘hydrostatic Stokes equations’ is motivated by the assumption of the hy-
drostatic balance when deriving the full primitive equations. Equation (2.1) are sup-
plemented by Neumann boundary conditions (1.2) for v.
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For a function f : R2 × J → C, we define for 1 ≤ p, q < ∞ the Lq(R2, L p(J ))-
norm of f by

‖ f ‖Lq (R2;L p(J )) :=
( ∫

R2

( ∫

J

∣
∣ f (x ′, x3)

∣
∣q dx3

)q/p
dx ′)1/q ,

where we use the shorthand notation Lq(L p) for the spaces and ‖ · ‖q,p for the
norms. The usual modifications hold for the cases p = ∞ or q = ∞. The space
L p(R2; Lq(J )) consisting of all measurable functions f with ‖ f ‖p,q < ∞ and
equipped with the above norm becomes a Banach space.
Following [6,11], we introduce the hydrostatic Helmholtz projection as follows.

For a function f : R2 × J → C
2, we define the hydrostatic Helmholtz projection by

P f := f + ∇H (−�)−1divH f .

The solenoidal subspace L∞
σ (R2; L p(J )) is defined for 1 ≤ p ≤ ∞ as the closed

subspace of L∞(R2; L p(J )) given by

L∞
σ (R2; L p(J )) := {v ∈ L∞(R2; L p(J )) :

∫

R2
v ∇Hϕ dx = 0 for all ϕ ∈ Ŵ 1,1(R2)}.

(2.2)

Here Ŵ 1,1(R2) denotes the homogeneous Sobolev space of the form Ŵ 1,1(R2) =
{ϕ ∈ L1

loc(R
2) : ∇Hϕ ∈ L1(R2)}, that is, the condition divH v = 0 is understood in

the sense of distributions.
If a ∈ L∞

σ (R2; L p(J )) for some 1 ≤ p ≤ ∞ and f ≡ 0, then the solution of Eq.
(2.1) can be represented as v(t) = S(t)a for t ≥ 0, where S denotes the hydrostatic
Stokes semigroup on L∞

σ (R2; L p(J )). The latter semigroup may be represented using
the heat semigroup as follows: Consider the one-dimensional heat equation in J ×
(0,∞),

ut − uzz = 0, u(0) = u0,

subject to the boundary conditions

uz(z1) = 0, uz(z0) = 0. (2.3)

For p ∈ [1,∞] andu0 ∈ L p(J ), its solutionu is given byu(t) = et�N u0.Here et�N

denotes the analytic semigroup on L p(J ) generated by the Laplacian subject to Neu-
mann boundary conditions. The corresponding heat semigroup on L∞(R2; L p(J ))

for all p ∈ [1,∞] denoted by S∞ is thus given by

S∞(t) := et�H ⊗ et�N , t ≥ 0,

where et�H denotes the heat semigroup on L∞(R2). The hydrostatic Stokes semi-
group S is then given as the restriction of S∞ to the space of solenoidal functions
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L∞
σ (R2; L p(J )). Here, one uses the fact that the solenoidal space L∞

σ (R2; L p(J )) is
left invariant by the heat semigroup. This follows from (2.2) since

∫

R2
S∞(t)v ∇Hϕ dx = 1

z1 − z0

∫

R2

∫

J
et�N v et�H ∇Hϕ dzdx

=
∫

R2
v ∇He

t�H ϕ dx = 0

for v ∈ L∞
σ (R2; L p(J )), ϕ ∈ Ŵ 1,1(R2) and t ≥ 0, where one uses that S∞ acts as

identity on functions constant with respect to z, and that et�H ϕ ∈ Ŵ 1,1(R2).
So, for a ∈ L∞

σ (R2; L p(J )) and f ≡ 0, the solution of (2.1) is thus given as the
restriction of the heat semigroup to solenoidal functions, that is,

v(t) = S(t)a, where S(t)a = S∞(t)a, t ≥ 0.

The semigroup S is not strongly continuous on L∞
σ (R2; L p(J )); however, its restric-

tion to

BUCσ (L p) := BUC(R2; L p(J )) ∩ L∞
σ (L p)

defines for 1 ≤ p < ∞ an analyticC0-semigroupon this space satisfying‖S(t)‖∞,p ≤
M for all t > 0 and for some M > 0, where ‖ · ‖∞,p denotes the L∞(R2; L p(J ))-
norm. It is well known that theHelmholtz projection is not bounded on L∞-spaces, and
this carries over to the hydrostatic Helmholtz projection considered here. However,
for sufficiently smooth a one has S(t)a = S∞(t)Pa for t ≥ 0.

The first part of our main result concerns the existence of a unique, local mild
solution to the primitive equations with initial value a. By this, we mean a function v

satisfying the integral equation

v(t) = S(t)a −
∫ t

0
S(t − s)P∇ · (u(s) ⊗ v(s))ds, 0 < t < T, (2.4)

for some T > 0, where w(s) = ∫ z1
z divH v(s) dx3 and u(s) = (v(s), w(s)) for all

s ∈ [0, t] and ∇ · (u ⊗ v) = u · ∇v since div u = 0. In the second part of the
main result, we state that this solution regularizes in space and time and extends to a
unique, global, strong solution. Applying [7], this solution is in fact a classical one,
i.e., v ∈ C∞((0, T ) × �), and it is even real analytic in time and space.
In order to formulate our result precisely, we introduce for v ∈ L∞(L1) the norm

‖v‖1,∞,1 := ‖v‖∞,1 + ‖∇v‖∞,1.

Theorem 2.1. (Local and global strong well-posedness) Let a ∈ L∞
σ (L1).

(a) Then there exists a constant ε0 > 0 such that if limt→0 t1/2‖S(t)a‖1,∞,1 ≤ ε0,
there exists T > 0 such that (1.1) subject to (1.2) admits a unique, local mild
solution

v ∈ C
(
(0, T );BUCσ

(
L1(J )

) ) ∩ L∞(
(0, T );BUCσ

(
L1(J )

) )
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with

t1/2∇v ∈ L∞ (
(0, T ); L∞ (

L1(J )
))

and limt→0 t
1/2‖v(t)‖1,∞,1 ≤ ε0.

(b) The above condition lim supt→0 t
1/2‖S(t)a‖1,∞,1 ≤ ε0 is in particular satisfied

for a of the form a = a1 + a2 with a1 ∈ BUCσ (L1) and a2 ∈ L∞
σ (L1) provided

‖a2‖L∞
σ (L1) is sufficiently small. In this case,

lim
t→0

t1/2‖∇v(t)‖L∞(L1) ≤ C‖a2‖L∞
σ (L1)

for some C > 0, independent of a.
(c) If a2 = 0, then v ∈ C

([0, T );BUCσ

(
L1(J )

))
.

(d) Let p, q ∈ (1,∞) with 1/p + 1/q ≤ 1 and assume in addition to (a) or (b) that
a is periodic with respect to the horizontal variables. Then, for any T ∗ > 0 the
solution v extends to a unique, strong solution of (1.1) on (0, T ∗), i.e., for any
δ > 0

v ∈ Hq((δ, T ∗); L p(�)2) ∩ Lq((δ, T ∗); H2,p(�)2).

Estimates for the linearized problem applied to fractional derivatives are essential in
our proof of the local well-posedness. Here, we denote for α > 0 by Iα

z0 the Riemann–
Liouville operator of the form

(
I α
z0 f

)
(z) := 1

�(α)

∫ z

z0
(z − ζ )α−1 f (ζ )dζ, z ∈ J , (2.5)

where � denotes the usual Gamma function, cf. [12, Section 23.16] or [1, Section 3.9]
for basic facts about Riemann–Liouville operators.

Proposition 2.2. (Linear estimates) Let p ∈ [1,∞]. Then the following assertions
hold:

(i) There exists a constant C > 0 such that for all f ∈ L∞(L p)

‖∇S∞(t) f ‖∞,p ≤ Ct−1/2‖ f ‖∞,p and ‖S∞(t)∇H · f ‖∞,p

≤ Ct−1/2‖ f ‖∞,p, t > 0.

(ii) For α ∈ [0, 1), there exists a constant C > 0 such that for all f ∈ L∞(L p)

satisfying I α
z0 f (z1) = 0

∥
∥S∞(t)∂z I

α
z0 f

∥
∥∞,p

≤ Ct−(1−α)/2‖ f ‖∞,p, t > 0.

(iii) For α ∈ (0, 2], there exists a constant C > 0 such that for all f ∈ L∞(L p)

∥
∥
∥S∞(t)P(−�H )α/2 f

∥
∥
∥∞,p

≤ Ct−α/2‖ f ‖∞,p, t > 0.
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(iv) There exists a constant C > 0 such that for all f ∈ L∞(L p)

‖S∞(t)P∇H · f ‖∞,p ≤ Ct−1/2‖ f ‖∞,p, t > 0.

(v) There exists a constant C > 0 such that for all f ∈ L∞(L p)

‖S∞(t) f ‖∞,p ≤ Ct−(1−1/p)‖ f ‖∞,1, t > 0.

Remark 2.3. In the case where α = 0 in assertion (ii), the operator I 0z0 is interpreted
as the identity operator and there is no restriction for f other than f ∈ L∞(L p).

In order to establish the global well-posedness of Eq. (1.1), we use the smoothing
effect of the local solution described in Proposition 2.4 below. Roughly speaking, the
solution regularizes into the well understood Lq -L p-setting and extends hence to the
global smooth solution, see [7]. In order to apply this strategy,we use first the L∞(L p)-
L∞(L1) smoothing properties of S∞ and assuming then initial data in L∞(L p) for
p > 1, we control the L∞(L p)-norms of the pair (v(t),∇v(t)) by the corresponding
L∞(L1)-norms. In turn, the L∞(L p)-norms of v(t) and ∇v(t) for p ≥ 2 give rise to
control of the H1-norms assuming periodicity. This strategy is formulated precisely
in the following proposition.

Proposition 2.4. (Local existence for p > 1) Let a and T > 0 be as in Theorem 2.1.
If in addition to the assumptions of Theorem 2.1 the initial data a satisfies

(i) a ∈ L∞
σ (L p) for some p ∈ (1,∞], then t1/2−1/2pv, t1−1/2p∇v ∈ L∞ (

0, T ; L∞
σ

(L p));
(ii) a ∈ BUCσ (L p) for some p ∈ (1,∞], then t1/2−1/2pv, t1−1/2p∇v ∈ C ([0, T ),

BUCσ (L p));
(iii) a ∈ BUCσ (BUC), then t1/2v, t∇v ∈ C ([0, T ),BUCσ (BUC)).

The local mild solution constructed in Theorem 2.1 exists at least on the interval
[0, T ), where T > 0 depends on a. Instead of using smoothing properties to obtain a
global strong solution, we may also estimate the existence time T > 0 explicitly from
below in terms of the |||·|||-norm, defined for a ∈ L∞

σ (R2; L1(J )) and forμ ∈ [0, 1/2)
by

|||a||| := [a]μ + ‖a‖∞,1, where [a]μ := sup
0<t<1

tμ ‖∇S(t)a‖∞,1 .

Proposition 2.5. (Estimate on the life span) Let a and T > 0 be as in Theorem 2.1.
Assume in addition that [a]μ < ∞ for some μ ∈ [0, 1/2). Then there exists C > 0,
depending on μ only, such that

1/T ≤ min (C |||a|||, 1)2/(1/2−μ) .
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3. Interpolation inequalities for fractional derivatives

In this section,we consider fractional derivatives and prove anisotropic interpolation
inequalities. To this end, let f ∈ L∞(J ;C), and consider the zero extension of f to
R, denoted by f+, and the zero extension of z from (0, h) to R, denoted by z+. The
Riemann–Liouville operator introduced as in (2.5) is given by

I α
z0 f = zα−1+

�(α)
∗ f+, f ∈ L∞(J ).

Then I α
z0 f is called the α-times integral of f from z0 whenever α > 0 and we have

I α1+α2
z0 = I α1

z0 I
α2
z0 for all α1, α2 > 0, cf. [12, Section 23.16]. We also set I 0z0 f = f .

The Caputo derivative ∂α
z for α ∈ (0, 1) is defined by

(
∂α
z f

)
(z) :=

(
I 1−α
z0 (∂z f )

)
(z), z ∈ J ,

where ∂z f = ∂ f/∂z. This formula is well defined provided f ∈ W 1,p(J ). Indeed,
the Hausdorff–Young inequality for convolutions yields

∥
∥∂α

z f
∥
∥
L p(z0,z0+μ)

=
( ∫ z0+μ

z0

∣
∣∂α

z f (z)
∣
∣p dz

)1/p ≤ μ1−α

�(2 − α)
‖∂z f ‖L p(z0,z0+μ)

(3.1)
for μ ∈ (0, h), since

∫ μ

0 z−αdz = μ1−α/(1 − α). Here we identified ∂z f with
(∂z f ) · χ(z0,z0+μ) denoting by χ(z0,z0+μ) the characteristic function.
We next state an interpolation inequality for

∥
∥∂α

z f
∥
∥
p = ∥

∥∂α
z f

∥
∥
L p(J )

.

Lemma 3.1. (Interpolation inequality for the Caputo derivative) Let α ∈ (0, 1) and
p ∈ [1,∞]. Then the estimate

∥
∥∂α

z f
∥
∥
p ≤ 2

�(1 − α)
‖ f ‖1−α

p ‖∂z f ‖α
p (3.2)

holds true for all f ∈ W 1,p(J ) satisfying f (z0) = 0.

Proof. We may assume that ‖∂z f ‖p �= 0 and ‖ f ‖p �= 0. Given μ ∈ (0, h) and
z ∈ (z0 + μ, z1], we subdivide the integral into two parts and integrate by parts to
obtain

(∂α
z f )(z) = 1

�(1 − α)

( ∫ z−μ

z0
+

∫ z

z−μ

)
(z − ζ )−α∂ζ f (ζ )dζ

= 1

�(1 − α)

( ∫ z

z−μ

(z − ζ )−α∂ζ f (ζ )dζ

+ α

∫ z−μ

z0
(z − ζ )−α−1 f (ζ )dζ + μ−α f (z − μ) − (z − z0)

−α f (z0)
)
.
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Since f (z0) = 0, applying the Hausdorff–Young inequality yields

( ∫ z1

z0+μ

∣
∣∂α

z f (z)
∣
∣p dz

)1/p ≤ μ1−α

�(2 − α)
‖∂z f ‖p

+ 1

�(1 − α)
μ−α ‖ f ‖p + μ−α

�(1 − α)
‖ f ‖p . (3.3)

Combining (3.1) with (3.3), we obtain

∥
∥∂α

z f
∥
∥
p ≤ 2μ1−α

�(2 − α)
‖∂z f ‖p + 2μ−α

�(1 − α)
‖ f ‖p . (3.4)

We obtain the desired estimate by setting μ = ‖ f ‖p/‖∂z f ‖p in (3.4). �
We next derive an interpolation inequality for the horizontal Laplace operator in

the space L∞(L p). Denote by Gt the two-dimensional Gauss kernel, i.e., Gt (x) =
(4π t)−1 exp

(−|x |2/4t) for x ∈ R
2 and t > 0 and let et�H f = Gt ∗H f , where

∗H denotes convolution in the horizontal variables, only. Then the negative fractional
powers of −�H are defined as

(−�H )−α/2 f = 1

�(α/2)

∫ ∞

0
s

α
2 −1es�H f ds, α ∈ (0, 2). (3.5)

Lemma 3.2. (Interpolation inequality for horizontal derivatives) Let α ∈ (0, 1) an
p ∈ [1,∞]. Then there exists a constant C > 0 such that

∥
∥
∥∇H (−�H )−α/2 f

∥
∥
∥∞,p

≤ C‖ f ‖α∞,p ‖∇H f ‖1−α∞,p (3.6)

for all f ∈ L∞(R2; L p(J )) with ∇H f ∈ L∞(R2; L p(J )).

Proof. We only give a detailed proof for the case p = 1. The proof of the remaining
cases can be then adapted to this case. Without loss of generality, we may assume that
‖∇H f ‖∞,1 �= 0 and ‖ f ‖∞,1 �= 0. Writing for μ ∈ (0,∞)

|∇H (−�H )−α/2 f | ≤ 1

�(α/2)

( ∫ ∞

μ

s
α
2 −1|∇He

s�H f |ds +
∫ μ

0
s

α
2 −1|es�H ∇H f |ds

)
.

and employing the estimates

|∇He
s�H f | = |(∇HGs) ∗H f | ≤ |∇HGs | ∗H | f |, |es�H ∇H f | ≤ |Gs | ∗H |∇H f |.

as well as

|∂i Gt (x)| ≤ Ct−1/2G2t (x), x ∈ R
2, t > 0, i = 1, 2, (3.7)

an application of Fubini’s theorem yields
∫

J
|∇H (−�H )−α/2 f |(·, z)dz ≤ C

∫ ∞

μ

s
α
2 −1− 1

2 |G2s | ∗H

(∫

J
| f (·, z)|dz

)

ds

+ C
∫ μ

0
s

α
2 −1|Gs | ∗H

(∫

J
|∇H f (·, z)|dz

)

ds.
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There exists thus a constant C > 0 such that

‖∇H (−�H )−α/2 f ‖∞,1 = Cμ
α
2 − 1

2 ‖ f ‖∞,1 + Cμ
α
2 ‖∇H f ‖∞,1.

Choosing μ = (‖ f ‖∞,1/‖∇ f ‖∞,1
)2, we obtain the desired estimate. �

4. Pointwise and L∞ bounds for the heat semigroup, Riesz transforms and
fractional powers of the Laplacian

In this section, we derive estimates on time and space fractional derivatives for the
semigroups et�N and et�H .

Lemma 4.1. (Decay estimates for the heat semigroup acting on fractional derivatives
on an interval) Given α ∈ [0, 1] and p ∈ [1,∞], there exists a constant C > 0 such
that

∥
∥et�N ∂z I

α
z0 f

∥
∥
p

≤ Ct−(1−α)/2‖ f ‖p, t > 0

for all f ∈ L p(J ) satisfying I α
z0 f (z1) = 0.

Recall that for α = 0 the operator I 0z0 is interpreted as identity.

Proof. We start by observing that due to duality
∥
∥et�N ∂z I

α
z0 f

∥
∥
p

= sup
{〈
et�N ∂z I

α
z0 f, ϕ)

〉 | ϕ ∈ C∞
c (J ), ‖ϕ‖p′ ≤ 1

}
,

where 〈ϕ,ψ〉 = ∫

J ϕψdz and 1
p + 1

p′ = 1 for p ∈ [1,∞). Note further that

〈
et�N ∂z I

α
z0 f, ϕ

〉 = 〈
∂z I

α
z0 f, e

t�N ϕ
〉 = − 〈

I α
z0 f, ∂ze

t�N ϕ
〉
,

where in the last identity we used the fact that (Iα
z0 f )(z1) = 0 and (I α

z0 f )(z0) = 0.
Since

〈
I α
z0 f, ψ

〉 =
〈
f, I

α

z1ψ
〉

with

I
α

z1ψ(z) = 1

�(α)

∫ z1

z
(ξ − z)α−1ψ(ξ)dξ,

we conclude that
〈
et�N ∂z I

α
z0 f, ϕ

〉 = −
〈
f, I

α

z1∂ze
t�N ϕ

〉
.

Since I
α

z1∂z resembles the Caputo derivative and ∂zet�ϕ(z1, t) = 0 by (2.3), we are
able to adapt Lemma 3.1 to obtain

∥
∥
∥I

α

z1∂ze
t�N ϕ

∥
∥
∥
p′ ≤ 2

�(α)

∥
∥et�N ϕ

∥
∥α

p′
∥
∥∂ze

t�N ϕ
∥
∥1−α

p′ .
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Notice that
∥
∥et�N ϕ

∥
∥
p′ ≤ ‖ϕ‖p′ for all t > 0 and there is a C > 0 independent of

ϕ such that

∥
∥∂ze

t�N ϕ
∥
∥
p′ ≤ Ct−1/2‖ϕ‖p′ for all t > 0.

This can be seen by extending the problem to the whole space problem, cf. Lem-
ma 5.3 below. To this end, extend ϕ periodically in a suitable way to R to obtain
et�N ϕ = Gt ∗ ϕ̃, where ϕ̃ denotes the extension of ϕ. Thus,

∥
∥
∥I

α

z1∂ze
t�N ϕ

∥
∥
∥
p′ ≤ Ct−(1−α)/2‖ϕ‖p′ , t > 0,

with C > 0 depending on α, only. We thus conclude that

∣
∣
〈
et�N ϕz I

α
z0 f, ϕ

〉∣
∣ ≤ ‖ f ‖p

∥
∥
∥I

α

z1∂ze
t�N ϕ

∥
∥
∥
p′ ≤ Ct−(1−α)/2‖ f ‖p‖ϕ‖p′ , t > 0.

The case p = ∞ follows by duality from the case p = 1. For α = 1, the assertion
remains true since the ∂z I α

z0 f = f if f (z0) = 0. �

We proceed with pointwise estimates for the heat semigroup et� on L∞(Rd) com-
bined with Riesz transforms and fractional powers of the Laplacian. The heat semi-
group et� on L∞(Rd) is given by

et� f := Gt ∗ f, where Gt (x) = (4π t)−d/2 exp
(
−|x |2/4t

)

for x ∈ R
d , t > 0 and f ∈ L∞(Rd).

We use the Bochner representation formula for the fractional powers of the Laplacian
given by

(−�)−α/2 f = 1

�(α/2)

∫ ∞

0
sα/2−1(Gs ∗ f ) ds, α > 0. (4.1)

Using the smoothing effect of et� for t > 0, we obtain

et�(−�)α/2 f = (−�)−(1−α/2)(−�)et� f

and the representation (4.1) yields

et�(−�)α/2 f = 1

�(1 − α/2)

∫ ∞

0
s−α/2(−�Gs+t ) ∗ f ds,

interpreting (−�)0 hereby as the identity operator. The i th Riesz transform is denoted
by

Ri = ∂i (−�)−1/2, where ∂i = ∂/∂xi for all 1 ≤ i ≤ d.

Lemma 4.2. (Pointwise bounds for et�(−�)α/2 and et�Ri R j (−�)α/2) Let d ∈ N.
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(i) Let α ∈ [0, 2]. Then there exists Ht ∈ L1(Rd) satisfying ‖Ht‖1 ≤ C for some
C > 0 independent of t > 0 such that all f ∈ L∞(Rd)

∣
∣
∣et�(−�)α/2 f (x)

∣
∣
∣ ≤ t−α/2(Ht ∗ | f |)(x), x ∈ R

d , t > 0.

In particular,
∥
∥
∥et�(−�)α/2 f

∥
∥
∥∞ ≤ Ct−α/2‖ f ‖∞, t > 0.

(ii) Let α ∈ (0, 2]. Then there exists H̃t ∈ L1(Rd) satisfying ‖H̃t‖1 ≤ C for some
C > 0 independent of t > 0 such that for all f ∈ L∞(Rd)

∣
∣
∣et�Ri R j (−�)α/2 f (x)

∣
∣
∣ ≤ t−α/2(H̃t ∗ | f |)(x), x ∈ R

d , t > 0.

In particular,
∥
∥
∥et�Ri R j (−�)α/2 f

∥
∥
∥∞ ≤ Ct−α/2‖ f ‖∞, t > 0.

(iii) There exists H̆t ∈ L1(Rd) satisfying ‖H̆t‖1 ≤ C for some C > 0 independent
of t > 0 such that for all f ∈ L∞(Rd)

∣
∣et�Ri R j∂k f (x)

∣
∣ ≤ t−1/2(H̆t ∗ | f |)(x), x ∈ R

d , t > 0.

In particular,

∥
∥et�Ri R j∂k f

∥
∥∞ ≤ Ct−1/2‖ f ‖∞, t > 0.

Remark 4.3. Note that although the Riesz transforms are unbounded operators on
L∞(Rd), the compositions of the operators et�Ri R j (−�)α/2 and ∂ket�Ri R j define
nevertheless bounded operators on L∞(Rd) for all t > 0.

Proof of Lemma 4.2. Let β ∈ N
d . Then there exists a constant C = Cd,β > 0 such

that for all t > 0

|∂βGt | ≤ Ct−|β|/2G2t . (4.2)

It follows from (4.2) that

|et�(−�)α/2 f | ≤ C

�(1 − α/2)

∫ ∞

0
s−α/2(s + t)−1G2(s+t) ∗ | f | ds

= C

�(1 − α/2)
t−α/2

∫ ∞

0
u−α/2(u + 1)−1G2t (u+1) ∗ | f | du.

Setting

Ht := C

�(1 − α/2)

∫ ∞

0
u−α/2(u + 1)−1G2t (u+1) du
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and observing that ‖Ht‖1 ≤ C < ∞ for all t > 0 provided α ∈ (0, 2) yields estimate
(i) for those values of α. For α = 0 and α = 2, we set Ht := Gt and Ht := G2t

respectively, and apply (4.2).
In order to prove estimate (ii), we observe that

et�Ri R j (−�)α/2 f = (−�)−(1−α/2)∂i∂ j e
t� f, 1 ≤ i, j ≤ d.

The caseα = 2 then follows from (4.2) by setting H̃t := G2t , whereas forα ∈ (0, 2)
we have

et�Ri R j (−�)α/2 f = 1

�(1 − α/2)

∫ ∞

0
s−α/2(∂i∂ j Gs+t ) ∗ f ds

and thus the same argument used to derive (i) applies.
For (iii) we write

et�Ri R j∂k f = (−�)−1∂i∂ j∂ke
t� f =

∫ ∞

0
∂i∂ j∂kGs+t ∗ f ds

and since by (4.2) we have |∂i∂ j∂kGs+t | ≤ C(s + t)−3/2G2(s+t) for s, t > 0 we may
set

H̆t :=
∫ ∞

0
(u + 1)−3/2G2t (u+1) du.

Then ‖H̆t‖1 ≤ ∫ ∞
0 (u + 1)−3/2 du < ∞, which yields estimate (iii). The corre-

sponding norm estimates then follow from estimates (i)–(iii) and theHausdorff–Young
inequality. �

5. Anisotropic estimates for the hydrostatic Stokes semigoup

We recall from Sect. 2 that the hydrostatic Stokes semigroup S on L∞
σ (L p(J )) for

p ∈ [1,∞] is given by

S(t) = et�H ⊗ et�N , t > 0,

and that its extension to the larger space L∞(L p) for p ∈ [1,∞] is denoted by S∞.
In this section, we give a proof of Proposition 2.2. For this, it is helpful to investigate
first the periodic heat semigroup on L p(J ).

Lemma 5.1. (Estimate for the periodic heat semigroup) Let T = R/ω0Z for some
ω0 > 0, p ∈ [1,∞] and f ∈ L p(T). Then

(Gt ∗ f )(z) =
∫ ω0

0
Et (z − y) f (y)dy, z ∈ T, t > 0,

where Et (z) = ∑∞
k=−∞ Gt (z − kω0) for z ∈ T. In particular,

‖Gt ∗ f ‖L p(T) ≤ ‖ f ‖L p(T), t > 0.
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Proof. The above representation for Gt ∗ f follows by noting that

(Gt ∗ f )(z) =
∞∑

k=−∞

∫ (k+1)ω0

kω0

Gt (z − y) f (y)dy, z ∈ T, t > 0,

and
∫ (k+1)ω0

kω0

Gt (z − y) f (y)dy =
∫ ω0

0
Gt (z − y − kω0) f (y + kω0)dy, t > 0,

where f (y + kω0) = f (y) for all k ∈ Z by periodicity. The estimate claimed follows
by Young’s inequality since

∫ ω0
0 Et (z − y)dz = ∫ ∞

−∞ Gt (z − y)dz = 1 for all t > 0
and since Et ≥ 0 for all t > 0. �

Lemma 5.2. (Derivative estimate for the periodic heat semigroup) Given the as-
sumptions of Lemma 5.1, there exists a constant C > 0, independent of ω0, such
that

|∂z(Gt ∗ f )(z)| ≤ Ct−1/2
∫ ω0

0
E2t (z − y) | f (y)| dy, z ∈ T, t > 0.

In particular,

‖∂z(Gt ∗ f )‖L p(T) ≤ Ct−1/2‖ f ‖L p(T), t > 0.

Proof. By (3.7)

|∂zGt (z)| ≤ Ct−1/2G2t (z), z ∈ T, t > 0,

which implies the first assertion. The second one follows by Young’s inequality. �

Lemma 5.3. (Periodization) Given p ∈ [1,∞], then there exists a constant C > 0
such that for all f ∈ L p(J )

∥
∥et�N f

∥
∥
L p(J )

≤ ‖ f ‖L p(J ) and
∥
∥∂ze

t�N f
∥
∥
L p(J )

≤ Ct−1/2‖ f ‖L p(J ), t > 0.

Proof. We first extend f ∈ L p(J ) to (z0 − h, z0) by even extension, i.e., by setting
f (z0 − z) = f (z − z0) for z ∈ (z0 − h, z0) and extend then f to a periodic function
f per with period ω0 = 2h by f per (z) = f (z − kω0) for z ∈ (kω0, (k + 1)ω0) and
k ∈ Z. It then follows that

et�N f = et� f per
∣
∣
J ,

and ‖ f ‖L p(J ) = 1
2‖ f per‖L p(−h,h). The desired estimates follow then from Lemma

5.1 and Lemma 5.2. �

Proof of Proposition 2.2. (i) These assertions follow from Lemma 5.3, and from
the pointwise estimates

∣
∣∇He

t�H f
∣
∣ ≤ Ct−1/2G2t ∗ | f |, ∣

∣et�H f
∣
∣ ≤ Gt ∗ | f |,
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compare (3.7), as well as et�H ∂xi f = ∂xi e
t�H f for i = 1, 2.

We first prove that ‖∂z S∞(t) f ‖∞,p ≤ Ct−1/2‖ f ‖∞,p for all t > 0. By
Lemma 5.3

∥
∥∂z S∞(t) f (x ′, ·)∥∥L p(J )

≤ Ct−1/2‖et�H f (x ′, ·)‖L p(J )

for almost all x ′ ∈ R
2. By Minkowski’s inequality and due to the positivity of

et�H ,

‖et�H f (x ′, ·)‖L p(J ) ≤ et�H ‖ f (x ′, ·)‖L p(J ),

and thus

‖∂z S∞(t) f ‖∞,p ≤ Ct−1/2 ess supx ′
(
et�H ‖ f (x ′, ·)‖L p(J )

)

≤ Ct−1/2‖ f ‖∞,p, t > 0.

We next prove that ‖∇H S∞(t) f ‖∞,p ≤ Ct−1/2‖ f ‖∞,p for all t > 0. To this
end, we estimate

‖et�N ∇He
t�H f (x ′, ·)‖L p(J ) ≤ ‖∇He

t�H f (x ′, ·)‖L p(J ).

As in the proof of Lemma 5.2, we observe that

|∇He
t�H f (x ′, z)| ≤ Ct−1/2 (G2t ∗H | f |) (x ′, z),

and applying Minkowski’s inequality yields

‖∇He
t�H f (x ′, ·)|L p(J ) ≤ Ct−1/2(G2t ∗H ‖ f (x ′, ·)‖L p(J )).

We thus conclude that

‖∇H S∞(t) f ‖∞,p ≤ Ct−1/2‖ f ‖∞,p, t > 0.

(ii) Since
∣
∣et�H g

∣
∣ (x ′) ≤ (Gt ∗ |g|)(x ′), t > 0,

Fubini’s theorem implies
∥
∥et�H et�N ∂z I

α
z0 f (x

′, ·)∥∥
L p(J )

≤ Gt ∗ ∥
∥et�N ∂z I

α
z0 f (x

′, ·)∥∥
L p(J )

, t > 0,

for almost all x ′ ∈ R
2. By Lemma 4.1

∥
∥et�N ∂z I

α
z0 f (x

′, ·)∥∥
L p(J )

≤ Ct−(1−α)/2‖ f (x ′, ·)‖L p(J ), t > 0,

which allows us to conclude that

∥
∥S∞(t)∂z I

α
z0 f

∥
∥∞,p

≤ Ct−(1−α)/2‖Gt‖1‖ f ‖∞,p = Ct−(1−α)/2‖ f ‖∞,p, t > 0.

The proof is also valid for the case α = 0 yielding ‖S∞(t)∂z f ‖∞,p ≤ Ct−1/2

‖ f ‖∞,p for all t > 0.
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(iii) We verify by Lemma 4.2 (i) and (ii) that
∥
∥
∥S∞(t)P(−�H )α/2 f (x ′, ·)

∥
∥
∥
L p(J )

≤
∥
∥
∥et�H et�N (−�H )α/2 f (x ′, ·)

∥
∥
∥
L p(J )

+
∑

1≤i, j≤2

∥
∥
∥et�H et�N Ri R j (−�H )α/2 f

∥
∥
∥
L p(J )

≤ t−α/2
(∥
∥Ht ∗H | f |(x ′, ·)∥∥L p(J )

+h (H̃t ∗H f )(x ′)
)

, t > 0,

for almost all x ′ ∈ R
2 since f is independent of z. By Fubini’s theorem,

∫

J
|Ht ∗H | f |(x ′, z)| dz =

(
Ht ∗H

∫

J
| f (·, z)| dz

)
(x ′), for a.a. x ′ ∈ R

2,

which allows us to conclude that
∥
∥
∥S∞(t)P(−�H )α/2 f

∥
∥
∥∞,p

≤ t−α/2
(
‖Ht‖L1(R2) + ‖H̃t‖L1(R2)

)
‖ f ‖∞,p.

≤ 2Ct−α/2‖ f ‖∞,p, t > 0.

(iv) As above, we have

‖S∞(t)P∇H · f ‖L p(J ) ≤ ∥
∥∇He

t�H f
∥
∥
L p(J )

+
∑

1≤i, j≤2

∥
∥et�H Ri R j∇H · f

∥
∥
L p(J )

.

The first term was already estimated and the second one is treated in the same
way as in (iii). �

6. Proof of the main results

In this section, we construct a solution to the integral equation (2.4). We start by
estimating the integral term for functions with vanishing vertical average.

Lemma 6.1. For α ∈ [0, 1), there exists a constant C > 0 such that

‖S(t)P∇ · (ũ ⊗ v)‖∞,1 ≤ Ct−(1−α)/2
(
‖∇ṽ‖∞,1‖v‖∞,1 + ‖ṽ‖∞,1‖∇v‖∞,1

)1−α

×
(
‖∇v‖∞,1‖∇ṽ‖∞,1

)α

, t > 0,

for all v ∈ L∞
σ (L1) satisfying v = 0 and all ũ = (ṽ, w̃) with ṽ ∈ L∞

σ (L1) satisfying
ṽ = 0 as well as w̃ = ∫ z1

z divH ṽ dx3.

Proof. We first note that

∇ · (ũ ⊗ v) = ∇H · (ṽ ⊗ v) + ∂z(w̃v).
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Since divH ṽ = 0 we obtain w̃ = 0 at z = z0 and since w̃ = 0 at z = z1 by
definition, we see that ∂z(w̃v) = 0. Hence,

P∇ · (ũ ⊗ v) = P∇H · (ṽ ⊗ v) + ∂z(w̃v).

The case α = 0 is now straightforward using Proposition 2.2 (ii), (iv). Consider now
the case α ∈ (0, 1).

Noting that (−�H )(1−α)/2,(−�H )−(1−α)/2 and ∇H commute, we write

S(t)P∇ · (ũ ⊗ v) = S(t)P(−�H )(1−α)/2∇H · (−�H )−(1−α)/2(ṽ ⊗ v)

+ S(t)∂z I
α
z0 I

1−α
z0 ∂z(w̃v), t > 0,

=: I + II.

Applying Proposition 2.2 (iii) and Lemma 3.2 yields

‖I‖∞,1 ≤ Ct−(1−α)/2
∥
∥
∥∇H · (−�H )−(1−α)/2ṽ ⊗ v

∥
∥
∥∞,1

≤ Ct−(1−α)/2 ‖∇H (ṽ ⊗ v)‖α∞,1 ‖ṽ ⊗ v‖1−α
∞,1 , t > 0.

Since v = 0 and ṽ = 0, we obtain the estimates

‖∇(ṽ ⊗ v)‖∞,1 ≤ ‖∇ṽ‖∞,1 ‖v‖∞,∞ + ‖ṽ‖∞,∞‖∇v‖∞,1,

‖ṽ ⊗ v‖∞,1 ≤ ‖ṽ‖∞,1‖v‖∞,∞ + ‖ṽ‖∞,∞‖v‖∞,1,

‖v‖∞,∞ ≤ ‖∂zv‖∞,1,

‖ṽ‖∞,∞ ≤ ‖∂z ṽ‖∞,1

and the term ‖I‖∞,1 can be thus estimated as claimed.
In order to estimate ‖I I‖∞,1, we observe that Proposition 2.2 (ii) and Lemma 3.1

yield

‖II‖∞,1 ≤ Ct−(1−α)/2
∥
∥∂α

z (w̃v)
∥
∥∞,1 ≤ Ct−(1−α)/2‖w̃v‖1−α

∞,1 ‖∂z(w̃v)‖α∞,1 , t > 0.

Here we invoked the fact that

I α
z0

(
I 1−α
z0 ∂z(w̃v)

)
(z1) = (w̃v)(z1) = 0.

Since

‖w̃‖∞,∞ ≤ C ‖∂zw̃‖∞,1 ≤ C ‖∇H ṽ‖∞,1

we are able to estimate ‖II‖∞,1 in the same way as I . This completes the proof.
�

Our next step consists of proving a similar estimate for the above integral term, how-
ever, without assuming that the vertical average of the functions involved is vanishing.
To this end, we set

‖v‖1,∞,1 := ‖v‖∞,1 + ‖∇v‖∞,1.
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Proposition 6.2. (Estimate for the nonlinear term) Let α ∈ [0, 1), then there exists a
constant C > 0 such that

‖S(t)P∇ · (ũ ⊗ v)‖∞,1 ≤ Ct−(1−α)/2
(
‖ṽ‖1,∞,1‖v‖∞,1 + ‖v‖1,∞,1‖ṽ‖∞,1

)1−α

×
(
‖ṽ‖1,∞,1‖v‖1,∞,1

)α

, t > 0,

for all ũ = (ṽ, w̃) with ṽ ∈ L∞
σ (L1), ∇ṽ ∈ L∞(L1) where w̃ = ∫ z1

z divH ṽ dx3, and
v ∈ L∞

σ (L1) satisfying ∇v ∈ L∞(L1).

Proof. We argue similarly as in the proof of Lemma 6.1. In order to estimate ‖v‖∞,∞,
we write

‖v‖∞,∞ ≤ ‖v − v‖∞,∞ + ‖v‖∞,∞.

Observing that

‖v − v‖∞,∞ ≤ ‖∂zv‖∞,1, ‖v‖∞,∞ ≤ ‖v‖∞,1

we conclude that

‖v‖∞,∞ ≤ ‖∂zv‖∞,1 + ‖v‖∞,1.

Thus,

‖∇(ṽ ⊗ v)‖∞,1 ≤ ‖ṽ‖1,∞,1‖v‖1,∞,1

‖ṽ ⊗ v‖∞,1 ≤ ‖ṽ‖∞,1‖v‖1,∞,1 + ‖v‖∞,1‖ṽ‖1,∞,1,

and the desired estimate follows as in the proof of Lemma 6.1. �

We now give a proof of our main results.

Proof of Theorem 2.1. Step1Consider the sequence (vm) recursively defined for t ≥ 0
by

vm+1(t) := S(t)a −
∫ t

0
S(t − s)P∇ · (um(s) ⊗ vm(s))ds, m ∈ N

v0(t) := S(t)a.

Applying Proposition 2.2 (i), (ii) with α = 0, there exists C > 0 such that

‖vm+1(t)‖∞,1 ≤ ‖S(t)a‖∞,1 + C
∫ t

0
(t − s)−1/2‖um(s) ⊗ vm(s)‖∞,1ds

≤ ‖S(t)a‖∞,1 + C
∫ t

0
(t − s)−1/2‖um(s)‖∞,∞‖vm(s)‖∞,1ds

≤ ‖S(t)a‖∞,1 + C
∫ t

0
(t − s)−1/2‖vm(s)‖1,∞,1‖vm(s)‖∞,1ds.

(6.1)
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Note that constants C > 0 here and below are independent of vm , um and t . We
now estimate ‖∇vm+1(t)‖∞,1 by Proposition 6.2. Since

∇S(t − s) = ∇S
( t−s

2

)
S
( t−s

2

)

Proposition 2.2 (i) and Proposition 6.2 with α = 1/2 yield

‖∇vm+1(t)‖∞,1 ≤ ‖∇S(t)a‖∞,1

+C
∫ t

0
(t − s)−1/2(t − s)−1/4‖vm(s)‖3/21,∞,1‖vm(s)‖1/2∞,1ds, t > 0.

(6.2)

Note that in the above estimate we may also take any α ∈ (0, 1). For m ∈ N∪ {0} and
t > 0 we now set

Km(t) := sup
0<τ<t

τ 1/2‖vm(τ )‖1,∞,1,

Hm(t) := sup
0<τ<t

‖vm(τ )‖∞,1,

Mm(t) := sup
0<τ<t

τ 1/2‖vm(τ )‖∞,1.

Estimate (6.1) combined with ‖S(t)a‖∞,1 ≤ ‖a‖∞,1 for all t > 0 yields

Hm+1(t) ≤ ‖a‖∞,1 + CKm(t)Hm(t), t > 0. (6.3)

Multiplying (6.2) by t1/2 yields

sup
0<τ<t

τ 1/2‖∇vm+1(τ )‖∞,1 ≤ sup
0<τ<t

τ 1/2 ‖∇S(τ )a‖∞,1 + CKm(t)3/2Hm(t)1/2, t > 0,

(6.4)
and by multiplying (6.1) with t1/2, we obtain

Mm+1(t) ≤ sup
0<τ<t

τ 1/2 ‖S(τ )a‖∞,1 + Ct1/2Km(t)Hm(t), (6.5)

provided t ≤ T for some T ≤ 1. Adding (6.4) and (6.5) yields

Km+1(t) ≤ K0(t) + CKm(t)3/2Hm(t)1/2 + Ct1/2Km(t)Hm(t), m ≥ 0 (6.6)

with

K0(t) = sup
0<τ<t

τ 1/2 ‖S(τ )a‖1,∞,1 .

By assumption K0(t) ≤ ε0 and by the following Lemma 6.3, the sequences (Hm)

and (Km) are thus uniformly bounded provided ε0 is sufficiently small.
It is not difficult to prove that (vm) is a Cauchy sequence in L∞ (

(0, t0), L∞
σ (L1)

)

and that (t1/2∇(vm)) is a Cauchy sequence in L∞ (
(0, t0), L∞(L1)

)
. Hence, v as the
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limit of (vm), satisfies the desired estimate.Moreover, vm,∇vm ∈ C
(
(0, t0); L∞(L1)

)

and therefore, v ∈ C
(
(0, t0);BUCσ (L1)

)
. This proves assertion (a).

In order to prove (b) let a1 ∈ BUCσ (L1), then

τ 1/2 ‖∇S(τ )a1‖∞,1 → 0 as τ ↘ 0, and τ 1/2 ‖∇S(τ )a2‖∞,1 ≤ C ‖a2‖∞,1

by Proposition 2.2 (i).
Thus, by (6.3) and (6.6), the sequences (Hm) and (Km) fulfill the assumptions of

the following Lemma 6.3 provided t is small enough, say t ≤ t0, since K0(t) → 0
as t ↘ 0, and ‖a2‖∞,1 is sufficiently small. The sequences (Hm) and (Km) are thus
uniformly bounded.
To prove (c), assume that a2 = 0. Then one can use strong continuity of the

semigroup to prove that (vm) is a Cauchy sequence in C
([0, t0],BUCσ (L1)

)
and

(t1/2∇vm) is a Cauchy sequence inC
([0, t0], L∞(L1)

)
. Hence, v as the limit of (vm),

has the desired regularity.
The proof of the uniqueness follows in both cases a similar line of arguments. We

only give a detailed proof for (b). Let v, ṽ be two solutions, then

(v − ṽ)(t) =
∫ t

0
S(t − s)P∇ · (u(s) ⊗ (v − ṽ)(s) + (u − ũ) ⊗ ṽ(s)) ds, t > 0,

and one obtains as above using Propositions2.2 (i) and 6.2 with α = 1/2, and setting

K (v)(t) := sup
0<τ<t

τ 1/2‖v(τ)‖1,∞,1 and H(v)(t) := sup
0<τ<t

‖v(τ)‖∞,1

that for N (v)(t) := max{K (v)(t), H(v)(t)} one has
N (v) ≤ C(K (v)H(v − ṽ) + K (v − ṽ)H(v))1/2(K (v)K (v − ṽ))1/2

+ C(K (ṽ)H(v − ṽ) + K (v − ṽ)H(ṽ))1/2(K (ṽ)K (v − ṽ))1/2.

Hence, one obtains

N (v − ṽ) ≤ N (v − ṽ)C
{
(K (v) + H(v))1/2K (v)1/2 + (K (ṽ) + H(ṽ))1/2K (ṽ)1/2

}
.

(6.7)

By assumption, if t is small we have

K (ṽ)(t), K (v)(t) ≤ C ‖a2‖∞,1 , and H(ṽ), H(v)(t) ≤ C ‖a‖∞,1 .

Thus supposing that t and ‖a2‖∞,1 · ‖a‖∞,1 are small enough, one has

C {(K (v) + H(v))K (v) + (K (ṽ) + H(ṽ))K (ṽ)} < 1,

and therefore by (6.7) one has K (v − ṽ) = 0 on (0, T0) and H(v − ṽ) = 0 on [0, T0]
for some 0 < T0 ≤ T . Iterating this argument it follows that the solutions are unique
on [0, T ].
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Step 2 Since et�H as well as P and the nonlinearity leave horizontal periodicity-
invariant, we see that if a is in addition to the assumption of Theorem 2.1 periodic
with respect to the horizontal variables, then this is also true for v(t) for any t > 0.

In order to extend the local solutions to a global one, we make use of the regular-
ization of the solution v. By assertion (b), v(t0) and ∇v(t0) ∈ BUC(L1) for some
t0 > 0 and in particular we have v(t0) ∈ BUC(W 1,1). Since W 1,1(J ) ↪→ L p(J ) for
all p ∈ [1,∞], we obtain v(t0) ∈ BUC(L p). Proposition 2.4 yields that v(t1) and
∇v(t1) ∈ BUC(L p) for t1 > t0, and in particular the restriction v(t1)|[0,1]2×J satisfies

v(t1)|[0,1]2×J ∈ {v ∈ W 1,p([0, 1]2 × J ) | v periodic in x, y, div Hv = 0} 0 < t1 < T .

Using v(t1) for p ≥ 2 as new initial value, it follows from [7] or [19] that v extends
to a global strong solution proving assertion (d). �

It remains to prove the uniform boundedness of the sequences (Hm) and (Km)

defined in the above proof.

Lemma 6.3. Let A, ε > 0 be constants and assume that (Hm) ⊂ R and (Km) ⊂ R

are sequences satisfying

H0 ≤ A, Hm+1 ≤ A + CHmKm,

K0 ≤ ε, Km+1 ≤ ε + CK 3/2
m H1/2

m + (4A)−1KmHm,

for all m ≥ 0 and a constant C > 0 independent of m. Then there exists ε0 =
ε0(C, A) > 0 such that (Km) and (Hm) are bounded sequences provided that ε ≤ ε0.

Proof. Note first that if Km ≤ 1/(2C) form ≤ m0, then Hm ≤ 2A for allm ≤ m0+1.
Next, we choose ε small enough so that the graphs of y = x and

y = ε + √
2ACx3/2 + x/2 have an intersection. Denote by x0(ε) the abscissa of

the intersection point closest to x = 0. Clearly x0(ε) ↘ 0 as ε → 0.
Choose now ε0 so small that x0(ε0) < 1/(2C). Then, Km ≤ x0(ε) and Hm ≤ 2A

for all m ≥ 1 provided ε ≤ ε0. Indeed, we proved this by induction. The estimate
is trivial for m = 1. Assume that Km ≤ x0(ε), Hm ≤ 2A for all m ≤ m0. Since
x0(ε) < 1/(2C), the inequality for Hm implies Hm+1 ≤ 2A and the inequality for
Km implies Km+1 ≤ x0(ε) by the choice of x0(ε) since Hm ≤ 2A. We thus conclude
that Km ≤ x0(ε) and Hm ≤ 2A. �

We finally are able to prove Propositions 2.4 and 2.5. The solution v constructed
in Theorem 2.1 exists at least for some nontrivial time interval [0, T ), where T > 0
depends on a. Given a ∈ BUCσ (L p) for some p > 1 we are unfortunately unable to
estimate T from below by terms involving the norm of a, only. However, in Proposi-
tion 2.4 we claim that v ∈ C ([0, T ),BUCσ (L p)) for all p ∈ (1,∞) in the same time
interval.
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Proof of Proposition 2.4. We estimate the integral equation (2.4) by writing S(t) =
S( t2 )S( t2 ) and using the L

p-L1-estimate from Proposition 2.2 (v) and Proposition 6.2
with α = 0 to obtain

‖v(t)‖∞,p ≤ ‖S(t)a‖∞,p + C
∫ t

0
(t − s)−(1−1/p)/2(t − s)−1/2‖v(s)‖1,∞,1‖v(s)‖∞,1ds,

≤ ‖S(t)a‖∞,p + C
∫ t

0
(t − s)−(1−1/2p)s−1/2s1/2‖v(s)‖1,∞,1‖v(s)‖∞,1ds, t > 0.

Since a ∈ L∞
σ (L p) and v ∈ L∞ (

0, T ; L∞
σ (L1)

)
by Theorem 2.1, we see that

t1/2−1/2pv is in L∞ (
0, T ; L∞

σ (L p)
)
.

Note that

∇S(t) = ∇S
( t
3

)
S
( t
3

)
S
( t
3

)
, t > 0.

Differentiating (2.4), applying Proposition 2.2 (i) and the L p-L1-estimate from
Proposition 2.2 (v) as well as Proposition 6.2 with α ∈ (0, 1) yields

‖∇v(t)‖∞,p ≤ ‖∇S(t)a‖∞,p

+C
∫ t

0
(t − s)−(1−1/2p+(1−α)/2)s−(1+α)/2s(1+α)/2‖v(s)‖1+α

1,∞,1‖v(s)‖1−α
∞,1ds.

This gives the desired bound for t1−2/p∇v and the continuity of v follows from
strong continuity of S. �

Proof of Proposition 2.5. We argue similarly as in the proof of Theorem 2.1. Setting

Lm(t) := sup
0<τ<t

τμ||vm(τ )‖1,∞,1, 0 < t < T,

we obtain by (6.1) for m ≥ 0 and t ∈ (0, T )

Hm+1(t) ≤ ‖a‖∞,1 + Ct1/2−μLm(t)Hm(t)

instead of (6.3). Similarly, instead of (6.6), we obtain now

Lm+1(t) ≤ ‖a‖∞,1 + [a]μ + Ct (1/2−μ)/2L3/2
m (t)Hm(t)1/2 + Ct1/2Lm(t)Hm(t).

It follows that if T fulfills 1/T ≥ min (C |||a|||, 1)2/(1/2−μ) for some C > 0 inde-
pendent of a, then (Lm) and (Hm) are bounded sequences for t ∈ [0, T ]. Moreover,
(vm) is a Cauchy sequence in C

([0, T ],BUCσ (L1)
)
, which is proved as before. �
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