
J. Evol. Equ. 21 (2021), 2749–2778
© 2021 The Author(s)
1424-3199/21/022749-30, published onlineMay 8, 2021
https://doi.org/10.1007/s00028-021-00706-1

Journal of Evolution
Equations

Anasymptotic analysis for a generalizedCahn–Hilliard systemwith
fractional operators

Pierluigi Colli , Gianni Gilardi and Jürgen Sprekels

Abstract. In the recent paper “Well-posedness and regularity for a generalized fractional Cahn–Hilliard
system” (Colli et al. in Atti Accad Naz Lincei Rend Lincei Mat Appl 30:437–478, 2019), the same authors
have studied viscous and nonviscous Cahn–Hilliard systems of two operator equations in which nonlin-
earities of double-well type, like regular or logarithmic potentials, as well as nonsmooth potentials with
indicator functions, were admitted. The operators appearing in the system equations are fractional pow-
ers A2r and B2σ (in the spectral sense) of general linear operators A and B, which are densely defined,
unbounded, selfadjoint, and monotone in the Hilbert space L2(�), for some bounded and smooth domain
� ⊂ R

3, and have compact resolvents. Existence, uniqueness, and regularity results have been proved in
the quoted paper. Here, in the case of the viscous system, we analyze the asymptotic behavior of the solution
as the parameter σ appearing in the operator B2σ decreasingly tends to zero. We prove convergence to a
phase relaxation problem at the limit, and we also investigate this limiting problem, in which an additional
term containing the projection of the phase variable on the kernel of B appears.

1. Introduction

A research project that the three of us recently carried out in [15–17] deals with the
well-posedness, regularity and optimal control for the abstract evolutionary system

∂tϕ + A2rμ = 0, (1.1)

τ∂tϕ + B2σ ϕ + F ′(ϕ) = μ + f, (1.2)

ϕ(0) = ϕ0, (1.3)

where A2r and B2σ , with r > 0 and σ > 0, denote fractional powers of the linear
operators A and B, respectively. These operators are supposed to be densely defined
in H := L2(�), with � ⊂ R

3, selfadjoint and monotone, and to have compact
resolvents. The above system is a generalization of the standard or viscous Cahn–
Hilliard system (depending on whether τ = 0 or τ > 0), which models a phase
separation process taking place in the container �. The particular sample case A2r =
B2σ = −� with homogeneous Neumann boundary conditions is included, indeed.
The physical variables ϕ and μ stand for the order parameter and the chemical
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potential, respectively, while f is a given source term.Moreover, F denotes a double-
well potential. We offer three physically significant examples for F , namely,

Freg(r) := 1

4
(r2 − 1)2, r ∈ R, (1.4)

Flog(r) :=
⎧
⎨

⎩

(1 + r) ln(1 + r) + (1 − r) ln(1 − r) − c1r2, r ∈ (−1, 1)
2 ln(2) − c1, r ∈ {−1, 1}
+∞, r �∈ [−1, 1]

, (1.5)

F2obs(r) := −c2r
2 if |r | ≤ 1 and F2obs(r) := +∞ if |r | > 1, (1.6)

where the constants ci in (1.5) and (1.6) satisfy c1 > 1 and c2 > 0 in order that all the
three functions Freg, Flog, F2obs are nonconvex (they are just semiconvex, indeed). We
point out that Freg, Flog, F2obs are called the classical regular potential, the logarithmic
potential, and the double obstacle potential, respectively. In irregular situations like
(1.6), one has to split F into a nondifferentiable convex part β̂ (the indicator function
of [−1, 1], in the case of (1.6)) and a smooth perturbation π̂ . At the same time, one
has to replace the derivative of the convex part by the subdifferential and to interpret
(1.2) as a differential inclusion or, equivalently, as a variational inequality involving
β̂ rather than its subdifferential, as actually done in [15].

Fractional versions of the Cahn–Hilliard system have been considered by differ-
ent authors and are the subject of several papers. As for references regarding well-
posedness and related problems, a rather large list of citations is given in [15]; we
recall some concerned and recent literature also here, bymentioning [1,2,8,21,30,33].
Moreover, one can find a number of results regarding the asymptotic behavior of solu-
tions, for the standard Cahn–Hilliard equations, for variants thereof, and for systems
including the Cahn–Hilliard equations: without any claim of completeness, we can
quote, e.g., [3,6,9–12,14,18–20,23–25,31,32,34,35]. These works mainly deal with
the asymptotics with respect to parameters, or the study of the trajectories and related
topics, or the existence of global or exponential attractors and their properties. A spe-
cial role in our citations is played by the paper [13], where the longtime behavior of
the solutions as well as an asymptotic analysis similar to the one we address here are
investigated for a fractional system involving the Allen–Cahn equation.

In this paper, we consider the viscous case τ > 0 within the system (1.1)–(1.3)
and study the asymptotic behavior of the solution as the parameter σ involved in the
operator B2σ tends to zero. In this analysis, a crucial role is played by the orthogonal
projection operator P : H → H onto the kernel ker B of B. Indeed, if (ϕσ , μσ )

denotes the solution to system (1.1)–(1.3) for an arbitrary σ > 0, we prove that
(ϕσ , μσ ) converges as σ ↘ 0 to a solution (ϕ, μ) to the system

∂tϕ + A2rμ = 0, (1.7)

τ∂tϕ + ϕ − Pϕ + F ′(ϕ) = μ + f, (1.8)

ϕ(0) = ϕ0. (1.9)
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In general, the convergence occurs along a subsequence, but in the case when the limit
pair (ϕ, μ) uniquely solves (1.7)–(1.9), then the whole family (ϕσ , μσ ) converges to
(ϕ, μ) in the sense made precise by the statement of Theorem 2.5. Moreover, let us
point out that the component ϕ of the pair (ϕ, μ) is always uniquely determined, as
it follows from the continuous dependence result given by Theorem 2.10. In the last
part of the paper, we also discuss the limiting problem by proving a class of regularity
results, quite interesting in our opinion, for which we have to use some sophisticated
tools of interpolation theory. Our approach may be considered as an extension and
further investigation with respect to the asymptotic results of [13, Section 7], in which
a phase relaxation problem is obtained at the limit. Also in the present paper, Eq. (1.8)
can be seen as an ordinary differential equation, but with a nonlocal structure due to
the presence of the projection operator P . Our contribution here gives account of a
new line of investigation that in our opinion should be further explored.
The rest of the paper is organized as follows: in the next Sect. 2, we list our assump-

tions and state our results. The corresponding proofs are given in the last two Sects. 3
and 4.

2. Statement of the problem and results

In this section, we state precise assumptions and notations and present our results.
Our framework is the same as in [15], and we briefly recall it here, for the reader’s
convenience. First of all, the open set � ⊂ R

3 is assumed to be bounded, connected
and smooth. We use the notation

H := L2(�) (2.1)

and denote by ‖ · ‖ and ( · , · ) the standard norm and inner product of H . As for the
operators involved in our system, we postulate that

A : D(A) ⊂ H → H and B : D(B) ⊂ H → H are

unbounded, nonnegative, selfadjoint, linear operators with compact resolvents.

(2.2)

We denote by {λ j } and {λ′
j } the nondecreasing sequences of the eigenvalues of A

and B, and by {e j } and {e′
j } the corresponding (complete) systems of orthonormal

eigenvectors, that is,

Ae j = λ j e j , Be′
j = λ′

j e
′
j , and (ei , e j ) = (e′

i , e
′
j ) = δi j for i, j = 1, 2, . . . ,

(2.3)

0 ≤ λ1 ≤ λ2 ≤ . . . and 0 ≤ λ′
1 ≤ λ′

2 ≤ . . . , with lim
j→∞ λ j = lim

j→∞ λ′
j = +∞,

(2.4)
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where δi j denotes the Kronecker index. The power Ar of A with an arbitrary positive
real exponent r is given by

Arv =
∞∑

j=1

λrj (v, e j )e j for v ∈ Vr
A, where (2.5)

Vr
A := D(Ar ) =

{
v ∈ H :

∞∑

j=1

|λrj (v, e j )|2 < +∞
}
. (2.6)

In principle, we could endow Vr
A with the standard graph norm in order to make Vr

A
a Hilbert space. However, we will choose an equivalent Hilbert structure later on. In
the same way, for σ > 0, we define the power Bσ of B. For its domain, we use the
notation

V σ
B := D(Bσ ), with the norm ‖ · ‖B,σ associated with the inner product

(v,w)B,σ := (v,w) + (Bσ v, Bσ w) for v,w ∈ V σ
B . (2.7)

At this point, we can start listing our assumptions. First of all,

r, σ0 and τ are fixed positive numbers, and σ ∈ (0, σ0) is a parameter. (2.8)

As for the linear operators, we postulate, besides (2.2), that

either λ1 > 0 or 0 = λ1 < λ2 and e1 is a constant; (2.9)

if λ1 = 0, then the constant functions belong to V σ
B . (2.10)

In [15], some remarks are given on the above assumptions. Moreover, it is shown that
an equivalent Hilbert structure on Vr

A is obtained by taking the norm defined by

‖v‖2A,r :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖Arv‖2 =
∞∑

j=1

|λrj (v, e j )|2 if λ1 > 0,

|(v, e1)|2 + ‖Arv‖2 = |(v, e1)|2 +
∞∑

j=2

|λrj (v, e j )|2 if λ1 = 0,

(2.11)

and the corresponding inner product, which we term ( · , · )A,r . This equivalence is
trivial if λ1 > 0. In the opposite case λ1 = 0, with the notation

mean v := 1

|�|
∫

�

v for v ∈ L1(�) (2.12)

for the mean value of the generic function v, the equivalence relies on the inequality

‖v‖ ≤ CP ‖Arv‖ for every v ∈ V r
A with mean v = 0 if λ1 = 0, (2.13)
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which is of Poincaré type, since the term (v, e1) appearing in (2.11) and involving the
constant function e1 (see (2.9)) is proportional to mean v. Next, the nonlinear potential
F appearing in (1.2) is split as follows:

F = β̂ + π̂ , where

β̂ : R → [0,+∞] is convex, proper and l.s.c. with β̂(0) = 0;
π̂ : R → R is of class C1 with a Lipschitz continuous first derivative;
lim inf|s|↗+∞ s−2F(s) > 0. (2.14)

Notice that these assumptions are fulfilled by all of the important potentials (1.4)–
(1.6). We set, for convenience,

β := ∂β̂, π := π̂ ′, and Lπ := the Lipschitz constant ofπ. (2.15)

Moreover, we term D(β̂) and D(β) the effective domains of β̂ and β, respectively, and
notice that β is a maximal monotone graph in R×R. The same symbol β is used for
the maximal monotone operators induced in L2(�) and L2(Q). Finally, we introduce

P : H → H, the orthogonal projection operator onto the kernel of B. (2.16)

As for the data of our problem, we allow the forcing term appearing in (1.2) to depend
on σ and assume that:

fσ ∈ L2(0, T ; H); (2.17)

ϕ0 ∈ V σ0
B and β̂(ϕ0) ∈ L1(�); (2.18)

if λ1 = 0 then m0 := mean ϕ0 belongs to the interior of D(β). (2.19)

At this point, we make the notion of solution precise. In the following, we use the
notations

Qt := � × (0, T ) for t ∈ (0, T ] and Q := QT . (2.20)

A solution to our system is a pair (ϕσ , μσ ) fulfilling the regularity requirements

ϕσ ∈ H1(0, T ; H) ∩ L∞(0, T ; V σ
B ), (2.21)

μσ ∈ L2(0, T ; V 2r
A ), (2.22)

β̂(ϕσ ) ∈ L1(Q), (2.23)



2754 P. Colli et al. J. Evol. Equ.

and satisfying the following weak formulation of Eqs. (1.1)–(1.3):

(∂tϕσ (t), v) + (Arμσ (t), Arv) = 0 for every v ∈ V r
A and for a.a. t ∈ (0, T ),

(2.24)

τ
(
∂tϕσ (t), ϕσ (t) − v

) + (
Bσ ϕσ (t), Bσ (ϕσ (t) − v)

)

+
∫

�

β̂(ϕσ (t)) + (
π(ϕσ (t)) − fσ (t), ϕσ (t) − v

)

≤ (
μσ (t), ϕσ (t) − v

) +
∫

�

β̂(v)

for every v ∈ V σ
B and for a.a. t ∈ (0, T ), (2.25)

ϕσ (0) = ϕ0. (2.26)

We notice that (2.23) implies that β̂(ϕσ (t)) ∈ L1(�) for a.a. t ∈ (0, T ), so that (2.25)
has a precise meaning. In the same inequality, one obviously has to read

∫

�
β̂(v) =

+∞ if v ∈ V σ
B and β̂(v) �∈ L1(�).

Remark 2.1. The regularity (2.22) of the second component of the solution is expected
even though (2.24) just suggests μσ ∈ L2(0, T ; V r

A). Indeed, for a.a. t ∈ (0, T ) the
variational equation has the form

(Aru, Arv) = (g, v) for every v ∈ Vr
A,

with g ∈ H . From this, one easily derives that u ∈ V 2r
A and ‖A2r u‖ ≤ ‖g‖ (one can

formally test by A2r u, but a regularization procedure makes the argument rigorous).
Since ∂tϕσ ∈ L2(0, T ; H), we thus have the regularity (2.22) as well as

∂tϕσ + A2rμ = 0 a.e. in (0, T ), (2.27)

i.e., the equation holds in its strong form.

Remark 2.2. In the sequel, the symbol 1 denotes the constant function on� that takes
the value 1 at every point. With this notation, we remark that (2.9) implies that Ar (1)
vanishes if λ1 = 0, so that (2.24) and (2.26) imply that

d

dt

∫

�

ϕσ (t) = 0 for a.a. t ∈ (0, T ), whence

mean ϕσ (t) = m0 for every t ∈ [0, T ] (2.28)

in this case. On the contrary, if λ1 > 0, no conservation property is expected.

The well-posedness result (cf. [15, Thm. 2.6]) reads as follows:

Theorem 2.3. Let the assumptions (2.2), (2.8)–(2.10), and (2.14) on the structure of
the system and (2.17)–(2.19) on the data be fulfilled. Then, there exists a pair (ϕσ , μσ )

satisfying (2.21)–(2.23) and solving problem (2.24)–(2.26). Moreover, the component
ϕσ of the solution is unique.
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Remark 2.4. No uniqueness for the component μσ of the solution can be expected, in
general. However, in particular situations,μσ is unique, too. This is the case if λ1 > 0.
Indeed, this assumption implies that A2r is invertible so that (2.27) can be uniquely
solved for μσ . On the contrary, the case λ1 = 0 is much more delicate. A sufficient
condition that ensures uniqueness for μσ is the following (see [15, Rem. 4.1]): β̂ is an
everywhere defined C1 function and ϕσ is bounded. We notice that the same argument
used in the quoted remark also applies if D(β) is an open interval and β is a continuous
single-valued function on it (like in the case (1.5) of the logarithmic potential) provided
that all of the values of ϕσ belong to a compact subset of D(β).

Let us come to the results of this paper. The first deals with the behavior of the
solutions to problem (2.24)–(2.26) as σ tends to zero.

Theorem 2.5. Besides the assumptions of Theorem 2.3, assume that

fσ → f strongly in L2(0, T ; H) as σ ↘ 0. (2.29)

Then, for every σ > 0 there is a solution (ϕσ , μσ ) to problem (2.24)–(2.26) such that

ϕσ → ϕ weakly in H1(0, T ; H), (2.30)

μσ → μ weakly in L2(0, T ; V 2r
A ), (2.31)

Bσ ϕσ → ζ weakly star in L∞(0, T ; H), (2.32)

as σ ↘ 0, possibly along a subsequence, for some triplet (ϕ, μ, ζ ) satisfying

ϕ ∈ H1(0, T ; H), μ ∈ L2(0, T ; V 2r
A ) and ζ ∈ L∞(0, T ; H). (2.33)

Moreover, under the additional assumption,

for all v ∈ H such that β̂(v) ∈ L1(�) there exists a sequence {vn} ⊂ V σ0
B

such that vn → v in H and lim inf
n→∞

∫

�

β̂(vn) =
∫

�

β̂(v), (2.34)

the following holds true: whenever (ϕσ , μσ ) is a solution to problem (2.24)–(2.26) for
σ > 0 and (2.30)–(2.32) hold for some triplet (ϕ, μ, ζ ), then ζ = ϕ − Pϕ and the
pair (ϕ, μ) is a solution to the system

(∂tϕ(t), v) + (Arμ(t), Arv) = 0 for every v ∈ V r
A and for a.a. t ∈ (0, T ), (2.35)

τ
(
∂tϕ(t), ϕ(t) − v

) + (
ϕ(t) − Pϕ(t), ϕ(t) − v

)

+
∫

�

β̂(ϕ(t)) + (
π(ϕ(t)) − f (t), ϕ(t) − v

)

≤ (
μ(t), ϕ(t) − v

) +
∫

�

β̂(v)

for every v ∈ H and for a.a. t ∈ (0, T ), (2.36)

ϕ(0) = ϕ0. (2.37)
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Remark 2.6. Theabove statement looks a little involved.Besides the assumption (2.34)
we are going to discuss in a while, we point out that no uniqueness for the solution
(ϕσ , μσ ) is required. On the contrary, if additional assumptions were made that guar-
antee uniqueness for (ϕσ , μσ ) (see Remark 2.4) and (2.34) were assumed, then the
statement would look much simpler, namely: as σ tends to zero, the solution (ϕσ , μσ )

converges (in the sense of (2.30)–(2.31), possibly along a subsequence) to a solution
(ϕ, μ) to problem (2.35)–(2.37). If, in addition, uniqueness holds for the solution
(ϕ, μ) to the limiting problem, then the whole family {(ϕσ , μσ )} converges to (ϕ, μ)

as σ tends to zero.

Remark 2.7. As observed in the forthcoming Remark 3.3, if (2.34) is not assumed, a
weaker conclusion can anyway be obtained: the variational inequality (2.36) is fulfilled
by all the test functions v ∈ V σ0

B . Indeed, it is stressed in the remark that assumption
(2.34) is used in the proof of Theorem 2.5 just to extend to any v ∈ H the validity of
(2.36) proved for test functions v ∈ V σ0

B .

Remark 2.8. So, if (2.34) is assumed, then every limiting pair (ϕ, μ) satisfies (2.36)
with arbitrary test functions v ∈ H . This has the following important consequence:
there exists some ξ satisfying

ξ ∈ L2(0, T ; H) and ξ ∈ β(ϕ) a.e. in Q, (2.38)

τ∂tϕ + ϕ − Pϕ + ξ + π(ϕ) = μ + f a.e. in Q. (2.39)

Indeed, if we set

ξ := μ − τ∂tϕ − ϕ + Pϕ − π(ϕ) + f (2.40)

then ξ belongs to L2(0, T ; H), Eq. (2.39) is satisfied, and (2.36) becomes
∫

�

β̂(ϕ(t) ≤ (
ξ, ϕ(t) − v

) +
∫

�

β̂(v)

for every v ∈ H and for a.a. t ∈ (0, T ). (2.41)

But this exactly means that ξ(t) ∈ ∂β̂(ϕ(t)) = β(ϕ(t)) for a.a. t ∈ (0, T ), i.e., the
second condition in (2.38). If instead (2.34) is not assumed, then (2.36) is satisfied only
for test functions v ∈ V σ0

B , as said in Remark 2.7. Nevertheless, the definition (2.40)
still yields ξ ∈ L2(0, T ; H) and implies that (2.39) is satisfied. However, in this case,
(2.41) is only true for v ∈ V σ0

B , and this means that for a.a. t ∈ (0, T ) the function ξ(t)
belongs to the subdifferential of the function V σ0

B 
 v �→ ∫

�
β̂(v). Notice that this

subdifferential is a subset of the dual space (V σ0
B )∗ and might contain elements that

do not belong to H (in the sense of the Hilbert triplet (V σ0
B , H, (V σ0

B )∗) ). Moreover,
if a function u ∈ H belongs to such a subdifferential, then it is not clear whether it
also belongs to the subdifferential in H (i.e., that of the function H 
 v �→ ∫

�
β̂(v)),

so that we cannot conclude that ξ ∈ β(ϕ) a.e. in Q. About this matter, let us quote the
paper [5] for related issues.
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Remark 2.9. A sufficient condition for (2.34) to hold true is the following (satisfied
in all of the concrete cases, at least if σ0 is small enough):

H2(�) ⊂ V σ0
B . (2.42)

In order to construct the sequence {vn} for a given v ∈ H , we solve the Neumann
boundary value problem

∫

�

vnz + 1

n

∫

�

∇vn · ∇z =
∫

�

vz for every z ∈ H1(�). (2.43)

Since v ∈ H , we have that vn ∈ H2(�) and thus vn ∈ V σ0
B , by (2.42). Now, if we take

z = vn in (2.43) and use the Cauchy–Schwarz inequality in the right-hand side, then
we easily find that

‖vn‖ ≤ ‖v‖ and ‖1
n
∇vn‖2 ≤ 1

n ‖v‖2 for all n ∈ N. (2.44)

Hence, there are a subsequence {vnk } and some w ∈ H such that vnk → w weakly in
H . Moreover, since 1

n∇vn → (0, 0, 0) strongly in H × H × H by (2.44), we easily
infer from (2.43) thatw = v. A fortiori, by the uniqueness of the limit point, the entire
sequence {vn} converges weakly in H to v. But then, by the weak sequential lower
semicontinuity of norms,

‖v‖ ≤ lim inf
n→∞ ‖vn‖ ≤ lim sup

n→∞
‖vn‖ ≤ ‖v‖,

where the latter inequality follows from (2.44). We thus have ‖v‖ = limn→∞ ‖vn‖,
and the uniform convexity of H yields that vn → v strongly in H .
Now, denoting by β̂ε and βε the Moreau–Yosida ε-approximations of β̂ and β,

respectively (see, e.g., [7, p. 28]), we account for the definition of the subdifferential
βε = ∂β̂ε and the identity obtained by testing (2.43) byβε(vn) ∈ H1(�).We have that

∫

�

β̂ε(vn) −
∫

�

β̂ε(v) ≤
∫

�

βε(vn)(vn − v) = −1

n

∫

�

β ′
ε(vn)|∇vn|2 ≤ 0

and we deduce that
∫

�

β̂ε(vn) ≤
∫

�

β̂ε(v) ≤
∫

�

β̂(v) whence also
∫

�

β̂(vn) ≤
∫

�

β̂(v)

by letting ε tend to zero. This implies the inequality “≤” in (2.34). Since the opposite
inequality clearly follows from the lower semicontinuity of the function z �→ ∫

�
β̂(z)

in H , we finally deduce the validity of (2.34).

Notice that Theorem 2.3 ensures the existence of at least one solution to the limiting
problem (2.35)–(2.37)with the regularity specified in (2.33). Our next result dealswith
partial uniqueness and continuous dependence of the solution. This will be proved in
the last Sect. 4, which is devoted to the study of the limiting problem.
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Theorem 2.10. Let the general assumptions on the structure be fulfilled, and assume
that ϕ0 satisfies (2.18). Moreover, let fi ∈ L2(0, T ; H), i = 1, 2, be two choices of the
forcing term f appearing in (2.36), and let (ϕi , μi ) ∈ H1(0, T ; H) × L2(0, T ; V 2r

A )

be two corresponding solutions to problem (2.35)–(2.37) with f = fi . Then, we have

‖ϕ1 − ϕ2‖L∞(0,T ;H) ≤ Ccd‖ f1 − f2‖L2(0,T ;H), (2.45)

with a constant Ccd that depends only on τ , the Lipschitz constant Lπ , and T . In
particular, if f ∈ L2(0, T ; H), the first component ϕ of the solution (ϕ, μ) to problem
(2.35)–(2.37) is uniquely determined.

In our final result, we require some regularity of the data and further assumptions
on the structure that are satisfied in all of the concrete cases of interest, and we prove
a regularity result. As a byproduct, we obtain a sufficient condition for the uniqueness
of the second component μ of the solution. Sufficient conditions for uniqueness in a
different direction are given in the forthcoming Remark 4.5.

Theorem 2.11. Let the general assumptions on the structure be fulfilled. In addition,
assume that

V n
B ⊂ H1(�) for some positive integer n, (2.46)

V 2r
A ⊂ Hη(�), f ∈ L2(0, T ; Hη(�)) and ϕ0 ∈ Hη(�) for some η ∈ (0, 1],

(2.47)

and let (ϕ, μ) with

ϕ ∈ H1(0, T ; H) and μ ∈ L2(0, T ; V 2r
A ) (2.48)

be a solution to problem (2.35)–(2.37). Then, ϕ enjoys the further regularity

ϕ ∈ L2(0, T ; Hη(�)), (2.49)

and there exists some ξ satisfying (2.38)–(2.39). In particular, even the second com-
ponent μ of the solution is unique if β is single-valued.

Throughout the paper, we widely use the Cauchy–Schwarz and Young inequalities,
the latter in the form

ab ≤ δa2 + 1

4δ
b2 for every a, b ∈ R and δ > 0. (2.50)

Moreover, in performing a priori estimates, we use the same small letter c for (pos-
sibly) different constants that depend only on the structure of our system but σ , and
on the assumptions on the data. In particular, the values of c do not depend on the
regularization parameter λ we introduce in the next section. On the contrary, some
precise constants are denoted by different symbols (see, e.g., (2.13), where a capital
letter with an index is used).
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3. Asymptotic analysis

This section is devoted to the proof of Theorem2.5. The construction of the solutions
(ϕσ , μσ ) mentioned in the statement relies on a priori estimates on the solutions to a
regularized problem, as done in [15] to solve problem (2.24)–(2.26) with a fixed σ .
Hence, we briefly recall that regularization procedure. For λ > 0 (small enough if
needed), let βλ be the Yosida approximation of β at the level λ (see, e.g., [7, p. 28]).
The corresponding Moreau regularization β̂λ of β̂ is thus given by

β̂λ(s) =
∫ s

0
βλ(s

′) ds′ for s ∈ R,

since βλ(0) = 0 due to (2.14). Then, the regularized problem is to find a pair (ϕλ
σ , μλ

σ )

satisfying the regularity requirements

ϕλ
σ ∈ H1(0, T ; H) ∩ L∞(0, T ; V σ

B ) ∩ L2(0, T ; V 2σ
B ) and μλ

σ ∈ L2(0, T ; V 2r
A ),

(3.1)

and solving the following system:

(∂tϕ
λ
σ (t), v) + (Arμλ

σ (t), Arv) = 0 for every v ∈ V r
A and for a.a. t ∈ (0, T ), (3.2)

τ
(
∂tϕ

λ
σ (t), v

) + (
Bσ ϕλ

σ (t), Bσ v
) + (

βλ(ϕ
λ
σ (t)) + π(ϕλ

σ (t)) − fσ (t), v
)

= (
μλ

σ (t), v
)
for every v ∈ V σ

B and for a.a. t ∈ (0, T ), (3.3)

ϕλ
σ (0) = ϕ0. (3.4)

We notice that the variational inequality (2.25) is replaced by the equality (3.3) in
the approximating problem (since βλ is an everywhere defined Lipschitz continuous
function). The existence part of Theorem2.3 is proved by solving the above regularized
problem (cf. [15, Thm. 5.1]) and showing that its solution (ϕλ

σ , μλ
σ ) converges asλ ↘ 0

(in a suitable topology, possibly just along a subsequence) to a pair (ϕσ , μσ ) which
turns out to solve problem (2.24)–(2.26). This solution, where now σ is a varying
parameter that we intend to approach zero, will be the good candidate for Theorem 2.5.

Before starting to estimate, it is worth observing that Remark 2.1 applies to both
equations (3.2) and (3.3). This is obvious for the former. As far as the latter is con-
cerned, one has to replace A and r by B and σ , respectively, and notice that βλ is
Lipschitz continuous, so thatμλ

σ + fσ −βλ(ϕ
λ
σ )−π(ϕλ

σ ) ∈ L2(0, T ; H). This justifies
the last regularity condition for ϕλ

σ in (3.1) (in contrast to (2.21)) and implies the strong
form of both equations, i.e.,

∂tϕ
λ
σ + A2rμλ

σ = 0 a.e. in (0, T ), (3.5)

τ∂tϕ
λ
σ + B2σ ϕλ

σ + βλ(ϕ
λ
σ ) + π(ϕλ

σ ) = μλ
σ + fσ a.e. in (0, T ). (3.6)

We also recall the convention on the symbol c for possibly different constants made at
the end of Sect. 2. Moreover, since (2.29) implies that fσ is bounded in L2(0, T ; H),
we allow c to also depend on a bound for the corresponding norm.
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First a priori estimateWe test (3.2) written at the time s by μσ (s). At the same time,
we insert+ϕλ

σ (s) to both sides of (3.6) written at the time s and multiply it by ∂tϕ
λ
σ (s),

then integrating over �. We sum up both equalities, noting that a cancellation occurs,
and integrate over (0, t) with respect to s. We obtain
∫ t

0
‖Arμλ

σ (s)‖2 ds + τ

∫

Qt

|∂tϕλ
σ |2 + 1

2

(‖ϕλ
σ (t)‖2 + ‖Bσ ϕλ

σ (t)‖2) +
∫

�

β̂λ(ϕ
λ
σ (t))

= 1

2

(‖ϕ0‖2 + ‖Bσ ϕ0‖2
) +

∫

�

β̂λ(ϕ0) +
∫

Qt

( fσ + ϕλ
σ − π(ϕλ

σ ))∂tϕ
λ
σ .

Even the last integral on the left-hand side is nonnegative. We estimate the terms on
the right-hand side by accounting for the assumptions (2.18) and (2.29) on ϕ0 and fσ ,
respectively, and owing to the Lipschitz continuity of π . Recalling also (2.7), we have
that

‖ϕ0‖2 + ‖Bσ ϕ0‖2 = ‖ϕ0‖2B,σ =
∞∑

j=1

(1 + (λ′
j )
2σ )|(ϕ0, e

′
j )|2

≤
∞∑

j=1

(2 + (λ′
j )
2σ0)|(ϕ0, e

′
j )|2 ≤ 2‖ϕ0‖2B,σ0

,

∫

�

β̂λ(ϕ0) ≤
∫

�

β̂(ϕ0),

∫

Qt

( fσ + ϕλ
σ − π(ϕλ

σ ))∂tϕ
λ
σ ≤ τ

2

∫

Qt

|∂tϕλ
σ |2

+ c
∫ t

0

(‖ fσ (s)‖2 + ‖ϕλ
σ (s)‖2 + 1

)
ds

≤ τ

2

∫

Qt

|∂tϕλ
σ |2 + c

∫ t

0
‖ϕλ

σ (s)‖2 ds + c.

Therefore, by rearranging and applying the Gronwall lemma, we conclude that

‖Arμλ
σ ‖L2(0,T ;H) + ‖ϕλ

σ ‖H1(0,T ;H) + ‖ϕλ
σ ‖L∞(0,T ;V σ

B ) + ‖β̂λ(ϕλ
σ )‖L∞(0,T ;L1(�)) ≤ c.

(3.7)

From this and (3.5), we deduce that

‖A2rμλ
σ ‖L2(0,T ;H) ≤ c. (3.8)

Second a priori estimate Our aim is to improve the estimate concerning μλ
σ . Indeed,

for the following we need that

‖μλ
σ ‖L2(0,T ;Vr

A) ≤ c. (3.9)

We notice at once that this and (3.8) would imply that

‖μλ
σ ‖L2(0,T ;V 2r

A ) ≤ c. (3.10)
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The desired estimate trivially follows from (3.7) if λ1 > 0. So, we now deal with the
other case λ1 = 0 and apply a well-known trick based on the assumption (2.19) and
the subsequent inequality

βλ(s)(s − m0) ≥ δ0|βλ(s)| − C0, (3.11)

which holds for some C0 > 0 and every s ∈ R and λ ∈ (0, 1), where δ0 is such that
the interval [m0 − δ0,m0 + δ0] is included in the interior of D(β) (cf. [28, Appendix,
Prop. A.1]; see also [22, p. 908] for a detailed proof). Inequality (3.11) implies that

(
βλ(ϕ

λ
σ (t)), ϕλ

σ (t) − m01
) ≥ δ0 ‖βλ(ϕ

λ
σ (t))‖L1(�) − c for a.a. t ∈ (0, T ), (3.12)

and this can be used when testing equation (3.3) by ϕλ
σ − m01. To this concern, we

recall that 1 ∈ V σ
B by (2.10) and notice that the conservation property (2.28) also holds

for ϕλ
σ , i.e., mean ϕλ

σ (t) = m0 for every t ∈ [0, T ]. So, for a.a. t ∈ (0, T ), we test
(3.3) by ϕλ

σ (t) − m01 and make some minor adjustments. However, we omit writing
the time t for a while. We also write k instead of k1 if k is a real number. We have
a.e. in (0, T ) that

‖Bσ ϕλ
σ ‖2 + (

βλ(ϕ
λ
σ ), ϕλ

σ − m0
)

= (μλ
σ , ϕλ

σ − m0) + (
fσ − τ∂tϕ

λ
σ − π(ϕλ

σ ), ϕλ
σ − m0

) + (Bσ ϕλ
σ , Bσm0). (3.13)

The left-hand side of this equality can be estimated from below by virtue of (3.12). The
first term on the right-hand side can be dealt with by accounting for the Poincaré-type
inequality (2.13) as follows:

(μλ
σ , ϕλ

σ − m0) = (μλ
σ − meanμλ

σ , ϕλ
σ − m0) ≤ ‖μλ

σ − meanμλ
σ ‖ ‖ϕλ

σ − m0‖
≤ c ‖Ar (μλ

σ − meanμλ
σ )‖ ‖ϕλ

σ − m0‖ = c ‖Arμλ
σ ‖ ‖ϕλ

σ − m0‖,
the last equality being due to Ar1 = 0. Therefore, by recalling (3.7), we have that the
whole right-hand side of (3.13) is bounded in L2(0, T ) and conclude that

‖βλ(ϕ
λ
σ )‖L2(0,T ;L1(�)) ≤ c, whence immediately ‖mean βλ(ϕ

λ
σ )‖L2(0,T ) ≤ c.

At this point, we can test the second equation (3.3) by 1 and deduce a bound for
meanμλ

σ in L2(0, T ). This and (3.7) imply (3.9). As already noticed, (3.10) is proved
as well.
First conclusionAs already remarked, in the proof of [15, Thm. 5.1] with a fixed σ it is
shown that (ϕλ

σ , μλ
σ ) converges as λ tends to zero (in a proper topology, possibly along

a subsequence) to some pair (ϕσ , μσ ), and it is proved that such a pair is a solution
to problem (2.24)–(2.26). We prove that the family {(ϕσ , μσ )}σ>0 constructed in this
way satisfies all the requirement of the statement. The starting point is the conservation
of the bounds just proved in the limit as λ ↘ 0. We have that

‖ϕσ ‖H1(0,T ;H) + ‖μσ ‖L2(0,T ;V 2r
A ) + ‖Bσ ϕσ ‖L∞(0,T ;H) ≤ c,
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and we conclude that (2.30)–(2.32) hold true for some triplet (ϕ, μ, ζ ) satisfying
(2.33). This ends the proof of the first part of the statement.
Let us come to the second part. So, we assume that {(ϕσ , μσ )}σ>0 is a family of

solutions to problem (2.24)–(2.26) and that (2.30)–(2.32) hold true for some triplet
(ϕ, μ, ζ ) satisfying (2.33) as σ ↘ 0, possibly for a subsequence (however, we always
write σ instead of the elements of some subsequence {σk}, for brevity). We have to
prove that ζ = ϕ−Pϕ and that (ϕ, μ) solves problem (2.35)–(2.37), by also assuming
(2.34).
First characterization We are going to show that ζ = ϕ − Pϕ by proving that

Bσ ϕσ → ϕ − Pϕ weakly in L2(Q). (3.14)

To this end, we use the eigenvalues λ′
j and the eigenfunctions e

′
j of B and notice that e′

j
is orthogonal to ker B if λ′

j > 0 while λ′
j = 0 if e′

j ∈ ker B. We set, for convenience,

Aσ
j (ψ) :=

∫ T

0

(
Bσ ϕσ (t), ψ(t) e′

j

)
dt = (λ′

j )
σ

∫ T

0

(
ϕσ (t), ψ(t) e′

j

)
dt

for ψ ∈ L2(0, T ) and j = 1, 2, . . . , and we notice that (3.14) follows if we prove
that

lim
σ↘0

Aσ
j (ψ) = A0

j (ψ) :=
∫ T

0

(
ϕ(t) − Pϕ(t), ψ(t) e′

j

)
dt (3.15)

for everyψ and j as before, since the linear combinations of the productsψ e′
j of such

real functions and eigenfunctions of B form a dense subspace of L2(Q). So, we fix
ψ and j . As for j , we distinguish two cases. Assume first that λ′

j > 0. Then, (λ′
j )

σ

tends to 1 as σ tends to zero. Moreover, (2.30) holds. We thus deduce that

lim
σ↘0

Aσ
j (ψ) =

∫ T

0

(
ϕ(t), ψ(t) e′

j

)
dt = A0

j (ψ),

the last equality being due to the orthogonality between Pϕ(t) and e′
j . Assume now

that λ j = 0. Then, we trivially have that Aσ
j (ψ) = 0 for every σ > 0. On the other

hand, we also have that A0
j (ψ) = 0 since e′

j ∈ ker B and ϕ(t) − Pϕ(t) is orthogonal
to ker B for a.a. t ∈ (0, T ). Therefore, (3.15) is proved in any case.

Remark 3.1. The same argument shows that, for every v ∈ L2(0, T ; V σ0
B ), the weak

convergence Bσ v → v − Pv in L2(0, T ; H) holds true as σ tends to zero. In fact, the
convergence is strong:

Bσ v → v − Pv strongly in L2(0, T ; H) for every v ∈ L2(0, T ; V σ0
B ). (3.16)

Indeed, for a.a. t ∈ (0, T ), Bσ v(t) → v(t) − Pv(t) strongly in H by [13, Lem. 7.5].
Moreover, the Lebesgue dominated convergence theorem can be applied since

‖Bσ v(t)‖2 =
∞∑

j=1

(λ′
j )
2σ |(v(t), e′

j )|2 ≤
∞∑

j=1

(1 + (λ′
j )
2σ0)|(v(t), e′

j )|2 = ‖v(t)‖2B,σ0

for a.a. t ∈ (0, T ) and every σ ∈ (0, σ0], and ‖v( · )‖2B,σ0
belongs to L1(0, T ).
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To conclude the proof, we have to show that (ϕ, μ) solves problem (2.35)–(2.37)
under the further assumption (2.34). The first equation obviously follows from (2.24)
due to (2.30)–(2.31), and the initial condition (2.37) is satisfied as well since (2.30)
implies weak convergence in C0([0, T ]; H). So, it remains to verify the variational
inequality (2.36). To this concern, it is convenient to give different formulations of both
(2.25) and (2.36). This procedure is based on the lemma stated below, which follows
from the classical theory of variational inequalities of elliptic type in the framework
of Convex Analysis.

Lemma 3.2. Let V be a Hilbert space, V ∗ its dual space, 〈 · , · 〉 the duality pairing
between V ∗ and V , and a : V × V → R a continuous bilinear form. Moreover,
assume that

γ̂1 : V → (−∞,+∞] is convex, proper and lower semicontinuous, (3.17)

γ̂2 : V → R is convex and Gâteaux differentiable,

and γ2 : V → V ∗ is its Gâteaux derivative. (3.18)

Then, for every u ∈ V and g ∈ V ∗, the variational inequalities

a(u, u − v) + γ̂1(u) + 〈γ2(u), u − v〉 ≤ 〈g, u − v〉 + γ̂1(v) for every v ∈ V,

(3.19)

a(u, u − v) + γ̂1(u) + γ̂2(u) ≤ 〈g, u − v〉 + γ̂1(v) + γ̂2(v) for every v ∈ V,

(3.20)

are equivalent to each other.

As announced, we use this lemma to replace both (2.25) and (2.36) by different
variational inequalities.

First alternative formulation We first observe that (2.25) for every v ∈ V σ
B as

required implies the same inequality for every v ∈ V σ0
B since V σ0

B ⊂ V σ
B . Now,

by recalling that Lπ is the Lipschitz constant of π , we replace the latter variational
inequality by an equivalent one by applying the lemma above, with the choices

V = V σ0
B , a(u, v) =

∫

�

(Bσu, Bσ v) − Lπ (u, v) for u, v ∈ V,

γ̂1(v) =
∫

�

β̂(v) and γ̂2(v) =
∫

�

(
π̂(v) + Lπ

2
v2

)
for v ∈ V,

and, for a.a. t ∈ (0, T ), u = ϕσ (t) and g = μσ (t) + fσ (t) − τ dtϕσ (t).

Notice that γ̂2 actually is convex (since π ′ + Lπ ≥ 0 a.e. in R) and Gâteaux differ-
entiable and that its derivative γ2 is given by 〈γ2(u), v〉 = (π(u) + Lπu, v). Hence,
we deduce that the variational inequality (2.25) required just for every v ∈ V σ0

B is
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equivalent to

τ
(
∂tϕσ (t), ϕσ (t) − v

) + (
Bσ ϕσ (t), Bσ (ϕσ (t) − v)

) − Lπ

(
ϕσ (t), ϕσ (t) − v

)

+
∫

�

α̂(ϕσ (t)) ≤ (
μσ (t) + fσ (t), ϕσ (t) − v

) +
∫

�

α̂(v)

for every v ∈ V σ0
B and for a.a. t ∈ (0, T ), (3.21)

where, for brevity, we have set

α̂(s) := β̂(s) + π̂(s) + Lπ

2
s2 for s ∈ R. (3.22)

We fix what we have established:

the variational inequality (2.25) implies (3.21). (3.23)

Second alternative formulation Similarly, we would like to show that (2.36) is
equivalent to

τ
(
∂tϕ(t), ϕ(t) − v

) + (
ϕ(t) − Pϕ(t), ϕ(t) − v

) − Lπ

(
ϕ(t), ϕ(t) − v

)

+
∫

�

α̂(ϕ(t)) ≤ (μ(t) + f (t), ϕ(t) − v) +
∫

�

α̂(v)

for every v ∈ V σ0
B and for a.a. t ∈ (0, T ). (3.24)

Unfortunately, this does not seem to be true, in general, and we prove the following:

the variational inequality (2.36)with v varying in V σ0
B is equivalent to (3.24). (3.25)

To this aim, it suffices to apply the lemma with the same γ̂i as before and obvious u
and g, but with V = V σ0

B and a defined by a(u, v) := (u − Pu, v) − Lπ (u, v) for
u, v ∈ V σ0

B .
Conclusion of the proof In view of (3.23) and (3.25), our aim is first to verify (3.24)
by starting from (3.21) (implied by (2.25)), while (2.36), as it is, will be proved at
the end by accounting for (2.34). However, the left-hand side of (3.21) contains the
quadratic term associated with the map v �→ −Lπ

∫

�
|v|2. This term is unpleasant

since the related map is concave. To get rid of it, we adapt the procedure introduced
in [13] to the present case. We set, for convenience,

κ := Lπ

τ
, ρσ (t) := e−κtϕσ (t) and ρ(t) := e−κtϕ(t) for a.a. t ∈ (0, T ),

(3.26)

and we notice that w �→ ∫

Q e−2κtw2 is the square of an equivalent norm in L2(Q).
At this point, we pick an arbitrary v ∈ L2(0, T ; V σ0

B ), write (3.21) by taking v(t) as
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test function, multiply by e−2κt , and integrate over (0, T ). We obtain
∫ T

0
τ
(
e−κt(∂tϕσ (t) − κϕσ (t)

)
, e−κt (ϕσ − v)(t)

)
dt +

∫ T

0
e−2κt‖Bσ ϕσ (t)‖2 dt

−
∫ T

0
e−2κt(Bσ ϕσ (t), Bσ v(t)

)
dt +

∫

Q
e−2κt α̂(ϕσ )

≤
∫ T

0
e−2κt(μσ (t) + fσ (t), (ϕσ − v)(t)

)
dt +

∫

Q
e−2κt α̂(v). (3.27)

Well, we want to take the limit as σ tends to zero in this inequality. As for the first
term on the left-hand side, we have that

∫ T

0
τ
(
e−κt (∂tϕσ (t) − κϕσ (t)

)
, e−κt (ϕσ − v)(t)

)
dt =

∫ T

0
τ
(
∂tρσ (t), ρσ (t) − e−κtv(t)

)
dt

= τ

2
‖ρσ (T )‖2 − τ

2
‖ϕ0‖2

−
∫ T

0
τ
(
∂tρσ (t), e−κtv(t)

)
dt.

By observing that ρσ converges to ρ weakly in H1(0, T ; H), thus weakly in
C0([0, T ]; H), so that ρσ (T ) converges to ρ(T ) weakly in H , we therefore have
that

lim inf
σ↘0

∫ T

0
τ
(
e−κt(∂tϕσ (t) − κϕσ (t)

)
, e−κt (ϕσ − v)(t)

)
dt

≥ τ

2
‖ρ(T )‖2 − τ

2
‖ϕ0‖2 −

∫ T

0
τ
(
∂tρ(t), e−κtv(t)

)
dt

=
∫ T

0
τ
(
e−κt(∂tϕ(t) − κϕ(t)

)
, e−κt (ϕ − v)(t)

)
dt.

Next, by (3.14) and the lower semicontinuity of the norms, we have that

lim inf
σ↘0

∫ T

0
e−2κt‖Bσ ϕσ (t)‖2 dt ≥

∫ T

0
e−2κt‖(ϕ − Pϕ)(t)‖2 dt.

By also recalling (3.16), we can write

lim
σ↘0

∫ T

0
e−2κt(Bσ ϕσ (t), Bσ v(t)

)
dt =

∫ T

0
e−2κt((ϕ − Pϕ)(t), (v − Pv)(t)

)
dt.

By taking the difference, we deduce that

lim inf
σ↘0

(∫ T

0
e−2κt‖Bσ ϕσ (t)‖2 dt −

∫ T

0
e−2κt(Bσ ϕσ (t), Bσ v(t)

)
dt

)

≥
∫ T

0
e−2κt‖(ϕ − Pϕ)(t)‖2 dt −

∫ T

0
e−2κt((ϕ − Pϕ)(t), (v − Pv)(t)

)

=
∫ T

0
e−2κt((ϕ − Pϕ)(t), (ϕ − Pϕ)(t) − (v − Pv)(t)

)
dt

=
∫ T

0
e−2κt((ϕ − Pϕ)(t), (ϕ − v)(t)

)
dt,
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the last equality being due to the orthogonality between (ϕ − Pϕ)(t) ∈ (ker B)⊥ and
(Pϕ−Pv)(t) ∈ ker B.Moreover, byobserving that the functionalw �→ ∫

Q e−2κt α̂(w)

is lower semicontinuous on L2(Q), and recalling that ϕσ converges to ϕ weakly
in L2(Q), we deduce that

lim inf
σ↘0

∫

Q
e−2κt α̂(ϕσ ) ≥

∫

Q
e−2κt α̂(ϕ).

This ends the treatment of the terms on the left-hand side of (3.27). Concerning the
right-hand side, we have to overcome the difficulty due to the coupling between μσ

and ϕσ . To this end, we introduce the notation

(1 ∗ w)(t) :=
∫ t

0
w(s) ds for every w ∈ L2(0, T ; H) and t ∈ [0, T ]

and deduce from (2.27) that

ϕσ + A2r (1 ∗ μσ ) = ϕ0.

Hence, we have that
∫ T

0
e−2κt(μσ (t), (ϕσ − v)(t)

)
dt =

∫ T

0
e−2κt (μσ (t), ϕ0) dt

−
∫ T

0
e−2κt(Arμσ (t), Ar (1 ∗ μσ )(t)

)
dt −

∫ T

0
e−2κt(μσ (t), v(t)

)
dt.

Now, from (2.31) we deduce that 1 ∗μσ converges to 1 ∗μ weakly in H1(0, T ; V 2r
A ).

Since the embedding H1(0, T ; V 2r
A ) ⊂ L2(0, T ; V r

A) is compact, we infer that 1 ∗
μσ converges to 1 ∗ μ strongly in L2(0, T ; V r

A). In view of (2.35) and (2.37), we
deduce that

lim
σ↘0

∫ T

0
e−2κt(μσ (t), (ϕσ − v)(t)

)
dt =

∫ T

0
e−2κt (μ(t), ϕ0) dt

−
∫ T

0
e−2κt(Arμ(t), Ar (1 ∗ μ)(t)

)
dt −

∫ T

0
e−2κt(μ(t), v(t)

)
dt.

=
∫ T

0
e−2κt(μ(t), (ϕ − v)(t)

)
dt.

Finally, by recalling (2.29), we see that the term involving fσ and the last one of (3.27)
do not give any trouble. Therefore, we conclude that

∫ T

0
τ
(
e−κt(∂tϕ(t) − κϕ(t)

)
, e−κt (ϕ − v)(t)

)
dt

+
∫ T

0
e−2κt((ϕ − Pϕ)(t), (ϕ − v)(t)

)
dt +

∫

Q
e−2κt α̂(ϕσ )

≤
∫ T

0
e−2κt(μ(t) + f (t), (ϕ − v)(t)

)
dt +

∫

Q
e−2κt α̂(v), (3.28)
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and this holds for every v ∈ L2(0, T ; V σ0
B ). On the other hand, (3.28) is equivalent to

τ
(
e−κt(∂tϕ(t) − κϕ(t)

)
, e−κt (ϕ(t) − v)(t)

)

+e−2κt((ϕ − Pϕ)(t), ϕ(t) − v
) +

∫

Q
e−2κt α̂(ϕσ )

≤ e−2κt(μ(t) + f (t), ϕ(t) − v
) +

∫

�

e−2κt α̂(v)

for a.a. t ∈ (0, T ) and every v ∈ V σ0
B . By multiplying by e2κt and recalling that

κ = Lπ/τ , we obtain (3.24) as claimed. Recalling (3.25), we have proved that the
variational inequality (2.36) is satisfied for every test function v ∈ V σ0

B . At this point,
we account for (2.34), not yet used up to now, and show that (2.36) actually holds
for every v ∈ H . To this end, for a given v ∈ H with β̂(v) ∈ L1(�) without loss of
generality, it suffices to take a sequence {vn} given by (2.34), test (3.24) by vn and let
n tend to infinity. One obtains (3.24) for v without any trouble. This completes the
proof.

Remark 3.3. Going back to the above proof, one justifies what has been announced in
Remark 2.7: if (2.34) is not assumed, one anyway arrives at the variational inequality
(2.36) required for every v ∈ V σ0

B instead of for every v ∈ H . Indeed, (2.34) has been
only used at the end, in order to extend to any v ∈ H the validity of (2.36) already
proved for test functions v ∈ V σ0

B .

4. The limiting problem

In this section, we prove Theorems 2.10 and 2.11. As far as the former is concerned,
some preliminaries are needed. We refer to [15, Sect. 3] for more details. We set

V−r
A := (

V r
A

)∗ and ‖ · ‖A,−r := the dual norm of ‖ · ‖A,r ,

and we use the symbol 〈 · , · 〉A,r for the duality pairing between V−r
A and V r

A. It is
understood that H is identified with a subspace of V−r

A in the usual way, i.e., in order
that 〈v,w〉A,r = (v,w) for every v ∈ H and w ∈ Vr

A. Moreover, we introduce the
subspaces V±r

0 of V±r
A by setting

Vr
0 := V r

A and V−r
0 := V−r

A if λ1 > 0,

Vr
0 := {v ∈ Vr

A : mean v = 0} and V−r
0

:= {ψ ∈ V−r
A : 〈ψ, 1〉A,r = 0} if λ1 = 0.

Next, we define A2r
0 : Vr

0 → V−r
A by the formula

〈A2r
0 v,w〉A,r = (Arv, Arw)A,r for every v ∈ Vr

0 and w ∈ V r
A.
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It turns out that the range of A2r
0 is V−r

0 and that A2r
0 is an isomorphism between Vr

0
and V−r

0 . Thus, we can set A−2r
0 := (A2r

0 )−1 and obtain an isomorphism between
V−r
0 and Vr

0 . It also turns out that

(
Ar A−2r

0 ψ, Arv) = 〈ψ, v〉A,r for every ψ ∈ V−r
0 and v ∈ Vr

A. (4.1)

Finally, the following formula holds true:

〈∂tψ, A−2r
0 ψ〉A,r = 1

2

d

dt
‖ψ‖2A,−r a.e. in (0, T ), for every ψ ∈ H1(0, T ; V−r

0 ).

In particular,
∫ t

0
〈∂tψ(s), A−2r

0 ψ(s)〉A,r ds ≥ 0 for every ψ ∈ H1(0, T ; V−r
0 ) with ψ(0) = 0.

(4.2)

Proof of Theorem 2.10. We just prove the continuous dependence part, since unique-
ness for the first component follows as a consequence. We set, for convenience,
f := f1 − f2, ϕ := ϕ1 −ϕ2, and μ := μ1 −μ2. Now, we write equation (2.35) at the
time s for these solutions and take the difference. Then, we test the resulting identity
by v = A−2r

0 ϕ(s), where we observe that ϕ(s) ∈ V−r
0 , since ϕ ∈ C0([0, T ]; H) by

(2.33) and mean ϕ(s) = 0 if λ1 = 0 by the conservation property (2.28), so that v

is a well-defined element of V r
A. Moreover, we have that A−2r

0 ϕ ∈ L∞(0, T ; V r
A).

Integrating over (0, t) with respect to s, where t ∈ (0, T ) is arbitrary, we obtain the
identity

∫ t

0
〈∂tϕ(s), A−2r

0 ϕ(s)〉A,r ds +
∫ t

0

(
Arμ(s), Ar A−2r

0 ϕ(s)
)
ds = 0.

Now, the first term on the left-hand side is nonnegative by (4.2). Hence, by also noting
that μ ∈ L2(0, T ; V r

A) and applying (4.1), we deduce that

∫ t

0
(ϕ(s), μ(s)) ds ≤ 0. (4.3)

At the same time, we write (2.36) for fi and (ϕi , μi ), i = 1, 2, test them by ϕ2 and ϕ1,
respectively, add the resulting inequalities to each other, and integrate over (0, t) as
before. Then, the terms involving β̂ cancel out. By denoting by I the identity map of
H and rearranging, we have that

τ

2
‖ϕ(t)‖2 +

∫ t

0

(
(I − P)ϕ(s), ϕ(s)

)
ds

≤
∫ t

0

(
f (s) + μ(s), ϕ(s)

)
ds −

∫ t

0

(
π(ϕ1(s)) − π(ϕ2(s)), ϕ(s)

)
ds. (4.4)

We observe that I − P is the projection operator on the orthogonal subspace (ker B)⊥.
It follows that ((I − P)v, v) = ((I − P)v, (I − P)v) ≥ 0 for every v ∈ H , so that the



Vol. 21 (2021) An asymptotic analysis for a generalized Cahn–Hilliard system 2769

second term on the left-hand side of (4.4) is nonnegative. By adding (4.3) and (4.4) to
each other, and accounting for this observation, an obvious cancellation, the Lipschitz
continuity of π and the Schwarz and Young inequalities, we deduce that

τ

2
‖ϕ(t)‖2 ≤ 1

4

∫ t

0
‖ f (s)‖2 ds + (1 + Lπ )

∫ t

0
‖ϕ(s)‖2 ds.

By applying the Gronwall lemma, we conclude that the desired estimate (2.45) holds
true with a constant Ccd as in the statement. �

Finally, we prove Theorem 2.11. The proof we give is based on the study of the
auxiliary problem of finding φ ∈ H1(0, T ; H) satisfying

τ
(
∂tφ(t), φ(t) − v

) + (
φ(t) − Pφ(t), φ(t) − v

)

+
∫

�

β̂(φ(t)) + (
π(φ(t)) − π(0), φ(t) − v

)

≤ (
g(t), φ(t) − v

) +
∫

�

β̂(v) for every v ∈ H and for a.a. t ∈ (0, T ), (4.5)

φ(0) = φ0, (4.6)

for given

g ∈ L2(0, T ; H) and φ0 ∈ H. (4.7)

We have subtracted the constant π(0) from π(φ(t)) in (4.5) in order to use the inequal-
ity |π(s) − π(0)| ≤ Lπ |s| for s ∈ R without any additive constant. This is needed in
the sequel, indeed. Since β̂ is convex, P is linear and π is Lipschitz continuous, this
problem has a unique solution φ provided that the initial datum also satisfies

β̂(φ0) ∈ L1(�). (4.8)

In the forthcoming Lemma 4.2, we prove a regularity result by applying a particular
case of [29, Sect. I, Thm. 2] which we present here in the form of a lemma.

Lemma 4.1. Let A0, A1, B0 and B1 be four Banach spaces with the continuous
embeddings A0 ⊂ A1 and B0 ⊂ B1, and let T : A1 → B1 be a nonlinear operator
satisfying Tv ∈ B0 for every v ∈ A0. Assume that

‖Tu − Tv‖B1 ≤ C1 ‖u − v‖A1 for every u, v ∈ A1, (4.9)

‖Tv‖B0 ≤ C2‖v‖A0 for every v ∈ A0, (4.10)

for some positive constants C1 and C2. Then, for every ϑ ∈ (0, 1) and p ∈ [1,+∞],
we have that

Tv ∈ (B0,B1)ϑ,p and ‖Tv‖(B0,B1)ϑ,p ≤ CCϑ
1 C

1−ϑ
2 ‖v‖(A0,A1)ϑ,p

for every v ∈ (A0,A1)ϑ,p, (4.11)

with a constant C that does not depend on T.
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In the above lemma, the symbol ‖ · ‖X stands for the norm in the generic Banach
space X . The same convention is followed in the rest of the section, where ‖ · ‖X also
denotes the norm in the power X3 (however, we keep the short notation ‖ · ‖ without
indices if X = H ). Moreover, (X,Y )ϑ,p is the real interpolation space between the
Banach spaces X and Y (for basic definitions and properties see, e.g., [27, Sect. 1.1]).

Lemma 4.2. Let the general assumption on the structure be fulfilled and assume that
the data g and φ0 satisfy

g ∈ L2(0, T ; Hη(�)) and φ0 ∈ Hη(�) (4.12)

for some η ∈ (0, 1], as well as (4.8). Then, the solution φ to problem (4.5)–(4.6) enjoys
the further regularity

φ ∈ L2(0, T ; Hη(�)), (4.13)

and there exists some ξ satisfying

ξ ∈ L2(0, T ; H) and ξ ∈ β(φ) a.e. in Q, (4.14)

τ∂tφ + φ − Pφ + ξ + π(φ) − π(0) = g a.e. in Q. (4.15)

Proof. By still denoting by β̂λ and βλ the Moreau–Yosida approximations of β̂ and β,
respectively, we introduce the approximating problem of finding φλ ∈ H1(0, T ; H)

that satisfies

τ∂tφλ + φλ − Pφλ + βλ(φλ) + π(φλ) − π(0) = g a.e. in Q (4.16)

and the initial condition (4.6). For any data satisfying (4.7) (while (4.8) is not needed
here), also this problem has a unique solution φλ. We perform some a priori estimates.
As usual, the symbol c stands for possibly different constants. In this proof, the values
of c can only depend on τ , π , �, T and the eigenfunctions e′

j associated with the zero
eigenvalues of B (if any). In particular, they do not depend on λ, nor on the data of
problem (4.5)–(4.6). Symbols like C and Ci denote particular values of c we want to
refer to. The first three estimates we perform are in the direction of the inequalities
(4.9) and (4.10) which we want to satisfy with a suitable choice of the spaces and the
operator. For this reason, they are obtained under different regularity assumptions on
the data.
First a priori estimate Let gi and φ0,i , i = 1, 2, be two choices of the data satisfying
(4.7) and let φλ,i be the corresponding solutions to the approximating problem. We
set for brevity φλ := φλ,1 − φλ,2, g := g1 − g2 and φ0 := φ0,1 − φ0,2. We write
(4.16) for both solutions, take the difference and multiply it by φλ. Then, we integrate
over Qt . We obtain that

τ

2

∫

�

|φλ(t)|2 +
∫

Qt

|φλ|2 +
∫

Qt

(
βλ(φλ,1) − βλ(φλ,2)

)
φλ

= τ

2

∫

�

|φ0|2 +
∫

Qt

g φλ +
∫

Qt

(Pφλ)φλ −
∫

Qt

(
π(φλ,1) − π(φλ,2)

)
φλ.
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Since βλ is monotone, all of the terms on the left-hand side are nonnegative. By
estimating the right-hand side on account of the Lipschitz continuity of π and the
Schwarz and Young inequalities, and then applying the Gronwall lemma, we easily
conclude that

‖φλ,1 − φλ,2‖L∞(0,T ;H) ≤ C1,∞
(‖g1 − g2‖L2(0,T ;H) + ‖φ0,1 − φ0,2‖

)
. (4.17)

It trivially follows that

‖φλ,1 − φλ,2‖L2(0,T ;H) ≤ C1
(‖g1 − g2‖L2(0,T ;H) + ‖φ0,1 − φ0,2‖

)
. (4.18)

Second a priori estimate We assume (4.7) on the data. By multiplying (4.16) by φλ

and integrating over Qt , we obtain that

τ

2

∫

�

|φλ(t)|2 +
∫

Qt

|φλ|2 +
∫

Qt

βλ(φλ)φλ

= τ

2

∫

�

|φ0|2 +
∫

Qt

gφλ +
∫

Qt

(Pφλ)φλ +
∫

Qt

(
π(φλ) − π(0)

)
φλ.

All of the terms on the left-hand side are nonnegative since βλ is monotone and
βλ(0) = 0. If we estimate the right-hand side by using the Lipschitz continuity of π

and the Schwarz and Young inequality, we immediately deduce that

‖φλ‖L∞(0,T ;H) ≤ c (‖g‖L2(0,T ;H) + ‖φ0‖). (4.19)

Third a priori estimate We set V := H1(�) for brevity and assume that the data
satisfy g ∈ L2(0, T ; V ) and φ0 ∈ V . Before going on, we make an observation.
Assume first that ker B = {0}. Then, P = 0 and (4.5) is an ordinary differential
equationwhere the space variable is just a parameter. In the opposite case, the presence
of the nonlocal operator P could be unpleasant. However, we are reduced to the same
situations as before by moving the term Pφλ to the right-hand side and treating it
as a datum. More precisely, in this case, ker B has a finite dimension m > 0 and is
spanned by the first m eigenfunctions (those corresponding to the zero eigenvalues).
Since every eigenfunction of B belongs to the domain V n

B of Bn for every n ∈ N and
we are assuming (2.46), the eigenfunctions (we are interested in) belong to V , and we
have the identities

Pv =
m∑

j=1

(v, e′
j )e

′
j and ∇Pv =

m∑

j=1

(v, e′
j )∇e′

j for every v ∈ H. (4.20)

Namely, we have that Pv ∈ V even though v only belongs to H . Therefore, in any
case, the solution φλ enjoys some space regularity. Precisely, it belongs to L2(0, T ; V )

as well as its time derivative and we have that

τ ∂t∇φλ + ∇φλ + β ′
λ(φλ)∇φλ + π ′(φλ)∇φλ = ∇g + ∇Pφλ a.e. in Q.
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By multiplying this equation by ∇φλ and integrating over Qt , we obtain that

τ

2

∫

�

|∇φλ(t)|2 +
∫

Qt

|∇φλ|2 +
∫

Qt

β ′
λ(φλ)|∇φλ|2

= τ

2

∫

�

|∇φ0|2 +
∫

Qt

∇g · ∇φλ +
∫

Qt

(∇Pφλ) · ∇φλ −
∫

Qt

π ′(φλ)|∇φλ|2.

All of the termson the left-hand side are nonnegative. Thevolume integrals on the right-
hand side, except the one involving P , can be easily treated thanks to the boundedness
of π ′ and the Schwarz and Young inequalities. If P = 0, then we can apply the
Gronwall lemma and obtain an estimate of ∇φλ. Recalling (4.19), we conclude that

‖φλ‖L∞(0,T ;V ) ≤ C2,∞ (‖g‖L2(0,T ;V ) + ‖φ0‖V ). (4.21)

We claim that the same estimate holds true even though ker B is nontrivial. In this
case, we recall the representation formula (4.20) and apply it to φλ. By also accounting
for standard inequalities, we obtain that

∫

Qt

(∇Pφλ) · ∇φλ =
∫

Qt

m∑

j=1

(φλ, e
′
j )∇e′

j · ∇φλ

=
m∑

j=1

∫ t

0

(
(φλ(s), e

′
j )

∫

�

∇e′
j · ∇φλ(s)

)
ds

≤
m∑

j=1

∫ t

0
‖φλ(s)‖ ‖e′

j‖ ‖∇e′
j‖ ‖∇φλ(s)‖ ds ≤ c

∫ t

0
‖φλ(s)‖ ‖∇φλ(s)‖ ds

≤ c ‖φλ‖2L2(0,T ;H)
+ c

∫

Qt

|∇φλ|2.

So, it suffices to recall (4.19) and apply the Gronwall lemma to obtain (4.21) also in
this case. Therefore, (4.21) is established and it trivially implies that

‖φλ‖L2(0,T ;V ) ≤ C2 (‖g‖L2(0,T ;V ) + ‖φ0‖V ). (4.22)

Interpolation Now, let the data satisfy (4.12) with η ∈ (0, 1). We choose

A0 := L2(0, T ; V ) × V, A1 := L2(0, T ; H) × H,

B0 := L2(0, T ; V ) and B1 := L2(0, T ; H)

and apply Lemma 4.1 to the operator T : A1 → B1 that associates to the pair (g, φ0)

the solution φλ to problem (4.5)–(4.6). Then, (4.18) and (4.22) yield (4.9) and (4.10),
respectively. Moreover, by setting ϑ := 1 − η, we have that

(A0,A1)ϑ,2 = (L2(0, T ; V ), L2(0, T ; H))ϑ,2 × (V, H)ϑ,2

= L2(0, T ; Hη(�)) × Hη(�)
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so that (g, φ0) ∈ (A0,A1)ϑ,2 by (4.12). It follows that

φλ ∈ (B0,B1)ϑ,2 = L2(0, T ; Hη(�)) and

‖φλ‖L2(0,T ;Hη(�)) ≤ CCϑ
1 C

1−ϑ
2 ‖(g, φ0)‖L2(0,T ;Hη(�))×Hη(�) (4.23)

with a constant C that does not depend on λ. Notice that (4.23) with η = 1 (i.e.,
ϑ = 0) is ensured by (4.22).
Fourth a priori estimate We are close to the conclusion, and we thus assume that
the data g and φ0 are as in the statement. By multiplying (4.16) by ∂tφλ, integrating
over Qt , and rearranging, we have that

τ

∫

Qt

|∂tφλ|2 + 1

2

∫

�

|φλ(t)|2 +
∫

�

β̂λ(φλ(t))

= 1

2

∫

�

|φ0|2 +
∫

�

β̂λ(φ0) +
∫

Qt

(
g + Pφλ − π(φλ) + π(0)

)
∂tφλ.

Since β̂λ is nonnegative and β̂λ(φ0) ≤ β̂(φ0) a.e. in �, owing to the Schwarz and
Young inequalities and theLipschitz continuity ofπ , and accounting for (4.8) and (4.19),
we infer that

‖∂tφλ‖L2(0,T ;H) ≤ c
(‖g‖L2(0,T ;H) + ‖φ0‖ + ‖β̂(φ0)‖1/2L1(�)

)
. (4.24)

A comparison in (4.16) then yields that

‖βλ(φλ)‖L2(0,T ;H) ≤ c
(‖g‖L2(0,T ;H) + ‖φ0‖ + ‖β̂(φ0)‖1/2L1(�)

)
. (4.25)

Conclusion At this point, we let λ tend to zero based on (4.23)–(4.25), the compact
embedding Hη(�) ⊂ H for η ∈ (0, 1], and the well-knownAubin–Lions lemma (see,
e.g., [26, Thm. 5.1, p. 58]). We deduce that there exists a pair (φ, ξ) such that

φλ → φ weakly star in H1(0, T ; H) ∩ L2(0, T ; Hη(�))

and strongly in L2(0, T ; H),

βλ(φλ) → ξ weakly in L2(0, T ; H), (4.26)

possibly only for a subsequence λk ↘ 0. Then, φ(0) = φ0, and (4.15) is verified.
Moreover, by also applying, e.g., [4, Lemma 2.3, p. 38], we infer that (φ, ξ) satisfies
the inclusion in (4.14). On the other hand, all this implies (4.5) since β̂ is convex, so
that φ is the solution to problem (4.5)–(4.6). This completes the proof of the lemma.

�
Proof of Theorem 2.11. We apply Lemma 4.2 by choosing

g = μ + f − π(0) and φ0 = ϕ0.

Notice that conditions (4.12) are satisfied due to (2.47)–(2.48). We thus obtain the
existence of some ξ satisfying (4.14) and (4.15). The latter reads

τ∂tφ + φ − Pφ + ξ + π(φ) − π(0) = μ + f − π(0) a.e. in Q.
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But ϕ satisfies this equation (see Remark 2.8) since (ϕ, μ) is a solution to problem
(2.35)–(2.37) by assumption, and this implies (4.5) for ϕ since β̂ is convex. On the
other hand, we have that ϕ(0) = ϕ0 = φ0. Since the solution φ to problem (4.5)–(4.6)
is unique, we conclude that φ = ϕ. Therefore, (2.38)–(2.39) are proved. The last
sentence of the statement trivially follows. �

Remark 4.3. We observe that in Theorem 2.11 we start from a solution (ϕ, μ) to
problem (2.35)–(2.37) without using sufficient conditions for the existence of such a
solution. In particular, (2.34) is not accounted for. We also notice that the argument
followed in the above proof provides the existence of a unique solution ϕ to both
equation (2.39) and the variational inequality (2.36) for a given μ without the use
of (2.34).

Remark 4.4. It is possible to slightlymodify the proof of Lemma 4.2 in the application
of Lemma 4.1 and to obtain different regularity results in Theorem 2.11. One can play
with the index p in the interpolation argument, indeed. If we want to maximize the
time regularity, we change the choice of the spaces Bi by taking

B0 := L∞(0, T ; V ) and B1 := L∞(0, T ; H) (4.27)

and start from (4.17) and (4.21) in placeof (4.18) and (4.22). Then,weapplyLemma4.1
still with ϑ = 1 − η, but with p = ∞. Instead of (4.23), we obtain that

φλ ∈ (L∞(0, T ; V ), L∞(0, T ; H))ϑ,∞ and

‖φλ‖(L∞(0,T ;V ),L∞(0,T ;H))ϑ,∞ ≤ CCϑ
1 C

1−ϑ
2 ‖(g, φ0)‖L2(0,T ;Hη(�))×Hη(�),

still with a constant C that does not depend on λ. Then, everything can proceed as
before. At the end of the proof of Theorem 2.11, we arrive at the regularity

ϕ ∈ (L∞(0, T ; V ), L∞(0, T ; H))ϑ,∞ (4.28)

for the first component ϕ of the solution (ϕ, μ) to problem (2.35)–(2.37).We avoid the
troubles that may arise with the exponent∞ and do not offer a different representation
of the space appearing in (4.28). We just remark that the regularity (4.28) is neither
better nor worse than (2.38), since it yields some better time regularity at the expense
of a lower space regularity. One can prove that (L∞(0, T ; V ), L∞(0, T ; H))ϑ,∞ ⊂
L∞(0, T ; Hη−ε(�)) for every ε > 0 (in particular, the Aubin–Lions lemma can be
applied also in the modified proof of Lemma 4.2) so that the Sobolev-type regularity
for ϕ we can obtain is

ϕ ∈ L∞(0, T ; Hη−ε(�)) for every ε > 0.

Remark 4.5. Concerning uniqueness for the second component μ of the solution to
problem (2.35)–(2.37), we can give sufficient conditions in a different direction. The
situation is similar to the one encountered for problem (2.24)–(2.26) and mentioned in
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Remark 2.4. Let us give some detail. Assume that (ϕ, μi ), i = 1, 2, are solutions corre-
sponding to some data ϕ0 and f (with the same first component, due to Theorem 2.10).
By writing (2.35) for both solutions and taking the difference, we immediately obtain
that (Ar (μ1 − μ2), v) = 0 for every v ∈ Vr

A and a.e. in (0, T ), that is

Ar (μ1 − μ2) = 0. (4.29)

This implies that μ1 = μ2 if λ1 > 0. In the opposite case λ1 = 0, we can arrive at
the same conclusion under additional conditions, as we show at once by following
the ideas of [15, Rem. 4.1]. However, in the present case, the condition we assume
on the solutions is difficult to verify, unfortunately. Suppose that D(β) is an open
interval, the restriction of β̂ to D(β) is a C1 function, and all of the values attained
by ϕ belong to a compact subinterval [a, b] ⊂ D(β). Now, choose δ0 such that the
interval [a − δ0, b + δ0] is contained in D(β). Then, for an arbitrary δ ∈ (0, δ0) and
for a.a. t ∈ (0, T ), we can choose v = ϕ(t)−δ (whenceϕ(t)−v = δ) and v = ϕ(t)+δ

(whence ϕ(t) − v = −δ) in the variational inequality (2.36) written for (ϕ, μ1) and
(ϕ, μ2), respectively. Then, by adding the resulting inequalities, we deduce that

2
∫

�

β̂(ϕ) ≤ δ(μ1 − μ2, 1) +
∫

�

β̂(ϕ − δ) +
∫

�

β̂(ϕ + δ) a.e. in (0, T ).

Division by δ then yields that
∫

�

β̂(ϕ) − β̂(ϕ − δ)

δ
+

∫

�

β̂(ϕ) − β̂(ϕ + δ)

δ
≤ (μ1 − μ2, 1).

Taking the limit as δ ↘ 0, we conclude from the Lebesgue dominated convergence
theorem that

0 =
∫

�

β(ϕ) −
∫

�

β(ϕ) ≤ (μ1 − μ2, 1).

Interchanging the roles ofμ1 andμ2,we then infer thatmeanμ1 = meanμ2 a.e. in (0, T ).
By combining this with (4.29), we conclude that μ1 = μ2.
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