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Abstract. We consider the porous medium equation with a power-like reaction term, posed on Riemannian
manifolds. Under certain assumptions on p and m in (1.1), and for small enough nonnegative initial data,
we prove existence of global in time solutions, provided that the Sobolev inequality holds on the manifold.
Furthermore, when both the Sobolev and the Poincaré inequalities hold, similar results hold under weaker
assumptions on the forcing term. By the same functional analytic methods, we investigate global existence
for solutions to the porous medium equation with source term and variable density in R

n .

1. Introduction

We investigate existence of global in time solutions to nonlinear reaction–diffusion
problems of the following type:{

ut = �um + u p in M × (0, T )

u = u0 in M × {0} ,
(1.1)

where M is an N -dimensional complete noncompact Riemannian manifold of infinite
volume, � being the Laplace–Beltrami operator on M and T ∈ (0,∞]. We shall
assume throughout this paper that

N ≥ 3, m > 1, p > m,

so that we are concerned with the case of degenerate diffusions of porous medium
type (see [40]), and that the initial datum u0 is nonnegative.
Let Lq(M) be the space of those measurable functions f such that | f |q is integrable

w.r.t. the Riemannianmeasureμ. We shall always assume thatM supports the Sobolev
inequality, namely that:

(Sobolev inequality) ‖v‖L2∗ (M) ≤ 1

Cs
‖∇v‖L2(M) for any v ∈ C∞

c (M),

(1.2)
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where Cs is a positive constant and 2∗ := 2N
N−2 . In one of our main results, we shall

also suppose that M supports the Poincaré inequality, namely that:

(Poincaré inequality) ‖v‖L2(M) ≤ 1

Cp
‖∇v‖L2(M) for any v ∈ C∞

c (M),

(1.3)

for some Cp > 0. Observe that, for instance, (1.2) holds if M is a Cartan–Hadamard
manifold, i.e. a simply connected Riemannian manifold with nonpositive sectional
curvatures, while (1.3) is valid when M is a Cartan–Hadamard manifold satisfying
the additional condition of having sectional curvatures bounded above by a constant
−c < 0 (see, e.g. [11,12]). Therefore, as is well known, in R

N (1.2) holds, but (1.3)
fails, whereas on the hyperbolic space both (1.2) and (1.3) are fulfilled.

1.1. On some existing results

In [14], problem (1.1) has been studied when p < m. We refer the reader to such paper
for a comprehensive account of the literature; here we limit ourselves to recall some
results particularly related to ours.
For M = R

N and m = 1, it is well known that, if p ≤ 1 + 2
N , then the solution of

problem (1.1) blows up in finite time for any u0 	≡ 0, while global existence holds if
p > 1 + 2

N and u0 is bounded and small enough (see [8,22]; for further results, see
also [7,9,10,25,32,35,36,39,44,45]). For m > 1, in [38] it is shown that the solution
to problem (1.1) blows up for any p ≤ m + 2

N , u0 	≡ 0; instead, there exists a global
in time solution provided p > m + 2

N and u0 is compactly supported and sufficiently
small. On Riemannian manifolds satisfying suitable volume growth conditions, for
m = 1 and p ≤ 1+ 2

N , in [29,46] it is proved that the solution of problem (1.1) blows
up for any u0 	≡ 0, while global existence holds if p > 1+ 2

N for small enough initial
data u0. Similar results have also been stablished in [5,34,42,43].
Problem (1.1), without the forcing term u p, has been largely studied on Riemannian

manifolds, and in particular on Cartan–Hadamard manifolds, in [6,13,15,16,18,19,
21,33,41]. In [20] problem (1.1) is addressed on Cartan–Hadamard manifolds with
−k1 ≤ sec ≤ −k2 for some k1 > k2 > 0, where sec denotes the sectional curvature.
It is shown that, for any p > m, there exists a global in time solution, provided that
u0 has compact support and is small enough, while if u0 is large enough, then there
exists a solution blowing up in finite time.
For any x0 ∈ M, r > 0, let Br (x0) be the geodesic ball centred in x0 and radius r ,

let gi j the metric tensor. In [46], problem (1.1) is studied when M is a manifold with
a pole, μ(Br (x0)) ≤ Crα for some α > 2 and C > 0. Under an additional smallness
condition on curvature at infinity, if u0 is sufficiently small and with compact support,
then there exists a global solution to problem (1.1). Global existence is also proved,
for some initial data u0, under the assumption that M has nonnegative Ricci curvature
and p > α

α−2m. It should be noticed that such result does not cover cases in which
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negative curvature either does not tend to zero at infinity, or does so not sufficiently
fast, in particular the case of the hyperbolic space cannot be addressed.
Finally, in [14] global existence of solutions to problem (1.1) is obtained, for any

p < m and u0 ∈ Lm(M), under the assumption that the Sobolev and the Poincaré
inequalities hold on M .

1.2. Qualitative statements of our new results in the Riemannian setting

Our results concerning problem (1.1) can be summarized as follows.

• (See Theorem 2.2) We prove global existence of solutions to (1.1), assuming
that the initial datum is sufficiently small, that

p > m + 2

N
,

and that the Sobolev inequality (1.2) holds; moreover, smoothing effects and
the fact that suitable Lq norms of solutions decrease in time are obtained. To
be specific, any sufficiently small initial datum u0 ∈ Lm(M) ∩ L(p−m) N

2 (M)

gives rise to a global solution u(t) such that u(t) ∈ L∞(M) for all t > 0 with a
quantitative bound on the L∞ norm of the solution.

• (SeeTheorem2.5)Weshow that, if both theSobolev and thePoincaré inequalities
(i.e. (1.2), (1.3)) hold, then for any

p > m,

for any sufficiently small initial datum u0, belonging to suitable Lebesgue spaces,
there exists a global solution u(t) such that u(t) ∈ L∞(M). Furthermore, a
quantitative bound for the L∞ norm of the solution is satisfied for all t > 0.

Note that in Theorem 2.2 we only assume the Sobolev inequality and we require that
p > m + 2

N , instead in Theorem 2.5 we can relax the assumption on the exponent p,
indeed we assume p > m, but we need to further require that the Poincaré inequality
holds. Moreover, in the two theorems, the hypotheses on the initial data are different.
The main results given in Theorems 2.2 and 2.5 depend essentially only on the

validity of inequalities (1.2) and (1.3), are functional analytic in character and hence
can be generalized to different contexts.

1.3. The case of Euclidean, weighted diffusion

As a particularly significant setting, we single out the case of Euclidean, mass-
weighted reaction–diffusion equations, that has been the object of intense research. In
fact, we consider the problem

{
ρ ut = �um + ρ u p in R

N × (0, T )

u = u0 in R
N × {0}, (1.4)
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where ρ : RN → R is strictly positive, continuous and bounded, and represents a
mass variable density . The problem is naturally posed in the weighted spaces

Lq
ρ(RN ) =

{
v : RN → R measurable , ‖v‖Lq

ρ
:=
(∫

RN
vqρ(x) dx

)1/q

< +∞
}

.

This kind of problem arises in a physical model provided in [23]. Such choice of ρ

ensures that the following analogue of (1.2) holds:

‖v‖L2∗
ρ (RN ) ≤ 1

Cs
‖∇v‖L2(RN ) for any v ∈ C∞

c (RN ) (1.5)

for a suitable positive constant Cs . In some cases, we also assume that the weighted
Poincaré inequality is valid, that is

‖v‖L2
ρ(RN ) ≤ 1

Cp
‖∇v‖L2(RN ) for any v ∈ C∞

c (RN ), (1.6)

for some Cp > 0. For example, (1.6) is fulfilled when ρ(x)  |x |−a , as |x | → +∞,
for every a ≥ 2, whereas, (1.5) is valid for every a > 0.

Problem (1.4) under the assumption 1 < p < m has been investigated in [14].
Under the assumption that the Poincaré inequality is valid on M , it is shown that
global existence and a smoothing effect for small Lm initial data hold, that is solutions
corresponding to such data are bounded for all positive times with a quantitative bound
on their L∞ norm.
In [26,27], problem (1.4) is also investigated, under certain conditions on ρ. It is

proved that if ρ(x) = |x |−a with a ∈ (0, 2),

p > m + 2 − a

N − a
,

and u0 ≥ 0 is small enough, then a global solution exists (see [26, Theorem 1]). Note
that the homogeneity of the weight ρ(x) = |x |−a is essentially used in the proof, since
the Caffarelli–Kohn–Nirenberg estimate is exploited, which requires such a type of
weight. In addition, a smoothing estimate holds. On the other hand, any nonnegative
solution blows up, in a suitable sense, when ρ(x) = |x |−a or ρ(x) = (1+|x |)−a with
a ∈ [0, 2), u0 	≡ 0 and

1 < p < m + 2 − a

N − a
.

Furthermore, in [27,28], such results have been extended to more general initial data,
decaying at infinity with a certain rate (see [27]). Finally, in [26, Theorem 2], it is
shown that if p > m, ρ(x) = (1+|x |)−a with a > 2, and u0 is small enough, a global
solution exists.
Problem (1.4) has also been studied in [30,31], by means of suitable barriers, sup-

posing that the initial datum is continuous and with compact support. In particular,
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in [30] the case that ρ(x)  |x |−a for |x | → +∞ with a ∈ (0, 2) is addressed. It is
proved that for any p > 1, if u0 is large enough, then the solution blows up in finite
time. On the other hand, if p > p̄, for a certain p̄ > m depending on m, p and ρ,
and u0 is small enough, then there exists a global bounded solution. Moreover, in [31]
the case that a ≥ 2 is investigated. For a = 2, blow-up is shown to occur when u0 is
big enough, whereas global existence holds when u0 is small enough. For a > 2, it is
proved that if p > m, u0 ∈ L∞

loc(R
N ) and goes to 0 at infinity with a suitable rate, then

there exists a global bounded solution. Furthermore, for the same initial datum u0, if
1 < p < m, then there exists a global solution, which could blow up as t → +∞ .
Our main results concerning problem (1.4) can be summarized as follows. Assume

that ρ ∈ C(RN ) ∩ L∞(RN ), ρ > 0.

• (See Theorem 2.8) We prove that (1.4) admits a global solution, provided that

p > m + 2

N
;

moreover, certain smoothing effects for solutions are fulfilled. More precisely,

for any sufficiently small initial datum u0 ∈ Lm
ρ (RN ) ∩ L

(p−m) N
2

ρ (RN ) there
exists a global solution u(t) such that u(t) ∈ L∞(RN ) for all t > 0 and a
quantitative bound on the L∞ norm is verified. Moreover, suitable Lq norms of
solutions decrease in time.

• (See Theorem 2.9) We show that, if the Poincaré inequality (1.6) holds and one
assumes the condition

p > m,

then, for any sufficiently small initial datum u0 belonging to suitable Lebesgue
spaces, there exists a global solution u(t) to (1.4) such that u(t) ∈ L∞(RN ),
with a quantitative bound on the L∞ norm.

Let us compare our results with those in [26]. Theorem 2.8 deals with a different
class of weights ρ with respect to [26, Theorem 1], where ρ(x) = |x |−a for a ∈ (0, 2),
and the homogeneity of ρ is used. As a consequence, also the hypotheses on p and the
methods of proofs are different. Furthermore, Theorem 2.9 requires the validity of the
Poincaré inequality, hence, in particular, it can be applied when ρ(x) = (1 + |x |)−a

with a ≥ 2 (see [17]). On the other hand, in Theorem [26, Theorem 2] it is assumed
that ρ(x) = (1 + |x |)−a for a > 2, so, the case a = 2 is not included.

1.4. Organization of the paper

In Section 2, we state all our main results. In Section 3, some auxiliary results
concerning elliptic problems are deduced together with a Benilan–Crandall-type es-
timate. In Section 4, we introduce a family of approximating problems. Then, for
such solutions, we prove that suitable Lq norms of solutions decrease in time, and a
smoothing estimate, in the case p > m + 2

N , supposing that M supports the Sobolev
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inequality. Under such assumptions, global existence for problem (1.1) is shown in
Section 5. In Section 6, we prove that suitable Lq norms of solutions decrease in time,
and L∞ bounds for solutions of the approximating problems, under the assumptions
that p > m and that M supports the Poincaré inequality as well. Then, under such
hypotheses, existence of global solutions to problem (1.1) is proved. Finally, a concise
proof of the results concerning problem (1.4) is given in Section 7 by adapting the
previous methods to that situation.

2. Statements of main results

We state first our results concerning solutions to problem (1.1), then we pass to the
ones valid for solutions to problem (1.4).

2.1. Global existence on Riemannian manifolds

Solutions to (1.1) will be meant in the very weak, or distributional, sense, according
to the following definition.

Definition 2.1. Let M be a complete noncompact Riemannian manifold of infinite
volume. Let m > 1, p > m and u0 ∈ L1

loc(M), u0 ≥ 0. We say that the function u is
a solution to problem (1.1) in the time interval [0, T ) if

u ∈ L p
loc(M × (0, T ))

and for any ϕ ∈ C∞
c (M × [0, T ]) such that ϕ(x, T ) = 0 for any x ∈ M , u satisfies

the equality:

−
∫ T

0

∫
M

u ϕt dμ dt =
∫ T

0

∫
M
um �ϕ dμ dt +

∫ T

0

∫
M

up ϕ dμ dt

+
∫
M

u0(x) ϕ(x, 0) dμ.

First, we consider the case that p > m + 2
N and the Sobolev inequality holds on

M . In order to state our results, we define

p0 := (p − m)
N

2
. (2.1)

Observe that p0 > 1 whenever p > m + 2
N .

Theorem 2.2. Let M be a complete, noncompact manifold of infinite volume such that
the Sobolev inequality (1.2) holds. Let m > 1, p > m+ 2

N and u0 ∈ Lm(M)∩Lp0(M),
u0 ≥ 0 where p0 has been defined in (2.1). Let

r > max

{
p0,

N

2

}
, s = 1 + 2

N
− 1

r
.
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Assume that

‖u0‖Lp0 (M) < ε0 (2.2)

with ε0 = ε0(p,m, N , r,Cs) sufficiently small. Then, problem (1.1) admits a solution
for any T > 0, in the sense of Definition 2.1. Moreover, for any τ > 0, one has
u ∈ L∞(M × (τ,+∞)) and there exists a numerical constant � > 0 such that, for
all t > 0, one has

‖u(t)‖L∞(M) ≤ � t−
γ
ms

{
‖u0‖δ1

L p0 (M)
+ ‖u0‖δ2

L p0 (M)

} 1
ms ‖u0‖

s−1
s

Lm (M),

where

γ = p

p − 1

[
1 − N (p − m)

2 p r

]
, δ1 = p

p − m

p − 1

[
1 + N (m − 1)

2 p r

]
,

δ2 = p − m

p − 1

[
1 + N (m − 1)

2 r

]
.

Moreover, let p0 ≤ q < ∞ and

‖u0‖L p0 (M) < ε̂0 (2.3)

for ε̂0 = ε̂0(p,m, N , r,Cs, q) small enough. Then, there exists a constant C =
C(m, p, N , ε0,Cs, q) > 0 such that

‖u(t)‖Lq (M) ≤ C t−γq‖u0‖δq
L p0 (M)

for all t > 0 , (2.4)

where

γq = 1

p − 1

[
1 − N (p − m)

2q

]
, δq = p − m

p − 1

[
1 + N (m − 1)

2q

]
.

Finally, for any 1 < q < ∞, if u0 ∈ Lq(M) ∩ Lp0(M) ∩ Lm(M) and

‖u0‖Lp0 (M) < ε (2.5)

with ε = ε(p,m, N , r,Cs, q) sufficiently small, then

‖u(t)‖Lq (M) ≤ ‖u0‖Lq (M) for all t > 0 . (2.6)

Remark 2.3. We notice that the proof of the above theorem will show that one can
take an explicit value of ε0 in (2.2). In fact, let q0 > 1 be fixed and {qn}n∈N be the
sequence defined by:

qn = N

N − 2
(m + qn−1 − 1), ∀n ∈ N,

so that

qn =
(

N

N − 2

)n

q0 + N (m − 1)

N − 2

n−1∑
i=0

(
N

N − 2

)i

. (2.7)
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Clearly, {qn} is increasing and qn −→ +∞ as n → +∞. Fix q ∈ [q0,+∞) and let
n̄ be the first index such that qn̄ ≥ q. Define

ε̃0 = ε̃0(p,m, N ,Cs, q, q0)

:=
[
min

{
min

n=0,...,n̄

2m(qn − 1)

(m + qn − 1)2
C2
s ;

2m(p0 − 1)

(m + p0 − 1)2
C2
s

}] 1
p−m

. (2.8)

Observe that ε0 in (2.8) depends on the value of q through the sequence {qn}. More
precisely, n̄ is increasingwith respect to q, while the quantityminn=0,...,n̄

2m(qn−1)
(m+qn−1)2

C2
s

decreases w.r.t. q. We then let q0 = p0, take q = pr and define, for these choice of
q0, q,

ε0 = ε0(p,m, N ,Cs, r) = ε̃0(p,m, N ,Cs, pr, p0) .

Furthermore, in (2.3) we can take

ε̂0 = ε̂0(p,m, N ,Cs, q) = ε̃0(p,m, N ,Cs, q, p0) . (2.9)

Similarly, one can choose the following explicit value for ε in (2.5):

ε = ε̄ ∧ ε0, (2.10)

where

ε̄ = ε̄(p,m,Cs, q) :=
[
min

{
2m(q − 1)

(m + q − 1)2
C2
s ;

2m(p0 − 1)

(m + p0 − 1)2
C2
s

}] 1
p−m

.

Remark 2.4. Observe that, for M = R
N , in [38, Theorem 3, p. 220] it is shown that

if p > m + 2
N and u0 has compact support and is small enough, then the solution to

problem (1.1) globally exists and decays like

t−
1

p−1 as t −→ +∞.

Note that under these assumptions, Theorem 2.2 can be applied. It implies that the
solution to problem (1.1) globally exists and decays like

t−
γ
ms as t −→ +∞.

It is easily seen that, for any p ≥ m
(
1 + 2

N

)
,

γ

ms
≥ 1

p − 1
;

instead, for any m + 2
N < p < m

(
1 + 2

N

)
,

γ

ms
<

1

p − 1
.

Hence, when p ≥ m
(
1 + 2

N

)
the decay’s rate of the solution u(t), for large times,

given by Theorem 2.2 is better than that of [38, Theorem 3, p. 220], while the opposite
is true form+ 2

N < p < m
(
1 + 2

N

)
. In both cases, the class of initial data considered

in Theorem 2.2 is wider.
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In the next theorem, we address the case that p > m, supposing that both the
inequalities (1.2) and (1.3) hold on M .

Theorem 2.5. Let M be a complete, noncompact manifold of infinite volume such
that the Sobolev inequality (1.2) and the Poincaré inequality (1.3) hold. Let

m > 1, p > m, r >
N

2
,

and u0 ∈ Lθ (M) ∩ Lpr (M) where θ = min{m, r}, u0 ≥ 0. Let

s = 1 + 2

N
− 1

r
.

Assume that

‖u0‖
L p N

2 (M)
< ε1 (2.11)

holds with ε1 = ε1(m, p, N , r,Cp,Cs) sufficiently small. Then, problem (1.1) admits
a solution for any T > 0, in the sense of Definition 2.1. Moreover, for any τ > 0 one
has u ∈ L∞(M × (τ,+∞)) and for all t > 0 one has

‖u(t)‖L∞(M) ≤
(

s

s − 1

) 1
m ‖u0‖

s−1
s

Lm (M)

[
‖u0‖p

L pr (M) + 1

(m − 1)t
‖u0‖Lr (M)

] 1
ms

.

Moreover, suppose that u0 ∈ Lq(M) ∩ Lθ (M) ∩ L pr (M) for some for 1 < q < ∞,

‖u0‖
L p N

2 (M)
< ε2, (2.12)

for some ε2 = ε2(p,m, N , r,Cp,Cs, q) sufficiently small. Then,

‖u(t)‖Lq (M) ≤ ‖u0‖Lq (M) for all t > 0 . (2.13)

Remark 2.6. We define, given q > 1:

ε̃1(q) :=
[
min

{
2m(q − 1)

(m + q − 1)2
C; 2m

(
p N

2 − 1
)

(
m + p N

2 − 1
)2C

}] p+m+q−1
p(p+q−1)−m(m+q−1)

(2.14)

where C = C2m/p
p C̃ and C̃ = C̃(Cs,m, p, q) > 0 is defined in (6.8), with the choice

θ := m(m+q−1)
p(p+q−1) . The proof will show that one can choose ε1 := mini=1,...,4 ε̃1(qi )

where q1 = m, q2 = p, q3 = pr and q4 = r .
Similarly, we observe that in (2.12) we can choose

ε2 = ε1 ∧ ε̃1(q) . (2.15)

In the next sections, we always keep the notation as in Remarks 2.3 and 2.6.
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2.2. Weighted, Euclidean reaction–diffusion problems

We consider a weight ρ : RN → R such that

ρ ∈ C(RN ) ∩ L∞(RN ), ρ(x) > 0 for any x ∈ R
N . (2.16)

Solutions to problem (1.4) are meant according to the following definition.

Definition 2.7. Let m > 1, p > m and u0 ∈ L1
ρ,loc(R

N ), u0 ≥ 0. Let the weight ρ

satisfy (2.16). We say that the function u is a solution to problem (1.4) in the interval
[0, T ) if

u ∈ L p
ρ,loc(R

N × (0, T ))

and for any ϕ ∈ C∞
c (RN × [0, T ]) such that ϕ(x, T ) = 0 for any x ∈ R

N , u satisfies
the equality:

−
∫ T

0

∫
RN

u ϕt ρ(x) dx dt =
∫ T

0

∫
RN

um �ϕ dx dt +
∫ T

0

∫
RN

u p ϕ ρ(x) dx dt

+
∫
RN

u0(x) ϕ(x, 0) ρ(x) dx .

First, we consider the case that p > m + 2
N . Recall that since ρ is bounded, the

Sobolev inequality (1.5) necessarily holds.

Theorem 2.8. Let ρ satisfy (2.16). Let m > 1, p > m + 2
N and u0 ∈ Lm

ρ (RN ) ∩
Lp0

ρ (RN ), u0 ≥ 0 with p0 defined in (2.1). Let

r > max

{
p0,

N

2

}
, s = 1 + 2

N
− 1

r
.

Assume that

‖u0‖Lp0
ρ (RN )

< ε0

with ε0 = ε0(p,m, N , r,Cs) sufficiently small. Then, problem (1.4) admits a solution
for any T > 0, in the sense of Definition 2.7. Moreover, for any τ > 0, one has
u ∈ L∞(RN × (τ,+∞)) and there exist � > 0 such that, for all t > 0, one has

‖u(t)‖L∞(RN ) ≤ � t−
γ
ms

{
‖u0‖δ1

L
p0
ρ (RN )

+ 1

m − 1
‖u0‖δ2

L
p0
ρ (RN )

} 1
ms ‖u0‖

s−1
s

Lm
ρ (RN )

,

where

γ = p

p − 1

[
1 − N (p − m)

2 p r

]
, δ1 = p

p − m

p − 1

[
1 + N (m − 1)

2 p r

]
,

δ2 = p − m

p − 1

[
1 + N (m − 1)

2 r

]
.
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Moreover, let p0 ≤ q < ∞ and

‖u0‖L p0
ρ (RN )

< ε̂0

for ε̂0 = ε̂0(p,m, N , r,Cs, q) small enough. Then, there exists a constant C =
C(m, p, N , ε0,Cs, q) > 0 such that

‖u(t)‖Lq
ρ(RN ) ≤ C t−γq‖u0‖δq

L
p0
ρ (RN )

for all t > 0 ,

where

γq = 1

p − 1

[
1 − N (p − m)

2q

]
, δq = p − m

p − 1

[
1 + N (m − 1)

2q

]
.

Finally, for any 1 < q < ∞, if u0 ∈ Lqρ(RN ) ∩ Lp0
ρ (RN ) ∩ Lmρ (RN ) and

‖u0‖Lp0
ρ (RN )

< ε

holds, with ε = ε(p,m, N , r,Cs, q) sufficiently small, then

‖u(t)‖Lq
ρ(RN ) ≤ ‖u0‖Lq

ρ(RN ) for all t > 0 .

A quantitative form of the smallness condition on u0 in the above theorem can be
given exactly as in Remark 2.3, see in particular (2.8), (2.9) and (2.10).

In the next theorem, we address the case p > m. We suppose that the Poincaré
inequality (1.6) holds.

Theorem 2.9. Let ρ satisfy (2.16) and assume that the inequality (1.6) hold. Let

m > 1, p > m, r >
N

2
,

and u0 ∈ Lθ
ρ(RN ) ∩ Lpr

ρ (RN ) where θ = min{m, r}, u0 ≥ 0. Let

s = 1 + 2

N
− 1

r
.

Assume that

‖u0‖
L
p N
2

ρ (RN )
< ε1

holds with ε1 = ε1(m, p, N , r,Cp,Cs) sufficiently small. Then, problem (1.4) admits
a solution for any T > 0, in the sense of Definition 2.7. Moreover, for any τ > 0 one
has u ∈ L∞(RN × (τ,+∞)) and for all t > 0 one has

‖u(t)‖L∞(RN ) ≤
(

s

s − 1

) 1
m ‖u0‖

s−1
s

Lm
ρ (RN )

[
‖u0‖p

L pr
ρ (RN )

+ 1

(m − 1)t
‖u0‖Lrρ(RN )

] 1
ms

.
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Moreover, suppose that u0 ∈ Lqρ(RN )∩Lθ
ρ(RN )∩Lpr

ρ (RN ) for some for 1 < q < ∞,

‖u0‖
L
p N
2

ρ (RN )
< ε2,

for some ε2 = ε2(p,m, N , r,Cp,Cs, q) small enough. Then,

‖u(t)‖Lq
ρ(RN ) ≤ ‖u0‖Lq

ρ(RN ) for all t > 0 .

A quantitative form of the smallness condition on u0 in the above theorem can be
given exactly as in Remark 2.6, see in particular (2.14) and (2.15).

3. Auxiliary results for elliptic problems

Let x0, x ∈ M . We denote by r(x) = dist (x0, x) the Riemannian distance between
x0 and x . Moreover, we let BR(x0) := {x ∈ M, dist (x0, x) < R} be the geodesic ball
with centre x0 ∈ M and radius R > 0. If a reference point x0 ∈ M is fixed, we shall
simply denote by BR the ball with centre x0 and radius R. Moreover, we denote by μ

the Riemannian measure on M .

For any given function v, we define for any k ∈ R
+

Tk(v) :=

⎧⎪⎪⎨
⎪⎪⎩
k if v ≥ k ,

v if |v| < k ,

−k if v ≤ −k .

(3.1)

For every R > 0, k > 0, consider the problem⎧⎪⎪⎨
⎪⎪⎩
ut = �um + Tk(u p) in BR × (0,+∞)

u = 0 in ∂BR × (0,+∞)

u = u0 in BR × {0},
(3.2)

where u0 ∈ L∞(BR), u0 ≥ 0. Solutions to problem (3.2) are meant in the weak sense
as follows.

Definition 3.1. Let m > 1 and p > m. Let u0 ∈ L∞(BR), u0 ≥ 0. We say that a
nonnegative function u is a solution to problem (3.2) if

u ∈ L∞(BR × (0,+∞)), um ∈ L2((0, T ); H1
0 (BR)

)
for any T > 0,

and for any T > 0, ϕ ∈ C∞
c (BR × [0, T ]) such that ϕ(x, T ) = 0 for every x ∈ BR ,

u satisfies the equality:

−
∫ T

0

∫
BR

u ϕt dμ dt = −
∫ T

0

∫
BR

〈∇um,∇ϕ〉 dμ dt +
∫ T

0

∫
BR

Tk(u
p) ϕ dμ dt

+
∫
BR

u0(x) ϕ(x, 0) dμ.
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We also consider elliptic problems of the type{
−�u = f in BR ,

u = 0 in ∂BR ,
(3.3)

where f ∈ Lq(BR) for some q > 1.

Definition 3.2. We say that u ∈ H1
0 (BR), u ≥ 0 is a weak subsolution to problem

(3.3) if ∫
BR

〈∇u,∇ϕ〉 dμ ≤
∫
BR

f ϕ dμ,

for any ϕ ∈ H1
0 (BR), ϕ ≥ 0 .

In the next lemma, we recall [14, Lemma 3.6], which will be used later.

Lemma 3.3. Let v ∈ L1(BR). Let k > 0. Suppose that there exist C > 0 and s > 1
such that

g(k) ≤ Cμ(Ak)
s for any k ≥ k̄.

Then, v ∈ L∞(BR) and

‖v‖L∞(BR) ≤ s

s − 1
C

1
s ‖v‖1−

1
s

L1(BR)
+ k̄.

The following proposition contains an estimate in the spirit of the L∞ one of Stam-
pacchia (see, e.g. [4,24] and references therein) in the ball BR ; however, some dif-
ferences are in order. In fact, we aim at obtaining an estimate independent of the
radius R (see Remark 3.5). Since the volume of M is infinite, the classical estimate of
Stampacchia cannot be directly applied.

Proposition 3.4. Let f ∈ Lm(BR) where m > N
2 . Assume that v ∈ H1

0 (BR), v ≥ 0
is a subsolution to problem {

−�v = f in BR ,

v = 0 on ∂BR ,
(3.4)

in the sense of Definition 3.2. Then,

‖v‖L∞(BR) ≤ s

s − 1

(
1

Cs

) 2
s ‖ f ‖

1
s
Lm (BR)‖v‖

s−1
s

L1(BR)
, (3.5)

where

s = 1 + 2

N
− 1

m
. (3.6)
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Remark 3.5. If in Proposition 3.4 we further assume that there exists a constant k0 > 0
such that

max
{‖v‖L1(BR), ‖ f ‖Lm (BR)

} ≤ k0 for all R > 0,

then from (3.5), we infer that the bound from above on ‖v‖L∞(BR) is independent of
R. This fact will have a key role in the proof of global existence for problem (1.1).

Proof of Proposition 3.4. We define

Gk(v) := v − Tk(v)

where Tk(v) has been defined in (3.2) and

Ak := {x ∈ BR : |v(x)| > k}.

SinceGk(v) ∈ H1
0 (BR) andGk(v) ≥ 0, we can takeGk(v) as test function in problem

(3.4). Arguing as in the proof of [14, Proposition 3.3], we obtain∫
BR

|Gk(v)| dμ ≤ 1

C2
s
‖ f ‖Lm (BR)μ(Ak)

N+2
N − 1

m . (3.7)

By (3.6), setting

C = 1

C2
s
‖ f ‖Lm (BR),

we rewrite 3.7 as ∫
BR

|Gk(v)| dμ ≤ Cμ(Ak)
s .

Hence, we can apply Lemma 3.3 to v and we obtain

‖v‖L∞(BR) ≤ C
1
s

s

s − 1
‖v‖

s−1
s

L1(BR)
+ k.

Taking the limit as k −→ 0 and we get the thesis.

We shall use the following Aronson–Benilan-type estimate (see [2]; see also [37,
Proposition 2.3]).

Proposition 3.6. Let m > 1, p > m, u0 ∈ H1
0 (BR) ∩ L∞(BR), u0 ≥ 0. Let u be the

solution to problem (3.2). Then, for a.e. t ∈ (0, T ),

−�um(·, t) ≤ u p(·, t) + 1

(m − 1)t
u(·, t) in D′(BR).
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Proof. The conclusion follows byminormodifications of the proof of [37, Proposition
2.3] (where p < m), due to the fact that we have p > m. We define

z = ut + u

m − 1

and the operator

Lz = �
(
mum−1z

)
+ mup−1z ,

where u is the solution to problem (3.2). Observe that

z(x, 0) ≥ 0 for x ∈ BR ,

z(x, t) ≥ 0 for x ∈ ∂BR and t ∈ (0, T ) .

Moreover, by direct computation, we get

zt − Lz ≥ 0 in BR × (0, T ).

Thus, arguing as in [37, Proposition 2.3], thanks to the comparison principle, we get,
for a.e. t ∈ (0, T ),

−�um(·, t) ≤ Tk[u p(·, t)] + 1

(m − 1)t
u(·, t) ≤ u p(·, t) + 1

(m − 1)t
u(·, t)

in D′(BR),

where we have used that Tk(u p) ≤ u p . �

4. Lq and smoothing estimates for p > m + 2
N

Lemma 4.1. Let m > 1, p > m + 2
N . Assume that inequality (1.2) holds. Suppose

that u0 ∈ L∞(BR), u0 ≥ 0. Let 1 < q < ∞, p0 as in (2.1) and assume that

‖u0‖Lp0 (BR) < ε̄ (4.1)

with ε̄ = ε̄(p,m, q,Cs) sufficiently small. Let u be the solution of problem (3.2) in
the sense of Definition 3.1, such that in addition u ∈ C([0, T ), Lq(BR)) for any q ∈
(1,+∞), for any T > 0. Then,

‖u(t)‖Lq (BR) ≤ ‖u0‖Lq (BR) for all t > 0 . (4.2)

Note that the request u ∈ C([0, T ), Lq(BR)) for any q ∈ (1,+∞), for any T > 0
is not restrictive, since wewill construct solutions belonging to that class (see the proof
of Theorem 2.2 below). This remark also applies to several other intermediate results
below.
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Proof. Since u0 is bounded and Tk is a bounded and Lipschitz function, by standard
results, there exists a unique solution of problem (3.2) in the sense of Definition 3.1.
We now multiply both sides of the differential equation in problem (3.2) by uq−1,∫

BR

ut u
q−1 dμ =

∫
BR

�(um) uq−1 dμ +
∫
BR

Tk(u
p) uq−1 dμ .

Now, formally integrating by parts in BR . This can be justified by standard tools, by
an approximation procedure. We get

1

q

d

dt

∫
BR

uq dμ = −m(q − 1)
∫
BR

um+q−3 |∇u|2 dμ

+
∫
BR

Tk(u
p) uq−1 dμ . (4.3)

Observe that, thanks to Sobolev inequality (1.2), we have∫
BR

um+q−3 |∇u|2 dμ = 4

(m + q − 1)2

∫
BR

∣∣∣∇ (u m+q−1
2

)∣∣∣2 dμ

≥ 4

(m + q − 1)2
C2
s

(∫
BR

u
m+q−1

2
2N
N−2 dμ

) N−2
N

.

(4.4)

Moreover, the last term in the right-hand side of (4.3), thanks to Hölder inequality
with exponents N

N−2 and N
2 , becomes∫

BR

Tk(u
p) uq−1 dμ ≤

∫
BR

u p uq−1 dμ =
∫
BR

u p−m um+q−1 dμ

≤ ‖u(t)‖p−m

L(p−m) N2 (BR)
‖u(t)‖m+q−1

L
(m+q−1) N

N−2 (BR)

.

(4.5)

Combining (4.4) and (4.5), we get

1

q

d

dt
‖u(t)‖qLq (BR) ≤ −

[
4m(q − 1)

(m + q − 1)2
C2
s − ‖u(t)‖p−m

L p0 (BR)

]
‖u(t)‖m+q−1

L
(m+q−1) N

N−2 (BR)

.

(4.6)

Take any T > 0. Observe that, thanks to hypothesis (4.1) and the known continuity
of the map t �→ u(t) in [0, T ], there exists t0 > 0 such that

‖u(t)‖L p0 (BR) ≤ 2 ε̄ for any t ∈ [0, t0] .

Hence, (4.6) becomes, for any t ∈ (0, t0],
1

q

d

dt
‖u(t)‖qLq (BR) ≤ −

[
4m(q − 1)

(m + q − 1)2
C2
s − 2 ε̄ p−m

]
‖u(t)‖m+q−1

L
(m+q−1) N

N−2 (BR)

≤ 0 ,
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where the last inequality is obtained thanks to (4.1). We have proved that t �→
‖u(t)‖Lq (BR) is decreasing in time for any t ∈ (0, t0], i.e.

‖u(t)‖Lq (BR) ≤ ‖u0‖Lq (BR) for any t ∈ (0, t0] . (4.7)

In particular, inequality (4.7) follows for the choice q = p0, in view of hypothesis
(4.1). Hence, we have

‖u(t)‖L p0 (BR) ≤ ‖u0‖L p0 (BR) < ε̄ for any t ∈ (0, t0] .

Now, we can repeat the same argument in the time interval (t0, t1], where t1 is chosen,
due to the continuity of u, in such a way that

‖u(t)‖L p0 (BR) ≤ 2ε̄ for any t ∈ (t0, t1] .

Thus, we get

‖u(t)‖Lq (BR) ≤ ‖u0‖Lq (BR) for any t ∈ (0, t1] .

Iterating this procedure, we obtain that t �→ ‖u(t)‖Lq (BR) is decreasing in [0, T ].
Since T > 0 was arbitrary, the thesis follows. �

Using a Moser-type iteration procedure, we prove the following result:

Proposition 4.2. Let m > 1, p > m + 2
N . Assume that inequality (1.2) holds. Sup-

pose that u0 ∈ L∞(BR), u0 ≥ 0. Let u be the solution of problem (3.2) in the
sense of Definition 3.1, such that in addition u ∈ C([0, T ), Lq(BR)) for any q ∈
(1,+∞), for any T > 0. Let 1 < q0 ≤ q < +∞ and assume that

‖u0‖L p0 (BR) < ε̃0 (4.8)

for ε̃0 = ε̃0(p,m, N ,Cs, q, q0) sufficiently small. Then, there exists C(m, q0,Cs, ε̃0,

N , q) > 0 such that

‖u(t)‖Lq (BR) ≤ C t−γq‖u0‖δq
Lq0 (BR)

for all t > 0 ,

where

γq =
(

1

q0
− 1

q

)
N q0

2 q0 + N (m − 1)
, δq = q0

q

(
q + N

2 (m − 1)

q0 + N
2 (m − 1)

)
. (4.9)

Proof. Let {qn} be the sequence defined in (2.7). We start by proving a smoothing
estimate from q0 to qn̄ using a Moser iteration technique (see also [1]).

Let t > 0, we define

s = t

2n − 1
, tn = (2n − 1)s . (4.10)
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Observe that t0 = 0, tn̄ = t, {tn} is an increasing sequence w.r.t. n. Now, for any
1 ≤ n ≤ n, we multiply equation (3.2) by uqn−1−1 and integrate in BR × [tn−1, tn].
Thus, we get∫ tn

tn−1

∫
BR

ut u
qn−1−1 dμ dt =

∫ tn

tn−1

∫
BR

�(um) uqn−1−1 dμ dt

+
∫ tn

tn−1

∫
BR

Tk(u
p) uqn−1−1 dμ dt.

Then, we integrate by parts in BR × [tn−1, tn]. Thanks to Sobolev inequality and
hypothesis (4.8), we get

1

qn−1

[
‖u(·, tn)‖qn−1

Lqn−1 (BR)
− ‖u(·, tn−1)‖qn−1

Lqn−1 (BR)

]

≤ −
[

4m(qn−1 − 1)

(m + qn−1 − 1)2
C2
s − 2ε̃

1
p−m
0

] ∫ tn

tn−1

‖u(τ )‖m+qn−1−1

L
(m+qn−1−1) N

N−2 (BR)

dτ,

(4.11)

where we have used the fact that Tk(u p) ≤ u p. We define qn as in (2.7), so that (m +
qn−1 − 1)

N

N − 2
= qn . Hence, in view of hypothesis (4.8) we can apply Lemma 4.1

to the integral on the right-hand side of (4.11), hence we get

1

qn−1

[
‖u(·, tn)‖qn−1

Lqn−1 (BR)
− ‖u(·, tn−1)‖qn−1

Lqn−1 (BR)

]

≤ −
[

4m(qn−1 − 1)

(m + qn−1 − 1)2
C2
s − 2ε̃

1
p−m
0

]
‖u(·, tn)‖m+qn−1−1

Lqn (BR) |tn − tn−1|.
(4.12)

Observe that

‖u(·, tn)‖qn−1
Lqn−1 (BR)

≥ 0,

|tn − tn−1| = 2n−1 t

2n̄ − 1
.

(4.13)

We define

dn−1 :=
[

4m (qn−1 − 1)

(m + qn−1 − 1)2
C2
s − 2ε̃

1
p−m
0

]−1 1

qn−1
. (4.14)

By plugging (4.13) and (4.14) into (4.12), we get

‖u(·, tn)‖m+qn−1−1
Lqn (BR) ≤ (2n̄ − 1)dn

2n−1 t
‖u(·, tn−1)‖qn−1

Lqn−1 (BR)
.

The latter formula can be rewritten as

‖u(·, tn)‖Lqn (BR) ≤
(

(2n̄ − 1)dn
2n−1

) 1
m+qn−1−1

t
− 1

m+qn−1−1 ‖u(·, tn−1)‖
qn−1

m+qn−1−1

Lqn−1 (BR)
.
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Thanks to the definition of the sequence {qn} in (2.7), we write

‖u(·, tn)‖Lqn (BR) ≤
(

(2n̄ − 1)dn−1

2n−1

) N
(N−2)

1
qn

t−
N

(N−2)
1
qn ‖u(·, tn−1)‖

qn−1
qn

N
N−2

Lqn−1 (BR)
.

(4.15)

Define σ := N
N−2 . Observe that, for any 1 ≤ n ≤ n̄, we have

(
(2n̄ − 1)dn−1

2n−1

)σ

=
[
2n̄ − 1

2n−1

(
4m(qn−1 − 1)

(m + qn−1 − 1)2
C2
s − 2ε

1
p−m

)−1 1

qn−1

]σ

=

⎡
⎢⎢⎣2n̄ − 1

2n−1

1
4m qn−1(qn−1 − 1)

(m + qn−1 − 1)2
C2
s − 2ε̃

1
p−m
0 qn−1

⎤
⎥⎥⎦

σ

,

(4.16)

where

2n̄ − 1

2n−1 ≤ 2n̄+1 for all 1 ≤ n ≤ n̄. (4.17)

Consider the function

g(x) :=
[

4m(x − 1)

(m + x − 1)2
C2
s − 2ε̃

1
p−m
0

]
x for q0 ≤ x ≤ qn̄, x ∈ R.

Observe that, thanks to the definition of σ , g(x) > 0 for any q0 ≤ x ≤ qn̄ . Moreover,
g has a minimum in the interval q0 ≤ x ≤ qn̄ , call it x̃ . Then, we have

1

g(x)
≤ 1

g(x̃)
for any q0 ≤ x ≤ qn̄, x ∈ R. (4.18)

Thanks to (4.16), (4.17) and (4.18), we can say that there exist a positive constant C ,
where C = C(N ,Cs, ε, n̄,m, q0), such that

(
(2n̄ − 1)dn−1

2n−1

)σ

≤ C , for all 1 ≤ n ≤ n̄. (4.19)

By using (4.19) and (4.15), we get, for any 1 ≤ n ≤ n̄

‖u(·, tn)‖Lqn (BR) ≤ C
1
qn t−

σ
qn ‖u(·, tn−1)‖

qn−1σ

qn
Lqn−1 (BR)

. (4.20)

Let us set

Un := ‖u(·, tn)‖Lqn (BR).
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Then, (4.20) becomes

Un ≤ C
1
qn t−

σ
qn U

qn−1σ

qn
n−1

≤ C
1
qn t−

σ
qn

[
C

σ
qn t−

σ2
qn U

σ 2 qn−2
qn

k−2

]
≤ · · ·
≤ C

1
qn

∑n−1
i=0 σ i

t−
σ
qn

∑n−1
i=0 σ i

U
σ n q0

qn
0 .

We define

αn := 1

qn

n−1∑
i=0

σ i , βn := σ

qn

n−1∑
i=0

σ i = σ αn, δn := σ n q0
qn

. (4.21)

By substituting n with n̄ into (4.21), we get

αn̄ := N − 2

2

A

qn̄
, βn̄ := N

2

A

qn̄
, δn̄ := (A + 1)

q0
qn̄

, (4.22)

where A :=
(

N
N−2

)n̄ − 1. Hence, in view of (4.10) and (4.22), (4.20) with n = n̄

yields

‖u(·, t)‖Lqn̄ (BR) ≤ C
N−2
2

A
qn̄ t

− N
2

A
qn̄ ‖u0‖

q0
A+1
qn̄

Lq0 (BR)
. (4.23)

We have proved a smoothing estimate from q0 to qn̄ . Observe that if qn̄ = q then the
thesis is proved. Now suppose that q > qn̄ . Observe that q0 ≤ q < qn̄ and define

B := N (m − 1)A + 2 q0(A + 1).

From (4.23) and Lemma 4.1, we get, by interpolation,

‖u(·, t)‖Lq (BR) ≤ ‖u(·, t)‖θ
Lq0 (BR)‖u(·, t)‖1−θ

Lqn̄ (BR)

≤ ‖u0(·)‖θ
Lq0 (BR)C t−

N A
B (1−θ) ‖u0‖2q0

A+1
B (1−θ)

Lq0 (BR)

= C t−
N A
B (1−θ) ‖u0‖2q0

A+1
B (1−θ)+θ

Lq0 (BR)
,

(4.24)

where

θ = q0
q

(
qn̄ − q

qn̄ − q0

)
. (4.25)

Combining (4.24), (4.9) and (4.25), we get the claim, noticing that q was arbitrary in
[q0,∞). �
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Remark 4.3. One cannot let q → +∞ in the above bound. In fact, one can show that
ε −→ 0 as q → ∞. So in such limit the hypothesis on the norm of the initial datum
(2.2) is satisfied only when u0 ≡ 0.

Proposition 4.4. Let m > 1, p > m + 2
N , R > 0, p0 be as in (2.1), u0 ∈ L∞(BR),

u0 ≥ 0. Let

r > max

{
p0,

N

2

}
, s = 1 + 2

N
− 1

r
. (4.26)

Suppose that (2.2) holds for ε0 = ε0(p,m, N ,Cs, r) sufficiently small. Let u be the
solution to problem (3.2), such that in addition u ∈ C([0, T ), Lq(BR)) for any q ∈
(1,+∞), for any T > 0. Let M be such that inequality (1.2) holds. Then, there exists
� = �(p,m, N , r) > 0 such that, for all t > 0,

‖u(t)‖L∞(BR) ≤ � t−
γ
ms

{
‖u0‖δ1

L p0 (BR)
+ 1

m − 1
‖u0‖δ2

L p0 (BR)

} 1
ms ‖u0‖

s−1
s

Lm (BR),

(4.27)

where

γ = p

p − 1

[
1 − N (p − m)

2 p r

]
, δ1 = p

p − m

m − 1

[
1 + N (m − 1)

2 p r

]
,

δ2 = p − m

m − 1

[
1 + N (m − 1)

2 r

]
. (4.28)

Remark 4.5. If in Proposition 4.4, in addition, we assume that for some k0 > 0

max
{‖u0‖Lm (BR); ‖u0‖L p0 (BR)

} ≤ k0 for every R > 0 ,

then the bound from above for ‖u(t)‖L∞(BR) in (4.27) is independent of R.

Proof of Proposition 4.4. Let us set w = u(·, t). Observe that wm ∈ H1
0 (BR) and

w ≥ 0. Due to Proposition 3.6, we know that

−�(wm) ≤
[
w p + w

(m − 1)t

]
.

Observe that, since u0 ∈ L∞(BR) also w ∈ L∞(BR). Due to (4.26), we can apply
Proposition 3.4. So, we have that

‖w‖mL∞(BR) ≤ s

s − 1

(
1

Cs

) 2
s
∥∥∥∥w p + w

(m − 1)t

∥∥∥∥
1
s

Lr (BR)

‖wm‖
s−1
s

L1(BR)

≤ s

s − 1

(
1

Cs

) 2
s
{∥∥w p

∥∥
Lr (BR)

+ 1

(m − 1)t
‖w‖Lr (BR)

} 1
s ‖w‖m

s−1
s

Lm (BR)

(4.29)
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where s has been defined in (3.6). Thanks to (2.2), with an appropriate choice of ε0,
and (4.26) we can apply Proposition 4.2 with

q = pr, q0 = p0, γpr = 1

p − 1

[
1 − N (p − m)

2pr

]

and δpr = δ1/p, δ1 defined in (4.28). Hence, we obtain

‖w p‖Lr (BR) = ‖w‖p
L pr (BR) ≤

[
C t−γpr ‖u0‖δ1/p

L p0 (BR)

]p
, (4.30)

where C > 0 is defined in Proposition 4.2. Similarly, by (2.2), with an appropriate
choice of ε0, and (4.26), we can apply Proposition 4.2 with

q = r, q0 = p0, γr = 1

p − 1

[
1 − N (p − m)

2r

]

and δr = δ2 as defined in (4.28). Hence, we obtain

‖w‖Lr (BR) ≤ Ct−γr ‖u0‖δ2
L p0 (BR)

, (4.31)

where C > 0 is defined in Proposition 4.2. Plugging (4.30) and (4.31) into (4.29), we
obtain

‖w‖mL∞(BR ) ≤ s

s − 1

(
1

Cs

) 2
s
{∥∥w p

∥∥
Lr (BR )

+ 1

(m − 1)t
‖w‖Lr (BR )

} 1
s ‖w‖m

s−1
s

Lm (BR )

≤ s

s − 1

(
1

Cs

) 2
s
{
C p t−p γpr ‖u0‖δ1

L p0 (BR )
+ 1

(m − 1)t
C t−γr ‖u0‖δ2

L p0 (BR )

} 1
s ‖w‖m

s−1
s

Lm (BR ).

Observe that −pγpr = −γr − 1 = γ, where γ has been defined in (4.28). Hence, we
obtain

‖w‖mL∞(BR) ≤ s

s − 1

(
1

Cs

) 2
s

t−
γ
s

{
C p ‖u0‖δ1

L p0 (BR)
+ 1

m − 1
C ‖u0‖δ2

L p0 (BR)

} 1
s ‖w‖m

s−1
s

Lm (BR).

Moreover, since u0 ∈ L∞(BR), we can apply Lemma 4.1 to w with q = m. Thus,
from (4.2) with q = m we get

‖w‖mL∞(BR) ≤ s

s − 1

(
1

Cs

) 2
s

t−
γ
s

{
C p ‖u0‖δ1

L p0 (BR)
+ 1

m − 1
C ‖u0‖δ2

L p0 (BR)

} 1
s ‖u0‖m

s−1
s

Lm (BR).

Finally, define

� :=
[

s

s − 1

(
1

Cs

) 2
s

max
{
C

p
s ; C

1
s

}] 1
m

.
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Hence, we obtain

‖w‖L∞(BR) ≤ � t−
γ
ms

{
‖u0‖δ1

L p0 (BR)
+ 1

m − 1
‖u0‖δ2

L p0 (BR)

} 1
ms ‖u0‖

s−1
s

Lm (BR).

5. Proof of Theorem 2.2

Proof of Theorem 2.2. Let {u0,h}h≥0 be a sequence of functions such that

(a) u0,h ∈ L∞(M) ∩ C∞
c (M) for all h ≥ 0,

(b) u0,h ≥ 0 for all h ≥ 0,

(c) u0,h1 ≤ u0,h2 for any h1 < h2,

(d) u0,h −→ u0 in Lm(M) ∩ L p0(M) as h → +∞ ,

where p0 has been defined in (2.1). Observe that, due to assumptions (c) and (d), u0,h
satisfies (2.2). For any R > 0, k > 0, h > 0, consider the problem

⎧⎪⎪⎨
⎪⎪⎩
ut = �um + Tk(u p) in BR × (0,+∞)

u = 0 in ∂BR × (0,∞)

u = u0,h in BR × {0} .

(5.1)

From standard results, it follows that problem (5.1) has a solution uR
h,k in the sense

of Definition 3.1; moreover, uR
h,k ∈ C

([0, T ]; Lq(BR)
)
for any q > 1. Hence, by

Lemma 4.1, in Proposition 4.2 and in Proposition 4.4, we have for any t ∈ (0,+∞),

‖uR
h,k(t)‖Lm (BR) ≤ ‖u0,h‖Lm (BR); (5.2)

‖uR
h,k(t)‖L p(BR) ≤ C t−γp‖u0,h‖δp

L p0 (BR)
, (5.3)

where

γp = 1

p − 1

[
1 − N (p − m)

2p

]
, δp = p − m

p − 1

[
1 + N (m − 1)

2p

]
,

‖uR
h,k‖L∞(BR) ≤ � t−

γ
ms

{
‖u0,h‖δ1

L p0 (BR)
+ 1

m − 1
‖u0,h‖δ2

L p0 (BR)

} 1
ms ‖u0,h‖

s−1
s

Lm (BR),

(5.4)
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with s as in (4.26) and γ , δ1, δ2 as in (4.28). In addition, for any τ ∈ (0, T ), ζ ∈
C1
c ((τ, T )), ζ ≥ 0, max[τ,T ] ζ ′ > 0,

∫ T

τ

ζ(t)
[(

(uR
h,k)

m+1
2
)
t

]2
dμdt ≤ max[τ,T ] ζ

′C̄
∫
BR

(uR
h,k)

m+1(x, τ )dμ

+ C̄ max[τ,T ] ζ
∫
BR

F
(
uR
h,k(x, T )

)
dμ

≤ max[τ,T ] ζ
′(t)C̄‖uR

h,k(τ )‖L∞(BR)‖uR
h,k(τ )‖mLm (BR)

+ C̄

m + p
‖uR

h,k(T )‖p
L∞(BR)‖uR

h,k(T )‖mLm (BR)

(5.5)

where

F(u) =
∫ u

0
sm−1+p ds ,

and C̄ > 0 is a constant only depending onm. Inequality (5.5) is formally obtained by
multiplying the differential inequality in problem (3.2) by ζ(t)[(um)t ], and integrating
by parts; indeed, a standard approximation procedure is needed (see [17, Lemma 3.3]
and [3, Theorem 13]).

Moreover, as a consequence of Definition 3.1, for any ϕ ∈ C∞
c (BR × [0, T ]) such

that ϕ(x, T ) = 0 for any x ∈ BR , uR
h,k satisfies

−
∫ T

0

∫
BR

uRh,k ϕt dμ dt =
∫ T

0

∫
BR

(uRh,k)
m �ϕ dμ dt +

∫ T

0

∫
BR

Tk [(uRh,k)
p] ϕ dμ dt

+
∫
BR

u0,h(x) ϕ(x, 0) dμ,

(5.6)

where all the integrals are finite. Now, observe that, for any h > 0 and R > 0 the
sequence of solutions {uR

h,k}k≥0 is monotone increasing in k hence it has a pointwise

limit for k → ∞. Let uR
h be such limit so that we have

uR
h,k −→ uR

h as k → ∞ pointwise.

In view of (5.2), (5.3) and (5.4), the right-hand side of (5.5) is independent of k. So,

(uR
h )

m+1
2 ∈ H1((τ, T ); L2(BR)). Therefore, (uR

h )
m+1
2 ∈ C

([τ, T ]; L2(BR)
)
. We can

now pass to the limit as k → +∞ in inequalities (5.2), (5.3) and (5.4) arguing as
follows. From inequality (5.2) and (5.3), thanks to the Fatou’s Lemma, one has for all
t > 0

‖uR
h (t)‖Lm (BR) ≤ ‖u0,h‖Lm (BR). (5.7)

‖uR
h (t)‖L p(BR) ≤ C t−γp‖u0,h‖δp

L p0 (BR)
; (5.8)
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On the other hand, from (5.4), since uR
h,k −→ uR

h as k → ∞ pointwise and the
right-hand side of (5.4) is independent of k, one has for all t > 0

‖uR
h ‖L∞(BR) ≤ � t−

γ
ms

{
‖u0,h‖δ1

L p0 (BR)
+ 1

m − 1
‖u0,h‖δ2

L p0 (BR)

} 1
ms ‖u0,h‖

s−1
s

Lm (BR),(5.9)

with s as in (4.26) and γ , δ1, δ2 as in (4.28). Note that (5.7), (5.8) and (5.9) hold
for all t > 0, in view of the continuity property of u deduced above. Moreover,
thanks to Beppo Levi’s monotone convergence theorem, it is possible to compute the
limit as k → +∞ in the integrals of equality (5.6) and hence obtain that, for any
ϕ ∈ C∞

c (BR × (0, T )) such that ϕ(x, T ) = 0 for any x ∈ BR , the function uR
h

satisfies

−
∫ T

0

∫
BR

uR
h ϕt dμ dt =

∫ T

0

∫
BR

(
uR
h

)m
�ϕ dμ dt +

∫ T

0

∫
BR

(
uR
h

)p
ϕ dμ dt

+
∫
BR

u0,h(x) ϕ(x, 0) dμ.

(5.10)

Observe that all the integrals in (5.10) are finite, hence uR
h is a solution to problem

(5.1), where we replace Tk(u p) with u p itself, in the sense of Definition 3.1. Indeed,
we have, due to (5.7), uR

h ∈ Lm(BR×(0, T )) hence uR
h ∈ L1(BR×(0, T )). Moreover,

due to (5.8), uR
h ∈ L p(BR × (0, T )) indeed we can write∫ T

0

∫
BR

(
uR
h

)p
dμ dt =

∫ T

0
‖uR

h ‖p
L p(BR) dt

≤
∫ T

0

(
C t−γp‖u0,h‖δp

L p0 (BR)

)p
dt

= C p ‖u0,h‖pδp
L p0 (BR)

∫ T

0
t−pγp dt.

(5.11)

Now observe that the integral in (5.11) is finite if and only if p γp < 1 . The latter
reads p > m + 2

N , which is guaranteed by the hypotheses of Theorem 2.2.
Let us now observe that, for any h > 0, the sequence of solutions {uR

h }R>0 is
monotone increasing in R, hence it has a pointwise limit as R → +∞. We call its
limit function uh so that

uR
h −→ uh as R → +∞ pointwise.

In view of (5.2), (5.3), (5.4), (5.7), (5.8), (5.9), the right-hand side of (5.5) is in-

dependent of k and R. So, (uh)
m+1
2 ∈ H1((τ, T ); L2(M)). Therefore, (uh)

m+1
2 ∈

C
([τ, T ]; L2(M)

)
. Since u0 ∈ Lm(M) ∩ L p0(M), there exists k0 > 0 and k1 > 0

such that

‖u0h‖Lm (BR) ≤ k0 ∀ h > 0, ∀ R > 0 ,

‖u0h‖L p0 (BR) ≤ k1 ∀ h > 0, ∀ R > 0 .
(5.12)
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Note that, in view of (5.12), the norms in (5.7), (5.8) and (5.9) do not depend on R (see
Lemma 4.1, Proposition 4.2, Proposition 4.4 and Remark 4.5). Therefore, we pass to
the limit as R → +∞ in (5.7), (5.8) and (5.9). By Fatou’s Lemma,

‖uh(t)‖Lm (M) ≤ ‖u0,h‖Lm (M), (5.13)

‖uh(t)‖L p(M) ≤ C t−γp‖u0,h‖δp
L p0 (M)

, (5.14)

furthermore, since uR
h −→ uh as R → +∞ pointwise,

‖uh‖L∞(M) ≤ � t−
γ
ms

{
‖u0,h‖δ1

L p0 (M)
+ 1

m − 1
‖u0,h‖δ2

L p0 (M)

} 1
ms ‖u0,h‖

s−1
s

Lm (M),

(5.15)

with s as in (4.26) and γ , δ1, δ2 as in (4.28). Note that (5.13), (5.14) and (5.15) hold
for all t > 0, in view of the continuity property of uR

h deduced above.
Moreover, again by monotone convergence, it is possible to compute the limit as

R → +∞ in the integrals of equality (5.10) and hence obtain that, for any ϕ ∈
C∞
c (M × (0, T )) such that ϕ(x, T ) = 0 for any x ∈ M , the function uh satisfies,

−
∫ T

0

∫
M
uh ϕt dμ dt =

∫ T

0

∫
M

(uh)
m �ϕ dμ dt +

∫ T

0

∫
M

(uh)
p ϕ dμ dt

+
∫
M
u0,h(x) ϕ(x, 0) dμ.

(5.16)

Observe that, arguing as above, due to inequalities (5.13) and (5.14), all the integrals
in (5.16) are well posed hence uh is a solution to problem (1.1), where we replace u0
with u0,h , in the sense of Definition 2.1. Finally, let us observe that {u0,h}h≥0 has been
chosen in such a way that

u0,h −→ u0 in Lm(M) ∩ L p0(M).

Observe also that {uh}h≥0 is a monotone increasing function in h hence it has a limit
as h → +∞. We call u the limit function. In view (5.2), (5.3), (5.4), (5.7), (5.8), (5.9),
(5.13), (5.14) and (5.15) the right-hand side of (5.5) is independent of k, R and h. So,

u
m+1
2 ∈ H1((τ, T ); L2(M)). Therefore, u

m+1
2 ∈ C

([τ, T ]; L2(M)
)
. Hence, we can

pass to the limit as h → +∞ in (5.13), (5.14) and (5.15) and similarly to what we
have seen above, we get

‖u(t)‖Lm (M) ≤ ‖u0‖Lm (M), (5.17)

‖u(t)‖L p(M) ≤ C t−γp‖u0‖δp
L p0 (M)

, (5.18)

and

‖u‖L∞(M) ≤ � t−
γ
ms

{
‖u0‖δ1

L p0 (M)
+ 1

m − 1
‖u0‖δ2

L p0 (M)

} 1
ms ‖u0‖

s−1
s

Lm (M), (5.19)
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with s as in (4.26) and γ , δ1, δ2 as in (4.28). Note that both (5.17), (5.18) and (5.19)
hold for all t > 0, in view of the continuity property of u deduced above.

Moreover, again by monotone convergence, it is possible to compute the limit as
h → +∞ in the integrals of equality (5.16) and hence obtain that, for any ϕ ∈
C∞
c (M × (0, T )) such that ϕ(x, T ) = 0 for any x ∈ M , the function u satisfies,

−
∫ T

0

∫
M
u ϕt dμ dt =

∫ T

0

∫
M
um �ϕ dμ dt +

∫ T

0

∫
M
up ϕ dμ dt

+
∫
M
u0(x) ϕ(x, 0) dμ.

(5.20)

Observe that, due to inequalities (5.17) and (5.18), all the integrals in (5.20) are finite,
hence u is a solution to problem (1.1) in the sense of Definition 2.1.

Finally, let us discuss (2.6) and (2.4). Let p0 ≤ q < ∞, and observe that, thanks to
hypotheses (c) and (d), u0h satisfies hypothesis (2.3) for such q and q0 = p0 as u0,
then we have

‖uR
h,k(t)‖Lq (BR) ≤ C t−γq‖u0,h‖δq

L p0 (BR)
. (5.21)

Hence, due to (5.21), letting k → +∞, R → +∞, h → +∞, by Fatou’s Lemma we
deduce (2.4).

Now let 1 < q < ∞. If u0 ∈ Lq(M)∩ Lm(M)∩ L p0(M), we choose the sequence
u0h in such a way that it further satisfies

u0,h −→ u0 in Lq(M) as h → +∞ ,

and observe that u0h satisfies also (2.5) for such q. Then, we have that

‖uR
h,k(t)‖Lq (BR) ≤ ‖u0,h‖Lq (BR). (5.22)

Hence, due to (5.22), letting k → +∞, R → +∞, h → +∞, by Fatou’s Lemma we
deduce (2.6). �

6. Estimates for p > m

Lemma 6.1. Let m > 1, p > m. Assume that inequalities (1.3) and (1.2) hold.
Suppose that u0 ∈ L∞(BR), u0 ≥ 0. Let 1 < q < ∞ and assume that

‖u0‖
L p N

2 (BR)
< ε̃1 (6.1)

for a suitable ε̃1 = ε̃1(p,m, N ,Cp,Cs, q) sufficiently small. Let u be the solution of
problem (3.2) in the senseofDefinition3.1, such that in additionu ∈ C([0, T ); Lq(BR)).
Then,

‖u(t)‖Lq (BR) ≤ ‖u0‖Lq (BR) for all t > 0 . (6.2)
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Proof. Since u0 is bounded and Tk is a bounded and Lipschitz function, by standard
results, there exists a unique solution of problem (3.2) in the sense of Definition 3.1.
We now multiply both sides of the differential equation in problem (3.2) by uq−1,
therefore∫

BR

ut u
q−1 dμ =

∫
BR

�(um) uq−1 dμ +
∫
BR

Tk(u
p) uq−1 dμ .

We integrate by parts. This can be justified by standard tools, by an approximation
procedure. Using the fact that T (u p) ≤ u p, we can write

1

q

d

dt

∫
BR

uq dμ ≤ −m(q − 1)
∫
BR

um+q−3 |∇u|2 dμ +
∫
BR

u p uq−1 dμ

≤ − 4m(q − 1)

(m + q − 1)2

∫
BR

∣∣∣∇ (u m+q−1
2

)∣∣∣2 dμ +
∫
BR

u p+q−1 dμ.

(6.3)

Now we take c1 > 0, c2 > 0 such that c1 + c2 = 1. Thus,∫
BR

∣∣∣∇ (u m+q−1
2

)∣∣∣2 dμ = c1
∥∥∥∇ (u m+q−1

2

)∥∥∥2
L2(BR)

+ c2
∥∥∥∇ (u m+q−1

2

)∥∥∥2
L2(BR)

.

(6.4)

Take any α ∈ (0, 1). Thanks to (1.3), (6.4) becomes∫
BR

∣∣∣∇ (u m+q−1
2

)∣∣∣2 dμ ≥ c1 C
2
p ‖u‖m+q−1

Lm+q−1(BR)
+ c2

∥∥∥∇ (u m+q−1
2

)∥∥∥2
L2(BR)

≥ c1 C
2
p ‖u‖m+q−1

Lm+q−1(BR)
+ c2

∥∥∥∇ (u m+q−1
2

)∥∥∥2+2α−2α

L2(BR)

≥ c1C
2
p ‖u‖m+q−1

Lm+q−1(BR)
+ c2C

2α
p ‖u‖α(m+q−1)

Lm+q−1(BR)

∥∥∥∇ (u m+q−1
2

)∥∥∥2−2α

L2(BR)
.

(6.5)

Moreover, using the interpolation inequality, Hölder inequality and (1.2), we have∫
BR

u p+q−1 dμ,= ‖u‖p+q−1
L p+q−1

≤ ‖u‖θ(p+q−1)
Lm+q−1(BR)

‖u‖(1−θ)(p+q−1)
L p+m+q−1(BR)

≤ ‖u‖θ(p+q−1)
Lm+q−1(BR)

[
‖u‖(1−θ)

p
p+m+q−1

L p N
2 (BR)

‖u‖(1−θ)
m+q−1

p+m+q−1

L
(m+q−1) N

N−2 (BR)

]p+q−1

≤ ‖u‖θ(p+q−1)
Lm+q−1(BR)

‖u‖(1−θ)
p(p+q−1)
p+m+q−1

L p N
2 (BR)

(
1

Cs

∥∥∥∇ (u m+q−1
2

)∥∥∥
L2(BR)

)2(1−θ)
p+q−1

p+m+q−1

(6.6)

where θ := m(m+q−1)
p(p+q−1) . By plugging (6.5) and (6.6) into (6.3), we obtain
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1

q

d

dt
‖u(t)‖qLq (BR) ≤ − 4m(q − 1)

(m + q − 1)2
c1 C

2
p ‖u(t)‖m+q−1

Lm+q−1(BR)

− 4m(q − 1)

(m + q − 1)2
c2 C

2α
p ‖u(t)‖α(m+q−1)

Lm+q−1(BR)

∥∥∥∇ (u m+q−1
2

)∥∥∥2−2α

L2(BR)

+ C̃‖u(t)‖θ(p+q−1)
Lm+q−1(BR)

‖u(t)‖(1−θ)
p(p+q−1)
p+m+q−1

L p N
2 (BR)

∥∥∥∇ (u m+q−1
2

)∥∥∥2(1−θ)
p+q−1

p+m+q−1

L2(BR)

(6.7)

where

C̃ =
(

1

Cs

)2(1−θ)
p+q−1

p+m+q−1

. (6.8)

Let us now fix α ∈ (0, 1) such that

2 − 2α = 2(1 − θ)

(
p + q − 1

p + m + q − 1

)
.

Hence, we have

α = m

p
. (6.9)

By substituting (6.9) into (6.7), we obtain

1

q

d

dt
‖u(t)‖qLq (BR) ≤ − 4m(q − 1)

(m + q − 1)2
c1 C

2
p ‖u(t)‖m+q−1

Lm+q−1(BR)

− 1

C̃

{
4m(q − 1)C

(m + q − 1)2
− ‖u(t)‖

p(p+q−1)−m(m+q−1)
p+m+q−1

L p N
2 (BR)

}

× ‖u(t)‖α(m+q−1)
Lm+q−1(BR)

∥∥∥∇ (u m+q−1
2

)∥∥∥2−2α

L2(BR)
,

(6.10)

where C has been defined in Remark 2.6. Observe that, thanks to hypothesis (6.1) and
the continuity of the solution u(t), there exists t0 > 0 such that

‖u(t)‖
L p N

2 (BR)
≤ 2 ε̃1 for any t ∈ (0, t0] .

Hence, (6.10) becomes, for any t ∈ (0, t0]

1

q

d

dt
‖u(t)‖qLq (BR )

≤ − 4m(q − 1)

(m + q − 1)2
c1 C

2
p ‖u(t)‖m+q−1

Lm+q−1(BR )

− 1

C̃

{
4m(q − 1)C

(m + q − 1)2
− 2ε̃

p(p+q−1)−m(m+q−1)
p+m+q−1

1

}
‖u(t)‖α(m+q−1)

Lm+q−1(BR )

∥∥∥∥∇
(
u
m+q−1

2

)∥∥∥∥2−2α

L2(BR )

≤ 0 ,
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provided ε̃1 is small enough. Hence, we have proved that ‖u(t)‖Lq (BR) is decreasing
in time for any t ∈ (0, t0], i.e.

‖u(t)‖Lq (BR) ≤ ‖u0‖Lq (BR) for any t ∈ (0, t0] . (6.11)

In particular, inequality (6.11) holds q = p N
2 . Hence, we have

‖u(t)‖
L p N

2 (BR)
≤ ‖u0‖

L p N
2 (BR)

< ε̃1 for any t ∈ (0, t0] .

Now, we can repeat the same argument in the time interval (t0, t1] where t1 is chosen,
thanks to the continuity of u(t), in such a way that

‖u(t)‖ ≤ 2 ε̃1 for any t ∈ (t0, t1] .

Thus, we get

‖u(t)‖Lq (BR) ≤ ‖u0‖Lq (BR) for any t ∈ (0, t1] .

Iterating this procedure we obtain the thesis. �
Proposition 6.2. Let m > 1, p > m, R > 0, u0 ∈ L∞(BR), u0 ≥ 0. Let

r >
N

2
, s = 1 + 2

N
− 1

r
. (6.12)

Suppose that (2.11) holds for ε1 = ε1(p,m, N , r,Cs,Cp) sufficiently small. Let u be
the solution to problem (3.2), such that in addition u ∈ C([0, T ); Lq(BR)) for any
1 < q < +∞ and T > 0. Let M support the Sobolev and Poincaré inequalities (1.2)
and (1.3). Then, there exists � = �(N ,m, l,Cs) > 0 independent of T such that, for
all t > 0,

‖u(t)‖L∞(BR) ≤ � ‖u0‖
s−1
s

Lm (BR)

[
‖u0‖p

L pr (BR) + 1

(m − 1)t
‖u0‖Lr (BR)

] 1
ms

.

(6.13)

Remark 6.3. If in Proposition 6.2, in addition, we assume that for some k0 > 0

max
{‖u0‖Lm (BR); ‖u0‖L pr (BR); ‖u0‖Lr (BR)

} ≤ k0 for every R > 0 ,

then the bound from above for ‖u(t)‖L∞(BR) in (6.13) is independent of R.

Proof of Proposition 6.2. Let us set w = u(·, t). Observe that wm ∈ H1
0 (BR) and

w ≥ 0. Due to Proposition 3.6 we know that

−�(wm) ≤
[
w p + w

(m − 1)t

]
.

Observe that, since u0 ∈ L∞(BR) also w ∈ L∞(BR). Due to (6.12), we can apply
Proposition 3.4, so we have that

‖w‖mL∞(BR) ≤ s

s − 1

(
1

Cs

) 2
s
∥∥∥∥w p + w

(m − 1)t

∥∥∥∥
1
s

Lr (BR)

‖wm‖
s−1
s

L1(BR)
.
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Therefore

‖w‖mL∞(BR) ≤ s

s − 1

(
1

Cs

) 2
s
{
‖w p‖Lr (BR) + 1

(m − 1)t
‖w‖Lr (BR)

} 1
s ‖w‖m

s−1
s

Lm (BR),

(6.14)

where s has been defined in (6.12). In view of (2.11) with a suitable ε1, since u0 ∈
L∞(BR), we can apply Lemma 6.1. Hence, we obtain

‖w p‖Lr (BR) = ‖w‖p
L pr (BR) ≤ ‖u0‖p

L pr (BR). (6.15)

Similarly, again for an appropriate ε1 in (2.11), since u0 ∈ L∞(BR), we can apply
Lemma 6.1 and obtain

‖w‖Lr (BR) ≤ ‖u0‖Lr (BR). (6.16)

Plugging (6.15) and (6.16) into (6.14), we obtain

‖w‖mL∞(BR) ≤ s

s − 1

(
1

Cs

) 2
s
{
‖w‖p

L pr (BR) + 1

(m − 1)t
‖w‖Lr (BR)

} 1
s ‖w‖m

s−1
s

Lm (BR)

≤ s

s − 1

(
1

Cs

) 2
s
{
‖u0‖p

L pr (BR) + 1

(m − 1)t
‖u0‖Lr (BR)

} 1
s ‖w‖m

s−1
s

Lm (BR).

Moreover, since u0 ∈ L∞(BR), we can apply Lemma 6.1 to w with q = m. Thus,
from (6.2) with q = m we get

‖w‖L∞(BR ) ≤
[

s

s − 1

(
1

Cs

) 2
s
] 1

m

‖u0‖
s−1
s

Lm (BR )

[
‖u0‖p

L pr (BR ) + 1

(m − 1)t
‖u0‖Lr (BR )

] 1
ms

.(6.17)

We define

� :=
[

s

s − 1

(
1

Cs

) 2
s
] 1

m

. (6.18)

Then, from (6.17) we get

‖w‖L∞(BR) ≤ �‖u0‖
s−1
s

Lm (BR)

[
‖u0‖p

L pr (BR) + 1

(m − 1)t
‖u0‖Lr (BR)

] 1
ms

.

�
Proof. The proof of Theorem 2.5 follows the same line of arguments of that of The-
orem 2.2, with minor differences. Let {u0,h}h≥0 be a family of functions such that

(a) u0,h ∈ L∞(M) ∩ C∞
c (M) for all h ≥ 0,

(b) u0,h ≥ 0 for all h ≥ 0,

(c) u0,h1 ≤ u0,h2 for any h1 < h2,

(d) u0,h −→ u0 in Lθ (M) ∩ L pr (M) where θ := min{m, r} as h → +∞ ,
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Observe that, due to assumptions (c) and (d), u0,h satisfies (2.11) for an appropriate
ε1 sufficiently small. Moreover, thanks by interpolation, since m < p < pr , we have

u0,h −→ u0 in L p(M) as h → +∞ .

For any R > 0, k > 0, h > 0, consider the problem⎧⎪⎪⎨
⎪⎪⎩
ut = �um + Tk(u p) in BR × (0,+∞)

u = 0 in ∂BR × (0,∞)

u = u0,h in BR × {0} .

(6.19)

From standard results it follows that problem (6.19) has a solution uR
h,k in the sense of

Definition 3.1; moreover, uR
h,k ∈ C

([0, T ]; Lq(BR)
)
for any q > 1. Hence, it satisfies

the inequalities in Lemma 6.1 and in Proposition 6.2, i.e. for any t ∈ (0,+∞),

‖uR
h,k(t)‖Lm (BR) ≤ ‖u0,h‖Lm (BR);
‖uR

h,k(t)‖L p(BR) ≤ ‖u0,h‖L p(BR);

‖uR
h,k‖L∞(BR) ≤ � ‖u0,h‖

s−1
s

Lm (BR)

[
‖u0,h‖p

L pr (BR) + 1

(m − 1)t
‖u0,h‖Lr (BR)

] 1
ms

,

with r and s as in (6.12) and � as in (6.18). Arguing as in the proof of Theorem (2.6),
we can pass to the limit as k → +∞, R → +∞, h → ∞ obtaining a function u,
which satisfies

‖u(t)‖Lm (M) ≤ ‖u0‖Lm (M), (6.20)

‖u(t)‖L p(M) ≤ ‖u0‖L p(M), (6.21)

and

‖u‖L∞(M) ≤ � ‖u0‖
s−1
s

Lm (M)

[
‖u0‖p

L pr (M) + 1

(m − 1)t
‖u0‖Lr (M)

] 1
ms

, (6.22)

with r and s as in (6.12) and � as in (6.18). Moreover, for any ϕ ∈ C∞
c (M × (0, T ))

such that ϕ(x, T ) = 0 for any x ∈ M , the function u satisfies

−
∫ T

0

∫
M
u ϕt dμ dt =

∫ T

0

∫
M
um �ϕ dμ dt +

∫ T

0

∫
M
up ϕ dμ dt

+
∫
M
u0(x) ϕ(x, 0) dμ.

(6.23)

Observe that, due to inequalities (6.20), (6.21) and (6.22), all the integrals in (6.23)
are finite, hence u is a solution to problem (1.1) in the sense of Definition 2.1. Finally,
using hypothesis (2.12), inequality (2.13) can be derived exactly as (2.6). �
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7. Proofs of Theorems 2.8 and 2.9

We use the following Aronson–Benilan-type estimate (see [2]; see also [37, Propo-
sition 2.3]); it can be shown exactly as Proposition 3.6.

Proposition 7.1. Let m > 1, p > m, u0 ∈ H1
0 (BR) ∩ L∞(BR), u0 ≥ 0. Let u be the

solution to problem (7.1). Then, for a.e. t ∈ (0, T ),

−�um(·, t) ≤ ρu p(·, t) + ρ

(m − 1)t
u(·, t) in D′(BR).

For any R > 0, consider the following approximate problem⎧⎪⎪⎨
⎪⎪⎩

ρ(x)ut = �um + ρ(x)u p in BR × (0, T )

u = 0 in ∂BR × (0, T )

u = u0 in BR × {0} ,

(7.1)

where BR denotes the Euclidean ball with radius R and centre in the origin O .
We exploit the following estimate, which can be proved as that in Lemma 4.1.

Lemma 7.2. Let

m > 1, p > m + 2

N
.

Suppose that inequality (1.5) holds. Suppose that u0 ∈ L∞(BR), u0 ≥ 0. Let
1 < q < ∞, p0 be as in (2.1) and assume that

‖u0‖Lp0
ρ (BR)

< ε̄,

for ε̄ = ε̄(p,m,Cs, q) small enough. Let u be the solution of problem (7.1), such that
in addition u ∈ C([0, T ), Lq

ρ(BR)) for any q ∈ (1,+∞), for any T > 0. Then,

‖u(t)‖Lq
ρ(BR) ≤ ‖u0‖Lq

ρ(BR) for all t > 0 .

The following smoothing estimate is also used; the proof is the same as that of
Proposition 4.2.

Proposition 7.3. Let

m > 1, p > m + 2

N
,

Assume (2.16) and (1.5). Suppose that u0 ∈ L∞(BR), u0 ≥ 0. Let u be the so-
lution of problem (7.1), such that in addition u ∈ C([0, T ), Lq

ρ(BR)) for any q ∈
(1,+∞), for any T > 0. Assume that (2.2) holds for ε0 = ε0(p,m, N , r,Cs) suffi-
ciently small. There exists C(m, q0,Cs, ε, N , q) > 0 such that

‖u(t)‖Lq
ρ(BR) ≤ C t−γq‖u0‖δq

L
q0
ρ (BR)

for all t > 0 ,
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where

γq =
(

1

q0
− 1

q

)
N q0

2 q0 + N (m − 1)
; δq = q0

q

(
q + N

2 (m − 1)

q0 + N
2 (m − 1)

)
.

Proof of Theorem 2.8. The conclusion follows by repeating the same arguments as in
the proof of Theorem 2.2. We use Lemma 7.2 instead of Lemma 4.1, Proposition 7.3
instead of 4.2 and Proposition 7.1 instead of Proposition 3.6.

7.1. Proof of Theorem 2.9

We consider problem (7.1). We use the following estimate, which can be proved as
that in Lemma 6.1.

Lemma 7.4. Let

m > 1, p > m.

Assume that (1.5) and (1.6) hold. Suppose that u0 ∈ L∞(BR), u0 ≥ 0. Let 1 < q < ∞
and assume that and assume that

‖u0‖
L p N

2 (BR)
< ε̃1

for a suitable ε̃1 = ε̃1(p,m, N ,Cp,Cs, q) sufficiently small. Let u be the solu-
tion of problem (7.1), such that in addition u ∈ C([0, T ), Lq(BR)) for any q ∈
(1,+∞), for any T > 0. Then,

‖u(t)‖Lq (BR) ≤ ‖u0‖Lq (BR) for all t > 0 .

Proof of Theorem 2.9. The conclusion follows arguing step by step as in the proof of
Theorem 2.5. We use Lemma 7.4 instead of Lemma 6.1 and Proposition 7.1 instead
of Proposition 3.6.

Acknowledgements

The first and third authors are partially supported by the PRIN project 201758MTR2
“Direct and inverse problems for partial differential equations: theoretical aspects and
applications” (Italy). All authors are members of the Gruppo Nazionale per l’Analisi
Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale
di Alta Matematica (INdAM). The third author is partially supported by GNAMPA
Projects 2019, 2020.

Funding Open access funding provided by Politecnico di Milano within the CRUI-
CARE Agreement.



Vol. 21 (2021) Global existence of solutions and... 2373

Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/
by/4.0/.

Publisher’s Note SpringerNature remains neutralwith regard to jurisdictional claims
in published maps and institutional affiliations.

REFERENCES

[1] D. Alikakos, L p bounds of solutions of reaction-diffusion equations, Comm. Partial Differential
Equations 4 (1979), 827–868 .

[2] D. G. Aronson, P. Bénilan, Regularité des solutions de l’éequation des milieux poreus dans RN , C.
R. Acad. Sci. Paris Ser. A-B 288 (1979), 103–105 .

[3] D. Aronson, M.G. Crandall, L.A. Peletier, Stabilization of solutions of a degenerate nonlinear
diffusion problem, Nonlinear Anal. 6 (1982), 1001–1022.

[4] L. Boccardo, G. Croce, “Elliptic partial differential equations. Existence and regularity of distribu-
tional solutions”, De Gruyter, Studies in Mathematics, 55, 2013 .

[5] C. Bandle, M.A. Pozio, A. Tesei, The Fujita exponent for the Cauchy problem in the hyperbolic
space, J. Differential Equations 251 (2011), 2143–2163.

[6] M. Bonforte, G. Grillo, Asymptotics of the porous media equations via Sobolev inequalities, J.
Funct. Anal. 225 (2005), 33-62.

[7] X. Chen, M. Fila, J.S. Guo, Boundedness of global solutions of a supercritical parabolic equation,
Nonlinear Anal. 68 (2008), 621–628.

[8] H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = �u + u1+α , J. Fac. Sci.
Univ. Tokyo Sect. I 13 (1966), 109–124.

[9] Y. Fujishima, K. Ishige, Blow-up set for type I blowing up solutions for a semilinear heat equation,
Ann. Inst. H. Poincaré Anal. Non Linéaire 31 (2014), 231–247.

[10] V.A. Galaktionov, J.L. Vázquez, Continuation of blowup solutions of nonlinear heat equations in
several dimensions, Comm. Pure Appl. Math. 50 (1997), 1–67.

[11] A.Grigor’yan,Analytic and geometric background of recurrence and non-explosion of theBrownian
motion on Riemannian manifolds, Bull. Amer. Math. Soc. 36 (1999), 135–249.

[12] A. Grigor’yan, “Heat Kernel and Analysis on Manifolds”, AMS/IP Studies in Advanced Math-
ematics, 47, American Mathematical Society, Providence, RI; International Press, Boston, MA,
2009.

[13] G. Grillo, K. Ishige, M. Muratori, Nonlinear characterizations of stochastic completeness, J. Math.
Pures Appl. 139 (2020), 63-82.

[14] G.Grillo, G. Meglioli, F. Punzo, Smoothing effects and infinite time blowup for reaction-diffusion
equations: an approach via Sobolev and Poincaré inequalities, J. Math. Pures Appl. (to appear)

[15] G. Grillo, M. Muratori, Radial fast diffusion on the hyperbolic space, Proc. Lond. Math. Soc. 109
(2014), 283–317.

[16] G. Grillo, M. Muratori, Smoothing effects for the porous medium equation on Cartan-Hadamard
manifolds, Nonlinear Anal. 131 (2016), 346–362.

[17] G. Grillo, M. Muratori, M.M. Porzio, Porous media equations with two weights: smoothing and
decay properties of energy solutions via Poincaré inequalities, Discrete Contin. Dyn. Syst. 33
(2013), 3599–3640.

[18] G. Grillo, M. Muratori, F. Punzo, The porous medium equation with large initial data on negatively
curved Riemannian manifolds, J. Math. Pures Appl. 113 (2018), 195–226.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2374 G. Grillo et al. J. Evol. Equ.

[19] G. Grillo, M. Muratori, F. Punzo, The porous medium equation with measure data on negatively
curved Riemannian manifolds, J. European Math. Soc. 20 (2018), 2769-2812.

[20] G. Grillo, M. Muratori, F. Punzo, Blow-up and global existence for the porous medium equation
with reaction on a class of Cartan-Hadamard manifolds, J. Diff. Eq. 266 (2019), 4305-4336.

[21] G. Grillo, M. Muratori, J.L. Vázquez, The porous medium equation on Riemannian manifolds with
negative curvature. The large-time behaviour, Adv. Math. 314 (2017), 328–377.

[22] K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equa-
tions, Proc. Japan Acad. 49 (1973), 503–505.

[23] S. Kamin, P. Rosenau, Nonlinear thermal evolution in an inhomogeneous medium, J. Math. Phys.
23 (1982), 1385–1390.

[24] D. Kinderlehrer, G. Stampacchia, “An Introduction to Variational Inequalities and Their Applica-
tions”, Academic Press, New York, 1980.

[25] H.A. Levine, The role of critical exponents in blow-up theorems, SIAM Rev. 32 (1990), 262–288.
[26] A.V.Martynenko, A. F. Tedeev,On the behavior of solutions of the Cauchy problem for a degenerate

parabolic equation with nonhomogeneous density and a source, (Russian) Zh. Vychisl. Mat. Mat.
Fiz. 48 (2008), no. 7, 1214-1229; transl. in Comput. Math.Math. Phys. 48 (2008), no. 7, 1145-1160.

[27] A.V. Martynenko, A.F. Tedeev, V.N. Shramenko, The Cauchy problem for a degenerate parabolic
equation with inhomogenous density and a source in the class of slowly vanishing initial functions
(Russian) Izv. Ross. Akad. Nauk Ser. Mat. 76 (2012), no. 3, 139-156; transl. in Izv. Math. 76 (2012),
no. 3, 563-580.

[28] A.V. Martynenko, A.F. Tedeev, V.N. Shramenko, On the behavior of solutions of the Cauchy prob-
lem for a degenerate parabolic equation with source in the case where the initial function slowly
vanishes, Ukrainian Math. J. 64 (2013), 1698–1715.

[29] P. Mastrolia, D. D.Monticelli, F. Punzo,Nonexistence of solutions to parabolic differential inequal-
ities with a potential on Riemannian manifolds, Math. Ann. 367 (2017), 929-963.

[30] G. Meglioli, F. Punzo, Blow-up and global existence for solutions to the porous medium equation
with reaction and slowly decaying density, J. Diff. Eq., 269 (2020), 8918-8958.

[31] G. Meglioli, F. Punzo, Blow-up and global existence for solutions to the porous medium equation
with reaction and fast decaying density, Nonlin. Anal. 203 (2021), 112187.

[32] N. Mizoguchi, F. Quirós, J.L. Vázquez, Multiple blow-up for a porous medium equation with
reaction, Math. Ann. 350 (2011), 801–827.

[33] F. Punzo, Support properties of solutions to nonlinear parabolic equations with variable density in
the hyperbolic space, Discrete Contin. Dyn. Syst. Ser. S 5 (2012), 657–670.

[34] F. Punzo, Blow-up of solutions to semilinear parabolic equations on Riemannian manifolds with
negative sectional curvature, J. Math. Anal. Appl. 387 (2012), 815–827.

[35] P. Quittner, The decay of global solutions of a semilinear heat equation, Discrete Contin. Dyn. Syst.
21 (2008), 307–318.

[36] P. Souplet,Morrey spaces and classification of global solutions for a supercritical semilinear heat
equation in R

n , J. Funct. Anal. 272 (2017), 2005–2037.
[37] P.E. Sacks, Global behavior for a class of nonlinear evolution equations, SIAM J. Math Anal. 16

(1985), 233–250.
[38] A.A. Samarskii, V.A. Galaktionov, S.P. Kurdyumov, A.P. Mikhailov, “Blow-up in Quasilinear Par-

abolic Equations”, De Gruyter Expositions in Mathematics, 19. Walter de Gruyter & Co., Berlin,
1995.

[39] J.L. Vázquez, The problems of blow-up for nonlinear heat equations. Complete blow-up and
avalanche formation, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl. 15
(2004), 281–300.

[40] J.L. Vázquez, “The PorousMediumEquation.Mathematical Theory”, OxfordMathematicalMono-
graphs. The Clarendon Press, Oxford University Press, Oxford, 2007.

[41] J.L. Vázquez, Fundamental solution and long time behavior of the porous medium equation in
hyperbolic space, J. Math. Pures Appl. 104 (2015), 454–484.

[42] Z. Wang, J. Yin, A note on semilinear heat equation in hyperbolic space, J. Differential Equations
256 (2014), 1151–1156.

[43] Z. Wang, J. Yin, Asymptotic behaviour of the lifespan of solutions for a semilinear heat equation
in hyperbolic space, Proc. Roy. Soc. Edinburgh Sect. A 146 (2016) 1091–1114.



Vol. 21 (2021) Global existence of solutions and... 2375

[44] F.B. Weissler, L p-energy and blow-up for a semilinear heat equation, Proc. Sympos. Pure Math.
45 (1986), 545–551.

[45] E. Yanagida, Behavior of global solutions of the Fujita equation, Sugaku Expositions 26 (2013),
129–147.

[46] Q.S. Zhang, Blow-up results for nonlinear parabolic equations on manifolds, Duke Math. J. 97
(1999), 515–539.

Gabriele Grillo, Giulia Meglioli and
Fabio Punzo
Dipartimento di Matematica
Politecnico di Milano
Piazza Leonardo da Vinci 32
20133 Milano
Italy
E-mail: gabriele.grillo@polimi.it

Giulia Meglioli
E-mail: giulia.meglioli@polimi.it

Fabio Punzo
E-mail: fabio.punzo@polimi.it

Accepted: 6 March 2021


	Global existence of solutions and smoothing effects for classes of reaction–diffusion equations on manifolds
	Abstract
	1. Introduction
	1.1. On some existing results
	1.2. Qualitative statements of our new results in the Riemannian setting
	1.3. The case of Euclidean, weighted diffusion
	1.4. Organization of the paper

	2. Statements of main results
	2.1. Global existence on Riemannian manifolds
	2.2. Weighted, Euclidean reaction–diffusion problems

	3. Auxiliary results for elliptic problems
	4. Lq and smoothing estimates for p>m+2N
	5. Proof of Theorem 2.2
	6. Estimates for p>m
	7. Proofs of Theorems 2.8 and 2.9
	7.1. Proof of Theorem 2.9

	Acknowledgements
	REFERENCES




