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Abstract. We study functions of bounded variation (and sets of finite perimeter) on a convex open set
£2 C X, X being an infinite-dimensional separable real Hilbert space. We relate the total variation of such
functions, defined through an integration by parts formula, to the short-time behaviour of the semigroup
associated with a perturbation of the Ornstein—Uhlenbeck operator.

1. Introduction

In this paper we study some properties of functions of bounded variation (BV
functions, for short) defined on an open convex subset of a real separable Hilbert
space, endowed with a weighted Gaussian measure.

In finite dimension the theory of BV functions is widely developed (see e.g. [3]
and the references therein), whereas in the infinite-dimensional setting the analysis is
still at the initial stage and many basic properties are unexplored. Besides the interest
on its own, the study of BV functions in infinite-dimensional spaces is motivated by
problems arising in calculus of variations, stochastic analysis and it is connected with
the applications in information technology (see, for example, [19,22-24,26]).

BV functions for Gaussian measures in separable Banach spaces were introduced
in [17] using Dirichlet forms. Inspired by the results in finite dimension, which con-
nect the theory of functions of bounded variation to that of semigroups of bounded
operators, the authors of [18] have proved an elegant characterisation of BV func-
tions in terms of the short-time behaviour of the Ornstein—Uhlenbeck semigroup.
More precisely, in a separable Banach space X, if y is a centred and nondegenerate
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Gaussian measure on X and u belongs to the Orlicz space L(log L)Y 2(X , V), then
u € BV(X, y) if, and only if,

hmlnf/ [DgSt)u|gdy < 400,

where Dy is the gradient operator along the Cameron—Martin space H (see Sect. 2) and
S(z) is the classical Ornstein—Uhlenbeck semigroup defined via the Mehler formula
(see (1)). The latter is the analogous, in the Gaussian setting, of the heat semigroup used
by De Giorgiin [11] to provide the original definition of BV functions in the Euclidean
case. An analytic approach based on geometric measure theory is proposed in [4] to
prove, as in the finite-dimensional case, the equivalence of different definitions of
BV (X, y) functions also, as in [18], in terms of the Ornstein—Uhlenbeck semigroup
S(t) near t+ = 0. Similar De Giorgi-type characterisations of BV functions have
been obtained for weighted Gaussian measures and more recently for general Fomin
differentiable measures in Hilbert spaces, see [12] and the reference therein.

Beside the difficulty of considering general measures, another difficulty of different
nature comes from the consideration of functions defined in domains rather than in the
whole space. These difficulties come from the lack of factorisation of the underlying
measure (that is lost even for Gaussian measures in domains) and the unavailability of
decomposition of the domain through the classical method of local charts. Therefore,
the easiest interesting case seems to be that of convex domains that are possible to
deal with through global penalisation techniques. This is the approach we followed
in [6] (see also [21]), and in this paper we take advantage of the results proved there.
We start from a weighted Gaussian measure v := e~ Yy in a Hilbert space X, where
U : X — Ris convex and sufficiently regular, and consider an open convex domain
£2 C X. After introducing the Cameron—Martin space H and the Malliavin gradient
Dy along it, we define the form (u, v) — fQ (Dyu, Dyv)gdv on the appropriate
Sobolev spaces. The perturbed Ornstein—Uhlenbeck operator Lg; is then defined in
the usual variational way, and it is the generator of an analytic, strongly continuous
and contraction semigroup T (¢) in LP(£2,v), for 1 < p < oo.

For the latter, differently from the Ornstein—Uhlenbeck semigroup in the whole
space, no explicit integral representation which allows for direct computations is
known. In this direction, in [21] the authors consider the restrictions to an open convex
set 2 € X of BV (X, y) functions and they characterise the finiteness of their total
variation in 2 in terms of the Neumann Ornstein—Uhlenbeck semigroup defined in
2.

Following the ideas in [2], we define the BV (£2, v) space through an integration by
parts formula against suitable Lipschitz functions. Then, we show that the functions
u of bounded variation in £2 with respect to v can be characterised by the finiteness
of the limit of | DpTe (Dullp1 (o vy a8t — 0. The proof of this result relies on a
commutation formula between the semigroup T, (#) and the gradient operator along
H (see Proposition 5). This result was already known in the case of the whole space
(see [12]). Here, by means of the crucial pointwise gradient estimate (7) and suitable
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penalisations @, of U outside §2 based on the distance function from §2 along H (here
is a first point where the convexity of §2 comes into the play) and the penalisation
Ve 1= e“pfy of the measure v, see Sect. 2.1, we are able to let ¢ to 0 and to come
back to £2.

Finally, we provide a necessary condition in order that a set E is of finite perimeter
in £2 with respect to v (i.e. xg € BV (§2, v)). This condition is given in terms of the
short-time behaviour of the Ornstein-Uhlenbeck content |To (1) xe — XE| L1 (2.0) @S
t — 07T. Further, a sufficient condition in terms of a related quantity is also shown.
This circle of ideas goes back to [20], which originated several researches. Among
these, the only infinite-dimensional result, proved for BV functions in space endowed
with a Gaussian measure, is in [5].

2. Hypotheses and preliminaries

Let Hy and H, be two real Hilbert spaces with inner products (-, -) 7, and (-, -) g, ,
respectively. We denote by B(H)) the o-algebra of Borel subsets of H; and by
C ]g (Hy; Hy), k € NU{oo} the set of k-times Fréchet differentiable functions from Hj to
H, with bounded derivatives up to order k (C{;(H1) if Hy = R).For @ € Cg (Hy; Hp)
we denote by D@ (x) the derivative of @ atx € Hy:if f € Cg(Hl), for every x € H
there exists a unique k € H; such that Df (x)(h) = (h,k)y,, h € H; and we set
Df(x) := k. Let X be a separable Hilbert space, with inner product (-, -) and norm
|-].Let B € L(X) (the set of bounded linear operators from X to itself). We say that B
is non-negative if (Bx, x) > 0 for every x € X and positive if (Bx, x) > 0 for every
x € X \ {0}. We recall that a non-negative and self-adjoint operator B € L£(X) is a
trace class operator whenever Tr(B) := ZZ‘;I (Bey, en) < oo for some (and hence,
every) orthonormal basis (e;),en of X.

Let y be a nondegenerate Gaussian measure on X with mean zero and covari-
ance operator Qoo = —QA~!, where the operators Q and A satisfy the following
assumptions.

Hypotheses 1. (i) Q € L(X) is a self-adjoint and non-negative operator with
Ker O = {0},
(ii) A:D(A) C X — X isa self-adjoint operator satisfying (Ax, x) < —w|x|? for
every x € D(A) and some positive w;
(iii) Qe'* = €' Q foranyt > 0;
(iv) Tr(—QA™ ") < o0
Under Hypotheses 1(i)—(iii), the measure y is well defined and the Ornstein—
Uhlenbeck semigroup defined via the Mehler formula

SO NHE) = /X flex +VI—e2ipdy(y), xeX. fel'Xy) ()

is symmetric in L2(X , ¥). We fix an orthonormal basis (vi)xen of X such that

OooVk = Akvg, keN, (2)
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where (Ar)keN is the decreasing sequence of eigenvalues of Q. Under Hypothesis
1(iv), the Cameron—Martin space (H, |-|g)

H =0V x) = {x c X‘ ikk_l(x, w)? < oo},
k=1

where |-|  is induced by the inner product (i, k) := (Qna’*h, Oc/?k), is a Hilbert

space compactly and densely embedded in X (see [8] and [13] for further details). The
sequence (ex)ken, Where e = /Agvy forany k € N, is an orthonormal basis of H. By
Hypotheses 1, the operator —ngl : D(ngl) CX—>X (—ngl : D(ngl) CH—
H, respectively) is the generator of a contractive and strongly continuous semigroup
e~19% on X (on H, respectively), see [14, Proposition p. 84]). If Y is a Banach space
with norm ||-||y, a function F : X — Y is said to be H-Lipschitz continuous if there
exists a positive constant C such that

IF(x+h) = Fx)ly < Clhlg, 3

forevery h € H and y-a.e. x € X. We denote by [F]y.Lip the best constant C in (3).
For more information see [8, Sections 4.5 and 5.11]. We denote by H, the space of
the Hilbert—Schmidt operators in H that is the space of the bounded linear operators
B : H — H such that ||B||%_(2 =y IBg,-I%{ is finite, where {g, |n € N} is any
orthonormal basis of H. We say that f : X — R is H-differentiable at xo € X if
there exists £ € H such that

fxo+h) = fxo) + (€, hyy +o(lhlg),  as |hlg — 0.

In such a case we set Dy f(xg) := £ and D; f (xo) := (Dpg f(x0), e;)g foranyi € N.
The derivative Dp f (xo) is called the Malliavin derivative of f at x¢. In a similar way
we say that f is twice H -differentiable at xq if f is H-differentiable near x( and there
exists B € Hj such that

1
f(XO+h)=f(XO)+<DHf(XO),h)H+E(Bh,h)ﬂ +o(hlg),  as |hlg — 0.

In such a case we set D%{f(xo) := B and D;; f(xo) := (D%{f(xo)ej, e;)y for any
i,j € N.If fis twice H-differentiable at xo, then D;; f(xo) = Dj; f (xo) for every
i, j € N. Notice that if f : X — R is once or twice Fréchet differentiable at x(, then
it is once or twice H -differentiable at xo and it holds Dy f (x9) = Qoo Df (xg), and
Dlzq f(xp) = Qoosz (x0) Qoo, Where the equality must be understood as holding in
H.Forany k € NU{oo}, we denote by FC ]h‘ (X), the space of cylindrical C ]b‘ functions,
i.e. the set of functions f : X — R such that f(x) = o((x, h1), ..., (x, hn)) for
some ¢ € Cﬁ(RN),hl, ....,hy € Hand N € N.By]—'Cé‘(X, H) we denote H-valued
cylindrical Cé‘ functions with finite rank. The Sobolev spaces in the sense of Malliavin
DVP(X,y) and D>P(X, y) with p € [1, 00) are defined as the completions of the
smooth cylindrical functions F C;°(X) in the norms

1
1 Uptrcey = (11 + /X D flfdy )"
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1
1PNy = (11 + /X 1D} F 1 dy )

This is equivalent to considering the domain of the closure of the gradient operator,
defined on smooth cylindrical functions, in L? (X, y) (see [8, Section 5.2]). Let U :
X — R satisfy the following assumptions.

Hypotheses 2. U is a convex function which belongs to C*(X) N DV (X, y) for all
q € [1, 0o) with H-Lipschitz gradient.

The convexity of the function U guarantees that U is bounded from below by a
linear function, and therefore, it decreases at most linearly and by Fernique theorem
(see [8, Theorem 2.8.5]) e~V belongs to L' (X, y). Then, we can consider the finite
log-concave measure

Itis obvious that y and v are equivalent measures, hence saying that a statement holds
y-a.e.is the same as saying that it holds v-a.e. Moreover as U € Ny>1 DY (X, y), the
operator Dy : fC;(X) — LP(X,v; H) isclosablein L? (X, v), p € (1, c0) and the
space D''P(X,v), p > 1 can be defined as the domain of its closure (still denoted by
Dpy). In a similar way we may define D*P (X, v), p € (1, 00) (for more details see
[1,9,16]). The Gaussian integration by parts formula [y, D; fdy = «/L)T, Sy b, vi) fdy,

which holds true for any f € F Cé(X )and i € N, yields
1
/ wDigodv~|—/ oD;yrdv =/ oy D;Udv + —/ (x, vi)pydy, i eN,
X X X Vi Jx

forany ¢ € D"/ (X,v) (p > 1) and ¢ € FC}(X).

In what follows £2 denotes an open subset of X. In this case, the spaces D17 (82, v)
and DZ*P(.Q, V), p € (1, 00), can be defined in a similar way as in the whole space,
thanks to the following result (see [6, Proposition 1.4]).

Proposition 1. Assume that Hypotheses 1 and 2 are satisfied. Let p € (1, 00) and let
2 be an open subset of X. The operators Dy : FC;°(82) — LP(2,v; H) and

(Dy, D) : FC(2) x FCP(R2) — LP(2,v; H) x LP(2, v; Hy)

are closable in LP (82, v) and LP($2,v) x LP(82, v), respectively. Here F C.°(£2) is
the space of the restrictions to 2 of functions in FC;°(X).

The spaces DL.p (£2,v; H), p € (1, 00), are defined in a similar way, replacing smooth
cylindrical functions with H-valued smooth cylindrical functions with finite rank. We
recall that if F € DI’P(Q, v; H), then Dy F (x) belongs to H; for a.e. x € 2. We
denote by p’ the conjugate exponent to p € (1, 00).
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2.1. Perturbed Ornstein—Uhlenbeck semigroup on convex domains

In order to consider the initial boundary value problems defined in £2 we define the
distance function along H

dot o [fUAl L€ HO (@ =0} HO(2 —x) # 0
W= 0, HN (2 —x) =0,

for x € X, and we recall some useful regularity results, (see, for instance, [8, Theorems
2.8.5and 5.11.2] and [10, Section 3]).

Proposition 2. If 2 C X is an open convex set, then d_é is H-differentiable and its
Malliavin derivative is H -Lipschitz with H-Lipschitz constant less than or equal to 2,
ie.

|Dydg (x +h) — Dpdg )|y < 2lhlg.

or any h € H and for v-a.e x € X. Moreover, D% d2 exists v-a.e. in X and d>
y . HYQ 2
belongs to D*P (X, v) for every p € [1, 00).

We require some further regularity on dé.

Hypotheses 3. Let $2 be an open convex subset of X such that v(0§2) = 0 and D%_Id_%2
is H-continuous y-a.e. in X, i.e. for y-a.e. x € X we have

an OD%,dg(x +h) = D%,d5 (x).
H—)

Remark 1. As stated in [6, Remark 1.7] there is a rather large class of subsets of X
satisfying Hypothesis 3. For instance, if 352 is (locally) a C?>-embedding in X of an
open subset of a hyperplane in X and v(9£2) = 0, then Hypothesis 3 is satisfied. Easy
examples are open balls and open ellipsoids of X, open hyperplanes of X and every
set of the form 2 = {x € X |G(x) <0}, where G : X — Risa C2-convex function
such that Dy G is nonzero at every point of 92.

We consider the semigroup 7 (¢) on L2(£2, v) and its generator Lo:
D(Lg) = {u e D'2(2,v) ‘ Ju € L2(£2, v) such that
/ (Dyu, Dgo)ydy = —/ vpdv Vo € TC;O(Q)} 4)
2 2

with Lou = v if u € D(Lg). We recall (see [6, Section 2]) an approximation
procedure of T (f) f, when f € L3(2,v), through FC 2 (X) functions that relies on
a reduction to a finite (say n-) dimensional space and on a e-penalisation argument.
Accordingly, the approximation depends on two parameters n and . More precisely,
we consider the function @, : X — R defined by

1
e (x) = U(x) + 2—d_é(x), xeX, e>0,
1
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and the measure v, given by e~®¢y. Next, we consider the operator L, on the whole
X defined as

D(L,) = {u e D'2(X, v) |3 v € L2(X, v.) such that

/ (Dyu, Dy @) gdve = —/ v dv, for every ¢ € ]:CISO(X)}, 5)
X X

with L.u :=vifu € D(L;), and the semigroup 7T, (¢) generated by L, in L2(X, ve).
We point out that L, acts on smooth cylindrical functions ¢ as follows

o0
Leg = Tr(Dy@) — Y _ A7 (x. &) Di¢ — (D ®e. Do)y
i=1

o0
_ 1
= Tr(D}ip) = Y_ 4 (. Dig = (DuU + 5Dy, Dyo)
i=1

"

Now we recall a useful approximation result whose proof can be found in [6, Theorem
2.8].

Theorem 1. Under Hypotheses 1, 2 and 3 the following statements hold true.

(i) Foranye > Qand f € L%(X, v,), there exists a sequence (fy)nen < L%(X, ve)
converging to f in L%(X, v,) such that T, (t) fnisin ]:Cg(X) and

Tim T fo = Te) flpragea,y =0, 1> 0.

In addition, if f € D“2(X, v,) then the sequence (f,) can be chosen in a way
that Dy f,, converges to Dy f in L! (X,ve; H), asn — <.

(i) Forany f € Lz(.Q, V) there exists an infinitesimal sequence (€,)neN Such that
T, (1) ]7 weakly convergesto T (1) f in DV2(82, v), where fis any L*-extension

of f to X.

We collect some properties of T (¢), see [6, Proposition 1.10, Theorems 3.1 & 3.3].

Proposition 3. If Hypotheses 1, 2 and 3 hold true, then

(1) the semigroup Tq(t) generated in LZ(Q, V) can be extended to a positivity
preserving contraction semigroup in LP (§2, v) forevery 1 < p < ooandt > 0,
still denoted by T (). It is strongly continuous in LP (§2, v) for any p € [1, 00)
and consistent;

(i) forany p € [1,00), f € LP(82,v) and g € L*°(82, v) it holds

/ fTa@)gdy =/ gTo() fdv, 1>0; (6)
Q Q
(iii) forany p € (1,00), f € LP(£2,v) andt > O there is K, > 0 such that

IDuTo ) fIy < Kpt PPToMIfI1P v-ae. in $2; ©)
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(v) if f € DYP(22,v),t > 0and p € [1, 00) it holds
IDuTe@ fIP <& P ToIDy flly  v-ae in L. ®)

We point out that the results in Proposition 3 continue to hold if we replace £2, v
and T (¢) by X, v, and T, (t), respectively.

2.2. BV functions in Hilbert spaces: definitions and some known facts

We introduce BV functions in the Wiener space setting. Let Y be a separable Hilbert
space with norm |-|y. We recall that in a separable space X the o-algebra B(X) is
generated by the family of the cylindrical sets (see e.g. [25]). Denote by M(£2;Y)
the set of Borel Y-valued measures on £2. If Y = R then we write M (£2). The total
variation of u € M(£2; Y) is the positive Borel measure

)
i B = U:i] B,, B, € B(-Q)
|l (B) = SUP{ E [ (Bn)ly | B, By =0, ifn £m, | B € B(£2).

n=1

Let Lip.(§2; Y) be the set of bounded Lipschitz continuous Y-valued functions g :
£2 — Y such thatdist(supp g, X \. £2) > 0 and define the space BV (£2, v) as follows.

Definition 1. Let £2 be an open subset of X. We say that a function f € L?(£2, v)
is of bounded variation in £2, and we write f € BV (£2, v), if there exists a measure
uw € M($2; H) such that

ffﬁmv=—/gﬂmmm
2 2

for every g € Lip.(£2) and h € H, where 0 denotes, up to the sign, the adjoint in
L?(£2, v) of the partial derivative along 4 € H. In this case we set D, f := L.

As in the finite-dimensional case, one can characterise functions of bounded varia-
tion by their total variation.

Definition 2. Let £2 be an open subset of X andu € L?(£2, v). We define the variation
of u in §2 by

Vu(u, 2) := sup {/ u div, gdv
Q

F C Hfinite-dimensional, }
g €Lip.($2; F), llglloo = 1.}

Here div, g = vazl o gi(x)if g(x) = Zfil gi(X)k; and F = span{ky, ..., ky} for
some N € N.

When §2 = X, in the two definitions above we can consider Lip, (X ) and Lip, (X; F),
respectively, as test functions spaces.

As announced, in [2, Theorem 5.7] it has been proved that u € BV (£2, v) if and
only if V, (u, §2) is finite. Moreover, in this case

|Dyu|($2) = Vy(u, £2). (€))
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Finally we say that a Borel subset E of X is of finite perimeter in §2 with respect to v,
whenever the function xg belongs to BV (£2, v). In this case we denote by P, (E, §2)
the total variation of xg in £2.

3. A De Giorgi type characterisation

The main result of this section is the De Giorgi type characterisation of BV (£2, v)
functions in Theorem 3, which relies on a “quasi-commutative” formula between the
semigroup T (f) and the H-gradient operator D ; here estimate (8) plays a crucial
role. This formula is inspired by an analogous formula proved in [12]. We first define
the Sobolev spaces DY2(X, ve; H).

Definition 3. We denote by DY2(X, vy; H) the domain of the closure of the operator
Dy : FCH(X, H) — L*(X, ve; Hp) inthe L?(X, ve; H) norm (see [7, Section 8.11).
Dy is defined as

Dyd(x) = ZZ—( X)) ((Qol X)) ® e),
where {e; | i € N} is an orthonormal basis of H and
n
D) =Y @il x1). ... (x xk)er

for some n € N, k(i) € N, x1,...,xq) € X and ¢; € CLRD) for every i =
1, ..., n.In an analogous way we define the space D1’2(.Q, v; H).

We first show a vector-valued version of Theorem 1. Let L, in LZ(X , Ve; H) be the
operator defined via the quadratic form by

(F, G)r—>/ (D F, DyG)y,dve  F,G € D"*(X, ve; H).
X

In the same way we define the operator L in in L2(2, v; H). We recall that by [14, p.
84] ([14, Corollary 3.17 and Proposition 3.23] and [14, Corollary 4.8], respectively),
the operators L, and L, generate strongly continuous semigroups T, (#) and T ()
(contractive and analytic, respectively).

Proposition 4. The operators L, Lo and the semigroups T (t) and T (t) act com-
ponent by component, i.e. if F € D(Lg) (D(Lg), respectively), and it is such that
F = Z?il fiei for some basis {e,|n € N} of H, then f; € D(Lg) (D(Lg),
respectively) and

L.F =) (Lefei, LoF =Y (Lgfe.

i=1 i=1
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Moreover, for everyt > 0, if F € LZ(X, Ve; H) (LZ(.Q, v; H), respectively), and it
is such that F = Z,Oil fiei for some basis {e, |n € N} of H and f; € LZ(X, Ve)
(L2(82, v), respectively) then

o o

T.(OF = ) (Te(t) fi)ei, (TmnF = _(Te)fei, respecn'vely)
i=1 i=1

The above identities hold ve-a.e. in X (vg-a.e. in §2, respectively).

Proof. We only show the results for L, and T, (¢). Let F = Z;’il fiei € D(L;) and

let G = ge; for some j € Nand g € D'2(X, vg); then

/X<DHg, DHf,'>Hdvg = /X (DuG, Dy F)pq,dve
= —/ (G,LgF)ydv, = —/ gL F);dve.
X X
This shows that f; € D(L) (see (5)) and L. f; = (L¢F') ;. Now observe that
Di(Te(M)F)j = (LeTe(O)F)j = Le(Te(O)F)j,  (Te(0)F); = fj.

Thus, by the uniqueness of the solution of the Cauchy problem associated with D, — L,
in L2(X, Ve ), it follows that (T¢ () F) j = T, (¢) fj for any ¢ > 0. The arbitrariness of
J € N concludes the proof. O

Remark 2. According to the definition of T, (¢) and T (¢) it is immediately seen that
for every F € L2(X, ve; H) and G € L*(£2, v; H)

IT()F* < T.()IF?>, 1>0, ve-ae.in X (10)
and
ITo()G)? < To®)|G)?, >0, v-ae.in £2. (11)

Moreover, taking into account that the semigroups T () and T, (¢) act component
by component, we can obtain a vector-valued version of Theorem 1.

Theorem 2. Under Hypotheses 1, 2 and 3, the following statements hold true.

(i) For any ¢ > 0 and F € L%(X, ve: H), there exists a sequence (Fy), <
L2(X, ve: H) such that Ts(t)F, belongs to .7-'C2(X; H) and

nli{réo 1w = F”LZ(X’Vs?H) =0,
nll)rr;o T (2)F, _TS(I)F”DLZ(X,US;H) =0, t>0. (12)

If, inaddition, F € DI’Z(X, Ve; H) then Dy F, convergesto Dy F inLl(X, Ve; Ho),
asn — oo.
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(i) Forany F € L2(.Q, v; H) there exists an infinitesimal sequence (&,)neN Such
that Te, (t)F weakly converges to To(t)F in DI’Z(Q, v; H), where F is any
L?-extension of F to X.

Proof. (i) LetF =322, f@e; where f) € L>(X, v.),i € N.Foreveryi € N,by

Theorem 1(i), there exists (fk(i))keN C L%(X, Vg ) converging to f(i) in L2(X, Ve)
such that T, (t)fk(’) belongs to FC; (X) and

im 7.0 f” — T fDlpron, =0,  te>0. (13)
k—o00

Observe that (12) follows immediately from (13). Now fix i, n € N and consider
k; € N such that for every k > k; it holds

; : 1
@) r@) 24v .
[ = 0P < =
Consider the vector field F,, := Z?:l f,((ii)e,'. We claim that (F,) is the sequence
we are looking for. Indeed F, belongs to L*(X, ve; H) for any n € N. Let
no € N be such that )2 | ”f(l)”iz(x,vg) < n/2 and let n > ng such that
1/n < n/2. We have

n o0

1w = FlZ2x 0, ) Z/ ) = FOPdve+ 3 1 D)
i=1X i=n+1

=

+

=7

:I»—'
NSRS

In a similar way we can prove the other statements.
(i) is an immediate consequence of Proposition 4 and Theorem 1(ii). ]

Before going on, recall that usually in the characterisation of functions of bounded
variation in terms of the short-time behaviour of suitable semigroups a crucial tool is
an appropriate commutation formula between the semigroup and the gradient operator.
For instance, for the Wiener space and the Ornstein—Uhlenbeck semigroup the equality
Dy S(t)f = e 'S(t) Dy f holds true forany 1 > 0.Letus prove a (quasi) commutation
formula between T (¢) and Dy, under the following additional assumption.

Hypotheses 4. The map (d)~2||D%d% |+, belongs to L*(X, v).

Remark 3. Ttis not difficult to show that every open ball and every open ellipsoid of X
as well as every open hyperplane of X satisfy Hypothesis 4. We show that Hypothesis 4
is satisfied when £2 is the unit ball By centred at zero. The other examples can be
discussed in a similar fashion. Observe that, by Proposition 2, ||D12,{d§2 ll+¢, <2 and
I D%l,d?2 (x)|l#, = 0if x € Bx. Moreover, there exists a constant C > 0 such that

dpy(x) > Cinf{|h|x |h € HN (Bx —x)} > Cinf{|h|x | h € (Bx — x)}
= Cinf{|x — h|x | h € Bx} = Cdist(x, Bx) = C||x|x — 1],
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where dist(x, By) is the distance of x from By. So
dz*|Dypd3 |2, dv < Kf S —

./x By B T x~yx (xlx —D*
<K/ ;e_U(x)dy(x) < K(f e—p/Udy)Pl’(/ ;dy(x»%
— Jx(xlx = D* - X x (Jx|x — D*?

< K(/X e*p’Udy)i( B md%’@));’ a4

where K is a positive constant and y,, denotes the n-dimensional Gaussian measure,
image of y under the projection on span {vy, ..., v,}. To conclude, observe that there
exists n € N such that the right-hand side of (14) is finite.

dv(x)

Proposition 5. Under Hypotheses 1, 2, 3 and 4, the formula
-1
DTt f — (e7'9=To () Dy f)
t
- _/ X T (t — 5)(DLU Dy Ta(s) f)ds. (15)
0

holds true v-a.e. in $2, for any f € Lip,.(£2) and t > 0.

Proof. In order to prove (15) we show that
[ Dutas. Guav = [ (S Ta Dy, G
Q 2

t
- /Q /0 (S OL (To(t — ) (DL UDHTa(s) ), Ghdsdv,  (16)

for any f € Lip.(£2), G € Cp(82; H) and ¢t > 0. By performing slight changes in
[12, Appendix A] we get

DyT.()g — (e '2< T,(t)Dpyg)

t
= _/ DX T, (1 — 5)(D},®. Dy Te(s)g)ds (17)
0

vg-a.e. in X for any g € Lip,(X) and ¢ > 0, where T, (¢) is the semigroup introduced
in Sect. 2.1. Now, let f € Lip,.(§2) and }T be the trivial extension to zero of f in the
whole space X. Clearly, fbelongs to Lip,(X) and (17) holds true with g replaced
by f Consequently, multiplying (17) by the function G and integrating on §2 with
respect to v yield

/ (DuT.(1)f, G)gdv = / (e™"0% (T, (t) Dy ). G) v
2 22
t
— / / (000 (T, (1 — 5) (D4 . Dy To(s) 1)), G) pdsdv
2 J0

- /Q<e—’Q&f T.(1)Dy f, G)pdv
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t
_ fo /Q (€SO (T, (1 — (DY 0. Dy To(s) [)), G)mdvds,  (18)

where in the last line we used the Fubini—Tonelli theorem.

The proof of (16) is split in two steps.
Step 1. We argue by approximation on the last terms in (18) and (16).

Forevery ¢, s > 0 we fix a Borel measurable version of Dy T (s) f and Dy T:(s) f
in L2(£2, v; H) and L*>(X, v,; H), respectively. Consider the function

DuTa(s) f(x), x € £2;

Te(s. %) = {DHTE(s)f(x), xeX~ Q.

Observe that the map x +— I.(s, x) is an extension of Dy Tqo(s) f to the whole
X. Thus, by Theorem 2 there is a sequence &, | 0 such that for every n > 0 the
function T, (t — s)(D%I UT (s, -)) weakly converges to T (1 — s)(DIZL, UDgTo(s)f)
in D2(£2, v; H). Observe that the set

{Tgn(t—s)(D%,UFn(s,~))|n € Nand s, n > 0} (19)

is bounded in L2($2,v; H). Indeed by the contractivity of T, () in the space
L%(X, ve,; H), the fact that U = @, on §2 and estimate (8) we have

T, (t — ) (D% U Ty (s, .))‘

-

S ‘

L2(2,v;H)
T, = )(DRU T (s, )|

L2(82,ve,5 H)

Te, (t — s)(D3U Ty (s, )

L2(X,ve,; H)

< |phune. )|

P20 = (DHY L REICR] VER

<[DnUlnLip (”DH Tn(s)f”Lz(X,vEn;H) + IDu TQ(S)fIILz(Q,U;H))
— -1 ~
< DrUvipe™ 0 (11,61Dw Tl 2, + 1T2O1Da flill 2.0 )
1
< 2[DyUlpLip(w(X) 21Dy fllLo(2,v:H)

where in the last line we used the contractivity of T,(¢) and To(¢) in L and the fact
that v, (X) < v(X) for any n € N. So there exists M > 0 large enough so that the
family in (19) is contained in B(0, M), the ball of L?(§2, v; H) with centre 0 and
radius M.

Recall that every bounded subset of L2(2,v: H) is weakly metrisable (see [15,
Proposition 3.106]) and let p : B(0, M) x B(0, M) — R be a metric such that the
topology generated by p and the weak topology in B(0, M) coincide. Now we use
a diagonal argument to pass to the limit in (18). Let ny € N be such that for every
n > nj it holds

p(Te, ¢ = )(DHUT1(5.0). Tat = $)(DZUDuT2() ) =< 1.
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where Fj(s, Xx) = Fj—l(S, x) for any s > 0 and x € X. Now assume that ny, ..., ng
are already constructed and consider ny41 > ngsuch that for every n > ngy

— 1
p(Te,(t = )(DFUT (5. 9). Ta(t = )(DEUDuT2()f)) < 5t

Consider now the sequence (Tsnk (t — s)(D%i ur, (S, )))ken and observe that it
weakly converges to T (f — S)(D%_IUDHT_Q (s)f)in LZ(.Q, v; H) as k — oo.

Step 2. To complete the proof, we replace ¢ in (18) by a sequence &, | 0 such that step
1 and Theorems 1, 2 apply. Let us show that we can take the limit as m — o0. Indeed,
from Theorem 1 it follows that forany f € L3(£2,v), T, (1) f weakly converges (up to
a subsequence) to T (¢) f in DZ’Z(Q, v) as m — oo, hence writing T,,, Ty, @1y, I}y
in place of Tg,,, T, , @5, , I, We obtain

lim / (DyTw () f, G)ydv = f (DuTo() f, G)udv
m—0oQ Q 7
and by the analogous vector-valued result (see Theorem 2, (10) and again (7))

lim [ (e7"°<T,,(1)Dy f, G) ndv = / ("< T (N Dy f, G dv.
2

m— 00 Q

To conclude we have to prove that the last term in the right-hand side of (18) converges
to the last term in the right-hand side of (16).

f(Tm(t _S)(D%-[(meHTm(s)f)dV_/TQ(t — ) (DFUDHTR(5)f), G)udv
2 2

=

/ (T (t = $)(D% @ Dy Ty (5) f) — Tt — $)(DH @y T (s, ), G) v
22

+ ' / (T (t — $)(DH P (s, ) — Tyt — $) (DU D (s, ), G) dv
2

+

/Q (T (t — ) (DHU (s, ) — To(t — s)(DHUDuTR(s) f), G)pdv

=: I1(m) + Io(m) + I3(m).

Let us estimate ;. Using that @,, = U on £2 for every m € N, formula (10) and the
invariance property of 7,, with respect to v, := v, we have

1o = [ 16 =90} 0 DT (90 )

Tt = $)(Df P (s, )| 1Gladv
1
~ 2 2
= (w0 ||G||oo</9 50t = 5D} @ DT )7 ~ Dy s, 0| )
1

= 00! ||G||oo(/ Tt = )| D}y @u D T(5) F = Dy P T, -)]Zdvm) 2
2
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1
= 00! ||G||oo(/ Tt = )| Dy @u D T(5) F = DY P Tins, -)‘idvm> 2
X
. , - 2 \?
= W(X)IG s /X (D} @0 DuTn($) ) = (D} B Tonts, )| dvm
1
< w0} ||G||o<,(/9 1D} U3 | D T ()~ DHT9<s>f|2dV>
1

< [DHU]H.Lip<v<X)>%||G||OO( /Q |DuTu(s)f — DHTg(s)fﬁ,dv)z. (20)

The right-hand side of (20) converges to zero as m — oo: indeed, Dy T, (s) f con-
verges pointwise v-almost everywhere in 2 to Dy T (s) f. Furthermore, by Propo-
sition 3 we have that v-a.e. in §2

DuTe, )] = DuTa) /1y =2 (1DaTe, ) FT +1DuTa() £ )
—1 ~
< 2701, 01Dy Ty + Ta )1 D f1) = 21D f L (g2.vemy
So by the dominated convergence theorem we get that /1 () vanishes as m — oo.

Now, using similar arguments we can estimate I (m) as follows

1

1 2 2 2 2
1am) = GO G ([ (D00 150 = DRU L5, ) )
= (X)) ||G||oo(/x 1D} @ = DU I3, T s, ) Wydvn )

< (v(X»%nGnoo(fX 1D} @ = DU, | (D T () Ptxc

+ (DTa() f)xalydvn)’

< (2v(X))%||G||oo(fX | D3 @ — Dy U 34, (1D1 T () Fliy
1

+1DuTa () f fyxa)dvn )

< <2v(X>>%||G||oo(/X 1D} ®m — DU, (Tn ()| Dr f1F
1
+ (To@IDu ) xa)dvn)’

. :
< 2(v(X))? ||DHf||Loo<9,v;H)||G||oo(fX 1D} — D} U dvn)

1 1 _y—L 2 3
= 20000 101 F g NGl | 510703 e ™% ay)
X45m
@
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Now observe that the right-hand side of (21) vanishes as m — o0. Indeed the function
éHDzdénrzﬂze*U*ﬁdé identically vanishes in £2 and converges pointwise to 0
v-almost everywhere in X\£2 as m — oo. Furthermore, observe that the function
(0,00) 3 e+ R(e) := ﬁ|D%{dé |2€—id§2 attains its maximum in & = d_é/4 where
it equals to 4d _(_24 I D%,d_?2 |%_[2. Thus, using Hypothesis 4 and applying the dominated
convergence theorem we infer that also I (m) converges to zero as m goes to infinity.

Finally I3(m) converges to zero as m goes to infinity thanks to step 1 and this
concludes the proof. O

Corollary 1. Assume Hypotheses 1, 2, 3 and 4 hold true. For anyt > 0 and p > 1
there exist two operators S1(t) : LP(2,v; H) — LY(82,v; H)and S>(t) : LP(£2,v) —
LY(82, v; H) such that for every continuous and H -differentiable function ¢ : 2 — R
with H -Lipschitz gradient

DuTo(t)p =S1(t)Dyo + S2(t)g.

Moreover, the adjoint operator (S1(t))* maps Lip,($2; H) into L*°(£2,v; H) and
verifies |ST()F| < Ci()||Flls for any F € Lip.(22; H) with C1(t) — 1 as
t — 0 and the norm Ca(t) == [[S2)l g(zr 11y = Oast — 0.

Proof. Setting S1(t) = e 10 T (1), [6, Proposition 1.10] yields that S7(r) =
To (t)e_’ng1 maps Lip,.(£2; H) into L*°(£2, v; H) and

ISt F |, = 172 Ta(t)* Fllo
= IT()e ™2 Flloo < 1e72% | ()1 Fll oo (22)

Moreover, setting S (¢) := — fot DO T (1 — 5)(D%,UDyTg))ds, by the con-
tractivity of T (7) in LY(2,v: H), (7), Hypothesis 2, the contractivity of e’ 0% in
H, estimate (11) and the invariance property of T (¢), we get

1S2(Dell L1 (2.0 m)

t
< / / 0000 (1 — (D} UDuTo(5)p)| | dvds
0o Jo H
t
E/ ‘e(s—t)ngl‘ /‘TQ(I—S)(D%_IUDHT_Q(S)@)‘ dvds
0 LH) Jo H
t
5/ / ’T_Q(t—s)(D%{UDHTQ(s)(p)‘ dvds
0 22 H
t
5[ / ’D%IUDHTQ(S)QO‘ dvds
0 Je H

t
< /0 /Q I D2 U 74, | D T (5) | dvds

1 1
t ’ o P
sf (/ ||D%,U||”H2dv>‘ (/ |DHT9(s)¢|’,;dv) ds
0 2 2
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D=

1
1 t i
=< K; ”D%]U”Lp/(X,V;HZ)/ - (/,Q T.Q(s)|(/)|pdv> ds

A
0
1 5 t 1
< KJIDRUN Ly i Il r (2 /0 s~Hds
1
= 2K, VIIDREUl Ly (x viren 19 llrc2.0) (23)

for any ¢t > 0. By the assumption on U we deduce that the operator S»(¢) is bounded
from LP(£2, v) into L' (£2, v; H) for any ¢t > 0. Finally, estimates (22) and (23) allow
us to complete the proof. 0

Now, we are able to prove the main result of this section.

Theorem 3. Assume Hypotheses 1, 2, 3 and 4 hold true and let u € L*($2,v). The
following statements are true:

() ifiminf, o+ | DuTe(Dull 1 (o v gy is finite, thenu € BV (2, v);
(i) ifu € BV(R,v), thenlimsup, o+ |DuTe Ol 10 v m) < |Doul(£2).

Hence, u € BV (82, v) iff lim+ IDuTo®)ull) (@, v m) < 00 Inthis case
t—0 o
IDuul(2) = Tim_ [ DpTeull g - 24)
t—0t

Proof. (i) follows from the strong continuity of T (¢) in L'(£2,v), see Proposi-
tion 3(i), and the lower semicontinuity of the norm (9), which imply

IDul(2) < liminf/ \Dy To (| gdv.
t—0t Jo

To prove (ii) we write the L!-norm of the gradient of T (¢)u by duality, as

F € Lip.(£2; H),
||DHT9<r>u||L1(Q,u;H>=sup{ /Q (DiTo(t)u, Fypdv P.(£2: H) }

[Flloo <1

Taking into account that, for any F' € Lip,(§2; H) we get

/(DHTg(t)u,F)Hdv=/ u(DyTo ()" Fdv
2 2

< / u(Sl(t)DH + Sz(t))*de - / u(DLS1(O*F + Sy(t)* F)dv
2 2

< [ Dyul(DIS1(O* Flloo + llull 22, 1520 Fll2(2.,0)
= (IDvu|(82)C1 (1) + C2t) F o

we deduce that

IDETe®ullpi(2.vm) = C1®|Dyu|($2) + C2(t) (25)
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for any t > 0 where C; (i = 1, 2) are the positive functions in Corollary 1. Thus,
taking the limsup as t — 07 in (25) we get

1imSUP/ DT (tulgdy < |Dyul($2)
2

=0t
and the proof is complete. 0

It follows from Theorem 3 that functions in BV (£2, v) may be approximated in
variation by smooth functions. This result was already known in infinite dimension
when 2 = X and T (¢) is the Ornstein—Uhlenbeck semigroup and in a convex set,
see [21], where the approximation is based on finite-dimensional reductions of the
semigroup generated by the Neumann Ornstein—Uhlenbeck operator in 2.

Proposition 6. Under Hypotheses 1, 2, 3 and 4, for any f € BV (§2,v) there exists
a sequence (fp)nen € DV2(82,v) such that

(i) lim || fy — fll 2@ =0 and (i) lim / |Dy faludv = |D, f|(£2).
n— o0 n—oo 0
(26)

If C C 82 is closed and |D,, f|(0C) = O then |D,, f|(C) = lin;o/. |Dy fnlgdv.
n— C

Proof. Consider the semigroup T (f) generated in L>(§2, v) by the operator Lo
defined in (4). It is known that for any f € L?(£2, v) the function T (1) f belongs to
D'“2(£2, v) for any ¢t > 0 and by the strong continuity of T (¢), T () f converges to
fin L2(£2,v) ast — 0F. Moreover, Theorem 3 implies that || Dy T O v e m
converges to | D, f|(£2) as t — 0T. Thus, (26) is proved. To complete the proof let
us observe that, by the lower semicontinuity of the total variation, for any open set
AC S

Dy f1(A) < lim inf / Dt fulrdv @7
n—oo A

(see [21, Corollary 2.5]). Analogously we deduce that

|D, fI(C) > lim Sup/ Dy fuludv (28)
n—oo C
for any closed subset C C £2. Indeed, by (27) we obtain

|Dy f1($2) — Dy fI(C) = D, fI(£\C) = 1§1niiogf/mc [Dp fulrdv

= lim inf (/ |Dan|HdU—f |Dan|HdV>
n—oQ Q C

= lim / |Dan|HdU—1imSUP/ Dy fulpdv
n—oo Jo c

n—oQo
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whence, using (26)(ii), estimate (28) follows. Now, using estimates (27), (28) and the
fact that | D, f|(0C) = 0 we obtain

IDLFIC) = 1D FIE) = hmigéfﬁ |Dit fulndv
n— é

< limSUPfc |Dg fuludv < |D, fI(C), (29)
n—oQ C
where C denotes the interior of C. Estimate (29) yields the claim. ]

We conclude this section showing that estimate (8) and the previous approximation
result allow to improve estimate (25) obtaining (30).

Theorem 4. Under Hypotheses 1, 2, 3 and 4, if f € BV (£2,v) then

f IDuTo () fludv < e 1 Dy fI(2). 10, (30)
2

M1 being the maximum eigenvalue of the covariance operator Q o, see (2). Moreover;
for any open set A C §2 with A C 2,

lim [ [DpTe@)fladv = |D, fI(A).
t—0t JA

Proof. Let f € BV (£2,v) and let (f)nen € DV2(82, v) be the sequence given by
Proposition 6. By the contractivity of T, (f) we deduce that T () f, converges to
To(r) f in L2(£2, v) as n — oo. This fact, together with the lower semicontinuity of
the total variation, (8) and (6) yield

/ [DpTo(t) flpdv < liminf/ |DyTao(t) fulgdy
Q n—oo 0
< e*ﬂlfliminf/ To )| Dy fulgdv < e 1" lim / Dy fulgdv
n—oo Jo n—=0o0 Jo

= e 1D, £1(2)

whence (30) is proved. The last assertion follows immediately from Proposition 6
taking into account that T () f satisfies (26). O

4. Sets of finite perimeter in £2

This section is devoted to provide some sufficient and necessary conditions in order
that a Borel set E € X have finite perimeter in 2. We consider also the case of
BV (£2, v) functions and §£2 = X. There are three semigroups involved: beside T, (7),
we consider the Ornstein—Uhlenbeck semigroup S(¢) generated in L?(X, y) by the
realisation of the operator

o0
Loug =Tr(Dj9) — > A7 ' (x.e)Dip ¢ € FCH(X)
i=1
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and the semigroup 7 (¢) generated in L?(X, v) by the realisation of the operator
Ly = Louy — (DU, Dug)u, ¢ € FCH(X). G

Recall that S(7) admits a pointwise representation by means of the Mehler formula
(1.

Theorem 5. Assume Hypotheses 1, 2, 3 and 4 hold true and let E C X be a Borel set
such that P,(E, 2) < oo. Then

i 1
limsup —=I1Te () xE — XElL1(2.0) < 0°. (32)
t—>0t \/;
More precisely
ITe(u —ullp1g,v) = 2v/ Kat[Dyul|($2) (33)

foranyu € BV ($2,v) andt > 0 where K is the constant in (7).

Proof. Clearly, once estimate (33) is proved, (32) follows at once choosing u = xg.
Thus, let us prove (33). To this aim, we consider g € L°(£2, v) and assume first
that u € DV2(82,v). By the self-adjointness of the operators LT (s) for s > 0 in
L2(£2, v) we have

t t
/g(TQ(I)M—M)dVZ/ g/ iT_q(s)udsdv:/ / g(LoTo(s)u)dvds
2 2 Jo ds 0 Je
t t
=/ /(LQTQ(S)g)MdVdS: —/ /(DHT_Q(S)g, Dyu)gdvds.
0 J 0 J

The Cauchy—Schwarz inequality and (7) yield
t
| sau—wav = [ [ 1DuTa@glnDuulnavs
2 0 Je
t
1
= / / (IDnTa(s)gl3)? |Drulndvds
0 Jg
t
V& [ 57 [ @e@ls?} Dpulndvas.
0 2
From the contractivity of T (¢) in L°°(£2, v), for any ¢ > 0 we deduce
b
f g(To(t)u —u)dv < \/K2||g||L°°(9,v)/ 5_2/ |Dpu|pdvds
Q2 0 Q
=2y K2t||g||L°°(Q,v)/ |Dyulpdy. (34)
2
Foru € BV (£2,v), from Proposition 6 we getasequence u, € D'2(£2, v) converging

to u in L2(£2, v) with lim,,_, oo f_Q |Duy,|gdv = |Dyu|($2). Thus, putting u, in place
of u in (34) and letting n — oo we get

/ g(Te(Du — u)dv < 2VKatlgll oo | Duul(2), g € L¥(82,v).
2
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Finally, taking the supremum on the g € L*°(£2, v) with ||g|lcc < 1 we obtain

/ | To (H)u — uldv < 2/ Kot|D,u|($2)
Q
whence (33) follows. [l

Remark 4. Note that condition (32) is equivalent to

lim sup — (To(t)xe)dv < oo.

t—0t \/_ ENR

Indeed, [T () xe —xel = (xe—Te () xe) xe+ (T2 (1) XE — xE) XEc- The invariance
of Tq (t) with respect to v in £2 yields

/ (xe — T xE)xedv = / Te®xe — xeTe(t)xE)dv
2 2
=/ xeeTo () xedv.
Q
Consequently,

/ T (05 — xeldv =2 f To(t)xzdv.
2 NE¢

Now, we prove a quasi-converse of Theorem 5. We start with a preliminary result
for bounded functions.

Proposition 7. Under Hypotheses 1, 2, 3 and 4, let u € L°°(X, v) be such that

i _ 2t _
lltg(l)rlf //Iu(e "x+/1 —e2y) —u(x)|dy (y)dv(x) = C < oo. (35)

Thenu € BV (2, v) and |Dyu|(2) < C|| Q3 | oo /T /2.

Proof. We divide the proof into two steps.
Step 1. Here we prove that for any v € C ,} (X), it holds that

i —t _ 20y —
t%\[/fxwe 5 4/1 = e=21y) — v()ldy ()dv(o)
:ﬁ/thDv(xﬂdv(x). (36)
To this aim, we observe that

Ky (1) i=/ / lu(e™ x + V1 —e2y) —v)|dy(y)dv(x)

///—v(e "x +vV1—e2ry)dr
0

//‘/ Dv(e x+v1—e 2y), —e X ——

dy (y)dv(x)

—2r

=

y)dr|dy (y)dv(x)
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/t e—r
< - .
0+/1—e2r

[ poe sV i=e, —ime e oy i,

Now, for r fixed we perform the “Gaussian rotation”

X, )= R(x,y) = "x+/1—eZy, —/1—e2x+e"y) = (u,w)

to get, thanks to the invariance of y under R,,

I
_° D Jw)|

|, = f v

xee =1 — e 2ru)e Ve u=VI=T0 4y (1) dy (w)

://fu(t,u,w)dy(w)dy(u).
XJX

Ky (1)

IA

‘We claim that

. 1
,E)Ing ﬁ/;(fva(t,u, w)dy (w)dy (u) = C/Q |Dv|dv.

Indeed, by the convexity of U thereexistz € X anda € RsuchthatU(x) > (x, z)+a,
hence

dr

1 1 |
— fut,u, w) < —|Dv(u)||lw el(z’“>|+|(z’w>|+‘“|/
ﬁfv( ) < \/;| ()] e

= V2|Dv@)|[wle/ eIl e LI x X,y @y),  1€(0,1)
and, using De L"Hopital’s rule, for almost every (u, w) € £2 x X

. Sfo(t, u, w)
lim ————

t—07t «/;

So by the dominated convergence theorem we obtain

lim sup\i/; /;2 /X lv(e "x + /1 —e2y) —v(x)|dy (y)dv(x)

t—0t

= «/5}(9 (u){Dv(u), w)eiU(”).

=
<= — [ |Dv(uw)|dv(u) (37

e
where we used that fx [{(Dv(u), w)|dy (w) = +/2/7|Dv(u)|. Indeed, using the fac-
torisation y = y; @ ¥+, where y; is the 1-dimensional standard Gaussian measure

on E = spanDv(u), we get

/ [{Dv(u), w)|dy (w) = 2/ (Dv(u), w)dy (w)
X {w:(Dv(u),w)>0}
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o0
=2IDU(M)|/l/0 tdy1(dy (w') = 2/ | Dv(u)|.
E
To conclude, consider the family of linear functionals L, : Cp(X x X) — R, ¢ € (0, 1)
1 _
Lip = —/ / P, M) x + V1 — e 2y) —v(x))dy (y)dv(x).
Vile Jx
By (37) we get limsup,_, g+ | L: || < 2(\/5)_1 [ Dvll11 (g, and arguing as above

lim Lip =~/2 / / o(x, Y)(Du(x), y)dy (y)dv(x) =: Log.
t—07F Jx

So L; weakly* converges to L as t — 07 and, by lower semicontinuity of the norm
we get (36):

2
Lo|| = — Dv dv < liminf |L
I Loll ﬁfgl ()dv(x) < m in Ll

2

<limsup || L/]| < — [Dv(x)|dv(x).
t—0t \/7?

Step 2. Foru € L®(X,v), let (u;)jen € CA(X) be such that u; — u in L*(X, v),

almost everywhere in X and satisfying (35) (thanks to the dominated convergence

theorem). Using (36), (6) and (8) we have

Ko (1)
lim — 2 = / |Dujldy = —— = / 10211 2y | Du j|dv
-0t Vi VT JTlol? ||£<x>

121
————— | 10 Duj|dv = —/ | Qoo Dut | v
\/_”Qoo ||£(X)/ \/_”Qoo lzax) /92
— 2 | \Dhujlndv = —/ (T (0)| Dz 11)dv
ﬁ||Qéé2||ax>/rz VTN e 1o
2

> ——5——¢"1 | |DuTa(o)u;lndv (38)
VN N2 2

for any o € (0, 1). Now, since the left-hand side of (38) is uniformly bounded from

above by the constant C, the L'-norm of Dy T (0)u j is bounded as well by the same

constant for every j € Nand o € (0, 1), i.e.

f

1/2 .
/ |IDTg(0)ujldv < C——|Qx ! leey,  J €N, o>0.
Thus, recalling that Dy T (0)u; converges to Dy To(o)u in L'(2,v)as j — 00
(see (7)), letting first j — oo and then o — 0T and using formula (24) we get that
1/2
IDyul(2) < QA | oo/ /2 O

The following result is a quasi-converse of Theorem 5. In fact, we give a sufficient
condition to have P,(E, £2) < oo in terms of the short-time behaviour of 7' (¢) and
not of T (#), where T (t) is the semigroup generated by the operator L defined in (31)
in L2(X, v).
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Theorem 6. Under Hypotheses 1, 2, 3 and 4, if E € B(X) and

o
C = timinf — 1701 = XEll i@, < o (39)

7

1/2
then P,(E, 2) < Cl QN 1l cxov/7 /2.

Proof. Choosing u = g in (35) and observing that
/ ‘/ fx, y)d)/(y)‘ dv(x) = / / [f(x, y)ldy (y)dv(x)
2 \Jx 2 Jx
for any f with constant sign, from Proposition 7 we deduce that if
1
L :=liminf —||S(z - < 00 40
o \/Z” " xE XE”LI(_Q,U) (40)

then P,(E, 2) < L| QY |l cox)v/7/2. Here S(t) is the Ornstein-Uhlenbeck semi-
group in (1). To conclude we prove that condition (40) is equivalent to (39). From the
variation-of-constants formula we deduce

t
(T(1)g)(x) = (S(1)g)(x) —/0 (St —o)(DyU, DT (0)g)n)(x)do,  (41)

for every g € FCp(X), v-a.e. x € X and any ¢t > 0. To prove (41) it suffices that the
map o +— S(t —o)(DyU, DyT (0)g)n belongs to L1((0, 1)) for any ¢ > 0. To this
aim, let us observe that

t
// St —o0)(DygU,DyT(o)g)gdodv < o0
x Jo

for any g € FCp(X). Indeed, the Holder inequality and the contractivity of S(¢) in
L%(X, y) allow us to write

/X[Ot St —o)(DyU,DyT(0)g)gdodv
= /Ot /X St —o0)(DyU,DyT(0)g)gdvdo
< /(;t [S(t — o) (DU, DuT(0)g)ullp1(x do
< ||€_U||L2(x,y) /0’ IS(t —o)(DuU, DuT(0)8)ull 2 (x,,)dO
< el 2.y /0 DU, DaT (@)l 20 ppdo

t
< VKalle Vil 2 I8 loo DHU N 2¢x.y: 1) / o 12ds
0

= 2/Katlle VNl 2y I8l DU N 2.yt 42)
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where in the last line we used estimate (7) which holds true even in the case 2 = X
and T (¢) replaced by T'(¢). Hence, formula (41) follows.
Now, integrating (41) in §2 with respect to v yields

ISOxe — xellLi@.vy —H® < ITOXE — XEIL (2,v)
=IS®xe — xelpye.n + H@) (43)
for any r > 0 with
t
H(t) := ‘/ / St —s)(DrU, DgT(s)xg)gdsdv|, t > 0.
X JO

Using estimate (42) with ¢ = xg we infer that lim sup,_, o+ % < o0. This last

estimate, together with (43), prove that (40) is equivalent to (39) and the proof is
complete. 0
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