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Abstract. Weare concernedwith global-in-time existence and uniqueness results formodels of pressureless
gases that come up in the description of phenomena in astrophysics or collective behavior. The initial data
are rough: in particular, the density is only bounded. Our results are based on interpolation and parabolic
maximal regularity, where Lorentz spaces play a key role. We establish a novel maximal regularity estimate
for parabolic systems in Lq,r (0, T ; L p(�)) spaces.

1. Introduction

Weare concernedwithmodels coming from a special type of hydrodynamical systems,
that do not include the effects of the internal pressure. The simplest example is the
motion of dust, that is, of free particles evolving in the space like, e.g. in astrophysics
[17], or in multi-fluid systems [4,6]. Leaving the world of inanimate matter, one can
also mention models that describe collective behavior, where particles or rather agents
exhibit some intelligence, and for which having a force like internal pressure is not so
natural. A well-known example in this area is given by the equations of traffic flow
[5,25], where particles are just cars.
In order to specify and understand this class of models, let us go back to the kinetic

description of a collective behavior. Consider equations of the following form

ft + v · ∇x f + divv K ( f ) f = 0 in (0, T ) × R
d
x × R

d
v , (1.1)

where f = f (t, x, v) is a distribution function of a gas in the phase-space. Classically,
if the operator K comes from the Poisson potential, then we find the Vlasov system.
If taking a less singular operator, then one may obtain for example the Cucker–Smale
system that models collective behavior like flocking of birds [7]. Assuming a very
special form of f , the so-called mono-kinetic ansatz, one can pass formally from the
kinetic model (1.1) to the hydrodynamical system, putting just

f (t, x, v) = ρ(t, x)δv=u(t,x). (1.2)
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This amounts to saying that the distribution of the gas under consideration is located
on the curve v = u(t, x). Although one cannot expect this simplification to be a correct
description of a gas, it is relevant for modelling some collective behavior phenomena
as one can expect a crowd of individuals to have the same speed (or tendency) at one
point [32,34].
Formally, plugging (1.2) in (1.1) leads to the following general form of hydrody-

namical system:

ρt + div (ρu) = 0,
ρut + ρu · ∇u = A(ρ, u).

(1.3)

The two equations may be seen as the mass and momentum balances, respectively. If
A ≡ 0, then one just recovers the pressureless compressible Euler system, and there is
no interaction whatsoever between the individuals. Relevant examples where A �≡ 0
can be found in [31,37,38].

In our note, we would like to put our attention on the following two cases:

A(ρ, u) = μ�u or A(ρ, u) = μ�u + μ′∇div u, μ > 0, μ + μ′ > 0.

(1.4)

The first case is a viscous regularization of (1.3) that can be viewed as a simplification
of the Euler alignment system. It corresponds to the hydrodynamical version of the
Cucker–Smale model, namely

ρt + div (ρu) = 0,

ρut + ρu · ∇u =
∫
Rd

u(t, y) − u(t, x)

|x − y|d+α
ρ(t, y)ρ(t, x) dy, α ∈ (0, 2).

(1.5)

The right-hand side of (1.5) involves the fractional Laplacian (−�)α/2 (see details in
[16,20]) and the first case in (1.4) thus meets α = 2. The second case of (1.4) is the
Lamé operator that can be obtained from the Vlasov–Boltzmann equation (for more
explanation, one may refer to the introduction of [36]). The form of (1.4) does not
take into account the effects of internal pressure. From the mathematical viewpoint,
the lack of the pressure term P causes serious problems. In particular, all techniques
for the compressible viscous systems based on the properties of the so-called effective
viscous flux, namely F := div u − P, which has better regularity than div u and P
taken separately, are bound to fail. Recall that using F is one of the keys to the theory
of weak solutions of the compressible Navier–Stokes equations [21,22,26–28], as it
allows to exhibit compactness properties of the set of weak solutions. In the theory of
regular solutions [9,13,30,33], the effective viscous flux provides the decay properties
for the density that are needed for establishing global existence for small data.
In the case of pressureless systems, there is no such a possibility, so that we need

to resort to more sophisticated techniques to control the density. This may partially
explain the reason why the mathematical theory of pressureless models is poorer than
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the classical one. The aim of this note is to present a novel technique coming from the
maximal regularity theory for analytic semi-groups, allowing to prove global-in-time
properties of solutions to (1.3), (1.4). It will enable us to showexistence and uniqueness
results under roughassumptions on thedensity (onlybounded), even though one cannot
take advantage of the effective viscous flux.More precisely, by combining interpolation
arguments, subtle embeddings, suitable time weighted norms and themagic properties
of Lorentz spaces, we succeed in obtaining the L1(R+; L∞) regularity for the gradient
of the solution to the linearized momentum equation in (1.3) and, eventually, produce
global-in-time strong solutions. Our main results concern global-in-time solvability
for the two dimensional case for large velocity, and the three dimensional case in the
small data regime.

2. Functional framework

This note aims at presenting an interesting application of Lorentz spaces for para-
bolic type systems. Lorentz spaces can be defined on any measure space (X, μ) via
real interpolation between the classical Lebesgue spaces, as follows:

L p,r (X, μ) := (L∞(X, μ), L1(X, μ))1/p,r for p ∈ (1,∞) and r ∈ [1,∞].
(2.1)

Lorentz spaces may be endowed with the following (quasi)-norm (see, e.g., [24, Prop.
1.4.9]):

‖ f ‖L p,r :=

⎧⎪⎪⎨
⎪⎪⎩

p
1
r

(∫ ∞

0

(
s |{| f | > s}| 1p )r ds

s

) 1
r

if r < ∞,

sup
s>0

s |{| f | > s}| 1p if r = ∞.

(2.2)

The reason for the pre-factor p
1
r is to have ‖ f ‖L p,p = ‖ f ‖L p , according to Cavalieri’s

principle. The following classical properties of Lorentz spaces may be found in, e.g.,
[3,24]:

– Embedding : L p,r1 ↪→ L p,r2 if r1 ≤ r2, and L p,p = L p.

– Hölder inequality : for 1 < p, p1, p2 < ∞ and 1 ≤ r, r1, r2 ≤ ∞, we have

‖ f g‖L p,r � ‖ f ‖L p1,r1
‖g‖L p2,r2

with
1

p
= 1

p1
+ 1

p2
and

1

r
= 1

r1
+ 1

r2
· (2.3)

Inequality (2.3) still holds for couples (1, 1) and (∞,∞) with the convention
L1,1 = L1 and L∞,∞ = L∞.

– For any α > 0 and nonnegative measurable function f, we have

‖ f α‖L p,r = ‖ f ‖α
L pα,rα

.
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It must be highlighted that Lorentz spaces have the following two interesting and
useful properties:

– If f ∈ L∞(�) and g ∈ L p,q(�), then f g ∈ L p,q(�) for all p, q ∈ [1,∞].
– If � ⊂ R

d is open and if f ∈ Ld,1(�) and ∇ f ∈ Ld,1(�), then f ∈ Cb(�).

However the class of Lorentz spaces possesses also “false friends”:

– There is no “Fubini property”, that is if (I, J ) is a couple of nontrivial intervals,
then (see [8]):

L p,q(I × J ) �= L p,q(I ; L p,q(J )) whenever p �= q.

– Being not reflexive, the space L p,1(�) does not have the UMD property, and
the general theory of deducing maximal regularity in Lq(0, T ; L p,1(�)) viaR-
boundedness and Fourier multiplier theory developed in [18] cannot be applied.

Owing to their definition by real interpolation, Lorentz spaces have some connec-
tions with homogeneous and nonhomogeneous Besov spaces. Recall that those spaces
may be defined, respectively (for all s ∈ (0, 1) and 1 ≤ p, q ≤ ∞) by

Ḃs
p,q(�) = (L p(�); Ẇ 1

p(�))s,q and Bs
p,q(�) = (L p(�); W 1

p(�))s,q . (2.4)

For more properties of Besov spaces, we refer to Bahouri et al. [2].
The main results of the paper strongly rely on a family of maximal regularity

estimates for the heat equation,where the time regularity ismeasured in Lorentz spaces
of type Lq,r (0, T ; L p). Those estimates come up as a consequence of Lq(0, T ; L p)

maximal regularity estimates from the general theory [1,18,23,29,35].

Proposition 2.1. Let 1 < p, q < ∞ and 1 ≤ r ≤ ∞. Then, for any u0 ∈ Ḃ2−2/q
p,r (Rd)

and f ∈ Lq,r (R+; L p(R
d)), the following heat equation:

ut − μ�u = f in R+ × R
d ,

u|t=0 = u0 in R
d

(2.5)

has a unique solution in the space1

Ẇ 2,1
p,(q,r)(R

d × R+) :=
{

u ∈ Cb
(
R+; Ḃ2−2/q

p,r (Rd)
) : ut ,∇2u ∈ Lq,r (R+; L p(R

d))
}
,

and the following inequality holds true:

μ1−1/q‖u‖
L∞(R+;Ḃ2−2/q

p,r (Rd ))
+ ‖ut , μ∇2u‖Lq,r (R+;L p(Rd ))

≤ C
(
μ1−1/q‖u0‖Ḃ2−2/q

p,r (Rd )
+ ‖ f ‖Lq,r (R+;L p(Rd ))

)
· (2.6)

Furthermore, if 2/q + d/p > 2, then for all q < s < ∞ and p ≤ m such that
1 + d

2 ( 1
m − 1

p ) > 0, interrelated by

d

2m
+ 1

s
= 1

q
+ d

2p
− 1,

1Only weak continuity if r = ∞.
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it holds that

μ
1+ 1

s − 1
q ‖u‖Ls,r (R+;Lm (Rd ))

≤ C
(
μ1−1/q‖u‖

L∞(R+;Ḃ2−2/q
p,r (Rd ))

+ ‖ut , μ∇2u‖Lq,r (R+;L p(Rd ))

)
·

The proof of the above result is given in appendix.

3. Results

Let us first present our results pertaining to the case where A(ρ, u) = μ�u +
μ′∇div u if the gas domain is the whole plane R2. So, we consider:

ρt + div (ρu) = 0 in R+ × R
2,

ρut + ρu · ∇u = μ�u + μ′∇div u in R+ × R
2,

ρ|t=0 = ρ0, u|t=0 = u0 at R
2.

(3.1)

Following recent results of the first two authors in [12,14,15] (in different contexts,
though), we strive for global results for general initial velocities provided the volume
(bulk) viscosityμ′ is large enough. As our approach is based on a perturbative method,
we need moreover the density to be close to some positive constant.

Our solution spacewill be the set Ẇ 2,1
4/3,(4/3,1)(R

2×R+) of functions z : R+×R
2 →

R such that

z ∈ Cb(R+; Ḃ1/2
4/3,1) and ∂t z, ∇2

x z ∈ L4/3,1(R+; L4/3(R
2)).

As shown in appendix, the corresponding trace space on fixed times is the homoge-
neous Besov space Ḃ1/2

4/3,1(R
2),which is ‘critical’ in terms of regularity, and embedded

in L2(R
2). Our first statement is a global existence and uniqueness result for (3.1) for

large data in the two dimensional case, provided the volume viscosity ν is sufficiently
large.

Theorem 3.1. Let M ≥ 1. Denote by P and Q the Helmholtz projectors on
divergence-free and potential vector fields, and set ν := μ + μ′.

There exist two constants c and C (independent of M) such that if the initial density
ρ0 satisfies

‖ρ0 − 1‖L∞(R2) ≤ c (3.2)

and if the initial velocity u0 has components in Ḃ1/2
4/3,1(R

2) and satisfies,

C
(‖Pu0‖Ḃ1/2

4/3,1(R
2)

+ (ν/μ)1/4‖Qu0‖Ḃ1/2
4/3,1(R

2)

)
exp

{
Cμ−1‖u0‖2L2(R2)

} ≤ Mμ

(3.3)
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then, for all ν ≥ ν0 := max(C M1/2eC M4
, μ), system (3.1) admits a global finite

energy solution (ρ, u) with ρ ∈ C∗
w(R+; L∞(R2)) and u ∈ Ẇ 2,1

4/3,(4/3,1), satisfying

‖ρ − 1‖L∞(R+×R2) ≤ 2c and ‖u‖Ẇ 2,1
4/3,(4/3,1)(R

2×R+)
≤ C‖u0‖Ḃ1/2

4/3,1(R
2)

. (3.4)

Furthermore, ∇u ∈ L1(R+; L∞(R2)) and the following decay property holds:

‖tPu‖
L∞(R+;Ḃ3/2

4,1 (R2))
+

( ν

μ

)3/4‖tQu‖
L∞(R+;Ḃ3/2

4,1 (R2))

+‖(tu)t ,∇2tu‖L4,1(R+;L4(R2)) + ν

μ
‖∇div tu‖L4,1(R+;L4(R2)) ≤ eC M4 · (3.5)

Finally, the solution (ρ, u) is unique in the above regularity class.

Some comments are in order:

– Condition (3.3) means that global existence holds true for large ν, provided
the divergence part of the velocity isO(ν−1/4). A similar restriction (with other
exponents, though)was found in our priorworks dedicated to the global existence
of strong solutions for the compressible Navier-Stokes equations with increasing
pressure law [12,14,15].

– The above statement involves only quantities that are scaling invariant for sys-
tem (3.1).

– Having Lorentz spaces with second index equal to 1 allows us to capture limit
cases of Sobolev embeddings. Other choices than L4/3,1 and L4,1 might be
possible.

In the three-dimensional case, the energy space L2(R
3) is super-critical by half a

derivative, and there is no chance (so far) to prove a general result for large data,
assuming only that one of the viscosity coefficients is large. Therefore, for simplicity,
we focus on the first case of (1.4), that is on the following system:

ρt + div (ρu) = 0 in R+ × R
3,

ρut + ρu · ∇u = μ�u in R+ × R
3,

u|t=0 = u0, ρ|t=0 = ρ0 at R
3.

(3.6)

To simplify our analysis, we choose a functional framework for the velocity that is
well beyond critical regularity (actually, we ask for one more derivative). In the same
spirit as in the 2D case, we will use the following class of functional spaces:

Ẇ 2,1
p,(q,1)(R

3 × R+) :=
{

u ∈ Cb
(
R+; Ḃ2−2/q

p,1 (R3)
) : ut ,∇2u ∈ Lq,1(R+; L p(R

3))
}
·

Our global existence result in the three dimensional case reads:

Theorem 3.2. Take initial data ρ0 ∈ L∞(R3) and u0 ∈ Ḃ3/5
10/7,1(R

3) ∩ Ḃ6/5
5/2,1(R

3).

There exists a constant c > 0 such that if

‖ρ0 − 1‖L∞(R3) < c and ‖u0‖1/3
Ḃ6/5
5/2,1(R

3)
‖u0‖2/3

Ḃ3/5
10/7,1(R

3)
< cμ, (3.7)



Vol. 21 (2021) Lorentz spaces in action on pressureless systems 3109

then (3.6) has a global-in-time unique solution (ρ, u) with

ρ ∈ Cw(R+; L∞(R3)) and u ∈ (Ẇ 2,1
5/2,(5/2,1) ∩ Ẇ 2,1

10/7,(10/7,1))(R
3 × R+).

Furthermore, that solution has finite energy,

‖ρ − 1‖L∞(R3) < 2c, (3.8)

functions tu and ∇u belong to Ẇ 2,1
10/3,(10/3,1)(R

3×R+) and L1(R+; L∞(R3)), respec-
tively, and the following inequalities are valid:

μ3/5 sup
t≥0

‖u(t)‖
Ḃ6/5
5/2,1(R

3)
+ ‖μ∇2u, ut‖L5/2,1(R+;L5/2(R

3)) ≤ Cμ3/5‖u0‖Ḃ6/5
5/2,1(R

3)
,

μ3/10 sup
t≥0

‖u(t)‖
Ḃ3/5
10/7,1(R

3)
+ ‖μ∇2u, ut‖L10/7,1(R+;L10/7(R3)) ≤ Cμ3/10‖u0‖Ḃ3/5

10/7,1(R
3)

,

μ7/10 sup
t≥0

‖tu(t)‖
Ḃ7/5
10/3,1(R

3)
+ ‖μ∇2(tu), (tu)t‖L10/3,1(R+;L10/3(R3)) ≤ Cμ7/10‖u0‖Ḃ3/5

10/7,1(R
3)

and μ

∫ ∞

0
‖∇u‖L∞(R3) dx ≤ C‖u0‖1/3

Ḃ6/5
5/2,1(R

3)
‖u0‖2/3

Ḃ3/5
10/7,1(R

3)
.

Remark 3.1. That u0 belongs to Ḃ3/5
10/7,1(R

3) may be seen as a low frequency assump-

tion that exactly corresponds to the critical embedding in L2(R
3) (hence our solutions

have finite energies). Other choices of exponents might be possible both for low and
high regularity.
We also want to stress the fact that the smallness condition (3.7) is scaling invariant.

The rest of the paper is structured as follows. In the next section, we prove our two-
dimensional global result for (3.1). Section 5 is devoted to the proof of Theorem 3.2.
In Appendix, we establish a maximal regularity estimate involving Lorentz spaces, of
independent interest.
We shall use standard notations and conventions. In particular, C will always des-

ignate harmless constants that do not depend on ‘important’ quantities, and we shall
sometimes note A � B instead of A ≤ C B.

4. The two dimensional case

This part is dedicated to the proof of Theorem 3.1. The key observation is that
combining the energy balance associated to (3.1) with Proposition 2.1 supplies a
bound of the norm of

u in Ẇ 2,1
4/3,(4/3,1)(R

2 × R
+) and in L4,1(R+; L4(R

2)) in terms of u0,

provided the density is close to 1. The latter information will enable us to bound tu in
Ẇ 2,1

4,(4,1)(R
2 ×R

+) and to get a control on div u in L1(R+; L∞(R2)). Next, reverting
to the mass conservation equation, one can ensure that ρ − 1 remains small provided
ν := μ + μ′ is large enough. Then, we observe that the very same arguments leading
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to the control of div u also allow to bound ∇u in L1(R+; L∞(R2)). From that point,
we follow the energy method of [11, Sec. 4] going to Lagrangian coordinates in order
to prove uniqueness, and the rigorous proof of existence is obtained by compactness
arguments, after constructing a sequence of smoother solutions (see the next section).
Let us now go to the details of the proof. In the first five steps, we assume we are given
a smooth enough solution (ρ, u) of (3.1) and we concentrate on the proof of a priori
estimates. We suppose that μ′ ≥ 0 and, to simplify the computations, we take μ = 1.
That latter assumption is not restrictive, since (ρ, u) satisfies (3.1) with coefficients
(μ,μ′) if and only if

(ρ̃, ũ)(t, x) := (ρ, μ−1u)(μ−1t, x) (4.1)

satisfies (3.1) with coefficients 1 and μ′/μ.

Step 1. The energy balance

As already pointed out, the space for u0 is continuously embedded in L2(R
2).Hence

the initial data have finite energy. Now, the energy balance for (3.1) reads

1

2

d

dt

∫
R2

ρ|u|2dx +
∫
R2

(|∇u|2 + μ′(div u)2
)
dx = 0. (4.2)

Provided the first part of (3.4) is fulfilled with small enough c, we thus have, denoting
ν := 1 + μ′,

‖u‖2L∞(R+;L2(R2))
+ 2‖∇Pu‖2L2(R+;L2(R2))

+ 2ν‖div u‖2L2(R+;L2(R2))
≤ 2‖u0‖2L2

.

(4.3)

Step 2. Control of the norm of the solution in Ẇ 2,1
4/3,(4/3,1)

Rewrite the velocity equation as:

ut − �u − μ′∇div u = f := (1 − ρ)ut − ρu · ∇u.

Projecting the equation by means of the Helmholtz projectors P and Q, we get

(Pu)t − �Pu = P f and (Qu)t − ν�Qu = Q f.

Applying Proposition 2.1 with d = 2, p = q = 4/3, m = s = 4 and r = 1 yields

‖Pu‖
L∞(R+;Ḃ1/2

4/3,1(R
2))

+ ‖∇2Pu,Put‖L4/3,1(R+;L4/3(R2)) + ‖Pu‖L4,1(R+;L4(R2))

� ‖Pu0‖Ḃ1/2
4/3,1(R

2)
+ ‖P f ‖L4/3,1(R+;L4/3(R2)) (4.4)

and2

ν1/4‖Qu‖
L∞(R+;Ḃ1/2

4/3,1(R
2))

+ ‖ν∇div u,Qut‖L4/3,1(R+;L4/3(R2))

2Observe that we can also write ∇2Qu instead of ∇div u in (4.5) and that ∇divQu = ∇div u.
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+ν1/2‖Qu‖L4,1(R+;L4(R2))

� ν1/4‖Qu0‖Ḃ1/2
4/3,1(R

2)
+ ‖Q f ‖L4/3,1(R+;L4/3(R2)). (4.5)

To bound P f and Q f, we use the fact that P and Q are continuous on
L4/3,1(R+; L4/3(R

2)), so that it is enough to estimate f in L4/3,1(R+; L4/3(R
2)).

Now, using Hölder inequality in Lorentz spaces (see (2.3)), we find that

‖ f ‖L4/3,1(R+;L4/3(R2)) ≤ ‖1 − ρ‖L∞(R+×R2)‖ut‖L4/3,1(R+;L4/3(R2))

+‖ρ‖L∞(R+×R2)‖∇u‖L2(R+×R2)‖u‖L4,1(R+;L4(R2)).

Hence, summing up (4.4) and (4.5), and assuming smallness of ρ − 1, one gets

‖Pu‖
L∞(R+;Ḃ1/2

4/3,1(R
2))

+ ν1/4‖Qu‖
L∞(R+;Ḃ1/2

4/3,1(R
2))

+ ‖ut‖L4/3,1(R+;L4/3(R2))

+‖∇2Pu, ν∇div u‖L4/3,1(R+;L4/3(R2)) + ‖Pu‖L4,1(R+;L4(R2))

+ν1/2‖Qu‖L4,1(R+;L4(R2))

� ‖Pu0‖Ḃ1/2
4/3,1(R

2)
+ ν1/4‖Qu0‖Ḃ1/2

4/3,1(R
2)

+ ‖∇u‖L2(R+×R2)‖u‖L4,1(R+;L4(R2)).

In the case ν ≥ 1, it is now clear that there exists a constant η > 0 independent of ν

such that, if

‖∇u‖L2(R+×R2) ≤ η, (4.6)

then we eventually have

‖Pu‖
L∞(R+;Ḃ1/2

4/3,1(R
2))

+ ν1/4‖Qu‖
L∞(R+;Ḃ1/2

4/3,1(R
2))

+ ‖ut‖L4/3,1(R+;L4/3(R2))

+‖∇2Pu, ν∇div u‖L4/3,1(R+;L4/3(R2)) + ‖Pu‖L4,1(R+;L4(R2))

+ν1/2‖Qu‖L4,1(R+;L4(R2))

� ‖Pu0‖Ḃ1/2
4/3,1(R

2)
+ ν1/4‖Qu0‖Ḃ1/2

4/3,1(R
2)

.

If (4.6) is not satisfied, then the idea is to split the time line into a finite number K of
intervals [Tk−1, Tk) with T0 = 0 and TK = ∞,

‖∇u‖L2((Tk−1,Tk )×R2) = η for all 1

≤ k ≤ K − 1, and ‖∇u‖L2((TK−1,TK )×R2) ≤ η.

For given η, we now calculate how many time intervals are needed for this splitting.
We have

Kη2 ≥
K∑

k=1

‖∇u‖2L2((Tk−1,Tk )×R2)
= ‖∇u‖2L2(R+×R2)

≥
K−1∑
k=1

‖∇u‖2L2((Tk−1,Tk )×R2)
= (K − 1)η2,
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whence

K = �η−2‖∇u‖2L2(R+×R2)
�. (4.7)

Having this information at hand, we adapt (4.4) and (4.5) to the finite time interval
setting, getting, for each k ∈ {0, . . . K − 1},

‖Pu‖
L∞(Tk ,Tk+1;Ḃ1/2

4/3,1(R
2))

+ ν1/4‖Qu‖
L∞(Tk ,Tk+1;Ḃ1/2

4/3,1(R
2))

+‖Pu‖L4,1(Tk ,Tk+1;L4(R2))

+ ν1/2‖Qu‖L4,1(Tk ,Tk+1;L4(R2)) + ‖ut‖L4/3,1(Tk ,Tk+1;L4/3(R2))

+‖∇2Pu‖L4/3,1(Tk ,Tk+1;L4/3(R2))

+ ν‖∇div u‖L4/3,1(Tk ,Tk+1;L4/3(R2)) ≤ C
(‖Pu(Tk)‖Ḃ1/2

4/3,1(R
2)

+ν1/4‖Qu(Tk)‖Ḃ1/2
4/3,1(R

2)

)· (4.8)

Arguing by induction and remembering that K is estimated by (4.7) and (4.3), we
conclude that

‖Pu‖
L∞(R+;Ḃ1/2

4/3,1(R
2))

+ ν1/4‖Qu‖
L∞(R+;Ḃ1/2

4/3,1(R
2))

+ ‖Pu‖L4,1(R+;L4(R2))

+ ν1/2‖Qu‖L4,1(R+;L4(R2)) + ‖ut‖L4/3,1(R+;L4/3(R2)) + ‖∇2Pu‖L4/3,1(R+;L4/3(R2))

+ ν‖∇div u‖L4/3,1(R+;L4/3(R2)) ≤ C
(‖Pu0‖Ḃ1/2

4/3,1(R
2)

+ν1/4‖Qu0‖Ḃ1/2
4/3,1(R

2)

)
e

C‖u0‖2L2(R2) . (4.9)

Step 3. A time weighted estimate

We now look at the momentum equation in the form

(t u)t − �(tu) − μ′∇div (tu) = (1 − ρ)(t u)t + ρu − tρu · ∇u. (4.10)

By definition, the initial datum for tu is zero, and (4.9) provides us with a bound for
the term ρu in the space L4,1(R+; L4(R

2)). This gives us some hint on the regularity
of the whole right-hand side. Now, projecting (4.10) by means of P and Q, using
the maximal regularity estimates of Proposition 2.1, and still assuming the first part
of (3.4), one gets for all 0 ≤ T ≤ T ′ ≤ ∞,

sup
T ≤t≤T ′

‖tPu‖
Ḃ3/2
4,1 (R2)

+ ν3/4 sup
T ≤t≤T ′

‖tQu‖
Ḃ3/2
4,1 (R2)

+ ‖∇2tPu‖L4,1(T,T ′;L4(R2))

+‖(tu)t‖L4,1(T,T ′;L4(R2)) + ν‖∇div tu‖L4,1(T,T ′;L4(R2)) ≤ C
(
‖TPu(T )‖

Ḃ3/2
4,1 (R2)

+ ν3/4‖TQu(T )‖
Ḃ3/2
4,1 (R2)

+ ‖u‖L4,1(T,T ′;L4(R2)) + ‖tu · ∇u‖L4,1(T,T ′;L4(R2))

)
·

(4.11)
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Since we have Ḃ1/2
4,1 (R2) ↪→ L∞(R2), the term with u · ∇u may be bounded as

follows:

‖tu · ∇u‖L4,1(T,T ′;L4(R2)) ≤ C‖u‖L4,1(T,T ′;L4(R2))‖tu‖
L∞(T,T ′;Ḃ3/2

4,1 (R2))
. (4.12)

Consequently, if ν ≥ 1 there exists a constant η > 0 independent of ν such that, if

‖u‖L4,1(T,T ′;L4(R2)) ≤ η, (4.13)

then Inequality (4.11) reduces to

sup
T ≤t≤T ′

‖tPu‖
Ḃ3/2
4,1 (R2)

+ ν3/4 sup
T ≤t≤T ′

‖tQu‖
Ḃ3/2
4,1 (R2)

+ ‖∇2tPu‖L4,1(T,T ′;L4(R2))

+‖(tu)t‖L4,1(T,T ′;L4(R2)) + ν‖∇div tu‖L4,1(T,T ′;L4(R2)) ≤ C
(
‖TPu(T )‖

Ḃ3/2
4,1 (R2)

+ ν3/4‖TQu(T )‖
Ḃ3/2
4,1 (R2)

+ ‖u‖L4,1(T,T ′;L4(R2))

)
· (4.14)

Clearly, if one can take T = 0 and T ′ = ∞ in (4.13), then we control the left-hand
side of (4.11) on R+, so assume from now on that ‖u‖L4,1(R+;L4(R2)) > η. We claim
that there exists a finite sequence 0 = T0 < T1 < · · · < TK−1 < TK = ∞ such that
(4.13) if fulfilled on [Tk, Tk+1] for each k ∈ {0, . . . , K − 1}. In order to prove our
claim, we introduce

U (t) := ‖u(t, ·)‖L4(R2)

and recall that

‖U‖L4,1(R+) = 4
∫ ∞

0
|{t ∈ R+ : |U (t)| > s}|1/4 ds. (4.15)

From Lebesgue dominated convergence theorem, we have

‖U‖L4,1(T ′,T ′′) = 4
∫ ∞

0
|{t ∈ (T ′, T ′′) : |U (t)| > s}|1/4 ds → 0 as T ′′ − T ′ → 0.

(4.16)

Hence one can construct inductively a family 0 = T0 < T1 < · · · < Tk < · · · <

TK = ∞ such that

‖U‖L4,1(Tk−1,Tk ) = η for 1 ≤ k ≤ K − 1 and ‖U‖L4,1(TK−1,TK ) ≤ η. (4.17)

By simple Hölder inequality on series, we have

K−1∑
k=1

|{t ∈ (Tk−1, Tk) : |U (t)| > s}|1/4 ≤ (K − 1)3/4

(K−1∑
k=1

|{t ∈ (Tk−1, Tk) : |U (t)| > s}|
)1/4

.
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Hence, integrating with respect to s, and using (4.17), we get

(K − 1)η ≤ (K − 1)3/4
∫ ∞

0
|{t ∈ (0, TK−1) : |U (t)| > s}|1/4 ds,

whence

(K − 1)1/4η ≤ ‖U‖L4,1(R+).

Now, remembering the definition of U and (4.9), one may conclude that there exists
some constant C such that

K = [C(‖Pu0‖4
Ḃ1/2
4/3,1(R

2)
+ ν‖Qu0‖4

Ḃ1/2
4/3,1(R

2)

)
e

C‖u0‖2L2(R2) ] + 1. (4.18)

Let Xk := supt∈(Tk ,Tk+1)

(‖tPu(t)‖
Ḃ3/2
4,1 (R2)

+ν3/4‖tQu(t)‖
Ḃ3/2
4,1 (R2)

)
. Then, (4.14) and

(4.17) ensure that X0 ≤ Cη and that

Xk ≤ C(η + Xk−1) for all k ∈ {1, . . . , K − 1}. (4.19)

So, arguing by induction, we eventually get for all m ∈ {0, . . . , K − 1},

Xm ≤ Cη

m∑
�=0

C� ≤ C K+1

C − 1
η. (4.20)

Reverting to (4.14), then using (4.18), we conclude that for some universal constant
C ≥ 1,

sup
t≥0

‖tPu‖
Ḃ3/2
4,1 (R2)

+ ν1/4 sup
t≥0

‖tQu‖
Ḃ3/2
4,1 (R2)

+ ‖∇2tPu‖L4,1(R+;L4(R2))

+‖(tu)t‖L4,1(R+;L4(R2)) + ν‖∇div tu‖L4,1(R+;L4(R2))

≤ C exp

(
C

(‖Pu0‖4
Ḃ1/2
4/3,1(R

2)
+ ν‖Qu0‖4

Ḃ1/2
4/3,1(R

2)

)
e

C‖u0‖2L2(R2)

)
· (4.21)

Step 4. Bounding div u

In order to keep the density close to 1,we have to bound div u in L1(R+; L∞(R2)).

The key observation is that

div (tu) ∈ L4,1(R+; Ẇ 1
4 (R2)) and div u ∈ L4/3,1(R+; Ẇ 1

4/3(R
2)). (4.22)

Now, from Gagliardo–Nirenberg inequality and Sobolev embedding, we see that

‖z‖L∞(R2) ≤ C‖∇z‖1/2
L4(R2)

‖∇z‖1/2
L4/3(R2)

. (4.23)

So we have, thanks to Hölder inequality in Lorentz spaces,3∫ ∞

0
‖div u‖L∞ dt ≤ C

∫ ∞

0
t−1/2‖t∇div u‖1/2L4

‖∇div u‖1/2L4/3
dt

≤ C‖t−1/2‖L2,∞(R+)

∥∥‖t∇div u‖1/2
L4(R2)

∥∥
L8,2(R+)

∥∥‖∇div u‖1/2
L4/3(R2)

∥∥
L8/3,2(R+)

≤ C‖t∇div u‖1/2
L4,1(R+;L4(R2))

‖∇div u‖1/2
L4/3,1(R+;L4/3(R2))

.

3Here, it is essential to have a Lorentz space with last index 1, as regards time exponent.
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Hence, thanks to (4.9) and (4.21),

ν

∫ ∞

0
‖div u‖L∞ dt ≤ C

(‖Pu0‖1/2
Ḃ1/2
4/3,1(R

2)
+ ν1/8‖Qu0‖1/2

Ḃ1/2
4/3,1(R

2)

)

× exp

(
C

(‖Pu0‖4
Ḃ1/2
4/3,1(R

2)
+ ν‖Qu0‖4

Ḃ1/2
4/3,1(R

2)

)
e

C‖u0‖2L2(R2)

)
· (4.24)

Step 5. Bounding the density

The discrepancy of the density to 1 (that is a := ρ −1) may be controlled by means
of the mass equation:

∂t a + u · ∇a + (1 + a)div u = 0,

which gives

‖a(t)‖L∞(R2) ≤ ‖a0‖L∞(R2) +
∫ t

0
‖div u‖L∞(R2) dτ

+
∫ t

0
‖a‖L∞(R2)‖div u‖L∞(R2) dτ,

and thus, owing to the integral version of Gronwall lemma,

‖a(t)‖L∞(R2) ≤
(

‖a0‖L∞(R2) +
∫ t

0
e− ∫ s

0 ‖div u‖L∞(R2)
ds‖div u‖L∞(R2) dτ

)
e
∫ t
0 ‖div u‖L∞(R2)

dt

= ‖a0‖L∞(R2)e
∫ t
0 ‖div u‖L∞(R2)

dt + e
∫ t
0 ‖div u‖L∞(R2)

dt − 1.

Hence, provided we have (3.2) and c ≤ 1 and

∫ T

0
‖div u‖L∞(R2) dτ ≤ log(1 + c/2), (4.25)

the smallness property (3.4) is satisfied on [0, T ]. Bearing in mind Inequality (4.24)
and the assumption (3.3), we get

ν

∫ ∞

0
‖div u‖L∞(R2) dt ≤ C M

1
2 eC M4

.

Consequently, in order to have (4.25) satisfied, it suffices that

ν−1C M
1
2 eC M4 ≤ log(1 + c/2),

which corresponds to the condition on ν given in the statement of the theorem.

Step 6: Uniqueness

The key to uniqueness is that ∇u is in L1(R+; L∞(R2)). To get that property, one
may proceed exactly as for bounding div u, writing that
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∫ ∞

0
‖∇u‖L∞(R2) dt ≤ C‖t−1/2‖L2,∞(R+)‖t∇2u‖1/2

L4,1(R+;L4(R2))
‖∇2u‖1/2

L4/3,1(R+;L4/3(R2))
,

(4.26)

and using that the right-hand side is bounded in terms of u0 according to (4.9)
and (4.21). Because of the hyperbolic nature of the continuity equation, the unique-
ness issue is not straightforward, as the regularity of the density is very low. However,
knowing that∇u is in L1(R+; L∞(R2)) enables us to rewrite our system inLagrangian
coordinates. More precisely, for all y ∈ R

2, consider the following ODE:

dX

dt
(t, y) = u(t, X (t, y)), X |t=0 = y. (4.27)

Having (4.26) at hand guarantees that (4.27) defines a C1 flow X on R+ × R
2.

Let us express the density and velocity in the new coordinates:

η(t, y) = ρ(t, X (t, y)), v(t, y) = u(t, X (t, y)). (4.28)

Then, the system for (η, v) reads (see details in, e.g., [10]):

(Jvη)t = 0,
ρ0vt − divv (∇vv + μ′(divv v) Id) = 0,

(4.29)

where ∇v := A�
v ∇y , div v := div (J−1

v Av·) = A�
v : ∇y with Av = (DXv)

−1 and
Jv = det(DXv). One points out that J−1

v Av = adj(DXv) (the adjugate matrix of
DXv). Since, in our framework the Lagrangian and Eulerian formulations are equiv-
alent (see, e.g., [10,33]), it suffices to prove uniqueness at the level of Lagrangian
coordinates. Therefore, consider two solutions (η, v) and (η̄, v̄) of (4.29) emanating
from the data (ρ0, u0). Then, the difference of velocities δv := v̄ − v satisfies

ρ0δvt − divv (∇vδv + μ′(divv δv) Id)

= (
divv̄∇v̄ − div v∇v

)
v̄ + μ′(divv̄ Id divv̄ − divv Id divv

)
v̄. (4.30)

Note that (
divv̄∇v̄ − div v∇v

)
v̄ = div

(
(adj(DX v̄)A�̄

v − adj(DXv)A�
v ) · ∇v̄

)
,(

divv̄ Id divv̄ − divv Id divv
)
v̄ = div

(
(adj(DX v̄)A�̄

v − adj(DXv)A�
v ) : ∇v̄

)·
Now, taking the L2 scalar product of (4.30) with δv and integrating by parts delivers

1

2

d

dt
‖√ρ0 δv‖2L2(R2)

+ ‖∇vδv‖2L2(R2)
+ μ′‖divv δv‖2L2(R2)

≤ ν
∥∥(
adj(DX v̄)A�̄

v − adj(DXv)A�
v

) · ∇v̄
∥∥

L2(R2)
‖∇δv‖L2(R2).

Let us take an interval [0, T ] for which

max

(∫ T

0
‖∇v‖L∞(R2) dt,

∫ T

0
‖∇v̄‖L∞(R2) dt

)
is small. (4.31)
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All terms like Id−Aw, 1 − Jw or Id− adj(DXw) (with w = v, v̄) may be computed
by using Neumann series expansions, and we end up with pointwise estimates of the
following type:

| Id−Aw| �
∫ t

0
|∇w| dt ′, | Id− adj(DXw)| �

∫ t

0
|∇w| dt ′,

|1 − Jw| �
∫ t

0
|∇w| dt ′.

From this, we deduce that

d

dt
‖√ρ0 δv‖2L2(R2)

+ ‖∇δv‖2L2(R2)
� (‖∇v‖L∞(R2)

+‖∇v̄‖L∞(R2))‖∇δv‖L2(R2)

∥∥∥∥
∫ t

0
∇δv dτ

∥∥∥∥
L2(R2)

.

Because we have, by Cauchy–Schwarz inequality,

t−1/2
∥∥∥∥
∫ t

0
∇δv dτ

∥∥∥∥
L2(R2)

≤ ‖∇δv‖L2((0,t)×R2),

integrating the above inequality (and using again Cauchy–Schwarz inequality) yields

‖√ρ0 δv(t)‖2L2(R2)
+

∫ t

0
‖∇δv‖2L2(R2)

dτ

≤ C

(∫ t

0
τ‖(∇v,∇v̄)(τ )‖2L∞(R2)

dτ

)1/2 ∫ t

0
‖∇δv‖2L2(R2)

dτ.

Hence, there exists c > 0 such that if, in addition to (4.31), we have

‖t1/2∇w‖L2(0,T ;L∞(R2)) ≤ c for w = v, v̄, (4.32)

then we have δv ≡ 0 on [0, T ], that is to say v̄ = v. Since δη = (J−1
v̄ − Jv)ρ0, we get

η̄ = η, too. In light of the above arguments, in order to get uniqueness on the whole
R+, it suffices to show that our solutions satisfy not only ∇u ∈ L1(R+; L∞(R2)),

but also
∫ ∞

0
t‖∇u‖2L∞(R2)

dt < ∞. (4.33)

This is a consequence of (4.23), as it gives

∫ ∞

0
t‖∇u‖2L∞(R2)

dt �
∫ ∞

0
‖t∇2u‖L4(R2)‖∇2u‖L4/3(R2) dt

� ‖t∇2u‖L4(R+×R2)‖∇2u‖L4/3(R+×R2)

� ‖t∇2u‖L4,1(R+;L4(R2))‖∇2u‖L4/3,1(R+;L4/3(R2)).
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Step 7: Proof of existence

The idea is to smooth out the data, and to solve (3.1) supplemented with those
data, according to the local-in-time existence result of Danchin et al. [11] (that just
requires the initial velocity to be smooth enough, and the initial density to be close to
1 in L∞). Then, the previous steps provide uniform bounds that allow to show that
those smoother solutions are actually global, and one can eventually pass to the limit.
The reader may refer to the end of the next part where more details are given on the
existence issue, both for Theorems 3.1 and 3.2.

5. The three dimensional case

Our aim here is to prove a global existence result in the small data regime case for
system (3.6). In order to get the optimal dependency of the smallness condition in
terms of the viscosity coefficient, it is wise to resort again to the rescaling (4.1). So
we assume from now on that μ = 1.

The bulk of the proof consists in exhibiting global-in-time bounds in terms of the
data for

 := sup
t≥0

‖u(t)‖
Ḃ6/5
5/2,1(R

3)
+ ‖∇2u, ut‖L5/2,1(R+;L5/2(R

3)) (5.1)

and � := sup
t≥0

‖u(t)‖
Ḃ3/5
10/7,1(R

3)
+ ‖∇2u, ut‖L10/7,1(R+;L10/7(R3)). (5.2)

From that control and Proposition 2.1, we will estimate u in the space L10/3,1(R+;
L10/3(R

3)) (that will play the same role as L4,1(R+; L4(R
2)) for (3.1)), and exhibit

a bound for tu in the space Ẇ 2,1
10/3,(10/3,1)(R+ × R

3). This will eventually enable us

to bound ∇u in L1(R+; L∞(R3)). From that stage, the proof of uniqueness follows
the lines of the two-dimensional case.

Step 1. Control by the energy

Remembering that our assumptions imply that u0 is in L2(R
3), we start with the

basic energy balance:

d

dt

∫
R3

ρ|u|2 dx +
∫
R3

|∇u|2 dx = 0. (5.3)

By Sobolev embedding and provided that (3.8) is satisfied, this implies the following
bound on u:

‖u‖L∞(R+;L2(R3)) + ‖u‖L2(R+;Ḣ1(R3)) � ‖u0‖L2(R3). (5.4)

That relation will enable us to control higher norms of the solution, globally in time,
provided some scaling invariant quantity involving u0 is small enough.
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Step 2. Control of the high norm

This step is somehow standard: we want to construct smooth solutions like for
the classical Navier-Stokes system. Now, assuming (3.8) and taking advantage of the
maximal regularity estimate for the heat equation in L5/2,1(R+; L5/2(R

3)) stated in
Proposition 2.1 yields (recall the definition of  in (5.1)):

 ≤ C
(‖u · ∇u‖L5/2,1(R+;L5/2(R

3)) + ‖u0‖Ḃ6/5
5/2,1(R

3)

)·
We see by Hölder inequality and Sobolev embedding Ẇ 1

5/2(R
3) ↪→ L15(R

3) that

‖u · ∇u‖L5/2,1(R+;L5/2(R
3)) ≤ C‖u‖L∞(R+;L3(R3))‖∇u‖L5/2,1(R+;L15(R

3))

≤ C‖u‖L∞(R+;L3(R3))‖∇2u‖L5/2,1(R+;L5/2(R
3)).

Moreover, we note that by Hölder inequality, Sobolev embedding and (5.4), we have

‖u‖L3(R3) ≤ C‖u‖2/3
L2(R3)

‖u‖1/3
L∞(R3)

≤ C‖u0‖2/3L2(R3)
‖u‖1/3

Ḃ6/5
5/2,1(R

3)
. (5.5)

Hence, altogether, this gives

 ≤ C
(‖u0‖2/3L2(R3)

1+1/3 + 0
)·

From this, we deduce that

(2C)4/3
1/3
0 ‖u0‖2/3L2

≤ 1 implies  ≤ 2C0. (5.6)

Step 3. Control of the low norm

It is now a matter of bounding the functional � defined in (5.2). Thanks to Propo-
sition 2.1, we have

� ≤ C
(‖u · ∇u‖L10/7,1(R+;L10/7(R3)) + ‖u0‖Ḃ3/5

10/7,1(R
3)

)· (5.7)

ByHölder inequality and Sobolev embedding Ẇ 1
10/7(R

3) ↪→ L30/11(R
3),wediscover

that

‖u · ∇u‖L10/7,1(R+;L10/7(R3)) ≤ C‖u‖L∞(R+;L3(R3))‖∇u‖L10/7,1(R+;L30/11(R3))

≤ C‖u‖L∞(R+;L3(R3))‖∇2u‖L10/7,1(R+;L10/7R
3)).

Hence, thanks to (5.5),

‖u · ∇u‖L10/7,1(R+;L10/7(R3)) ≤ C‖u0‖2/3L2(R3)
1/3�.

Therefore, using (5.6) and reverting to (5.7) yields

� ≤ C
(
�0 + ‖u0‖2/3L2(R3)


1/3
0 �

)
,



3120 R. Danchin et al. J. Evol. Equ.

whence, thanks to the smallness condition in (5.6) (changing C if need be),

� ≤ 2C�0. (5.8)

Let us emphasize that, since u0 is in Ḃ3/5
10/7,1(R

3) ∩ Ḃ6/5
5/2,1(R

3), it also belongs to all

intermediate spaces, and in particular to Ḃ4/5
5/3,1(R

3) with estimate ‖u0‖Ḃ4/5
5/3,1(R

3)
�

‖u0‖2/3
Ḃ3/5
10/7,1(R

3)
‖u0‖1/3

Ḃ6/5
5/2,1(R

3)
. Hence, mimicking the proof of (5.8), we discover that,

up to an irrelevant change of C, we have

‖u‖Ẇ 2,1
5/3,(5/3,1)

≤ C‖u0‖2/3
Ḃ3/5
10/7,1(R

3)
‖u0‖1/3

Ḃ6/5
5/2,1(R

3)
. (5.9)

Step 4. Time weight

In order to get eventually the desired control on ∇u in L1(R+; L∞(R3)) that is
needed to ensure (3.8) provided we have (3.7) for ρ0, and, later on, uniqueness, we
mimic the sharp approach of the two dimensional case, considering the momentum
equation in the following form

(tu)t − �(tu) = (1 − ρ)(tu)t − tρu · ∇u + ρu in R+ × R
3. (5.10)

We observe that using Proposition 2.1 with m = s = 10/3 delivers

‖u‖L10/3,1(R+;L10/3(R3)) � �. (5.11)

Since the term ρu appears in the right-hand side of (5.10), it is natural to look for a
control of tu in the space Ẇ 2,1

10/3,(10/3,1)(R
3 × R+).

Let � := supt≥0 ‖tu‖
Ḃ7/5
10/3,1

+ ‖∇2(tu), (tu)t‖L10/3,1(R+;L10/3(R3)). Proposition 2.1

and (3.8) give us

� � ‖tu · ∇u‖L10/3,1(R+;L10/3(R3)) + ‖u‖L10/3,1(R+;L10/3(R3)).

In order to estimate the nonlinear term, we first use Hölder inequality to get:

‖u · ∇tu‖L10/3,1(R+;L10/3(R3)) ≤ C‖u‖L5,1(R+;L5(R
3))‖t∇u‖L10(R+×R3). (5.12)

From Gagliardo–Nirenberg inequality and Sobolev embedding, we know that

‖∇z‖L10(R3) � ‖∇2z‖1/3
L10/3(R3)

‖∇z‖2/3
Ẇ 2/5

10/3(R
3)

.

Therefore, using Hölder inequality,

‖∇z‖L10(R+×R3) � ‖∇2z‖1/3
L10/3(R+×R3)

‖z‖2/3
L∞(R+;Ẇ 7/5

10/3(R
3))

.

Consequently,

‖t∇u‖L10(R+×R3) � �. (5.13)
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In order to bound u in L5,1(R+; L5(R
3)), we use Proposition 2.1 with p = q = 5/3,

and m = s = 5, and Inequality (5.9). This gives

‖u‖L5,1(R+;L5(R
3)) � ‖u0‖2/3

Ḃ3/5
10/7,1(R

3)
‖u0‖1/3

Ḃ6/5
5/2,1(R

3)
.

Putting together with (5.13) and reverting to (5.12), we end up with

‖u · ∇tu‖L10/3,1(R+×R3) � �
2/3
0 

1/3
0 �.

Therefore, using also (5.11) and (5.8), we get the following inequality for �:

� ≤ C
(
�0 + �

2/3
0 

1/3
0 �

)·
Consequently, assuming C�

2/3
0 

1/3
0 ≤ 1/2, a condition that implies (5.6) (up to a

change of the constant maybe), we obtain

� ≤ 2C�0. (5.14)

Step 5. Bounding ∇u

It is now easy to get the desired control on ∇u: we start from the following combi-
nation of the Gagliardo–Nirenberg inequality with Sobolev embedding:

‖∇u‖L∞(R3) ≤ C‖∇u‖2/3
Ẇ 1

10/3(R
3)

‖∇u‖1/3
Ẇ 1

5/2(R
3)

, (5.15)

which implies∫ ∞

0
‖∇u‖L∞(R3) dt ≤ C

∫ ∞

0
t−2/3‖t∇u‖2/3

Ẇ 1
10/3(R

3)
‖∇u‖1/3

Ẇ 1
5/2(R

3)
dt. (5.16)

Using Hölder inequality (2.3) with respect to time in Lorentz spaces, we find that∫ ∞

0
‖∇u‖L∞(R3) dt ≤ C‖t−2/3‖L3/2,∞(R+)‖t∇u‖2/3

L10/3,1(R+;Ẇ 1
10/3(R

3))
‖∇u‖1/3

L5/2,1(R+;Ẇ 1
5/2(R

3))
.

As the right-hand side is bounded, owing to (5.6) and (5.14), one may conclude that∫ ∞

0
‖∇u‖L∞(R3) dt ≤ C�

2/3
0 

1/3
0 � 1. (5.17)

Therefore, arguing on themass equation exactly as in the 2D case, one can justify (3.8),
and thus all the previous steps provided (3.7) is satisfied.

Step 6. Uniqueness

Arguing as in the previous section and knowing (5.17) (so as to put our system in
Lagrangian coordinates), it suffices to establish the additional property that t1/2∇u is
in L2(0, T ; L∞(R3)). Now, one may write, owing to (5.15), that∫ ∞

0
t‖∇u‖2L∞(R3)

dt �
∫ ∞

0
t−1/3‖t∇u‖4/3

Ẇ 1
10/3(R

3)
‖∇u‖2/3

Ẇ 1
5/2(R

3)
dt

� ‖t−1/3‖L3,∞(R+)

∥∥‖t∇u‖4/3
Ẇ 1

10/3(R
3)

∥∥
L5/2,1(R+)

∥∥‖∇u‖2/3
Ẇ 1

5/2(R
3)

∥∥
L15/4(R+)

� ‖t∇2u‖4/3
L10/3,1(R+;L10/3(R3))

‖∇2u‖2/3
L5/2(R+×R3)

.
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Because t∇2u is in L10/3,1(R+; L10/3(R
3)) and ∇2u is in L5/2(R+ ×R

3), the right-
hand side is indeed bounded. This completes the proof of uniqueness.

Step 7. Existence

Here, we sketch the proof of the existence of a global solution under our assumptions
on the data. The overall strategy is essentially the same in dimensions d = 2 and d = 3.

As a first, we truncate ρ0 and smooth out u0 to meet the conditions of the local-in-
time existence theorem of [11]: we fix a sequence (ρn

0 , un
0)n∈N that converges weakly

to (ρ0, u0) and satisfy the conditions therein. Let (ρn, un)n∈N be the corresponding
sequence of maximal solutions, defined on [0, Tn)×R

d and belonging for all T < Tn

to the classical maximal regularity space

Ẇ 2,1
p,r (T ) := {

z ∈ C([0, T ]; Ḃ2−2/r
p,r (Rd)) : ∂t z,∇2

x z ∈ Lr (0, T ; L p(R
d))

}
,

with, e.g. p = 2d and r = 7/6.
It is shown in [11] that those solutions satisfy the energy balance and (3.8). Since

the computations of the previous step just follow from the properties of the heat
flow and basic functional analysis, each (ρn, un) satisfies the estimates therein. In
particular, ‖∇un‖L1(0,Tn;L∞(Rd )) is uniformly bounded like in (5.17), which ensures
control of (3.8). Now, applying the standard maximal regularity estimates to4

∂t u
n − �un − μ′�un = (1 − ρn)∂t u

n + ρnun · ∇un,

one gets for all T < Tn,

‖un‖Ẇ 2,1
p,r (T )

� ‖un
0‖Ḃ2−2/r

p,r (Rd )
+ ‖un · ∇un‖Lr (0,T ;L p(Rd )),

whence

‖un‖r
Ẇ 2,1

p,r (T )
� ‖un

0‖r
Ḃ2−2/r

p,r (Rd )
+

∫ T

0
‖un‖r

L∞(Rd )
‖∇un‖r

L p(Rd )
dt. (5.18)

Gagliardo–Nirenberg inequality reveals that

‖∇un‖L p(Rd ) � ‖un‖r/2

Ḃ2−2/r
p,r (Rd )

‖∇2un‖1−r/2
L p(Rd )

.

Therefore, plugging that inequality in (5.18) then using Young inequality, we discover
that for all T < Tn and all ε > 0,

‖un‖r
Ẇ 2,1

p,r (T )
≤ C‖un

0‖r
Ḃ2−2/r

p,r (Rd )

+Cε

∫ T

0
‖un‖2L∞(Rd )

‖un‖r
Ḃ2−2/r

p,r (Rd )
dt + ε

∫ T

0
‖∇2un‖r

L p(Rd )
dt.

4Of course μ′ is put to 0 if one wants to prove the existence part of Theorem 3.2.
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Then, taking ε small enough and using Gronwall inequality, we end up with

‖un‖r
Ẇ 2,1

p,r (T )
≤ C‖un

0‖r
Ḃ2−2/r

p,r (Rd )
exp

{
C

∫ T

0
‖un‖2L∞(Rd )

dt
}
·

Now, in the 2D case, we observe that ‖un‖L∞(R2) � ‖un‖1/3
L2(R2)

‖∇2un‖2/3
L4/3(R2)

, and

thus, by Hölder inequality,

‖un‖L2(0,Tn;L∞(R2)) � ‖un‖1/3
L∞(0,Tn;L2(R2))

‖∇2un‖2/3
L4/3((0,Tn)×R2)

� ‖u0‖Ḃ1/2
4/3,1(R

2)
,

and one can thus bound un in Ẇ 2,1
p,r (Tn) independently of Tn .

In the framework of Theorem 3.2, we use the following Gagliardo–Nirenberg
inequality:

‖un‖L∞(R3) � ‖un‖1/9
Ẇ 2

5/2(R
3)

‖un‖8/9
Ẇ 2

10/7(R
3)

that implies

‖un‖L3/2(R+;L∞(R3)) � ‖un‖1/9
L5/2(R+;Ẇ 2

5/2(R
3))

‖un‖8/9
L10/7(R+;Ẇ 2

10/7(R
3))

,

then the fact that L2(R+; L∞(R3)) ⊂ L3/2(R+; L∞(R3)) ∩ L∞(R+; L∞(R3)) and

that Ḃ6/5
5/2,1(R

3) ↪→ L∞(R3), to get the desired control of ‖un‖L2(0,T ;L∞(R3)) in terms
of u0 only.
In short, in both cases, one can bound un in Ẇ 2,1

p,r (Tn) independently of Tn . Then,
applying standard continuation arguments allows to prove that (ρn, un) is actually
global, and may be bounded in terms of the original data (ρ0, u0) in the spaces of our
main theorems, independently of n.

From this stage, passing to the limit in the slightly larger (but reflexive) space

Ẇ 2,1
5/2(R

3 × R+) ∩ Ẇ 2,1
10/7(R

3 × R+)
(
or in Ẇ 2,1

4/3(R
2 × R+)

)
for the velocity can be done as in [11] (passing to the limit directly in the nonreflexive
spaces Ẇ 2,1

p,(p,1)(R
d ×R+)would require more care). The mass conservation equation

may be handled according to Di Perna and Lions’ theory [19] (see details in [11]) and
the momentum equation does not present any difficulty compared to works on global
weak solutions, since a lot of regularity is available on the velocity and there is no
pressure term.
Next, once we know that (ρ, u) is a solution, one can recover all the additional

regularity, that are just based on ‘linear’ properties like interpolation or parabolic
maximal regularity. �
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Appendix A

Here, we prove Proposition 2.1.
Performing the usual rescaling reduces the proof to μ = 1. Now, the key element

is the following interpolation relation proved in [39, Th2:1.18.6]:

(
Lq0,r0(X; A); Lq1,r1(X; A)

)
θ,r = Lq,r (X; A) with

1

q

= 1 − θ

q0
+ θ

q1
and θ ∈ (0, 1).

Taking X = R+ and A = L p(R
d) thus leads to

(
Lq0(R+; L p(R

d)); Lq1(R+; L p(R
d))

)
θ,r

= Lq,r (R+; L p(R
d)). (A.1)

Now, based on the classical results for the heat equation, one has the followingmaximal
regularity estimates for all α ∈ (1,∞) and 1 < p < ∞:

‖u‖
L∞(R+;Ḃ2−2/α

p,α (Rd ))
+ ‖ut ,∇2u‖Lα(R+;L p(Rd ))

≤ C
(
‖u0‖Ḃ2−2/α

p,α (Rd )
+ ‖ f ‖Lα(R+;L p(Rd ))

)
· (A.2)

Let us take α = q0, q1, with 1 < q0 < q < q1 < ∞ such that 2/q = (1/q0 + 1/q1).
Then, the interpolation relation (A.1) ensures that

(
Lq0(R+; L p(R

d)); Lq1(R+; L p(R
d))

)
1/2,r

= Lq,r (R+; L p(R
d))

while the properties of interpolation for Besov spaces give us:

(
Ḃ2−2/q0

p,q0 (Rd); Ḃ2−2/q1
p,q1 (Rd)

)
1/2,r

= Ḃ2−2/q
p,r (Rd).

Hence, putting together the above two relations with (A.2) yields all the terms of (2.6),
except for the norm in Ls,r (R+; Lm(Rd)).

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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To achieve it, we observe that, provided 2 − 2/α < d/p, Property (A.2) may be
reformulated in the following terms:

d

dt
− � is an isomorphism from the space Ẇ 2,1

p,α(Rd × R+) onto Lα(R+; L p(R
d )).

Consequently, for all q0 and q1 as above, d
dt − � is an isomorphism from

(
Ẇ 2,1

p,q0 (R
d × R+); Ẇ 2,1

p,q1 (R
d × R+)

)
1
2 ,r onto

(
Lq0 (R+; L p(R

d )); Lq1 (R+; L p(R
d ))

)
1
2 ,r .

The latter space is Lq,r (R+; L p(R
d)), and what we proved just above amounts to

saying that d
dt −� is an isomorphism from Ẇ 2,1

p,(q,r)(R
d ×R+) to Lq,r (R+; L p(R

d)).

Hence, we have

(
Ẇ 2,1

p,q0(R
d × R+); Ẇ 2,1

p,q1(R
d × R+)

)
1
2 ,r = Ẇ 2,1

p,(q,r)(R
d × R+). (A.3)

The end of the proof relies on the mixed derivative theorem which ensures for each
α ∈ (0, 1) and i = 0, 1, that

Ẇ 2,1
p,qi

(Rd × R+) ↪→ Ẇ α
qi

(R+; Ẇ 2−2α
p (Rd))

and on the following Sobolev embedding:

Ẇ α
qi

(R+; Ẇ 2−2α
p (Rd)) ↪→ Lsi (R+; Lm(Rd))

with
d

m
= d

p
+ 2α − 2 and

1

si
= 1

qi
− α.

Let us choose α = 1
q − 1

s so that

1

2

(
1

s0
+ 1

s1

)
= 1

2

(
1

q0
+ 1

q1

)
− α = 1

s
·

Since (Ls0(R+; Lm(Rd)); Ls1(R+; Lm(Rd))) 1
2 ,r = Ls,r (R+; Lm(Rd)), this com-

pletes the proof of Inequality (2.6). �
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