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Abstract. We consider the heat equation defined by a generalized measure theoretic Laplacian on [0, 1].
This equation describes heat diffusion in a bar such that the mass distribution of the bar is given by a
non-atomic Borel probabiliy measure μ, where we do not assume the existence of a strictly positive mass
density. We show that weak measure convergence implies convergence of the corresponding generalized
Laplacians in the strong resolvent sense. We prove that strong semigroup convergence with respect to the
uniform norm follows, which implies uniform convergence of solutions to the corresponding heat equations.
This provides, for example, an interpretation for the mathematical model of heat diffusion on a bar with
gaps in that the solution to the corresponding heat equation behaves approximately like the heat flow on a
bar with sufficiently small mass on these gaps.

1. Introduction

Letμ be a non-atomic Borel probability measure on [0, 1] such that 0, 1 ∈ supp(μ),
L2([0, 1], μ) be the space of measurable functions f such that

∫ b
a f 2dμ < ∞ and

L2([0, 1], μ) be the corresponding Hilbert space of equivalence classes with inner
product 〈 f, g〉μ := ∫ 1

0 f gdμ. We define

D2
μ :=

{
f ∈ C1([0, 1]) : ∃ (

f ′)μ ∈ L2([0, 1], μ) :

f ′(x) = f ′(0) +
∫ x

0

(
f ′)μ (y)dμ(y), x ∈ [0, 1]

}
.

The Krein–Feller operator with respect to μ is given as

�μ : D2
μ ⊆ L2([0, 1], μ) → L2([0, 1], μ), f 
→ (

f ′)μ .

This definition involves the derivative with respect to μ. If a function f has a repre-
sentation given by

f (x) =
∫ x

0

d

dμ
f (x)dμ(x), x ∈ [0, 1],

then d
dμ f is called the μ-derivative of f . Consequently, in the above definition,

(
f ′)μ

is the μ-derivative of f ′.
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This operator has been widely studied, for example with an emphasis on addressing
questions of the spectral asymptotics and further analytical properties [2,3,11–20,
22,23,33,34,36,37], diffusion processes [27,30,31], wave equations [5] and higher-
dimensional generalizations [21,35,39].
In order to connect these operators with diffusion equations from a physical point of

view, we follow for example [26, Section 1.2] and consider a metallic rod of constant
cross-sectional area oriented in the x-direction occupying a region from x = 0 to
x = 1 such that all thermal quantities are constant across a section. We can thus
consider the rod as one-dimensional. We investigate the conduction of heat energy on
a segment from x = a to x = b. Let the temperature at the point x ∈ [a, b] and time
t ∈ [0,∞) be denoted by u(t, x) and the total thermal energy in the segment at time
t be denoted by ea,b(t). It is well-known that

ea,b(t) =
∫ b

a
u(t, x)ρ(x)dx,

assuming that the rod possesses a mass density ρ : [0, 1] → (0,∞). However, if we
denote the mass distribution of the rod by μ, we can write

ea,b(t) =
∫ b

a
u(t, x)dμ(x).

Hence, we can define the total heat energy even if μ has no density. The total heat
energy changes only if heat energy flows through the boundaries x = a and x = b.
We deduce for the rate of change of heat energy

d

dt
ea,b(t) = φ(t, a) − φ(t, b), (1)

where φ(t, x) denotes the heat flux density, which gives the rate of thermal energy
flowing through x at time t to the right. Assuming sufficient regularity, we can rewrite
(1) as

∫ b

a

∂

∂t
u(t, x)dμ(x) = −

∫ b

a

d

dμ
φt (x)dμ(x),

where φt (x) := φ(t, x) and the μ-derivative was defined earlier. With ut (x) :=
u(x, t), Fourier’s law of heat conduction φ = − ∂u

∂x gives

∫ b

a

∂

∂t
u(t, x)dμ(x) =

∫ b

a

d

dμ

d

dx
ut (x)dμ(x).

Since this is valid for all a, b ∈ [0, 1], a < b, it follows for t ∈ [0,∞) and μ-almost
all x ∈ [0, 1]

∂

∂t
u(t, x) = d

dμ

d

dx
ut (x).
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Applying the definition of the Krein–Feller operator leads to the generalized heat
equation

∂u

∂t
= �μut , t ∈ [0,∞) (2)

with Dirichlet boundary conditions u(t, 0) = u(t, 1) = 0 for all t ≥ 0 if we assume
that the temperature vanishes at the boundaries or with Neumann boundary conditions
∂u
∂x (t, 0) = ∂u

∂x (t, 1) = 0 if the boundaries are assumed to be perfectly insulated.
This provides a physical motivation for a mass distribution having full support even
if it possesses no Lebesgue density. However, it is still not clear how to interpret the
equation if the support of the mass distribution is not the whole interval, in particular
for singular measures, such as measures on the Cantor set.
The problem then is to describe heat flow on a rod with massless parts. Krein–Feller

operators defined by measures on the classical Cantor set or, more generally, Cantor-
like sets with gaps have been extensively studied in recent years (see, e.g., [1,16–19]).
In this paper, we give an interpretation of a solution to (2) in the case where μ is not of
full support. We approximate the solution by a sequence of solutions to heat equations
defined by μn for n ∈ N such that μn is of full support and converges weakly to μ for
n → ∞.

To this end, let b ∈ {N , D} represent the boundary condition, where N denotes
Neumann and D Dirichlet boundary conditions and we give our basic assumption.

Assumption 1.1. Let (μn)n∈N be a sequence of non-atomic Borel probability mea-
sures on [0, 1] such that 0, 1 ∈ supp(μn) and μn ⇀ μ, n → ∞, where ⇀ denotes
weak measure convergence.

It is well-known that �b
μ is a non-positive self-adjoint operator (see, e.g., [13]) and

thus the generator of a strongly continuous semigroup
(
T b
t

)
t≥0 (see, e.g., [24, Lemma

1.3.2]).
If u0 ∈ L2([0, 1], μ), then the unique mild solution to the initial value problem

∂u

∂t
(t) = �b

μu(t), t ∈ [0,∞),

u(0) = u0
(3)

is given by u(t) = T b
t u0 (see e.g., [10, Proposition II.6.4]).

This motivates the investigation of strong semigroup convergence. However, for
different measures, the corresponding semigroups are defined on different spaces.
For the special case supp(μ) = supp(μn) = [0, 1] for all n ∈ N, the results in [6]
can be applied to obtain strong semigroup convergence on the space of continuous
functions on [0, 1]. To formulate a strong semigroup convergence result without that
assumption, we restrict the semigroup

(
T N
t

)
t≥0 associated to �N

μ on L2([0, 1], μ)

to the subspace of continuous functions, denoted by (C[0, 1])Nμ , which is a Banach
space with the uniform norm. The semigroup

(
T D
t

)
t≥0 is restricted to the Banach
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space of continuous functions satisfying Dirichlet boundary conditions, denoted by
(C[0, 1])Dμ . We show that the restricted semigroup, which we denote by

(
T̄ b
t

)
t≥0, is,

again, a strongly continuous contraction semigroup and the infinitesimal generator is
given by

�̄b
μ f := �b

μ f, D
(
�̄b

μ

)
:=

{
f ∈ D

(
�b

μ

)
: �b

μ f ∈ (C[0, 1])bμ
}

.

Moreover, if we assume that supp(μ) ⊆ supp(μn), the space (C[0, 1])bμ can be con-
tinuously embedded in (C[0, 1])bμn

, where we denote the embedding by πn . Due to the
Trotter-Kato approximation theorem (see, e.g., [10, Theorem I.6.1]), the strong semi-
group convergence is equivalent to strong resolvent convergence and strong resolvent
convergence is what we will establish. More precisely, let f ∈ (C[0, 1])bμ, λ > 0 and

n ∈ N. We define R̄b
λ := (

λ − �̄b
μ

)−1
and R̄b

λ,n := (
λ − �̄b

μn

)−1
and prove

∥
∥
∥πn R̄

b
λ f − R̄b

λ,nπn f
∥
∥
∥∞ → 0, n → ∞. (4)

The main tool for proving (4) is the generalization of the hyperbolic functions sinh
and cosh, defined by generalizing the series

sinh(zx) =
∞∑

k=0

z2k+1 x2k+1

(2k + 1)! , cosh(zx) =
∞∑

k=0

z2k
x2k

(2k)! .

We replace xk
k! by generalized monomials defined by a measure μ. This extends the

theory of measure theoretic functions, developed for trigonometric functions in [1].
Then, we show that the resolvent density of the operator �b

μ is a product of such
generalized hyperbolic functions. This leads to strong resolvent convergence for our
sequence by proving convergence of these generalized hyperbolic functions. As a
consequence we obtain our main result.

Theorem 1.2. Let f ∈ (C[0, 1])bμ and μn be a sequence of measures satisfying
Assumption 1.1. Then, for all t ≥ 0

lim
n→∞

∥
∥
∥πn T̄

b
t f − T̄ b

t,nπn f
∥
∥
∥∞ = 0,

uniformly on bounded time intervals.

For f ∈ (C[0, 1])bμ, it follows in the sameway as before, that
{
u(t) = T̄ b

t f : t ≥ 0
}

is the unique mild solution to the initial value problem

∂u

∂t
(t) = �̄b

μu(t), t ∈ [0,∞),

u(0) = f
(5)

Further,
{
un(t) = T̄ b

t,n f : t ≥ 0
}
is the uniquemild solution to the initial value problem

∂un
∂t

(t) = �̄b
μn
un(t), t ∈ [0,∞),

un(0) = πn f.
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Finally, combining these results and Theorem 1.2 yields

lim
n→∞ ‖πnu(t) − un(t)‖∞ = 0,

uniformly on bounded time intervals.
We obtain a meaningful interpretation for the diffusion of heat in the case of a

mass distribution with gaps in that the heat in a rod with mass distribution μ diffuses
approximately like the heat on a rod with mass distribution μn for sufficiently large n.

This paper is structured as follows. In the following section, we recall definitions
related to Krein–Feller operators. In Sect. 3, we introduce the concept of generalized
hyperbolic functions and the connection to resolvent operators. Section 4 is devoted
to the restriction of the Krein–Feller operator semigroup to the spaces (C[0, 1])bμ for
b ∈ {N , D}. After these preparations, in Sect. 5 we develop the central convergence
results, namely the convergence of the hyperbolic functions and the strong resolvent
convergence in Sect. 5.1 and finally, the strong semigroup convergence and conver-
gence of solutions to heat equations in Sect. 5.2. In Sect. 6, we show how to apply the
results in three examples. Lastly, in Sect. 7, we discuss some open problems.

2. Preliminaries

First, we recall the definition and some properties of the operator �b
μ, where b ∈

{N , D} and μ is a non-atomic Borel probability measure on [0, 1] such that 0, 1 ∈
supp(μ). If [0, 1] \ supp(μ) 
= ∅, then [0, 1] \ supp(μ) is open inR and can be written
as

[0, 1] \ supp(μ) =
⋃

i≥1

(ai , bi ) (6)

with 0 < ai < bi < 1, ai , bi ∈ supp(μ) for i ≥ 1. We define

D1 :=
{
f : [0, 1] → R : there exists f ′ ∈ L2

(
[0, 1], λ1

)
:

f (x) = f (0) +
∫ x

0
f ′(y)dy, x ∈ [0, 1]

}

and H1
([0, 1], λ1) to be the space of all L2([0, 1], μ)-equivalence classes possessing

aD1−representative. If μ = λ1 on [0, 1], this definition is equivalent to the definition
of the Sobolev space W 1

2 .
Weobserve that H1

([0, 1], λ1) is the domain of the non-negative symmetric bilinear
form E on L2([0, 1], μ) defined by

E(u, v) =
∫ 1

0
u′(x)v′(x)dx, u, v ∈ F := H1

(
[0, 1], λ1

)
.
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It is known (see [14, Theorem 4.1]) that (E,F) defines a Dirichlet form on
L2([0, 1], μ). Hence, there exists an associated non-positive, self-adjoint operator

�N
μ on L2([0, 1], μ) with F = D

(
(−�N

μ

) 1
2

)

such that

〈−�N
μ u, v〉μ = E(u, v), u ∈ D

(
�N

μ

)
, v ∈ F

and

D
(
�N

μ

)
= {

f ∈ L2([0, 1], μ) : f has a representative f̄ with f̄ ∈ D2
μ and f̄ ′(0) = f̄ ′(1) = 0

}
.

The operator �N
μ is called the Neumann Krein–Feller operator with respect to μ.

Furthermore, let F0 be the space of all L2([0, 1], μ)-equivalence classes having a
D1−representative f such that f (0) = f (1) = 0. The bilinear form defined by

E(u, v) =
∫ 1

0
u′(x)v′(x)dx, u, v ∈ F0,

is a Dirichlet form, too (see [14, Theorem 4.1]). Again, there exists an associated non-

positive, self-adjoint operator �D
μ on L2([0, 1], μ) with F0 = D

(
(−�D

μ

) 1
2

)

such

that

〈−�D
μ u, v〉μ = E(u, v), u ∈

(
�D

μ

)
, v ∈ F0

and

D
(
�D

μ

)
= {

f ∈ L2([0, 1], μ) : f has a representative f̄ with f̄ ∈ D2
μ and f̄ (0) = f̄ (1) = 0

}
.

Then, �D
μ is called the Dirichlet Krein–Feller operator with respect to μ.

By Freiberg [13, Proposition 6.3, Lemma 6.7, Corollary 6.9], there exists an
orthonormal basis {ϕb

k : k ∈ N} of L2([0, 1], μ) consisting of eigenfunctions of
−�b

μ and for the related ascending ordered eigenvalues {λbk : k ∈ N} we have

0 ≤ λb1 ≤ λb2 ≤ · · · , where λD
1 > 0. Since {ϕb

k : k ≥ 1} is an orthonormal basis
of L2([0, 1], μ), each f ∈ L2([0, 1], μ) can be written as f = ∑

k≥1 f bk ϕb
k , where

f bk := 〈
f, ϕb

k

〉
μ

, k ≥ 1. Along with the self-adjointness, we obtain the following

formula, called the spectral representation of �b
μ (see, e.g., [24, Section 1.3]):

−�b
μ f =

∑

k≥1

λbk f
b
k ϕb

k ,

D
(
�b

μ

)
=

⎧
⎨

⎩
f ∈ L2([0, 1], μ) :

∑

k≥1

(
λbk f

b
k

)2
< ∞

⎫
⎬

⎭
.

(7)

The spectral representation provides a direct way to introduce the associated semi-
group. Define for f ∈ L2([0, 1], μ)

T b
t f :=

∑

k≥1

e−λbk t f bk ϕb
k , t ≥ 0. (8)
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Then,
(
T b
t

)
t≥0 is a strongly continuous semigroup on L2([0, 1], μ) and its infinitesimal

generator is �b
μ (see, e.g., [24, Lemma 1.3.2]).

3. Generalized hyperbolic functions and the resolvent operator

Let b ∈ {N , D} and let μ be defined as before. In this section, we develop a useful
representation for the resolvent density of �b

μ.
Let λ > 0. We consider the initial value problem

{
�μg = λg,

g(0) = 1, g′(0) = 0
(9)

on L2([0, 1], μ). The problem (9) possesses a unique solution (see [13, Lemma 5.1]),
which we denote by gλ

1,N . Further, under the initial conditions

g(1) = 1, g′(1) = 0, (10)

g(0) = 0, g′(0) = 1 (11)

and

g(1) = 0, g′(1) = 1, (12)

respectively, the above eigenvalue problems also possess unique solutions (see[13,
Remark 5.2]), and we denote them by gλ

2,N , g
λ
1,D and gλ

2,D , respectively. The resolvent
density is then given as follows.

Lemma 3.1. [13, Theorem 6.1] Let λ > 0. The resolvent operator Rb
λ := (λ−�b

μ)−1

is well-defined and for all f ∈ L2([0, 1], μ) we have

Rb
λ f (x) =

∫ 1

0
ρb

λ(x, y) f (y)dμ(y), x ∈ [0, 1],

where the resolvent densities are given by

ρN
λ (x, y) = ρN

λ (y, x) := gλ
1,N (x)gλ

2,N (y)
(
gλ
1,N

)′
(1)

, x, y ∈ [0, 1], x ≤ y,

ρD
λ (x, y) = ρD

λ (y, x) := −gλ
1,D(x)gλ

2,D(y)

gλ
1,D(1)

, x, y ∈ [0, 1], x ≤ y.

It is well-known that if μ = λ1, the solutions to (9) and (11) are given by

gλ
1.N (x) = cosh

(√
λx

)
and gλ

1.D(x) = 1√
λ
sinh

(√
λx

)
, x ∈ [0, 1],

respectively. We generalize the notion of hyperbolic functions by solving (9) and (11)
for an arbitrary measure μ with the given initial conditions. To this end, we introduce
generalized monomials as in [1].
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Definition 3.2. For x ∈ [0, 1] we set p0(x) = q0(x) = 1 and for k ∈ N

pk(x) :=
{∫ x

0 pk−1(t)dμ(t), if k is odd,
∫ x
0 pk−1(t)dt, if k is even,

qk(x) :=
{∫ x

0 qk−1(t)dt, if k is odd,
∫ x
0 qk−1(t)dμ(t), if k is even.

We note that for x ∈ [0, 1] and k ≥ 0,

p2k+1(x) ≤ p2k(x) ≤ xk

k! , q2k+1(x) ≤ p2k(x) ≤ xk

k! (13)

(see [18, Lemma 2.3]).

Definition 3.3. We define for x ∈ [0, 1], z ∈ R

sinhz(x) :=
∞∑

k=0

z2k+1q2k+1(x), coshz(x) :=
∞∑

k=0

z2k p2k(x).

By (13) for all z ∈ R

‖sinhz‖∞ ≤ zez
2
, ‖coshz‖∞ ≤ ez

2
. (14)

Example 3.4. If μ = λ1, we have qk(x) = xk
k! , k ≥ 0. It follows that in this case

sinhz(x) =
∞∑

k=0

z2k+1 x2k+1

(2k + 1)! = sinh(zx)

and analogously coshz(x) = cosh(zx).

Proposition 3.5. Let λ > 0. Then, for x ∈ [0, 1], we have

gλ
1,N (x) = cosh√

λ(x), gλ
1,D(x) = 1√

λ
sinh√

λ(x),

gλ
2,N (x) = cosh√

λ(1 − x), gλ
2,D(x) = − 1√

λ
sinh√

λ(1 − x).
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Proof. The assertion for gλ
1,D was proven in [18, Lemma 2.3]. The proof for gλ

1,N

works analogously. We verify the assertion for gλ
2,N . Let x ∈ [0, 1]. Then,

cosh√
λ(1 − x) =

∞∑

n=0

λn p2n(1 − x)

= 1 +
∞∑

n=1

λn
∫ 1−x

0

∫ y

0
p2n−2(t)dμ(t)dy

= 1 +
∞∑

n=1

λn
∫ 1−x

0

∫ 1

1−y
p2n−2(1 − t)dμ(t)dy

= 1 −
∞∑

n=1

λn
∫ 1

x

∫ y

0
p2n−2(1 − t)dμ(t)dy

= 1 −
∞∑

n=0

λn+1
∫ 1

x

∫ y

0
p2n(1 − t)dμ(t)dy.

Due to estimate (13) we can use the dominated convergence theorem and obtain

cosh√
λ(1 − x) = 1 − λ

∫ 1

x

∫ y

0

∞∑

n=0

λn p2n(1 − t)dμ(t)dy

= 1 − λ

∫ 1

x

∫ y

0
cosh√

λ(1 − t)dμ(t)dy.

We set f (x) := cosh√
λ(1 − x), x ∈ [0, 1] and get

f (x) = 1 − λ

∫ 1

x

∫ y

0
f (t)dμ(t)dy, x ∈ [0, 1]

and in particular

f (0) = 1 − λ

∫ 1

0

∫ y

0
f (t)dμ(t)dy.

It follows that, for x ∈ [0, 1],

f (x) − f (0) = λ

∫ x

0

∫ y

0
f (t)dμ(t)dy.

The latter equation can be written as �μ f = λ f. It remains to verify the initial
conditions. Obviously, f (1) = cosh√

λ(0) = 1. Using (13) again, we have

f ′(1) = −
∞∑

n=1

λn p2n−1(0) = 0.

The proof for gλ
2,D follows using the same ideas.
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This leads to the following representation for the resolvent density:

Corollary 3.6. Let λ > 0. We have for x, y ∈ [0, 1], x ≤ y,

ρN
λ (x, y) = ρN

λ (y, x) =
(
cosh′√

λ
(1)

)−1
cosh√

λ(x) cosh
√

λ(1 − y),

ρD
λ (x, y) = ρD

λ (y, x) = 1√
λ

(
sinh√

λ(1)
)−1

sinh√
λ(x) sinh

√
λ(1 − y).

4. The restricted semigroup

Let b ∈ {N , D} and let μ be defined as before. It is well-known that �b
μ is the

generator of a strongly continuous Markovian semigroup
(
T b
t

)
t≥0 of contractions on

L2([0, 1], μ).

Definition 4.1. For (t, x, y) ∈ (0,∞) × [0, 1] × [0, 1], we define

pbt (x, y) :=
∞∑

k=1

e−λbk tϕb
k (x)ϕ

b
k (y).

This is called the heat kernel of �b
μ.

The heat kernel is the integral kernel of the semigroup
(
T b
t

)
t≥0. That is, for t > 0

and f ∈ L2([0, 1], μ), we can write

T b
t f (x) =

∫ 1

0
pbt (x, y) f (y)dμ(y), x ∈ [0, 1].

In this section, we restrict these semigroups to appropriate spaces of equivalence
classes of continuous functions.

Definition 4.2. (i) We define (C[0, 1])Nμ as the set of all L2([0, 1], μ)-equivalence
classes possessing a continuous representative, formally

(C[0, 1])Nμ :=
{
f ∈ L2([0, 1], μ) : f possesses a continuous representative

}
.

(ii) We further define (C[0, 1])Dμ as the set of all L2([0, 1], μ)-equivalence classes
possessing a continuous representative that satisfies Dirichlet boundary condi-
tions, formally

(C[0, 1])Dμ := {
f ∈ L2([0, 1], μ) : f possesses a continuous representative f̄

such that f̄ (0) = f̄ (1) = 0
}
.

The space (C[0, 1])bμ is aBanach spacewith thenorm‖ f ‖(C[0,1])bμ := ∥
∥ f |supp(μ)

∥
∥∞.

Note that

‖ f ‖(C[0,1])bμ = ∥
∥ f̃

∥
∥∞ ,
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where f̃ is the continuous representative of f that is affine on all intervals in [0, 1] \
supp(μ). To simplify the notation, we henceforth write ‖ f ‖∞ for ‖ f ‖(C[0,1])bμ .

Let u = ∑
k≥1 u

b
kϕ

b
k ∈ L2([0, 1], μ) and let t > 0. From

(
f bk
)
k≥1 ∈ l2(N) it

follows that
((

λbk

)n
e−λbk t f bk

)

k≥1
∈ l2(N) and thus by (7) and (8)

(
−�b

μ

)k
T b
t u =

∑

k≥1

(
λbk

)k
e−λbk t ubkϕ

b
k ∈ L2([0, 1], μ) (15)

and especially T b
t u ∈ D (

�b
μ

)
. Hence, the following inclusion holds:

T b
t

(
(C[0, 1])bμ

)
⊆ (C[0, 1])bμ.

Thismotivates thedefinitionof the restricted semigroup
(
T̄ b
t

)
t≥0 :=

(
(
T b
t

)
|
(C[0,1])bμ

)

t≥0
,

which is for t ≥ 0 defined by

T̄ b
t : (C[0, 1])bμ → (C[0, 1])bμ, T̄ b

t f = T b
t f.

When evaluating an element of (C[0, 1])bμ pointwise, we always evaluate the repre-
sentative that is affine on all intervals in [0, 1] \ supp(μ).

The goal of this section is to show that
(
T̄ b
t

)
t≥0 again defines a strongly continuous

contraction semigroup. It is obvious that the semigroup property holds. Note that by
the Markov property of (T b

t )t≥0 for g ∈ (C[0, 1])Nμ
∣
∣
∣T b

t g(x)
∣
∣
∣ =

∣
∣
∣
∣

∫ 1

0
pbt (x, y)g(y)dμ(y)

∣
∣
∣
∣ ≤ ‖g‖∞

∣
∣
∣
∣

∫ 1

0
pbt (x, y)dμ(y)

∣
∣
∣
∣ ≤ ‖g‖∞ , x ∈ [0, 1].

Hence, (T̄ b
t )t≥0 is a semigroup of contractions. It remains to prove the strong con-

tinuity. To this end, we need some preparations. We write E( f, f ) := E( f ) and
‖ f ‖2μ := ∫ 1

0 f (x)2dμ(x).

Lemma 4.3. If f ∈ F , then

‖ f ‖∞ ≤ E( f )
1
2 + ‖ f ‖μ .

Proof. Let f ∈ F . Then, by the Cauchy–Schwarz inequality for all x, y ∈ [0, 1]

| f (x) − f (y)| =
∣
∣
∣
∣

∫ y

x
f ′(z)dz

∣
∣
∣
∣ ≤

(∫ y

x

(
f ′)2 (z)dz

) 1
2 |x − y| 12 = E( f )

1
2 |x − y| 12 .

It follows by the reversed triangle inequality and by |x − y| ≤ 1

| f (x)| ≤ | f (y)| + E( f )
1
2 .
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Further, by integrating of y w.r.t. μ,

| f (x)| ≤
∫ 1

0
| f (y)|dμ(y) + E( f )

1
2

and finally by the Cauchy-Schwarz inequality

| f (x)| ≤ ‖ f ‖μ + E( f )
1
2 .

Lemma 4.4. Let f ∈ (C[0, 1])bμ. Then, limt→0
∥
∥T b

t f − f
∥
∥∞ = 0.

Proof. We follow the proof of [28, Proposition 5.2.6]. Let f ∈ F . By Lemma 4.3 and
[28, Lemma B.2.4],

lim
t→0

∥
∥
∥T b

t f − f
∥
∥
∥∞ ≤ lim

t→0
E
(
T b
t f − f

) 1
2 +

∥
∥
∥T b

t f − f
∥
∥
∥

μ

≤ lim
t→0

2
1
2

(

E
(
T b
t f − f

)
+

∥
∥
∥T b

t f − f
∥
∥
∥
2

μ

) 1
2

= 0.

By the fact that F is dense in (C[0, 1])Nμ and that, for t ≥ 0, T N
t is continuous on

(C[0, 1])Nμ , we obtain the assertion for b = N . To verify the case b = D, we prove
that F0 is dense in (C[0, 1])Dμ . Let f ∈ (C[0, 1])Dμ . Then, by the density of F in
(C[0, 1])Nμ , there exists a sequence ( fn)n∈N with fn ∈ F for each n ∈ N such that

‖ f − fn‖∞ → 0, n → ∞. (16)

We define for n ∈ N

fn,0(x) := fn(x) − fn(0) − x( fn(1) − fn(0)), x ∈ [0, 1],
which is an element of F0. Further, we have that

f0(x) := f (x) − f (0) − x( f (1) − f (0)) = f (x), x ∈ [0, 1],
since f satisfies Dirichlet boundary conditions. This alongwith (16) implies for n ∈ N

lim
n→∞

∥
∥ fn,0 − f

∥
∥∞

= lim
n→∞

∥
∥ fn,0 − f0

∥
∥∞

≤ lim
n→∞ sup

x∈[0,1]
| fn(x) − f (x)| + | fn(0) − f (0)|

+ |x ( fn(1) − fn(0) − ( f (1) − f (0)))|
= 0.

The main result of this section now follows immediately.

Corollary 4.5.
(
T̄ b
t

)
t≥0 is a strongly continuous contraction semigroupon (C[0, 1])bμ.
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5. Convergence results

5.1. Strong resolvent convergence

Let μ be defined as before and let F be the distribution function of μ. Further,
let (μn)n∈N satisfy Assumption 1.1 and let Fn be the distribution function of μn for
n ∈ N.

First, we give convergence results for the generalized hyperbolic functions intro-
duced in Sect. 3 using results from [19]. Let pk , qk , k ∈ N be defined by μ and
pk,n, qk,n , k ∈ N be defined by μn for n ∈ N.

Lemma 5.1. [19, Lemma 3.1] For x ∈ [0, 1] and k, n ∈ N we have

|q2k(x) − q2k,n(x)| ≤ 2
‖F − Fn‖∞ xk

(k − 1)! ,

|p2k(x) − p2k,n(x)| ≤ 2
‖F − Fn‖∞ xk

(k − 1)! ,

|q2k+1(x) − q2k+1,n(x)| ≤ 2
‖F − Fn‖∞ xk

(k − 1)! ,

|p2k+1(x) − p2k+1,n(x)| ≤ 2
‖F − Fn‖∞ xk

(k − 1)! .

Remark 5.2. Since the distribution function ofμ is continuous, weak measure conver-
gence implies uniform convergence of the corresponding distribution functions (see
[4, Section 8.1]), which is the condition in [19, Lemma 3.1].

For z ∈ R let coshz, sinhz be defined by μ and coshz,n, sinhz,n be defined by μn

for n ∈ N. We obtain a result for the generalized hyperbolic functions, comparable to
that for the trigonometric functions in [19].

Lemma 5.3. Let z ∈ R. Then,

∥
∥coshz − coshz,n

∥
∥∞ ≤ 2z2ez

2 ‖F − Fn‖∞ ,

∥
∥cosh′

z − cosh′
z,n

∥
∥∞ ≤

(
z2 + 2z4ez

2
)

‖F − Fn‖∞ ,

∥
∥sinhz − sinhz,n

∥
∥∞ ≤ 2z3ez

2 ‖F − Fn‖∞ .
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Proof. Let x ∈ [0, 1] and n ∈ N. Then,

∣
∣coshz(x) − coshz,n(x)

∣
∣ ≤

∞∑

k=1

|p2k(x) − p2k,n(x)| z2k

≤
∞∑

k=1

2 ‖F − Fn‖∞
(k − 1)! z2k

=
∞∑

k=0

2 ‖F − Fn‖∞
k! z2k+2

= 2z2ez
2 ‖F − Fn‖∞ .

Further, note that

cosh′
z(x) =

∞∑

k=1

p2k−1(x)z
2k

and
∣
∣p1(x) − p1,n(x)

∣
∣ = |μ([0, x]) − μn([0, x])| ≤ ‖F − Fn‖∞ .

With that,

∣
∣cosh′

z(x) − cosh′
z,n(x)

∣
∣ ≤

∞∑

k=1

|p2k−1(x) − p2k−1,n(x)| z2k

≤
(

z2 + 2
∞∑

k=2

z2k

(k − 2)!

)

‖F − Fn‖∞

≤
(
z2 + 2z4ez

2
)

‖F − Fn‖∞ .

Finally,

∣
∣sinhz(x) − sinhz,n(x)

∣
∣ ≤

∞∑

k=1

|q2k+1(x) − q2k+1,n(x)| z2k+1

≤
∞∑

k=1

2 ‖F − Fn‖∞
(k − 1)! z2k+1

≤
∞∑

k=0

2 ‖F − Fn‖∞
k! z2k+3

≤ 2z3ez
2 ‖F − Fn‖∞ .

We turn to the main result of this section. For b ∈ {N , D} and λ > 0, let Rb
λ be

defined by μ and Rb
λ,n be defined by μn . We assume supp(μ) ⊆ supp(μn) for all

n ∈ N. Then, the mapping

πn : (C[0, 1])bμ → (C[0, 1])bμn
, f 
→ f (17)
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defines an embedding, where f ∈ (C[0, 1])bμn
denotes the L2([0, 1], μn)-equivalence

class of the representative of f ∈ (C[0, 1])bμ that is affine on each interval I ⊆
supp(μn) \ supp(μ).

Theorem 5.4. Let λ > 0. Then, for all f ∈ (C[0, 1])bμ,

lim
n→∞

∥
∥
∥Rb

λ,nπn f − πn R
b
λ f

∥
∥
∥∞ = 0.

Proof. We simplify the notation in this proof by omitting all embeddings. If we eval-
uate on supp(μn) \ supp(μ), we always evaluate the representative that is affine on
each interval I ⊆ supp(μn) \ supp(μ). First, we consider the case b = N . Let λ > 0,
n ∈ N, x, y ∈ [0, 1] with x ≤ y. Using the triangle inequality,

∣
∣
∣ρN

λ (x, y) − ρN
λ,n(x, y)

∣
∣
∣

≤
∣
∣
∣
∣

(
cosh′√

λ
(1)

)−1 −
(
cosh′√

λ,n
(1)

)−1
∣
∣
∣
∣

∣
∣
∣cosh√

λ(x) cosh
√

λ(1 − y)
∣
∣
∣

+
∣
∣
∣cosh√

λ(x) − cosh√
λ,n(x)

∣
∣
∣

∣
∣
∣
∣

(
cosh′√

λ,n
(1)

)−1
cosh√

λ(1 − y)

∣
∣
∣
∣

+
∣
∣
∣cosh√

λ(1 − y) − cosh√
λ,n(1 − y)

∣
∣
∣

∣
∣
∣
∣

(
cosh′√

λ,n
(1)

)−1
cosh√

λ,n(x)

∣
∣
∣
∣ .

(18)

We have

cosh′√
λ
(1) =

∞∑

n=1

λn p2n−1(1) ≥ λp1(1) = λ (19)

and similarly cosh′√
λ,n

(1) ≥ λ. Applying this along with Lemma 5.3, we get

∣
∣
∣
∣

(
cosh′√

λ
(1)

)−1 −
(
cosh′√

λ,n
(1)

)−1
∣
∣
∣
∣ =

∣
∣
∣
∣
∣

cosh′√
λ,n

(1) − cosh′√
λ
(1)

cosh′√
λ
(1) cosh′√

λ,n
(1)

∣
∣
∣
∣
∣

≤
(
λ + 2λ2eλ

) ‖F − Fn‖∞
λ2

and thus with (14)
∣
∣
∣
∣

(
cosh′√

λ
(1)

)−1 −
(
cosh′√

λ,n
(1)

)−1
∣
∣
∣
∣

∣
∣
∣cosh√

λ(x) cosh
√

λ(1 − y)
∣
∣
∣

≤
(
e2λ + 2λe3λ

) ‖F − Fn‖∞
λ

.

For the second term on the right-hand side of inequality (18), we calculate

∣
∣
∣cosh√

λ(x) − cosh√
λ,n(x)

∣
∣
∣

∣
∣
∣
∣

(
cosh′√

λ,n
(1)

)−1
cosh√

λ(1 − y)

∣
∣
∣
∣ ≤ 2e2λ ‖F − Fn‖∞ .
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Treating the third term analogously and using the above calculations in (18) yields

lim
n→∞ max

x∈[0,1]

∣
∣
∣ρN

λ (x, y) − ρN
λ,n(x, y)

∣
∣
∣

≤ lim
n→∞

(
e2λ + 2λe3λ

) ‖F − Fn‖∞
λ

+ 4e2λ ‖F − Fn‖∞

= lim
n→∞

(
1

λ
+ 2eλ + 4

)

e2λ ‖F − Fn‖∞

= 0.

Further, by (14) and (19),

∣
∣
∣
∣

∫ 1

0
ρN

λ (x, y) f (y)dμ(y) −
∫ 1

0
ρN

λ (x, y) f (y)dμn(y)

∣
∣
∣
∣

≤
∣
∣
∣
∣

(
cosh′√

λ
(1)

)−1
cosh√

λ(x)

∣
∣
∣
∣

·
∣
∣
∣
∣

∫ 1

0
cosh√

λ(1 − y) f (y)dμ(y) −
∫ 1

0
cosh√

λ(1 − y) f (y)dμn(y)

∣
∣
∣
∣

≤ eλ

λ

∣
∣
∣
∣

∫ 1

0
cosh√

λ(1 − y) f (y)dμ(y) −
∫ 1

0
cosh√

λ(1 − y) f (y)dμn(y)

∣
∣
∣
∣ .

Due to weak measure convergence,

lim
n→∞

∫ 1

0
cosh√

λ(1 − y) f (y)dμn(y) −
∫ 1

0
cosh√

λ(1 − y) f (y)dμ(y) = 0

and consequently,

lim
n→∞ max

x∈[0,1]

∣
∣
∣
∣

∫ 1

0
ρN

λ (x, y) f (y)dμ(y) −
∫ 1

0
ρN

λ (x, y) f (y)dμn(y)

∣
∣
∣
∣ = 0.

We get the same result for x ≥ y and obtain

lim
n→∞ max

x∈[0,1]

∣
∣
∣RN

λ,n f (x) − RN
λ f (x)

∣
∣
∣

≤ lim
n→∞ max

x∈[0,1]

∣
∣
∣
∣

∫ 1

0
ρN

λ (x, y) f (y)dμ(y) −
∫ 1

0
ρN

λ (x, y) f (y)dμn(y)

∣
∣
∣
∣

+ lim
n→∞ max

x∈[0,1]

∣
∣
∣
∣

∫ 1

0

(
ρN

λ (x, y) − ρN
λ,n(x, y)

)
f (y)dμn

∣
∣
∣
∣

= 0.
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Now, let b = D. Again using the triangle inequality, for n ∈ N, x, y ∈ [0, 1], x ≤ y,

∣
∣
∣ρD

λ (x, y) − ρD
λ,n(x, y)

∣
∣
∣

≤ 1√
λ

( ∣
∣
∣
∣

(
sinh√

λ(1)
)−1 −

(
sinh√

λ,n(1)
)−1

∣
∣
∣
∣

∣
∣
∣sinh√

λ(x) sinh
√

λ(1 − y)
∣
∣
∣

+
∣
∣
∣sinh√

λ(x) − sinh√
λ,n(x)

∣
∣
∣

∣
∣
∣
∣

(
sinh√

λ,n(1)
)−1

sinh√
λ(1 − y)

∣
∣
∣
∣

+
∣
∣
∣sinh√

λ(1 − y) − sinh√
λ,n(1 − y)

∣
∣
∣

∣
∣
∣
∣

(
sinh′√

λ,n
(1)

)−1
sinh√

λ,n(x)

∣
∣
∣
∣

)

.

(20)

We have

sinh√
λ(1) =

∞∑

n=0

λn+ 1
2 q2n+1(1) ≥ √

λq1(1) = √
λ

and thus
∣
∣
∣
∣

(
sinh√

λ(1)
)−1 −

(
sinh√

λ,n(1)
)−1

∣
∣
∣
∣ ≤ 2

√
λeλ ‖F − Fn‖∞ .

Arguing in the same way as before, we get

lim
n→∞ max

x∈[0,1]

∣
∣
∣ρD

λ (x, y) − ρD
λ,n(x, y)

∣
∣
∣ ≤ lim

n→∞
2√
λ

√
λeλ ‖F − Fn‖∞ λe2λ

+ lim
n→∞

4√
λ

λ
3
2 eλ ‖F − Fn‖∞ eλ

= lim
n→∞

(
2eλ + 4

)
λe2λ ‖F − Fn‖∞

= 0.

Further,

max
x∈[0,1]

∣
∣
∣
∣

∫ 1

0
ρD

λ (x, y) f (y)dμ(y) −
∫ 1

0
ρD

λ (x, y) f (y)dμn(y)

∣
∣
∣
∣

≤ max
x∈[0,1]

∣
∣
∣
∣

(√
λ sinh√

λ(1)
)−1

sinh√
λ(x)

∣
∣
∣
∣

∣
∣
∣
∣

∫ 1

0
sinh√

λ(1 − y) f (y)dμ(y)

−
∫ 1

0
sinh√

λ(1 − y) f (y)dμn(y)

∣
∣
∣
∣

≤
∣
∣
∣
∣

(√
λ sinh√

λ(1)
)−1

∣
∣
∣
∣

∥
∥
∥sinh√

λ

∥
∥
∥∞

∣
∣
∣
∣

∫ 1

0
sinh√

λ(1 − y) f (y)dμ(y)

−
∫ 1

0
sinh√

λ(1 − y) f (y)dμn(y)

∣
∣
∣
∣.
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Due to the weak measure convergence, this goes to zero as n tends to ∞. Deducing
the same result for x ≥ y and combining the above inequalities,

lim
n→∞ max

x∈[0,1]

∣
∣
∣RD

λ,n f (x) − RD
λ f (x)

∣
∣
∣

≤ lim
n→∞ max

x∈[0,1]

∣
∣
∣
∣

∫ 1

0
ρD

λ (x, y) f (y)dμ(y) −
∫ 1

0
ρD

λ (x, y) f (y)dμn(y)

∣
∣
∣
∣

+ lim
n→∞ max

x∈[0,1]

∣
∣
∣
∣

∫ 1

0

(
ρD

λ (x, y) − ρD
λ,n(x, y)

)
f (y)dμn

∣
∣
∣
∣

= 0.

Remark 5.5. We made the assumption supp(μ) ⊆ supp(μn) for all n ∈ N only to
simplify the proofs. Note that our results can be formulated and proven in a very
similar way if this condition is not satisfied. If, for example, supp(μ) ⊇ supp(μn) for
all n ∈ N, define πn : (C[0, 1])bμ → (C[0, 1])bμn

, f 
→ f |supp(μn)
. This is again a

bounded linear transformation between Banach spaces and we can follow the same
steps as before.

5.2. Strong semigroup convergence

Let μ be defined as before and let λ > 0. Analogously to the restricted semigroup,
we define the restricted resolvent operator by

R̄N
λ : (C[0, 1])Nμ → (C[0, 1])Nμ , R̄N

λ f = RN
λ f,

R̄D
λ : (C[0, 1])Dμ → (C[0, 1])Dμ , R̄D

λ f = RD
λ f.

Further, we define the operators �̄N
μ and �̄D

μ by

�̄N
μ f := �N

μ f, D
(
�̄N

μ

)
:=

{
f ∈ D

(
�N

μ

)
: �N

μ f ∈ (C[0, 1])Nμ
}

,

�̄D
μ f := �D

μ f, D
(
�̄D

μ

)
:=

{
f ∈ D

(
�D

μ

)
: �D

μ f ∈ (C[0, 1])Dμ
}

,

which are called the part of the operator �N
μ in C[0, 1])Nμ and the part of the operator

�D
μ in C[0, 1])Dμ , respectively. The following Lemma shows how the restricted semi-

group, the restricted resolvent and the part of the operator are connected. For that, let
b ∈ {N , D}.
Lemma 5.6. (i) The infinitesimal generator of the strongly continuous contraction

semigroup
(
T̄ b
t

)
t≥0 is �̄b

μ.

(ii) R̄b
λ is the resolvent of �̄b

μ.

Proof. For all f ∈ L2([0, 1], μ), we have ‖ f ‖∞ ≥ ‖ f ‖μ, therefore the inclusionmap
i : (C[0, 1])bμ → L2([0, 1], μ), f 
→ f is continuous. Moreover,

(
T̄ b
t

)
t≥0 defines a

strongly continuous contraction semigroup on (C[0, 1])bμ and (C[0, 1])bμ is
(
T̄ b
t

)
t≥0-

invariant (see Corollary 4.5). We thus can apply [9, II.2.3 Proposition] to verify (i).
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We turn to part (ii). Let λ > 0 and let R̃b
λ be the resolvent of �̄b

μ. By part (i) and [9,
I.1.10 Theorem], this operator is well-defined and given by

R̃b
λ f =

∫ ∞

0
e−λs T̄ b

s f ds, f ∈ (C[0, 1])bμ.

Further, by definition of
(
T̄ b
t

)
t≥0 and R̄b

λ,

R̄b
λ f = Rb

λ f =
∫ ∞

0
e−λsT b

s f ds =
∫ ∞

0
e−λs T̄ b

s f ds, f ∈ (C[0, 1])bμ.

It follows R̃b
λ = R̄b

λ on (C[0, 1])bμ.
We are now able to establish strong semigroup convergence. To this end, let (μn)n∈N

satisfy Assumption 1.1 and we assume supp(μ) ⊆ supp(μn) for all n ∈ N. For
b ∈ {N , D} let (T b

t

)
t≥0 be defined by μ,

(
T b
t,n

)
t≥0 be defined by μn and analogously

the restricted semigroups
(
T̄ b
t

)
t≥0 and

(
T̄ b
t,n

)
t≥0 be defined by μ and μn , respectively.

Proof of Theorem 1.2. For n ∈ N, πn is a bounded linear transformation between
Banach spaces. Further,

(
T̄ b
t

)
t≥0 and

(
T̄ b
t,n

)
t≥0 , n ∈ N are strongly continuous con-

traction semigroups on their respective spaces (see Corollary 4.5). Hence, due to the
first Trotter-Kato approximation theorem (see [10, Theorem I.6.1, Problem I.8.13] for
a suitable version), the assertion is a direct consequence of Theorem 5.4.

Remark 5.7. As a further direct consequence of the Trotter-Kato approximation the-
orem, we obtain the graph norm convergence. That is, for f ∈ D (

�̄b
μ

)
there exists

( fn)n∈N with fn ∈ D (
�̄b

μn

)
such that for n ∈ N

lim
n→∞ ‖πn f − fn‖∞ +

∥
∥
∥πn�̄

b
μ f − �̄b

μn
fn
∥
∥
∥∞ = 0.

Strong semigroup convergence can be interpreted as convergence of solutions to
heat equations. The connection is given as follows (see [9, Proposition VI.6.2]).

Lemma 5.8. Let A be the generator of a strongly continuous semigroup (St )t≥0 on a
Banach space X. Then, for each f ∈ D(A) the abstract heat equation

∂u

∂t
(t) = Au(t), t ≥ 0

u(0) = f
(21)

has a unique classical solution on X given by

u : [0,∞) → X, t 
→ St f,

meaning that u is continuously differentiable with respect to X, u(t) ∈ D (A) and (21)
holds for all t ≥ 0.
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Let T > 0 and f ∈ D (
�̄b

μ

)
. Theorem 1.2 implies that the classical solution to

∂un
∂t

(t) = �̄b
μn
un(t),

un(0) = πn f

converges uniformly for (t, x) ∈ [0, T ] × [0, 1] to the classical solution to
∂u

∂t
(t) = �̄b

μu(t),

u(0) = f

as n → ∞, assuming thatπn f ∈ D (
�̄b

μn

)
. However, the assumption f ∈ D (

�̄b
μ

)
and

πn f ∈ D (
�̄b

μn

)
for all n ∈ N is very restrictive, as the following example illustrates.

Example 5.9. Let μ be a measure satisfying our conditions such that supp(μ) is a
λ1-zero set and assume that supp(μn) = [0, 1] for all n ∈ N. Further, let f ∈ D (

�̄b
μ

)
.

Then, on any interval I ⊆ [0, 1] \ supp(μ), πn f is affine. Now, if we assume that
πn f ∈ D (

�̄b
μn

)
, then �̄b

μn
f (x) = 0, x ∈ I and thus �̄b

μn
f = 0 ∈ (C[0, 1])bμn

. If

b = D, we obtain πn f = 0 ∈ (C[0, 1])Dμn
and thus f = 0 ∈ (C[0, 1])bμ and if b = N ,

(πn f )′ = 0 ∈ C[0, 1] and thus f ′ = 0 ∈ (C[0, 1])Nμ .

This motivates the concept of a mild solution (see [10, Definition II.6.3]).

Definition 5.10. Let X be a Banach space, A : D(A) ⊂ X → X and f ∈ X. We call
a map u : [0,∞) → X, t 
→ u(t) a mild solution to the abstract heat equation

du

dt
(t) = Au(t), t ≥ 0,

u(0) = f
(22)

if
∫ t
0 u(s)ds ∈ D(A) and u(t) = A

∫ t
0 u(s)ds + f for all t ≥ 0

Using this solution concept, we can establish the desired convergence for any initial
condition in the appropriate space.

Theorem 5.11. Let f ∈ (C[0, 1])bμ and let (μn)n∈N satisfy Assumption 1.1. Further,
let {u(t) : t ≥ 0} be the unique mild solution to

du

dt
(t) = �̄b

μu(t), t ≥ 0,

u(0) = f
(23)

and, for n ≥ 1, let {un(t) : t ≥ 0} be the unique mild solution to
dun
dt

(t) = �̄b
μn
un(t), t ≥ 0,

un(0) = πn f.
(24)
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Then,

lim
n→∞ ‖πnu(t) − un(t)‖∞ = 0, (25)

uniformly on bounded time intervals.

Proof. Since �̄b
μ is the generator of a strongly continuous semigroup, it follows by

[10, Proposition II.6.4] that t 
→ T̄ b
t f is the unique mild solution to (23). The same

argument show that T̄ b
t,nπn f is the unique mild solution to (24) for n ∈ N. Then, (25)

is a direct consequence of Theorem 1.2.

6. Applications

Example 6.1. As a first application, we consider a non-atomic Borel probability mea-
sure μ on [0, 1] such that 0, 1 ∈ supp(μ) and supp(μ) 
= [0, 1]. We define for
ε ∈ (0, 1) the approximating probability measure με by

με := μ + ελ1

1 + ε
.

It is elementary that με converges weakly to μ as ε → 0 and Theorem 5.11 is
applicable. Let b ∈ {N , D} and f ∈ (C[0, 1])bμ. Then, the unique solution {uε(t) :
t ≥ 0} to

duε

dt
(t) = �̄b

με
uε(t),

uε(0) = πε f,

where πε : (C[0, 1])bμ → (C[0, 1])bμε
is an embedding as previously defined (see

(17)), converges to the unique solution {u(t) : t ≥ 0} to
du

dt
(t) = �̄b

μu(t),

u(0) = f

with respect to the uniform norm as ε tends to zero.

In the previous example,μ could be chosen to be an absolutely continuous measure,
for example λ1|[

0, 13

]
∪
[
2
3 ,1

] , or to be a singular measure, as a self-similar measure on the

Cantor set. Furthermore, it is not required that the approximating measures have full
support.

Example 6.2. Let w1, w2 ∈ (0, 1) such that w1 + w2 = 1 and let μ be the unique
invariant Borel probabiliy measure on [0, 1] given by the IFS consisting of S1(x) = x

3
and S2(x) = 2

3 + x
3 , x ∈ [0, 1] and weights w1 and w2, i.e., μ is a so-called Cantor
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Figure 1. Approximating Cantor measures of levels n = 0, 1, 2

measure. Following [19], for n ∈ N we define the approximating Cantor measures of
level n by

μn(B) := 3n
∑

x∈{1,2}n
λ1|Ix

n∏

i=1

ωxi , B ∈ B([0, 1]),

where Ix := (
Sx1 ◦ · · · ◦ Sxn

)
([0, 1]), x ∈ {1, 2}n . The approximating Cantor mea-

sures of levels n = 0, 1, 2 are illustrated in Fig. 1. We denote the distribution function
ofμ by F and the distribution function ofμn by Fn for n ∈ N. Then, ‖F − Fn‖∞ → 0
(see [19, Proposition 4.2]) as well as supp(μ) ⊂ supp(μn) for n ∈ N and Theorem
5.11 can be applied. Hence, for f ∈ (C[0, 1])bμ, the unique solution {un(t) : t ≥ 0} to

dun
dt

(t) = �̄b
μn
un(t),

un(0) = πn f

converges to the unique solution {u(t) : t ≥ 0} to
du

dt
(t) = �̄b

μu(t),

u(0) = f

with respect to the uniform norm as n tends to infinity.

Finally, we connect both applications.

Example 6.3. Let ε > 0, n ∈ N and let μ, μn , {u(t) : t ≥ 0} and {un(t) : t ≥ 0} be
defined as in Example 6.2. We define μn,ε by

μn,ε := μn + ελ1

1 + ε
,

i.e. analogously to Example 6.1, and {un,ε(t) : t ≥ 0} to be the solution to

dun,ε

dt
(t) = �̄b

μn,ε
un,ε(t),

un,ε(0) = πn,ε f,
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where πn,ε is an embedding as previously defined. Further, let t ∈ [0,∞) and δ > 0.
By Example 6.2, there exists n0 ∈ N such that for all n ≥ n0 we have

‖u(t) − un(t)‖∞ <
δ

2
.

By Example 6.1, for each n ≥ n0 there exists εn > 0 such that for all ε < εn we have

∥
∥un(t) − un,ε(t)

∥
∥∞ <

δ

2
.

Hence, for all n ≥ n0, ε < εn we have
∥
∥u(t) − un,ε(t)

∥
∥∞ < δ.

Thus, the heat in a rod with mass distribution given by a Cantor measure diffuses
approximately like the heat on a rod possessing a strictly positive mass density which
is small off the Cantor set.

7. Directions for further research

Remark 7.1. Consider the heat equation (2) with initial value given by the Delta dis-
tribution δy : g 
→ g(y) for y ∈ supp(μ). Then, the heat kernel

pt (x, y) =
∑

k≥1

e−λbk tϕb
k (x)ϕ

b
k (y), (t, x) ∈ [0,∞) × (0, 1]

solves the equation in the distributional sense, where
{
λbk , k ≥ 1

}
are the ascending

ordered eigenvalues and
{
ϕb
k , k ≥ 1

}
the L2([0, 1], μ)-normed eigenfunctions of �b

μ

on L2([0, 1], μ). The heat kernel is of particular importance in the context of the
associated Markov process (see the remark below) and stochastic partial differential
equations (see [7,8]). It is anopenquestionwhetherweakmeasure convergence implies
pointwise convergence of the corresponding heat kernels for each (t, x, y) ∈ (0,∞)×
[0, 1]2.
Remark 7.2. The operator �b

μ on L2([0, 1], μ) is the infinitesimal generator of a
Markov process, called a quasi-diffusion (see, e.g., [27,30–32]). Convergence of semi-
groups raises the question of whether the associated Markov processes also converge
weakly. If μn ⇀ μ, our results imply that for each f ∈ (C[0, 1])bμ, t ∈ [0,∞) and
each starting point x ∈ [0, 1]

E

[
f
(
Xb
n(t)

)]
= T b

t,n f (x) → T b
t f (x) = E

[
f
(
Xb(t)

)]
, n → ∞,

where Xb is associated to �b
μ and Xb

n is associated to �b
μn
. We denote by E the

expectation with respect to the law of the appropriate process. This could be extended
to a proof of convergence of all finite-dimensional distributions, and tightness would
then also be required in order to establish that Xb

n → Xb weakly in the Skorokhod
space of càdlàg functions.
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Remark 7.3. Let μ be of full support. Consider the analogue of the wave equation

d2u

dt2
(t) = �b

μu(t), t ∈ [0,∞)

on L2([0, 1], μ). This hyperbolic equation describes the motion of a vibrating string
with mass distribution μ such that, if it is deflected, a tension force drives it back
towards its state of equilibrium. If μ were not of full support, the string would have
massless parts. It is not clear how to interpret massless parts of a string. We suppose
that the motion of such a string behaves approximately like the motion of a string with
very little mass on these gaps, analogous to our results about the diffusion of heat.
Assume that u(0) ∈ D (

�b
μ

)
and, for reasons of simplicity, that the initial veloc-

ity vanishes. Then, there exists a unique solution on L2([0, 1], μ) given by u(t) =
C(t)u(0), t ≥ 0, where {C(t) : t ≥ 0} denotes the strongly continuous cosine family
of �b

μ (see, e.g., [40]). We have already shown that μn ⇀ μ implies strong resol-
vent convergence of the corresponding operators restricted to continuous functions.
It is well-known that this implies convergence of the corresponding cosine families
{Cn(t) : t ≥ 0}, which implies convergence of the solutions to the correspondingwave
equation, provided that there exists M > 0 and w ≥ 0 such that for all n ≥ 1, t ≥ 0
‖Cn(t)‖ ≤ Mew|t | (see [25]). Proving that the restriction of C(t) to (C[0, 1])bμ is the
cosine family of �̄b

μ (and analogously for μn) and verifying the above estimate would
be a way to establish the desired convergence of solutions to the wave equation.

Remark 7.4. The Krein–Feller operator �b
μ can also be defined with respect to a

measure μ with atoms, see, e.g., [29] for a model in this direction. If μ is atomless,
the weak convergence implies uniform convergence of the corresponding distribution
functions, which we have used to prove convergence of the corresponding generalized
monomials (see Remark 5.2). For a measure with atoms, it would be required to
find such convergence results without this uniform convergence property. Further, a
representation of the resolvent density needs to be developed (see Lemma 3.1 for
atomless measures).
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