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Anti-periodic solutions for nonlinear evolution inclusions

Leszek Gasiński and Nikolaos S. Papageorgiou

Abstract. We consider an anti-periodic evolution inclusion defined on an evolution triple of spaces, driven
by an operator of monotone-type and with a multivalued reaction term F(t, x). We prove existence theorem
for the “convex” problem (that is, F is convex-valued) and for the “nonconvex” problem (that is, F is
nonconvex-valued) and we also show the existence of extremal trajectories (that is, when F is replaced by
ext F). Finally, we prove a “strong relaxation” theorem, showing that the extremal trajectories are dense in
the set of solutions of the convex problems.

1. Introduction

Let T = [0, b] and let (X, H, X∗) be an evolution triple (Gelfand triple) of spaces.
In this paper, we study the following nonlinear anti-periodic evolution inclusion:

{−u′(t) ∈ A(t, u(t)) + F(t, u(t)) for a.a. t ∈ T,

u(0) = −u(b).
(1.1)

In this problem A : T × X −→ 2X∗
and F : T × X −→ 2H are two set-valued

maps. In contrast to earlier works on the subject, we do not assume that A(t, ·) is
maximal monotone and that F(t, ·) is of the subdifferential type. We prove existence
results for problems with F being convex-valued (“convex problem”) as well as F
being nonconvex-valued (“nonconvex problem”). We also produce extremal trajec-
tories, that is, trajectories corresponding to the inclusions in which F is replaced by
ext F (the extreme points of F). In the context of control systems, these are the trajec-
tories (states of the system) generated by bang–bang controls. Finally we show that
the extremal trajectories are C(T ; H)-dense in the set of trajectories of the convex
problem. Such a result is usually known as “strong relaxation theorem” and again in
the framework of control systems it implies that essentially we can have the same
outcome by economizing in the controls, using only bang–bang controls.
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The study of anti-periodic evolution equationswas initiated byOkochi [18] for subd-
ifferential evolution equations defined on aHilbert space H (that is, A(t, x) = A(x) =
∂ϕ(x), with ϕ : H −→ R = R∪ {+∞} being proper, convex, lower semicontinuous)
with F(t, x) = f (t) where f ∈ L2(T ; H). Soon thereafter Haraux [10] and Okochi
[19] used amore general forcing term F(t, x). Subsequently Aizicovici–Pavel [1] con-
sidered subdifferential evolution equations in aHilbert space H with F(t, x) = ∂ψ(x),
where ψ : H −→ R is proper, convex, lower semicontinuous. Aizicovici–Reich [2]
considered anti-periodic subdifferential evolution equations with single-valued time-
dependent reaction term, which is not cyclically maximal monotone (that is, it is
not of the subdifferential type). We also mention the work of Souplet [23] and more
recently those of Chen [6], Liu [17], Liu–Liu [16]. Chen [6] deals with semilinear
problems, while Liu [17] and Liu–Liu [16] consider equations with A(t, x) = A(x)

maximal monotone. Moreover, in Liu [17], F(t, x) = G(x) with G : X −→ X∗ be-
ing continuous and weakly continuous. We also mention the recent work on periodic
subdifferential evolution equations by Papageorgiou–Rădulescu [21].
We mention that anti-periodic problems arise naturally in the mathematical mod-

eling of a variety of physical processes. We refer to the works of Batchelor et al. [3],
Bonilla–Higuera [4], Kulshreshtha et al. [14] for such applications.

2. Mathematical background

Let V , Y be two Banach spaces and assume that V is embedded continuously and
densely into Y (denoted V ↪→ Y ). We have

• Y ∗ is embedded continuously in V ∗;
• if V is reflexive, then Y ∗ ↪→ V ∗.
The following notion is central in our considerations.

DEFINITION 2.1. A triple (X, H, X∗) of spaces is said to be an “evolution triple”
(or “Gelfand triple”), if the following properties hold:

(a) X is a separable reflexive Banach space and X∗ is its topological dual;
(b) H is a separable Hilbert space which is identified with its dual (that is, H = H∗)

by the Riesz–Fréchet representation theorem;

(c) X ↪→ H .

As a consequence of (b) and (c) we also have that H ↪→ X∗.
Inwhat follows by ‖·‖ (respectively |·|, ‖·‖∗) we denote the norm of X (respectively

of H , X∗). Also, by 〈·, ·〉 we denote the duality brackets for the pair (X∗, X) and by
(·, ·) the inner product of H . We will also assume that the embedding X ↪→ H is
compact.
We can find constants ĉ1, ĉ2 > 0 such that

| · | � ĉ1‖ · ‖ and ‖ · ‖∗ � ĉ2| · |.
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Moreover, we have

〈·, ·〉∣∣X×H = (·, ·).
Let 1 < p < +∞. The following space is important in the analysis of problem

(1.1):

Wp(0, b) = {
u ∈ L p(T ; X) : u′ ∈ L p′

(T ; X∗)
}

with 1
p + 1

p′ = 1. Here by u′ we understand the distributional (weak) derivative of
u. From the theory of Lebesgue–Bochner spaces (see Gasiński–Papageorgiou [7, p.
129]), we have

L p(T ; X)∗ = L p′
(T ; X∗)

and the duality brackets for this pair of spaces are defined by

((h, f )) =
∫ b

0
〈h(t), f (t)〉 dt ∀h ∈ L p′

(T ; X∗), f ∈ L p(T ; X).

If u ∈ Wp(0, b), then u viewed as an X∗-valued function, is absolutely continuous.
So, since X∗ is reflexive, u : T −→ X∗ is almost everywhere differentiable in the
classical sense (see Gasiński–Papageorgiou [7, p. 133]). This derivative coincides
with the distributional one. Then we have

Wp(0, b) ⊆ AC1,p′
(T ; X∗) = W 1,p′

(T ; X∗).

The spaceWp(0, b) becomes a separable reflexiveBanach space, when given the norm

‖u‖Wp = (‖u‖p
L p(T ;X)

+ ‖u′‖p

L p′
(T ;X∗)

) 1
p ∀u ∈ Wp(0, b).

An equivalent norm is given by

|u|Wp = ‖u‖L p(T ;X) + ‖u′‖L p′
(T ;X∗).

The following properties of Wp(0, b) will be important in our study of problem (1.1):

• Wp(0, b) ↪→ C(T ; H);
• Wp(0, b) ↪→ L p(T ; H) and the embedding is compact;
• if u, v ∈ Wp(0, b) and η(t) = (u(t), v(t)) for all t ∈ T , then η is absolutely

continuous and

η′(t) = 〈u′(t), v(t)〉 + 〈u(t), v′(t)〉 for a.a. t ∈ T (2.1)

(“integration by parts formula”).

Suppose that V is a reflexive Banach space, V ∗ its topological dual and by 〈·, ·〉V

we denote the duality brackets for the pair (V ∗, V ). Let L : V ⊇ D(L) −→ V ∗
be a linear maximal monotone operator and A : V −→ 2V ∗

. We say that A is “L-
pseudomonotone” if the following conditions hold:
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(a) for every v ∈ V , A(v) ⊆ V ∗ is nonempty, convex and w-compact;
(b) A is bounded (that is, maps bounded sets to bounded sets);
(c) if {vn}n�1 ⊆ D(L), vn

w−→ v ∈ D(L) in V , L(vn)
w−→ L(v) in V ∗, v∗

n ∈ A(vn)

for all n � 1, v∗
n

w−→ v∗ in V ∗ and lim sup
n→+∞

〈v∗
n , vn − v〉V � 0, then v∗ ∈ A(v)

and 〈v∗
n , vn〉V −→ 〈v∗, v〉V .

The following surjectivity result is due to Papageorgiou et al. [20] and it extends an
earlier single-valued result of Lions [15, p. 319].

THEOREM 2.2. If V is a reflexive Banach space which is strictly convex, L : V ⊇
D(L) −→ V ∗ is linear, maximal monotone andA : V −→ 2V ∗

is L-pseudomonotone
and strongly coercive, that is,

inf{〈v∗, v〉V : v∗ ∈ A(v)}
‖v‖V

−→ +∞ as ‖v‖V → +∞,

then L + A is surjective (that is, R(L + A) = V ∗).

Let (�,�) be a measurable space and Y a separable Banach space. We will use the
following notation:

Pf (c)(Y ) = {
D ⊆ Y : D is nonempty, closed (and convex)

}
,

P(w)k(c)(Y ) = {
D ⊆ Y : D is nonempty, (w-)compact (and convex)

}
.

Amultifunction (set-valued function) G : � −→ Pf (Y ) is said to be “measurable”
if for every y ∈ Y , the R+-valued function

ω �−→ d(y, G(ω)) = inf{‖y − u‖Y : u ∈ G(ω)}
is measurable. We say that a multifunction G : � −→ 2Y \{∅} is “graph measurable”,
if

Gr G = {(ω, u) ∈ � × Y : u ∈ G(ω)} ∈ � ⊗ B(Y ).

For Pf (Y )-valued multifunctions measurability implies graph measurability. For the
converse to be true, we need to have � = �̂ (with �̂ being the universal σ -field).
Recall that � = �̂, if there is a σ -finite measure μ on (�,�) with respect to which
� is complete. Now let μ be a σ -finite measure on �. For 1 � p � +∞ we define

S p
G = {

u ∈ L p(�; Y ) : u(ω) ∈ G(ω) μ-a.e.
}
.

For a graph measurable multifunction G : � −→ 2Y \ {∅}, the set S p
G is nonempty if

and only if theR+-valued function ω �−→ inf{‖u‖Y : u ∈ G(ω)} belongs in L p(�)+.
Note that by a corollary to the Yankov-von Neumann–Aumann selection theorem, we
can find a sequence {gn}n�1 of �-measurable selectors of G such that

G(ω) ⊆ {gn(ω)}n�1 μ-a.e.
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The set S p
G is “decomposable” in the sense that if (C, g1, g2) ∈ � × S p

G × S p
G , then

χC g1 + χCc g2 ∈ S p
G

with χD being the characteristic function for the set D ∈ �.
On Pf (Y ) we can define a generalized metric h(·, ·) known as the “Hausdorff

metric”, by

h(C, E) = max
{
sup
c∈C

d(c, E), sup
e∈E

d(e, C)
} ∀C, E ∈ Pf (Y ).

Then (Pf (Y ), h) is a completemetric spacewith Pf c(Y ), Pk(Y ) closed subsets.More-
over, Pk(Y ) is also separable (therefore (Pk(Y ), h) is a Polish space).
Let Z be a Hausdorff topological space. A multifunction G : Z −→ Pf (Y ) is said

to be “h-continuous”, if it is continuous from Z into (Pf (Y ), h).
Suppose that Z ,W are twoHausdorff topological spaces.AmultifunctionG : Z −→

2W \ {∅} is said to be
• “upper semicontinuous”, if for all closed sets C ⊆ W , the set

G−(C) = {z ∈ Z : G(z) ∩ C �= ∅}
is closed in Z ;

• “lower semicontinuous”, if for all closed sets C ⊆ W , the set

G+(C) = {z ∈ Z : G(z) ⊆ C}
is closed in Z .

Finally, if E is a Banach space and {Cn}n�1 is a sequence of nonempty subsets of
E , then we define

w– lim sup
n→+∞

Cn = {
u ∈ E : u = w– lim

k→+∞ unk , unk ∈ Cnk , n1 < n2 < . . .
}
.

For more details on the measurability and continuity properties of multifunctions, we
refer to Hu–Papageorgiou [12].
Next we introduce the hypotheses on the map A:

H(A): A : T × X −→ 2X∗
is a map such that

(i) for all x ∈ X , t �−→ A(t, x) is graph measurable;
(ii) for a.a. t ∈ T , x �−→ A(t, x) is pseudomonotone;
(iii) there exist a1 ∈ L p′

(T ) and c1 > 0 such that

‖h∗‖∗ � a1(t) + c1‖x‖p−1 for a.a. t ∈ T, all x ∈ X, h∗ ∈ A(t, x),

with 2 � p < +∞;
(iv) there exist a2 ∈ L1(T )+ and c2 > 0 such that

〈h∗, x〉 � c2‖x‖p − a2(t) for a.a. t ∈ T, all x ∈ X, h∗ ∈ A(t, x).
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Finally we mention that using the Troyanski renorming theorem (see, for example,
Gasiński–Papageorgiou [7, p. 911]), without any loss of generality we may assume
that both X and X∗ are locally uniformly convex and so L p(T ; X) and L p′

(T ; X∗)
are strictly convex. Moreover, by L1

w(T ; H) we will denote the Lebesgue–Bochner
space L1(T ; H) furnished with the “weak norm” defined by

‖u‖w = sup
{∣∣ ∫ t ′

t
u(s) ds

∣∣ : 0 � t � t ′ � b
} ∀u ∈ L1(T ; H).

An equivalent definition of the weak norm is the following

‖u‖w = sup
{∣∣ ∫ t

0
u(s) ds

∣∣ : 0 � t � b
} ∀u ∈ L1(T ; H)

(see Gasiński–Papageorgiou [9, p. 234, Definition 2.78 and Remark 2.79]).

3. Convex problem

In this section,we prove the existence of anti-periodic solutions for the casewhen the
multivalued reaction term F is convex-valued. The hypotheses on F are the following:
H(F)1: F : T × X −→ Pf c(H) is a multifunction such that

(i) for all x ∈ X , t �−→ F(t, x) is graph measurable;
(ii) for a.a. t ∈ T , Gr F(t, ·) is sequentially closed in Xw × Hw (here by Xw and

Hw, we denote the spaces X and H endowed with the weak topologies);
(iii) there exist a3 ∈ L p′

(T )+ and c3 > 0 such that

|F(t, x)| = sup
v∈F(t,x)

|v| � a3(t) + c3‖x‖p−1 for a.a. t ∈ T, all x ∈ X;

(iv) there exists ϑ ∈ L p′
(T )+ such that

(v, x) � −ϑ(t) for a.a t ∈ T, all x ∈ X, v ∈ F(t, x);

(v) there exists M > 0 such that

(v, x) � a2(t) for a.a. t ∈ T, all x ∈ X, |x | = M, v ∈ F(t, x)

(see hypothesis H(A)(iv)).

REMARK 3.1. If a2 ≡ 0, then hypothesis H(F)1(v) says that

(v, x) � 0 for a.a. t ∈ T, all x ∈ X, |x | = M.

This condition is known in the literature as “Hartman’s condition” and it was first
introduced by Hartman [11] in the context of second-order Dirichlet systems in R

N .
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Let A : L p(T ; X) −→ 2L p′
(T ;X∗) be defined by

A(u) = {
h∗ ∈ L p′

(T ; X∗) : h∗(t) ∈ A(t, u(t)) for a.a. t ∈ T
}
.

From the Yankov-von Neumann–Aumann selection theorem (see Hu–Papageorgiou
[12, p. 158]) and hypothesis H(A)(i i i), we see that

A(u) ∈ Pwkc(L p′
(T ; X∗)) ∀u ∈ L p(T ; X).

From Hu–Papageorgiou [13, p. 41] (see also Papageorgiou et al. [22, Lemma 5]), we
have the following result.

LEMMA3.2. If hypotheses H(A)hold, thenA : L p(T ; X) −→ Pwkc(L p′
(T ; X∗))

is L-pseudomonotone.

Let pM : X −→ X be the M-radial retraction map defined by

pM (x) =
{

x if |x | � M,
Mx
|x | if |x | > M.

Based on the Hartman condition (see hypothesis H(F)1(v)), we introduce the fol-
lowing modification of the multivalued forcing term

F̂(t, x) =
{

F(t, x) if |x | � M,

(x − pM (x)) + F(t, pM (x)) if |x | > M,
(3.1)

for all (t, x) ∈ T × X . On account of hypothesis H(F)1(i i i) and of (3.1), we have

|F̂(t, x)| = sup
v̂∈F̂(t,x)

‖̂v‖ � â(t) + ĉ‖x‖ for a.a. t ∈ T, all x ∈ X, (3.2)

with â ∈ L p′
(T ), ĉ > 0. This modification of F(t, x) has the following properties.

PROPOSITION 3.3. If hypotheses H(F)1 hold, then

(a) for all x ∈ X, t �−→ F̂(t, x) is graph measurable;
(b) for a.a. t ∈ T , Gr F̂(t, ·) is sequentially closed in Xw × Hw;
(c) for a.a. t ∈ T , all x ∈ X and all v̂ ∈ F̂(t, x), we have

(̂v, x) �
{−ϑ(t) if |x | < M,

−ϑ(t)
M |x | if |x | � M;

(d) for a.a. t ∈ T , all x ∈ X with |x | = M and all v̂ ∈ F̂(t, x), we have

(̂v, x) � a2(t),

with a2 ∈ L1(T )+ as in hypothesis H(A)(iv).
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Proof. (a) This follows from hypothesis H(F)!(i) and (3.1).
(b) Let {(xn, v̂n)}n�1 ⊆ Gr F̂(t, ·) and assume that

xn
w−→ x in X and v̂n

w−→ v̂ in H,

so

xn −→ x in H and v̂n
w−→ v̂ in H

(recall that X ↪→ H compactly). Then pM (xn) −→ pM (x) in H and so from (3.1) and
hypothesis H(F)1(i i), it follows that Gr F̂(t, ·) is sequentially closed in Xw × Hw.
(c) From (3.1) we see that if x ∈ X satisfies |x | < M and v̂ ∈ F̂(t, x) = F(t, x), then

(̂v, x) � −ϑ(t)

(see hypothesis H(F)1(iv)). If x ∈ X satisfies |x | � M and v̂ ∈ F(t, x), then
v̂ = x − pM (x) + v with v ∈ F(t, pM (x)). So, we have

(̂v, x) = (x − pM (x) + v, x) = |x |2 − (pM (x), x) + (v, x)

= |x |2 − M |x | + (
v,

Mx

|x |
) |x |

M

= |x |(|x | − M) − ϑ(t)

M
|x | � −ϑ(t)

M
|x |.

(d) This is immediate from (3.1) and hypothesis H(F)1(v). �

Let N̂ : L p(T ; X) −→ 2L p′
(T ;H) be defined by

N̂ (u) = S p′
F̂(·,u(·)) = {̂

v ∈ L p′
(T ; H) : v̂(t) ∈ F̂(t, u(t)) for a.a. t ∈ T

}
.

The Yankov-von Neumann–Aumann selection theorem and (3.2) imply that

N̂ (u) ∈ Pwkc(L p′
(T ; H)) ∀u ∈ L p(T ; X).

Also we consider the linear operator L : L p(T ; X) ⊇ D(L) −→ L p′
(T ; X∗) defined

by

L(u) = u′ ∀u ∈ D = D(L) = {u ∈ Wp(0, b) : u(0) = −u(b)}.
From Proposition 1 of Liu [17], we have that

L is maximal monotone (hence densely defined). (3.3)

We consider the multivalued map u �−→ A(u) + N̂ (u). On account of (3.3), we can
consider the L-pseudomonotonicity of this multivalued map.

PROPOSITION 3.4. If hypotheses H(A) and H(F)1 hold, then the operator A+
N̂ : L p(T ; X) −→ Pwkc(L p′

(T ; X∗)) is L-pseudomonotone.
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Proof. We consider a sequence {un}n�1 ⊆ D such that

un
w−→ u in Wb(0, b) (3.4)

and u∗
n ∈ A(un) + N̂ (un) for all n � 1 such that

u∗
n

w−→ u∗ in L p′
(T ; X∗) and lim sup

n→+∞
((u∗

n, un − u)) � 0. (3.5)

We have

u∗
n = h∗

n + f̂n, with h∗
n ∈ A(un), f̂n ∈ N̂ (un) ∀n � 1.

Hypothesis H(A)(i i i) and (3.4) imply that by passing to a subsequence if necessary,
we may assume that

h∗
n

w−→ h∗ in L p′
(T ; X∗) and f̂n

w−→ f̂ in L p′
(T ; H) as n → +∞. (3.6)

From (3.4) and since Wp(0, b) ↪→ C(T ; H), we have

un
w−→ u in C(T ; H),

so
un(t)

w−→ u(t) in H ∀t ∈ T . (3.7)

We set ξn(t) = 〈h∗
n, un(t) − u(t)〉, for all n � 1. Then ξn ∈ L1(T ) for all n � 1 and

from Hu–Papageorgiou [13] (proof of Theorem 2.35, p. 41), we have

ξn(t) −→ 0 for a.a. t ∈ T, as n → +∞.

Hypotheses H(A)(i i i) and (iv) imply that

ξn(t) � c2‖un(t)‖p − a2(t) − (
a1(t) + c1‖un(t)‖p−1)‖u(t)‖ for a.a. t ∈ T .

So, for a.a. t ∈ T , the sequence {un(t)‖n�1 ⊆ X is bounded. This fact and (3.7) imply
that

un(t)
w−→ u(t) in X. (3.8)

From (3.6) and Proposition 3.9 of Hu–Papageorgiou [12, p. 694], we have

f̂ (t) ∈ convw– lim sup
n→+∞

{ f̂n(t)}n�1

⊆ convw– lim sup
n→+∞

F̂(t, un(t))

⊆ F̂(t, u(t)) for a.a. t ∈ T (3.9)

(recall that f̂n ∈ N̂ (un) for all n � 1 and use Proposition 3.3(b) and (3.8)). From (3.4)
and (3.5), we have

un
w−→ u in Wp(0, b), (3.10)
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so
un −→ u in L p(T ; H) (3.11)

(recall that Wp(0, b) ↪→ L p(T ; H) compactly since X ↪→ H compactly). Then from
(3.6) and (3.11), we have

(( f̂n, un − u)) =
∫ b

0
〈 f̂n(t), un(t) − u(t)〉 dt

=
∫ b

0
( f̂n(t), un(t) − u(t)) dt −→ 0 as n → +∞. (3.12)

So, from (3.5) and (3.12), we infer that

lim sup
n→+∞

((h∗
n, un − u)) � 0. (3.13)

But from Lemma 3.2 we know that A is L-pseudomonotone. Therefore from (3.6),
(3.10) and (3.13), it follows that

h∗ ∈ A(u) and ((h∗
n, un)) −→ ((h∗, u)). (3.14)

Finally, we have

u∗ = h∗ + f̂

(see (3.5) and (3.6)),

h∗ ∈ A(u), f̂ ∈ N̂ (u)

(see (3.14) and (3.9)) and

((u∗
n, un)) −→ ((u∗, u))

(see (3.14) and (3.12)). We conclude that u �−→ A(u) + N̂ (u) is L-pseudomonoto-
ne. �

PROPOSITION 3.5. If hypotheses H(A) and H(F)1 hold, then A+ N̂ is strongly
coercive.

Proof. Let h∗ ∈ A(u) and f̂ ∈ N (u). We have

((h∗ + f̂ , u)) = ((h∗, u)) +
∫ b

0
( f̂ (t), u(t)) dt. (3.15)

Hypothesis H(A)(iv) implies that

((h∗, u)) � c2‖u‖p
L p(T ;X)

− ‖a2‖1. (3.16)

Also using Proposition 3.3(b), we have
∫ b

0
( f̂ (t), u(t)) dt =

∫
{|u|<M}

( f̂ (t), u(t)) dt +
∫

{|u|�M}
( f̂ (t), u(t)) dt
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� −‖ϑ‖1 − 1

M
‖ϑ‖p′ ‖u‖L p(T ;X) (3.17)

(by Hölder inequality). Returning to (3.15) and using (3.16) and (3.17), we obtain

((h∗ + f̂ , u)) � c2‖u‖p
L p(T ;X)

− c3(‖u‖L p(T ;X) + 1),

for some c3 > 0, so A + N̂ is strongly coercive (recall that p > 1). �

We consider the following auxiliary anti-periodic evolution inclusions:
{−u′(t) ∈ A(t, u(t)) + F̂(t, u(t)) for a.a. t ∈ T,

u(0) = −u(b).
(3.18)

PROPOSITION 3.6. If hypotheses H(A) and H(F)1 hold, then problem (3.18)
admits a solution u0 ∈ Wp(0, b).

Proof. From (3.3) and Propositions 3.3 and 3.4, we see that we can apply Theorem
2.2. So, we have R(L + A + N̂ ) = L p′

(T ; X∗). Therefore, we can find u0 ∈ D(L)

such that

−u′
0 ∈ A(u0) + N̂ (u0),

so u0 ∈ Wp(0, b) is a solution of (3.18). �

Since Wp(0, b) ↪→ C(T ; H), we have that u0 ∈ C(T ; H). If we can show that

|u0(t)| � M ∀t ∈ T,

then on account of (3.1), we will have that u0 ∈ Wp(0, b) is a solution of (1.1).
We do this in the next proposition exploiting the Hartman condition (see hypothesis
H(F)1(v)).

PROPOSITION 3.7. If hypotheses H(A) and H(F)1 hold and u0 ∈ Wp(0, b) is a
solution of problem (3.18), then |u0(t)| � M for all t ∈ T .

Proof. First we assume that

|u0(t)| > M ∀t ∈ T . (3.19)

We have

−u′
0(t) = h∗(t) + f̂ (t) for a.a. t ∈ T,

with h∗ ∈ A(u0), f̂ ∈ N̂ (u0), so

− u′
0(t) = h∗(t) + u0(t) − pM (u0(t)) + f (t) for a.a. t ∈ T, (3.20)

with f ∈ N (pM (u0)) = S p′
F(·,pM (u0)(·)) (see (3.19) and (3.20)). On (3.20) we act with

u0(t) ∈ X and obtain

1

2

d

dt
|u0(t)|2+〈h∗(t), u0(t)〉+|u0(t)|2−(pM (u0(t)), u0(t))+( f (t), u0(t)) (3.21)
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for a.a. t ∈ T . Note that

|u0(t)|2 − (pM (u0(t)), u0(t))
= |u0(t)|2 − M |u0(t)|
= |u0(t)|(|u0(t)| − M) > 0 for a.a. t ∈ T . (3.22)

Also we have

( f (t), u0(t)) = (
f (t),

Mu0(t)

|u0(t)|
) |u0(t)|

M
� a2(t) for a.a. t ∈ T (3.23)

(see hypothesis H(A)(iv) and (3.19)). Returning to (3.21) and using (3.22) and (3.23)
and hypothesis H(A)(iv), we obtain

1

2

d

dt
|u0(t)|2 < 0,

so

|u0(b)| < |u0(0)|,

a contradiction. So, (3.19) cannot occur.
Next assume that there exist η0, η1 ∈ T with η0 < η1, such that

|u0(η0)| = M and |u0(t)| > M ∀t ∈ (η0, η1). (3.24)

Working on the interval (η0, η1) as above, we obtain

|u0(η1)| < |u0(η0)| = M

(see (3.23)), again a contradiction. Therefore, we conclude that |u0(t)| � M for all
t ∈ T . �

Let Sc ⊆ Wp(0, b) denote the solution set of problem (1.1) when the multivalued
reaction term F is convex-valued. Then Proposition 3.7 and (3.1) lead to the following
existence theorem.

THEOREM 3.8. If hypotheses H(A) and H(F)1 hold, then Sc �= ∅.

4. Nonconvex problem

In this section, we look for solutions of problem (1.1) when F has nonconvex values.
Now the hypotheses on F are the following.
H(F)2: F : T × H −→ Pf (H) is a multifunction such that

(i) (t, x) �−→ F(t, x) is graph measurable;
(ii) for a.a. t ∈ T , x �−→ F(t, x) is lower semicontinuous;
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(iii) there exist a4 ∈ L p′
(T )+ and c4 > 0 such that

|F(t, x)| = sup
v∈F(t,x)

|v| � a4(t) + c4|x |p−1 for a.a. t ∈ T, all x ∈ H ;

(iv) there exists ϑ ∈ L p′
(T )+ such that

(v, x) � −ϑ(t) for a.a t ∈ T, all x ∈ H, v ∈ F(t, x);
(v) there exists M > 0 such that

(v, x) � a2(t) for a.a. t ∈ T, all x ∈ H, |x | = M, v ∈ F(t, x)

(see hypothesis H(A)(iv)).

By S ⊆ Wp(0, b) we denote the solution set of problem (1.1) when the multivalued
reaction term F is nonconvex-valued.

THEOREM 4.1. If hypotheses H(A) and H(F)2 hold, then S �= ∅.

Proof. Let F̂ : T × H −→ Pf (H) be defined by (3.1) and let N̂ : L p(T ; H) −→
2L p′

(T ;H) be the corresponding multivalued Nemitsky operator defined by

N̂ (u) = S p′
F̂(·,u(·)) ∀u ∈ L p(T ; H).

As in the proof of Proposition 3.3, we show that

• (t, x) �−→ F̂(t, x) is graph measurable;
• for a.a. t ∈ T , x �−→ F̂(t, x) is lower semicontinuous;
• there exist a5 ∈ L p′

(T )+ and c5 > 0 such that

|F̂(t, x)| = sup
v̂∈F̂(t,x)

|̂v| � a5(t) + c5|x | for a.a. t ∈ T, all x ∈ H.

These properties and Theorem 7.28 of Hu–Papageorgiou [12, p. 238] imply that N̂
has nonempty, closed and decomposable values and it is lower semicontinuous. So,
we can use the Bressan–Colombo [5] selection theorem and produce a continuous
function e : L p(T ; H) −→ L p′

(T ; H) such that

e(u) ∈ N̂ (u) ∀u ∈ L p(T ; H). (4.1)

We consider the following anti-periodic evolution inclusion:

{−u′(t) ∈ A(t, u(t)) + e(u)(t) for a.a. t ∈ T,

u(0) = −u(b).
(4.2)

Reasoning as in the “convex” case and using (4.1), we show that (4.2) has a solution
û ∈ Wp(0, b) such that |̂u(t)| � M for all t ∈ T . From (3.1) we conclude that
û ∈ S. �
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5. Extremal solutions: strong relaxation

In this section we look for extremal solutions (that is, solutions of the inclusion
in which the multivalued forcing term is ext F(t, x), the set of extremal points of
F(t, x)). Such solutions are important in control theory in connection with the bang-
bang principle.
The anti-periodic evolution inclusion under consideration is the following:

{−u′(t) ∈ A(t, u(t)) + ext F(t, u(t)) for a.a. t ∈ T,

u(0) = −u(b).
(5.1)

To solve (5.1) we need to strengthen the hypotheses on A and on F . The new
conditions on these items are the following.

H(A)′: A : T × X −→ 2X∗
is a map such that

(i) for all x ∈ X , t �−→ A(t, x) is graph measurable;
(ii) for a.a. t ∈ T , x �−→ A(t, x) is strictly monotone and maximal monotone;
(iii) there exist a6 ∈ L p′

(T ) and c6 > 0 such that

‖h∗‖∗ � a6(t) + c6‖x‖p−1 for a.a. t ∈ T, all x ∈ X, h∗ ∈ A(t, x),

with 2 � p < +∞;
(iv) there exist a7 ∈ L1(T )+, c7 > 0 such that

〈h∗, x〉 � c7‖x‖p − a7(t) for a.a. t ∈ T, all x ∈ X, h∗ ∈ A(t, x).

H(F)3: F : T × H −→ Pwkc(H) is a multifunction such that

(i) for all x ∈ H , t �−→ F(t, x) is graph measurable;
(ii) for a.a. t ∈ T , x �−→ F(t, x) is h-continuous;
(iii) there exist a8 ∈ L p′

(T )+ and c8 > 0 such that

|F(t, x)| = sup
v∈F(t,x)

|v| � a8(t) + c8|x |p−1 for a.a. t ∈ T, all x ∈ H ;

(iv) there exists ϑ ∈ L p′
(T )+ such that

(v, x) � −ϑ(t) for a.a t ∈ T, all x ∈ H, v ∈ F(t, x);
(v) there exists M > 0 such that

(v, x) � a7(t) for a.a. t ∈ T, all x ∈ H, |x | = M, v ∈ F(t, x)

with a7 ∈ L1(T )+ as in hypothesis H(A)′(iv).

Let g ∈ L p′
(T ; H) and consider the following auxiliary anti-periodic problem:

{−u′(t) ∈ A(t, u(t)) + g(t) for a.a. t ∈ T,

u(0) = −u(b).
(5.2)
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PROPOSITION 5.1. If hypotheses H(A)′ hold and g ∈ L p′
(T ; H), then problem

(5.2) admits a unique solution ξ(g) ∈ Wp(0, b) and the solution map

ξ : L p′
(T ; H) −→ C(T ; H)

is completely continuous (that is, if gn
w−→ g in L p′

(T ; H), then ξ(gn) −→ ξ(g) in
C(T ; H)).

Proof. Existence of a solution follows fromTheorem 3.8. For the uniqueness, suppose
that u, v ∈ Wp(0, b) ⊆ C(T ; H) are two solutions of (5.2). Then we have

u′(t) + h∗
u(t) + g(t) = 0 and v′(t) + h∗

v(t) + g(t) = 0 for a.a. t ∈ T,

with h∗
u, h∗

v ∈ L p′
(T ; X∗) and h∗

u(t) ∈ A(t, u(t)), h∗
v(t) ∈ A(t, v(t)) for a.a. t ∈ T .

We have

u′(t) − v′(t) + h∗
u(t) − h∗

v(t) = 0 for a.a. t ∈ T .

Suppose that u �= v. Taking duality brackets with u(t) − v(t), using the integration
by parts formula (see (2.1)), integrating first on [0, t] and then on [t, b], via the strict
monotonicity of A(t, ·) and the anti-periodic boundary condition, we have

|u(t) − v(t)| < |u(0) − v(0)|
and

|u(b) − v(b)| = |u(0) − v(0)| < |u(t) − v(t)|,
a contradiction. So u ≡ v. Therefore, the solution of (5.2) is unique.
Next we show that the solution map ξ : L p′

(T ; H) −→ C(T ; H) is completely
continuous. So, suppose that gn

w−→ g in L p′
(T ; H) and let un = ξ(gn) for all n � 1.

We have

− u′
n(t) = h∗

n(t) + gn(t) for a.a. t ∈ T, un(0) = −un(b), n � 1. (5.3)

We take duality brackets with un(t) and obtain

1

2

d

dt
|un(t)|2 +〈h∗

n(t), u(t)〉+ (gn(t), un(t)) = 0 for a.a. t ∈ T, all n � 1. (5.4)

Integrating (5.4) on T = [0, b] and using the anti-periodic boundary condition, we
obtain

((h∗
n, un)) +

∫ b

0
(gn, un) dt = 0 ∀n � 1,

so

‖un‖p
L p(T ;X)

� c8(‖un‖L p(T ;X) + 1) ∀n � 1,
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for some c8 > 0 (see hypothesis H(A)′(iv) and recall that {gn}n�1 ⊆ L p′
(T ; H) is

bounded), so
the sequence {un}n�1 ⊆ L p(T ; H) is bounded. (5.5)

From (5.5), (5.3) and hypothesis H(A)′(i i i), it follows that

the sequence {u′
n}n�1 ⊆ L p′

(T ; X∗) is bounded. (5.6)

Then (5.4) and (5.5) imply that

the sequence {un}n�1 ⊆ Wp(0, b) is bounded.

So, by passing to a suitable subsequence if necessary, we may assume that

un
w−→ u in Wp(0, b). (5.7)

We set u∗
n = h∗

n + gn for n � 1 and have

u∗
n

w−→ u∗ in L p′
(T ; X∗).

Also, using the integration by parts formula and the anti-periodic boundary condition,
we have

−((u′
n, un − u)) = ((u′

n, u)) −→ ((u′, u)) = 0,

so
lim

n→+∞((u∗
n, un − u)) = 0. (5.8)

Using (5.7) and (5.8) and reasoning as in the proof of Proposition 3.4, we obtain

un(t) −→ u(t) = ξ(g)(t) in H for all t ∈ T (5.9)

and
un −→ u = ξ(g) in L p(T ; H) as n → +∞. (5.10)

Hence u∗ = h∗ + g with h∗ ∈ A(u). For all t ∈ T , we have

|un(t) − u(t)|2 � |un(0) − u(0)|2 + 2
∫ b

0
|〈h∗

n, un − u〉| dt + 2|((h∗, un − u))|

+2
∫ b

0
|(gn − g, un − u)| dt. (5.11)

Note that ∫ b

0
|(gn − g, un − u)| dt −→ 0 as n → +∞. (5.12)

Also, if βn(t) = 〈h∗
n(t), un(t) − u(t) for n � 1, then from Hu–Papageorgiou [13, p.

41], we have

βn −→ 0 in L1(T ),
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so ∫ b

0
|〈h∗

n, un − u〉| dt −→ 0. (5.13)

Finally, we have

((h∗
n, un − u)) −→ 0 and |un(0) − u(0)|2 −→ 0 (5.14)

(see (5.9)–(5.10)). Returning to (5.11) and using (5.12), (5.13), (5.14), we infer that

un −→ u in C(T ; H),

so ξ is completely continuous. �

As before we consider the modification F̂ of F defined by (3.1) and consider the
corresponding anti-periodic problem (3.18). From Proposition 3.7 we know that every
solution u ∈ Wp(0, b) of problem (3.18) satisfies

|u(t)| � M ∀t ∈ T = [0, b] (5.15)

(here M > 0 is as in hypothesis H(F)3(v)). Then from (3.2) and (5.15), we see that
without any loss of generality, we may assume that

|F̂(t, x)| = sup
v̂∈F̂(t,x)

|̂v| � γ (t) for a.a. t ∈ T, all x ∈ H,

with γ ∈ L p′
(T )+. Otherwise, we just replace F̂ by

F̂0(t, x) =
{

F(t, x) if |x | � M,

F(t, pM (x)) if |x | > M.

Then we introduce the set

V = {
g ∈ L p′

(T ; H) : |g(t)| � γ (t) for a.a. t ∈ T
}
.

We have the following result.

PROPOSITION 5.2. If hypotheses H(A)′ and H(F)3 hold, then the set ξ(V ) ⊆
C(T ; H) is compact.

Proof. Proposition 5.1 and Proposition 3.1.7 of Gasiński–Papageorgiou [7, p. 268],
imply that the solution map ξ is compact. Note that the set V ⊆ L p′

(T ; H) is w-
compact (James theorem). Therefore, the set ξ(V ) ⊆ C(T ; H) is compact. �

Let K = conv ξ(V ) ∈ Pkc(C(T ; H)) (see Gasiński–Papageorgiou [8, p. 852]). We
consider the multifunction Ê : K −→ Pwkc(L p′

(T ; H)) defined by

Ê(u) = S p′
F̂(·,u(·)) ∀u ∈ K .
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Invoking Theorem 8.31 of Hu–Papageorgiou [12, p. 260], we can find a continuous
map ê : K −→ L1

w(T ; H) such that

ê(u) ∈ ext Ê(u) = ext S p′
F̂(·,u(·)) = S p′

ext F̂(·,u(·)) ∀u ∈ K

(see Hu–Papageorgiou [12, p. 191]).We consider the following anti-periodic problem:

{−u′(t) ∈ A(t, u(t)) + ê(u)(t) for a.a. t ∈ T,

u(0) = −u(b).
(5.16)

As before (see Theorem 3.8), we obtain a solution u ∈ Wp(0, b) of (5.16) such that

|u(t)| � M ∀t ∈ T .

On account of (3.1), we see that u is also a solution of problem (5.1). Hence, if by
Se ⊆ Wp(0, b)we denote the solution set of problem (5.1), then we have the following
existence result.

THEOREM 5.3. If hypotheses H(A)′ and H(F)3 hold, then Se �= ∅.

Next we show that every u ∈ Sc can be approximate in C(T ; H) by elements in

Se (that is, Sc ⊆ S
C(T ;H)

e ). Such a result is known as “strong relaxation theorem” and
is important in control theory. The result says that every state of the system can be
approximated by states generated by extremal (bang–bang) controls. This way we can
economize in the use of control functions. To have such a result, we need to strengthen
further the conditions on the multivalued forcing term F . The new hypotheses are the
following:
H(F)4: F : T × H −→ Pwkc(H) is a multifunction such that

(i) for all x ∈ H , t �−→ F(t, x) is graph measurable;
(ii) there exists k ∈ L2(T ) such that

h(F(t, x), F(t, y)) � k(t)|x − y| for a.a. t ∈ T, all x, y ∈ H ;
(iii) there exist a9 ∈ L p′

(T )+ and c9 > 0 such that

|F(t, x)| = sup
v∈F(t,x)

|v| � a9(t) + c9‖x‖p−1 for a.a. t ∈ T, all x ∈ H ;

(iv) there exists ϑ ∈ L p′
(T )+ such that

(v, x) � −ϑ(t) for a.a t ∈ T, all x ∈ H, v ∈ F(t, x);
(v) there exists M > 0 such that

(v, x) � a7(t) for a.a. t ∈ T, all x ∈ H, |x | = M, v ∈ F(t, x)

with a7 ∈ L1(T )+ as in hypothesis H(A)′(iv).
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THEOREM 5.4. If hypotheses H(A)′ and H(F)4 hold, then Sc ⊆ S
C(T ;H)

e .

Proof. Let u ∈ Sc ⊆ Wp(0, b). Then by definition, we have

{−u′(t) ∈ A(t, u(t)) + f (t) for a.a. t ∈ T,

u(0) = −u(b),

with f ∈ S p′
F(·,u(·)).

Let K ∈ Pkc(C(T ; H)) be as in the proof of Theorem 5.3. Let y ∈ K and ε > 0
and consider the multifunction G y

ε : T −→ 2H \ {∅} defined by

G y
ε (t) = {

v ∈ F(t, y(t)) : | f (t) − v| <
ε

2m0b
+ d( f (t), F(t, y(t)))

}
,

where m0 = sup{‖w‖C(T ;H) : w ∈ K }.
Hypotheses H(F)4(i) and (i i) imply that themap t �−→ G y

ε (t) is graphmeasurable.
So, we can apply the Yankov-von Neumann–Aumann selection theorem (see Hu–
Papageorgiou [12, p. 158]) and obtain a measurable selection of the multifunction G y

ε .
Evidently this selection belongs in L p′

(T ; H) (see hypothesis H(F)4(i i i)).

We introduce the multifunction �ε : K −→ 2L p′
(T ;H) defined by

�ε(y) = S p
G y

ε (·) ∀y ∈ K .

We have

• �ε has nonempty and decomposable values;
• �ε is lower semicontinuous (see Hu–Papageorgiou [12, Theorem 7.28, p.238]).

It follows that the map y �−→ �ε(y) is lower semicontinuous. Then by Bressan–
Colombo [5] selection theorem, we can find a continuous map γε : K −→ L p′

(T ; H)

such that

γε(y) ∈ �ε(y) ∀y ∈ K . (5.17)

Then by Theorem 8.31 of Hu–Papageorgiou [12, p. 260], there exists a continuous
map ξε : K −→ L1

w(T ; H) such that

ξε(y) ∈ ext �ε(y) and ‖ξε(y) − γε(y)‖w � ε ∀y ∈ K . (5.18)

Now, let εn ↘ 0 and set γn = γεn , ξn = ξεn and z = u(0) = −u(b) ∈ H . We consider
the following Cauchy problem:

{−u′
n(t) ∈ A(t, un(t)) + ξn(un)(t) for a.a. t ∈ T,

un(0) = z, n � 1.
(5.19)

Weknow that (5.19) has a solutionun ∈ Wp(0, b) (seeHu–Papageorgiou [13,Theorem
2.2, p. 19]). Exploiting the monotonicity of A(t, ·) (see hypothesis H(A)′(i i)) and the
integration by parts (see (2.1)), we have



1044 L. Gasiński and N. S. Papageorgiou J. Evol. Equ.

1

2
|un(t) − u(t)|2

�
∫ t

0
( f (s) − ξn(un)(s), un(s) − u(s)) ds

=
∫ t

0
( f (s) − γn(un)(s), un(s) − u(s)) ds

+
∫ t

0
(γn(un)(s) − ξn(un)(s), un(s) − u(s)) ds

� εn +
∫ t

0
k(s)|un(s) − u(s)|2 ds

+
∫ t

0
(γn(un)(s) − ξn(un)(s), un(s) − u(s)) ds (5.20)

(see (5.17)). From (5.18), we have

‖γn(un) − ξn(un)‖w � εn ∀n � 1,

so
γn(un) − ξn(un)

w−→ 0 in L p′
(T ; H) (5.21)

(see Hu–Papageorgiou [13, Lemma 2.8, p. 24]). Recall that the sequence {un} ⊆
Wp(0, b) is bounded and un ∈ K for all n � 1. Since the set K ⊆ C(T ; H) is
compact, by passing to a suitable subsequence if necessary, we may assume that

un
w−→ û in Wp(0, b) and un −→ û in C(T ; H), (5.22)

so ∫ t

0
(γn(un) − ξn(un), un − u) ds −→ 0 (5.23)

(see (5.21)). We return to (5.21), pass to the limit as n → +∞ and use (5.22) and
(5.23). Then

1

2
|̂u(t) − u(t)|2 �

∫ t

0
k(s)|̂u(s) − u(s)|2 ds,

so û = u (by the Gronwall inequality). Therefore, finally we have that un ∈ Se for all

n � 1 and un −→ u in C(T ; H). Thus Sc ⊆ S
C(T ;H)

e . �

As an example, we consider a distributed parameter control system. Let, T = [0, b]
and � ⊆ R

N be a bounded domain with a smooth boundary ∂�. The system under
consideration is the following:

{
∂u
∂t − �pu = f (t, z, u) + (l(z), v)Rm on T × �,

u(0, ·) = −u(b, ·), u|T ×∂� = 0, v(z) ∈ V (z) a.e.
(5.24)

In this problem, �p is the p-Laplace differential operator defined by

�pu = div (|Du|p−2Du).
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We assume that 2 � p < +∞ (if p = 2, then �p = �, the usual Laplace differential
operator). Also v : Z −→ R

m is the control function and V is the control constraint
multifunction.
We impose the following conditions on the data of the problem (5.24):

• f : T × � × R −→ R is a measurable function such that
(a) there exist a ∈ L p′

(T × �) and c ∈ L∞(�) such that

| f (t, z, x)| � a(t, z) + c(z)|x |p−1 for a.a. (t, z) ∈ T × �, all x ∈ R;

(b) there exists k ∈ L2(T × �) such that

| f (t, z, x) − f (t, z, x ′)| � k(t, z)|x − x ′| for a.a. (t, z) ∈ �, all x, x ′ ∈ R;

(c) f (t, z, x)x � 0 for a.a. (t, z) ∈ T × �, all x ∈ R;
• V : � −→ Pkc(R

m) is graph measurable and there exists ϑ ∈ L2(�) such that

|V (z)| = sup
v∈V (z)

|v| � ϑ(z) for a.a. z ∈ �;

• l ∈ L∞(�;Rm) and (l(z), v)Rm � 0 for a.a. z ∈ �, all v ∈ V (z).

For problem (5.24), the evolution triple is

X = W 1,p
0 (�), H = H∗ = L2(�), X∗ = W −1,p′

(�)

(where 1
p + 1

p′ = 1). From the Sobolev embedding theorem, we have that

X ↪→ H compactly

(hence that is true also for H = H∗ ↪→ X∗).
Let A : X −→ X∗ be defined by

〈A(u), v〉 =
∫

A
|Du|p−2(Du, Dv)RN dz ∀u, v ∈ X.

Then A is strictly monotone, continuous, hence maximal monotone too. Applying
Hölder’s inequality and Poincaré’s inequality, we have

‖A(u)‖∗ � ‖Du‖p−1
p = ‖u‖p−1.

Moreover, we have

〈A(u), u〉 = ‖Du‖p
p = ‖u‖p ∀u ∈ X.

Let f̂ : T × H −→ H be the Nemitsky operator corresponding to f (t, z, x) and
defined by

f̂ (t, u)(·) = f (t, ·, u(·)) ∀(t, u) ∈ T × H.
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We consider the multifunction F : T × H −→ Pwkc(H) defined by

F(t, u) = {
f̂ (t, u) + (l, v)L2(�;Rm) : v ∈ S2

V (·)
}
.

Then it is easy to see that F(t, u) satisfies hypotheses H(F)4.
We rewrite (5.24) as the following equivalent inclusion:

{−u′(t) ∈ A(u(t)) + F(t, u(t)) for a.a. t ∈ T,

u(0) = −u(b).

For this inclusion, we can easily apply Theorem 5.4. So, if u is a state of (5.24), then
given any ε > 0, we can find a state ûε generated by a bang–bang control v̂ε ∈ S2

ext V
such that

‖u(t, ·) − û(t, ·)‖L2(�) � ε ∀t ∈ T .

OpenAccess. This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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