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A semigroup related to a convex combination of boundary
conditions obtained as a result of averaging other semigroups
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Abstract. Let α be a bounded linear operator in a Banach space X, and let A be a closed operator in this
space. Suppose that for �1, �2 mapping D(A) to another Banach space Y, A| ker �1 and A| ker �2 are
generators of strongly continuous semigroups in X. Assume finally that A| ker �a , where �a = �1α+�2β

and β = IX − α, is a generator also. In the case where X is an L1-type space, and α is an operator of
multiplication by a function 0 ≤ α ≤ 1, it is tempting to think of the later semigroup as describing dynamics
which, while at state x , is subject to the rules of A| ker �1 with probability α(x) and is subject to the rules of
A| ker �2 with probability β(x) = 1 − α(x). We provide an approximation (a singular perturbation) of the
semigroup generated by A| ker �a by semigroups built from those generated by A| ker �1 and A| ker �2 that
supports this intuition. This result is motivated by a model of dynamics of Solea solea (Arino et al. in SIAM
J Appl Math 60(2):408–436, 1999–2000; Banasiak and Goswami in Discrete Continuous Dyn Syst Ser A
35(2):617–635, 2015; Banasiak et al. in J Evol Equ 11:121–154, 2011, Mediterr J Math 11(2):533–559,
2014; Banasiak and Lachowicz in Methods of small parameter in mathematical biology, Birkhäuser, 2014;
Sanchez et al. in J Math Anal Appl 323:680–699, 2006) and is, in a sense, dual to those of Bobrowski (J
Evol Equ 7(3):555–565, 2007), Bobrowski and Bogucki (Stud Math 189:287–300, 2008), where semigroups
generated by convex combinations of Feller’s generators were studied.

1. Introduction

Let L1(R+) be the space of Lebesgue integrable functions on R
+ with the norm

‖φ‖L1(R+) = ∫
R+ |φ(a)| da, and W 1,1(R+) be the Sobolev space of integrable, ab-

solutely continuous functions with derivatives in L1(R+). For nonnegative, bounded,
measurable functions b and μ on R

+, let A be the operator in L1(R+) given by
Aφ = −φ′ − μφ with the domain composed of φ ∈ W 1,1(R+) satisfying the bound-
ary condition

φ(0) =
∫

R+
b(a)φ(a) da.

The abstract Cauchy problem related to A is called the McKendrick equation [19] or
Sharpe–Lotka–McKendrick equation [21,22], or Lotka–McKendrick equation [16].
In the population dynamics’ interpretation of this problem, φ is an age profile of an
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age-structured population with births and deaths governed by b and μ, respectively.
For this reason, it is customary to write the argument of φ as a, ‘a’ standing for ‘age.’

A model of dynamics of a Solea solea or Engraulis encrasicholus population with
both age and vertical structures, due to Arino et al. [1,20], uses the McKendrick model
as a building block. In the model, the fish habitat is divided into N spatial patches and
the fish densities, or age profiles φi , in the i th patch satisfy the following system of
equations:

∂φi (t, a)

∂t
+ ∂φi (t, a)

∂a
= −μi (a)φi (t, a) + ε−1

N∑

j=1

ki j (a)φ j (t, a), (1)

φi (t, 0) =
∫ ∞

0
bi (a)φi (t, a) da, i = 1, . . . , N ,

where ‘t’ stands for time, and μi and bi are age-specific and patch-specific mortality
and birth rates.

In the absence of the terms ε−1 ∑N
j=1 ki j (a)φ j (t, a), each patch can be treated

separately and the population densities there would satisfy the McKendrick equation.
The matrix k(a) = (ki j (a)) is composed of intensities of movements between patches
that occur on a daily basis: that is, in particular, off-diagonal entries are nonnegative
and the sum of entries in each column of the matrix is zero. The factor ε−1 (with
ε � 1) corresponds to the fact that the age-related processes and vertical migrations
(between the patches) occur at different time scales, a day being the fast time scale as
compared to the fish lifetime.

The main question addressed in [1] is whether in modeling such populations one
may disregard the vertical migration to work with a model that has been aggregated,
or averaged, over the whole water column. To this end, the authors assume addition-
ally that the matrix k is irreducible and hence possesses the unique normalized (in
the sense that v1(a) + · · · + vN (a) = 1) right eigenvector v(a) = (vi (a))i=1,...,N ,
corresponding to the simple dominant eigenvalue 0 [14]. Since this vector describes
the stable population distribution among the patches, e.g. [1], a heuristic argument
makes plausible the ansatz that approximately we have

φi (t, a)

φ(t, a)
= vi (a), i = 1, . . . , N , a ≥ 0, (2)

where φ = ∑N
i=1 φi . In other words, it is assumed that the migrations governed by

k occur so fast, as compared to the aging processes, that the population distribution
over the patches reaches the (age-specific) equilibrium long before the aging process
intervenes. This corresponds to letting ε → 0 in (1). In such a simplified, aggregated
model, the population density satisfies the McKendrick equation with averaged birth
and mortality rates:

∂φ(t, a)

∂t
+ ∂φ(t, a)

∂a
= −μa(a)φ(t, a), (3)
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φ(t, 0) =
∫ ∞

0
ba(a)φ(t, a) da, (4)

where ‘a’ stands for ‘aggregated’, μa = ∑N
i=1 viμi and ba = ∑N

i=1 vi bi . Here, the
weights vi reflect the underlying, hidden spatial structure. Notably, since the entries
of v(a) sum up to 1, the limit death rate and the limit boundary condition are con-
vex combinations of the death coefficients and the boundary conditions occurring in
(1). The proofs that (3) provides an approximation to (1), and thus that the heuristic
approximation (2) is justified, are given in [1,4].

This effect is very similar to that observed in [8,10,11] where, motivated by a number
of biological models, the authors study convex combinations of Feller generators
resulting from ‘averaging’ the stochastic processes involved. In fact, these two effects
are in a sense dual: Under certain regularity conditions on the model’s parameters, the
predual of the McKendrick semigroup may be constructed in a space of continuous
functions [10]. Then, a perturbation of a boundary condition becomes a perturbation
of the generator, and the convergence discussed above may be put in the context of
[8,10,11], see [10] for details.

In [3–6], the problem of the convergence of solutions to (1) as ε → 0 was fully solved
using asymptotic analysis (even in a more general model). However, the authors did not
consider the problem as an example of a convex combination of boundary conditions,
and their reasonings are based on special properties of the McKendrick semigroup. In
this paper, we put the problem in the framework of Greiner [15] to deal with abstract
operators and abstract boundary conditions and we approximate the semigroup with the
generator’s domain equal to ker[�1 ◦α+�2 ◦(1−α)] by a family of semigroups with
the generators’ domains involving ker �1 and ker �2—see Theorems 2.1 and 2.2. This
approximation supports the intuition that the former semigroup is in a sense an average
of the latter semigroups. Note that the problem posed here is in a sense converse to the
result of [1,3]: There, a complex model is reduced to a simpler one involving convex
combination of the boundary conditions while here, given the semigroup generated
by an operator related to a convex combination of boundary conditions, we construct
an approximating sequence of semigroups with desired averaging properties.

2. The main theorem

For our main result, we adopt the following abstract approach to boundary condi-
tions, due to Greiner [15]. Let X and Y be two Banach spaces, A : D(A) → X be a
closed operator in X, and L : D(A) → Y be a linear operator which is continuous
with respect to the graph norm in D(A). Moreover, assume L to be surjective, and
suppose that A0, defined as the restriction of A to ker L , generates a semigroup of
operators in X. The main question studied in [15] was whether, given F ∈ L(X, Y),
the operator AF defined as the restriction of A to ker(L − F) is the generator as well.
While in general (see [15, Example 1.5]), the answer is in the negative, Greiner’s first
fundamental theorem [15, Thm 2.1] establishes that AF is the generator for any F
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provided there is a constant γ such that for λ larger than some λ0

‖Lx‖ ≥ λγ ‖x‖, for all x ∈ ker(λ − A). (5)

Throughout the paper, we will assume that (5) holds.
Note that the boundary conditions in the model (1) fit into this abstract framework,

with L being the trace operator at a = 0 and F the bounded integral operator on
the right-hand side of the boundary conditions—see Example 1 for details. More-
over, following the structure of the limit problem (4), we consider an abstract convex
combination of two boundary value problems by introducing two boundary operators
F1, F2 ∈ L(X, Y) and a bounded linear operator α ∈ L(X) and define

Fa = F1α + F2β,

where β = IX−α (‘a’ for ‘average’). By Greiner’s theorem, Ai := AFi and Aa := AFa

are generators with D(Ai ) = ker �i , where �i = L − Fi , i = 1, 2 and D(Aa) =
ker �a, where �a = L − Fa. Observe that in this formulation, there is no need to refer
anymore to the vector v, whose role has been taken over by the operators α and β

satisfying α + β = IX.
Our main goal is to approximate

(
et Aa

)
t≥0 by means of semigroups built from

(
et A1

)
t≥0 and

(
et A2

)
t≥0. To this end, we introduce operators Aκ , κ > 0, in X × X

given by

D(Aκ) = D(A1) × D(A2) = ker �1 × ker �2,

Aκ =
(

A1 0
0 A2

)

+ κ

(−β α

β −α

)

=: A0 + κQ.

We assume that the semigroup generated by A0, say
(
etA0

)
t≥0 is semicontractive, i.e.,

it satisfies

‖etA0‖ ≤ eωt , t ≥ 0, (6)

for some ω ∈ R and that

P := Q + IX×X =
(

α α

β β

)

(7)

is a contraction in X×X. (The former condition is automatically satisfied if
(
et A0

)
t≥0

is semicontractive—see the remark on page 215 in [15].) We note that P is idempotent,
hence

eκtQ = e−κt eκtP = e−κt [
IX×X + (etκ − 1)P]

= e−κt IX×X + (1 − e−κt )P. (8)

It follows that ‖etQ‖ ≤ 1 and for the semigroups generated by Aκ (which exist by the
Phillips perturbation theorem), we have, by the Trotter product formula,

‖etAκ x‖ ≤ lim
n→∞

∥
∥
∥
[
e

t
n A0 e

κt
n Q

]n
x
∥
∥
∥ ≤ eωt‖x‖, x ∈ X × X,
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so that
‖etAκ ‖ ≤ eωt , κ > 0, t ≥ 0. (9)

Operator P is a projection on the subspace X
′ ⊂ X×X of vectors of the form

(
αx
βx

)
;

the latter space is isomorphic to X with isomorphism I : X → X
′ given by Ix = (

αx
βx

)
.

THEOREM 2.1. In the above setup, assume that α leaves D(A) invariant. Then,

lim
κ→+∞ etAκ

(
x1

x2

)

= Iet AaI−1P
(

x1

x2

)

=
(

αetAa(x1 + x2)

βetAa(x1 + x2)

)

, t > 0, x1, x2 ∈ X.

(10)
For

(x1
x2

) ∈ X
′, the same is true for t = 0 as well and the limit is almost uniform in

t ∈ [0,∞); for other
(x1

x2

)
, the limit is almost uniform in t ∈ (0,∞).

Intuitively, this result may be explained as follows. The components of the semi-
group

(
etA0

)
t≥0 are uncoupled, while in

(
etAκ

)
t≥0, the coupling is realized by the

operator Q which may be thought of as describing a Markov chain switching one dy-
namics into the other (the jumps’ intensities are state-dependent, see examples given
later). As κ → ∞, the Markov chain reaches its statistical equilibrium, so that with
‘probability’ α, it chooses the first dynamics, and with ‘probability’ β, it chooses the
second dynamics. This results in a convex combination of boundary conditions in the
limit semigroup. (Compare the main theorem in [8], see also [10].)

THEOREM 2.2. Under conditions of the previous theorem, let B =
(

B1 0
0 B2

)

,

where B1 and B2 are bounded linear operators. Then,

lim
κ→+∞ et (Aκ+B)

(
x1

x2

)

= Iet (Aa+B1α+B2β)I−1P
(

x1

x2

)

, t > 0, x1, x2 ∈ X. (11)

For
(x1

x2

) ∈ X
′, the same is true for t = 0 as well and the limit is almost uniform in

t ∈ [0,∞); for other
(x1

x2

)
, the limit is almost uniform in t ∈ (0,∞).

We will prove these theorems in Sect. 5; in Sect. 3, we give examples of applications,
and in Sect. 4, we provide preparatory lemmas.

REMARK 1. For Theorems 2.1 and 2.2, besides (5) and (6), we assume that P ,
defined in (7), is a contraction in X×X and α leaves D(A) invariant. While the nature
of the first and the last conditions is transparent, the other two require a comment. As
already mentioned, together they imply stability condition (9) (which is a common
assumption in convergence theorems), and in fact, our theorems remain true if we
simply assume (9). However, for the sake of applications, it is more convenient to
assume the two conditions discussed above. Out of these two, the one requiring P
to be a contraction seems to be most restrictive, apparently excluding spaces with
supremum norm. On the other hand, this assumption is often satisfied in L1-type
spaces. (Similarly, the ‘dual’ theorem in [8,10] is designed for spaces of continuous
functions.) In particular, if X is an AL-space, i.e., a Banach lattice such that

‖x + y‖ = ‖x‖ + ‖y‖, x, y ≥ 0,
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and X × X is equipped with the order ‘
(x

y

) ≥ 0 iff x ≥ 0 and y ≥ 0’ and the norm
∥
∥
∥
(x

y

)∥∥
∥ = ‖x‖ + ‖y‖, then P is a contraction provided α and β are positive operators.

For, in such a case,
∥
∥
∥
∥P

(
x

y

)∥
∥
∥
∥ =

∥
∥
∥
∥

(
α(x + y)

β(x + y)

)∥
∥
∥
∥ = ‖α(x + y)‖ + ‖β(x + y)‖ = ‖x + y‖

≤
∥
∥
∥
∥

(
x

y

)∥
∥
∥
∥ , x, y ≥ 0,

and P is positive. Hence (see e.g. [2, Proposition 2.67]),

‖P‖ = sup∥
∥
∥(x

y)
∥
∥
∥=1,(x

y)≥0

∥
∥
∥
∥P

(
x

y

)∥
∥
∥
∥ ≤ 1.

3. Examples

EXAMPLE 1. In the motivating example of the fish population dynamics,

A : W 1,1(R+) → L1(R+) Aφ = −φ′,

and L : W 1,1(R+) → R is given by Lφ = φ(0). Here, ker(λ − A), λ > 0 is spanned
by eλ where eλ(a) = e−λa, a ≥ 0. Since Leλ = 1 and ‖eλ‖ = 1

λ
, condition (5) is

satisfied with γ = 1 (in fact, we have equality there).
For bi ∈ L∞(R+), i = 1, 2, the functionals Fiφ = ∫ ∞

0 bi (a)φ(a) da are linear and
bounded. Hence, AFi generates a semigroup of operators and so does AFi + Bi , where
given μi ∈ L∞(R+), Bi is a (bounded) multiplication operator φ �→ −μiφ. It is
well known (see e.g. [9,12,16]) that there is ω such that ‖et (AFi +Bi )‖ ≤ eωt , i = 1, 2,
implying (6).

Let α ∈ W 1,∞(R+) satisfy 0 ≤ α ≤ 1. Then the related multiplication operator
(denoted in what follows by the same letter) is bounded in L1(R+) and leaves D(A) =
W 1,1(R+) invariant. Moreover, the related operator P [see (7)] in L1(R+)× L1(R+),

equipped with the norm
∥
∥
∥
(
φ1
φ2

)∥∥
∥ = ‖φ1‖L1(R+) + ‖φ2‖L1(R+), is a contraction (see

Remark 1). Hence, all assumptions of Theorem 2.2 are satisfied. This again establishes
that the general model (1) (with N = 2 and normalized matrix k) may be approximated
by the averaged one (3).

EXAMPLE 2. Let X = L1(R). For our purposes, it will be convenient to identify
φ ∈ L1(R) with the pair

(
φ j

)
j∈J

of functions on R
+ defined by φ j (a) = φ( ja), a ≥ 0,

where J = {−1, 1}. Certainly φ j ∈ L1(R+), i.e., we identify L1(R) with L1(R+) ×
L1(R+). With this identification in mind, and given constants k j ≥ 0, σ j > 0, j ∈ J,
we define an operator A in L1(R+) by

A
(
φ j

)
j∈J

=
(
σ 2

j φ
′′
j

)

j∈J

, D(A) = W 2,1(R+) × W 2,1(R+), (12)
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and L : D(A) → R
2, by

L
(
φ j

)
j∈J

=
(
φ′

j (0) − k jφ j (0)
)

j∈J

.

The semigroup generated by A0, the restriction of A to ker L , is composed of Markov
operators in L1(R) and describes dynamics of distributions of two independent elastic
Brownian motions on two half-axes, with two different elasticity coefficients (k j ) in
each half-axis, and no communication between the half-axes.

The subspace ker(λ− A) is composed of vectors of the form
(
φ j

)
j∈J

= (
C j eλ j

)
j∈J

,

where C j are arbitrary constants,λ j =
√

λ
σ j

, and eλ was defined in the previous example.

For such vectors and L1-type norm in R
2,

‖L
(
φ j

)
j∈J

‖ =
∑

j∈J

|φ′
j (0) − k jφ j (0)| =

∑

j∈J

(√
λ

σi
+ k j

)

|C j | ≥
√

λ

σ

∑

j∈J

|C j |,

λ‖ (
φ j

)
j∈J

‖ = √
λ

∑

j∈J

σ j |C j | ≤ σ
√

λ
∑

j∈J

|C j |, λ > 0,

where σ = max{σ1, σ−1}. Hence, condition (5) is satisfied with γ = σ−2.
In accordance with the theory described in Sect. 2, we define the boundary operators

F1 and F2 from X to Y = R
2 by

φ →
(∫

R

f j,iφ

)

j∈J

, i = 1, 2,

where f j,i ∈ L∞(R), j ∈ J, i = 1, 2 are given functions. Then A restricted to(
φ j

)
j∈J

= φ ∈ L1(R) satisfying

φ′
j (0) − k jφ j (0) =

∫

R

f j,iφ, j ∈ J, (13)

is the generator of a semicontractive semigroup in L1(R) for both i , and (6) is satisfied.
The boundary conditions (13) are a version of nonlocal Robin boundary conditions
which may model two populations occupying (one-dimensional) domains with joint
boundary, in which the flux of individuals across the common boundary is proportional
not only to the difference of the densities at the boundary but also to the (weighted)
difference of total numbers of individuals in each domain.

For sufficiently regular 0 ≤ α ≤ 1, the related multiplication operator in L1(R)

leaves D(A) invariant, and the related operator P is a contraction (see Remark 1).
Therefore Theorem 2.1 ensures that in the limit (10), we obtain (an isomorphic copy)
of the semigroup generated by A restricted to

(
φ j

)
j∈J

= φ ∈ L1(R) which satisfy

φ′
j (0) − k jφ j (0) =

∫

R

(α f j,1 + β f j,2)φ, j ∈ J;

the right-hand side here is a convex combination of the right-hand sides in (13).
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4. Auxiliary results

In this section, we present preparatory results for the proofs of the main theorems,
to be given in the following section.

We begin by recalling the basic structure related to assumption (5) (see [15, Lemma
1.2]). We fix λ > λ0 in the resolvent set of A0, and consider an x ∈ D(A). Since A0

is a generator, we can choose x1 ∈ D(A0) so that (λ − A0)x1 = (λ − A)x . Writing
x2 = x − x1, we have

x = x1 + x2 (14)

with x1 ∈ D(A0) and x2 ∈ ker(λ− A). Such a decomposition of x is unique, because
otherwise we could find a nonzero y ∈ D(A0) ∩ ker(λ − A), implying that y is an
eigenvector of A0 related to λ, a contradiction.

Since L is assumed to be surjective, condition (5) shows, by the open mapping
theorem, that L restricted to ker(λ − A) is an isomorphism of ker(λ − A) (with the
graph norm) and Y. Following Greiner, by Lλ, we denote the inverse of L | ker(λ−A).

LEMMA 4.1. Let Aκ denote the extension of Aκ to the maximal domain D(A) ×
D(A) and let � : X × X → Y × Y be given by �

(x1
x2

) = (
�1x1
�2x2

)
. For x ∈ D(Aa), we

define

x1,κ = αx + Lκ x̃,

x2,κ = βx − Lκ x̃,

where x̃ := F1αx − Lαx = Lβx − F2βx ∈ Y, by D(Aa) = ker �a. Then,

Aκ

(
x1,κ

x2,κ

)

=
(

Aαx

Aβx

)

, lim
κ→+∞

(
x1,κ

x2,κ

)

=
(

αx

βx

)

and lim
κ→+∞ �

(
x1,κ

x2,κ

)

= 0.

(15)

Proof. Using ALκ x̃ = κLκ x̃ , we get

A0

(
x1,κ

x2,κ

)

=
(

Aαx+κLκ x̃

Aβx−κLκ x̃

)

while Q
(

x1,κ

x2,κ

)

=
(−βLκ x̃−αLκ x̃

βLκ x̃+αLκ x̃

)

=
(−Lκ x̃

Lκ x̃

)

;

this shows the first part. Next, by (5), we have ‖Lκ x̃‖ ≤ 1
κγ

‖x̃‖. It follows that

limκ→+∞
(x1,κ

x2,κ

) = (
αx
βx

)
and

�

(
x1,κ

x2,κ

)

=
(

Lαx + x̃ − F1αx − F1Lκ x̃

Lβx − x̃ + F2βx + F2Lκ x̃

)

−→
κ→∞

(
Lαx + x̃ − F1αx

Lβx − x̃ + F2βx

)

=
(

0

0

)

.

(16)

This completes the proof. �

Unfortunately, in general,
(x1,κ

x2,κ

)
does not belong to D(Aκ). Our main goal is to

modify this vector appropriately without altering its crucial properties (see Lemma
4.4). To this end, we need the following two lemmas.
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LEMMA 4.2. Let λ > max(λ0, ω). Then ker(λ − Aκ) is composed of vectors of
the form

(
x1

x2

)

=
(

κ(λ + κ − A0)
−1αhλ − hλ+κ

hλ + hλ+κ − κ(λ + κ − A0)−1αhλ

)

, (17)

where hλ ∈ ker(λ − A) and hλ+κ ∈ ker(λ + κ − A) may be chosen arbitrarily.

Proof. The operator I =
(

α −IX
β IX

)

is an isomorphism of X × X with the inverse
(

IX IX
−β α

)

. A vector x = (x1
x2

)
satisfies λx − Aκ x = 0 iff for y = I−1x we have

λy − I−1AκI y = 0. (18)

On the other hand,

I−1AκI =
(

Aα + Aβ 0
−β Aα + αAβ β A + αA − κ

)

=
(

A 0
αA − Aα A − κ

)

.

Hence, (18) is satisfied for y = (y1
y2

)
iff

λy1 − Ay1 = 0 and (λ + κ)y2 − Ay2 = (αA − Aα)y1.

The first condition here means that y1 is a member, say hλ, of ker(λ−A). Consequently,
the other condition may be written in the form

(λ + κ)y2 − Ay2 = (λ + κ − A)αhλ − καhλ

or (λ + κ − A)(y2 − αhλ) = −καhλ. Therefore, by (14), y2 − αhλ differs from
−κ(λ+ κ − A0)

−1αhλ by an element of ker(λ+ κ − A), say hλ+κ . This is equivalent
to saying that

y2 = αhλ + hλ+κ − κ(λ + κ − A0)
−1αhλ.

To complete the proof, it suffices to calculate
(x1

x2

) = I(y1
y2

)
. �

LEMMA 4.3. There is λ1 such that for λ > λ1 and all κ > 0

‖�1x1‖ + ‖�2x2‖ ≥ ‖x1‖ + ‖x2‖ for all

(
x1

x2

)

∈ ker(λ − Aκ). (19)

Proof. Fix λ > max(λ0, ω) and κ > 0. By Lemma 4.2, a vector
(x1

x2

) ∈ ker(λ − Aκ)

is of the form (17). Using (6) and then (5),

‖x1‖ + ‖x2‖ ≤ 2κ‖α‖
λγ (λ + κ − ω)

‖Lhλ‖ + 2

γ (λ + κ)
‖Lhλ+κ‖ + 1

γ λ
‖Lhλ‖

≤ K

λ
(‖Lhλ‖ + ‖Lhλ+κ‖)
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for an appropriately chosen constant K > 0. Since F1 and F2 are bounded operators,

‖F1x1‖ + ‖F2x2‖ ≤ K

λ
(‖Lhλ‖ + ‖Lhλ+κ‖),

with possibly different K .
On the other hand, the map Y × Y � (y1, y2) �→ ‖y2‖ + ‖y1 + y2‖ is a norm

in Y × Y and ‖y2‖ + ‖y1 + y2‖ ≤ 2(‖y1‖ + ‖y2‖). Hence, by the Open Mapping
Theorem, ‖y1‖ + ‖y2‖ ≤ μ(‖y2‖ + ‖y1 + y2‖) for some constant μ > 0 and all
y1, y2 ∈ Y. It follows that (recall (λ + κ − A0)

−1αhλ ∈ D(A0) = ker L),

‖�1x1‖ + ‖�2x2‖ = ‖Lhλ+κ + F1x1‖ + ‖Lhλ + Lhλ+κ − F2x2‖
≥ ‖Lhλ+κ‖ + ‖Lhλ + Lhλ+κ‖ − ‖F1x1‖ − ‖F2x2‖
≥

(
1

μ
− K

λ

)

(‖Lhλ‖ + ‖Lhλ+κ‖)

≥ K

λ
(‖Lhλ‖ + ‖Lhλ+κ‖)

≥ ‖x1‖ + ‖x2‖,

provided λ ≥ 2Kμ. �

The map � from Lemma 4.1 is surjective. Arguing as in the proof of the decompo-
sition (14), we see that any vector v ∈ X × X may be uniquely written as v = v1 + v2

where v1 ∈ ker � = D(Aκ), and v2 ∈ ker(λ − Aκ), where λ > max(λ1, ω) and
κ > 0 are fixed (λ1 is defined in Lemma 4.3). Hence, � restricted to ker(λ − Aκ)

is surjective as well, and inequality (19) shows that it is invertible, with inverse, say
Jλ,κ , of norm at most 1.

LEMMA 4.4. For x ∈ D(Aa), there are
(y1,κ

y2,κ

) ∈ D(A1) × D(A2) = D(Aκ) such
that

lim
κ→+∞

(
y1,κ

y2,κ

)

=
(

αx

βx

)

and lim
κ→+∞ Aκ

(
y1,κ

y2,κ

)

=
(

Aαx

Aβx

)

.

Proof. Take λ > λ1 and define (see Lemma 4.1)

(
y1,κ

y2,κ

)

:=
(

x1,κ

x2,κ

)

− Jλ,κ�

(
x1,κ

x2,κ

)

.

Then, �
(y1,κ

y2,κ

) = �
(x1,κ

x2,κ

)−�
(x1,κ

x2,κ

) = 0, proving that
(y1,κ

y2,κ

) ∈ D(Aκ). Also, by Lemma
4.1,

lim
κ→+∞

(
y1,κ

y2,κ

)

=
(

αx

βx

)

− lim
κ→+∞ Jλ,κ�

(
x1,κ

x2,κ

)

=
(

αx

βx

)

,
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by (5) and since
∥
∥
∥Jλ,κ�

(x1,κ

x2,κ

)∥∥
∥ ≤

∥
∥
∥�

(x1,κ

x2,κ

)∥∥
∥ −→

κ→∞ 0 by (16). Similarly,

lim
κ→+∞ Aκ

(
y1,κ

y2,κ

)

=
(

Aαx

Aβx

)

+ lim
κ→+∞ Aκ Jλ,κ�

(
x1,κ

x2,κ

)

=
(

Aαx

Aβx

)

+ λ lim
κ→+∞ Jλ,κ�

(
x1,κ

x2,κ

)

=
(

Aαx

Aβx

)

.

�

5. Proofs of the main theorems

5.1. Proof of Theorem 2.1

The main tool used in the proof is a singular perturbation theorem of Kurtz [13,
17,18], which we present here in a simplified form. We start by recalling its basic
framework. Suppose, as in Theorem 2.1, that Aκ , κ > 0, are generators of semigroups
{etAκ , t ≥ 0}, κ > 0 in a Banach space B, such that (9) holds, and that Q generates a
strongly continuous semigroup

(
et Q

)
t≥0 such that

lim
t→∞ et Q x =: Px, x ∈ B (20)

exists. Then P is a bounded idempotent operator and ker Q = range P, range Q =
ker P . Denote:

B
′ = range P.

THEOREM 5.1. (Kurtz) Let C be an operator in B, D be a subset of its domain,
and assume that

(a) for x ∈ D, there are xκ ∈ D(Aκ) such that

lim
κ→+∞ xκ = x and lim

κ→+∞ Aκ xκ = Cx,

(b) for y in a core D′ of Q, there are yκ ∈ D(Aκ) such that

lim
κ→+∞ yκ = y and lim

κ→+∞ κ−1Aκ xκ = Qx,

(c) the operator PC with domain D ∩ B
′ is closable and its closure PC generates

a strongly continuous semigroup in B
′.

Then

lim
κ→+∞ eAκ t x = et PC Px, x ∈ B, t > 0. (21)

For x ∈ B
′, the same is true for t = 0 as well and the limit is almost uniform in

t ∈ [0,∞); for other x, the limit is almost uniform in t ∈ (0,∞).
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In the context of Theorem 2.1, we take B = X × X, Q = Q, and then (20) follows
by (8) with P = P . Also, B

′ is the space X
′ of vectors of the form

(
αx
βx

)
, x ∈ X. Let C

be the operator in B given by

C

(
αx

βx

)

=
(

Aαx

Aβx

)

, D(C) =
{(

αx

βx

)

; x ∈ D(A)

}

.

This operator is well defined since we assumed that α leaves D(A) invariant. By
Lemma 4.4, condition (a) in Kurtz’s theorem is satisfied with D = I D(Aa) (the
image of D(Aa) via the isomorphism I). Next, for x1 ∈ D(A1), x2 ∈ D(A2), we
have limκ→+∞ κ−1Aκ

(x1
x2

) = Q(x1
x2

)
so that (b) in Kurtz’s theorem is satisfied with

D′ = D(A1) × D(A2). The latter set is a core for Q, Q being bounded. Finally,
D ∩ B

′ = D = I D(Aa) and

PCIx = PC

(
αx

βx

)

=
(

αAx

β Ax

)

= I Ax = I Aax, x ∈ D(Aa).

This shows that PC is an isomorphic copy in B
′ of the generator Aa in X, and hence is

a generator, as well. Therefore, Kurtz’s theorem is applicable, and (10) is a particular
case of (21).

5.2. Proof of Theorem 2.2

Theorem 2.2 is a direct consequence of Theorem 2.1 and the general principle say-
ing that bounded perturbations of semigroups preserve convergence (compare [7]). To
explain this in more detail, suppose that

(
etAκ

)
t≥0 are equibounded, strongly continu-

ous semigroups in a Banach space B converging as κ → ∞ to a semigroup (T (t))t≥0

which is strongly continuous only on a subspace B
′ ⊂ B. Assume also that Bκ are

bounded linear operators converging strongly to a B, as κ → ∞. Then, by the Phillips
perturbation theorem

et (Aκ+Bκ ) =
∞∑

n=0

Sκ,n(t), (22)

where

Sκ,0 = etAκ , Sκ,n+1(t) =
∫ t

0
e(t−s)Aκ Bκ Sκ,n(s) ds, n ≥ 0.

We note that ‖Sκ,n(t)‖ ≤ M (M K t)k

k! , where M := supκ>0,t≥0 ‖etAκ ‖ and K :=
supκ>0 ‖Bκ‖. Since Sκ,0 converges by assumption and the Lebesgue dominated con-
vergence theorem, together with the inductive assumption that limn→∞ Sκ,n(t) =:
Sκ(t), implies

lim
κ→+∞ Sκ,n+1(t) =

∫ t

0
T (t − s)BSn(s) ds,
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all summands in (22) converge. Using the Lebesgue dominated convergence theorem
again, we see that

lim
κ→+∞ et (Aκ+Bκ ) =

∞∑

n=0

Sn(t),

where S0(t) = T (t), Sn+1(t) = ∫ t
0 T (t − s)BSn(s) ds, k ≥ 0. Note that the limit is

almost uniform in t ∈ [0,∞) iff such is the limit of eAκ t .
A special case is obtained for

T (t) = etGP, (23)

where G is the generator of a strongly continuous semigroup in B
′ and P is an idem-

potent operator projecting B onto B
′. Then,

S0(t) = etGP, Sn+1(t) =
∫ t

0
e(t−s)GPBSn(s) ds P, n ≥ 0.

In other words,

lim
κ→+∞ et (Aκ+Bκ ) = et (G+PB)P, (24)

where PB is treated as a bounded operator in B
′.

In the setup of Theorem 2.2, the semigroups
(
etAκ

)
t≥0 are not equibounded, but

stability condition (9) allows for reducing the problem to the former case by standard

arguments. Moreover, Bκ = B =
(

B1 0
0 B2

)

(by the Phillips perturbation theorem,
(
et(Aκ+B)

)
t≥0 satisfy the stability condition (9), perhaps with a larger ω). Since the

limit in (10) has the form (23) with G being the isomorphic copy of Aa in X
′, Theorem

2.1, combined with the principle set up above, yields (11), because

PB I x = PB
(

αx

βx

)

= P
(

B1αx

B2βx

)

=
(

α(B1αx + B2βx)

β(B1αx + B2βx)

)

= I (B1αx + B2βx), x ∈ X,

i.e., PB restricted to X
′ is the isomorphic copy in X

′ of B1α + B2β in X via the
isomorphism I. This completes the proof.
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