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Abstract. In this paper we study the following non-autonomous stochastic evolution equation on a Banach
space E :

(SE)

{
dU (t) = (A(t)U (t) + F(t, U (t))) dt + B(t, U (t)) dWH (t), t ∈ [0, T ],
U (0) = u0.

Here, (A(t))t∈[0,T ] are unbounded operators with domains (D(A(t)))t∈[0,T ] which may be time
dependent. We assume that (A(t))t∈[0,T ] satisfies the conditions of Acquistapace and Terreni. The functions
F and B are nonlinear functions defined on certain interpolation spaces and u0 ∈ E is the initial value.
WH is a cylindrical Brownian motion on a separable Hilbert space H . We assume that the Banach space
E is a UMD space with type 2. Under locally Lipschitz conditions we show that there exists a unique local
mild solution of (SE). If the coefficients also satisfy a linear growth condition, then it is shown that the
solution exists globally. Under assumptions on the interpolation spaces we extend the factorization method
of Da Prato, Kwapień, and Zabczyk, to obtain space-time regularity results for the solution U of (SE). For
Hilbert spaces E we obtain a maximal regularity result. The results improve several previous results from
the literature. The theory is applied to a second-order stochastic partial differential equation which has been
studied by Sanz-Solé and Vuillermot. This leads to several improvements of their result.

1. Introduction

Let E be a Banach space and H be a separable Hilbert space. Let (�,F , P) be
a complete probability space with a filtration (Ft )t∈[0,T ]. In this paper we study the
following stochastic evolution equation on E :

(SE)

{
dU (t) = (A(t)U (t) + F(t, U (t))) dt + B(t, U (t)) dWH (t), t ∈ [0, T ],
U (0) = u0.

Here, the operators (A(t))t∈[0,T ] are unbounded and have domains (D(A(t)))t∈[0,T ]
which may be time dependent. The functions F : [0, T ] × � × E → E and
B : [0, T ] × � × E → B(H, E) are measurable and adapted functions and locally
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Lipschitz in a suitable way. WH is a cylindrical Brownian motion with respect to
(Ft )t∈[0,T ] on a separable Hilbert space H . u0 is an F0-measurable initial value.

Since the 1970s, the problem (SE) has been studied by many authors. We cannot
give a complete description of the literature, but let us give references to some selection
of papers.

The method based on monotonicity of operators of [28] has been applied to (SE),
for instance, in [25] by Krylov and Rozovskiı̆ and in [41,42] by Pardoux. We will
not discuss this method in more detail. For this we refer to the monograph [45] of
Rozovskiı̆.

In [17], Dawson used semigroup methods to study (SE) in the autonomous case
(A is constant). This work has been further developed by Da Prato and Zabczyk and
their collaborators (cf. [15,16] and references therein). In [51], Seidler considered
the non-autonomous case with D(A(t)) constant in time. In the above-mentioned
works, the authors mainly considered their equation in a Hilbert space E . In [8,9]
Brzeźniak considered the autonomous case of (SE) in a UMD space E with type 2
space (or even in martingale type 2 spaces E). This allows one to consider (SE) in
L p-spaces with p ∈ [2,∞). Recently in [37], van Neerven, Weis, and the author con-
sidered the autonomous case of (SE) in Banach spaces E which include all L p-spaces
with p ∈ [1,∞). In [56] Zimmerschied and the author studied (SE) with additive
noise on a general Banach space, and some parts of the current paper build on these
ideas.

There are also many important papers where only L p-spaces are considered. Note
that all of them always have the restriction that p ∈ [2,∞). Let us first mention the
works of Krylov and collaborators (see [24] and references therein). In these papers
the authors use sophisticated methods from partial differential equations and proba-
bility theory to obtain strong space-regularity results for non-autonomous equations.
Usually, only second-order equations are considered and the methods are not based
on semigroup techniques. We explain some papers which use L p-methods and semi-
group methods. In the paper of Manthey and Zausinger [33] (also see their references)
L p-methods and comparison methods are used to obtain global existence results for
the case where F is non-necessarily of linear growth. Let us mention that they also
allow D(A(t)) to depend on time. However, they do not give a systematic study of
space–time regularity results. We believe it is important to extend the ideas from
[33] to our general framework. This could lead to interesting new global existence
results. Also Cerrai [13], Sanz-Solé and Vuillermot [46,47], and Zhang [60] consider
L p-methods. The papers [46,47] were the starting point of our paper. The equation in
[46,47] is a second-order equation with time-dependent boundary conditions. Below,
we consider it as our model problem.

In this paper we give a systematic theory for parabolic semi-linear stochastic evo-
lution equations, where D(A(t)) depends on time. It seems that such a systematic
study is new even in the Hilbert space setting. We study the equation (SE) in a UMD
space E with type 2. This class of spaces includes all L p-spaces with p ∈ [2,∞).
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Although a stochastic integration theory for processes with values in a general UMD
is available [36], we restrict ourselves to spaces with type 2 in order to have a richer
class of integrable processes (cf. Proposition 2.8). Note that the theory of [36] was
applied in [37] for general UMD spaces, but only for autonomous equations. In order
to consider nonautonomous equations, it seems that one needs additional assumptions
on A(t), and due to the extra technical difficulties we will not consider this situation
here.

Throughout the paper we assume that (A(t))t∈[0,T ] satisfies the conditions of
Acquistapace and Terreni (AT1) and (AT2) (cf. [2] and Section 2.1 below). These
conditions are well understood and widely used in the literature. Let us mention that
our results generalize the main setting of [9,15,51] in several ways. To prove regularity
of the solution we extend the factorization method of Da Prato, Kwapień, and Zabczyk.
This well-known method gives space–time regularity of stochastic convolutions.
Compared to the known results, the main difficulty in our version of the factoriza-
tion method is that D(A(t)) is time dependent. For Hilbert space E , we obtain a
maximal regularity result. This extends the result [16, Theorem 6.14] to the non-
autonomous case. The main tool in our approach to maximal regularity is McIntosh’s
H∞-calculus [34].

To avoid technicalities at this point we will explain one of our main results in a
simplified setting. Assume the functions F and B defined on E are Lipschitz uni-
formly in [0, T ] × � (see (H2) and (H3) in Section 5 where a more general situation
is considered). In Section 6 we show that (SE) has a unique mild solution. A strongly
measurable and adapted process U : [0, T ] × � → E is called a mild solution if for
all t ∈ [0, T ], almost surely

U (t) = P(t, 0)u0 + P ∗ F(·, U )(t) + P � B(·, U )(t).

Here (P(t, s))0≤s≤t≤T denotes the evolution system generated by (A(t))t∈[0,T ] and

P ∗ F(t) =
∫ t

0
P(t, s)F(s, U (s)) ds, P � B(t) =

∫ t

0
P(t, s)B(s, U (s)) dWH (s).

In Section 5 we also introduce the so-called variational solutions in a general setting
and show that they are equivalent to mild solutions.

We state a simplified formulation of one of our main results, Theorem 6.3. The
hypothesis (AT1) and (AT2) are introduced in Section 2.1. Hypothesis (H1)η0 is intro-
duced in Section 4, and Hypotheses (H2) and (H3) can be found in Section 5.

THEOREM 1.1. Assume (AT1), (AT2), (H1)η0 , (H2) and (H3) with a = θ = 0.
Let u0 : � → E be strongly F0 measurable. Then the following assertions hold:

(1) There exists a unique mild solution U of (SE) with paths in C([0, T ]; E) almost
surely.

(2) If u0 ∈ (E, D(A(0))η,2 for some η ∈ [0, 1
2 ], then for every δ, λ > 0 with

δ + λ < η there exists a version of U with paths in Cλ([0, T ]; Ẽδ).
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Here, (E, D(A(0))η,2 denotes real interpolation between E and D(A(0)). However,
one may also take other interpolation spaces. One may think of Ẽδ as time-independent
version of (E, D(A(t))η,2 (cf. (H1)η0 in Section 4).

Actually, in Section 5, we will allow F and B which are defined on suitable
interpolation spaces and take values in certain extrapolation spaces. This enables us
to consider a larger class of noises. Moreover, in Section 7 we even consider the
case that F and B are locally Lipschitz and Theorem 1.1 has a version for locally
Lipschitz coefficients (see Theorem 7.2). It is also shown there that if additionally F
and B satisfy a linear growth condition as well, then the full statements (1) and (2) of
Theorem 1.1 still hold in the locally Lipschitz case.

Our model equation is a problem which has been studied in [46,47]. Here, a second-
order equation with time-dependent boundary conditions is considered. Sanz-Solé and
Vuillermot use a version of the factorization methods to obtain existence, uniqueness,
and regularity results. Their methods are based on estimates for Green’s functions.
They also consider two types of variational solutions and mild solutions, and they
show that these are all equivalent. We obtain existence, uniqueness, and regularity by
applying the above abstract framework. This leads to several improvements of [46,47].
For example, our space-time regularity results are better (see Remark 8.3). We also
show that our variational and mild solutions coincide with their solution concepts.
Our setting seems more robust to adjustments of the equation (see Remark 8.1 and
Example 8.9).

The stochastic partial differential equation is:

du(t, s) = A(t, s, D)u(t, s) + f (u(t, s)) dt

+ g(u(t, s)) dW (t, s), t ∈ (0, T ], s ∈ S,

C(t, s, D)u(t, s) = 0, t ∈ (0, T ], s ∈ ∂S

u(0, s) = u0(s), s ∈ S.

(1.1)

Here, S is a bounded domain with boundary of class C2 and outer normal vector n(s)
in R

n , and

A(t, s, D) =
n∑

i, j=1

Di
(
ai j (t, s)D j

) + a0(t, s),

C(t, s, D) =
n∑

i, j=1

ai j (t, s)ni (s)D j ,

where the coefficients ai j and a0 are real valued and smooth and such that A(t, s, D)

is uniformly elliptic (cf. Example 8.2). The functions f and g are Lipschitz functions
and u0 is some F0-measurable initial value. W is a Brownian motion which is white
with respect to the time variable and colored with respect to the space variable. More
precisely, in Example 8.2, we will assume that the covariance Q ∈ B(L2(S)) of W (1)

satisfies
√

Q ∈ B(L2(S), L∞(S)).
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In Example 8.2 we will show the following consequence of Theorem 1.1. For details
we refer to Section 8.

(1) Let p ∈ [2,∞). If u0 ∈ L p(S) a.s., then there exists a unique mild and var-
iational solution u of (1.1) with paths in C([0, T ]; L p(S)) a.s. Moreover, u ∈
L2(0, T ; W 1,2(S)) a.s., where W 1,2(S) = H1(S) is the Sobolev space.

(2) If u0 ∈ C1(S) a.s., then the solution u is in Cλ([0, T ]; C2δ(S)) for all λ, δ > 0
such that λ + δ < 1

2 . In particular, u ∈ Cβ1,β2(S × [0, T ]) for all β1 ∈ (0, 1)

and β2 ∈ (0, 1
2 ).

The definition of a variational solution is given in Section 5 (also see Remark 8.5).
The definition of Cβ1,β2 etc. can be found in Section 7. In Example 8.6 we will also
obtain a version of the above result for the case

√
Q ∈ B(L2(S), Lq(S)) for some

q ∈ (1,∞). In Example 8.9 we show how to obtain a version of the above result for
locally Lipschitz coefficients f and b.

One can also study partial differential equations driven by multiplicative space-time
white noise using (SE). For second-order equations, this is only possible for dimen-
sion one, and therefore not very illustrative for our setting. In higher dimensions, this
seems to be possible if the order of the operator is larger than the dimension. This has
been considered in [37] for the autonomous case (also see [9]). In the non-autonomous
setting the case of Dirichlet boundary conditions has been studied in [55, Chapter 8].
Some technical details have to be overcome in order to treat the case of more general
boundary conditions. Our results also have interesting consequences for stochastic
partial differential equations with boundary noise. This is work in progress [49].

The paper is organized as follows. In Section 2, we discuss the preliminaries on
evolution families, H∞-calculus, and stochastic integration theory. In Sections 3
and 4 we study space–time regularity of deterministic and stochastic convolutions,
respectively. For this, we extend the factorization method for stochastic convolutions.
We also prove a maximal regularity result. The abstract stochastic evolution equation
will be given in Section 5. Here, we also introduce variational and mild solutions.
In Section 6 we construct a unique mild solution of (SE) by fixed-point methods
under Lipschitz conditions on the coefficients. The results are extended to the locally
Lipschitz case in Section 7. Finally, in Section 8 we consider the example (1.1).

2. Preliminaries

Below, we will use several interpolation methods (cf. [54] for details). Let (E1, E2)

be an interpolation couple. For η ∈ (0, 1) and p ∈ [1,∞], (E1, E2)η,p is the real inter-
polation space between E1 and E2. Second, [E1, E2]θ is the complex interpolation
between E1 and E2.

We write a �K b to express that there exists a constant c, only depending on K ,
such that a ≤ cb. We write a �K b to express that a �K b and b �K a. If there is no
danger of confusion we just write a � b for convenience.
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2.1. Parabolic evolution families

Let (A(t), D(A(t)))t∈[0,T ] be a family of closed and densely defined linear operators
on a Banach space E . Consider the non-autonomous Cauchy problem:

u′(t) = A(t)u(t), t ∈ [s, T ],
u(s) = x .

(2.1)

We say that u is a classical solution of (2.1) if u ∈ C([s, T ]; E) ∩ C1((s, T ]; E),
u(t) ∈ D(A(t)) for all t ∈ (s, T ], u(s) = x , and u′(t) = A(t)u(t) for all t ∈ (s, T ].
We call u a strict solution of (2.1) if u ∈ C1([s, T ]; E), u(t) ∈ D(A(t)) for all
t ∈ [s, T ], u(s) = x , and u′(t) = A(t)u(t) for all t ∈ [s, T ].

A family of bounded operators (P(t, s))0≤s≤t≤T on E is called a strongly
continuous evolution family if

(1) P(s, s) = I for all s ∈ [0, T ].
(2) P(t, s) = P(t, r)P(r, s) for all 0 ≤ s ≤ r ≤ t ≤ T .
(3) The mapping {(τ, σ ) ∈ [0, T ]2 : σ ≤ τ } 
 (t, s) → P(t, s) is strongly

continuous.

We say that such a family (P(t, s))0≤s≤t≤T solves (2.1) (on (Ys)s∈[0,T ]) if (Ys)s∈[0,T ]
are dense subspaces of E such that for all 0 ≤ s ≤ t ≤ T , we have P(t, s)Ys ⊂ Yt ⊂
D(A(t)) and the function t �→ P(t, s)x is a strict solution of (2.1) for every x ∈ Ys .
In this case we say that (A(t))t∈[0,T ] generates the evolution family (P(t, s))0≤s≤t≤T .

Well-posedness (i.e. existence, uniqueness, and continuous dependence on initial
values from (Ys)s∈[0,T ]) of (2.1) is equivalent to the existence and uniqueness of a
strongly continuous evolution family that solves (2.1) on (Ys)s∈[0,T ] (see [39,40] and
the references therein). In the literature many sufficient conditions for this can be
found, both in the hyperbolic and parabolic settings (cf. [2,6,29,30,43,52,53,58] and
the references therein). In the following, we will recall the parabolic setting of [2,58].

If E is a real Banach space, everything as given in the following, should be under-
stood for the complexification of the objects under consideration. First, we recall some
results on sectorial operators.

Assume that for a closed operator (A, D(A)), there exist constants M, w ≥ 0 and
φ ∈ (π/2, π ] such that �(φ,w) ⊂ ρ(A) and

‖R(λ, A)‖ ≤ M

1 + |λ − w| , λ ∈ �(φ,w). (2.2)

Here �(φ,w) = {w} ∪ {λ ∈ C \ {w} : | arg(λ − w)| ≤ φ}. We denote Aw = A − w.
It is well known that by (2.2), A generates an analytic semigroup. In this case for

δ > 0 one can define (−Aw)−δ ∈ B(E) by

(−Aw)−δ = 1

2π i

∫
�

(w − λ)−δ R(λ, A) dλ,
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where the contour � = {λ : arg(λ − w) = ±φ} is orientated counter clockwise
(cf. [6,30,43,52] for details). Furthermore, recall that the operator (w− A)δ is defined
as the inverse of (w − A)−δ . For all β > α,

(E, D(A))β,∞ ↪→ (E, D(A))α,1 ↪→ D((w − A)α) ↪→ (E, D(A))α,∞, (2.3)

where embedding constants only depend on α, β and the constants in (2.2).
As before, let (A(t), D(A(t)))t∈[0,T ] be a family of closed and densely defined

operators on a Banach space E . We will briefly discuss the setting of Acquistapace
and Terreni [2]. Note that most of the results below have versions for non-densely
defined A(t) as well. In fact they study a slightly more general setting.

Condition (AT) is said to be satisfied if the following two conditions hold:

(AT1) A(t) are linear operators on a Banach space E and there are constants w ∈ R,
K ≥ 0, and φ ∈ (π

2 , π) such that �(φ,w) ⊂ �(A(t)) and for all λ ∈ �(φ,w)

and t ∈ [0, T ],

‖R(λ, A(t))‖ ≤ K

1 + |λ − w| .

(AT2) There are constants L ≥ 0 and µ, ν ∈ (0, 1] with µ + ν > 1 such that for all
λ ∈ �(φ, 0) and s, t ∈ [0, T ],
‖Aw(t)R(λ, Aw(t))(Aw(t)−1 − Aw(s)−1)‖ ≤ L|t − s|µ(|λ| + 1)−ν .

Below it will be convenient to denote κµ,ν = µ + ν − 1 ∈ (0, 1].
These conditions have been extensively studied in the literature, where also many

examples can be found. The first condition may be seen as analyticity uniformly in
t ∈ [0, T ].

If (AT1) holds and the domains are constant D(A(0)) = D(A(t)), t ∈ [0, T ],
then Hölder continuity of (A(t))t∈[0,T ] in B(D(A(0)), E) with exponent η, implies
(AT2) with µ = η and ν = 1 (see [2, Section 7]). The conditions in that case
reduce to the conditions in the theory of Sobolevskiı̆ and Tanabe for constant domains
(cf. [30,43,52]).

We will use the notation Et
η = (E, D(A(t)))η,2 for t ∈ [0, T ] unless it is stated

otherwise. Also see (H1)′η0
in Section 2.1. Further, we write that Et−θ for the comple-

tion of E with respect to the norm ‖x‖Et−θ
= ‖(−Aw(t))−θ x‖.

Under the assumptions (AT1) and (AT2) the following result holds (see [2, Theorems
6.1–6.4] and [58, Theorem 2.1]):

THEOREM 2.1. If condition (AT) holds, then there exists a unique strongly con-
tinuous evolution family (P(t, s))0≤s≤t≤T that solves (2.1) on D(A(s)) and for all
x ∈ E, P(t, s)x is a classical solution of (2.1). Moreover, (P(t, s))0≤s≤t≤T is con-
tinuous on 0 ≤ s < t ≤ T and there exists a constant C > 0 such that for every
0 ≤ s < t ≤ T ,

‖P(t, s)x‖Et
α

≤ C(t − s)β−α‖x‖Es
β

for 0 ≤ β ≤ α ≤ 1, (2.4)
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We recall from [58, Theorem 2.1] that there is a constant C > 0 such that for all
θ ∈ (0, µ) and for all x ∈ D((w − A(s))θ ),

‖P(t, s)(w − A(s))θ x‖ ≤ C(µ − θ)−1(t − s)−θ‖x‖. (2.5)

Consider the following Hypothesis.

(H1)′η0
There exists an η0 ∈ (0, 1] and an family of spaces (Ẽη)η∈[0,η0] such that

Ẽη0 ↪→ Ẽη1 ↪→ Ẽη2 ↪→ Ẽ0 = E, 0 ≤ η2 ≤ η1 ≤ η0.

and for all η ∈ [0, η0]
Et

η := (E, D(A(t)))η,2 ↪→ Ẽη ↪→ E

with uniform constants in t ∈ [0, T ].
Alternatively, one could replace (E, D(A(t)))η,2 by (E, D(A(t)))η,p for p ∈ (2,∞)

or by the complex interpolation spaces [E, D(A(t))]η.
Assumption (H1)′η0

enables us to deduce space–time regularity results. Such type
of conditions are often used to get rid of the time dependence. In applications this
gives a way to obtain Hölder regularity in space. A similar condition can be found in
[32, Hypothesis (H2)]. Later on we will strengthen (H1)′η0

to a condition (H1)η0 (see
Section 4). There we also require that the space Ẽη are UMD and of type 2. This is the
main reason why one can only allow p ∈ [2,∞) if one considers (E, D(A(t)))η,p.

In many examples one can take Ẽη = Et
η for η small. For second-order operators

on L p-spaces, (H1)′η0
is usually fulfilled for η0 = 1

2 . However, since it can be difficult
to calculate Et

η it will be convenient to work in the above setting. In the next example
we briefly motivate why it is useful to consider the spaces Ẽη.

EXAMPLE 2.2. Consider a second-order elliptic differential operator A(t) on
a domain S with time-dependent boundary condition C(t)u = 0. If this is mod-
eled on E = L p(S) for p ∈ [2,∞), then one usually has D(A(t)) = { f ∈
W 2,p(S) : C(t) f = 0}. Often one shows that the solution u takes its values in
Et

η = (E, D(A(t)))η,2. However, it may be difficult to characterize Et
η because of

the boundary condition. It is even not clear whether such a space is time independent.
This will be needed below. It is easier to calculate Ẽη = (E, W 2,p(S))η,2, which

is B2η
p,2(S) for regular S. This space is time-independent and regularity in the space

B2η
p,2(S) usually suffices.
Recall from Grisvard’s result (cf. [54, Theorem 4.3.3]) that for domains and coef-

ficients which are C∞ one can characterize the spaces Et
η as certain subspaces of

B2η
p,2(S). A similar result for complex interpolation spaces follows from Seeley [50].

In Amann [5, Section 7] it is explained that for second-order elliptic operators on
L p-spaces the boundary conditions in D(A(t)))η,p for p ∈ (2,∞) or [E, D(A(t))]η
disappear under the natural conditions on p and η. Although his assumptions on the
domain seem to be that it is C∞, it follows from [5, Remark 7.3] and [18, Theorem
2.3] that a C2 boundary suffices.
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LEMMA 2.3. Assume (AT) and (H1)′η0
for some η0 ∈ (0, 1].

Let α ∈ (0, η0]. Let δ, λ > 0 be such that δ + λ ≤ α. Then there exists a constant
C such that for all 0 ≤ r ≤ s ≤ t ≤ T and for all x ∈ Er

α

‖P(t, r)x − P(s, r)x‖Ẽδ
≤ C |t − s|λ‖x‖Er

α
. (2.6)

Moreover, if α ∈ [0, η0) and x ∈ Er
α , then t �→ P(t, r)x ∈ C([r, T ]; Ẽα).

REMARK 2.4. Under additional assumption on α, δ, µ, ν, there is a version of
Lemma 2.3 for the case that α > η0. Since we will not need this in our examples, we
will not consider this situation.

Proof. It follows from (2.4) that

‖P(t, r)x − P(s, r)x‖Ẽα
≤ ‖P(t, r)x‖Ẽα

+ ‖P(s, r)x‖Ẽα

� ‖P(t, r)x‖Et
α

+ ‖P(s, r)x‖Es
α

� ‖x‖Er
α
.

Moreover, by [48, (2.16)] we obtain that

‖P(t, r)x − P(s, r)x‖ ≤ C |t − s|α‖x‖Er
α
.

Therefore, by interpolation with δ = θα and λ = (1 − θ)α for θ ∈ [0, 1] we obtain

‖P(t, r)x − P(s, r)x‖Ẽδ
� |t − s|λ‖x‖Er

α
.

This proves the first part.
For the second part, let x ∈ Er

α , and take x1, x2 . . . in Er
η0

such that x = limn→∞ xn

in Er
α . Then the first result shows that each t �→ P(t, r)xn in Ẽα is continuous.

Moreover, as seen earlier,

‖P(t, r)x − P(t, r)xn‖Ẽα
= ‖P(t, r)(x − xn)‖Ẽα

� ‖x − xn‖Er
α
.

Therefore, P(t, r)x = limn→∞ P(t, r)xn in Ẽα uniformly in t ∈ [0, T ], and it is
continuous. �

2.2. H∞-Calculus on Hilbert spaces

In Section 4 we use McIntosh’s H∞-calculus in order to derive maximal regularity
of stochastic convolutions on Hilbert spaces E . Here, we briefly recall the definition
and a characterization which gives the way in which we will use the H∞-calculus.
For details we refer to [4,21,26,34] and references therein. Although we only explain
H∞-calculus on Hilbert spaces, there are extensions to Banach spaces. Our situation
slightly differs from the existing literature in the sense that A is replaced by −A and we
assume 0 ∈ ρ(A). Moreover, we only consider analytic semigroup generators below.

Let E be a Hilbert space and let A be a closed, densely defined operator on E .
Assume A is sectorial of type φ ∈ (π/2, π ], i.e., the sector �φ := �(φ, 0) ⊂ ρ(A)

and there exists a constant M such that for all

‖R(λ, A)‖ ≤ M

1 + |λ| , λ ∈ �φ.

The largest constant φ for which such an M exists will be denoted with φ(A).
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For σ ∈ (0, π ], let H∞(�σ ) denote the space of bounded analytic functions f :
�σ → C with norm ‖ f ‖H∞(�σ ) = supλ∈�σ

| f (λ)|. Let

H∞
0 (�σ ) =

{
f ∈ H∞(�σ ) : ∃ε > 0 s.t. | f (λ)| ≤ |z|ε

(1 + |z|2)ε
}

.

Let A be as above, and fix σ ∈ (π/2, φ(A)) and θ ∈ (σ, φ(A)). For f ∈ H∞
0 (�σ ),

one can define

f (A) = 1

2π i

∫
∂�θ

f (λ)R(λ, A) dλ,

where the integral converges in the Bochner sense. We say that A has a bounded
H∞(�σ )-calculus for σ ∈ (π/2, φ(A)) if there is a constant C such that

‖ f (A)‖ ≤ C‖ f ‖H∞(�σ ) for all f ∈ H∞
0 (�σ ). (2.7)

In this case, (2.7) has a unique continuous extension to all f ∈ H∞(�σ ). The bound-
edness of the H∞-calculus is characterized by the following theorem:

PROPOSITION 2.5. Let E be a Hilbert space and let A be as above. Then the
following assertions are equivalent:

(1) A has a bounded H∞(�σ )-calculus for some (all) σ ∈ (π/2, φ(A)).
(2) −A has bounded imaginary powers and for some (all) σ ∈ (π/2, φ(A)) there is

a constant C > 0 such that for all s ∈ R, ‖(−A)is‖ ≤ Ceσ |s|.
(3) For some (all) |σ | ∈ (−φ(A), φ(A)) there exists a constant C > 0 such that for

all x ∈ E,

C−1‖x‖ ≤
(∫ ∞

0
‖(−A)

1
2 R(teiσ , A)x‖2 dt

) 1
2 ≤ C‖x‖. (2.8)

This result can be found in [34] (also see [26, Theorem 11.9]). The estimate (2.8) is
called a square function estimate. Applying the Fourier transform to t �→ R(teiσ , A)x
with σ = π/2 one obtains that there exists a constant C2 such that for all x ∈ E , C

C−1
2 ‖x‖ ≤

(∫ ∞

0
‖(−A)

1
2 et Ax‖2 dt

) 1
2 ≤ C2‖x‖.C (2.9)

The important estimate for us will be

(∫ ∞

0
‖(−A)

1
2 et A‖2 dt

) 1
2 ≤ C2‖x‖. (2.10)

The same estimates as in (2.10) hold for A∗. Moreover, if (2.10) holds for A and
A∗, this again implies the boundedness of the H∞-calculus. We further note that the
estimate (2.10) is also used for the Weiss conjecture in control theory (cf. [27] and
references therein).
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Not every sectorial operator A has a bounded H∞-calculus of some angle. Counte-
rexamples are given in [35]. However, many examples are known to have a bounded
H∞-calculus. We state some sufficient conditions for the boundedness of the H∞-
calculus.

REMARK 2.6. For a Hilbert space E , each of the following conditions is sufficient
for having a bounded H∞-calculus:

(1) A generates an analytic contraction semigroup (see [26, Theorem 11.13]).
(2) −A is positive and self-adjoint. In this case one has C2 = 1 in (2.9) (cf. [26,

Example 11.7]) and C = 1 in (2.7) (cf. [4, Section (G)]).

2.3. γ -Radonifying operators and stochastic integration

We recall some results on γ -radonifying operators and stochastic integration. For
details on the subject we refer to [7,9,20,22,38,36].

Let E be a Banach space and H be a separable Hilbert space. Let (S, µ) be a
measurable space. A function φ : S → E is called strongly measurable if it is the
pointwise limit of a sequence of simple functions.

Let E1 and E2 be Banach spaces. An operator-valued function � : S → B(E1, E2)

will be called E1-strongly measurable if for all x ∈ E1, the E2-valued function �x is
strongly measurable.

If (S, �,µ) is a measure space and φ : S → E is defined as an equivalence class
of functions, then we say that φ is strongly measurable if there is a version of φ which
is strongly measurable.

A bounded operator R ∈ B(H, E) is said to be a γ -radonifying operator if
there exists an orthonormal basis (hn)n≥1 of H such that

∑
n≥1 γn Rhn converges

in L2(�; E). We then define

‖R‖γ (H,E) :=
⎛
⎜⎝E

∥∥∥∥∥∥
∑
n≥1

γn Rhn

∥∥∥∥∥∥
2
⎞
⎟⎠

1
2

.

This number does not depend on the sequence (γn)n≥1 and the basis (hn)n≥1, and
defines a norm on the space γ (H, E) of all γ -radonifying operators from H into
E . Endowed with this norm, γ (H, E) is a Banach space, which is separable if E is
separable. Moreover, ‖R‖ ≤ ‖R‖γ (H,E).

If E is a Hilbert space, then γ (H, E) = C2(H, E) isometrically, where C2(H, E)

is the space of Hilbert-Schmidt operators. Also for E = L p there are easy character-
ization of γ -radonifying operators. Such a characterization has been obtained in [11].
We use a slightly different formulation from [37].

LEMMA 2.7. Let (S, �,µ) be a σ -finite measure space and let 1 ≤ p < ∞. For
an operator R ∈ B(H, L p(S)) the following assertions are equivalent:



96 M. C. Veraar J. Evol. Equ.

(1) R ∈ γ (H, L p(S)).
(2) There exists a function g ∈ L p(S) such that for all h ∈ H we have |Rh| ≤

‖h‖H · g µ-almost everywhere.

Moreover, in this situation we have

‖R‖γ (H,L p(S)) �p ‖g‖L p(S). (2.11)

Let (rn)n≥1 be a Rademacher sequence on (�,F , P). Recall that a Banach space
E is said to have type 2 if there exists a constant C ≥ 0 such that for all finite subsets
{x1, . . . , xN } of E we have⎛

⎝E

∥∥∥∥∥
N∑

n=1

rn xn

∥∥∥∥∥
2⎞⎠

1
2

≤ C

(
N∑

n=1

‖xn‖2

) 1
2

. (2.12)

Hilbert spaces have type 2 and the L p-spaces for p ∈ [2,∞) have type 2 (see [20,
Chapter 11] for details). Furthermore, Besov spaces Bα

p,q and Sobolev spaces W α,p

have type 2 as long as 2 ≤ p, q < ∞. This follows from the fact that these spaces are
isomorphic to closed subspaces of L p-spaces and �q(L p)-spaces (cf. [54]).

We will also need UMD Banach spaces. The definition of a UMD space will be
omitted. We refer to [12] for an overview on the subject. Important examples of UMD
spaces are the reflexive scale of L p, Sobolev and Besov spaces. Moreover, we note
that every UMD space is reflexive.

A detailed stochastic integration theory for operator-valued processes � : [0, T ] ×
� → B(H, E) where E is a UMD space, is given in [36]. For our purposes it will
be enough to consider UMD spaces with type 2. In this situation there is an easy
subspace of integrable processes which will be large enough for our considerations.
Instead of UMD spaces with type 2, one can also assume that E is a of martingale
type 2 space (cf. [9,44]). We do not consider this generality, because it is unnecessary
for our applications to stochastic partial differential equations.

A family WH = (WH (t))t∈R+ of bounded linear operators from H to L2(�) is
called an H-cylindrical Brownian motion if

(i) WH h = (WH (t)h)t∈R+ is a scalar-valued Brownian motion for each h ∈ H ,
(ii) E(WH (s)g · WH (t)h) = (s ∧ t) [g, h]H for all s, t ∈ R+, g, h ∈ H.

We always assume that the H -cylindrical Brownian motion WH is with respect to
the filtration (Ft )t≥0, i.e., WH h are Brownian motions with respect to (Ft )t≥0 for all
h ∈ H .

Now let E be a UMD Banach space with type 2. For an H -strongly measurable and
adapted � : [0, T ] × � → γ (H, E) which is in L2((0, T ) × �; γ (H, E)) one can
define the stochastic integral

∫ T
0 �(s) dWH (s) as a limit of integrals of adapted step

processes and (cf. [9] and references therein) there exists a constant C not depending
on � such that(

E

∥∥∥∥
∫ T

0
�(s) dWH (s)

∥∥∥∥
2) 1

2

≤ C‖�‖L2((0,T )×�;γ (H,E)). (2.13)
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By a localization argument one may extend the class of integrable processes to all
H -strongly measurable and adapted � : [0, T ] × � → γ (H, E) which are in
L2(0, T ; γ (H, E)) a.s. Moreover, the estimate (2.13) for the stochastic integral also
implies type 2.

In [36] two-sided estimates for the stochastic integral are given using generalized
square function norms. As a consequence of that theory one also obtains the above
results. The result that we will frequently use is the following (cf. [9] and [36, Corollary
3.10]).

PROPOSITION 2.8. Let E be a UMD space with type 2. Let � : [0, T ] × � →
γ (H, E) be H-strongly measurable and adapted. If � ∈ L2(0, T ; γ (H, E)) a.s., then
� is stochastically integrable with respect to WH and for all p ∈ (1,∞),(

E sup
t∈[0,T ]

∥∥∥∥
∫ t

0
�(s) dWH (s)

∥∥∥∥
p
) 1

p

�E,p ‖�‖L p(�;L2(0,T ;γ (H,E))).

Again the estimate in Proposition 2.8 implies that E has type 2.
We will also use the following basic fact for �: as in Proposition 2.8 for x∗ ∈ E∗,〈∫ T

0
�(s) dWH (s), x∗

〉
=

∫ T

0
�(s)∗x∗ dWH (s) a.s.

3. Deterministic convolutions

Let E be a Banach space. For α ∈ (0, 1], p ∈ [1,∞], and f ∈ L p(0, T ; E), define
the function Rα f ∈ L p(0, T ; E) by

(Rα f )(t) = 1

�(α)

∫ t

0
(t − s)α−1 P(t, s) f (s) ds. (3.1)

This is well defined by Young’s inequality, and there is a constant C ≥ 0 that only
depends on α, p and sup0≤s≤t≤T ‖P(t, s)‖ such that

‖Rα f ‖L p(0,T ;E) ≤ CT α‖ f ‖L p(0,T ;E).

LEMMA 3.1. Assume that (AT) and (H1)′η0
with some η0 ∈ (0, 1] hold. Let α ∈

(0, η0], δ, λ ∈ [0, 1), and p ∈ [1,∞) be such that α − 1
p − δ − λ > 0. Then for every

f ∈ L p(0, T ; E), Rα f ∈ Cλ([0, T ]; Ẽδ) and there is a constant C ≥ 0 such that for
all f ∈ L p(0, T ; E),

‖Rα f ‖Cλ([0,T ];Ẽδ)
≤ C‖ f ‖L p(0,T ;E).

Proof. This can be proved in a similar way as in [56, Lemma 4.1], by replacing the
fractional domain spaces by Ẽη. The only part of the proof of [56, Lemma 4.1] that
requires a different argument is the estimate for

I3 =
∥∥∥∥
∫ s

0
(s − r)α−1(P(t, r) − P(s, r)) f (r) dr

∥∥∥∥
Ẽδ

.
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We have to show that I3 � |t − s|λ. It follows from Lemma 2.3 and 2.4 that for
x ∈ E

‖P(t, r)x − P(s, r)x‖Ẽδ
= ‖(P(t, s) − I )P(s, r)x‖Ẽδ

� |t − s|λ‖P(s, r)x‖Ẽδ+λ

� |t − s|λ‖P(s, r)x‖Er
δ+λ

� |t − s|λ(s − r)−λ−δ‖x‖.

This implies the estimate for I3. �

Recall that Et−θ be the completion of E with respect to the norm ‖x‖Et−θ
=

‖(−Aw(t))−θ x‖.
The next result will be formulated for a family {φ(t) : t ∈ [0, T ]} such that for all

t ∈ [0, T ], φ(t, ω) ∈ Et−θ , where (−Aw)−θφ is a strongly measurable function from
[0, T ] into E and θ ∈ [0, 1) is fixed. We denote the deterministic convolution by

P ∗ �(t) :=
∫ t

0
P(t, s)φ(s) ds,

where φ is as above.
First, we explain some general measurability properties which hold under the (AT)

conditions. Let θ ∈ [0, µ). One has that for all 0 ≤ s < t ≤ T , P(t, s)(w − A(s))θ

has an extension to an operator in B(E) (see (2.5)). We claim that as a function of
(s, t) where 0 ≤ s < t ≤ T , this extension is E-strongly measurable.

Indeed, let An(t) = n A(t)R(n; A(t)) be the Yosida approximations of A(t). Then
for all x ∈ E (see proof of [57, Proposition 3.1]) one has

lim
n→∞ Pn(t, s)(w − An(s))θ x = P(t, s)(w − A(s))θ x,

where Pn(t, s) is the evolution family generated by An(t). Since (t, s) �→ Pn(t, s)(w−
An(s))θ x is strongly measurable, the claim follows.

It follows that for 0 ≤ s < t ≤ T , P(t, s) has a unique extension to an oper-
ator in B(Es−θ , E). We will denote this extension again by P(t, s). Below we will
need to integrate P(t, s)φ(s) with respect to ds. This can be made rigorous in the
same way as in [31] using the extension of P(t, s) to B(Es−θ , E). If φ is as above
and (−Aw(·))−θφ ∈ L p(0, T ; E) one could equivalently say φ ∈ X−θ a.s., where
X = L p(0, T ; E) and X−θ is the extrapolation space under Aw(·) as a sectorial opera-
tor on L p(0, T ; E). Below we will not explicitly use the extrapolation spaces and just
interpret P(t, s)φ(s) as P(t, s)(−Aw(s))θ (−Aw(s))−θφ(s). This is allowed since for
x ∈ Es−θ it is easily checked that

P(t, s)x = P(t, s)(−Aw(s))θ (−Aw(s))−θ x .
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PROPOSITION 3.2. Assume that (AT) and (H1)′η0
hold. Let θ ∈ [0, µ) Let p ∈

(1,∞], δ ∈ [0, 1) and λ ∈ (0, 1) be such that λ+ δ + 1
p < min{1− θ, η0}. Then there

exists a constant CT with limT ↓0 CT = 0 such that for all (−Aw)−θφ ∈ L p(0, T ; E),

‖P ∗ φ‖Cλ([0,T ];Ẽδ)
≤ CT ‖(−Aw)−θφ‖L p(0,T ;E). (3.2)

Proof. First note that

{(t, s) : 0 ≤ s < t ≤ T } 
 (t, s) �→ P(t, s)φ(s)

= P(t, s)(−Aw(s))θ (−Aw(s))−θφ(s)

is a strongly measurable E-valued function.
Let α > 0 be such that λ + δ + 1

p < α < min{1 − θ, η0}. Define ζα : [0, T ] → E
as

ζα(t) = 1

�(1 − α)

∫ t

0
(t − s)−α P(t, s)φ(s) ds.

Then by (2.5), for each t ∈ [0, T ],

‖ζα(t)‖ ≤ 1

�(1 − α)

∫ t

0
(t − s)−α‖P(t, s)φ(s)‖ ds

�
∫ t

0
(t − s)−α−θ‖(−Aw(s))−θφ(s)‖ ds.

Therefore, by Young’s inequality

‖ζα‖p
L p(0,T ;E)

�
∫ T

0

∣∣∣∣
∫ t

0
(t − s)−α−θ‖(−Aw(s))−θφ(s)‖ ds

∣∣∣∣
p

dt

≤ C p
T ‖(−Aw(s))−θφ‖p

L p(0,T ;E)
.

Define ζ : [0, T ] → E as ζ = P ∗ φ. By Hölders’s inequality and θ < 1 − 1
p

this is well defined. We claim that ζ = Rα(ζα). This would complete the proof by
Lemma 3.1 and

‖ζ‖Cλ([0,T ];Ẽδ)
= ‖Rα(ζα)‖Cλ([0,T ];Ẽδ)

� CT ‖ζα‖L p(0,T ;E) � CT ‖(−Aw)−θφ‖L p(0,T ;E).

To prove the claim notice that by Fubini’s theorem for all t ∈ [0, T ],

Rα(ζα) = 1

�(α)

∫ t

0
(t − s)α−1 P(t, s)ζα(s) ds

= 1

�(1 − α)�(α)

∫ t

0

∫ s

0
(t − s)α−1(s − r)−α P(t, r)φ(r) dr ds

= 1

�(1 − α)�(α)

∫ t

0

∫ t

r
(t − s)α−1(s − r)−α P(t, r)φ(r) ds dr

=
∫ t

0
P(t, r)φ(r) dr = ζ(t).

�
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4. Stochastic convolutions

Let (�,F , P) be a complete probability space with a filtration (Ft )t∈[0,T ]. Let E
be a Banach space and H be a separable Hilbert space. Let WH be a cylindrical Wie-
ner process with respect to (Ft )t∈[0,T ]. We strengthen the hypothesis (H1)′η0

from
Section 2.1.

(H1)η0 There exists an η0 ∈ (0, 1] and a family of spaces (Ẽη)η∈[0,η0] such that each
Ẽη is a UMD spaces with type 2,

Ẽη0 ↪→ Ẽη1 ↪→ Ẽη2 ↪→ Ẽ0 = E, 0 ≤ η2 ≤ η1 ≤ η0.

and for all η ∈ [0, η0]
(E, D(A(t)))η,2 ↪→ Ẽη ↪→ E

with uniform constants in t ∈ [0, T ].
The next result will be formulated for a family {�(t, ω) : t ∈ [0, T ], ω ∈ �} such

that for all t ∈ [0, T ] and all ω ∈ �, �(t, ω) ∈ B(H, Et−θ ), where (−Aw)−θ� is
an H -strongly measurable and adapted process from [0, T ] × � into B(H, E) and
θ ∈ [0, 1

2 ) is fixed. We denote the stochastic convolution by

P � �(t) :=
∫ t

0
P(t, s)�(s) dWH (s),

where � is as above. The following extends results from [9,14,51].

THEOREM 4.1. Assume (AT) and (H1)η0 . Let θ ∈ [0, µ∧ 1
2 ). Let p ∈ (2,∞) and

let δ, λ > 0 be such that δ + λ + 1
p < min{ 1

2 − θ, η0}. Let (−Aw)−θ� : [0, T ] ×
� → γ (H, E) be H-strongly measurable and adapted such that (−Aw)−θ� ∈
L p(0, T ; γ (H, E)) a.s. Then for all t ∈ [0, T ], s �→ P(t, s)�(s) ∈ γ (H, E) is
H-strongly measurable and adapted, P � � exists in Ẽδ and is λ-Hölder continuous
and there exists a constant C ≥ 0 independent of � such that

E‖P � �‖p
Cλ([0,T ];Ẽδ)

≤ CE‖(−Aw)−θ�‖p
L p(0,T ;γ (H,E))

. (4.1)

Proof. We claim that

{(t, s) : 0 ≤ s < t ≤ T } 
 (t, s) �→ P(t, s)�(s) ∈ γ (H, E)

is H -strongly measurable and for all t ∈ [0, T ] and

(0, t) 
 s �→ P(t, s)�(s) ∈ γ (H, E)

is H -strongly adapted. Indeed, this follows from the assumption and the remarks
before Proposition 3.2 as soon as we write

P(t, s)�(s) = P(t, s)(w − A(s))θ (w − A(s))−θ�(s).
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Let δ andλbe as in the theorem and letα be such that δ+λ+ 1
p < α < min{ 1

2−θ, η0}.
Define ζα : [0, T ] × � → E as

ζα(t) = 1

�(1 − α)

∫ t

0
(t − s)−α P(t, s)�(s) dWH (s).

Then by Proposition 2.8, (2.5), Young’s inequality and [37, Appendix], ζα is
well-defined in L p((0, T ) × �; E) and jointly measurable, and moreover we have

‖ζα‖L p((0,T )×�;E) �
(

E

∫ T

0

(∫ t

0
‖(t − s)−α P(t, s)�(s)‖2

γ (H,E) ds

) p
2

dt

) 1
p

�
(
E

∫ T

0

(∫ t

0
(t−s)−2α−2θ‖(−Aw(s))−θ�(s)‖2

γ (H,E) ds

) p
2

dt

) 1
p

≤C
(
E‖(−Aw)−θ�‖p

L p(0,T ;γ (H,E))

) 1
p
.

Here we used α < 1
2 −θ . Let �0 with P(�0) = 1 be such that ζα(·, ω) ∈ L p(0, T ; E)

for all ω ∈ �0. We may apply Lemma 3.1 to obtain that for all ω ∈ �0,

Rαζα(·, ω) ∈ Cλ([0, T ]; Ẽδ)

and

‖Rαζα(·, ω)‖Cλ([0,T ];Ẽδ)
� C‖ζα(·, ω)‖L p(0,T ;E). (4.2)

Define ζ : [0, T ] × � → E as ζ = P � �. Since θ < 1
2 − 1

p , one may check that
this is well defined. We claim that for all t ∈ [0, T ], for almost all ω ∈ �, we have

ζ(t, ω) = (Rαζα(·, ω))(t). (4.3)

It suffices to check that for all t ∈ [0, T ] and x∗ ∈ E∗, almost surely we have

〈ζ(t), x∗〉 = 1

�(α)

∫ t

0
(t − s)α−1〈P(t, s)ζα(s), x∗〉 ds.

As in Proposition 3.2 this follows from the (stochastic) Fubini theorem (see [14]).
Therefore, the above estimates imply (4.1). �

For Hilbert spaces E we can prove a maximal regularity result in the non-
autonomous setting. The autonomous case has been considered in [16, Theorem 6.14].
Our proof below is different from [16] even in the autonomous case. We briefly recalled
some results on H∞-calculus in Section 2.2. Note that we use formulations for A(t)
instead of −A(t).

Assume (AT1) and the following condition on the operators (A(t))t∈[0,T ].
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(H∞) There exists constant w ∈ R, C > 0 and σ ∈ π/2, π) such that for all
t ∈ [0, T ], Aw(t) has a bounded H∞(�σ )-calculus on �ϕ and

C := sup
t∈[0,T ]

({‖ f (Aw(t))‖ : ‖ f ‖H∞(�σ ) ≤ 1}) < ∞.

Condition (H∞) has also appeared in [56] (with A(t) replaced by −A(t)). In the
autonomous (H∞) has been used in [19] to obtain maximal regularity for equations
with additive noise in Banach spaces. This has been extended to the non-autonomous
setting in [56].

We reformulate the sufficient conditions from Remark 2.6 in our situation here.

REMARK 4.2. Each of the following two conditions is sufficient for (H∞) for a
Hilbert space E .

(1) If (AT1) holds and there exists a w ∈ R, such that each Aw(t) generates an
analytic contraction semigroup, then (H∞) holds.

(2) If there exists a w ∈ R such that each −Aw(t) is positive and self-adjoint, then
for all σ ∈ (π/2, π), the condition (H∞) holds with C = 1.

In the following result we use (H∞) to obtain a maximal regularity result for the

stochastic convolution. Recall that by (2.5), ‖(−Aw(t))
1
2 P(t, s)‖ ≤ C(t − s)− 1

2 .

THEOREM 4.3. Let E be a Hilbert space. Assume that (A(t))t∈[0,T ] satisfies (AT)
and (H∞). If � : [0, T ] × � → γ (H, E) is H-strongly measurable and adapted,
then

E‖t �→ (−Aw(t))
1
2 (P � �)(t)‖2

L2(0,T ;E)
≤ CE‖�‖2

L2(0,T ;γ (H,E))
, (4.4)

where C is a constant independent of �.

For second order partial differential equations the inequality (4.4) will allow us to
derive W 1,2(S)-regularity, where W 1,2(S) denotes the Sobolev space on a domain
S ⊂ R

n . Furthermore, (4.4) can be useful for non-linear equations.

Proof. First assume that � ∈ L2(�; L2(0, T ; γ (H, E))). Notice that γ (H, E) =
C2(H, E) is the space of Hilbert-Schmidt operators from H into E . Let (hn)n≥1 be an
orthonormal basis for H . By the Itô isometry and the Fubini theorem, we have

E‖t �→ (−Aw(t))
1
2 (P � �)(t)‖2

L2(0,T ;E)

= E

∫ T

0

∫ t

0
‖(−Aw(t))

1
2 P(t, s)�(s)‖2

γ (H,E) ds dt

= E

∫ T

0

∑
n≥1

∫ T

s
‖(−Aw(t))

1
2 P(t, s)�(s)hn‖2 dt ds.

Let Pw(t, s) = ew(t−s) P(t, s). For x ∈ E we can estimate(∫ T

s
‖(−Aw(t))

1
2 Pw(t, s)x‖2 dt

) 1
2

≤
3∑

i=1

Ri .
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Here

R2
1 =

∫ T

s
‖(−Aw(t))

1
2 Z(t, s)x‖2 dt

with Z(t, s) = Pw(t, s) − exp((t − s)Aw(t)). It follows from [57, p. 144] and
[6, Lemma 3.2.1 and Theorem 3.2.2] that

‖(−Aw(t))
1
2 Z(t, s)‖ ≤ C4(t − s)−

1
2 + κµ,ν

2 .

Therefore, R2
1 � T κµ,ν ‖x‖. Second, by [57, (2.4)]

R2
2 =

∫ T

s
‖(−Aw(t))

1
2 exp((t − s)Aw(t))x−(−Aw(s))

1
2 exp((t−s)Aw(s))x‖2 dt

�
∫ T

s
(t−s)2κµ,ν−1 dt‖x‖ � T 2κµ,ν ‖x‖.

Finally, by (H∞) and (2.10)

R2
3 =

∫ T

s
‖(−Aw(s))

1
2 exp((t − s)Aw(s))x‖2 dt � ‖x‖.

It follows that (∫ T

s
‖(−Aw(t))

1
2 P(t, s)x‖2 dt

) 1
2

� ‖x‖. (4.5)

We may conclude that

E‖(−Aw(·)) 1
2 P � �‖2

L2(0,T ;E)
� E

∫ T

0

∑
n≥1

‖�(s)hn‖2 ds = E‖�‖2
L2(0,T ;γ (H,E))

.

This proves (4.4). �

5. The abstract evolution equation and solution concepts

In this section and Section 6 let E , H , (�,F , P), (Ft )t∈[0,T ], and WH be as in
Section 4. On the Banach space E we consider the problem

(SE)

{
dU (t) = (A(t)U (t) + F(t, U (t))) dt + B(t, U (t)) dWH (t), t ∈ [0, T ],
U (0) = u0.

Here, (A(t))t∈[0,T ] is a family of closed unbounded operators on E . The initial value
is a strongly F0-measurable mapping u0 : � → E .

We assume (AT) and (H1)η0 . We assume a ∈ [0, η0) and for each (t, ω) ∈ [0, T ]×�,
we assume that F and B map as follows:

x �→ F(t, ω, x) maps from Ẽ t
a into Et−1,

x �→ B(t, ω, x) maps from Ẽ t
a into γ (H, Et−1).

More precisely, we have the following hypothesis on F and B.
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(H2) Let a ∈ [0, η0) and θF ∈ [0, µ) be such that a + θF < 1. For all x ∈ Ẽa ,
(t, ω) �→ (−Aw(t))−θF F(t, ω, x) ∈ E is strongly measurable and adapted. The
function (−Aw(t))−θF F has linear growth and is Lipschitz continuous in space
uniformly in [0, T ] × �, that is there are constants L F and CF such that for all
t ∈ [0, T ], ω ∈ �, x, y ∈ Ẽa ,

‖(−Aw(t))−θF (F(t, ω, x) − F(t, ω, y))‖E ≤ L F‖x − y‖Ẽa
, (5.1)

‖(−Aw(t))−θF F(t, ω, x)‖E ≤ CF (1 + ‖x‖Ẽa
). (5.2)

(H3) Let a ∈ [0, η0) and θB ∈ [0, µ) be such that a+θB < 1
2 . For all x ∈ Ẽa , (t, ω) �→

(−Aw(t))−θB B(t, ω, x) ∈ γ (H, E) is strongly measurable and adapted. The
function (−Aw)−θB B has linear growth and is Lipschitz continuous in space
uniformly in [0, T ] × �, that is there are constants L B and CB such that for all
t ∈ [0, T ], ω ∈ �, x, y ∈ Ẽa ,

‖(−Aw(t))−θB (B(t, ω, x) − B(t, ω, y))‖γ (H,E) ≤ L B‖x − y‖Ẽa
, (5.3)

‖(−Aw(t))−θB B(t, ω, x)‖γ (H,E) ≤ CB(1 + ‖x‖Ẽa
). (5.4)

In our application in Section 8 we will not use functions F which take values
in extrapolation spaces. However, in forthcoming papers this will be important. In
Section 7 we will consider locally Lipschitz coefficients F and B.

We introduce variational and mild solutions for (SE) and give conditions under
which both concepts are equivalent.

We need the adjoint operators A(t)∗. Note that these also satisfy (AT1). Since in
our setting E will be a UMD space with type 2, it will also be reflexive. Therefore,
Kato’s result implies that also A(t)∗ is densely defined (cf. [59, Section VIII.4]).

For t ∈ [0, T ] let

�t =
{
ϕ ∈ C1([0, t]; E∗) : for all s ∈ [0, t] ϕ(s) ∈ D(A(s)∗)

and s �→ A(s)∗ϕ(s) ∈ C([0, t]; E∗)
}
.

Fix some t ∈ [0, T ] and ϕ ∈ �t . Formally, applying the Itô formula to 〈U (t), ϕ(t)〉
yields

〈U (t), ϕ(t)〉 − 〈u0, ϕ(0)〉
=

∫ t

0
〈U (s), ϕ′(s)〉 ds +

∫ t

0
〈U (s), A(s)∗ϕ(s)〉 + 〈F(s, U (s)), ϕ(s)〉 ds

+
∫ t

0
B(s, U (s))∗ϕ(s) dWH (s). (5.5)

DEFINITION 5.1. Assume (AT), (H1)η0 , (H2) and (H3). An Ẽa-valued process
(U (t))t∈[0,T ] is called a variational solution of (SE), if

(i) U is strongly measurable and adapted, and in L2(0, T ; Ẽa) a.s.
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(ii) for all t ∈ [0, T ] and all ϕ ∈ �t , almost surely, (5.5) holds.

The integrand B(s, U (s))∗ϕ(s) of the stochastic integral in (5.5) should be read as

((−Aw(s))−θB B(s, U (s)))∗(−Aw(s)∗)θB ϕ(s).

It follows from (H3) that s �→ ((−Aw(s))−θB B(s, U (s)))∗ is strongly measurable and
adapted and in L2(0, T ;B(E∗, H∗)) a.s. Moreover,

s �→ (−Aw(s)∗)θB ϕ(s) = (−Aw(s)∗)−1+θB (−Aw(s)∗)ϕ(s)

is in C([0, t]; E∗) by the Hölder continuity of (−Aw(s))−1+θB (cf. [48, (2.10) and
(2.11)]) and its adjoint and the assumption on ϕ. The integrand 〈F(s, U (s)), ϕ(s)〉 has
to be interpreted in a similar way.

Next we define a mild solution.

DEFINITION 5.2. Assume (AT), (H1)η0 , (H2) and (H3). Let r ∈ (2,∞) be such
that θF < 1 − 1

r and θB < 1
2 − 1

r . We call an Ẽa-valued process (U (t))t∈[0,T ] a mild
solution of (SE), if

(i) U is strongly measurable and adapted, and in Lr (0, T ; Ẽa) a.s.
(ii) for all t ∈ [0, T ], a.s.

U (t) = P(t, 0)u0 + P ∗ F(·, U )(t) + P � B(·, U )(t) in E .

Recall that P ∗ F(·, U ) and P � B(·, U ) stand for the convolution and stochastic
convolution as defined in Sections 3 and 4, respectively.

The stochastic convolution is well defined. This follows if we write

P(t, s)B(s, U (s)) = P(t, s)(−Aw(s))θB (−Aw(s))−θB B(s, U (s))

and therefore by (2.5) and Hölder’s inequality∫ t

0
‖P(t, s)B(s, U (s))‖2 ds �

∫ t

0
(t − s)−2θB ‖(−Aw(s))−θB B(s, U (s))‖2 ds

� 1 + ‖U‖2
Lr (0,T ;Ẽa)

.

In the same way one can see that the deterministic convolution is well defined. If
θF = θB = 0, then one may also take r = 2 in Definition 5.2.

To prove equivalences between variational and mild solutions, we need the follow-
ing condition:

(W) Assume that for all t ∈ [0, T ], there is a σ(E∗, E)-sequentially dense sub-
space ϒt of E∗ such that for all x∗ ∈ ϒt , we have ϕ(s) := P(t, s)∗x∗ is in
C1([0, t]; E∗) and ϕ(s) ∈ D(A(s)∗) for all s ∈ [0, t] and

d

ds
ϕ(s) = −A(s)∗ϕ(s). (5.6)
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The condition (W) was introduced in [56] in order to relate different solution
concepts in the case of (SE) with additive noise.

REMARK 5.3. If (AT) holds for both for A(t) and its adjoint, then (W) is fulfilled
with ϒt = D((A(t)∗)2). This follows from [2, Theorem 6.1]) and [3, p. 1176]. If E
is reflexive, by Kato’s result [23], one may take ϒt = D(A(t)∗).

PROPOSITION 5.4. Assume (AT), (H1)η0 , (H2), (H3) and (W). Let r ∈ (2,∞) be
such that θB < 1

2 − 1
r and θF < 1 − 1

r . Let U : [0, T ]×� → Ẽa be strongly measur-
able and adapted and such that U ∈ Lr (0, T ; Ẽa) a.s. The following assertions are
equivalent:

(1) E is a mild solution of (SE).
(2) U is a variational solution of (SE).

Condition (W) is only needed in (2) ⇒ (1). If θF = θB = 0, then one may also
take r = 2 in Proposition 5.4. For the proof of the above equivalence we refer to the
appendix.

6. Existence, uniqueness, and regularity

Assume (AT) and (H1)η0 . For a ∈ [0, η0) and r ∈ [1,∞) let Zr
a be the closed sub-

space of adapted processes in C([0, T ]; Lr (�; Ẽa)). Assume (H2) and (H3), where
a ∈ [0, η0).

Define the fixed point operator L : Zr
a → Zr

a as

L(φ) = t �→ P(t, 0)u0 + P ∗ F(·, φ)(t) + P � B(·, φ)(t).

In the next lemma we show that L is well-defined and that it is a strict contraction in
Zr

a for a suitable equivalent norm. Recall that P ∗ F(·, φ) and P � B(·, φ) stand for the
convolution and stochastic convolution as defined in Sections 3 and 4, respectively.

LEMMA 6.1. Assume (AT), (H1)η0 , (H2) and (H3). Let r ∈ (2,∞) be such that
a + 1

r < min{ 1
2 − θB, 1− θF , η0} and let u0 ∈ Lr (�,F0; E0

a). Then the operator L is
well-defined and there is an equivalent norm ||| · ||| on Zr

a such that for all φ1, φ2 ∈ Zr
a,

|||L(φ1) − L(φ2)|||Zr
a

≤ 1

2
|||φ1 − φ2|||Zr

a
. (6.1)

Moreover, there is a constant C independent of u0 such that for all φ ∈ Zr
a,

|||L(φ)|||Zr
a

≤ C(1 + (E‖u0‖r
E0

a
)

1
r ) + 1

2
|||φ|||Zr

a
. (6.2)

Proof. Initial value part
By (2.4) we may estimate

‖P(t, 0)u0‖Et
a

≤ C‖u0‖E0
a
.
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This clearly implies

‖t �→ P(t, 0)u0‖Zr
a

� ‖u0‖Lr (�;E0
a ), (6.3)

where the path continuity of P(t, 0)u0 in Ẽa follows from Lemma 2.3.
Deterministic convolution

(a) Let (−Aw)−θF φ∈ L∞(0, T ; Lr (�; E)). Recall from the proof of Proposition 3.2
that P ∗ φ = ζ = Rα(ζα). It follows from (2.4) that for all t ∈ [0, T ],

‖P ∗ φ(t)‖Lr (�;Ẽa) = ‖Rα(ζα)(t)‖Lr (�;Ẽa)

�
∫ t

0
(t − s)α−1−a‖ζα(s)‖Lr (�;E) ds. (6.4)

By (2.5) we obtain that

‖ζα(s)‖Lr (�;E) �
∥∥∥∥
∫ s

0
(s − u)−α‖P(s, u)φ(u)‖ du

∥∥∥∥
Lr (�)

�
∥∥∥∥
∫ s

0
(s − u)−α−θF ‖(−Aw(u))−θF φ(u)‖ du

∥∥∥∥
Lr (�)

≤
∫ s

0
(s − u)−α−θF ‖(−Aw(u))−θF φ(u)‖Lr (�;E) du.

If we combine this with (6.4) we obtain that for all t ∈ [0, T ]

‖P � φ(t)‖Lr (�;Ẽa)

�
∫ t

0
(t − s)α−1−a

∫ s

0
(s − u)−α−θF ‖(−Aw(u))−θF φ(u)‖Lr (�;E) du ds

�

∫ t

0
(t − u)−a−θF ‖(−Aw(u))−θF φ(u)‖Lr (�;E) du, (6.5)

where in the last step we used Fubini’s theorem and
∫ 1

0 s−α−θF (1 − s)α−1−a ds
is finite. Note that P � φ ∈ Zr

a follows from the fact that P � φ is also (Hölder)-
continuous by Proposition 3.2.

(b) Let φ1, φ2 ∈ Zr
a . Then by (H2), (−Aw)−θF F(·, φ1) and (−Aw)−θF F(·, φ2) are

adapted and in L∞(0, T ; Lr (�; E)) and by (a), P ∗ F(·, φ1) and P ∗ F(·, φ2)

define an element of Zr
a and

‖P ∗ F(·, φ1)(t) − P ∗ F(·, φ2)(t)‖Lr (�;Ẽa)

�
∫ t

0
(t−s)−a‖(−Aw(s))−θF F(s, φ1(s))−(−Aw(s))−θF F(s, φ2(s))‖Lr (�;E) ds

≤ L F

∫ t

0
(t − s)−a−θF ‖φ1(s) − φ2(s)‖Lr (�;Ẽa) ds. (6.6)
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Stochastic convolution

(a) Let (−Aw)−θB � ∈ L∞(0, T ; Lr (�; γ (H, E))) be adapted. Recall from the
proof of Theorem 4.1 that P � � = ζ = Rα(ζα). It follows from (2.4) that for
all t ∈ [0, T ],

‖P � �(t)‖Lr (�;Ẽa) = ‖Rα(ζα)(t)‖Lr (�;Ẽa)

�
∫ t

0
(t − s)α−1−a‖ζα(s)‖Lr (�;E) ds. (6.7)

By Proposition 2.8 and (2.5) we obtain that

‖ζα(s)‖2
Lr (�;E) �

∥∥∥∥
∫ s

0
(s − u)−2α‖P(s, u)�(u)‖2

γ (H,E) du

∥∥∥∥
Lr/2(�)

�
∥∥∥∥
∫ s

0
(s − u)−2α−2θB ‖(−Aw(u))−θB �(u)‖2

γ (H,E) du

∥∥∥∥
Lr/2(�)

≤
∫ s

0
(s − u)−2α−2θB ‖(−Aw(u))−θB �(u)‖2

Lr (�;γ (H,E)) du.

If we combine this with (6.7) we obtain that for all t ∈ [0, T ]
‖P � �(t)‖Lr (�;Ẽa)

�
∫ t

0
(t−s)α−1−a

(∫ s

0
(s−u)−2α−2θB ‖(−Aw(u))−θB �(u)‖2

Lr (�;γ (H,E)) du

) 1
2

ds.

(6.8)

Note that P �� ∈ Zr
a follows from the fact that P �� is also (Hölder)-continuous

by Theorem 4.1.
(b) Let φ1, φ2 ∈ Zr

a . Then (−Aw)−θB B(·, φ1) and (−Aw)−θB B(·, φ2) are adapted
and in L∞(0, T ; Lr (�; γ (H, E))). Denote

�(φ1, φ2)(u) = (−Aw(u))−θB (B(u, φ1(u)) − B(u, φ2(u))).

By (a) we obtain that P � B(·, φ1) and P � B(·, φ2) are in Zr
a and

‖P � B(·, φ1)(t) − P � B(·, φ2)(t)‖Lr (�;Ẽa)

�
∫ t

0
(t − s)α−1−a

(∫ s

0
(s − u)−2α−2θB ‖�(φ1, φ2)(u)‖2

Lr (�;γ (H,E)) du

) 1
2

ds

≤ L B

∫ t

0
(t − s)α−1−a

(∫ s

0
(s − u)−2α−2θB ‖φ1(u) − φ2(u)‖2

Lr (�;Ẽa)
du

) 1
2

ds.

(6.9)

Conclusions
It follows from the above considerations that L is well defined. For p ≥ 0 define

an equivalent norm on Zr
a by

|||φ|||Zr
a

= sup
t∈[0,T ]

e−pt‖φ(t)‖Lr (�;Ẽa).
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We obtain that for φ1, φ2 ∈ Zr
a , we have

|||L(φ1) − L(φ2)|||Zr
a

≤ R1 + R2,

where

R1 = ‖P � B(·, φ1)(t) − P � B(·, φ2)(t)‖Lr (�;Ẽa),

R2 = ‖P ∗ F(·, φ1)(t) − P ∗ F(·, φ2)(t)‖Lr (�;Ẽa).

It follows from (6.6) that

R1 � sup
t∈[0,T ]

e−pt
∫ t

0
(t − s)−a‖φ1 − φ2‖Lr (�;Ẽa) ds

= sup
t∈[0,T ]

∫ t

0
e−p(t−s)(t − s)−a e−ps‖φ1(s) − φ2(s)‖Lr (�;Ẽa) ds

≤
∫ T

0
e−pss−a−θF ds ‖φ1 − φ2‖Zr

a
= f (p, T, a, θF )‖φ1 − φ2‖Zr

a
,

where f (p, T, a, θF ) ↓ 0 as p → ∞. Similarly, by (6.9)

R2 � sup
t∈[0,T ]

e−pt
∫ t

0
(t−s)α−1−a

(∫ s

0
(s−u)−2α−2θB ‖φ1(u)−φ2(u)‖2

Lr (�;Ẽa)
du

) 1
2

ds

≤
∫ T

0
e−pssα−1−a ds

(∫ T

0
e−2puu−2α−2θB du

) 1
2

‖φ1 − φ2‖Zr
a

= g(p, T, a, α, θB)‖φ1 − φ2‖Zr
a
,

where g(p, T, a, α, θB) ↓ 0 as p → ∞.
Taking p large gives (6.1). Moreover, the estimate (6.2) follows from (6.1) and

|||L(0)|||Zr
a

≤ C(1 + ‖u0‖Lr (�;E0
a )).

�

We can now obtain a first existence, uniqueness, and regularity result for (SE).

PROPOSITION 6.2. Assume (AT1), (AT2), (H1)η0 , (H2) and (H3). Let r ∈ (2,∞)

be such that a + 1
r < min{ 1

2 − θB, 1 − θF , η0} and let u0 ∈ Lr (�,F0; E0
a). Then the

following assertions hold:

(1) There exists a unique mild solution U ∈ Zr
a of (SE). Moreover, there exists a

constant C ≥ 0 independent of u0 such that

‖U‖Zr
a

≤ C(1 + (E‖u0‖r
E0

a
)

1
r ). (6.10)

(2) There exists a version of U in Lr (�; C([0, T ]; Ẽa)). Furthermore, for every
δ, λ > 0 such that δ + a + λ + 1

r < min{ 1
2 − θB, 1 − θF , η0} there exists a
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version of U such that U − P(·, 0)u0 in Lr (�; Cλ([0, T ]; Ẽδ+a)) and there is a
constant C independent of u0 such that

(
E‖(U − P(·, 0)u0)‖r

Cλ([0,T ];Ẽδ+a)

) 1
r ≤ C(1 + (E‖u0‖r

E0
a
)

1
r . (6.11)

If u0 ∈ Lr (�; E0
δ+a+λ), then the same regularity as in (6.11) can be derived for the

solution U . Indeed, by Lemma 2.3 P(·, 0)u0 ∈ Lr (�; Cλ([0, T ]; Ẽδ+a)).

Proof. (1) It follows from Lemma 6.1 that there exists a unique fix point U ∈ Zr
a of

L . It is clear from the definition of L that U is the unique mild solution in Zr
a .

(2) By Proposition 3.2 we obtain that

E‖P ∗ F(·, U )‖r
Cλ([0,T ];Ẽa+δ)

� E‖(−Aw)−θF F(·, U )‖r
Lr (0,T ;E) � 1 + ‖U‖Zr

a
.

It follows from Theorem 4.1 that

E‖P � B(·, U )‖r
Cλ([0,T ];Ẽa+δ)

� E‖(−Aw)−θB B(·, U (s))‖r
Lr (0,T ;γ (H,E))

� 1 + ‖U‖Zr
a
.

Define Ũ : [0, T ] × � → Ẽa as

Ũ (t) = P(t, 0)u0 + P ∗ F(·, U )(t) + P � B(·, U )(t),

where we take the versions of the convolutions as above. Clearly, Ũ = U in Zr
a and

therefore Ũ is the required mild solution. Moreover, there is a constant C such that

E‖Ũ − P(·, 0)u0)‖r
Cλ([0,T ];Ẽa+δ)

≤ C(1 + ‖Ũ‖Zr
a
).

Now (6.11) follows from (6.10). �

THEOREM 6.3. Assume (AT1), (AT2), (H1)η0 , (H2) and (H3). Let u0 : � → E0
a

be strongly F0 measurable. Then the following assertions hold:

(1) There exists a unique mild solution U of (SE) with paths in C([0, T ]; Ẽa) a.s.
(2) For every δ, λ > 0 with δ + a + λ < min{ 1

2 − θB, 1 − θF , η0} there exists a
version of U such that U − P(·, 0)u0 in Cλ([0, T ]; Ẽδ+a) a.s.

As given below in Proposition 6.2 if u0 ∈ E0
δ+a+λ a.s, then U has a version with

paths in Cλ([0, T ]; Ẽδ+a) for δ and λ as in Theorem 6.3 (2).
For the proof we need the following lemma.

LEMMA 6.4. Under the conditions of Proposition 6.2 let U and V in the space
Lr (�; C([0, T ]; Ẽa)) be the mild solutions of (SE) with initial values u0 and v0 in
Lr (�,F0; E0

a). Then almost surely on the set {u0 = v0} we have U ≡ V .
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Proof. Let � = {u0 = v0}. Since � is F0-measurable, it follows from Lemma 6.1
that

|||U1� − V 1�|||Za
r

= |||L(U )1� − L(V )1�|||Za
r

= |||(L(U1�) − L(V 1�))1�|||Za
r

≤ 1

2
|||U1� − V 1�|||Za

r
;

hence U |[0,T ]×� = V |[0,T ]×� in Zr
a . The result now follows from the path continuity

of U and V . �

Proof of Theorem 6.3. Let r > 2 be such that δ+a+λ+ 1
r < min{ 1

2 −θB, 1−θF , η0}.
Define (un)n≥1 in Lr (�,F0; E0

a) as un = 1{‖u0‖≤n}u0. By Proposition 6.2, for each
n ≥ 1, there is a mild solution Un ∈ Zr

a of (SE) with initial value un and we may take
the version of Un from Proposition 6.2 (2). Lemma 6.4 implies that for 1 ≤ m ≤ n
almost surely on the set {‖u0‖ ≤ m}, for all t ∈ [0, T ], Un(t) = Um(t). It follows that
almost surely, for all t ∈ [0, T ], limn→∞ Un(t) exists in Ẽa . Define U : [0, T ]×� →
Ẽa as U (t) = limn→∞ Un(t) if this limit exists and 0 otherwise. Clearly, U is strongly
measurable and adapted. Moreover, almost surely on {‖u0‖ ≤ n}, for all t ∈ [0, T ],
U (t) = Un(t), and hence U − P(·, 0)u0 has the same regularity as Un − P(·, 0)un .
It can be easily checked that U is a mild solution of (SE) satisfying (2).

Uniqueness: Let U 1, U 2 ∈ C([0, T ]; Ẽa) a.s. be mild solutions of (SE). For each
n ≥ 1 and i = 1, 2 define the stopping times νi

n as

νi
n = inf

{
t ∈ [0, T ] : ‖Ui (t)‖Ẽa

≥ n
}

.

For each n ≥ 1 let τn = ν1
n ∧ ν2

n , and let U 1
n = U 11[0,τn ] and U 2

n = U 21[0,τn ]. Then
for all n ≥ 1, U 1

n and U 2
n are in Lr (�; L∞(0, T ; Ẽa)) for all r < ∞ so in particular

in L∞(0, T ; Lr (�; Ẽa)) for all r < ∞. One easily checks that

Ui
n = 1[0,τn ](L(Ui

n))τn , i = 1, 2,

where L is the mapping introduced before Lemma 6.1 and

(L(Ui
n))

τn (t) := (L(Ui
n))(t ∧ τn), i = 1, 2.

One can check that Lemma 6.1 remains valid if Zr
a is replaced by Ẑ r

a the space of all
adapted processes in L∞(0, T ; Lr (�; Ẽa)). Therefore,

|||U 1
n − U 2

n |||Ẑ r
a

= |||1[0,τn](L(U 1
n )τn − L(U 2

n )τn )|||Ẑ r
a

≤ |||L(U 1
n ) − L(U 2

n )|||Ẑ r
a

≤ 1

2
|||U 1

n − U 2
n |||Ẑ r

a
.

This implies that U 1
n = U 2

n in Ẑ r
a . Therefore, for all t ≤ τn , U 1(t) = U 2(t) a.s.

Letting n tend to infinity yields that for all t ∈ [0, T ], U 1(t) = U 2(t) a.s. and by
path-continuity this implies that a.s. for all t ∈ [0, T ], U 1(t) = U 2(t).
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7. Local mild solutions

Next we extend the results to the case where F and B are locally Lipschitz. This is
a standard procedure (cf. [9,37,51] and references therein), but we believe it is better
to include it here for completeness. Assume (AT) and (H1)η0 .

(H2)′ Let a ∈ [0, η0) and θF ∈ [0, µ) be such that a + θF < 1. For all x ∈ Ẽa ,
(t, ω) �→ (−Aw(t))−θF F(t, ω, x) ∈ E is strongly measurable and adapted.
The function (−Aw(t))−θF F is locally Lipschitz continuous in space uniformly
in [0, T ] × �, that is for each R > 0 there is a constant L F,R such that for all
t ∈ [0, T ], ω ∈ �, x, y ∈ Ẽa with ‖x‖Ẽa

, ‖y‖Ẽa
≤ R,

‖(−Aw(t))−θF (F(t, ω, x) − F(t, ω, y))‖E ≤ L F,R‖x − y‖Ẽa
.

(H3)′ Let a ∈ [0, η0) and θB ∈ [0, µ) be such that a + θB < 1
2 . For all x ∈ Ẽa ,

(t, ω) �→ (−Aw(t))−θB B(t, ω, x) ∈ E is strongly measurable and adapted.
The function (−Aw)−θB B has linear growth and is locally Lipschitz continu-
ous in space uniformly in [0, T ] × �, that is for each R > 0 there is a constant
L B,R such that for all t ∈ [0, T ], ω ∈ �, x, y ∈ Ẽa with ‖x‖Ẽa

, ‖y‖Ẽa
≤ R,

‖(−Aw(t))−θB (B(t, ω, x) − B(t, ω, y))‖γ (H,E) ≤ L B,R‖x − y‖Ẽa
,

We recall the definition of an admissible process and a local mild solution. Let
T > 0 and let τ be a stopping time with values in [0, T ]. For t ∈ [0, T ] let

�t (τ ) = {ω ∈ � : t < τ(ω)},
[0, τ ) × � = {(t, ω) ∈ [0, T ] × � : 0 ≤ t < τ(ω)}.

A process ζ : [0, τ )×� → E (or (ζ(t))t∈[0,τ )) is called admissible if for all t ∈ [0, T ],
�t (τ ) 
 ω → ζ(t, ω) is Ft -measurable and for almost all ω ∈ �, [0, τ (ω)) 
 t �→
ζ(t, ω) is continuous.

DEFINITION 7.1. Assume (AT), (H1)η0 , (H2)′ and (H3)′. We call an admis-
sible Ẽa-valued process (U (t))t∈[0,τ ) a local mild solution of (SE), if τ ∈ (0, T ],
τ = limn→∞ τn , where

τn = inf{t ∈ [0, T ] : ‖U (t)‖Ẽa
≥ n}, n ≥ 1 (7.1)

and such that for all t ∈ [0, T ] and all n ≥ 1, the following condition holds: for all
t ∈ [0, T ], a.s.

U (t ∧ τn) = P(t ∧ τn, 0)u0 +
∫ t∧τn

0
P(t ∧ τn, s)F(s, U (s ∧ τ))1[0,τn ](s) ds

+Iτn (B(·, U ))(t ∧ τn).

In (7.1) we take τn = T if the infimum is taken over the empty set. By (H2)′ and
Proposition 3.2 the deterministic convolution is well defined and pathwise continuous.



Vol. 10 (2010) Non-autonomous stochastic evolution equations 113

The process Iτn (B(·, U )) is defined by

Iτn (B(·, U ))(t) =
∫ t

0
P(t, s)B(s, U (s ∧ τn))1[0,τn ](s) dWH (s).

This process is well defined and pathwise continuous by Theorem 4.1. Therefore,
Iτn (B(·, U ))(t ∧ τn) is well defined. The motivation for defining Iτn in this way is
explained in the appendix of [10]. It is needed in order to avoid the use of the process

s �→ P(t ∧ τn, s)B(s, U (s ∧ τn))1[0,τn ](s),

which is not adapted, since P(t ∧ τn, s)x is not adapted for x ∈ E \ {0}. This prob-
lem seems to be overlooked in some of the existing literature, and the referee kindly
communicated the problem and [10] to the author.

For a ∈ [0, η0) and r ∈ [1,∞) let Za,adm(τ ) be the space of Ẽa-valued admissible
processes (φ(t))t∈[0,τ ). A local mild solution (U (t))t∈[0,τ ) is called maximal for the
space Za,adm(τ ) if for any other local mild solution (Ũ (t))t∈[0,τ̃ ) in Za,adm(τ ), almost
surely we have τ̃ ≤ τ and Ũ ≡ U |[0,τ̃ ). Clearly, a maximal local mild solution is
always unique in Za,adm(τ ). We say that a local mild solution (U (t))t∈[0,τ ) of (SE)
is a global mild solution of (SE) if τ = T almost surely and U has an extension to a
mild solution Û : [0, T ] × � → Ẽa of (SE). In particular, almost surely “no blow”
up occurs at t = T .

We say that τ is an explosion time if for almost all ω ∈ � with τ(ω) < T ,

lim sup
t↑τ(ω)

‖U (t, ω)‖Ẽa
= ∞.

Notice that if τ = T almost surely, then τ is always an explosion time in this definition.
However, there does not have to be any “blow up” in this case.

THEOREM 7.2. Assume (AT1), (AT2), (H1)η0 , (H2)′ and (H3)′. Let u0 : � → E0
a

be strongly F0-measurable. Then the following assertions hold:

(1) There exists a unique maximal local mild solution (U (t))[0,τ ) in Za,adm(τ ) of
(SE).

(2) For every λ, δ > 0 with λ + δ + a < min{1 − θF , 1
2 − θB, η0} there exists a

version of U such that for almost all ω ∈ �,

t �→ U (t, ω) − P(t, 0)u0(ω) ∈ Cλ
loc([0, τ (ω)); Ẽa+δ).

If, additionally F and B are of linear growth, i.e., (5.2) and (5.4) hold, then the
following assertions hold:

(3) The function U from (1) and (2) is the unique global mild solution of (SE) with
paths in C([0, T ]; Ẽa) and the statements of Theorem 6.3 hold.

(4) If r ∈ (2,∞) is such that a + 1
r < min{1 − θF , 1

2 − θB, η0} and u0 ∈
Lr (�,F0; E0

a), then the solution U is in Zr
a and the statement of Proposition 6.2

hold.
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The proof is based on the following local uniqueness result.

LEMMA 7.3. Assume that the conditions of Theorem 7.2 are satisfied. Assume that
(U1(t))t∈[0,τ1) in Za,adm(τ1) and (U2(t))t∈[0,τ2) in Za,adm(τ2) are local mild solutions
of (SE) with initial values u1

0 and u2
0. Let � = {u1

0 = u2
0}. Then almost surely on �,

U1|[0,τ1∧τ2) ≡ U2|[0,τ1∧τ2). Moreover, if τ1 is an explosion time for U1, then almost
surely on �, τ1 ≥ τ2. If τ1 and τ2 are explosion times for U1 and U2, then almost
surely on �, τ1 = τ2 and U1 ≡ U2.

Both results can be proved using standard localization techniques. We refer the
reader to [9, Section 4], [51, Section 5], [37, Section 8] or [55, Chapter 8] for a proof
in a framework close to the one above.

8. Examples

Below, we consider the stochastic partial differential equation from [47]. We will
apply Theorem 6.3 and Theorem 7.2 to obtain existence, uniqueness, and regularity of
mild solutions. By Proposition 5.4 this will also give the unique variational solution.
The operator A(t) will be a time-dependent second-order elliptic differential operator
with (time-dependent) Neumann boundary conditions. As in [47] we consider second-
order equations with noise that is white with respect to the time variable and colored
with respect to space variable. We will reprove and improve some of the regularity
results from [47] using the results of the previous sections. This will be done in three
examples below.

Recall that a is the parameter for the solution space Ẽa . For the Examples 8.2
and 8.6 it will suffice to take a = 0 in Theorem 6.3. In Example 8.9 we consider
the locally Lipschitz case, and there we need a > 0. The parameter θB allows us to
consider covariance operators which are not necessarily of trace class. For details on
covariance operators we refer to [7,16].

REMARK 8.1. Some other examples which fit into our general framework are

(1) Higher order equations, possibly driven by multiplicative space-time white noise.
Note that for second-order equations, this is only possible for dimension one, and
therefore not very illustrative for our setting. In regular bounded domains in R

n

one can consider multiplicative space–time white noise if the order of the elliptic
operator 2m > n (see [37] for the autonomous case and [55, Chapter 8] for the
non-autonomous case with Dirichlet boundary conditions).

(2) F and B could be (non)-linear differential operators of lower order.
(3) Equations with boundary noise. This is work in progress [49].

Let us first recall some basic notations (cf. [54]). Let S be a bounded domain
and m ∈ N, p, q ∈ [1,∞], s ∈ R, β1, β2 ∈ (0, 1). W m,p(S) will be the Sobolev
space. Bs

p,q(S) will be the Besov space. Hs,p(S) is the Bessel potential space and
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Hs(S) := H2,p(S), and Hm,p(S) = W m,p(S). Cδ(S) is the space of δ-Hölder con-
tinuous functions. Cβ1,β2(S × [0, T ]) is the space of functions f : S × [0, T ] → R

which satisfy

| f (s1, t) − f (s2, t)| ≤ C1|s1 − s2|β1, s1, s2 ∈ S, t ∈ [0, T ],
| f (s, t1) − f (s, t2)| ≤ C2|t1 − t2|β2 , s ∈ S, t1, t2 ∈ [0, T ]

for certain constants C1, C2 ≥ 0. Clearly, Cβ1,β2(S ×[0, T ]) ↪→ Cβ1∧β2(S ×[0, T ]).
EXAMPLE 8.2. Let (�,F , P) be a complete probability space with a filtration

(Ft )t∈[0,T ]. Consider

du(t, s) = A(t, s, D)u(t, s) + f (t, s, u(t, s)) dt

+ g(t, s, u(t, s)) dW (t, s), t ∈ (0, T ], s ∈ S,

C(t, s, D)u(t, s) = 0, t ∈ (0, T ], s ∈ ∂S

u(0, s) = u0(s), s ∈ S.

(8.1)

Here S is a bounded domain with boundary of class C2 and outer normal vector n(s)
in R

n , and

A(t, s, D) =
n∑

i, j=1

Di
(
ai j (t, s)D j

) + a0(t, s),

C(t, s, D) =
n∑

i, j=1

ai j (t, s)ni (s)D j .

We assume that the coefficients are real and satisfy

ai j ∈ Cµ([0, T ]; C(S)), ai j (t, ·) ∈ C1(S), Dkai j ∈ C([0, T ] × S),

a0 ∈ Cµ([0, T ], Ln(S)) ∩ C([0, T ]; C(S))

for i, j, k = 1, . . . , n, t ∈ [0, T ], and a constant µ ∈ ( 1
2 , 1]. Furthermore, let (ai j ) be

symmetric and assume that there exists a κ > 0 such that

n∑
i, j=1

ai j (t, s)ξiξ j ≥ κ|ξ |2, s ∈ S, t ∈ [0, T ], ξ ∈ R
n . (8.2)

Let f, g : [0, T ]×�×S×R → R be measurable, adapted, and Lipschitz functions
with linear growth uniformly � × [0, T ] × S, i.e., there exist L f , C f , Lg, Cg such
that for all t ∈ [0, T ], ω ∈ �, s ∈ R and x, y ∈ R,

| f (t, ω, s, x) − f (t, ω, s, y)| ≤ L f |x − y|, (8.3)

| f (t, ω, s, x)| ≤ C f (1 + |x |), (8.4)

|g(t, ω, s, x) − g(t, ω, s, y)| ≤ Lg|x − y|, (8.5)

|g(t, ω, s, x)| ≤ Cg(1 + |x |). (8.6)
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The noise term W is an L2(S)-valued Brownian motion with respect to (Ft )t∈[0,T ].
We assume that it has a covariance Q ∈ B(L2(S)) which satisfies√

Q ∈ B(L2(S), L∞(S)). (8.7)

The following statements hold:

(1) Let p ∈ [2,∞). If u0 ∈ L p(S) a.s., then there exists a unique mild and var-
iational solution u of (8.1) with paths in C([0, T ]; L p(S)) a.s. Moreover, u ∈
L2(0, T ; W 1,2(S)) a.s.

(2) If u0 ∈ C1(S) a.s., then the solution u is in Cλ([0, T ]; C2δ(S)) for all λ, δ > 0
such that λ+ δ < 1

2 . In particular, u ∈ Cβ1,β2(S ×[0, T ]) for all β1 ∈ (0, 1) and
β2 ∈ (0, 1

2 ).

If in (1) u0 ∈ Lr (�; L p(S)) for some r ∈ (2,∞), then also

E sup
t∈[0,T ]

‖u(t)‖r
L p(S) � E‖u0‖r

L p(S).

This example improves [47, Theorem 3] in several ways:

REMARK 8.3. The assumptions on the coefficients ai j and the domain S we have
made are weaker than the ones in [47, p. 705]. The initial value in [47] is assumed to
be more regular than ours (i.e. u0 ∈ C2+α(S) instead of C1(S)) and it has to fulfill
the Neumann boundary condition at t = 0. We consider f and g also depending on
[0, T ]×�× S. In [47, Theorem 3] the obtained regularity is Cβ1,β2(S ×[0, T ]) for all
β1 ∈ (0, α) and β2 ∈ (0, α

2 ∧ 2
n+2 ). Here α ∈ (0, 1) is a parameter which states how

regular the coefficients ai j and the domain S are. Even in the limiting case α = 1, our
time regularity is better and it does not depend on the dimension n.

The condition on the noise term in [47] is formulated as (8.8) below.

REMARK 8.4. Since Q is compact and positive, we can always find positive num-
bers (λn)n≥1 and an orthonormal system (en)n≥1 in L2(S) with

√
Q = ∑

n≥1 λnen ⊗
en . It follows that we may decompose W as

W (t, s) =
∑
n≥1

√
λnWn(t)en(s).

Here, (Wn)n≥1 are independent real-valued standard Brownian motions.
The condition

√
Q ∈ B(L2(S), L∞(S)) is for instance satisfied if (en)n≥1 in L∞(S)

and ∑
n≥1

λn‖en‖2
L∞(S) < ∞. (8.8)

Indeed, for all h ∈ L2(S), by the Cauchy-Schwartz inequality

|√Qh(s)|=
∣∣∣∣∣∣
∑
n≥1

√
λnen(s)[en, h]L2(S)

∣∣∣∣∣∣≤
⎛
⎝∑

n≥1

λn|en(s)|2
⎞
⎠

1
2

‖h‖L2(S) <∞ (8.9)

for almost all s ∈ S.
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Proof of Example 8.2. Let E = L p(S) with p ∈ [2,∞). Then conditions (AT1)
and (AT2) are satisfied (cf. [1,48,58]). Further, (H1)η0 is satisfied with η0 = 1 and
(cf. [54, Theorem 4.3.1.2])

Ẽη := (L p(S), W 2,p(S))η,2 = B2η
p,2(S)

for η ∈ (0, 1] and Ẽ0 = E . Note that these spaces are all UMD spaces with type 2 as
follows from the explanation after (2.12).

Let F : [0, T ]×�× E → E be defined by F(t, ω, x)(s) = f (t, ω, s, x(s)). Then,
F satisfies (H2). Let B : [0, T ] × � × E → γ (L2(S), E) be defined as

(B(t, ω, x)h)(s) = b(t, ω, s, x(s))(
√

Qh)(s).

This is well defined by the assumptions, and it satisfies (H3). Indeed, under condition
(8.7), we obtain from Lemma 2.7 that for x ∈ L p(S),

‖x
√

Q‖γ (L2(S),L p(S)) �p K‖x‖L p(S).

and therefore, for x1, x2 ∈ L p(S),

‖B(t, ω, x1)−B(t, ω, x2)‖γ (L2(S),L p(S)) �p K‖x1−x2‖L p(S), t ∈ [0, T ], ω ∈ �,

‖B(t, ω, x)h‖γ (L2(S),L p(S)) ≤ K (1+‖x‖L p(S)), t ∈ [0, T ], ω ∈ �.

By Theorem 6.3 with a = θF = θB = 0, we obtain that there exists a unique mild
solution U with paths in C([0, T ]; E) a.s.

Next, we use Proposition 5.4 to show that U is also the unique variational solution
in C([0, T ]; E). Note that condition (W) is satisfied since A(t) is self-adjoint in the
sense that A(t)∗ on L p(S) is A(t) on L p′

(S). Therefore, (AT2) holds for A(t)∗ and
thus (W) holds by Remark 5.3. The result now follows from Proposition 5.4.

We still need to show that U ∈ L2(0, T ; H1(S)) a.s. if u0 ∈ L2(S) a.s.
Let E = L2(S). It follows from Remark 4.2 that (A(t))t∈[0,T ] satisfies (H∞).
Since A(t) is associated with a quadratic form with V = W 1,2(S), it follows that

D((−Aw(t))
1
2 ) = W 1,2(S) for w large enough with constants uniformly in time

(cf. [52, Section 2.2]). We have already shown that U ∈ C([0, T ]; E) a.s. Clearly,
B(U ) is an element of L∞([0, T ]; γ (L2(S), E)) and by Theorem 4.3, P � B(U ) ∈
L2(0, T ; W 1,2(S)) a.s. For the deterministic convolution, it follows from (3.2) that
P ∗ F(U ) ∈ L2(0, T ; W 1,2(S)). Finally, by (4.5)∫ T

0
‖P(t, 0)u0‖2

W 1,2(S)
ds �

∫ T

0
‖(−Aw(t))

1
2 P(t, 0)u0‖2

L2(S)
dt � ‖u0‖2

L2(S)
.

This completes the proof.
(2) Let E = L p(S) for p ∈ [2,∞). If u0 ∈ C1(S) a.s., then we claim that u0 ∈ E0

b
a.s. for all b ∈ [0, 1

2 ). Indeed, it suffices to show that u0 ∈ [E, D(A(0))] 1
2
. By [5,

Theorem 7.2 and Remark 7.3] and [18, Theorem 2.3] (also see Example 2.2), one has

[E, D(A(0))] 1
2

= [L p(S), W 2,p(S)] 1
2

= W 1,p(S).
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Since C1(S) ↪→ W 1,p(S), the claim follows.
By Theorem 6.3 the process U has the following regularity property: U ∈

Cλ([0, T ]; Eδ) a.s. for all λ, δ > 0 such that λ + δ < 1
2 . In particular, taking p

large it follows from [54, Theorem 4.6.1(e)] that U ∈ Cλ([0, T ]; C2δ(S)) for all
λ, δ > 0 such that λ + δ < 1

2 .
The final assertion follows from (6.11).
Let us show that the variational solution of Example 8.2 is also a variational solution

of the second type as defined in [47].

REMARK 8.5. The variational solution of Example 8.7 satisfies: for all t ∈ (0, T ],
ϕ ∈ C1([0, t]; L2(S)) such that A(r, ·, D)ϕ ∈ C1([0, t]; L2(S)), a.s.

∫
S

u(t, s)ϕ(t, s) ds −
∫

S
u0(s)ϕ(0, s) ds

=
∫ t

0

∫
S

u(r, s)ϕ′(r, s) ds dr +
∫ t

0

∫
S

u(r, s)A(r, s, D)ϕ(r, s) ds dr

+
∫ t

0

∫
S

f (r, s, u(r, s))ϕ(r, s) ds dr

+
∑
n≥1

∫ t

0

∫
S

b(r, s, u(r, s))en(s)ϕ(r, s) dWn(r).

Therefore, by integration by parts and approximation it follows that for all t ∈ (0, T ],
ϕ ∈ W 1,2((0, t) × S), a.s.

∫
S

u(t, s)ϕ(t, s) ds −
∫

S
u0(s)ϕ(0, s) ds

=
∫ t

0

∫
S

u(r, s)ϕ′(r, s) ds dr −
∫ t

0

∫
S
〈∇u(r, s), a(r, s)∇ϕ(r, s)〉Rn ds dr

+
∫ t

0

∫
S

f (r, s, u(r, s))ϕ(r, s) ds dr

+
∑
n≥1

∫ t

0

∫
S

b(r, s, u(r, s))
√

Qen(s)ϕ(r, s) dWn(r).

This coincides with the variational solution of the second kind from [47].

In the next example we will weaken the assumption on the covariance Q.

EXAMPLE 8.6. Consider equation (8.1) again. Assume the same conditions as in
Example 8.2, but with (8.7) replaced by: there exist β ∈ (0, 1

2 ) and q ∈ ( n
1−2β

,∞)

√
Q ∈ B(L2(S), Lq(S)). (8.10)

The following statements hold:
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(1) Let p ∈ [2,∞) be such that p > (n−1 − q−1)−1. If u0 ∈ L p(S) a.s., then
there exists a unique mild and variational solution u of (8.1) with paths in
C([0, T ]; L p(S)) a.s.

(2) If u0 ∈ C1(S) a.s., then the solution u is in Cλ([0, T ]; C2δ(S)) for all λ, δ > 0
such that λ + δ < β. In particular, u ∈ Cβ1,β2(S × [0, T ]) for all β1 ∈ (0, 2β)

and β2 ∈ (0, β).

This example improves [47, Theorem 4] in similar ways as explained in Remark 8.3.
Their condition on the noise term is formulated as (8.11) below.

REMARK 8.7. Assume that Q is compact and has the same form as in Remark 8.4.
The condition

√
Q ∈ B(L2(S), Lq(S)) is for instance satisfied if (en)n≥1 in Lq(S)

and ∑
n≥1

λn‖en‖2
Lq (S) < ∞. (8.11)

Indeed, without loss of generality we may assume that q > 2. Taking the Lq(S) norm
on both sides in (8.9) yields

‖√Qh‖Lq (S) ≤

∥∥∥∥∥∥∥
⎛
⎝∑

n≥1

λn|en(s)|2
⎞
⎠

1
2

∥∥∥∥∥∥∥
Lq (S)

‖h‖L2(S)

≤
⎛
⎝∑

n≥1

λn‖en‖2
Lq (S)

⎞
⎠

1
2

‖h‖L2(S) < ∞.

REMARK 8.8. We should note that it is stated in [47, Theorem 4 with α = 1]
that the space regularity of the solution becomes Cσ (S) for all σ < 1. We could not
follow this argument. It seems that for the definition of Yδ in [47, Lemma 4] one has
restrictions on their parameter δ in terms of the β from (8.10).

For example, consider the case that S = (0, 1), A = d2

ds2 with Neumann boundary
conditions, f = 0, b(x) = x and the noise is of the form W (t, x) = e1(x)W1(t),
where e1 ∈ Lq(S) and W1 is a standard Brownian motion. We do not believe that the
solution has space regularity Cσ (S) for all σ < 1, in general.

Proof of Example 8.6. We proceed as in Example 8.2 but due to (8.11) we need to
take θB > 0.

(1) Let E = L p(S). Since Q ∈ B(L2(S)) we can assume that q ≥ 2. Let r ∈ (1,∞)

be such that r( 1
p + 1

q ) = 1. Let θB ∈ ( n
2r , 1

2 ). This is possible by the restriction
on p.

Let w ∈ R be so large that λ ∈ ρ(Aw) for all Re(λ) ≤ 0. We claim that for
x ∈ L p(S) and h ∈ L2(S),

‖(−Aw(t))−θB x
√

Qh‖L∞(S) � ‖x‖L p(S)‖h‖L2(S)
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with constants uniformly in t ∈ [0, T ]. Indeed, fix θ ′
B ∈ ( n

2r , θB). By [54,
Theorem 4.6.1(e)] it follows that

‖y‖L∞(S) � ‖y‖
B

2θ ′
B

r,2 (S)
, y ∈ B2θB

r,2 (S).

Moreover,

D((−Aw(t))θB) ↪→ (Lr (S), D(A(t)))θ ′
B ,2 ↪→ (Lr (S), W 2,r (S))θ ′

B ,2 = B
2θ ′

B
r,2 (S)

with embedding constants independent of t ∈ [0, T ]. Here D(A(t)) stands for the
domain of A(t) in Lr (S) and similarly for the fractional domain space. Therefore,

‖A−θB (t)y‖L∞(S) � ‖y‖Lr (S), y ∈ Lr (S). (8.12)

From this and Hölder’s inequality we obtain that

‖(−Aw(t))−θB x
√

Qh‖L∞(S) � ‖x
√

Qh‖Lr (S)

≤ ‖√Q‖B(L2(S),Lq (S))‖x‖L p(S)‖h‖L2(S).

The claim and Lemma 2.7 imply that

‖(−Aw(t))−θB x
√

Q‖γ (L2(S),L p(S)) � ‖√Q‖B(L2(S),Lq (S))‖x‖L p(S).

It follows that there exists a constant K such that for all x, y ∈ L p(S) and for all
t ∈ [0, T ], ω ∈ �,

‖(−Aw(t))−θB (B(t, ω, x) − B(t, ω, y))‖γ (L2(S),L p(S)) ≤ K‖x − y‖L p(S),

‖(−Aw(t))−θB B(t, ω, x)‖γ (L2(S),L p(S)) ≤ K (1 + ‖x‖L p(S)).

By Theorem 6.3 (1) we obtain that there exists a unique mild solution u with
paths in C([0, T ]; L p(S)). The fact that u is also the unique variational solution
follows in the same way as Example 8.2.

(2) Letλ, δ > 0 be such thatλ+δ < β. Let δ, λ > 0 be such that δ+λ < β. Let δ′ > δ

be such that δ′ + λ < β. Choose p ∈ [2,∞) so large and θB > n
2r = n

2 ( 1
p + 1

q )

such that β < 1
2 − θB .

As in Example 8.2 one has u0 ∈ E0
δ′+λ

. By Theorem 6.3 (2) we obtain that u has

a version with paths in Cλ([0, T ]; B2δ′
p,2(S)). By [54, Theorem 4.6.1(e)] B2δ′

p,2(S) ↪→
C2δ′′− n

p (S) where δ < δ′′ < δ′. Choosing p large enough gives the result.
As a final example we consider again (8.1), but this time with locally Lipschitz

coefficients f and b.

EXAMPLE 8.9. Consider equation (8.1). Assume that f, g : [0, T ]×�×S×R →
R are measurable, adapted and f and g are locally Lipschitz in the fourth variable
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uniform in the others, i.e., for all R > 0, there exists L f,R and Lg,R such that for all
t ∈ [0, T ], ω ∈ �, s ∈ R and x, y ∈ R with |x |, |y| ≤ R,

| f (t, ω, s, x) − f (t, ω, s, y)| ≤ L f,R |x − y|, t ∈ [0, T ], ω ∈ �, s ∈ S, (8.13)

|g(t, ω, s, x) − g(t, ω, s, y)| ≤ Lg,R |x − y|, t ∈ [0, T ], ω ∈ �, s ∈ S. (8.14)

Assume that A, C and Q are as in Example 8.2. The following statements hold:

(1) Let p ∈ (2n,∞). Let a ∈ ( n
p , 1

2 ). If u0 ∈ Ba
p,p(S) a.s., then there exists

a unique maximal local mild solution (u(t))t∈[0,τ ) of (8.1) with paths in
C([0, τ ); B2a

p,p(S)) a.s.

(2) If u0 ∈ C1(S) a.s., then the solution u is in Cλ([0, T ]; C2δ(S)) for all λ, δ > 0
such that λ+ δ < 1

2 . In particular, u ∈ Cβ1,β2(S ×[0, T ]) for all β1 ∈ (0, 1) and
β2 ∈ (0, 1

2 ).

If f and g are also of linear growth, i.e., (8.4) and (8.6), then the following hold:

(1)′ Let p ∈ (2n,∞). Let a ∈ ( n
p , 1

2 ). If u0 ∈ Ba
p,p(S) a.s., then τ = T and the

solution u from above is the unique global mild and variational solution of (8.1)
with paths in C([0, T ]; Ba

p,p(S)) a.s.

(2)′ If u0 ∈ C1(S) a.s., then the solution u is in Cλ([0, T ]; C2δ(S)) for all λ, δ > 0
such that λ + δ < 1

2 . In particular, u ∈ Cβ1,β2(S × [0, T ]) for all β1 ∈ (0, 1) and
β2 ∈ (0, 1

2 ).

REMARK 8.10. (1) If Q is as in Example 8.6, then one can still give conditions
under which existence, uniqueness, and regularity hold. This is left to the reader.

(2) It is an interesting question under what conditions on f and g different as (8.4) and
(8.6), one still obtains a global solution. There are many results and approaches
in this direction. We refer the reader to [33] and references therein. We believe it
is important to extend the ideas from [33] to our general framework. This could
lead to new global existence results.

We turn to the proof of Example 8.9. The set-up is similar as in Example 8.2, but
we need that a > 0 to be able to consider the locally Lipschitz coefficients f and b.
Here, a is the parameter from Theorem 7.2 which is used for the underlying space Ẽa .
The main reason we want a > 0 is that Ẽa ↪→ C(S) is needed.

Proof of Example 8.9. (1) By [54, Theorem 4.6.1(e)] it follows that Ẽa ↪→ C(S)

since a > n
p . Let E and A be as in Example 8.2. For 0 < η ≤ 1 let

Ẽη := (L p(S), W 2,p(S))η,p = B2η
p,p(S). (8.15)

It follows from [5, Theorem 7.2 and Remark 7.3] and [18, Theorem 2.3] that for
2η �= 1

p ,

Et
η := (E, D(A(t)))η,p ↪→ Ẽη ↪→ E (8.16)

with uniform constants in t ∈ [0, T ]. Therefore, the version of (H1)η0 explained
below (H1)′η0

in Section 2.1 is satisfied except maybe for 2η = 1
p , but this is
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not an actual problem since we can always take η slightly larger in the above
arguments. Note that by (8.15) and (8.16), u0 ∈ E0

a a.s.
Define F : [0, T ]×�× Ẽa → E by F(t, ω, x)(s) = f (t, ω, s, x(s)). By (8.3)

and Ẽa ↪→ C(S), F satisfies (H2)′. Let B : [0, T ] × � × Ẽa → γ (L2(S), E)

be defined as

(B(t, ω, x)h)(s) = b(t, ω, s, x(s))(
√

Qh)(s).

By (8.5), Ẽa ↪→ C(S), and the assumptions this is well-defined and it satisfies
(H3)′.

By Theorem 7.2 with θF = θB = 0, we obtain that there exists a unique mild
solution U with paths in C([0, τ ); Ẽa) a.s.

(2) Let λ, δ > 0 be such that λ + δ < 1
2 . Let a > 0 be such that λ + δ + a < 1

2 and
let p ∈ [2,∞) be such that a > n

p . Let E and Ẽa and F, B etc. be as in (1). If

u0 ∈ C1(S) a.s., then as before one can show that u0 ∈ E0
b a.s. for all b ∈ [0, 1

2 ).
By Theorem 7.2 the process U has the following regularity property: U ∈

Cλ([0, T ]; Ẽa+δ) a.s. In particular, it follows from [54, Theorem 4.6.1(e)] that
U ∈ Cλ([0, τ ); C2δ(S)) for all λ, δ > 0 such that λ + δ < 1

2 .
(1)′ and (2)′: This can be proved in the same way as (1) and (2), but now using the

linear growth assumption and the last part of Theorem 7.2.

Appendix A. Technical proofs

Below we prove Proposition 5.4. We recall it for convenience.

PROPOSITION A.1. Assume (AT), (H1)η0 , (H2), (H3) and (W). Let r ∈ (2,∞) be
such that θB < 1

2 − 1
r . Let U : [0, T ]×� → Ẽa be strongly measurable and adapted

and such that U ∈ Lr (0, T ; Ẽa) a.s. The following assertions are equivalent:

(1) E is a mild solution of (SE).
(2) U is a variational solution of (SE).

Condition (W) from Section 5 is only needed in (2) ⇒ (1).

Proof. (1) ⇒ (2): Let

F−θF (r, x) = (−Aw(r))−θF F(r, x), B−θB (r, x) = (−Aw(r))−θB B(r, x)

and Pθ (t, r) = P(t, r)(−Aw(r))θ for θ = θF or θ = θB .
Let t ∈ [0, T ] be arbitrary and ϕ ∈ �t . Since U is a.s. in L1(0, T ; E) we have that

s �→ 〈U (s), A(s)∗ϕ(s)〉 is integrable and from the definition of a mild solution we
obtain that a.s.,
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∫ t

0
〈U (s), A(s)∗ϕ(s)〉 ds

=
∫ t

0
〈P(s, 0)u0, A(s)∗ϕ(s)〉ds +

∫ t

0

∫ s

0
〈PθF (s, r)F−θF (r, U (r)),A(s)∗ϕ(s)〉dr ds

+
∫ t

0

∫ s

0
B−θB (r, U (r))∗ PθB (s, r)∗ A(s)∗ϕ(s) dWH (r) ds. (A.1)

Since (P(t, s))0≤s≤t≤T is an evolution family that solves (2.1), it follows from an
approximation argument that for all x ∈ E and 0 ≤ r ≤ t ≤ T ,

〈P(t, r)x, ϕ(t)〉 − 〈x, ϕ(r)〉
=

∫ t

r
〈P(s, r)x, A(s)∗ϕ(s)〉 ds +

∫ t

r
〈P(s, r)x, ϕ′(s)〉 ds. (A.2)

Therefore, by another approximation argument we obtain that for all θ ∈ [0, 1) and
for all x ∈ E and 0 ≤ r ≤ t ,

〈Pθ (t, r)x, ϕ(t)〉 − 〈x, ((−Aw(r))θ )∗ϕ(r)〉
=

∫ t

r
〈Pθ (s, r)x, A(s)∗ϕ(s)〉 ds +

∫ t

r
〈Pθ (s, r)x, ϕ′(s)〉 ds. (A.3)

As a consequence one obtains that for all R ∈ B(H, E) and 0 ≤ r ≤ t ,

R∗ PθB (t, r)∗ϕ(t) − R∗((−Aw(r))θB )∗ϕ(r)

=
∫ t

r
R∗ PθB (s, r)∗ A(s)∗ϕ(s) ds +

∫ t

r
R∗ PθB (s, r)∗ϕ′(s) ds. (A.4)

Indeed, this follows from (A.3) by applying h ∈ H on both sides.
By the Fubini theorem and (A.3) we obtain a.s.,∫ t

0

∫ s

0
〈PθF (s, r)F−θF (r, U (r)), A(s)∗ϕ(s)〉 dr ds

=
∫ t

0
〈PθF (t, r)F−θF (r, U (r)), ϕ(t)〉 dr−

∫ t

0
〈F−θF (r, U (r)),((−Aw(r))θF )∗ϕ(r)〉dr

−
∫ t

0

∫ s

0
〈PθF (s, r)F−θF (r, U (r)), ϕ′(s)〉 dr ds.

By the stochastic Fubini theorem and (A.4) we obtain that a.s.,∫ t

0

∫ s

0
B−θB (r, U (r))∗ PθB (s, r)∗ A(s)∗ϕ(s) dWH (r) ds

=
∫ t

0
B−θB (r, U (r))∗ PθB (t, r)∗ϕ(t) dWH (r)

−
∫ t

0
B−θB (r, U (r))∗((−Aw(r))θB )∗ϕ(r) dWH (r)

−
∫ t

0

∫ t

r
B−θB (r, U (r))∗ PθB (s, r)∗ϕ′(s) dWH (r) ds.
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Therefore, it follows from (A.1), (A.2) and the definition of a mild solution that∫ t

0
〈U (s), A(s)∗ϕ(s)〉 ds = 〈U (t), ϕ(t)〉 −

∫ t

0
〈U (s), ϕ′(s)〉 ds − 〈u0, ϕ(0)〉

−
∫ t

0
〈F−θF (r, U (r)), ((−Aw(r))θF )∗ϕ(r)〉 dr

−
∫ t

0
B−θB (r, U (r))((−Aw(r))θB )∗ϕ(r) dWH (r)

and we obtain that U is a variational solution.
(2) ⇒ (1): Let t ∈ [0, T ] be arbitrary. We show that for all x∗ ∈ ϒt , a.s.

〈U (t), x∗〉 = 〈P(t, 0)u0, x∗〉 +
∫ t

0
〈PθF (t, s)F−θF (s, U (s)), x∗〉 ds

+
∫ t

0
B−θB (s, U (s)))∗ PθB (t, s)∗x∗ dWH (s). (A.5)

By the existence of the integral, the existence of the stochastic integral, the weak∗-
sequential density of ϒt (see (W) and the Hahn-Banach theorem this suffices. For
x∗ ∈ ϒt , let ϕ(s) = P(t, s)∗x∗. Then it follows from (5.5) and (5.6) that

〈U (t), x∗〉 − 〈P(t, 0)u0, x∗〉 +
∫ t

0
〈U (s), A(s)∗ P(t, s)∗x∗〉 ds

=
∫ t

0
〈U (s),A(s)∗ P(t, s)∗x∗〉ds +

∫ t

0
〈F−θF(s, U (s)),((−Aw(s))θF )∗P(t, s)∗x∗〉ds

+
∫ t

0
B−θB (s, U (s))∗((−Aw(s))θB )∗ P(t, s)∗x∗ dWH (s)

and we may conclude (A.5). �
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[9] Z. Brzeźniak, On stochastic convolution in Banach spaces and applications, Stochastics Stoch-
astics Rep. 61 (1997), no. 3-4, 245–295.
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