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Abstract
In Mediterranean climate regions, intermittent rivers (IRs) harbor highly dynamic communities with species and trait 
composition changing over time and space. Simultaneously considering multiple biodiversity facets and a spatiotemporal 
perspective is, therefore, key to developing effective conservation strategies for these ecosystems. We studied the spatiotem-
poral dynamics of aquatic macroinvertebrates in rivers of the western Mediterranean Basin by analysing (1) the taxonomic 
and functional richness and the local contribution to beta diversity (LCBD; measured considering taxonomic and functional 
facets) of perennial rivers and IRs over five sampling times, and (2) their relation with flow intermittence, local environmental 
uniqueness, and the number of anthropogenic impacts. Both analyses were also conducted for the subset of data including 
only IRs to compare values between their flowing and disconnected pool phases. According to our results, taxonomic and 
functional richness tended to be higher in perennial rivers than in IRs, while taxonomic and functional LCBD tended to be 
higher in IRs than in perennial rivers. When comparing IR sites over time, higher values of taxonomic and functional LCBD 
corresponded mostly to their disconnected pool phase. Flow intermittence, the number of anthropogenic impacts and the 
environmental uniqueness were significant predictors of taxonomic and functional richness, but only flow intermittence 
was an important predictor of taxonomic LCBD. For the IR-only data subset, disconnected pool permanence was the main 
predictor explaining spatiotemporal patterns. Our results highlight the importance of IRs to biodiversity conservation of 
Mediterranean climate rivers, especially during the disconnected pool phase, suggesting that these ecosystems cannot be 
ignored in conservation planning strategies.

Keywords  LCBD · Functional traits · Non-perennial rivers · Macroinvertebrates · Temporal beta-diversity · Temporary 
rivers

Introduction

Incorporating spatiotemporal alpha (α), beta (β) and gamma 
(γ) diversity information into community composition 
analysis is crucial to developing effective biodiversity and 
ecosystem conservation strategies (Pereira et al. 2013; Hill 
et al. 2016). Commonly, conservation efforts have focused 
on protecting the number of species within a site (taxonomic 
α-diversity) or region (taxonomic γ-diversity or regional 
diversity), while efforts to characterize and incorporate the 
variation in species composition (taxonomic β-diversity) are 
relatively more recent (Koleff et al. 2003; Anderson et al. 
2011; Socolar et al. 2016; Bush et al. 2016). Taxonomic 

β-diversity can be measured as the compositional dissimi-
larity in species assemblages, either across space (Baselga 
2010; Anderson et al. 2011) or time (Legendre and Gauthier 
2014; Legendre 2019; Shimadzu et al. 2015). Spatial taxo-
nomic β-diversity aims to understand the processes govern-
ing spatial variation in community composition, while tem-
poral taxonomic β-diversity provides information on how 
species composition changes over time (Anderson et al. 
2011; Legendre and Gauthier 2014; Legendre and Condit 
2019). The combination of spatial and temporal β-diversity 
has therefore the potential to better represent how and why 
community composition changes over time, particularly in 
response to environmental changes (Legendre and Condit 
2019; Vander Vorste et al. 2021; Faustino de Queiroz et al. 
2022). As a result, this integrated approach can help to better 
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identify areas that may be more resilient to change and those 
that may be more vulnerable, allowing for targeted conserva-
tion efforts (McGill et al. 2015).

Functional diversity can provide complementary insights 
into the impacts of disturbance on ecosystem functioning 
(Flynn et al. 2011; Gross et al. 2017). For instance, the use 
of functional diversity allows us to clarify the role of each 
species in ecosystem processes and their resistance and/or 
resilience capacity to environmental changes, either natural 
or anthropogenic (Tobias and Monika 2011; Villéger et al. 
2013, 2017; Soria et al. 2020). Functional β-diversity can be 
defined as the dissimilarity in trait composition across space 
(Villéger et al. 2013; Aspin et al. 2019) or time (Baselga 
et al. 2015; Magurran et al. 2019). As the increase in multi-
ple anthropogenic impacts is threatening the stability of eco-
systems, understanding how both taxonomic and functional 
diversity influence ecosystem functioning can contribute to 
better predicting the ecological consequences of biodiver-
sity loss (Hooper et al. 2005; Flynn et al. 2011; Gutiérrez-
Cánovas et al. 2015).

Intermittent rivers (IRs) are non-perennial watercourses 
that typically shift among flowing, disconnected pool and 
dry phases, and are therefore highly dynamic ecosystems 
(Gallart et al. 2012, 2017). Flow intermittence exerts a pri-
mary control on IR ecosystem structure and function over 
time and, consequently, biodiversity patterns typically follow 
these changes (Datry et al. 2014; Arroita et al. 2018; Arias-
Real et al. 2020). In the case of aquatic macroinvertebrates, 
surface flow cessation and the subsequent formation of dis-
connected pools imply the disappearance of riffle-dwelling 
species and the appearance of pool-dwelling species (Bon-
ada et al. 2006; Bogan et al. 2017; Tonkin et al. 2017). With 
the complete drying of the riverbed, some taxa may emerge, 
move to other wet habitats or to the hyporheic zone, or enter 
a desiccation-resistant life stage (Lytle and Poff 2004; Bogan 
et al. 2017; Stubbington et al. 2019). Shifts from dry to flow-
ing phases following rewetting favour recolonization, con-
tributing to the recovery of local communities in IRs (Leigh 
et al. 2016; Bogan et al. 2017). IR communities are highly 
variable in time, with species and trait composition chang-
ing from one period to another (Datry et al. 2014; Bogan 
et al. 2017). Nevertheless, climate change and increasing 
human water demand are altering biodiversity patterns and 
functional processes of IRs (Datry et al. 2014; Leigh et al. 
2019), and thus a better understanding of their contribution 
to biodiversity is timely.

In comparison to IRs from other climatic regions, those 
in Mediterranean climate areas are characterized by being 
highly predictable in terms of seasonality, resulting in well-
known community shifts between flowing and non-flowing 
phases (Hershkovitz and Gasith 2013; Tonkin et al. 2017). 
In addition, Mediterranean-climate IRs are global biodi-
versity hotspots, possessing high levels of endemism, but 

also being particularly vulnerable to anthropogenic impacts 
(Bonada and Resh 2013; Cid et al. 2017; Newbold et al. 
2020). Considering their high spatiotemporal variability, 
identifying key sites and periods of time that contribute the 
most to regional diversity could be informative for conserva-
tion management (Ruhí et al. 2017; Sánchez-Montoya et al. 
2020; Rodríguez-Lozano et al. 2023).

Here, we studied the spatial and temporal dynamics of 
aquatic macroinvertebrates in 20 rivers of the western Medi-
terranean Basin over different aquatic phases by analysing 
the taxonomic and functional richness (hereafter TRic and 
FRic) and the local contribution to overall taxonomic and 
functional β-diversity (hereafter T-LCBD and

F-LCBD, respectively; Legendre and De Cáceres 2013) of 
each site over five sampling times. Specifically, we analysed 
(1) the values of TRic, FRic, T-LCBD and F-LCBD of per-
ennial rivers and IRs over five sampling times, and (2) their 
relationship with three main predictors: flow intermittence, 
number of anthropogenic impacts and local environmental 
uniqueness. Both analyses were also conducted for the sub-
set of data including only IRs to compare values between 
their flowing and disconnected pool phases. Perennial riv-
ers and IRs were sampled along gradients of natural flow 
intermittence and anthropogenic impacts to investigate their 
influence on LCBD. We used the LCBD because it allows 
identifying which sites and times contribute the most to total 
β-diversity. We hypothesized that TRic and FRic would be 
higher in perennial rivers than in IRs, whereas T-LCBD and 
F-LCBD would be higher in IRs than in perennial rivers. 
Macroinvertebrate communities in IRs from Mediterranean 
climatic regions are exposed to and adapted to higher spa-
tiotemporal variability, and consequently host unique spe-
cies adapted to non-flowing conditions (Bonada et al. 2006, 
2020; Bonada and Resh 2013; Leigh et al. 2019). However, 
evolutionarily acquired macroinvertebrate resistance traits 
in response to drying (e.g. aerial respiration, diapause or 
dormancy resistance forms) are less frequent than resilience 
traits (e.g. life cycle duration, aerial dispersion) in these eco-
systems (Datry et al. 2014; Leigh et al. 2016; Bogan et al. 
2017), which may result in higher dispersal of individuals 
during the dry period (i.e. increase in β-diversity or LCBD) 
than individuals that remain (i.e. TRic and FRic). Moreover, 
we hypothesized that T-LCBD and F-LCBD values would 
be even higher during IRs’ periods of disconnected pools 
than during their flowing phase because species adapted to 
non-flowing conditions with some kind of resilience trait 
will move from dry river reaches in search of any site with 
water (i.e. disconnected pool). Finally, in addition to TRic, 
FRic, T-LCBD and F-LCBD being related to flow intermit-
tence, we also expected them to be positively correlated 
with environmental uniqueness (Castro et al. 2019; Heino 
et al. 2022), as sites and sampling times with differentiated 
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environmental conditions may have unique species or trait 
composition (Ruhí et al. 2017; Bonada et al. 2020).

Methods

Study sites and sampling design

This study was conducted in 20 rivers located in the Medi-
terranean climate region of the Iberian Peninsula (Fig. 1). 
Sites were located in three predominantly calcareous catch-
ments, comprising the Ebro, Júcar and Catalan basins. A 
100-m site was defined in each river. Ten sites were inter-
mittent and ten were perennial. The study area is character-
ized by a Mediterranean climate, with high seasonal and 
inter-annual variability in precipitation and flow regime 
(Bonada and Resh 2013; Cid et al. 2017). Sites ranged in 
altitude from 6 to 1100 m.a.s.l., and experienced different 
hydrological phases over the five sampling times (Table S1), 
with discharges ranging from 0 to 0.417 m3/s. See Table S2 
and the following section on the Mediterranean Reference 
Criteria (MRC index)for further details on the study sites, 
such as riparian vegetation (e.g. cover and composition, lat-
eral connectivity), introduced species, pollution (e.g. urban 
or industrial effluents), diffuse pollution sources and land 
use (e.g. agriculture, intensive grazing, urban use, burned 
vegetation), river morphology and habitat conditions (e.g. 
substrate diversity, canalization, gravel extraction), and 
hydrological alteration and regulation.

Biological dataset

Macroinvertebrates were collected during flowing and dis-
connected pool phases by sampling each site five times dur-
ing a 6-week interval between April and December 2015: 
April–May (henceforth t1; spring in the Northern Hemi-
sphere), June (t2; spring), July–August (t3; summer), Sep-
tember (t4; summer) and December (t5; autumn). Therefore, 
sampling included flowing (t1), drying (t2–t4) and rewetting 
(t5) periods with their corresponding flowing, disconnected 
pools and dry riverbed aquatic phases (see Table S1 for fur-
ther details). Because five sites were dry on one to three 
occasions, a total of 91 samples were obtained. Our sampling 
procedure followed the official standardized protocol used by 
water agencies in Spain (MAGRAMA 2013). Samples were 
collected using a 250-μm-mesh D-net across all available 
microhabitats (i.e. hard substrates, plant detritus, vegetated 
banks, submerged macrophytes, sand and other fine sedi-
ments) and preserved in 4% formaldehyde (see Appendix 
S1 for more details). Macroinvertebrates were identified to 
the lowest taxonomic resolution possible, usually genus, but 
with some Chironomidae and Ceratopogonidae identified to 

subfamily or tribe. Overall, 194 macroinvertebrate taxa were 
identified (Soria et al. 2020).

As suggested in Soria et al. (2020), categories from seven 
specific resistance and resilience traits from Tachet et al. 
(2010) related to flow intermittence and anthropogenic 
impacts were used to study the functional facet of biodiver-
sity: asexual reproduction, resistance forms (i.e. diapause or 
dormancy, cocoons), aerial respiration (i.e. spiracle, hydro-
static vesicle), flier and burrower (i.e. epibenthic) or intersti-
tial (i.e. endobenthic) locomotion and substrate relation, less 
than a year life cycle duration, more than one reproduction 
cycles per year, aerial active and aquatic passive (i.e. drift) 
dissemination (Table S3).

Predictors of spatiotemporal β‑diversity

Hydrology, anthropogenic impacts and general water quality 
parameters of the studied rivers were included as predictors 
of LCBD. The TREHS (Temporary Rivers Ecological and 
Hydrological Status) software (http://​www.​lifet rivers.eu/
products/trehs-software/; Gallart et al. 2017) was used to 
classify rivers’ hydrological regime (i.e. perennial and IRs) 
and to differentiate river sites affected by natural flow inter-
mittence from those with human-driven flow intermittence. 
To infer the IRs’ phases (i.e. flow, disconnected pools, dry 
riverbed), two temperature data loggers (UA-002 HOBO) 
were installed at each river site, which recorded data during 
the 30-week study period (see details in Soria et al. 2020). 
Thermal amplitude was then used to calculate the total zero-
flow days (i.e. disconnected pools or dry riverbed) during 
the 30-week study period (hereafter ZFT) and the number 
of days in the disconnected pool phase since the last sam-
ple was taken (hereafter DPi) (Soria et al. 2020). The ZFT 
hydrological predictor was 0 for perennial rivers and ranged 
from 17 to 209 days of total zero-flow days for IRs. The 
DPi predictor ranged from 5 to 90 days in the disconnected 
pool phase since the last sample was taken (Table S1) and 
was only available for IRs. Thus, the ZFT provides informa-
tion on the total cumulative drying period of each site, and 
thus informed on the degree of intermittency of an IR. The 
DPi provides information on the permanence of the discon-
nected pool phase between sampling times. For example, 
one IR may have been disconnected, connected and then 
disconnected again between t1 and t2, while another IR may 
have been disconnected for the entire time between t1 and 
t2. Since there was a moderate positive correlation between 
ZFT and DPi, the ZFT was used to test the spatiotemporal 
patterns of taxonomic and functional richness and LCBD 
between perennial rivers and IRs, while the DPi was used 
when analysing IRs’ spatiotemporal dataset.

Anthropogenic impacts were measured at each river site 
by using the number of impacts according to the Mediter-
ranean Reference Criteria (MRC index) (Sánchez-Montoya 

http://www.lifet
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et al. 2009). The MRC index includes information on inva-
sive species, diffuse pollution sources, land-use intensity, 
riparian vegetation, river geomorphology, instream habi-
tat conditions and hydrological alterations (Table S2), and 
ranges from 0 (highly impacted) to 20 (non-impacted). The 
information for each site was obtained from the list of pres-
sures and impacts of the three different river basin water 
authorities included in our study combined with field obser-
vations (e.g. detection of invasive species) and, in the case of 
hydrological alterations, from the TREHS software. To facil-
itate interpretation, the inverse of the MRC index values was 
used (i.e. from 0 = non-impacted to 20 = highly impacted, 
hereafter number of impacts; see Soria et al. 2020). As a 
result, the number of impacts ranged from 0 (non-impacted) 
to 13.

For each sampling site and time, the following water qual-
ity parameters were measured in situ and analysed in the 
laboratory when required: conductivity (μS/cm), pH, tem-
perature (ºC), dissolved oxygen (mg/l), chlorophyll-a (mg/
m3), HCO3, Ca, TOC, Mg and SO4 (µg/l). Chlorophyll-a 
concentration, however, was not used because there was a 
moderate negative correlation with the number of impacts 
(Soria et  al. 2020). Following Castro et  al. (2019), the 

method described by Legendre and De Cáceres (2013) was 
used to calculate the local contribution to environmental het-
erogeneity (hereafter environmental uniqueness), a measure 
describing the environmental uniqueness of each site, which 
in this study was in terms of physicochemical characteristics. 
To do so, all physicochemical variables (except pH) were 
log-transformed and then a standardized Euclidean distance 
matrix was used to calculate the environmental uniqueness 
of each site. Samples with high values (closer to one) of the 
resultant vector are more unique in terms of environmental 
conditions (Castro et al. 2019). The predictor of environ-
mental uniqueness ranged from 0.006 to 0.025, with a mean 
value of 0.011.

Statistical analysis

The TRic and FRic of each site and sampling time were calcu-
lated (Table S1). Data were rarefied prior to diversity calcula-
tions. FRic was obtained from Soria et al. (2020) and estimated 
as suggested by Villéger et al. (2008). T-LCBD and F-LCBD 
were estimated for each sample, i.e. for each site and sampling 
time (spatiotemporal approach; Legendre and De Cáceres 
2013; Legendre and Gauthier 2014). T-LCBD and F-LCBD 

Fig. 1   Boxplots showing taxonomic and functional local richness 
(a, b, respectively) and LCBD (c and d, respectively) over the five 
sampled times: flowing (t1: spring), drying (t2: spring and t3–t4: 
summer) and rewetting (t5: autumn) periods with their correspond-
ing flowing, disconnected pools and dry riverbed aquatic phases. The 

thick horizontal bar indicates the median. The box indicates the inter-
quartile range. Vertical bars indicate minimum and maximum values. 
Full boxes represent perennial rivers (PRs) and empty ones IRs. Sig-
nificant differences (P < 0.05) between perennial rivers and IRs are 
indicated with (*)
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Fig. 2   Taxonomic (a) and 
functional (b) LCBD plots 
of each site through the five 
sampled times: flowing (t1: 
spring), drying (t2: spring and 
t3–t4: summer) and rewetting 
(t5: autumn) periods with their 
corresponding flowing, discon-
nected pools and dry riverbed 
aquatic phases. Circle size is 
proportional to the contribution 
to overall β-diversity for each 
period. Filled circles: observed 
perennial rivers; empty circles: 
observed intermittent rivers. 
Sites with significant values of 
LCBD (P < 0.05) are indicated 
in pink. See Table S2 for further 
details
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values indicate the degree of ecological uniqueness of each 
site at each sampling time in terms of taxa abundance or trait 
composition, respectively (Legendre and De Cáceres 2013). 
The T-LCBD was calculated using the taxa abundance matrix 
(Legendre and De Cáceres 2013). The F-LCBD was calculated 
using a matrix with the relative abundance of each trait cate-
gory (columns) across the samples (rows) (Rodrigues-Capítulo 
et al. 2009). Following the procedures described by Legendre 
and De Cáceres (2013), T-LCBD and F-LCBD were esti-
mated using the Euclidean distance on Hellinger-transformed 
data (Legendre and Gallagher 2001) and the significance of 
each LCBD value (i.e. each site in each sampling time) was 
tested with 999 permutations. For IRs, TRic ranged from 8 to 
56 (mean: 24.63), FRic ranged from 0.002 to 0.418 (mean: 
0.145), T-LCBD ranged from 0.006 to 0.029 (mean: 0.012) 
and F-LCBD ranged from 0.002 to 0.117 (mean: 0.013). For 
perennial rivers, TRic ranged from 18 to 61 (mean: 37.88), 
FRic ranged from 0.056 to 0.432 (mean: 0.2427), T-LCBD 
ranged from 0.005 to 0.016 (mean: 0.009) and F-LCBD 
ranged from 0.002 to 0.021 (mean: 0.008). A non-parametric 
Mann–Whitney U test with a Bonferroni correction was used 
to test significant differences between perennial rivers and IRs 
over the sampling times.

Linear mixed-effect models (LME) were used to test the 
relationship between TRic, FRic, T-LCBD and F-LCBD, 
and our set of environmental predictors. Specifically, the ZFT 
predictor was used when considering the whole dataset to 
compare the response variables along an intermittency gra-
dient (i.e. including perennial rivers with ZFT = 0), while DPi 
was used when considering data from IRs only to compare 

the response variables between IRs’ periods of disconnected 
pools and their flowing phase. The number of impacts and 
environmental uniqueness predictors were used in both data-
sets to test whether TRic, FRic, T-LCBD and F-LCBD are 
negatively correlated with the number of impacts and posi-
tively correlated with environmental uniqueness. All models 
included sampling time (t1–t5) as a random factor to assess 
whether the relationship between TRic, FRic, T-LCBD and 
F-LCBD and predictors changed among sampling cam-
paigns (i.e. spatial effects were assessed directly while time 
effects were assessed indirectly).

All analyses were conducted in R software version 3.6.2 
(R Core Team 2015), using the packages “ade4” (Dray 
et al. 2007), “adespatial” (Dray et al. 2018), “car” (Fox 
and Weisberg 2011), “maptools” (Bivand and Lewin-Koh 
2020), “nlme” (Pinheiro et al. 2016), “raster” (Hijmans 
2020), “rgdal” (Bivand et al. 2020), “rgeos” (Bivand and 
Rundel 2020) and “vegan” (Oksanen et al. 2013). The code 
and functions used to run these analyses are available in the 
data availability statement.

Results

Our results suggest that both TRic and FRic tended to be 
higher in perennial rivers than in IRs over time (Fig. 1a, 
b and Table S1), while T-LCBD and F-LCBD showed the 
opposite pattern (Fig. 1c, d and Table S4), especially in 
summer. Significant differences (P < 0.05) between per-
ennial rivers and IRs were found in t2–t5 sampling times 

Table 1   Partial regression 
coefficients of the explanatory 
predictors used in linear mixed-
effects models

The response variables were the local taxonomic and functional richness (TRic and FRic, respectively) and 
the taxonomic and functional local contribution to β-diversity (T-LCBD and F-LCBD, respectively). TRic 
and FRic were tested T-LCBD and F-LCBD, ZFT: total zero-flow days
Significant coefficients (P < 0.05) are indicated in bold

Response Predictors variables Value SE df t-value P

TRic Intercept 46.3253 2.5133 83 18.4324 0.00
ZFT −0.0676 0.0145 83 −4.6705 0.0001
Environmental uniqueness −712.0431 222.9353 83 −3.1939 0.002
Number of impacts −0.9814 0.1923 83 −5.0935 0.0001

FRic Intercept 0.3385 0.0263 83 12.8647 0.00001
ZFT −0.0004 0.0002 83 −2.8748 0.0051
Environmental uniqueness −6.8186 2.3778 83 −2.8676 0.0052
Number of impacts −0.0109 0.0021 83 −5.3094 0.00001

T-LCBD Intercept 0.0086 0.0013 83 6.8149 0.00001
ZFT 0.00002 0.00001 83 2.9259 0.0044
Environmental uniqueness 0.1850 0.0942 83 1.9654 0.0527
Number of impacts −0.0001 0.0001 83 −0.7269 0.4693

F-LCBD Intercept 0.0061 0.0038 83 1.5978 0.1149
ZFT 0.00003 0.00002 83 1.5599 0.1226
Environmental uniqueness 0.1175 0.3434 83 0.3421 0.7331
Number of impacts 0.0004 0.0003 83 1.3407 0.1837
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for TRic (Fig. 1a) and t3 sampling time for T-LCBD and 
F-LCBD (Fig. 1c, d).

When comparing the contributions of perennial rivers 
and IRs with overall taxonomic and functional β-diversity 
through the five sampling times, IR sites were the largest 
contributors. Specifically, significant site contributions to 
T-LCBD were found in five IRs corresponding to their 
disconnected pool phase (t3–t5; Fig. 2a and Tables S1 and 
S4). These five IRs had unique taxa that were found only 
at these sites, such as Hydrellia, Lispe, Diamesa, Anisops, 
Batracobdella and Hippeutis, or taxa that were found 
in these IRs and one (i.e. Eristalis, Sepedon, Naucoris, 
Stictotarsus, Cyphon, Aeschna, Parasigara) or two other 
rivers (i.e. Telmatoscopus, Hydroglyphus, Chaoborus, 
Helobdella, Sialis, Peltodytes). For F-LCBD, significant 
site contributions were observed at one specific sampling 

time (t2) of a perennial river, three IRs during its flowing 
phase (t1 and t3) and four IRs during its disconnected pool 
phase (t2, t4–t5; Fig. 2b and Tables S1 and S4).

When considering perennial rivers and IRs, TRic and 
FRic showed a significant negative correlation with all three 
predictors: ZFT, the number of impacts and environmental 
uniqueness (Table 1 and Fig. 3a–f). Our results also showed 
a significant and positive relationship between T-LCBD and 
ZFt, but no significant results were observed for the num-
ber of impacts and environmental uniqueness (Table 1 and 
Fig. 3g–i). None of the explanatory variables were correlated 
with F-LCBD (Table 1 and Fig. 3j–l).

For the subset of data including only IRs, TRic showed a 
significant negative correlation with all three predictors, but 
FRic was only significantly and negatively correlated with 
the number of impacts (Table 2 and Fig. 4a–f). T-LCBD 

Fig. 3   Partial relationship between taxonomic and functional rich-
ness (TRic and FRic, respectively), taxonomic and functional LCBD 
(T-LCBD and F-LCBD, respectively), and the total zero-flow days 
(ZFT) during the 30-week study period, environmental uniqueness, 

and the number of impacts for all dataset including perennial and 
intermittent rivers. Regression lines are only shown in those plots 
with statistically significant relationships in the models



	 M. Soria et al.   66   Page 8 of 13

and F-LCBD were significantly correlated with DPi, but no 
significant patterns were observed for the other predictors 
(Table 2 and Fig. 4g–l).

Discussion

Overall, our results showed that IRs had significantly higher 
taxonomic LCBD than perennial rivers, despite their lower 
local taxonomic and functional diversity. In early summer 
and in response to the loss of surface flow, the observed 
decline in taxonomic and functional richness in IRs can be 
explained by the disappearance of lotic species inhabiting 
riffle habitats (Bogan et al. 2017; Tonkin et al. 2017). Yet, 
during the disconnected pool phase in summer, the increase 
in taxonomic and functional LCBD in IRs can be related 
to the colonization of species with specific traits adapted 
to cope with such conditions (Bonada et al. 2006, 2020). 
A similar pattern, where sites with higher LCBD are those 
with lower richness, has been found in other studies of mac-
roinvertebrates (e.g. Heino et al. 2017; da Silva et al. 2018; 
Valente-Neto et al. 2020) and other biological groups (e.g. 
Legendre and De Cáceres 2013; Vilmi et al. 2017; Landeiro 
et al. 2018). This negative relationship indicates that sites 
with low taxonomic and functional richness tend to hold 
unique species and trait compositions, highlighting the com-
plementarity of alpha and beta diversity indices in describ-
ing biodiversity (Heino et al. 2017; da Silva et al. 2018). 
Incorporating temporal patterns of LCBD is therefore key 

to capturing the full variation in community composition 
that exists in these highly dynamic ecosystems (Ruhí et al. 
2017; Sánchez-Montoya et al. 2020; Rodríguez-Lozano et al. 
2023).

Our study also showed that higher values of taxonomic 
and functional LCBD occur mostly during the disconnected 
pool phase of IRs. During this phase, taxa inhabiting flowing 
conditions tend to be lost, while lentic taxa progressively 
colonize the remaining disconnected pools from nearby sites 
that are drying up, such as Odonata, Coleoptera and Hemip-
tera (Bogan et al. 2017; Bonada et al. 2020). Indeed, there 
are studies showing that lentic-dwelling species have higher 
dispersal abilities than lotic species (e.g. Ribera and Vogler 
2000; Hjalmarsson et al. 2015). Disconnected pools can act 
as refuges for some aquatic taxa such as fish or amphibians 
during IRs’ dry season, which are fundamental for recolo-
nizing the river network upon flow resumption (Hermoso 
et al. 2013; Gallart et al. 2017). In addition, for some spe-
cies of macroinvertebrates (and for amphibians and fish), 
disconnected pools are also used as stepping-stones for their 
dispersal or as key sites for laying eggs and, thus, complet-
ing their life cycle (Bonada et al. 2006, 2020; Stubbington 
et al. 2017; Moidu et al. 2023). Considering that up to 60% 
of the world’s rivers by length are IRs and that they are 
expected to increase worldwide (Döll and Schmied 2012; 
Messager et al. 2021), it is expected that disconnected pools 
will become more abundant and, consequently, management 
actions will be needed to conserve them (Gallart et al. 2017; 
Bonada et al. 2020).

Table 2   Partial regression 
coefficients of the explanatory 
predictors used in linear mixed-
effects models for intermittent 
rivers only

The response variables were the taxonomic and functional local contribution to β-diversity (T-LCBD and 
F-LCBD, respectively), and the local taxonomic and functional richness (TRic and FRic, respectively). 
DPi: the number of days in the disconnected pool phase since the last sample was taken
Significant coefficients (P < 0.05) are indicated in bold

Response Predictors variables Value SE df t-value P

TRic Intercept 39.2470 3.3143 43 11.8419 0.00001
DPi −0.1030 0.0474 43 −2.1744 0.0352
Environmental uniqueness −531.5054 252.4283 43 −2.1058 0.0411
Number of impacts −1.0494 0.2123 43 −4.9423 0.00001

FRic Intercept 0.2921 0.0425 43 6.8757 0.00001
DPi −0.0003 0.0006 43 −0.5590 0.5791
Environmental uniqueness −4.5424 3.2356 43 −1.4039 0.1675
Number of impacts −0.0133 0.0027 43 −4.8987 0.00001

T-LCBD Intercept 0.0099 0.0019 43 5.2038 0.00001
DPi 0.0001 0.00002 43 3.2005 0.0026
Environmental uniqueness 0.1091 0.1367 43 0.7984 0.4291
Number of impacts −0.00003 0.0001 43 −0.2444 0.8080

F-LCBD Intercept 0.0048 0.0064 43 0.7532 0.4555
DPi 0.0004 0.0001 43 4.1734 0.0001
Environmental uniqueness 0.1494 0.4890 43 0.3054 0.7615
Number of impacts 0.0003 0.0004 43 0.8482 0.4010
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On the other hand, our results suggest that flow intermit-
tence (i.e. indicated by ZFT), the number of impacts and the 
environmental uniqueness were significant predictors of tax-
onomic and functional richness, but only flow intermittence 
was an important predictor of taxonomic LCBD. Indeed, the 
permanence of disconnected pools (i.e. indicated by DPi) 
was the main predictor explaining the spatiotemporal pat-
terns of IRs. However, there was no significant correlation 
with the number of impacts, despite some impacted IRs also 
showing higher LCBD values. This could be explained by 
the fact that resistance and resilience traits that can cope 
with flow intermittence in IRs (e.g. multi-voltinism, aerial 
respiration or mechanisms to tolerate low dissolved oxy-
gen concentrations) may also be useful in coping with 

anthropogenic impacts (Bonada and Resh 2013; Stubbing-
ton et al. 2017; Soria et al. 2020), a phenomenon known as 
co-tolerance (Boulton et al. 2000). In fact, Mediterranean 
IRs hold unique species composition adapted to natural flow 
intermittence, such as a dominance of pool-dwelling species 
during the disconnected pool phase (Bonada et al. 2006, 
2020; Cid et al. 2017), which could give them the ability to 
resist and to recover from drying periods and, at the same 
time, from anthropogenic impacts. However, persistent and 
intensifying anthropogenic impacts over time could reduce 
the ability of these species to cope with flow intermittence 
(Datry et al. 2017).

Considering that IRs have been commonly ignored in 
conservation planning (Bogan and Lytle 2007; Leigh et al. 
2019), it is timely to provide complementary measures 

Fig. 4   Partial relationship between taxonomic and functional rich-
ness (TRic and FRic, respectively), taxonomic and functional LCBD 
(T-LCBD and F-LCBD, respectively), and the number of days in the 
disconnected pool phase (DPi) since the last sample was taken, envi-

ronmental uniqueness and the number of impacts for only intermittent 
rivers. Regression lines are only shown in those plots with statisti-
cally significant relationships in the models
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to adequately assess their biodiversity. In this sense, the 
LCBD approach shows a high potential to be used for 
conservation purposes, as the ecological uniqueness of a 
site can be compared with other sites sampled in a region 
(Legendre and De Cáceres 2013; da Silva et al. 2018; 
Valente-Neto et  al. 2020). In highly dynamic systems 
such as IRs, not only spatial but temporal patterns should 
also be considered to better identify key sites (Ruhí et al. 
2017; Rogosch and Olden 2019; Stubbington et al. 2019; 
Sánchez-Montoya et al. 2020). However, analysing only 
spatiotemporal species richness and community composi-
tion might not be sufficient to design conservation plans 
aimed at protecting the processes that maintain their eco-
system functioning (Leigh et al. 2016, 2019; Villéger et al. 
2017; Crabot et al. 2020). Therefore, given the hydrologi-
cal variability of IRs and the increasing anthropogenic 
impacts they receive, freshwater conservation planning 
should consider monitoring the temporal variability of 
both taxonomic and functional biodiversity in these eco-
systems. This might be even more relevant in Mediterra-
nean climate regions worldwide where IRs constitute one 
of their predominant freshwater ecosystems (Bonada and 
Resh 2013; Cid et al. 2017). Special attention should also 
be given to the disconnected pool phase, as this is key to 
maintaining local and regional aquatic biodiversity (Gal-
lart et al. 2017; Bonada et al. 2020). In this regard, several 
management-related tools have recently been developed 
to better predict the flow patterns of IRs, such as wet-dry 
mapping, remote sensing (e.g. satellite images, fixed cam-
eras), field sensors (e.g. conductivity, temperature, water 
level and/or presence/absence of water), hydrological met-
rics (e.g. zero-flow days) or models (e.g. IHACRES [Iden-
tification of unit Hydrographs And Component flows from 
Rainfall, Evaporation and Streamflow data] or SWAT [Soil 
& Water Assessment Tool]) (Datry et al. 2017). Indeed, as 
the distribution of disconnected pools in IR networks can 
vary spatially and temporally from one year to another, 
tools have been developed even to account for their tempo-
ral and spatial occurrence (e.g. TRESH software; Gallart 
et al. 2017), as well as to assess their priority as biodiver-
sity refuges and incorporate them into conservation plan-
ning (Hermoso et al. 2013; Yu et al. 2022). Citizen science 
can also result in a powerful tool to fully understand the 
hydrological characteristics of these ecosystems (e.g. Riu-
Net app, DRYRivERS app). The integration of these tools 
in the conservation management of IRs, together with the 
use of community metrics able to capture their spatiotem-
poral biodiversity patterns, are key to improving fresh-
water conservation in the Mediterranean climate region.
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