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Abstract
General mechanisms underlying the pathways of methane  (CH4)-derived carbon in aquatic food webs are often associated 
with eutrophication-driven anoxia. Yet, the influence of changing nutrient availability on  CH4 cycling has been mainly 
investigated during the increasing phase (i.e. onset of anthropogenic eutrophication), thus leaving unclear whether nutrient 
reduction can lead to a simple reversion of the observed effects on  CH4 cycling. We combined stable isotopes of chironomid 
remains (δ13CHC) and sedimentary ancient DNA of methanotrophic bacteria (MOB) to unravel the drivers of biogenic  CH4 
contribution to chironomid biomass in boreal lakes. Using a spatial dataset, our study shows that δ13CHC values were more 
depleted in hypoxic lakes and were positively associated with methanotrophic bacteria belonging to the γ-proteobacteria 
class (MOB type I), therefore supporting the view of higher utilization of  CH4-derived carbon in anoxic environments. How-
ever, this space-for-time substitution approach failed to provide any reliable information on whether lake food webs follow 
the same pathway in forward and reverse directions. Using downcore reconstruction, our results show that despite a drastic 
mitigation-induced decrease in nutrient concentrations and strong evidence of biological recovery of algal and chironomid 
communities, chironomid biomass remained highly subsidized by methanotrophic bacteria throughout the study period. 
Results therefore suggest that mechanisms underlying the pathways of  CH4-derived carbon in aquatic food webs are likely 
not the same during perturbation and recovery trajectories and that complex feedback mechanisms can stabilize lakes in this 
 CH4-based food web state.

Keywords Lake food web · Chironomidae · Methane-oxidizing bacteria · Sedimentary ancient DNA · Carbon stable 
isotope · Paleolimnology

Introduction

Methanogenesis is the dominating degradation process in 
anoxic freshwaters (Mattson and Likens 1992), and the 
methane  (CH4) produced in anoxic sediments and/or water 
subsequently serves as an energy and carbon source for 
methanotrophic bacteria (or methane-oxidizing bacteria; 
MOB) in oxic environments (Sanseverino et al. 2012). Meth-
anotrophic bacteria can therefore constitute a substantial 
food resource for aquatic consumers and may be transferred 
to higher trophic levels in the food web (Ravinet et al. 2010), 

thus representing an important link between anoxic and oxic 
environments in lakes. As energy and carbon flow through 
aquatic food webs are of fundamental importance for the 
function of lake ecosystems, unravelling the drivers of  CH4 
cycling in lake food webs is key to our understanding of the 
response of lake ecosystems to global change.

General mechanisms underlying the pathways of 
 CH4-derived carbon in aquatic food webs are traditionally 
associated with anoxia (Jones et al. 2008), and research 
showed that the transfer of  CH4-derived carbon to aquatic 
consumers is favoured by warm temperature (Wooller et al. 
2012; van Hardenbroek et al. 2013; Belle et al. 2017) and 
anthropogenic eutrophication (excess of nutrients inputs, 
Belle et al. 2014; Schilder et al. 2017). Yet, the influence of 
nutrient availability on  CH4 cycling has always been investi-
gated during the increasing phase (Belle et al. 2014; Schilder 
et al. 2017), thus leaving it unclear whether nutrient reduc-
tion leads to a simple reversion of the observed effects on 
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 CH4 cycling. However, the lack of long-term data beyond 
traditional monitoring windows (a few decades at best) 
makes it impossible, in most cases, to unravel to what extent 
nutrient reduction influences carbon processing within food 
webs and  CH4 cycling.

To overcome this issue, space-for-time substitutions have 
been increasingly applied in ecological studies to project 
responses of species distributions and trophic relationships 
in lakes (Belle et al. 2022), and this approach is commonly 
used to unravel drivers of  CH4 cycling in lake food webs 
(Jones et al. 2008). A space-for-time approach typically 
addresses how ecological processes are distributed across 
areas in landscape and relate to specific habitats/conditions 
and assumes that drivers of spatial gradients also drive tem-
poral changes in the studied process. However, space-for-
time substitution approaches are based on the assumption 
that the observed changes occur in both ways (e.g. both 
increasing and decreasing directions), therefore failing to 
capture more complex mechanisms of resilience, such as 
hysteresis referring to the phenomenon by which changes 
in ecological states follow different pathways in forward 
and reverse direction (Scheffer 1998). Numerous ecological 
feedback mechanisms can indeed stabilize lakes recovering 
from eutrophication (Scheffer 1998), and many studies have 
demonstrated the decoupling between lake water quality and 
benthic processes in lakes recovering from eutrophication 
(Little et al. 2000; Millet et al. 2010). Similar observations 
are therefore expected for  CH4 cycling.

Combined uses of chitinous remains and stable isotopes 
in paleolimnological studies have been developed to recon-
struct long-term dynamics of past carbon flows through 
food webs (Heiri et al. 2012; van Hardenbroek et al. 2018; 
Belle et al. 2019), and this time-for-time approach provides 
a reliable alternative to the widely used space-for-time 
approach. Specifically, head capsules of Chironomidae lar-
vae (Arthropoda; Diptera; Nematocera), non-biting midges 
with larvae growing in superficial lake sediments, are mor-
phologically and chemically well preserved in sediments 
(Verbruggen et al. 2011a, b) and can therefore be utilized for 
carbon stable isotope analysis (expressed as δ13C). Several 
calibration studies showed a small and temperature-inde-
pendent trophic fractionation (Belle et al. 2020) and a small 
offset between larvae and their chitinous remains (Heiri et al. 
2012; Frossard et al. 2013), thus allowing to link δ13C val-
ues of chironomid remains to their putative assimilated food 
resources. Biogenic  CH4 is typically known to exhibit very 
low δ13C values (from − 110 to − 40‰; Rinta et al. 2015; 
Thottathil and Prairie 2021) largely exceeding the lowest 
δ13C values of all other available resources (from − 35 to 
− 15‰ for aquatic and terrestrial primary producers: Jones 
et al. 1999; Vuorio et al. 2006). Therefore, chironomids rely-
ing on  CH4-rederived carbon typically show very low δ13C 
values (Grey 2016). Furthermore, van Hardenbroek et al. 

(2010) found a positive relationship between δ13C values 
of chironomid remains and  CH4 concentrations in boreal 
lakes, thus allowing us to reconstruct past changes in  CH4 
availability for aquatic consumers. Chironomid larvae are 
also a keystone taxonomic group in lakes, forming an impor-
tant trophic link between primary producers and top preda-
tors (Goedkoop and Johnson 1996), and the study of their 
chitinous remains will, therefore, help us to elucidate  CH4 
cycling in lakes and the fate of biogenic  CH4 at the interface 
between anoxic and oxic environments. Furthermore, novel 
paleolimnological approaches based on sedimentary ancient 
DNA preserved in lake sediments were also successfully 
applied to the methanotrophic bacterial community (Belle 
and Parent 2017). Combined analysis of sedimentary ancient 
DNA of  CH4-oxidizing bacteria and stable isotope of chi-
tinous remains (see also Belle et al. 2015) has the potential 
to produce novel insights into the mechanisms underlying 
lake  CH4 cycling responses to eutrophication and mitigation 
actions.

In this study, we combined stable isotopes of chironomid 
remains and sedimentary ancient DNA of MOB in sedi-
ment cores covering different spatial and temporal scales to 
unravel the drivers of biogenic  CH4 contribution to chirono-
mid biomass in boreal lakes. We hypothesized that oxygen 
concentrations in lakes are a good predictor of MOB abun-
dances in sediments and the incorporation of  CH4-derived 
carbon into the chironomid biomass. We also hypothesized 
that, due to the known decoupling between lake water qual-
ity and benthic processes in lakes recovering from eutrophi-
cation, nutrient reduction only slightly affects MOB com-
munity composition and  CH4-derived carbon incorporation 
to the chironomid biomass.

Materials and methods

Study sites

In total, 18 relatively small (area range 39–528 ha) and deep 
(maximum water depth range 15.4–32 m) lakes with rela-
tively small catchments (range 1.31–40.3  km2) located in 
Sweden have been selected in this study (Fig. 1). Monthly 
mean water quality data during the summer period were 
retrieved from the Swedish National Monitoring Program 
database (https:// miljo data. slu. se/ mvm/), including light 
absorbance at 420 nm, calcium and magnesium concentra-
tions, chlorophyll a water concentrations, water conductiv-
ity, total organic carbon concentrations, pH, Secchi depth, 
nutrient concentrations, and bottom water oxygen concentra-
tions (when available, 16 out of 18 lakes). Since the upper-
most sediment layers represent several years, mean values 
for all environmental variables were calculated for the last 
5 available years, and average values are further presented 

https://miljodata.slu.se/mvm/
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Fig. 1  Location of the study 
region showing the sampling 
sites. Open symbols refer to 
the lake only included in the 
19-lake dataset, whereas the 
closed symbol refers to Lake 
Drevviken
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by (Belle et al. 2022). The lakes cover large environmental 
gradients in water transparency (Secchi depth 1.5–8 m; total 
organic carbon concentrations 4–19.7 mg  l−1; light absorb-
ance at 420 nm ranging from 0.02 to 0.51), and total phos-
phorus concentrations (ranging from 3.6 to 37.8 µg  l−1), thus 
allowing study of the relationships between environmental 
conditions and carbon flows in lake food webs.

Among these sites, Lake Drevviken was selected to test 
whether management actions taken to overcome anthropo-
genic eutrophication have similar effects on  CH4 cycling and 
its biological transfer to chironomid larvae. Lake Drevviken 
is located in Stockholm’s suburbs and the lake suffered from 
excessive inputs of nutrient concentrations which led to an 
increase of algal productivity in the 1970s and 1980s due 
to an ineffective wastewater treatment plant. At the begin-
ning of 2000, the wastewater of the area was connected to 
Stockholm's sewage network, and monitoring data over the 
1982–2020 period showed similar temporal dynamics in 
total phosphorus and chlorophyll a water concentrations, 
with a dramatic decrease starting at the beginning of 2000.

Sediment coring and dating techniques

In June–July 2020, one surface sediment core was retrieved 
from the deepest point of each selected lake using a gravity 
corer (9 cm diameter: UWITEC). All sediment cores were 
also vertically split into two halves in the laboratory, and 
the uppermost 1-cm-thick sediment layer of each core and 
the first 30 cm of the Lake Drevviken sediment core were 
immediately collected and stored at − 20 °C for DNA extrac-
tion or + 4 °C for other analyses.

The sediment core from Lake Drevviken was dated by 
210Pb and 137Cs at Liverpool University's Environmen-
tal Radioactivity Laboratory. Sub-samples were analysed 
for 210Pb, 226Ra, and 137Cs by direct gamma assay, using 
Ortec HPGe GWL series well-type coaxial low background 
intrinsic germanium detectors (Appelby et al. 1986). 210Pb 
was determined via its gamma emissions at 46.5 keV, and 
226Ra by the 295 keV and 352 keV γ-rays emitted by its 
daughter radionuclide 214Pb, following 3 weeks of storage 
in sealed containers to allow radioactive equilibration. 137Cs 
was measured by its emissions at 662 keV. Corrections were 
made for the effect of self-absorption of low-energy γ-rays 
within the sample (Appleby and Oldfield 1992). Dates 
were calculated using the CRS model (Appleby and Old-
field 1978). Discrepancies with any clearly defined 137Cs 
dates were resolved using the methods outlined in (Appleby 
2002). The results were previously discussed in Belle et al. 
(2022).

Nitrogen stable isotope of sedimentary organic matter 
(δ15NOM) was used to estimate the anthropogenic inputs of 
nutrients to the lake (Gu 2009) where higher anthropogenic 
nutrient inputs lead to an enrichment of the heavier isotope 

(15N) thus inducing an increase in δ15NOM values. δ15NOM 
was analysed using an isotope ratio mass spectrometer inter-
faced with an elemental analyser (EA-IRMS) at SLU Stable 
Isotope Laboratory (Umeå, Sweden). Results were expressed 
as the deviation (δ) with atmospheric nitrogen as a reference 
standard: δ15N (‰) =  ([Rsample/Rstandard]—1) × 1000, where 
R = 15N/14N. Sample measurement replications from inter-
nal standards (wheat and maize flours) produced analytical 
errors (1σ) of ± 0.2% for δ15N values (n = 24).

Analysis of methanotroph community using 
sedimentary ancient DNA

DNA extraction and polymerase chain reaction (PCR) were 
conducted in separate clean laboratories in UV-treated 
laminar flow cabinets with high-efficiency particulate air 
filtration. DNA was extracted from 0.25 g of three parallel 
samples of each sediment sample by using the DNeasy Pow-
erSoil Kit (Qiagen) following the manufacturer's instruc-
tions. A negative extraction control was included in every 
extraction. The concentration of DNA was measured using 
NanoDrop ND-1000. The DNA concentration of Lake Drev-
viken samples was normalized to 0.25 ng.μl−1 using PIRO 
Pippeting robot (Dornier, Lindau, Germany) according to 
the manufacturer's instructions. All DNA samples were 
stored at − 80 °C until PCR amplification.

The bacterial 16S rRNA gene (regions V3–V4) was 
amplified using the universal prokaryotic primers 341F (5’-
CCT ACG GGNGGC WGC AG-3’) and 805R (5’-GAC TAC 
HVGGG TAT CTA ATC C-3’; Herlemann et al. 2011). Ampli-
fication of bacterial communities was conducted in 20 μl 
volumes and in three replicates. The PCR mixture comprised 
10 μl of 2 × Phusion Master Mix with high-fidelity buffer 
and 0.75 μl of BSA (20 mg  ml−1; Thermo Scientific, Vilnius, 
Lithuania), 1 μl of each forward and reverse primer (10 μM), 
1 μl of DNA (4 μl of DNA for Drevviken core samples), and 
nuclease-free water (Solis BioDyne, Tartu, Estonia). The 
amplification programme with Phusion High-Fidelity DNA 
polymerase (Thermo Scientific) included an initial denatura-
tion at 98 °C for 30 s; 29 cycles of denaturation for 10 s 
at 98 °C, annealing for 30 s at 55 °C, elongation for 15 s 
at 72 °C; final elongation at 72 °C for 10 min and storage 
at 4 °C. The relative quantity of amplicons was visualized 
on 1% agarose gel (Bioatlas; 1xTAE buffer). PCR products 
from the three replicates were pooled and diluted 20 ×, fol-
lowed by the dual-indexing (i7/i5) method. The indexing 
step PCR reaction (20 μl) contained 10 μl of 2 × Phusion 
Master Mix with High-Fidelity buffer (Thermo Scientific), 
2 μl of each of the indexes (5 μM), 1 μl of PCR amplicons, 
and nuclease-free water (Solis BioDyne). The indexing PCR 
programme included 2 min at 98 °C; followed by 12 cycles 
of 20 s at 98 °C, 30 s at 60 °C, 30 s at 72 °C; and a final elon-
gation of 5 min at 72 °C. Negative controls (no added DNA) 
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were included in each step. Samples were sequenced using 
the Illumina MiSeq 2 × 250 base pairs (bp) platform at the 
FIMM (Institute of Molecular Microbial Medicine Finland, 
Helsinki, Finland, or Asper Biotech, Tartu, Estonia).

The paired-end demultiplexed data were analysed 
using QIIME 2 version 2021.8.0 (Bolyen et al. 2019). The 
sequencing resulted in 8,413,049 reads with a median of 
105,305 reads per sample and 11,472,035 reads with a 
median of 121,034 reads per sample for Drevviken core 
dataset. DADA2 package (Callahan et al. 2016) denoise-
paired method was used to denoise paired-end sequences, 
dereplicate them, filter out chimeras, and finally construct a 
feature table of amplicon sequence variants (ASVs). Based 
on quality plots generated using 10,000 randomly selected 
reads, forward and reverse reads of Drevviken core data were 
truncated with denoise paired to 247 and 231 bp, respec-
tively. Surface sediment reads did not require truncating. 
ASVs were taxonomically classified using the feature-clas-
sifier plugin in QIIME 2 with the pre-trained (uniform naive 
Bayes classifier trained on full-length 16S) SILVA database 
version 138.1 (Quast et al. 2013; Kaehler 2022).

The number of reads attributed to ASVs present in nega-
tive, extraction, and sampling controls was used to detect 
potential sequencing errors and contaminants. Reads in 
controls were summed for each ASV, its proportional rep-
resentation in total read count per ASV was calculated, 
and ASVs with > 20% were excluded. For the remaining 
ASVs, the read sum in controls was subtracted from the 
corresponding samples. All Archaea, Eukaryota, uniden-
tified ASVs, and unidentified Bacteria were discarded. In 
addition, ASVs that had a frequency < 2 across all samples 
within a dataset were excluded from further analyses. The 
known methanotrophic activity of the different ASVs was 
derived from existing literature (Borrel et al. 2011; Kalyuzh-
naya et al. 2019; Guerrero-Cruz et al. 2021), and the relative 
proportions of the different MOB types within the MOB 
community and relative to total sequences were then calcu-
lated and consisted of two aerobic main groups [MOB type 
I (affiliated to γ-proteobacteria) and MOB type II (affiliated 
to α-proteobacteria] and one anaerobic group (Methylomira-
bilia), which differ in terms of ecological requirements and 
physiological differences (Hanson and Hanson 1996; Billard 
et al. 2015; Yang et al. 2019).

Chitinous remains analysis

Carbon stable isotope analyses were performed on chirono-
mid head capsules belonging to the fourth instar of mor-
photypes of Sergentia coracina type, Chironomus anthra-
cinus type, and Chironomus plumosus type identified using 
(Brooks et al. 2007). For the sorting of chitinous remains, 
sediment samples were deflocculated in NaOH (10%) solu-
tion, pre-treated using washing with HCl (10%) solution, 

and sieved through a 100-µm mesh according to (van Hard-
enbroek et al. 2010). Head capsules were sorted under a 
dissection microscope until approximately achieving a mini-
mal mass of 30 µg for chironomid remains. Carbon stable 
isotopic composition of chitinous remains (δ13CHC) was 
analysed using an isotope ratio mass spectrometer inter-
faced with an elemental analyser (EA-IRMS) at our Stable 
Isotope Laboratory (Umeå, Sweden). Results were expressed 
as the delta notation with Vienna Pee Dee Belemnite as a 
standard: δ13C (‰) = [(Rsample/Rstandard)—1] × 1000, where 
R = 13C/12C. Sample measurement replications from internal 
standards (wheat and maize flour) produced analytical errors 
(1σ) of ± 0.15% for δ13C values (n = 14).

For sediment samples from Lake Drevviken, chironomid 
head capsules were also hand-sorted from sediment samples 
of wet sediment (ca. 17 g WW) following Walker (2001) and 
mounted between microscope slides. Chironomid commu-
nity composition was identified under a microscope using 
Brooks et al. (2007) and Rieradevall and Brooks (2001) for 
Tanypodinae. Data are expressed as relative abundances, and 
only taxa occurring in at least two samples, with a maxi-
mum relative abundance of > 2%, were included in further 
analysis. A principal component analysis was performed on 
the chironomid data, and the scores of the second PC axis 
(expressing the percent variance explained) were used as 
indicators of the temporal changes in chironomid community 
composition.

Data analysis

We used generalized additive models (using mgcv package 
for R; Wood 2011) to determine whether δ13CHC values were 
associated with bottom oxygen concentrations and propor-
tions of different MOB groups within both MOB community 
and relative to total sequences. To examine whether manage-
ment actions influenced Lake Drevviken food webs (from 
community composition to carbon flows), temporal trends 
in water chemistry, sediment composition, chironomid, and 
MOB communities were assessed using boxplots, and a set 
of non-parametric Kruskal-Wallis tests (using ggpubr pack-
age for R; Kassambara 2023). All statistical analyses and 
plots were performed using the R 4.1.1 software (R Core 
Team 2021).

Results

Using the spatial dataset, we investigated changes in the 
predominance of main MOB groups in the sediment sam-
ples of lakes for which chironomid remains were found in 
sufficient numbers. MOB community of sediment sam-
ples predominated by MOB type I (γ-proteobacteria) or/
and MOB type II (α-proteobacteria), and small changes 
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in community composition and relative abundances were 
observed between lakes (Fig. 2A and 3B). Variability in 
δ13C values of chitinous remains ranged from − 37.9% 
to − 29.3%, largely exceeding those of analytical errors 
and trophic fractionation uncertainties (Fig. 2B). Overall, 
when δ13CHC values were ranked from the most negative 
values to the most positive ones (as shown in Fig. 2B), 
two contrasting patterns occurred between the two main 
MOB groups: MOB type II proportion tended to display an 
increasing trend, while MOB type I proportion followed a 
slightly decreasing one. Therefore, δ13CHC values showed 
more negative values (more 13C-depleted) associated with 
higher proportions of MOB type I (Spearman's correlation 
test, p = 0.05, r = 0.46; γ-proteobacteria) and lower propor-
tions of MOB type II (Spearman's correlation test, p = 0.31, 
r = 0.25; Fig. 2A, B). When bottom oxygen concentration 
data were present, chironomid remains of the targeted mor-
photypes were found in sufficient numbers in 16 lakes (out 
of 18 lakes, see “Methods”), and δ13CHC values were found 
significantly and positively associated with bottom oxygen 
concentrations  (R2 = 0.35, p < 0.1) with chironomid head 
capsules being 13C-depleted in hypoxic lakes (Fig. 3A). 
Furthermore, GAM results also showed that δ13CHC values 
were strongly and negatively associated with the develop-
ment of MOB type I within the MOB community  (R2 = 0.30, 
p = 0.01; Fig. 3B) and relative to total sequences (R2 = 0.15, 
p = 0.01; Fig. 3C). Furthermore, no clear pattern in δ13CHC 
values can be observed between morphotypes, as δ13CHC 
values seemed to be distributed along the gradients regard-
less of their morphotypes (Fig. 3).

A total of 454 chironomid head capsules were retrieved 
from the 30 sediment layers of the Lake Drevviken sedi-
ment core, with counts ranging from 8 to 28 HC per 
sample. As expected, due to historical and present-day 
ecological status, chironomid remains concentrations in 
sediments were extremely low (much below the com-
monly used minimum of 50 head capsules) and temporal 
changes in chironomid community composition should 
therefore be interpreted cautiously. Nevertheless, 17 mor-
photypes were selected for inclusion in further statisti-
cal analysis. The first two PC axes applied to chironomid 
data accounted for 14.6% and 13.5% of the total variance, 
respectively (Fig. 4A), and the PC2 axis largely reflected 
the predominance of Tanytarsus lugens/mendax type and 
Chironomus plumosus type, therefore indicating an oxygen 
gradient. Across the core, two contrasting trends occurred 

between the two morphotypes with the highest relative 
contributions: T. lugens/mendax type displayed an increas-
ing trend, while C. plumosus type showed a decreasing 
one (Fig. 4B), and PC2 axis scores showed an increasing 
trend over time. Nitrogen stable isotope of sedimentary 
organic matter (δ15NOM) was also measured to estimate the 
inputs of nutrients to the lake, and δ15NOM values ranged 
from 4.64–8.4%, followed by a gradual decrease over time 
(Fig. 4B). Furthermore, PC2 axis scores were negatively 
correlated with δ15NOM values (Pearson product-moment 
correlation, r = 0.25. p < 0.001), with high δ15NOM values 
leading to higher developments of the oxygen-tolerant C. 
plumosus-type and lower developments of the oxygen-
sensitive T. lugens/mendax (Fig. 4B), suggesting a posi-
tive influence on decreasing nutrient inputs on chironomid 
community.

Total phosphorus concentrations ranged from 36–181 µg.
l−1, with the highest concentrations reported before 2000 
(Fig. 4), and similar significant changes were also observed 
for chlorophyll a water concentrations, δ15NOM values, and 
PC2 axis scores (Fig. 4). Comparison between MOB com-
munities before/after 2000 showed significant trends in com-
munity composition characterised by a slight decrease in 
MOB type II proportion after 2000 while MOB type I pro-
portion instead increases (Fig. 4), although the MOB com-
munity is still strongly predominated by MOB type I (up to 
80%; Fig. 4). Head capsules of C. plumosus type were found 
in sufficient number for isotopic analysis in only six sedi-
ment layers. The δ13CHC values of C. plumosus type found 
in Lake Drevviken sediment core were extremely low (rang-
ing − 54.4 – − 42.7%), and temporal pattern in δ13CHC val-
ues did not show significant change over time as previously 
reported for water chemistry, sediment composition, MOB, 
and chironomid community composition (Fig. 4).

Discussion

Our study confirms the potential of using combined analyses 
of stable isotopes of chironomid remains and sedimentary 
ancient DNA of MOB to provide unique insights into  CH4 
cycling in lake food webs. Results support previous findings 
suggesting that chironomids growing in boreal hypoxic lakes 
are more subsidized by methanotrophic bacteria belong-
ing to the γ-proteobacteria class (MOB type I) compared 
to well-oxygenated lakes. However, the applied space-for-
time approach failed to provide any reliable information on 
whether  CH4 cycling follows the same pathway in forward 
and reverse directions. Using downcore reconstruction, 
results suggest that mechanisms underlying the pathways of 
 CH4-derived carbon in aquatic food webs instead differ dur-
ing the perturbation and recovery phases of eutrophication.

Fig. 2  A Proportions of the different groups of methanotrophic bac-
teria groups relative to total sequences and B within the methano-
trophic bacteria community and corresponding C carbon stable iso-
topic compositions of chironomid head capsules (δ13CHC; %). The 
δ13CHC values are ranked from the most negative to the most positive 
ones

◂
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Drivers of variations in δ13C values of chironomid 
remains

By reporting positive relationships between bottom oxygen 
concentrations and δ13CHC values, results suggest that chi-
ronomids growing in hypoxic lakes are more subsidized by 

MOB compared to well-oxygenated lakes, therefore support-
ing previous findings in other boreal (Premke et al. 2010) 
and temperate lakes (Jones et al. 2008). Results also suggest 
that δ13CHC values were negatively associated with higher 
abundances of MOB type I (γ-proteobacteria) in lake sedi-
ments and relative to other MOB groups. These results are 
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Fig. 3  Relationship between carbon stable isotopic compositions of 
chironomid head capsules (δ13CHC; %) and A bottom oxygen concen-
trations (mg  l−1) and B percentages of γ-proteobacteria (MOB type I) 
within the methanotrophic bacterial community. The number of lakes 
differs from panels A and B because of the availability of bottom oxy-

gen concentration data (see Methods). Open circles refer to Chirono-
mus plumosus-type head capsules whereas closed circles represent 
Chironomus anthracinus-type head capsules, and closed triangles 
represent those of Sergentia coracina type
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well in line with previous findings suggesting a higher con-
tribution of the MOB type I relative to other MOB groups 
to the chironomid biomass (Eller et al. 2005; Sanseverino 
et al. 2012), a pattern also reported from paleolimnological 
investigations (Belle et al. 2014). MOB type I are indeed 
known to grow mainly in the uppermost centimetres of lake 
sediments (Schubert et al. 2011; Kojima et al. 2012) where 
chironomid larvae also grow and feed. Other MOB groups 
instead colonize deeper sediment layers (e.g. ca. 15–20 cm 
depth for MOB type II; He et al. 2012) and might there-
fore not be available for chironomids. Furthermore, results 
report the predominance of MOB type I and MOB type II 
over other studied MOB groups (Fig. 2A), as previously 
reported in similar boreal (Rissanen et al. 2018) and tem-
perate lakes (Eller et al. 2005; Rahalkar et al. 2009; Billard 
et al. 2015) or sediments of a boreal estuary (Graham et al. 
1993). We also reported opposite trends between MOB type 
I and MOB type II, the latter showing higher proportions 
in more oxygenated lake sediments, likely because of the 
competitive advantage of MOB type II to exhibit a higher 
ability to access nutrients under nutrient-poor conditions 
(Wise et al. 1999; Myllykangas et al. 2020), whereas MOB 
type I exhibit a more eutrophic strategy than MOB type II 
(Ho et al. 2013; Nijman et al. 2021). Our study therefore 
confirms that  CH4-based food webs could be considered 
one of the symptoms of anthropogenic eutrophication, being 
enhanced by hypoxic conditions (Belle et al. 2015; Schilder 
et al. 2017). However, this space-for-time substitution can-
not allow us to unravel the pathway of  CH4 cycling in lakes 
recovering from eutrophication.

Downcore reconstruction was used to investigate the 
response of the  CH4-based food web to mitigation-induced 
nutrient reduction, focusing on Lake Drevviken, a lake heav-
ily impacted by excessive anthropogenic nutrient loadings 
before the 2000s. A drastic reduction of total phosphorus 
water concentrations (with a decrease of up to 75%) was 
observed at the beginning of 2000, and a similar change 
was observed for chlorophyll a concentrations, suggesting 
a drastic decrease in algal productivity. Temporal changes 
in chironomid community composition were characterised 
by the increasing development of the oxygen-sensitive taxa 
T. lugens/mendax type, while the relative abundances of 
hypoxic indicator taxa C. plumosus type instead decreased 
(Little and Smol 2001; Verbruggen et al. 2011a, b). These 
taxonomic changes could reflect better oxygen conditions at 
the bottom of Lake Drevviken after 2000. The MOB com-
munity of Lake Drevviken was largely predominated by 
MOB type I throughout the core (up to 80%), and slightly 
increasing proportions of MOB type I were revealed after 
2000. However, MOB type I are known to inhabit the upper-
most centimetres of lake sediments, and the observed change 
in MOB community occurred at 15 cm depth in the core. It 
is, therefore, difficult to rule out the potential influence of 

living MOB on the ancient DNA signal. Finally, extremely 
low δ13CHC values were reported throughout the core (from 
− 54.4 to − 42.7% typically matching the range of MOB 
values; Fiskal et al. 2021), and these values could only be 
explained by the substantial incorporation of MOB into chi-
ronomid biomass as the lowest δ13C of all other potential 
food resources was largely exceeded. The high proportion of 
MOB type I and the very low δ13CHC values are also well in 
line with our previous finding showing a negative relation-
ship between these two variables (see also Fig. 3B). Results 
therefore suggest a steady and substantial incorporation of 
MOB in chironomid biomass in Lake Drevviken throughout 
the study period despite drastic reductions in nutrient con-
centrations and strong evidence of biological recovery of 
algal and chironomid communities. Our study suggests that 
Lake Drevviken food webs are still dominated by  CH4-based 
processes, and no significant changes in response to the dras-
tic reduction in nutrient concentrations can be evidenced. 
Mechanisms underlying the pathways of  CH4-derived carbon 
in aquatic food webs are likely not the same during pertur-
bation and recovery trajectories. Further investigations are, 
however, still needed to better understand how the human-
induced  CH4-based food webs could also follow the theoreti-
cal framework on regime shift and hysteresis (see also Schef-
fer et al. 2009). Our study demonstrated the urgent need 
to fill the knowledge gap in the link among anthropogenic 
eutrophication, management actions, and carbon processing 
within the food webs (in particular  CH4 cycling).

Implication for ecological assessment 
and restoration targets

Numerous tools have been developed to mitigate anthro-
pogenic eutrophication, ranging from external measures 
to reduce nutrient loading to internal measures designed to 
change in-lake nutrient availability and bind nutrients in lake 
sediments (Jilbert et al. 2020). All these actions contribute 
to successfully improving lake water quality (Jeppesen et al. 
2012), but contrasted efficiency has been documented for 
benthic processes, and similar observation was expected 
for  CH4 cycling. At the beginning of 2000, management 
actions were taken to counteract the effects of anthropo-
genic eutrophication, and the sewage network was connected 
to a new wastewater treatment plant leading to clear and 
immediate effects on the water chemistry of Lake Drevviken 
and algal and chironomid community composition (see also 
Fig. 4). Overall, this management action appeared to be 
a successful experience from the chemical and biological 
recovery perspective (Fig. 5). However, these changes were 
not followed by any change in carbon flows within chirono-
mid larvae. Environmental conditions favouring  CH4-based 
food webs of benthic habitats, such as high nutrient inputs 
and low levels of oxygenations, were likely still prevailing 
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after 2000, and the management action did not succeed in 
changing these conditions. Our results therefore suggest that 
the study of carbon flows within food webs may be used to 
support the management of freshwater ecosystems by pro-
viding relevant indications on ecosystem integrity and may 
be used to quantify the effectiveness of management actions 

taken to counteract the effects of anthropogenic eutrophica-
tion on different compartments of lake ecosystems.
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